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1. Introduction

There is a lot of discussion about the “true” fractional iterates of the function
ex in the mathematical community. In 1949 Kneser [3] proved the existence
of real analytic fractional iterates. However Szekeres (a pioneer in developing
the theory of fractional iteration [8]) states 1961 in [9]:

“The solution of Kneser does not really solve the problem of ‘best’ frac-
tional iterates of ex. Quite apart from practical difficulties involved in the
calculation of Kneser’s function on the real axis, there is no indication what-
soever that the function will grow more regularly to infinity than any other
solution. There is certainly no uniqueness attached to the solution; in fact if
g(x) is a real analytic function with period 1 and g′(x)+1> 0 (e.g. g(x) =
1
4π sin(2πx) then B∗(x) =B(x)+g

(
B(x)

)
is also an analytic Abel function of

ex which in general yields a different solution of the equation.”
A recent discussion with Prof. Jean Écalle supports the impression that

no uniqueness criterion was found up today and that there is even evidence
against the existence of a criterion concerned with the growth-scale or as-
ymptotic behavior at infinity.

By withdrawing our attention from the purely real analytic behavior of
the Abel function to the behavior in the complex plane we can succeed in
giving a simple uniqueness criterion for Abel functions of a whole class of real
analytic (or arbitrary holomorphic) functions with two complex fixed points.
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We show the usefulness of the criterion by providing an Abel function
that satisfies the criterion. This is the above mentioned by Kneser constructed
Abel function of ex (which can be easily generalized to functions bx with
b> e1/e).

We have also a suggestion to numerically compute this Abel function
and the corresponding fractional iterates of ex (also of bx for b> e1/e in gener-
alization) by a method developed in [4]. Several other methods to numerically
compute holomorphic fractional iterates of ex or the holomorphic Abel func-
tion have emerged in the past years (for example one is given in [11]). A future
research goal would be to put them on a thorough theoretic base (proving
convergence and holomorphy) and to verify the here given uniqueness crite-
rion.

2. Motivation

Our original motivation was the investigation of a fourth stage of operations
after the third stage containing power, exponential and logarithm.

Different terms for such operations were used in the past like: “gener-
alized exponential” and “generalized logarithm” by Walker [10], “ultra ex-
ponential” and “infra logarithm” by Hooshmand [2], “super-exponential” by
Bromer [1], tetration and superlogarithm [4]. In this paper we give them the
more succinct names “4-exponential” and “4-logarithm”.

Definition 1 (4-exponential). A 4-exponential to base b> 0 is a function f
that satisfies

f(0) = 1 (1)

f(z+1) = expb
(
f(z)

)
(2)

for all applicable z.

For any f̃ that only satisfies (2) and contains 1 in its codomain: f̃(z0) =
1, the function f(z) = f̃(z+z0) is a 4-exponential.

Definition 2 (4-logarithm). A 4-logarithm to base b> 0 is a function g that
satisfies the Abel equation (4) (see [6]) (for all applicable z) with the following
initial condition:

g(1) = 0 (3)

g(expb(z)) = g(z)+1. (4)

For any g̃ that only satisfies (4) and has 1 in its domain of definition, the
function g(z) = g̃(z)−g̃(1) is a 4-logarithm. Here we set as usual expb(z) =
bz = exp

(
ln(b)z

)
. The inverse of a 4-exponential (if existing) is a 4-logarithm

and vice versa.
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On positive integer arguments z=n any 4-exponential f is already de-
termined to be just the n-times application of expb to 1.

f(n) = exp◦nb (1) = b.
..

b︸︷︷︸
n×b

(5)

The question however is how to properly extend the function real and analytic
to non-integer arguments.

The existence of a real analytic strictly increasing 4-logarithm was proven
by Kneser [3]. A non-analytic solution with a uniqueness criterion was given
by Hooshmand in [2]. A numerical method to compute the real coefficients of
the powerseries development at 0 of a 4-logarithm was given (though without
proof of convergence) by Walker in [11]. Another numerical method to com-
pute a real analytic 4-exponential via Cauchy integrals (though also without
convergence proof) was given by Kouznetsov in [4].

A real analytic 4-exponential is expected to have a singularity or branch-
point at integers ≤−2 at least on some branch, because from f(z+1) =
expb(f(z)) follows f(z−1) = logb(f(z)) and by f(0) = 1 is then f(−1) = 0
and f(−2) = logb(0). To exclude branching we restrict 4-exponentials to

C−2 = C\{x∈R :x≤−2} (6)

It is a conjecture of the authors that holomorphy on the domain C−2 to-
gether with f(z∗) = f(z)∗ (complex conjugation) on C−2 implies the unique-
ness of the 4-exponential f .

From considerations about the uniqueness of 4-logarithms/4-exponentials
the following general uniqueness criterion for Abel functions with two com-
plex fixed points emerged.

3. The Uniqueness Criterion

Before we start we mention some conventions we use: Usually curves here are
regarded as continuous maps on the open interval (−1,1). If we however use
a curve in a set context then we refer to the image of the curve, e.g. γ1∪γ2 =
γ1((−1,1))∪γ2((−1,1)). The disjoint union C =A]B means here that C =
A∪B and A∩B= ∅. The sum A+z of a region A⊆C and a number z ∈C is
defined as the region {a+z : a∈A}. A function being holomorphic on a non-
open set means that there is a neighborhood of each point of the set where the
function is holomorphic. logb(z) = log(z)/log(b) means the principal branch
−π <=(log(z))≤π of the logarithm if not stated otherwise. “Continuable”,
“continuation” and “continue” always refer to analytic continuation.

Definition 3 (Abel function, initial curve/region). We call a function α holo-
morphic on D an Abel function of F iff it satisfies the Abel equation

α(F (z)) =α(z)+1 (7)

for all z ∈D∩F (D). F is sometimes called the base function.
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A curve γ : (−1,1)→C on which F is holomorphic is called an initial
curve of F iff γ and F ◦γ are injective and disjoint and γ(−1) 6= γ(1) are two
fixed points of F . (To be strict define γ(±1) := limt→±1γ(t).)

Under these conditions γ∪(F ◦γ)∪{γ(−1),γ(1)} is a closed Jordan curve.
We call its inner (bounded) component C joined with γ and F ◦γ the initial
region of γ denoted by IF (γ) := γ]C]F (γ) =C\{γ(−1),γ(1)}.

Theorem 1. Let F be a holomorphic function, let γ be an initial curve of
F , let H be its initial region and d∈H. There is at most one function α
satisfying Criterion 1.

Criterion 1. The function α is an on H holomorphic and injective Abel func-
tion of F , α(d) = 0 and

⋃
k∈Z(α(H)+k) = C.

Proof. Assume there are two such Abel functions α1 : H↔T1 and α2 : H↔
T2 holomorphic and injective on H. For the rest of this proof we write αj
when referring to α1 as well as to α2. The inverse function α−1

j : Tj↔H
satisfies:

α−1
j (z+1) =F

(
α−1
j (z)

)
for all z such that z,z+1∈Tj . So we have two biholomorphic functions

q1 :=α2◦α−1
1 : T1↔T2 q2 :=α1◦α−1

2 : T2↔T1

with the property

q1(z+1) =α2

(
α−1

1 (z+1)
)

=α2

(
F
(
α−1

1 (z)
))

=α2

(
α−1

1 (z)
)
+1 = q1(z)+1

for each z with z,z+1∈T1; and generally

qj(z+1) = qj(z)+1 (8)

for each z with z,z+1∈Tj .
We define qj,k : Tj+k→C by qj,k(z+k) = qj(z)+k. By our property

qj(z+1) = qj(z)+1 the function qj,k and qj,k+1 coincide on the intersection
(Tj+k)∩(Tj+k+1) which contains the curve α◦γ+k+1. In conclusion qj
can be continued to the whole complex plane. So lets consider qj to be an
entire function.

For z ∈T1 we have q1(z) = q−1
2 (z). But the only entire functions that

have an entire inverse are linear functions. By the values q1(0) = 0 and q1(1) =
1 it can only be the identity. So α2(α−1

1 (z)) = z for z ∈T1 and hence α2 =α1

on H. �

Now one may argue that the Abel function may depend on the initial
region. This is not the case as shown by the next theorem.

Theorem 2. Let D be a connected set with d∈D and let F be holomorphic
on D, there can be at most one on D holomorphic Abel function α of F with
the property that α′(d) 6= 0 and that α satisfies Criterion 1 on some initial
region H ⊂D.
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Proof. Assume that there were two such Abel functions α1 and α2 such that
each αj is holomorphic on D and satisfies Criterion 1 on the initial region
Hj . We follow the proof of Theorem 1, listing only the modifications.

We consider biholomorphic αj : Hj↔Tj and holomorphic qj : Tj→C
and achieve (8). In conclusion each qj is entire. The function z 7→ q1(α1(z))−
α2(z) is holomorphic on D. It is constantly 0 on H1 and hence on D. That’s
why q1(0) = q1(α1(d)) =α2(d) = 0. Vice versa q2(0) = 0.

There is a neighborhood V of d where α1 and α2 is injective. Hence
α−1
j , q1 =α2◦α−1

1 and q2 =α1◦α−1
2 are injective on V ′=α1(V )∩α2(V )3 0.

But then q1 = q−1
2 on V ′∩q2(V ′). �

Now we want to make the criterion
⋃
k∈Z(α(H)+k) = C a bit more ac-

cessible and show that it is a consequence of limt→±1=(α(γ(t))) =±∞. Before
we start with the actual proof, we need a little insight into how curves divide
the complex plane. We know by the Jordan curve theorem that each simple
closed curve divides the sphere into two simply connected components. Con-
sidering the sphere C∪{∞} we know that each injective curve ζ : (−1,1)→C
with limt→±1ζ(t) =∞ divides the complex plane into two parts; where ∞ is
the complex infinity and limt→±1ζ(t) =∞ means that for each r > 0 there is
a t1 and t0 such that |ζ(t)|>r for all t> t1 and all t< t0.

A particular subclass of such curves are the injective curves ζ with
limt→±1=(ζ(t)) =±∞. Here∞ is the real infinity and limt→±1=(ζ(t)) =±∞
means that for each u∈R there are t0, t1 ∈ (−1,1) such that =(ζ(t))>u for
all t> t1 and =(ζ(t))<u for all t< t0.

Definition 4 (left/right component/ray). For an injective curve ζ : (−1,1)→C
we call a component left (resp. right) if it contains a left (resp. right) ray,
where a left (resp. right) ray is a set of the form {z0∓x : x> 0} for some
z0 ∈C.

The following lemma shows that that these properties indeed behave as
expected.

Lemma 3 (L,R). Let ζ : (−1,1)→C be an injective curve with limt→±1=(ζ(t)) =
±∞ and let P and Q the two components the plane is divided into; C =
P]ζ]Q.

1) Then either P is left and Q is right or vice versa. We denote the
left (resp. right) component with L(ζ) (resp. R(ζ)). Moreover there exist left
(resp. right) rays contained in the left (resp. right) component for each pre-
scribed imaginary part y.

2) If ζ+d is disjoint from ζ then R(ζ+d)⊂R(ζ) in the case d> 0 and
L(ζ+d)⊂L(ζ) in the case d< 0. Here the overline means the closure of the
component (it is equal to the union of the component with ζ).

Proof. For part 1) of the lemma we show that for each prescribed imaginary
part y there exists a left ray contained in one component and a right ray
contained in the other component. We show further that the union of all
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left (resp. right) rays such that each is contained in either P or Q must be
contained in either P or Q, which ensures the “either” in part 1).

We consider the indices of the intersection of the horizontal line Y =
{x+iy : x∈R} with the curve ζ, T = {t : ζ(t)∈Y }. Now let t0 = inf(T ) and
t1 = sup(T ); neither can t0 =−1 nor t1 = 1 because in this case there would be
a sequence of t→±1 such that =(ζ(t)) = y in contradiction to =(ζ(t))→±∞.

Hence −1<t0≤ t1< 1 and =(ζ(t))>y for all t> t1 and =(ζ(t))<y for
all t< t0. Let x0 =<(ζ(t0)) and x1 =<(ζ(t1)) then it is clear that Y0 := {x+
iy : x<x0} is completely contained in a component as well as Y1 := {x+
iy : x>x1} is completely contained in a component. The compound Y0∪
ζ([x0,x1])∪Y1 divides the plane into an upper half H1 which is divided by
ζ((x1,1)) and a lower part H0 which is divided by ζ((−1,x0)).

If there was a path β : [0,1]→C that connects Y0 with Y1, i.e. β(0)∈Y0

and β(1)∈Y1 then we choose s0 =β−1(sup(<(β∩Y0))+iy) and s1 =β−1(inf(<(β∩
Y1))+iy). The restriction of β to the non-empty interval (s0,s1) still connects
Y0 to Y1 but does neither intersect Y0 nor Y1. As the path is also not allowed
to intersect ζ([t0,t1]) it must either be contained in H0 or in H1 but then it
would intersect ζ((−1,x0)) or ζ((x1,1)).

If we have two left rays with the imaginary parts y1 and y2 then we
can do the above construction of t0(y) for y= y1,y2. Without restriction let
t0(y1)<t0(y2), then ζ([t0(y1),t0(y2)]) has a minimum of the real part and we
can connect both left rays by a vertical line with a smaller real part.

Now to part 2: We consider d> 0. First it is easy to see that one point
of ζ+d lies in R(ζ) and hence the whole ζ+d is contained in R(ζ). Vice
versa ζ must be contained in L(ζ+d). So ζ does not intersect R(ζ+d) and
we conclude that R(ζ+d) must be either contained in L(ζ) or in R(ζ). But
R(ζ) has common points with R(ζ+d) as a right ray Y is contained in R(ζ)
and the ray Y +d is contained in R(ζ+d). �

Criterion 2. Under the preconditions of Theorem 1, and γ being rectifiable,
the following criterion implies Criterion 1:

The curve ζ =α◦γ is injective, ζ∩(ζ+1) = ∅ and limt→±1=(ζ(t)) =±∞;
where α is an on H holomorphic Abel function of F with α(d) = 0.

Proof. The first two conditions of the criterion state that α is injective on γ∪
(F ◦γ) because α◦F ◦γ= ζ+1 by (7). By a theorem about univalent functions
(see [7] Theorem 4.8) the injectiveness of α on the rectifiable boundary with
finitely many exceptions (e.g. γ(−1) and γ(1)) implies the injectiveness on
the enclosed region (inclusive its boundary) which is H.

Now we show that
⋃
k∈Z(α(H)+k) = C: The image α(H) is bounded by

ζ and ζ+1 and it must be simply connected, that’s why

α(H) =R(ζ)∩L(ζ+1)
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Figure 1. Contours logb(`), ` and b` in the complex z-plane,
for base b= e.

If we now unite consecutive pieces α(H)+k, k∈Z, we get with R(ζ−1)⊃
R(ζ) and L(ζ)⊂L(ζ+1) from Lemma 3 that:

k1⋃
k=k0

(α(H)+k) =R(ζ+k0)∩L(ζ+1+k1)

By part 1) of Lemma 3 we also know that for each z=x+iy there is a
(negative) k0 ∈Z such that z ∈R(ζ+k0) (right ray with starting point x−k0+
iy is contained in R(ζ)) and a (positive) k1 ∈Z such that z ∈L(ζ+k1) (left
ray with starting point x−k1+iy is contained in L(ζ)). So α(H) translated
by all integers cover the whole complex plane:⋃

k∈Z
(α(H)+k) = C (9)

�

Criterion 3. Under the preconditions of Theorem 1 the following criterion
implies Criterion 2:

The real function f(t) ==(α(γ(t))) is strictly increasing and limt→±1f(t) =
±∞; where α is an on H holomorphic Abel function of F with α(d) = 0.

Proof. First it is clear that ζ :=α◦γ is injective as no imaginary value can be
taken twice. Further the correlation µ given by =(ζ(t)) 7→<(ζ(t)), t∈ (−1,1),
is a welldefined function on R. Then µ+1>µ is a function not intersecting
µ, and hence ζ+1 does not intersect ζ. �

4. Application to Kneser’s construction

In this section we apply the uniqueness Criterion 1 to the 4-logarithm (i.e.
Abel function of expb) Ψ as constructed by Kneser [3].



8 Henryk Trappmann and Dimitrii Kouznetsov

Related to Kneser’s construction we use the choice

H = {z ∈C : <(z)≥<(L), |z| ≤ |L|}\{L,L∗} (10)

as initial region which is depicted in Figure 1 for b= e (which is the only base
that Kneser considered). Here L is the fixed point of logb in the upper half
plane. The straight line

`(t) =<(L)+i=(L)t, −1<t< 1, (11)

between L and its complex conjugate L∗ is the left boundary of H and b` is
the right boundary of H.

Lemma 4. If b> e1/e then ` in (11) is an initial curve and hence H is an
initial region of expb.

Proof. We show that b` is injective and does not intersect `. By bL =L we
know that b<(L) = |bL|= |L| and hence

b`(t) = b<(L)+i=(L)t = |L|ei=(L)ln(b)t

which is an arc with radius |L| centered in 0 (shown with a dashed line)
starting at angle −=(L)ln(b) and ending at angle =(L)ln(b). This is true for
any non-real conjugated fixed point pair of expb. For b> e1/e there are no
real fixed points of expb and the fixed point pair of logb, which is the one
closest to the real axis, has ±=(L)∈ (−π/ln(b),π/ln(b)). This assures that b`

does not overlap itself, i.e. that it is injective. �

Let us — without proof — enumerate some counterexamples of initial
curves: logb◦` is initial for e1/e<b<eπ/2 but ` has zero or negative real part
for b≥ eπ/2 and is hence no more contained in the default domain of the
logarithm. The curve b` is initial for b= e but there are bigger bases where

bb
`

intersects itself. Each of e`, ee`

, eee
`

are injective but eee
e`

is not, so the
first two are initial for exp. The straight line connecting any other conjugated
fixed point pair is not initial because the image under expb is a circle with
radius |L| (winding at least once around 0).

To get familiar with Kneser’s construction we recapitulate the main
steps he does in [3] with a slight generalization to bases b> e1/e. He starts
with the Kœnigs function χ of expb at the fixed point L and shows that
it can be continued to nearly the whole upper half plane H = {z ∈C : <(z)≥
0}\{0,1,b,bb,bbb

,...}. He also shows that it is injective on H because its inverse
can be continued to an entire function.

Particularly χ is injective on the “half” initial region

H0 = {z ∈C : <(z)≥<(L),=(z)≥ 0, |z| ≤ |L|}\{L,1}.

Note that Kneser initially works with H0 containing L while he later switches
to consider H0 without L which is the definition we use above. H0 is related
to our initial region H via H0∪H∗0 =H\{1}.
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The Kœnigs function satisfies the Schröder equation χ(bz) = cχ(z) on
z,bz ∈H where c= exp′b(L) = log(L). Next he sets ψ(z) = log(χ(z)) for a suit-
able region of the logarithm which has the cut outside χ(H0). It satisfies
ψ(bz) =ψ(z)+log(c) on z ∈H0. Last he conformally maps the union of ψ(H0)+
k ·log(c), k∈Z, via the Riemann mapping theorem to the upper halfplane,
say with the conformal map %.

The resulting function Ψ = %◦log◦χ is at least defined on H0 and satisfies
Ψ(bz) = Ψ(z)+1 on H0. It can even be continued to z= 1. It is real analytic
on R∩H0 and can hence analytically continued to the conjugate region H∗0
(and also to the whole real line).

From his construction the following things are important for us. First:
Ψ is injective and holomorphic on H0∪{1} and the image is contained in
the upper halfplane. Hence the conjugate continuation to H is also injective
and holomorphic. Second: the by integer translated regions Ψ(H0∪{1}) cover
the whole upper halfplane and hence the by integer translated regions Ψ(H)
cover the whole complex plane.

The application of Theorem 1 gives:

Theorem 5. The by Kneser in [3] constructed real analytic 4-logarithm α= Ψ
and each generalization to base b> e1/e satisfies Criterion 1 on H given in
(10) (where d= 1 and F (z) = bz).

5. About Computation of the 4-Logarithm/4-Exponential

As Kneser uses the Riemann mapping theorem in his construction, it is very
difficult to approach computationally. Instead we use here a rather fast nu-
merical method given in [4] utilizing the Cauchy integral formula to compute
a 4-exponential which we denote with ksexpb and its inverse with kslogb.
This method is originally described for b= e but can be extended to arbi-
trary bases b> e1/e. Unfortunately it lacks a proof of convergence (but if it
converges then kslogb satisfies the Abel equation and is holomorphic). It is
the conjecture of the authors that this method does converge and that it
satisfies the uniqueness Criterion 3.

For real values of the argument, this 4-exponential is plotted in Figure
2 for b= e,2. The plot of ksloge in the complex plane (depicted in figure 3)
hints towards Criterion 3.

5.1. The Fractional Iterates of the Exponential

The combination of ksexp and kslog allows to define fractional/continuum
iterative powers of the exponential via (see e.g. [8] or [6]):

exp◦cb (z) = ksexpb
(
c+kslogb(z)

)
(12)

Unlike regular iterates at a hyperbolic fixed point which are analytic at the
fixed point, the above iterates of expb have a branch point at both complex
fixed points. Care must be taken to determine a principal branch/region/cut
of kslogb which is then also the principal region of the iterative power. It
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Figure 2. 4-exponential ksexpb to base b= e (thick solid)
and b= 2 (dashed) on the real axis.

kslog(H)

=(z)
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1

0
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−2 −1 0 1 2 <(z)

Figure 3. Contour plot of the function ksexpe(z) showing
lines of constant modulus and of constant phase. The shaded
(yellow) region is ksloge(H). Its right boundary is ksloge

(
e`
)

which corresponds to |ksexpe(z)|= |L|.
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c= 2
c= 1
c= 0.9 c= 0.5

c= 0.1 c= 0
c=−0.1

c=−0.5

c=−0.9
c=−1

c=−2

y= exp◦c(x)

3

2

1

0

-1

-2

-3

-3 -2 -1 0 1 2 3 x

Figure 4. Function y= exp◦c(x) calculated by equation
(12) for c= 0, ±0.1, ±0.5, ±0.9, ±1, ±2 versus x.

should be chosen such that c+kslogb(z)∈C−2. The map of the function
exp◦0.5 in the complex plane is plotted in reference [5], showing a behav-
ior similar to the iterative square root of the factorial

√
! computed in [5].

For several real c we plot exp◦c(x) versus x in Figure 4. For c= 1 it
is indeed the usual exponential, for c= 0 it is the identity function, and for
c=−1 it is the logarithm.
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Notations
symbol meaning and first occurrence
∗ (asterisk in superscript) complex conjugation (except introduction)

(overline) topological closure, Lemma 3
∪ the union of sets, see Definition 3, Criterion 1
] disjoint union; C =A]B means that C =A∪B and A∩B= ∅
∩ the intersection of sets
∅ the empty set
b base of the exponential (b> 1) e.g. expb(z) = bz (2)
C the set of complex numbers
C−2 possible complex domain of definition of 4-exponentials (6)
C The interior of the initial region: Definition 3
d a complex constant
expb(z) = bz = exp

(
ln(b) z

)
exponential to base b

exp◦cb (z) exponential, iterated c times (12) and (5)
e the Euler constant
F the base function, Definition 3
f a function; e.g. a 4-exponential (1), (2)
g a function; e.g. a 4-logarithm (3), (4)
γ curve in the domain of the Abel function, Theorem 1
H initial region, particularly of expb (10), Figure 1
α an Abel function (4)
i imaginary unit
= imaginary part of its argument
IF (γ) The initial region of the initial curve γ, Definition 3
j index = 1,2 (8)
k integer number
L the fixed point of logb in the upper halfplane, Figure 1
` an initial curve of expb from L∗ to L; particular case of γ, Figure 1
π the circular constant
P , Q component sets in the complex plane Lemma 3
q the “functional” difference/quotient of two Abel functions (8)
R the set of real numbers
< real part of its argument
Tj codomain of αj , Criterion 1
t parameter of curves, Lemma 3
x,y usually real and imaginary part of a complex number, Lemma 3
z a complex variable; sometimes z=x+iy
Z the set of integer numbers
ζ a curve in the codomain of the Abel function, Lemma 3
Ψ, ψ, χ, H, H0, % functions and sets in Kneser’s description
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