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1 Introduction
Since the pioneering work of Shannon [112], entropy, mutual information, divergence measures and their extensions have
found a broad range of applications in many areas of machine learning. Entropies provide a natural notion to quantify
the uncertainty of random variables, mutual information type indices measure the dependence among its arguments,
divergences offer efficient tools to define the ‘distance’ of probability measures. Particularly, in the classical Shannon
case, these three concepts form a gradually widening chain: entropy is equal to the self mutual information of a random
variable, mutual information is identical to the divergence of the joint distribution and the product of the marginals [21].
Applications of Shannon entropy, -mutual information, -divergence and their generalizations cover, for example, (i) feature
selection, (ii) clustering, (iii) independent component/subspace analysis, (iii) image registration, (iv) boosting, (v) optimal
experiment design, (vi) causality detection, (vii) hypothesis testing, (viii) Bayesian active learning, (ix) structure learning
in graphical models, (x) region-of-interest tracking, among many others. For an excellent review on the topic, the reader
is referred to [7, 151, 148, 6, 88].

Independent component analysis (ICA) [54, 15, 17] a central problem of signal processing and its generalizations can
be formulated as optimization problems of information theoretical objectives. One can think of ICA as a cocktail party
problem: we have some speakers (sources) and some microphones (sensors), which measure the mixed signals emitted
by the sources. The task is to estimate the original sources from the mixed recordings (observations). Traditional ICA
algorithms are one-dimensional in the sense that all sources are assumed to be independent real valued random variables.
However, many important applications underpin the relevance of considering extensions of ICA, such as the independent
subspace analysis (ISA) problem [13, 24]. In ISA, the independent sources can be multidimensional: we have a cocktail-
party, where more than one group of musicians are playing at the party. Successful applications of ISA include (i) the
processing of EEG-fMRI, ECG data and natural images, (ii) gene expression analysis, (iii) learning of face view-subspaces,
(iv) motion segmentation, (v) single-channel source separation, (vi) texture classification, (vii) action recognition in movies.

One of the most relevant and fundamental hypotheses of the ICA research is the ISA separation principle [13]: the
ISA task can be solved by ICA followed by clustering of the ICA elements. This principle (i) forms the basis of the state-
of-the-art ISA algorithms, (ii) can be used to design algorithms that scale well and efficiently estimate the dimensions of
the hidden sources, (iii) has been recently proved [129]1, and (iv) can be extended to different linear-, controlled-, post
nonlinear-, complex valued-, partially observed models, as well as to systems with nonparametric source dynamics. For a
recent review on the topic, see [132].

Although there exist many exciting applications of information theoretical measures, to the best of our knowledge,
available packages in this domain focus on (i) discrete variables, or (ii) quite specialized applications and information
theoretical estimation methods. Our goal is to fill this serious gap by coming up with a (i) highly modular, (ii) free and
open source, (iii) multi-platform toolbox, the ITE (information theoretical estimators) package, which

1. is capable of estimating many different variants of entropy, mutual information, divergence, association measures,
cross quantities and kernels on distributions:

• entropy: Shannon entropy, Rényi entropy, Tsallis entropy (Havrda and Charvát entropy), complex entropy,
• mutual information: generalized variance (GV), kernel canonical correlation analysis (KCCA), kernel general-

ized variance (KGV), Hilbert-Schmidt independence criterion (HSIC), Shannon mutual information, L2 mutual
information, Rényi mutual information, Tsallis mutual information, copula-based kernel dependency, multi-
variate version of Hoeffding’s Φ, Schweizer-Wolff’s σ and κ, complex mutual information, Cauchy-Schwartz
quadratic mutual information (QMI), Euclidean distance based QMI, distance covariance, distance correlation,
approximate correntropy independence measure,

• divergence: Kullback-Leibler divergence (relative entropy, I directed divergence), L2 divergence, Rényi di-
vergence, Tsallis divergence Hellinger distance, Bhattacharyya distance, maximum mean discrepancy (MMD,
kernel distance), J-distance (symmetrised Kullback-Leibler divergence, J divergence), Cauchy-Schwartz diver-
gence, Euclidean distance based divergence, energy distance (specially the Cramer-Von Mises distance), Jensen-
Shannon divergence, Jensen-Rényi divergence, K divergence, L divergence, certain f-divergences (Csiszár-
Morimoto divergence, Ali-Silvey distance), non-symmetric Bregman distance (Bregman divergence), Jensen-
Tsallis divergence, symmetric Bregman distance,

• association measures: multivariate extensions of Spearman’s ρ (Spearman’s rank correlation coefficient, grade
correlation coefficient), correntropy, centered correntropy, correntropy coefficient, correntropy induced metric,
centered correntropy induced metric, multivariate extension of Blomqvist’s β (medial correlation coefficient),
multivariate conditional version of Spearman’s ρ, lower/upper tail dependence via conditional Spearman’s ρ,

1Note: an alternative, exciting proof idea for deflation type methods has just now appeared in [85].
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• cross quantities: cross-entropy,

• kernels on distributions: expected kernel, Bhattacharyya kernel, probability product kernel, Jensen-Shannon
kernel,

based on

• nonparametric methods2: k-nearest neighbors, generalized k-nearest neighbors, weighted k-nearest neighbors,
minimum spanning trees, geodesic spanning forests, random projection, kernel techniques, ensemble methods,
sample spacing,

• kernel density estimation (KDE), adaptive partitioning, maximum entropy distribution: in plug-in scheme.

2. offers a simple and unified framework to

(a) easily construct new estimators from existing ones or from scratch, and

(b) transparently use the obtained estimators in information theoretical optimization problems.

3. with a prototype application in ISA and its extensions including

• 6 different ISA objectives,

• 4 optimization methods: (i) handling known and unknown subspace dimensions as well, with (ii) further
objective-specific accelerations,

• 5 extended problem directions: (i) different linear-, (ii) controlled-, (iii) post nonlinear-, (iv) complex valued-,
(v) partially observed models, (vi) as well as systems with nonparametric source dynamics; which can be used
in combinations as well.

The technical details of the ITE package are as follows:

• Author: Zoltán Szabó.

– Homepage: http://nipg.inf.elte.hu/szzoli
– Email: szzoli@cs.elte.hu
– Affiliation: Eötvös Loránd University, Faculty of Informatics (Computer Science), Pázmány Péter sétány 1/C,

Budapest, H-1117, Hungary.

• Documentation of the source: the source code of ITE has been enriched with numerous comments, examples,
and pointers where the interested user can find further mathematical details about the embodied techniques.

• License (GNU GPLv3 or later): ITE is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at
your option) any later version. This software is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License along with ITE. If not, see <http://www.gnu.org/licenses/>.

• Citing: If you use the ITE toolbox in your work, please cite the papers [129, 132] (.bib in Appendix A).

• Platforms: The ITE package has been extensively tested on Windows and Linux. However, since it is made of
standard Matlab/Octave and C/C++ files, it is expected to work on alternative platforms as well.

• Environments: Matlab3, Octave4.

• Requirements: The ITE package is self-contained, it only needs

– a Matlab or an Octave environment with standard toolboxes:

∗ Matlab: Image Processing, Optimization, Statistics.
2It is highly advantageous to apply nonparametric approaches to estimate information theoretical quantities. The bottleneck of the ’opposite’

plug-in type methods, which estimate the underlying density and then plug it in into the appropriate integral formula, is that the unknown
densities are nuisance parameters. As a result, plug-in type estimators scale poorly as the dimension is increasing.

3http://www.mathworks.com/products/matlab/
4http://www.gnu.org/software/octave/
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∗ Octave5: Image Processing (image), Statistics (statistics), Input/Output (io, required by statistics), Ordi-
nary Differential Equations (odepkg), Bindings to the GNU Scientific Library (gsl), ANN wrapper (ann).

– a C/C++ compiler – if you would like to further speed up the computations.

• Comments, feedbacks: are welcome.

• Homepage of the ITE toolbox: https://bitbucket.org/szzoli/ite/

• Follower: become a follower to be always up-to-date with ITE (https://bitbucket.org/szzoli/ite/follow).

The remainder of this document is organized as follows:

• Section 2 is about the installation of the ITE package. Section 3 focuses on the estimation of information theoretical
quantities (entropy, mutual information, divergence, association and cross measures, kernels on distributions) and
their realization in ITE. In Section 4, we present an application of Section 3 included in the ITE toolbox. The
application considers the extension of independent subspace analysis (ISA, independent component analysis with
multidimensional sources) to different linear-, controlled-, post nonlinear-, complex valued-, partially observed prob-
lems, as well as problems dealing with nonparametric source dynamics, i.e., the independent process analysis (IPA)
problem family. Section 5 is about the organization of the directories of the ITE toolbox.

• Citing information of the ITE package is provided in Appendix A. Abbreviations of the paper are listed in Appendix B
(Table 26). Functions with Octave-specific adaptations are summarized in Appendix C (Table 27). Some further
formal definitions (concordance ordering, measure of concordance and -dependence, semimetric space of negative
type, (covariant) Hilbertian metric, f-divergence) are given in Appendix D to make the documentation self-contained.
A brief summary (lookup table) of the computations related to entropy, mutual information, divergence, association
and cross measures, and kernels on distributions can be found in Appendix E.

2 Installation
This section is about (i) the installation of the ITE toolbox, and (ii) the external packages, dedicated solvers embedded
in the ITE package. The purpose of this inclusion is twofold:

• to further increase the efficiency of certain subtasks to be solved (e.g., k-nearest neighbor search, finding minimum
spanning trees, some subtasks revived by the IPA separation principles (see Section 4.1)),

• to provide both purely Matlab/Octave implementations, and specialized (often faster) non-Matlab/-Octave solutions
that can be called from Matlab/Octave.

The core of the ITE toolbox has been written in Matlab, as far it was possible in an Octave compatible way. The particular-
ities of Octave has been taken into account by adapting the code to the actual environment (Matlab/Octave). The working
environment can be queried (e.g., in case of extending the package it is also useful) by the working_environment_Matlab.m
function included in ITE. Adaptations has been carried out in the functions listed in Appendix C (Table 27). The func-
tionalities extended by the external packages are also available in both environments (Table 1).

Here, a short description of the embedded/downloaded packages (directory ’shared/embedded’, ’shared/downloaded’)
is given:

1. fastICA (directory ’shared/embedded/FastICA’; version 2.5):

• URL: http://research.ics.tkk.fi/ica/fastica/
• License: GNU GPLv2 or later.
• Solver: ICA (independent component analysis).
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: By commenting out the g_FastICA_interrupt variable in fpica.m, the fastica.m function can be

used in Octave, too. The provided fastICA code in the ITE toolbox contains this modification.

2. Complex fastICA (directory ’shared/embedded/CFastICA’)
5See http://octave.sourceforge.net/packages.php.
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• URL: http://www.cs.helsinki.fi/u/ebingham/software.html, http://users.ics.aalto.fi/ella/

publications/cfastica_public.m

• License: GNU GPLv2 or later.
• Solver: complex ICA.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.

3. ANN (approximate nearest neighbor) Matlab wrapper (directory ’shared/embedded/ann_wrapperM’; ver-
sion ’Mar2012’):

• URL: http://www.wisdom.weizmann.ac.il/~bagon/matlab.html, http://www.wisdom.weizmann.ac.il/

~bagon/matlab_code/ann_wrapper_Mar2012.tar.gz

• License: GNU LGPLv3.
• Solver: approximate nearest neighbor computation.
• Installation: Follow the instructions in the ANN wrapper package (README.txt: INSTALLATION) till

’ann_class_compile’. Note: If you use a more recent C++ compiler (e.g., g++ on Linux), you have to include
the following 2 lines into the original code to be able to compile the source:
(a) ’#include <cstdlib>’ to ’ANNx.h’
(b) ’#include <cstring>’ to ’kd_tree.h’
The provided ANN code in the ITE package contains these modifications.

• Environment: Matlab, Octave6.
• Note: fast nearest neighbor alternative of knnsearch ∈ Matlab: Statistics Toolbox.

4. MatlabBGL (directory ’shared/embedded/MatlabBGL’, version 4.0)

• URL: https://github.com/dgleich/matlab-bgl, http://www.mathworks.com/matlabcentral/

fileexchange/10922

• License: 2-clause BSD, and GNU GPLv2 or later.
• Solver: minimum spanning trees: Prim and Kruskal algorithm.
• Installation: Add it with subfolders to your Matlab/Octave PATH. Note:

– The package includes precompiled MEX files for Windows (32-bit and 64-bit), and Linux (32-bit and 64-bit
for Matlab 2006b+), and MacOSX (32-bit Intel and 32-bit PPC).

– The package includes source code to compile on other platforms as well.
• Environment: Matlab, Octave7.
• Note: alternative of ’14) = pmtk3’ in finding minimum spanning trees.

5. FastKICA (directory ’shared/embedded/FastKICA’, version 1.0):

• URL: http://people.kyb.tuebingen.mpg.de/arthur/fastkica.htm
• License: GNU GPL v2 or later.
• Solver: HSIC (Hilbert-Schmidt independence criterion) mutual information estimator.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: one can extend the implementation of HSIC to measure the dependence of dm-dimensional variables,

too. The ITE toolbox contains this modification.

6. NCut (Normalized Cut, directory ’shared/embedded/NCut’; version 9):

• URL: http://www.seas.upenn.edu/~timothee/software/ncut/ncut.html, http://www.seas.upenn.edu/
~timothee/software/ncut/Ncut_9.zip

• License: GNU GPLv3.
• Solver: spectral clustering, fixed number of groups.
• Installation: Run compileDir_simple.m from Matlab to the provided directory of functions.
• Environment: Matlab.

6At the time of writing this paper, the Octave ANN wrapper (http://octave.sourceforge.net/ann/index.html, version 1.0.2) supports
2.9.12 ≤ Octave < 3.4.0. According to our experiences, however the ann wrapper can also be used for higher versions of Octave provided that (i)
a new swig package (www.swig.org/) is used (>=2.0.5), (ii) a new ’SWIG=swig’ line is inserted in src/ann/bindings/Makefile (the ITE package
contains the modified makefile), and (iii) the row containing ’typedef OCTAVE_IDX_TYPE octave_idx_type;’ (in ’.../octave/config.h’) is
commented out for the time of ’make’-ing.

7With some trick, the MatlabBGL works on Octave, see https://answers.launchpad.net/matlab-bgl/+question/48686.
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• Note: the package is a fast alternative of ’11) = spectral clustering’.

7. sqdistance (directory ’shared/embedded/sqdistance’)

• URL: http://www.mathworks.com/matlabcentral/fileexchange/24599-pairwise-distance-matrix/,
http://www.mathworks.com/matlabcentral/fileexchange/24599-pairwise-distance-matrix?

download=true

• License: 2-clause BSD.
• Solver: fast pairwise distance computation.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: compares favourably to the Matlab/Octave function pdist.

8. TCA (directory ’shared/embedded/TCA’; version 1.0):

• URL: http://www.di.ens.fr/~fbach/tca/index.htm, http://www.di.ens.fr/~fbach/tca/tca1_0.tar.

gz

• License: GNU GPLv2 or later.
• Solver: KCCA (kernel canonical correlation analysis) / KGV (kernel generalized variance) estimator, incom-

plete Cholesky decomposition.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: Incomplete Cholesky factorization can be carried out by the Matlab/Octave function chol_gauss.m.

One can also compile the included chol_gauss.c to attain improved performance. Functions provided in the
ITE toolbox contain extensions of the KCCA and KGV indices to measure the dependence of dm-dimensional
variables. The computations have also been accelerated in ITE by ’7) = sqdistance’.

9. Weighted kNN (kNN: k-nearest neighbor; directory ’shared/embedded/weightedkNN’ and the core of
HRenyi_weightedkNN_estimation.m):

• URL: http://www-personal.umich.edu/~kksreddy/
• License: GNU GPLv3 or later.
• Solver: Rényi entropy estimator based on the weighted k-nearest neighbor method.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: in the weighted kNN technique the weights are optimized. Since Matlab and Octave rely on different

optimization engines, one has to adapt the weight estimation procedure to Octave. The calculateweight.m

function in ITE contains this modification.

10. E4 (directory ’shared/embedded/E4’):

• URL: http://www.ucm.es/info/icae/e4/, http://www.ucm.es/info/icae/e4/downfiles/E4.zip
• License: GNU GPLv2 or later.
• Solver: AR (autoregressive) fit.
• Installation: Add it with subfolders to your Matlab/Octave PATH8.
• Environment: Matlab, Octave.
• Note: alternative of ’13) = ARfit’ in AR identification.

11. spectral clustering (directory ’shared/embedded/sp_clustering’):

• URL: http://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-efficient-

spectral-clustering

• License: 2-clause BSD.
• Solver: spectral clustering.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: the package is a purely Matlab/Octave alternative of ’6)=NCut’. It is advisable to alter the eigensystem

computation in the SpectralClustering.m function to work stably in Octave; the modification is included in
the ITE toolbox and is activated in case of Octave environment.

8In Octave, this step results in a ‘warning: function .../shared/embedded/E4/vech.m shadows a core library function’; it is OK, the two
functions compute the same quantity.
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12. clinep (directory ’shared/embedded/clinep’):

• URL: http://www.mathworks.com/matlabcentral/fileexchange/8597-plot-3d-color-line/content/

clinep.m

• License: 2-clause BSD.
• Solver: Plots a 3D line with color encoding along the length using the patch function.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: (i) calling of the cylinder function (in clinep.m) has to modified somewhat to work in Octave, and (ii)

since ’gnuplot (as of v4.2) only supports 3D filled triangular patches’ one has to use the fltk graphics toolkit in
Octave for drawing. The included cline.m code in the ITE package contains these modifications.

13. ARfit (directory ’shared/downloaded/ARfit’, version ’March 20, 2011’)

• URL: http://www.gps.caltech.edu/~tapio/arfit/, http://www.gps.caltech.edu/~tapio/arfit/

arfit.zip. Note: temporarily this website seems to be unavailable. The download link (at the moment) is
http://www.mathworks.com/matlabcentral/fileexchange/174-arfit?download=true.

• License: ACM.
• Solver: AR identification.
• Installation: Download, extract and add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: alternative of ’10) = E4’ in AR identification.

14. pmtk3 (directory ’shared/embedded/pmtk3’, version ’Jan 2012’)

• URL: http://code.google.com/p/pmtk3, http://code.google.com/p/pmtk3/downloads/detail?name=

pmtk3-3jan11.zip&can=2&q=.
• License: MIT.
• Solver: minimum spanning trees: Prim algorithm.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: purely Matlab/Octave alternative of ’4) = MatlabBGL’ in finding minimum spanning trees.

15. knn (directory ’shared/embedded/knn’, version ’Nov 02, 2010’)

• URL: http://www.mathworks.com/matlabcentral/fileexchange/28897-k-nearest-neighbor-search,
http://www.mathworks.com/matlabcentral/fileexchange/28897-k-nearest-neighbor-search?

download=true

• License: 2-clause BSD.
• Solver: kNN search.
• Installation: Run the included build command to compile the partial sorting function top.cpp. Add it with

subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: Alternative of ’3)=ANN’ in finding k-nearest neighbors.

16. SWICA (directory ’shared/embedded/SWICA’)

• URL: http://www.stat.purdue.edu/~skirshne/SWICA, http://www.stat.purdue.edu/~skirshne/SWICA/
swica.tar.gz

• License: 3-clause BSD.
• Solver: Schweizer-Wolff’s σ and κ estimation.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: one can also compile the included SW_kappa.cpp and SW_sigma.cpp functions to further accelerate

computations (see ’build_SWICA.m’).

17. ITL (directory ’shared/embedded/ITL’; version ’14.11.2012’):

• URL: http://www.sohanseth.com/ITL%20Toolbox.zip?attredirects=0, http://www.sohanseth.com/

Home/codes.
• License: GNU GPLv3.
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• Solver: KDE based estimation of Cauchy-Schwartz quadratic mutual information, Euclidean distance based
quadratic mutual information; and associated divergences; correntropy, centered correntropy, correntropy coef-
ficient.

• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.

18. KDP (directory ’shared/embedded/KDP’; version ’1.1.1’)

• URL: https://github.com/danstowell/kdpee
• License: GNU GPLv3 or later.
• Solver: adaptive partitioning based Shannon entropy estimation.
• Installation: Run the included mexme command from the mat_oct subfolder. Add it with subfolders to your

Matlab/Octave PATH.
• Environment: Matlab, Octave.

A short summary of the packages can be found in Table 1. To ease installation, the ITE package contains an installation
script, ITE_install.m. A typical usage is to cd to the directory ’code’ and call ITE_install(pwd). Running the script
from Matlab/Octave, it (i) adds the main ITE directory with subfolders to the Matlab/Octave PATH, (ii) downloads
and extracts the ARfit package, and (iii) compiles the embedded ANN, NCut, TCA, SWICA, knn, KDP packages,
.cpp accelerations of the Hoeffding’s Φ [see Eq. (21)], Edgeworth expansion based entropy [see Eq.(220)] computation,
and the continuously differentiable sample spacing (CDSS) based estimator [see Eq. (249)].9 The ITE_install.m script
automatically detects the working environment (Matlab/Octave) and performs the installation accordingly, for example,
it deletes the ann wrapper not suitable for the current working environment. The output of a successful installation in
Matlab is given below (the Octave output is similar):

Example 1 (ITE installation (output; with compilation))

>> ITE_install(pwd); %after cd-ing to the code directory

Installation: started.

We are working in Matlab environment. => ann_wrapper for Octave: deleted.

ARfit package: downloading, extraction: started.

ARfit package: downloading, extraction: ready.

ITE directory: added with subfolders to the Matlab PATH.

ANN compilation: started.

ANN compilation: ready.

NCut compilation: started.

NCut compilation: ready.

TCA (chol_gauss.c) compilation: started.

TCA (chol_gauss.c) compilation: ready.

SWICA (SW_kappa.cpp, SW_sigma.cpp) compilation: started.

SWICA (SW_kappa.cpp, SW_sigma.cpp) compilation: ready.

Hoeffding_term1.cpp compilation: started.

Hoeffding_term1.cpp compilation: ready.

Edgeworth_t1_t2_t3.cpp compilation: started.

Edgeworth_t1_t2_t3.cpp compilation: ready.

compute_CDSS.cpp compilation: started.

compute_CDSS.cpp compilation: ready.

knn (top.cpp) compilation: started.

knn (top.cpp) compilation: ready.

KDP (kdpee.c, kdpeemex.c) compilation: started.

KDP (kdpee.c, kdpeemex.c) compilation: ready.

-------------------

Installation tests:

ANN quick test: successful.

NCut quick test: successful.

9The ITE package also offers purely Matlab/Octave implementations for the computation of Hoeffding’s Φ, Edgeworth expansion based
entropy approximation and CDSS. Without compilation, these Matlab/Octave implementations are evoked.
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Task Package Written in Environment Directory

ICA fastICA Matlab Matlab, Octave shared/embedded/FastICA
complex ICA complex fastICA Matlab Matlab, Octave shared/embedded/CFastICA
kNN search ANN C++ Matlab shared/embedded/ann_wrapperMa

kNN search ANN C++ Octaveb shared/embedded/ann_wrapperOa

Prim-, Kruskal algorithm MatlabBGL C++ Matlab, Octavec shared/embedded/MatlabBGL
HSIC estimation FastKICA Matlab Matlab, Octave shared/embedded/FastKICA
spectral clustering NCut C++ Matlab shared/embedded/NCut
fast pairwise distance computation sqdistance Matlab Matlab, Octave shared/embedded/sqdistance
KCCA, KGV TCA Matlab, C Matlab, Octave shared/embedded/TCA
Rényi entropy via weighted kNNs weighted kNN Matlab Matlab, Octave shared/embedded/weightedkNN
AR fit E4 Matlab Matlab, Octave shared/embedded/E4
spectral clustering spectral clustering Matlab Matlab, Octave shared/embedded/sp_clustering
trajectory plot clinep Matlab Matlab, Octave shared/embedded/clinep
AR fit ARfit Matlab Matlab, Octave shared/downloaded/ARfit
Prim algorithm pmtk3 Matlab Matlab, Octave shared/embedded/pmtk3
kNN search knn Matlab, C++ Matlab, Octave shared/embedded/knn
Schweizer-Wolff’s σ and κ SWICA Matlab, C++ Matlab, Octave shared/embedded/SWICA
KDE based estimationd ITL Matlab Matlab, Octave shared/embedded/ITL
adaptive (k-d) partitioning kdpee Matlab, C Matlab, Octave shared/embedded/KDP

Table 1: External, dedicated packages increasing the efficiency of ITE.

aIn ‘ann_wrapperM’ ‘M’ stands for Matlab, in ‘ann_wrapperO’ ‘O’ denotes Octave.
bSee footnote 6.
cSee footnote 7.
dKDE based estimation of Cauchy-Schwartz quadratic mutual information, Euclidean distance based quadratic mutual information; and

associated divergences; correntropy, centered correntropy, correntropy coefficient.

ARfit quick test: successful.

knn quick test: successful.

KDP quick test: successful.

3 Estimation of Information Theoretical Quantities
In this section we focus on the estimation of information theoretical quantities. Particularly, in the sequel, the underlying
idea how the estimators are implemented in ITE are detailed, accompanied with definitions, numerous examples and
extension possibilities/instructions.

The ITE package supports the estimation of many different variants of entropy, mutual information, divergence,
association and cross measures, kernels on distributions:

1. From construction point of view, we distinguish two types of estimators in ITE: base (Section 3.1) and meta (Sec-
tion 3.2) ones. Meta estimators are derived from existing base/meta ones by taking into account information
theoretical identities. For example, by considering the well-known

I
(
y1, . . . ,yM

)
=

M∑
m=1

H (ym)−H
([
y1; . . . ;yM

])
(1)

relation [21], one can estimate mutual information (I) by making use of existing entropy estimators (H).

2. From calling point of view, base and meta estimations follow exactly the same syntax (Section 3.3).

This modular implementation of the ITE package, makes it possible to

1. construct new estimators from existing ones, and

2. transparently use any of these estimators in information theoretical optimization problems (see Section 4) – provided
that they follow a simple template described in Section 3.3.
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3.1 Base Estimators
This section is about the base information theoretical estimators of the ITE package. Entropy estimation is in the focus
of Section 3.1.1; in Section 3.1.2, Section 3.1.3, Section 3.1.4, Section 3.1.5, Section 3.1.6 we consider the estimation of
mutual information, divergence, association-, cross measures and kernels on distributions, respectively.

3.1.1 Entropy Estimators

Let us start with a simple example: our goal is to estimate the Shannon entropy [112]

H(y) = −
∫
Rd

f(u) log f(u)du (2)

of a random variable y ∈ Rd from which we have i.i.d. (independent identically distributed) samples {yt}Tt=1, and f
denotes the density function of y; shortly y ∼ f . The estimation of Shannon entropy can be carried out, e.g., by k-nearest
neighbor techniques. Let us also assume that multiplicative contants are also important for us – in many applications, it
is completely irrelevant whether we estimate, for example, H(y) or cH(y), where c = c(d) is a constant depending only
on the dimension of y (d), but not on the distribution of y. By using the ITE package, the estimation can be carried out
as simply as follows:

Example 2 (Entropy estimation (base-1: usage))

>Y = rand(5,1000); %generate the data of interest (d=5, T=1000)

>mult = 1; %multiplicative constant is important

>co = HShannon_kNN_k_initialization(mult); %initialize the entropy (’H’) estimator

%(’Shannon_kNN_k’), including the value of k

>H = HShannon_kNN_k_estimation(Y,co); %perform entropy estimation

Alternative entropy measures of interest include the:

1. Rényi entropy [102]: defined as

HR,α(y) =
1

1− α
log

∫
Rd

fα(u)du, ( α ̸= 1) (3)

where the random variable y ∈ Rd have density function f . The Shannon entropy [Eq. (2)] is a special case of the
Rényi entropy family, in limit:

lim
α→1

HR,α = H. (4)

2. Tsallis entropy (also called the Havrda and Charvát entropy) [144, 40]: is closely related to the Rényi entropy. It
is defined as

HT,α(y) =
1

α− 1

(
1−

∫
Rd

fα(u)du

)
, α ̸= 1. (5)

The Shannon entropy is a special case of the Tsallis entropy family, in limit:

lim
α→1

HT,α = H. (6)

In the ITE toolbox, HR,α and HT,α can be estimated similarly to the Shannon entropy H (see Example 2):

Example 3 (Entropy estimation (base-2: usage))

>Y = rand(5,1000); %generate the data of interest (d=5, T=1000)

>mult = 1; %multiplicative constant is important

>co = HRenyi_kNN_k_initialization(mult); %initialize the entropy (’H’) estimator (’Renyi_kNN_k’),

%including the value of k and α
>H = HRenyi_kNN_k_estimation(Y,co); %perform entropy estimation
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Beyond k-nearest neighbor based H (see [59] (S = {1}), [115, 34] S = {k}; in ITE ’Shannon_kNN_k’) and HR,α estimation
methods [155, 64] (S = {k}; ’Renyi_kNN_k’), the ITE package also provide functions for the estimation of HR,α(y)
(y ∈ Rd) using (i) k-nearest neighbors (S = {1, . . . , k}; ’Renyi_kNN_1tok’) [95], (ii) generalized nearest neighbor graphs
(S ⊆ {1, . . . , k}; ’Renyi_kNN_S’) [93], (iii) weighted k-nearest neighbors (’Renyi_weightedkNN’) [118], (iv) minimum
spanning trees (’Renyi_MST’) [155], and (v) geodesic spanning forests (’Renyi_GSF’) [19]. The Tsallis entropy of a d-
dimensional random variable y (HT,α(y)) can be estimated in ITE using the k-nearest neighbors method (S = {k};
’Tsallis_kNN_k’) [64]. The multivariate Edgeworth expansion [45], the Voronoi region [73], and the k-d partitioning [120]
based Shannon entropy estimators are also available in ITE (’Shannon_Edgeworth’, ’Shannon_Voronoi’, ’Shannon_KDP’).

For the one-dimensional case (d = 1), beside the previous techniques, ITE offers

• sample spacing based estimators:

– Shannon entropy: by approximating the slope of the inverse distribution function [147] (’Shannon_spacing_V’)
and its bias corrected variant [29] (’Shannon_spacing_Vb’). The method described in [18] applies lo-
cally linear regression (’Shannon_spacing_LL’). Piecewise constant/linear correction has been applied in [83]
(’Shannon_spacing_Vpconst’)/[26] (’Shannon_spacing_Vplin’).

– Rényi entropy: The idea of [147] and the empiric entropy estimator of order m has been recently generalized to
Rényi entropies [150] (’Renyi_spacing_V’, ’Renyi_spacing_E’). A continuously differentiable sample spacing
(CDSS) based quadratic Rényi entropy estimator was presented in [84] (’qRenyi_CDSS’).

• maximum entropy distribution based estimators for the Shannon entropy [21, 46] with different function sets, see
’Shannon_MaxEnt1’, ’Shannon_MaxEnt2’.

The base entropy estimators of the ITE package are summarized in Table 2; the calling syntax of these methods is the
same as in Example 2 and Example 3, one only has to change ’Shannon_kNN_k’ (see Example 2) and ’Renyi_kNN_k’ (see
Example 3) to the cost_name given in the last column of the table.

Note: the Renyi_kNN_1tok, Renyi_kNN_S, Renyi_MST, Renyi_GSF methods (see Table 2) estimate the Hα Rényi
entropy up to an additive constant which depends on the dimension d and α, but not on the distribution. In certain cases,
such additive constants can also be relevant. They can be approximated via Monte-Carlo simulations, the computations
are available in ITE. Let us take the example of Renyi_kNN_1tok, the estimation instructions are as follows:

1. Set co.alpha (α) and co.k (k) in ’HRenyi_kNN_1tok_initialization.m’.

2. Estimate the additive constant β = β(d, k, α) using ’estimate_HRenyi_constant.m’.

3. Set the relevance of additive constants in the initialization function ’HRenyi_kNN_1tok_initialization.m’:
’co.additive_constant_is_relevant = 1’.

4. Estimate the Rényi entropy (after initialization): ’HRenyi_kNN_1tok_estimation.m’.

3.1.2 Mutual Information Estimators

In our next example, we consider the estimation of the mutual information of the dm-dimensional components of the
random variable y =

[
y1; . . . ;yM

]
∈ Rd (d =

∑M
m=1 dm):

I
(
y1, . . . ,yM

)
=

∫
Rd1

· · ·
∫
RdM

f
(
u1, . . . ,uM

)
log

[
f
(
u1, . . . ,uM

)∏M
m=1 fm(um)

]
du1 · · · duM (7)

using an i.i.d. sample set {yt}Tt=1 from y, where f is the joint density function of y and fm is its mth marginal density, the
density function of ym. As it is known, I

(
y1, . . . ,yM

)
is non-negative and is zero, if and only if the {ym}Mm=1 variables

are jointly independent [21]. Mutual information can be efficiently estimated, e.g., on the basis of entropy [Eq. (1)] or
Kullback-Leibler divergence; we will return to these derived approaches while presenting meta estimators in Section 3.2.

There also exist other mutual information-like quantities measuring the independence of yms:

1. Kernel canonical correlation analysis (KCCA): The KCCA measure is defined as

IKCCA(y
1,y2) = sup

g1∈F1,g2∈F2

cov[g1(y1), g2(y
2)]√

var [g1(y1)] + κ ∥g1∥2F1

√
var [g2(y2)] + κ ∥g2∥2F2

, (κ > 0) (8)
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Estimated quantity Principle d cost_name

Shannon entropy (H) k-nearest neighbors (S = {k}) d ≥ 1 ’Shannon_kNN_k’

Rényi entropy (HR,α) k-nearest neighbors (S = {k}) d ≥ 1 ’Renyi_kNN_k’

Rényi entropy (HR,α) k-nearest neighbors (S = {1, . . . , k}) d ≥ 1 ’Renyi_kNN_1tok’

Rényi entropy (HR,α) generalized nearest neighbor graphs (S ⊆ {1, . . . , k}) d ≥ 1 ’Renyi_kNN_S’

Rényi entropy (HR,α) weighted k-nearest neighbors d ≥ 1 ’Renyi_weightedkNN’

Rényi entropy (HR,α) minimum spanning trees d ≥ 1 ’Renyi_MST’

Rényi entropy (HR,α) geodesic spanning forests d ≥ 1 ’Renyi_GSF’

Tsallis entropy (HT,α) k-nearest neighbors (S = {k}) d ≥ 1 ’Tsallis_kNN_k’

Shannon entropy (H) multivariate Edgeworth expansion d ≥ 1 ’Shannon_Edgeworth’

Shannon entropy (H) Voronoi regions d ≥ 2 ’Shannon_Voronoi’

Shannon entropy (H) approximate slope of the inverse distribution function d = 1 ’Shannon_spacing_V’

Shannon entropy (H) a bias corrected version of ’Shannon_spacing_V’ d = 1 ’Shannon_spacing_Vb’

Shannon entropy (H) ’Shannon_spacing_V’ with piecewise constant correction d = 1 ’Shannon_spacing_Vpconst’

Shannon entropy (H) ’Shannon_spacing_V’ with piecewise linear correction d = 1 ’Shannon_spacing_Vplin’

Shannon entropy (H) locally linear regression d = 1 ’Shannon_spacing_LL’

Rényi entropy (HR,α) extension of ’Shannon_spacing_V’ to HR,α d = 1 ’Renyi_spacing_V’

Rényi entropy (HR,α) empiric entropy estimator of order m d = 1 ’Renyi_spacing_E’

quadratic Rényi entropy (HR,2) continuously differentiable sample spacing d = 1 ’qRenyi_CDSS’

Shannon entropy (H) adaptive (k-d) partitioning, plug-in d ≥ 1 ’Shannon_KDP’

Shannon entropy (H) maximum entropy distribution, function set1, plug-in d = 1 ’Shannon_MaxEnt1’

Shannon entropy (H) maximum entropy distribution, function set2, plug-in d = 1 ’Shannon_MaxEnt2’

Table 2: Entropy estimators (base). Third column: dimension (d) constraint.

for M = 2 components, where ‘cov’ denotes covariance and ‘var’ stands for variance. In words, IKCCA is the
regularized form of the supremum correlation of y1 ∈ Rd1 and y2 ∈ Rd2 over two ‘rich enough’ reproducing kernel
Hilbert spaces (RKHSs), F1 and F2. The computation of IKCCA can be reduced to a generalized eigenvalue problem
and the measure can be extended to M ≥ 2 components to measure pairwise independence [5, 129]. The cost is
called ’KCCA’ in ITE.

2. Kernel generalized variance (KGV): Let y =
[
y1; . . . ;yM

]
be a multidimensional Gaussian random variable

with covariance matrix C and let Ci,j ∈ Rdi×dj denote the cross-covariance between components of ym ∈ Rdm . In
the Gaussian case, the mutual information between components y1, . . . ,yM is [21]:

I
(
y1, . . . ,yM

)
= −1

2
log

(
detC∏M

m=1 detC
m,m

)
. (9)

If y is not normal then one can transform yms using feature mapping φ associated with an RKHS and apply
Gaussian approximation to obtain

IKGV
(
y1, . . . ,yM

)
= −1

2
log

[
det(K)∏M

m=1 det(K
m,m)

]
, (10)

where ϕ(y) := [φ(y1); . . . ;φ(yM )], K := cov[ϕ(y)], and the sub-matrices are Ki,j = cov[φ(yi),φ(yj)]. For further
details on the KGV method, see [5, 129]. The objective is called ’KGV’ in ITE.

3. Hilbert-Schmidt independence criterion (HSIC): Let us given two separable RKHSs F1 and F2 with associ-
ated feature maps φ1 and φ2. Let the corresponding cross-covariance operator be

Cy1,y2 = E
([
φ1(y

1)− µ1

]
⊗
[
φ2(y

2)− µ2)
])
, (11)

where ⊗ denotes tensor product, E is the expectation and the mean embeddings are

µm = E[φm(ym)] (m = 1, 2). (12)

14



HSIC [37] is defined as the Hilbert-Schmidt norm of the cross-covariance operator

IHSIC
(
y1,y2

)
=
∥∥Cy1,y2

∥∥2
HS . (13)

The HSIC measure can also be extended to the M ≥ 2 case to measure pairwise independence; the objective is called
’HSIC’ in ITE.

Note: one can express HSIC in terms of pairwise similarities as[
IHSIC

(
y1,y2

)]2
= Ey1,y2Ey1′ ,y2′k1

(
y1,y1′

)
k2

(
y2,y2′

)
+ Ey1Ey1′k1

(
y1,y1′

)
Ey2Ey2′k1

(
y2,y2′

)
− 2Ey1′y2′

[
Ey1k1

(
y1,y1′

)
Ey1k2

(
y2,y2′

)]
, (14)

where (i) ki-s are the reproducing kernels corresponding to Fi-s, (ii) yi′ is an identical copy (in distribution) of yi

(i = 1, 2).

4. Generalized variance (GV): The GV measure [134] considers the decorrelation of two one-dimensional random
variables y1 ∈ R and y2 ∈ R (M = 2) over a finite function set F :

IGV
(
y1, y2

)
=
∑
g∈F

(
corr

[
g
(
y1
)
, g
(
y2
)])2

. (15)

The name of the cost is ’GV’ in ITE.

5. Hoeffding’s Φ, Schweizer-Wolff’s σ and κ: Let C be the copula of the random variable y =
[
y1; . . . ; yd

]
∈ Rd.

One may think of C as the distribution function on [0, 1]d, which links the joint distribution function (F ) and the
marginals (Fi, i = 1, . . . , d) [116]:

F (y) = C
(
F1

(
y1
)
, . . . , Fd

(
yd
))
, (16)

or in other words

C(u) = P(U ≤ u), (u = [u1; . . . ;ud] ∈ [0, 1]d), (17)

where

U =
[
F1

(
y1
)
; . . . ;Fd

(
yd
)]

∈ [0, 1]d. (18)

It can be shown that the yi ∈ R variables are independent if and only if C, the copula of y equals to the product
copula Π defined as

Π(u1, . . . , ud) =

d∏
i=1

ui. (19)

Using this result, the independence of yis can be measured by the (normalized) Lp distance of C and Π:(
hp(d)

∫
[0,1]d

|C(u)−Π(u)|p du

) 1
p

, (20)

where (i) 1 ≤ p ≤ ∞, and (ii) by an appropriate choice of the normalization constant hp(d), the value of (20) belongs
to the interval [0, 1] for any C.

• For p = 2, the special

IΦ
(
y1, . . . , yd

)
= IΦ(C) =

(
h2(d)

∫
[0,1]d

[C(u)−Π(u)]2du

) 1
2

(21)

quantity

– is a generalization of Hoeffding’s Φ defined for d = 2 [43],
– whose empirical estimation can be analytically computed [33].
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The name of the objective is ’Hoeffding’ in ITE.
• For p = 1 and p = ∞, one obtains Schweizer-Wolff’s σ and κ [108, 153]. The first measure (ISW1) satisfies all

the properties of a multivariate measure of dependence in the sense of Def. 5 (see Section D); the second index
(ISWinf) fullfills D1, D2, D5, D6 and D8 of Def. 5 [153].
For p ∈ {1,∞} no explicit expressions for the integrals in Eq.(20) are available. For small dimensional problems,
however, the quantities can be efficiently estimated numerically. ITE contains methods for the M = 2 case:

ISW1
(
y1, y2

)
= ISW1(C) = σ = 12

∫
[0,1]2

|C(u)−Π(u)|du, (22)

ISWinf
(
y1, y2

)
= ISWinf(C) = κ = 4 sup

u∈[0,1]2
|C(u)−Π(u)|. (23)

The two measures are called ’SW1’ and ’SWinf’.

For an excellent introduction on copulas, see [80].

6. Cauchy-Schwartz quadratic mutual information (QMI), Euclidean distance based QMI: These measures
are defined for the ym ∈ Rdm (m = 1, 2) variables as [111]:

IQMI-CS
(
y1,y2

)
= log


(∫

Rd1

∫
Rd2

[
f
(
u1,u2

)]2
du1du2

)(∫
Rd1

∫
Rd2

[
f1
(
u1
)]2 [

f2
(
u2
)]2

du1du2
)

[∫
Rd1

∫
Rd2

f (u1,u2) f1 (u1) f2 (u2) du1du2
]2

 , (24)

IQMI-ED
(
y1,y2

)
=

(∫
Rd1

∫
Rd2

[
f
(
u1,u2

)]2
du1du2

)
+

(∫
Rd1

∫
Rd2

[
f1
(
u1
)]2 [

f2
(
u2
)]2

du1du2

)
− 2

∫
Rd1

∫
Rd2

f
(
u1,u2

)
f1
(
u1
)
f2
(
u2
)
du1du2. (25)

The measures can

(a) be approximated in ITE via

f̂m(u) =
1

T

T∑
t=1

k (u− ym
t ) (26)

KDE (kernel density estimation; also termed the Parzen or the Parzen-Rosenblatt window method) in a plug-in
scheme, directly or applying incomplete Cholesky decomposition (’QMI_CS_KDE_direct’, ’QMI_CS_KDE_iChol’,
’QMI_ED_KDE_iChol’).

(b) also be expressed in terms of the Cauchy-Schwartz and the Euclidean distance based divergences [see Eq. (51),
(52)]:

IQMI-CS
(
y1,y2

)
= DCS (f, f1f2) , (27)

IQMI-ED
(
y1,y2

)
= DED (f, f1f2) . (28)

7. Distance covariance, distance correlation: Two random variables are independent, if and only if their joint
characteristic function can be factorized. This is the guiding principle behind the definition of distance covariance
and distance correlation [138, 135]. Namely, let us given y1 ∈ Rd1 , y2 ∈ Rd2 random variables (M = 2), and let φj

(φ12) stand for the characteristic function of yj (
[
y1;y2

]
):

φ12

(
u1,u2

)
= E

[
ei⟨u

1,y1⟩+i⟨u2,y2⟩
]
, (29)

φj

(
uj
)
= E

[
ei⟨u

j ,yj⟩
]
, (j = 1, 2) (30)

(31)

where i =
√
−1, ⟨·, ·⟩ is the standard Euclidean scalar product, and E stands for expectation. The distance covariance

is simply the L2
w norm of φ12 and φ1φ2:

IdCov
(
y1,y2

)
= ∥φ12 − φ1φ2∥L2

w
=

√∫
Rd1+d2

|φ12 (u1,u2)− φ1 (u1)φ2 (u2)|2 w (u1,u2) du1du2 (32)
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Estimated quantity Principle dm M cost_name

generalized variance (IGV) f-covariance/-correlation (f ∈ F , |F| < ∞) dm = 1 M = 2 ’GV’

Hilbert-Schmidt indep. criterion (IHSIC) HS norm of the cross-covariance operator dm ≥ 1 M ≥ 2 ’HSIC’

kernel canonical correlation (IKCCA) sup correlation over RKHSs dm ≥ 1 M ≥ 2 ’KCCA’

kernel generalized variance (IKGV) Gaussian mutual information of the features dm ≥ 1 M ≥ 2 ’KGV’

Hoeffding’s Φ (IΦ), multivariate L2 distance of the joint- and the product copula dm = 1 M ≥ 2 ’Hoeffding’

Schweizer-Wolff’s σ (ISW1) L1 distance of the joint- and the product copula dm = 1 M = 2 ’SW1’

Schweizer-Wolff’s κ (ISWinf) L∞ distance of the joint- and the product copula dm = 1 M = 2 ’SWinf’

Cauchy-Schwartz QMI (IQMI-CS) KDE, direct dm = 1 M = 2 ’QMI_CS_KDE_direct’

Cauchy-Schwartz QMI (IQMI-CS) KDE, incomplete Cholesky decomposition dm ≥ 1 M = 2 ’QMI_CS_KDE_iChol’

Euclidean dist. based QMI (IQMI-ED) KDE, incomplete Cholesky decomposition dm ≥ 1 M = 2 ’QMI_ED_KDE_iChol’

distance covariance (IdCov) pairwise distances dm ≥ 1 M = 2 ’dCov’

distance correlation (IdCor) pairwise distances dm ≥ 1 M = 2 ’dCor’

Table 3: Mutual information estimators (base). Third column: dimension constraint (dm; ym ∈ Rdm). Fourth column:
constraint for the number of components (M ; y =

[
y1; . . . ;yM

]
).

with a suitable chosen w weight function

w
(
u1,u2

)
=

1

c(d1, α)c(d2, α) [∥u1∥2]
d1+α

[∥u2∥2]
d2+α

, (33)

where α ∈ (0, 2) and

c(d, α) =
2π

d
2Γ
(
1− α

2

)
α2αΓ

(
d+α
2

) . (34)

The distance variance is defined analogously (j = 1, 2):

IdVar
(
yj ,yj

)
= ∥φjj − φjφj∥L2

w
. (35)

The distance correlation is the standardized version of the distance covariance:

IdCor
(
y1,y2

)
=


IdCov(y1,y2)√

IdVar(y1,y1)IdVar(y2,y2)
, if IdVar

(
y1,y1

)
IdVar

(
y2,y2

)
> 0,

0, otherwise,
(36)

a type of unsigned correlation. By construction IdCor
(
y1,y2

)
∈ [0, 1], and is zero, if and only if y1 and y2 are

independent. The distance covariance and distance correlation measures are called ’dCov’ and ’dCor’ in ITE.

The estimation of these quantities can be carried out easily in the ITE package. Let us take the KCCA measure as an
example:

Example 4 (Mutual information estimation (base: usage))

>ds = [2;3;4]; Y = rand(sum(ds),5000); %generate the data of interest (ds(m)=dim(ym), T=5000)

>mult = 1; %multiplicative constant is important

>co = IKCCA_initialization(mult); %initialize the mutual information (’I’) estimator (’KCCA’)

>I = IKCCA_estimation(Y,ds,co); %perform mutual information estimation

The calling syntax of the mutual information estimators are completely identical: one only has to change ’KCCA’ to the
cost_name given in the last column of the Table 3. The table summarizes the base mutual information estimators in ITE.

3.1.3 Divergence Estimators

Divergences measure the ‘distance’ between two probability densities, f1 : Rd 7→ R and f2 : Rd 7→ R. One of the most
well-known such index is the Kullback-Leibler divergence (also called relative entropy, or I directed divergence) [60]10:

D(f1, f2) =

∫
Rd

f1(u) log

[
f1(u)

f2(u)

]
du. (37)

10D(f1, f2) ≥ 0 with equality iff f1 = f2. The Kullback-Leibler divergence is a special f-divergence (with f(t) = t log(t)), see Def. 8.
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In practise, one has independent, i.i.d. samples from f1 and f2, {y1
t }

T1
t=1 and {y2

t }
T2
t=1, respectively. The goal is to estimate

divergence D using these samples. Of course, there exist many variants/extensions of the traditional Kullback-Leibler
divergence [148, 6]; depending on the application addressed, different divergences can be advantageous. The ITE package
is capable of estimating the following divergences, too:

1. L2 divergence:

DL(f1, f2) =

√∫
Rd

[f1(u)− f2(u)]
2
du. (38)

By definition DL(f1, f2) is non-negative, and is zero if and only if f1 = f2.

2. Tsallis divergence:

DT,α(f1, f2) =
1

α− 1

(∫
Rd

fα1 (u)f
1−α
2 (u)du− 1

)
(α ∈ R \ {1}). (39)

Notes:

• The Kullback-Leibler divergence [Eq. (37)] is a special of Tsallis’ in limit sense:

lim
α→1

DT,α = D. (40)

• As a function of α, the sign of the Tsallis divergence is as follows:

α < 0 ⇒ DT,α(f1, f2) ≤ 0, α = 0 ⇒ DT,α(f1, f2) = 0, α > 0 ⇒ DT,α(f1, f2) ≥ 0. (41)

3. Rényi divergence:

DR,α(f1, f2) =
1

α− 1
log

∫
Rd

fα1 (u)f
1−α
2 (u)du (α ∈ R \ {1}). (42)

Notes:

• The Kullback-Leibler divergence [Eq. (37)] is a special of Rényi’s in limit sense:

lim
α→1

DR,α = D. (43)

• As a function of α, the sign of the Rényi divergence is as follows:

α < 0 ⇒ DR,α(f1, f2) ≤ 0, α = 0 ⇒ DR,α(f1, f2) = 0, α > 0 ⇒ DR,α(f1, f2) ≥ 0. (44)

4. Maximum mean discrepancy (MMD, also called the kernel distance) [36]:

DMMD(f1, f2) = ∥µ1 − µ2∥F , (45)

where µm is the mean embedding of fm (m = 1, 2) and F = F1 = F2, see the definition of HSIC [Eq. (12)]. Notes:

• DMMD(f1, f2) is a Hilbertian metric [41, 35]; see Def. 7.

• In the statistics literature, MMD is known as an integral probability metric (IPM) [157, 77, 119]:

DMMD(f1, f2) = sup
g∈B

(
E
[
g
(
y1
)
]− E[g

(
y2
)])

, (46)

where fi is the density of yi (i = 1, 2) and B is the unit ball in the RKHS F .

• One can easily see that the MMD measure acts as a ‘divergence’ on the joint and the product of the marginals
in HSIC (similarly to the well-known Kullback-Leibler divergence and its extensions, see Eqs. (104)-(105)):

IHSIC
(
y1,y2

)
= DMMD(f, f1f2), (47)

where f is the joint density of
[
y1;y2

]
.

18



• In terms of pairwise similarities MMD satisfies the relation:

[DMMD(f1, f2)]
2
= Ey1,y1′

[
k
(
y1,y1′

)]
+ Ey2,y2′

[
k
(
y2,y2′

)]
− 2Ey1,y2

[
k
(
y1,y2

)]
, (48)

where yi′ is an identical copy (in distribution) of yi (i = 1, 2).

5. Hellinger distance:

DH(f1, f2) =

√
1

2

∫
Rd

[√
f1(u)−

√
f2(u)

]2
du =

√
1−

∫
Rd

√
f1(u)

√
f2(u)du. (49)

Notes:

• As it is known DH(f1, f2) is a (covariant) Hilbertian metric [41]; see Def. 7.

• D2
H is a special f-divergence [with f(t) = 1

2 (
√
t− 1)2], see Def. 8.

6. Bhattacharyya distance:

DB(f1, f2) = − log

(∫
Rd

√
f1(u)

√
f2(u)du

)
. (50)

7. Cauchy-Schwartz and Euclidean distance based divergences:

DCS (f1, f2) = log


(∫

Rd [f1 (u)]
2
du
)(∫

Rd [f2 (u)]
2
du
)

(∫
Rd f1(u)f2(u)du

)2
 = log

[
1

cos2(f1, f2)

]
, (51)

DED (f1, f2) =

∫
Rd

[f1 (u)]
2
du+

∫
Rd

[f2 (u)]
2
du− 2

∫
Rd

f1(u)f2(u)du =

∫
Rd

[f1(u)− f2(u)]
2
du (52)

= [DL(f1, f2)]
2. (53)

8. Energy distance: Let (Z, ρ) be a semimetric space of negative type (see Def. 6, Section D), and let y1 and y2 be
Z-valued random variables with (i) densities f1 and f2, and (ii) let y1′ and y2′ be an identically distributed copy of
y1 and y2, respectively. The energy distance of y1 and y2 is defined as [136, 137]:

DEnDist(f1, f2) = 2E
[
ρ
(
y1,y2

)]
− E

[
ρ
(
y1,y1′

)]
− E

[
ρ
(
y2,y2′

)]
. (54)

An important special case is the Euclidean (Z = Rd with ∥·∥2), when the energy distance takes the form:

DEnDist(f1, f2) = 2E
∥∥y1 − y2

∥∥
2
− E

∥∥∥y1 − y1′
∥∥∥
2
− E

∥∥∥y2 − y2′
∥∥∥
2
. (55)

In the further specialized d = 1 case, the energy distance equals to twice the Cramer-Von Mises distance. The energy
distance

• is non-negative; and in case of strictly negative space Z (e.g., Rd) it is zero, if and only if y1 and y2 are
identically distributed,

• in ITE it is called ’EnergyDist’.

9. Bregman distance: The non-symmetric Bregman distance (also called Bregman divergence) is defined [11, 23, 64]
as

DNB,α(f1, f2) =

∫
Rd

[
fα2 (u) +

1

α− 1
fα1 (u)−

α

α− 1
f1(u)f

α−1
2 (u)

]
du, (α ̸= 1). (56)
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10. Symmetric Bregman distance The symmetric Bregman distance is defined [11, 23, 64] via its non-symmetric
counterpart:

DSB,α(f1, f2) =
1

α
[DNB,α(f1, f2) +DNB,α(f2, f1)] , (α ̸= 1) (57)

=
1

α− 1

∫
Rd

[f1(u)− f2(u)]
[
fα−1
1 (u)− fα−1

2 (u)
]
du (58)

=
1

α− 1

∫
Rd

fα1 (u) + fα2 (u)− f1(u)f
α−1
2 (u)− f2(u)f

α−1
1 (u)du. (59)

Specially, for α = 2 we obtain the square of the L2-divergence [see Eq. (38)]:

[DL(f1, f2)]
2
= DNB,2(f1, f2) = DSB,2(f1, f2). (60)

Let us note that for (39), (42), (49) and (50), it is sufficient to estimate the

Dtemp1(α) =

∫
Rd

[f1(u)]
α[f2(u)]

1−αdu (61)

quantity, which is called the Bhattacharyya coefficient [8] for α = 1
2 (it is also known as the Bhattacharyya kernel, or the

Hellinger affinity; see (49), (50) and (90)):

BC =

∫
Rd

√
f1(u)

√
f2(u)du ∈ [0, 1]. (62)

(61) can also be further generalized to

Dtemp2(a, b) =

∫
Rd

[f1(u)]
a
[f2(u)]

b
f1(u)du, (a, b ∈ R). (63)

The calling syntax of the divergence estimators in the ITE package are again uniform. In the following example, the
estimation of the Rényi divergence is illustrated using the k-nearest neighbor method:

Example 5 (Divergence estimation (base: usage))

>Y1 = randn(3,2000); Y2 = randn(3,3000); %generate the data of interest (d=3, T1=2000, T2=3000)
>mult = 1; %multiplicative constant is important

>co = DRenyi_kNN_k_initialization(mult); %initialize the divergence (’D’) estimator (’Renyi_kNN_k’)

>D = DRenyi_kNN_k_estimation(Y1,Y2,co); %perform divergence estimation

Beyond the Rényi divergence DR,α [97, 96, 98] (’Renyi_kNN_k’), the k-nearest neighbor technique can also be used
to estimate the L2- (DL) [97, 96, 98] (’L2_kNN_k’), the Tsallis (DT,α) divergence [97, 96] (’Tsallis_kNN_k’), and of
course, specially to the Kullback-Leibler divergence (D) [64, 87, 151] (’KL_kNN_k’, ’KL_kNN_kiTi’). A similar approach
can be applied to the estimation of the (63) quantity [92], specially to the Hellinger- and the Bhattacharyya distance
(’Hellinger_kNN_k’, ’Bhattacharyya_kNN_k’). For the MMD measure [36], (i) an U-statistic based (’MMD_Ustat’), (ii)
a V-statistic based (’MMD_Vstat’), and (iii) a linearly scaling, online method (’MMD_online’) have been implemented in
ITE. The Cauchy-Schwartz and the Euclidean distance based divergences (DCS, DED) can be estimated using KDE based
plug-in methods, applying incomplete Cholesky decomposition (’CS_KDE_iChol’, ’’ED_KDE_iChol’). The energy distance
(DEnDist) can be approximated using pairwise distances of sample points (’EnergyDist’). The Bregman distance and its
symmetric variant can be estimated via k-nearest neighbors (’Bregman_kNN_k’, ’symBregman_kNN_k’). Table 4 contains the
base divergence estimators of the ITE package. The estimations can be carried out by changing the name ’Renyi_kNN_k’
in Example 5 to the cost_name given in the last column of the table.

3.1.4 Association Measure Estimators

There exist many exciting association quantities measuring certain dependency relations of random variables, for a recent
excellent review on the topic, see [106]. In ITE we think of mutual information (Section 3.1.2) as a special case of
association that (i) is non-negative, (ii) being zero, if its arguments are independent.
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Estimated quantity Principle d cost_name

L2 divergence (DL) k-nearest neighbors (S = {k}) d ≥ 1 ’L2_kNN_k’

Tsallis divergence (DT,α) k-nearest neighbors (S = {k}) d ≥ 1 ’Tsallis_kNN_k’

Rényi divergence (DR,α) k-nearest neighbors (S = {k}) d ≥ 1 ’Renyi_kNN_k’

maximum mean discrepancy (DMMD) U-statistics, unbiased d ≥ 1 ’MMD_Ustat’

maximum mean discrepancy (DMMD) V-statistics, biased d ≥ 1 ’MMD_Vstat’

maximum mean discrepancy (DMMD) online d ≥ 1 ’MMD_online’

Hellinger distance (DH) k-nearest neighbors (S = {k}) d ≥ 1 ’Hellinger_kNN_k’

Bhattacharyya distance (DB) k-nearest neighbors (S = {k}) d ≥ 1 ’Bhattacharyya_kNN_k’

Kullback-Leibler divergence (D) k-nearest neighbors (S = {k}) d ≥ 1 ’KL_kNN_k’

Kullback-Leibler divergence (D) k-nearest neighbors (Si = {ki(Ti)}) d ≥ 1 ’KL_kNN_kiTi’

Cauchy-Schwartz divergence (DCS) KDE, incomplete Cholesky decomposition d ≥ 1 ’CS_KDE_iChol’

Euclidean distance based divergence (DED) KDE, incomplete Cholesky decomposition d ≥ 1 ’ED_KDE_iChol’

energy distance (DEnDist) pairwise distances d ≥ 1 ’EnergyDist’

Bregman distance (DNB,α) k-nearest neighbors (S = {k}) d ≥ 1 ’Bregman_kNN_k’

Symmetric Bregman distance (DSB,α) k-nearest neighbors (S = {k}) d ≥ 1 ’symBregman_kNN_k’

Table 4: Divergence estimators (base). Third column: dimension (d) constraint.

Our goal is to estimate the dependence/association of the dm-dimensional components of the random variable y =[
y1; . . . ;yM

]
∈ Rd (d =

∑M
m=1 dm), from which we have i.i.d. samples {yt}Tt=1. One of the most well-known example of

associations is that of the Spearman’s ρ (also called the Spearman’s rank correlation coefficient, or the grade correlation
coefficient) [117]. For d = 2, it is defined as

Aρ

(
y1, y2

)
= corr

(
F1

(
y1
)
, F2

(
y2
))
, (64)

where ‘corr’ stands for correlation and Fi denotes the (cumulative) distribution function (cdf) of yi. Spearman’s ρ is a
special association, a measure of concordance: if large (small) values of y1 tend to be associated with large (small) values
of y2, it is reflected in Aρ. For a formal definition of measures of concordance, see Def. 2 (Section D).

Let us now define for dm = 1 (∀m) the comonotonicy copula (also called the Fréchet-Hoeffding upper bound) as

M(u) = min
i=1,...,d

ui. (65)

The name originates from the fact that for any C copula

W (u) := max(u1 + . . .+ ud − d+ 1, 0) ≤ C(u) ≤M(u), (∀u ∈ [0, 1]d) (66)

Here, W is called the Fréchet-Hoeffding lower bound.11
It is known that Aρ can be interpreted as the normalized average difference of the copula of y (C) and the independence

copula (Π) [see Eq. (19)]:

Aρ

(
y1, y2

)
= Aρ(C) =

∫
[0,1]2

u1u2dC(u)−
(
1
2

)2
1
12

= 12

∫
[0,1]2

C(u)du− 3 =

∫
[0,1]2

C(u)du−
∫
[0,1]2

Π(u)du∫
[0,1]2

M(u)du−
∫
[0,1]2

Π(u)du
, (67)

where the ∫
[0,1]2

M(u)du =
1

3
,

∫
[0,1]2

Π(u)du =
1

4
(68)

properties were exploited. The association measures included in ITE are the following:

1. Spearman’s ρ, multivariate-1: One can extend [153, 52, 78, 105] the Spearman’s ρ to the multivariate case using
(67) as

Aρ1

(
y1, . . . , yd

)
= Aρ1(C) =

∫
[0,1]d

C(u)du−
∫
[0,1]d

Π(u)du∫
[0,1]d

M(u)du−
∫
[0,1]d

Π(u)du
= hρ(d)

[
2d
∫
[0,1]d

C(u)du− 1

]
, (69)

11W is a copula only in two dimensions (d = 2).
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where

hρ(d) =
d+ 1

2d − (d+ 1)
. (70)

The name of the association measure is ’Spearman1’ in ITE.

Note:

• Aρ1 satisfies all the axioms of multivariate measure of concordance (see Def. 3 in Section D) except for Duality
[140].

• Aρ1 can also be derived from average lower orthant dependence ideas [78].

2. Spearman’s ρ, multivariate-2: An other multivariate extension [52, 78, 105] of Spearman’s ρ is using (67)

Aρ2

(
y1, . . . , yd

)
= Aρ2(C) =

∫
[0,1]d

Π(u)dC(u)−
∫
[0,1]d

Π(u)du∫
[0,1]d

M(u)du−
∫
[0,1]d

Π(u)du
= hρ(d)

[
2d
∫
[0,1]d

Π(u)dC(u)− 1

]
. (71)

The association measure is called ’Spearman2’ in ITE.

Note:

• Aρ2 satisfies all the axioms of multivariate measure of concordance (see Def. 3 in Section D) except for Duality
[140].

• Aρ2 can also be derived using an average upper orthant dependence approach [78].

3. Spearman’s ρ, multivariate-3: [79, 80] further considers the average of Aρ1 and Aρ2 , i.e.

Aρ3

(
y1, . . . , yd

)
= Aρ3(C) =

Aρ1

(
y1, . . . , yd

)
+Aρ2

(
y1, . . . , yd

)
2

. (72)

The name of this association measure is ’Spearman3’ in ITE.12

Note:

• For the special case of d = 2, the defined extensions of Spearman’s ρ coincide:

Aρ = Aρ1 = Aρ2 = Aρ3 . (73)

• Aρ3
is a multivariate measure of concordance (see Def. 3 in Section D).

4. Spearman’s ρ, multivariate-4: The average pairwise Spearman’s ρ is defined [57, 105] as

Aρ4

(
y1, . . . , yd

)
= Aρ4(C) = h(2)

22(d
2

)−1 d∑
k,l=1;k<l

∫
[0,1]2

Ckl(u, v)dudv − 1

 =

(
d

2

)−1 d∑
k,l=1;k<l

Aρ

(
yk, yl

)
, (74)

where Ckl denotes the bivariate marginal copula of C corresponding to the kth and lth margin. The name of the
association measure is ’Spearman4’ in ITE. Aρ4 is a multivariate measure of concordance (see Def. 3 in Section D).

5. Correntropy, centered correntropy, correntropy coefficient [100]: These association measures are defined as

ACorrEntr
(
y1, y2

)
= Ey1,y2

[
k
(
y1, y2

)]
=

∫
R2

k(u, v)dFy1,y2(u, v), (75)

ACCorrEntr
(
y1, y2

)
= Ey1,y2

[
k
(
y1, y2

)]
− Ey1Ey2

[
k
(
y1, y2

)]
=

∫
R2

k(u, v)
[
dFy1,y2(u, v)− dFy1dFy2(u, v)

]
,

(76)

ACorrEntrCoeff
(
y1, y2

)
=

ACCorrEntr
(
y1, y2

)√
ACCorrEntr (y1, y1)

√
ACCorrEntr (y2, y2)

∈ [−1, 1], (77)

12Although (72) would make it possibile to implement Aρ3 as a meta estimator (see Section 3.2.4), for computational reasons (to not compute
the same rank statistics twice), it became a base method.
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where Fy1,y2 (Fyi) stands for the distribution function of y =
[
y1; y2

]
(yi) and k is a kernel. Specially, for

k(u, v) = uv the centered correntropy reduces to the covariance, and the correntropy coefficient to the traditional
correlation coefficient. The name of the estimators in ITE are ’CorrEntr_KDE_direct’, ’CCorrEntr_KDE_iChol’,
’CCorrEntr_KDE_Lapl’, ’CorrEntrCoeff_KDE_direct’, and ’CorrEntrCoeff_KDE_iChol’.

6. Multivariate extension of Blomqvist’s β (medial correlation coefficient): Let y ∈ R2, and let ỹi be the
median of yi. Blomqvist’s β is defined [75, 10] as

Aβ

(
y1, y2

)
= P

((
y1 − ỹ1

) (
y2 − ỹ2

)
> 0
)
− P

((
y1 − ỹ1

) (
y2 − ỹ2

)
< 0
)
. (78)

It can be expressed in terms of the C, the copula of y:

Aβ

(
y1, y2

)
= Aβ(C) = 4C

(
1

2
,
1

2

)
− 1 =

C
(
1
2 ,

1
2

)
−Π

(
1
2 ,

1
2

)
+ C̄

(
1
2 ,

1
2

)
− Π̄

(
1
2 ,

1
2

)
M
(
1
2 ,

1
2

)
−Π

(
1
2 ,

1
2

)
+ M̄

(
1
2 ,

1
2

)
− Π̄

(
1
2 ,

1
2

) . (79)

where C̄(u) denotes the survival function13:

C̄(u) := P(U > u), (u = [u1; . . . ;ud] ∈ [0, 1]d). (80)

Aβ [Eq. (78)] is a measure of concordance (see Def. 2 in Section D). A natural multivariate (y ∈ Rd, dm = 1)
generalization [145, 106] of Blomqvist’s β motivated by (79) is

Aβ

(
y1, . . . , yd

)
= Aβ(C) =

C (1/2)−Π(1/2) + C̄ (1/2)− Π̄ (1/2)

M (1/2)−Π(1/2) + M̄ (1/2)− Π̄ (1/2)
= hβ(d)

[
C(1/2) + C̄(1/2)− 21−d

]
, (81)

where 1/2 =
[
1
2 ; . . . ;

1
2

]
∈ Rd and

hβ(d) =
2d−1

2d−1 − 1
. (82)

The objective [Eq. (81)] is called ’Blomqvist’ in ITE.14 Aβ [Eq. (81)] satisfies all the axioms of multivariate measure
of concordance (see Def. 3 in Section D) except for Duality [140].

7. Multivariate conditional version of Spearman’s ρ (lower/upper tail): Let g be a non-negative function,
for which the following integral exists [104]:

Aρg

(
y1, . . . , yd

)
= Aρg (C) =

∫
[0,1]d

C(u)g(u)du−
∫
[0,1]d

Π(u)g(u)du∫
[0,1]d

M(u)g(u)du−
∫
[0,1]d

Π(u)g(u)du
. (83)

Here, g is a weighting function, emphasizing specific parts of the copula.

(a) Lower tail: Specially, let g(u) = I[0,p]d(u) (0 < p ≤ 1), where I stands for the indicator function. This g choice
refers to the weighting of the lower part of the copula, i.e., we measure the amount of depedence in the lower
tail of the multivariate distributions.
The resulting conditional version of Spearman’s ρ is

Aρlt

(
y1, . . . , yd

)
= Aρlt(C) =

∫
[0,p]d

C(u)du−
∫
[0,p]d

Π(u)du∫
[0,p]d

M(u)du−
∫
[0,p]d

Π(u)du
=

∫
[0,p]d

C(u)du−
(

p2

2

)d
pd+1

d+1 −
(

p2

2

)d . (84)

The name of the association measure is ’Spearman_lt’ in ITE.
Note:
• Specially, for p = 1 the association Aρlt reduces to Aρ1 [Eq. (69)].
• One can show that Aρlt

preserves the concordance ordering [see Eq. (167)], i.e., C1 ≺ C2 ⇒ Aρlt
(C1) ≤

Aρlt
(C2), for ∀p ∈ (0, 1]. Specially, from C ≺M [see Eq. (66)] one obtains that Aρlt

≤ 1.
13C̄ is not in general a copula.
14Despite Eq. (81), ’Blomqvist’ is implemented as a base association measure estimator to avoid the computation of the same rank statistics

multiple times.
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Estimated quantity Principle dm M cost_name

Spearman’s ρ: multivariate1 (Aρ1) empirical copula, explicit formula dm = 1 M ≥ 2 ’Spearman1’

Spearman’s ρ: multivariate2 (Aρ2) empirical copula, explicit formula dm = 1 M ≥ 2 ’Spearman2’

Spearman’s ρ: multivariate3 (Aρ3) ρ3 is the average of ρ1 and ρ2 dm = 1 M ≥ 2 ’Spearman3’

Spearman’s ρ: multivariate4 (Aρ4) average pairwise Spearman’s ρ dm = 1 M ≥ 2 ’Spearman4’

correntropy (ACorrEntr) KDE, direct dm = 1 M = 2 ’CorrEntr_KDE_direct’

centered correntropy (ACCorrEntr) KDE, incomplete Cholesky decomp. dm = 1 M = 2 ’CCorrEntr_KDE_iChol’

centered correntropy (ACCorrEntr) KDE, Laplacian kernel, sorting dm = 1 M = 2 ’CCorrEntr_KDE_Lapl’

correntropy coefficient (ACorrEntrCoeff) KDE, direct dm = 1 M = 2 ’CorrEntrCoeff_KDE_direct’

correntropy coefficient (ACorrEntrCoeff) KDE, incomplete Cholesky decomp. dm = 1 M = 2 ’CorrEntrCoeff_KDE_iChol’

Blomqvist’s β (Aβ) empirical copula, explicit formula dm = 1 M ≥ 2 ’Blomqvist’

conditional Spearman’s ρ, lower tail (Aρlt) empirical copula, explicit formula dm = 1 M ≥ 2 ’Spearman_lt’

conditional Spearman’s ρ, upper tail (Aρut) empirical copula, explicit formula dm = 1 M ≥ 2 ’Spearman_ut’

Table 5: Association measure estimators (base). Third column: dimension constraint (dm; ym ∈ Rdm). Fourth column:
constraint for the number of components (M ; y =

[
y1; . . . ;yM

]
).

(b) Upper tail: In this case, in Eq. (83) our choice is g(u) = I[1−p,1]d(u) (0 < p ≤ 1), i.e., the upper tail of the
copula is weighted:

Aρut

(
y1, . . . , yd

)
= Aρut(C) =

∫
[1−p,1]d

C(u)du−
∫
[1−p,1]d

Π(u)du∫
[1−p,1]d

M(u)du−
∫
[1−p,1]d

Π(u)du
. (85)

The name of the objective is ’Spearman_ut’ in ITE.

The calling syntax of the association measure estimators is uniform and very simple; as an example the Aρ1 measure
is estimated:

Example 6 (Association measure estimation (base: usage))

>ds = ones(3,1); Y = rand(sum(ds),5000); %generate the data of interest (ds(m)=dim(ym), T=5000)

>mult = 1; %multiplicative constant is important

>co = ASpearman1_initialization(mult); %initialize the association (’A’) estimator (’Spearman1’)

>A = ASpearman1_estimation(Y,ds,co); %perform association measure estimation

For the estimation of other association measures it is sufficient to change ’Spearman1’ to the cost_name given in the last
column of Table 5 summarizing the base association measure estimators.

3.1.5 Cross Quantity Estimators

‘Cross’-type measures arise naturally in information theory – we think of divergences (see Section 3.1.3) in ITE as a special
class of cross measures which (i) are non-negative, (ii) being zero, if and only if f1 = f2. Our goal is to estimate such
cross quantities from independent, i.i.d. samples

{
y1
t

}T1

t=1
and

{
y2
t

}T2

t=1
distributed according to f1 and f2, respectively.

One of the most well-known such quantity is cross-entropy. The cross-entropy of two probability densities, f1 : Rd 7→ R
and f2 : Rd 7→ R is defined as:

CCE(f1, f2) = −
∫
Rd

f1 (u) log [f2 (u)] du. (86)

One can estimate CCE via the k-nearest neighbor (S = {k}) technique [64]; the method is available in ITE and is called
’CE_kNN_k’. The calling syntax of the cross quantity estimators is uniform, an example is given below:

Example 7 (Cross quantity estimation (base: usage))

>Y1 = randn(3,2000); Y2 = randn(3,3000); %generate the data of interest (d=3, T1=2000, T2=3000)
>mult = 1; %multiplicative constant is important

>co = CCE_kNN_k_initialization(mult); %initialize the cross (’C’) estimator (’CE_kNN_k’)

>C = CCE_kNN_k_estimation(Y1,Y2,co); %perform cross-entropy estimation

The base cross quantity estimators of ITE are summarized in Table 6.
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Estimated quantity Principle d cost_name

cross-entropy (CCE) k-nearest neighbors (S = {k}) d ≥ 1 ’CE_kNN_k’

Table 6: Cross quantity estimators (base). Third column: dimension (d) constraint.

3.1.6 Estimators of Kernels on Distributions

Kernels on distributions quantify the ‘similarity’ of ν1 and ν2, two distributions (probability measures) on a given X space
(ν1, ν2 ∈ M1

+(X )). By definition the K : M1
+(X )×M1

+(X ) → R kernel is symmetric and positive definite, i.e.,

1. K(ν1, ν2) = K(ν2, ν1) (∀ν1, ν2 ∈ M1
+(X )), and

2.
∑n

i,j=1 cicjK(νi, νj) ≥ 0, for all n positive number, {ci}ni=1 ∈ Rn and {νi}ni=1 ∈
[
M1

+(X )
]n.

An alternative, equivalent view of kernels is that they compute the inner product of their arguments embedded into a
suitable Hilbert space (H). In other words, there exist a φ : M1

+(X ) → H mapping, where H is a Hilbert space such that

K(ν1, ν2) = ⟨φ(ν1), φ(ν2)⟩H , (∀ν1, ν2 ∈ M1
+(X )). (87)

In the simplest case X = Rd and the ν1, ν2 distributions are identified with their densities f1 : Rd 7→ R and f2 : Rd 7→ R.
Our goal is to estimate the value of the kernel [K(f1, f2)] given independent, i.i.d. samples from f1 and f2, {y1

t }
T1
t=1 and

{y2
t }

T2
t=1, respectively. It is also worth noting that many widely used divergences (see Section 3.1.3 and 3.1.3) can be

induced by kernels, see [41].
ITE can estimate the following kernels on distributions:

1. Expected kernel: The expected kernel is the inner product of µ1 and µ2, the mean embedding of f1 and f2 [see
(45)]

Kexp (f1, f2) = ⟨µ1,µ2⟩F = Ey1,y2

[
k
(
y1,y2

)]
, (88)

i.e., it generates MMD

[DMMD(f1, f2)]
2
= Kexp (f1, f1)− 2Kexp (f1, f2) +Kexp (f1, f2) . (89)

The estimator of the expected kernel is called ’expected’ in ITE.

2. Bhattacharyya kernel: The Bhattacharyya kernel [8, 50] (also known as the Bhattacharyya coefficient, or the
Hellinger affinity; see (62)) is defined as

KB (f1, f2) =

∫
Rd

√
f1(u)

√
f2(u)du. (90)

It

• is intimately related to, induces the Hellinger distance [see Eq. (49)]:

[DH(f1, f2)]
2
=

1

2
[KB (f1, f1)− 2KB (f1, f2) +KB (f2, f2)] =

1

2
[2− 2KB (f1, f2)] = 1−KB (f1, f2)]. (91)

• is sufficient to estimate (63), for which there exist k-nearest neighbor methods [92]. The associated estimator
is called ’Bhattacharyya_kNN_k’ in ITE.

3. Probability product kernel: The probability product kernel [50] is the inner product of the ρth power of the
densities

KPP (f1, f2) =

∫
Rd

[f1(u)]
ρ
[f2(u)]

ρ
du, (ρ > 0). (92)

Notes:
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Estimated quantity Principle d cost_name

expected kernel (Kexp) mean of pairwise kernel values d ≥ 1 ’expected’

Bhattacharyya kernel (KB) k-nearest neighbors (S = {k}) d ≥ 1 ’Bhattacharyya_kNN_k’

probability product kernel (KPP) k-nearest neighbors (S = {k}) d ≥ 1 ’PP_kNN_k’

Table 7: Estimators of kernels on distributions (base). Third column: dimension (d) constraint.

• Specially, for ρ = 1
2 we get back the Bhattacharyya kernel [see (90)].

• It is sufficient to estimate the (63) quantity, for which k-nearest neighbor techniques are available [92]. The
corresponding estimator is called ’PP_kNN_k’ in ITE.

The calling syntax of kernels on distributions is uniform. In the following example the estimation of the expected kernel
is illustrated:

Example 8 (Kernel estimation on distributions (base: usage))

>Y1 = randn(3,2000); Y2 = randn(3,3000); %generate the data of interest (d=3, T1=2000, T2=3000)
>mult = 1; %multiplicative constant is important

>co = Kexpected_initialization(mult); %initialize the kernel (’K’) estimator on

%distributions (’expected’)

>K = Kexpected_estimation(Y1,Y2,co); %perform kernel estimation on distributions

The available base kernel estimators on distributions are enlisted in Table 7; for the estimation of other kernels it is enough
to change ’expected’ to the cost_name given in the last column of the table.

3.2 Meta Estimators
Here, we present how one can easily derive in the ITE package new information theoretical estimators from existing ones
on the basis of relations between entropy, mutual information, divergence, association and cross quantities. These meta
estimators are included in ITE. The additional goal of this section is to provide examples for meta estimator construction
so that users could simply create novel ones. In Section 3.2.1, Section 3.2.2, Section 3.2.3, Section 3.2.4 and Section 3.2.5,
we focus on entropy, mutual information, divergence, association measure and cross quantity estimators, respectively.

3.2.1 Entropy Estimators

Here, we present the idea of the meta construction in entropy estimation through examples:

1. Ensemble: The first example considers estimation via the ensemble approach. As it has been recently demonstrated
the computational load of entropy estimation can be heavily decreased by (i) dividing the available samples into
groups and then (ii) computing the averages of the group estimates [61]. Formally, let the samples be denoted by
{yt}Tt=1 (yt ∈ Rd) and let us partition them into N groups of size g (gN = T ), {1, . . . , T} = ∪N

n=1In (Ii ∩ Ij = ∅,
i ̸= j) and average the estimations based on the groups

Hensemble(y) =
1

N

N∑
n=1

Ĥ ({yt}t∈In) . (93)

As a prototype example for meta entropy estimation the implementation of the ensemble method [Eq. (93)] is
provided below (see Example 9 and Example 10). In the example, the individual estimators in the ensemble are
based on k-nearest neighbors (’Shannon_kNN_k’). However, the flexibility of the ITE package allows to change the
H estimator [r.h.s of (93)] to any other entropy estimation technique (base/meta, see Table 2 and Table 8).

Example 9 (Entropy estimation (meta: initialization))

function [co] = Hensemble_initialization(mult)

co.name = ’ensemble’; %name of the estimator: ’ensemble’
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co.mult = mult; %set whether multiplicative constant is important

co.group_size = 500; %group size (g=500)

co.member_name = ’Shannon_kNN_k’; %estimator used in the ensemble (’Shannon_kNN_k’)

co.member_co = H_initialization(co.member_name,mult);%initialize the member in the ensemble,

%the value of ’mult’ is passed

The estimation part is carried out in accordance with (93):

Example 10 (Entropy estimation (meta: estimation))

function [H] = Hensemble_estimation(Y,co)

g = co.group_size; %initialize group size (g)

num_of_samples = size(Y,2); %initialize number of samples (T)

num_of_groups = floor(num_of_samples/g); %initialize number of groups (N)

H = 0;

for k = 1 : num_of_groups %compute the average over the ensemble

H = H + H_estimation(Y(:,(k-1)*g+1:k*g),co.member_co); %add the estimation

%of the initialized member

end

H = H / num_of_groups;

The usage of the defined method follows the syntax of base entropy estimators (Example 2, Example 3):

Example 11 (Entropy estimation (meta: usage))

>Y = rand(5,1000); %generate the data of interest (d=5, T=1000)

>mult = 1; %multiplicative constant is important

>co = Hensemble_initialization(mult); %initialize the entropy (’H’) estimator (’ensemble’),

>H = Hensemble_estimation(Y,co); %perform entropy estimation

2. Random projected ensemble: Since (i) entropy can be estimated consistently using pairwise distances of sample
points15, and (ii) random projection (RP) techniques realize approximate isometric embeddings [53, 31, 49, 1, 65, 4,
72], one can construct efficient estimation methods by the integration of the ensemble and the RP technique.

Formally, the definition of the estimation is identical to that of the ensemble approach [Eq. (93)], except for random
projections Rn ∈ RdRP×d (n = 1, . . . , N). The final estimation is

HRPensemble(y) =
1

N

N∑
n=1

Ĥ ({Rnyt}t∈In) . (94)

The approach shows exciting potentials with serious computational speed-ups in independent subspace analysis [125]
and image registration [126]. The technique has been implemented in the ITE toolbox under the name ’RPensemble’.

3. Complex: Information theoretical quantities can be defined over the complex domain via the Hilbert transformation
[28]

φv : Cd ∋ v 7→ v ⊗
[

ℜ(·)
ℑ(·)

]
∈ R2d, (95)

as the entropy of the mapped 2d-dimensional real variable

HC(y) := H(φv(y)). (96)

Relation (96) can be transformed to a meta entropy estimator, the method is available under the name ’complex’.
15The construction holds for other information theoretical quantities like mutual information and divergence.
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Estimated quantity Principle d cost_name

complex entropy (HC) entropy of a real random vector variable d ≥ 1 ’complex’

Shannon entropy (H) average the entropy over an ensemble d ≥ 1 ’ensemble’

Shannon entropy (H) average the entropy over a random projected ensemble d ≥ 1 ’RPensemble’

Tsallis entropy (HT,α) function of the Rényi entropy d ≥ 1 ’Tsallis_HRenyi’

Shannon entropy (H) -KL divergence from the normal distribution d ≥ 1 ’Shannon_DKL_N’

Shannon entropy (H) -KL divergence from the uniform distribution d ≥ 1 ’Shannon_DKL_U’

Table 8: Entropy estimators (meta). Third column: dimension (d) constraint.

4. Rényi entropy → Tsallis entropy: Using (3) and (5), the Tsallis entropy can be computed from the Rényi
entropy:

HT,α(y) =
e(1−α)HR,α(y) − 1

1− α
. (97)

The formula is realized in ITE by the ’Tsallis_HRenyi’ meta entropy estimator. Making use of this approach, for
example, the Rényi entropy estimators of Table 2 can be instantly applied for Tsallis entropy estimation.

5. Divergence from the Gaussian distribution: Let yG ∈ Rd be a normal random variable with the same mean
and covariance as y:

yG ∼ fG = N(E(y), cov(y)). (98)

The Shannon entropy of a normal random variable can be explicitly computed

H(yG) =
1

2
log
[
(2πe)d det(cov(y))

]
, (99)

moreover, H(y) equals to H(yG) minus the Kullback-Leibler divergence [see Eq. (37)] of y ∼ f and fG [152]:

H(y) = H(yG)−D(f, fG). (100)

The associated meta entropy estimator is called ’Shannon_DKL_N’.

6. Divergence from the uniform distribution: If y ∈ [0, 1]d (∼ f), then the entropy of y equals to minus the
Kullback-Leibler divergence [see Eq. (37)] of f and fU , the uniform distribution on [0, 1]d:

H(y) = −D(f, fU ). (101)

If y ∈ [a,b] = ×d
i=1[ai, bi] ⊆ Rd (∼ f), then let y′ = Ay + d ∼ f ′ be its linearly transformed version to [0, 1]d,

where A = diag
(

1
bi−ai

)
∈ Rd×d, d =

[
ai

ai−bi

]
∈ Rd. Applying the previous result and the entropy transformation

rule under linear mappings [21], one obtains that

H(y) = −D(f ′, fU ) + log

[
d∏

i=1

(bi − ai)

]
. (102)

This meta entropy estimation technique is called ’Shannon_DKL_U’ in ITE.

The meta entropy estimator methods in ITE are summarized in Table 8. The calling syntax of the estimators is identical
to Example 11, one only has to change the name ’ensemble’ to the cost_name of the target estimators, see the last column
of the table.

3.2.2 Mutual Information Estimators

In this section we are dealing with meta mutual information estimators:

1. As it has been seen in Eq. (1), mutual information can be expressed via entropy terms. The corresponding
method is available in the ITE package under the name ’Shannon_HShannon’. As a prototype example for meta
mutual information estimator the implementation is provided below:
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Example 12 (Mutual information estimator (meta: initialization))

function [co] = IShannon_HShannon_initialization(mult)

co.name = ’Shannon_HShannon’; %name of the estimator: ’Shannon_HShannon’

co.mult = mult; %set the importance of multiplicative factors

co.member_name = ’Shannon_kNN_k’; %method used for entropy estimation: ’Shannon_kNN_k’

co.member_co = H_initialization(co.member_name,1);%initialize entropy estimation member, mult=1

Example 13 (Mutual information estimator (meta: estimation))

function [I] = IShannon_HShannon_estimation(Y,ds,co) %samples(Y), component dimensions(ds),

%initialized estimator (co)

num_of_comps = length(ds); %number of components, M

cum_ds = cumsum([1;ds(1:end-1)]); %starting indices of the components

I = -H_estimation(Y,co.member_co); %minus the joint entropy, H([y1; ...;yM ]) using

%the initialized H estimator

for k = 1 : num_of_comps %add the entropy of the ym components, H(ym)

idx = [cum_ds(k) : cum_ds(k)+ds(k)-1];

I = I + H_estimation(Y(idx,:),co.member_co);%use the initialized H estimator

end

The usage of the meta mutual information estimators follow the syntax of base mutual information estimators (see
Example 4):

Example 14 (Mutual information estimator (meta: usage))

>ds = [1;2]; Y=rand(sum(ds),5000); %generate the data of interest

%(ds(m)=dim(ym), T=5000)

>mult = 1; %multiplicative constant is important

>co = IShannon_HShannon_initialization(mult); %initialize the mutual information (’I’)

%estimator (’Shannon_HShannon’)

>I = IShannon_HShannon_estimation(Y,ds,co); %perform mutual information estimation

2. Complex: The mutual information of complex random variables (y ∈ Cdm) can be defined via the Hilbert trans-
formation [Eq. (95)]:

IC
(
y1, . . . ,yM

)
= I

(
φv

(
y1
)
, . . . , φv

(
yM
))
. (103)

The relation is realized in ITE by the ’complex’ meta estimator.

3. Shannon-, L2-, Tsallis- and Rényi mutual information: The Shannon-, L2-, Tsallis- and Rényi mutual in-
formation can be expressed in terms of the corresponding divergence of the joint (f) and the product of marginals
(
∏M

m=1 fm)16:

I
(
y1, . . . ,yM

)
= D

(
f,

M∏
m=1

fm

)
, IL

(
y1, . . . ,yM

)
= DL

(
f,

M∏
m=1

fm

)
, (104)

IT,α

(
y1, . . . ,yM

)
= DT,α

(
f,

M∏
m=1

fm

)
, IR,α

(
y1, . . . ,yM

)
= DR,α

(
f,

M∏
m=1

fm

)
. (105)

Shannon mutual information is a special case of Rényi’s and Tsallis’ in limit sense:

IR,α
α→1−−−→ I, IT,α

α→1−−−→ I. (106)

The associated Rényi-, L2- and Tsallis meta mutual information estimators are available in ITE using the names
’Renyi_DRenyi’, ’L2_DL2’ and ’Tsallis_DTsallis’.

16For the definitions of f and fms, see Eq. (7). The divergence definitions can be found in Eqs. (37), (38), (39) and (42).
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4. Copula based kernel dependency: [88] has recently defined a novel, robust, copula-based mutual information
measure of the random variable ym ∈ R (m = 1, . . . ,M) as the MMD divergence [Eq. (45)] of the joint copula and
the M-dimensional uniform distribution on [0, 1]M :

Ic
(
y1, . . . , yM

)
= DMMD(PZ,PU), (107)

where Z =
[
F1

(
y1
)
; . . . ;FM

(
yM
)]

∈ RM is the joint copula, Fm is the cumulative density function of ym and P
denotes the distribution. The associated meta estimator has the name ’MMD_DMMD’ in ITE.

5. Distance covariance: An alternative form of the distance covariance [Eq. (32) and α = 1] in terms of pairwise
distances is

IdCov
(
y1,y2

)
= Ey1,y2Ey1′ ,y2′

[∥∥∥y1 − y1′
∥∥∥
2

∥∥∥y2 − y2′
∥∥∥
2

]
+ Ey1,y1′

[∥∥∥y1 − y1′
∥∥∥
2

]
Ey2,y2′

[∥∥∥y2 − y2′
∥∥∥
2

]
− 2Ey1,y2

[
Ey1′

∥∥∥y1 − y1′
∥∥∥
2
Ey2′

∥∥∥y2 − y2′
∥∥∥
2

]
, (108)

where (y1,y2) and (y1′ ,y2′) are i.i.d. variables. The concept of distance covariance and the formula above can also
be extended to semimetric spaces [(Y1, ρ1), (Y2, ρ2)] of negative type [69, 109] (see Def. 6, Section D):

IdCov
(
y1,y2

)
= Ey1,y2Ey1′ ,y2′

[
ρ1

(
y1,y1′

)
ρ2

(
y2,y2′

)]
+ Ey1,y1′

[
ρ1

(
y1,y1′

)]
Ey2,y2′

[
ρ2

(
y2,y2′

)]
− 2Ey1,y2

(
Ey1′

[
ρ1

(
y1,y1′

)]
Ey2′

[(
y2,y2′

)])
. (109)

The resulting measure can be proved to be expressible in terms of HSIC [Eq. (13)]:[
IdCov

(
y1,y2

)]2
= 4[DMMD(f, f1f2)]

2 = 4
[
IHSIC

(
y1,y2

)]2
, (110)

where the kernel k (used in HSIC) is

k((u1,v1), (u2,v2)) = k1(u1,u2)k2(v1,v2) (111)

with ki kernels generating [see Eq. (118)] ρi-s (i = 1, 2). The meta estimator is called ’dCov_IHSIC’ in ITE.

6. Approximate correntropy independence measure [100]: This measure is defined as

IACorrEntr
(
y1, y2

)
= max

[∣∣ACCorrEntr
(
y1, y2

)∣∣ , ∣∣ACCorrEntr
(
−y1, y2

)∣∣] . (112)

The meta mutual information estimator is available in ITE under the name ’ApprCorrEntr’.
Note: the correntropy independence measure

sup
a,b∈R

|Ua,b

(
y1, y2

)
|, (113)

where

Ua,b

(
y1, y2

)
= ACCorrEntr

(
ay1 + b, y2

)
(a ̸= 0) (114)

is a valid independence measure in the sense, that it [Eq. (113)] is zero if and only if y1 and y2 are independent.
IACorrEntr [Eq. (112)] is an approximation of this quantity in a bivariate mixture of Gaussian approach.

The calling syntax of the meta mutual information are identical (and the same as that of the base estimators, see
Section 3.1.2), the possible methods are summarized in Table 9. The techniques are identified by their ’cost_name’, see
the last column of the table.

3.2.3 Divergence Estimators

In this section we focus on meta divergence estimators (Table 10). Our prototype example is the estimation of the
symmetrised Kullback-Leibler divergence, the so-called J-distance (or J divergence):

DJ(f1, f2) = D(f1, f2) +D(f2, f1). (115)

The definition of meta divergence estimators follows the idea of meta entropy and mutual information estimators (see
Example 9, 10, 12 and 13). Initialization and estimation of the meta J-distance estimator can be carried out as follows:
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Estimated quantity Principle dm M cost_name

complex mutual information (IC) mutual information of a real random vector variable ≥ 1 ≥ 2 ’complex’

L2 mutual information (IL) L2-divergence of the joint and the product of marginals ≥ 1 ≥ 2 ’L2_DL2’

Rényi mutual information (IR,α) Rényi divergence of the joint and the product of marginals ≥ 1 ≥ 2 ’Renyi_DRenyi’

copula-based kernel dependency (Ic) MMD div. of the joint copula and the uniform distribution = 1 ≥ 2 ’MMD_DMMD’

Rényi mutual information (IR,α) minus the Rényi entropy of the joint copula = 1 ≥ 2 ’Renyi_HRenyi’

(Shannon) mutual information (I) entropy sum of the components minus the joint entropy ≥ 1 ≥ 2 ’Shannon_HShannon’

Tsallis mutual information (IT,α) L2-divergence of the joint and the product of marginals ≥ 1 ≥ 2 ’Tsallis_DTsallis’

distance covariance (IdCov) pairwise distances, equivalence to HSIC ≥ 1 = 2 ’dCov_IHSIC’

appr. correntropy indep. (IACorrEntr) maximum of centered correntropies = 1 = 2 ’ApprCorrEntr’

Table 9: Mutual information estimators (meta). Third column: dimension constraint (dm; ym ∈ Rdm). Fourth column:
constraint for the number of components (M ; y =

[
y1; . . . ;yM

]
).

Example 15 (Divergence estimator (meta: initialization))

function [co] = DJdistance_initialization(mult)

co.name = ’Jdistance’; %name of the estimator: ’Jdistance’

co.mult = mult; %set whether multiplicative constant is important

co.member_name = ’Renyi_kNN_k’; %method used for Kullback-Leibler divergence estimation

co.member_co = D_initialization(co.member_name,mult); %initialize the Kullback-Leibler divergence

%estimator

Example 16 (Divergence estimator (meta: estimation))

function [D_J] = DJdistance_estimation(X,Y,co)

D_J = D_estimation(X,Y,co.member_co) + D_estimation(Y,X,co.member_co); %definition of J-distance

Having defined the J-distance estimator, the calling syntax is completely analogous to base estimators (see Example 5).

Example 17 (Divergence estimator (meta: usage))

>Y1 = rand(3,1000); Y2 = rand(3,2000); %generate the data of interest (d=3, T1=1000, T2=2000)
>mult = 1; %multiplicative constant is important

>co = DJdistance_initialization(mult); %initialize the divergence (’D’) estimator (’Jdistance’)

>D = DJdistance_estimation(Y1,Y2,co); %perform divergence estimation

Further meta divergence estimators of ITE are the following:

1. Cross-entropy + entropy → Kullback-Leibler divergence: As is well-known the Kullback-Leibler divergence
can be expressed in terms of cross-entropy (see Eq. (86)) and entropy:

D(f1, f2) = CCE(f1, f2)−H(f1). (116)

The associated meta divergence estimator is called ’KL_CE_HShannon’.

2. MMD → energy distance: As it has been proved recently [69, 109], the energy distance [Eq. (54)] is closely
related to MMD [Eq. (45)]:

DEnDist(f1, f2) = 2 [DMMD(f1, f2)]
2
, (117)

where the kernel k (used in MMD) generates the semimetric ρ (used in energy distance), i.e.,

ρ(u,v) = k(u,u) + k(v,v)− 2k(u,v). (118)

The name of the associated meta estimator is ’EnergyDist_DMMD’.
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3. Jensen-Shannon divergence: This divergence is defined [66] in terms of the Shannon entropy as

Dπ
JS(f1, f2) = H

(
π1y

1 + π2y
2
)
−
[
π1H

(
y1
)
+ π2H

(
y2
)]
, (119)

where yi ∼ fi and π1y
1 + π2y

2 denotes the mixture distribution obtained from y1 and y2 with π1, π2 weights
(π1, π2 > 0, π1 + π2 = 1). The meta estimator is called ’JensenShannon_HShannon’ in ITE.
Notes:

• As it is known 0 ≤ Dπ
JS(f1, f2) ≤ log(2), Dπ

JS(f1, f2) = 0 ⇔ f1 = f2.
• Specially, for π1 = π2 = 1

2 we obtain

DJS(f1, f2) = D
( 1

2 ,
1
2 )

JS (f1, f2) = H

(
y1 + y2

2

)
−
H
(
y1
)
+H

(
y2
)

2
=

1

2

[
D

(
f1,

f1 + f2
2

)
+D

(
f2,

f1 + f2
2

)]
.

(120)

It is known that
√
DJS(f1, f2) is a (covariant) Hilbertian metric [143, 27, 41]; see Def. 7.

• One can also generalize the Jensen-Shannon divergence [Eq. (119)] to multiple components as

Dπ
JS(f1, . . . , fM ) = H

(
M∑

m=1

πmym

)
−

M∑
m=1

πmH (ym) , (121)

where πm > 0 (m = 1, . . . ,M),
∑M

m=1 πm = 1, ym ∼ fm (m = 1, . . . ,M).

4. Jensen-Rényi divergence: The definition of the Jensen-Rényi divergence is analogous to (121); the difference to
Dπ

JS is that the Shannon entropy is changed to the Rényi entropy [38]

Dπ
JR,α(f1, . . . , fM ) = HR,α

(
M∑

m=1

πmym

)
−

M∑
m=1

πmHR,α (ym) , (α ≥ 0) (122)

where πm > 0 (m = 1, . . . ,M),
∑M

m=1 πm = 1, ym ∼ fm (m = 1, . . . ,M). The name of the meta estimator is
’JensenRenyi_HRenyi’ in ITE (M = 2).

5. K divergence, L divergence: The K divergence and the L divergence measures [66] are defined as

DK(f1, f2) = D

(
f1,

f1 + f2
2

)
, (123)

DL(f1, f2) = DK(f1, f2) +DK(f2, f1). (124)

Notes: They are

• non-negative, and are zero if and only if f1 = f2.
• closely related to the Jensen-Shannon divergence in case of unifosee Eq. (120).
• available in ITE (’K_DKL’ and ’L_DKL’).

6. Jensen-Tsallis divergence: The definition of the Jensen-Tsallis divergence [12] follows that of the Jensen-Shannon
divergence [Eq. (120)]; only the Shannon entropy is replaced with the Tsallis entropy [Eq. (5)]

DJT,α(f1, f2) = HT,α

(
y1 + y2

2

)
−
HT,α

(
y1
)
+HT,α

(
y2
)

2
, (α ̸= 1) (125)

where ym ∼ fm (m = 1, 2). Notes:

• The Jensen-Shannon divergence is special case in limit sense:

lim
α→1

DJT,α(f1, f2) = DJS(f1, f2). (126)

• The name of the associated meta estimator is ’JensenTsallis_HTsallis’ in ITE.

7. Symmetric Bregman distance: This measure [11, 23, 64] can be estimated using Eq. (57); its name is
’symBregman_DBregman’ in ITE.

The calling form the meta divergence estimators is uniform, one only has to change in Example 17 the cost_name to
the value in the last column of Table 10.
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Estimated quantity Principle d cost_name

J-distance (DJ) symmetrised Kullback-Leibler divergence d ≥ 1 ’Jdistance’

Kullback-Leibler divergence (D) difference of cross-entropy and entropy d ≥ 1 ’KL_CCE_HShannon’

Energy distance (DEnDist) pairwise distances, equivalence to MMD d ≥ 1 ’EnergyDist_DMMD’

Jensen-Shannon divergence (Dπ
JS) smoothed (π), defined via the Shannon entropy d ≥ 1 ’JensenShannon_HShannon’

Jensen-Rényi divergence (Dπ
JR,α) smoothed (π), defined via the Rényi entropy d ≥ 1 ’JensenRenyi_HRenyi’

K divergence (DK) smoothed Kullback-Leibler divergence d ≥ 1 ’K_DKL’

L divergence (DL) symmetrised K divergence d ≥ 1 ’L_DKL’

Jensen-Tsallis divergence (DJT,α) smoothed, defined via the Tsallis entropy d ≥ 1 ’JensenTsallis_HTsallis’

Symmetric Bregman distance (DSB,α) symmetrised Bregman distance d ≥ 1 ’symBregman_DBregman’

Table 10: Divergence estimators (meta). Third column: dimension (d) constraint.

3.2.4 Association Measure Estimators

One can define and use meta association measure estimators completely analogously to meta mutual information estimators
(see Section 3.2.2). The meta association measure estimators included in ITE are the

• Correntropy induced metric [67, 110], centered correntropy induced metric [100]:

ACIM
(
y1, y2

)
=
√
k(0, 0)−ACorrEntr (y1, y2), (127)

ACCIM
(
y1, y2

)
=
√
ACCorrEntr (y1, y1) +ACCorrEntr (y2, y2)− 2ACCorrEntr (y1, y2), (128)

where k is the kernel used in the correntropy estimator [Eqs. (75)-(76)]. The corresponding meta estimators are
called ’CIM’ and ’CCIM’ in ITE.

• Lower tail dependence via conditional Spearman’s ρ: This lower tail dependence measure has been defined
[104] as the limit of Âρlt = Âρlt(p) [Eq. (84)]:

AρL

(
y1, . . . , yd

)
= AρL(C) = lim

p→0,p>0
Aρlt(C) = lim

p→0,p>0

d+ 1

pd+1

∫
[0,p]d

C(u)du, (129)

provided that the limit exists. The name of the association measure is ’Spearman_L’ in ITE.

Note:

– Similarly to Aρlt [Eq. (84)], AρL preserves concordance ordering [see Eq. (66)]: C1 ≺ C2 ⇒ AρL(C1) ≤ AρL(C2).

– Moreover, 0 ≤ AρL(C) ≤ 1; the comomonotonic copula M implies AρL = 1 and the independence copula Π
yields AρL = 0.

– AρL can be used as an alternative of the tail-dependence coefficient [114] widely spreaded in bivariate extreme
value theory:

λL = λL(C) = lim
p→0,p>0

C(p, p)

p
. (130)

An important drawback of λL is that it takes into account the copula only on the diagonal (C(p, p)).

• Upper tail dependence via conditional Spearman’s ρ: This upper tail dependence measure has been intro-
duced in [104] as the limit of Âρut = Âρut(p) [Eq. (85)]:

AρU

(
y1, . . . , yd

)
= AρU(C) = lim

p→0,p>0
Aρut(C), (131)

provided that the limit exists. The measure is an analogue of (129) in the ‘upper’ domain. It is called ’Spearman_U’
in ITE.

The meta association measure estimators are summarized in Table 11.
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Estimated quantity Principle dm M cost_name

correntropy induced metric (ACIM) metric from correntropy dm = 1 M = 2 ’CIM’

centered correntropy induced metric (ACCIM) metric from centered correntropy dm = 1 M = 2 ’CCIM’

lower tail dependence via conditional Spearman’s ρ (AρL) limit of Aρlt dm = 1 M ≥ 2 ’Spearman_L’

upper tail dependence via conditional Spearman’s ρ (AρU) limit of Aρut dm = 1 M ≥ 2 ’Spearman_U’

Table 11: Association measure estimators (meta). Third column: dimension constraint (dm; ym ∈ Rdm). Fourth column:
constraint for the number of components (M ; y =

[
y1; . . . ;yM

]
).

Estimated quantity Principle d cost_name

Jensen-Shannon kernel (KJS) function of the Jensen-Shannon divergence d ≥ 1 ’JS_DJS’

Table 12: Estimators of kernels on distributions (meta). Third column: dimension (d) constraint.

3.2.5 Cross Quantity Estimators

One can define and use meta cross quantity estimators completely analogously to meta divergence estimators (see Sec-
tion 3.2.3).

3.2.6 Estimators of Kernels on Distributions

It is possible to define and use meta estimators of kernels on distributions similarly to meta divergence estimators (see
Section 3.2.3). ITE contains the following meta estimators (see Table 12):

Jensen-Shannon kernel: The Jensen-Shannon kernel [70, 71] is defined as

KJS (f1, f2) = log(2)−DJS(f1, f2), (132)

where DJS is the Jensen-Shannon divergence [Eq. (120)]. The corresponding meta estimator is called ’JS_DJS’ in
ITE.

Let us take a simple estimation example:

Example 18 (Kernel estimation on distributions (meta: usage))

>Y1 = randn(3,2000); Y2 = randn(3,3000); %generate the data of interest (d=3, T1=2000, T2=3000)
>mult = 1; %multiplicative constant is important

>co = KJS_DJS_initialization(mult); %initialize the kernel (’K’) estimator on distributions (’JS_DJS’)

>K = KJS_DJS_estimation(Y1,Y2,co); %perform kernel estimation on distributions

3.3 Uniform Syntax of the Estimators
The modularity of the ITE package in terms of (i) the definition and usage of the estimators of base/meta entropy, mutual
information, divergence, association measures, cross quantities, kernels on distributions, and (ii) the possibility to simple
embed novel estimators can be assured by following the templates:

1. Initialization:

Template 1 (Entropy estimator: initialization)

function [co] = H<cost_name>_initialization(mult)

co.name = <cost_name>;

co.mult = mult;

...
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Template 2 (Mutual information estimator: initialization)

function [co] = I<cost_name>_initialization(mult)

co.name = <cost_name>

co.mult = mult;

...

Template 3 (Divergence estimator: initialization)

function [co] = D<cost_name>_initialization(mult)

co.name = <cost_name>

co.mult = mult;

...

Template 4 (Association measure estimator: initialization)

function [co] = A<cost_name>_initialization(mult)

co.name = <cost_name>

co.mult = mult;

...

Template 5 (Cross quantity estimator: initialization)

function [co] = C<cost_name>_initialization(mult)

co.name = <cost_name>

co.mult = mult;

...

Template 6 (Estimator of kernel on distributions: initialization)

function [co] = K<cost_name>_initialization(mult)

co.name = <cost_name>

co.mult = mult;

...

2. Estimation:

Template 7 (Entropy estimator: estimation)

function [H] = H<cost_name>_estimation(Y,co)

...

Template 8 (Mutual information estimator: estimation)

function [I] = I<cost_name>_estimation(Y,ds,co)

...

Template 9 (Divergence estimator: estimation)

function [D] = D<cost_name>_estimation(Y1,Y2,co)

...
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Template 10 (Association measure estimator: estimation)

function [A] = A<cost_name>_estimation(Y,ds,co)

...

Template 11 (Cross quantity estimator: estimation)

function [C] = C<cost_name>_estimation(Y1,Y2,co)

...

Template 12 (Estimator of kernel on distributions: estimation)

function [K] = K<cost_name>_estimation(Y1,Y2,co)

...

The unified implementation in the ITE toolbox, makes it possible to use high-level initialization and estimation of the
information theoretical quantities. The corresponding functions are

• for initialization: H_initialization.m, I_initialization.m, D_initialization.m, A_initialization.m,
C_initialization.m, K_initialization.m,

• for estimation: H_estimation.m, I_estimation.m, D_estimation.m, A_estimation.m, C_estimation.m,
K_estimation.m

following the templates:

function [co] = H_initialization(cost_name,mult)

function [co] = I_initialization(cost_name,mult)

function [co] = D_initialization(cost_name,mult)

function [co] = A_initialization(cost_name,mult)

function [co] = C_initialization(cost_name,mult)

function [co] = K_initialization(cost_name,mult)

function [H] = H_estimation(Y,co)

function [I] = I_estimation(Y,ds,co)

function [D] = D_estimation(Y1,Y2,co)

function [A] = A_estimation(Y,ds,co)

function [C] = C_estimation(Y1,Y2,co)

function [K] = K_estimation(Y1,Y2,co)

Here, the cost_name of the entropy, mutual information, divergence, association measure and cross quantity estimator
can be freely chosen in case of

• entropy: from the last column of Table 2 and Table 8,

• mutual information: from the last column of Table 3 and Table 9,

• divergence: from the last column of Table 4 and Table 10,

• association measures: from the last column of Table 5,

• cross quantities: from the last column of Table 6.

• kernels on distributions: from the last column of Table 7.

By the ITE construction, following for

• entropy: Template 1 (initialization) and Template 7 (estimation),
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• mutual information: Template 2 (initialization) and Template 8 (estimation),

• divergence: Template 3 (initialization) and Template 9 (estimation),

• association measure: Template 4 (initialization) and Template 10 (estimation),

• cross quantity: Template 5 (initialization) and Template 11 (estimation),

• kernel on distributions: Template 6 (initialization) and Template 12 (estimation),

user-defined estimators can be immediately used. Let us demonstrate idea of the high-level initialization and estimation
with a simple example, Example 2 can equivalently be written as:17

Example 19 (Entropy estimation (high-level, usage))

>Y = rand(5,1000); %generate the data of interest (d=5, T=1000)

>cost_name = ’Shannon_kNN_k’; %select the objective (Shannon entropy) and

%its estimation method (k-nearest neighbor)

>mult = 1; %multiplicative constant is important

>co = H_initialization(cost_name,mult); %initialize the entropy estimator

>H = H_estimation(Y,co); %perform entropy estimation

A more complex example family will be presented in Section 4. There, the basic idea will be the following:

1. Independent subspace analysis and its extensions can be formulated as the optimization of information theoretical
quantities. There exist many equivalent formulations (objective functions) in the literature, as well as approximate
objectives.

2. Choosing a given objective function, estimators following the template syntaxes (Template 1-9) can be used simply
by giving their names (cost_name).

3. Moreover, the selected estimator can be immediately used in different optimization algorithms of the objective.

4 ITE Application in Independent Process Analysis (IPA)
In this section we present an application of the presented estimators in independent subspace analysis (ISA) and its
extensions (IPA, independent process analysis). Application of ITE in IPA serves as an illustrative example, how complex
tasks formulated as information theoretical optimization problems can be tackled by the estimators detailed in Section 3.

Section 4.1 formulates the problem domain, the independent process analysis (IPA) problem family. In Section 4.2 the
solution methods of IPA are detailed. Section 4.3 is about the Amari-index, which can be used to measure the precision
of the IPA estimations. The IPA datasets included in the ITE package are introduced in Section 4.4.

4.1 IPA Models
In Section 4.1.1 we focus on the simplest linear model, which allows hidden, independent multidimensional sources (sub-
spaces), the so-called independent subspace analysis (ISA) problem. Section 4.1.2 is about the extensions of ISA.

4.1.1 Independent Subspace Analysis (ISA)

The ISA problem is defined in the first paragraph. Then (i) the ISA ambiguities, (ii) equivalent ISA objective functions,
and (iii) the ISA separation principle are detailed. Thanks to the ISA separation principle one can define many different
equivalent clustering based ISA objectives and approximations; this is the topic of the next paragraph. ISA optimization
methods are presented in the last paragraph.

17One can perform mutual information, divergence, association measure and cross quantity estimations similarly.
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The ISA equations One may think of independent subspace analysis (ISA)18 [13, 24] as a cocktail party problem,
where (i) more than one group of musicians (sources) are playing at the party, and (ii) we have microphones (sensors),
which measure the mixed signals emitted by the sources. The task is to estimate the original sources from the mixed
recordings (observations) only.

Formally, let us assume that we have an observation (x ∈ RDx), which is instantaneous linear mixture (A) of the
hidden source (e), that is,

xt = Aet, (133)

where

1. the unknown mixing matrix A ∈ RDx×De has full column rank,

2. source et =
[
e1t ; . . . ; e

M
t

]
∈ RDe is a vector concatenated (using Matlab notation ’;’) of components emt ∈ Rdm

(De =
∑M

m=1 dm), subject to the following conditions:

(a) et is assumed to be i.i.d. (independent identically distributed) in time t,

(b) there is at most one Gaussian variable among ems; this assumption will be referred to as the ‘non-Gaussian’
assumption, and

(c) ems are independent, that is I
(
e1, . . . , eM

)
= 0.

The goal of the ISA problem is to eliminate the effect of the mixing (A) with a suitable W ∈ RDe×Dx demixing matrix and
estimate the original source components ems by using observations {xt}Tt=1 only (ê = Wx). If all the em source components
are one-dimensional (dm = 1,∀m), then the independent component analyis (ICA) task [54, 15, 17] is recovered. For
Dx > De the problem is called undercomplete, while the case of Dx = De is regarded as complete.

The ISA objective function One may assume without loss of generality in case of Dx ≥ De for the full column rank
matrix A that it is invertible – by applying principal component analysis (PCA) [44]. The estimation of the demixing
matrix W = A−1 in ISA is equivalent to the minimization of the mutual information between the estimated components
(ym),

JI(W) = I
(
y1, . . . ,yM

)
→ min

W∈GL(D)
, (134)

where y = Wx, y =
[
y1; . . . ;yM

]
, ym ∈ Rdm , GL(D) denotes the set of D×D sized invertible matrices, and D = De. The

joint mutual information [Eq. (134)] can also be expressed from only pair-wise mutual information by recursive methods
[21]

I
(
y1, . . . ,yM

)
=

M−1∑
m=1

I
(
ym,

[
ym+1, ...,yM

])
. (135)

Thus, an equivalent information theoretical ISA objective to (134) is

JIrecursive(W) =
M−1∑
m=1

I
(
ym,

[
ym+1, ...,yM

])
→ min

W∈GL(D)
. (136)

However, since in ISA, it can be assumed without any loss of generality—applying zero mean normalization and
PCA—that

• x and e are white, i.e., their expectation value is zero, and their covariance matrix is the identity matrix (I),

• mixing matrix A is orthogonal (A ∈ OD), that is ATA = I, and

• the task is complete (D = Dx = De),
18ISA is also called multidimensional ICA, independent feature subspace analysis, subspace ICA, or group ICA in the literature. We will use

the ISA abbreviation.
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one can restrict the optimization in (134) and (136) to the orthogonal group (W ∈ OD). Under the whiteness assumption,
well-known identities of mutual information and entropy expressions [21] show that the ISA problem is equivalent to

JsumH(W) =
M∑

m=1

H (ym) → min
W∈OD

, (137)

JH,I(W) =
M∑

m=1

dm∑
i=1

H(ymi )−
M∑

m=1

I
(
ym1 , . . . , y

m
dm

)
→ min

W∈OD
, (138)

JI,I(W) = I
(
y11 , . . . , y

M
dM

)
−

M∑
m=1

I
(
ym1 , . . . , y

m
dm

)
→ min

W∈OD
, (139)

where ym =
[
ym1 ; . . . ; ymdm

]
.

The ISA ambiguities Identification of the ISA model is ambiguous. However, the ambiguities of the model are simple:
hidden components can be determined up to permutation of the subspaces and up to invertible linear transformations19
within the subspaces [142].

The ISA separation principle One of the most exciting and fundamental hypotheses of the ICA research is the ISA
separation principle dating back to 1998 [13]: the ISA task can be solved by ICA preprocessing and then clustering of
the ICA elements into statistically independent groups. While the extent of this conjecture, is still an open issue, it has
recently been rigorously proven for some distribution types [129]. This principle

• forms the basis of the state-of-the-art ISA algorithms,

• can be used to design algorithms that scale well and efficiently estimate the dimensions of the hidden sources, and

• can be extended to different linear-, controlled-, post nonlinear-, complex valued-, partially observed models, as well
as to systems with nonparametric source dynamics.

For a recent review on the topic, see [132]. The addressed extension directions are (i) presented in Section 4.1.2, (ii) are
covered by the ITE package. In the ITE package the solution of the ISA problem is based on the ISA separation principle,
for a demonstration, see demo_ISA.m.

Equivalent clustering based ISA objectives and approximations According to the ISA separation principle, the
solution of the ISA task, i.e., the global optimum of the ISA cost function can be found by permuting/clustering the ICA
elements into statistically independent groups. Using the concept of demixing matrices, it is sufficient to explore forms

WISA = PWICA, (140)

where (i) P ∈ RD×D is a permutation matrix (P ∈ PD) to be determined, (ii) WICA and WISA is the ICA and ISA
demixing matrix, respectively. Thus, assuming that the ISA separation principle holds, and since permuting does not
alter the ICA objective [see, e.g., the first term in (138) and (139)], the ISA problem is equivalent to

JI(P) = I
(
y1, . . . ,yM

)
→ min

P∈PD
, (141)

JIrecursive(P) =
M−1∑
m=1

I
(
ym,

[
ym+1, ...,yM

])
→ min

P∈PD
, (142)

JsumH(P) =
M∑

m=1

H (ym) → min
P∈PD

, (143)

Jsum-I(P) = −
M∑

m=1

I
(
ym1 , ..., y

M
dm

)
→ min

P∈PD
. (144)

19The condition of invertible linear transformations simplifies to orthogonal transformations for the ‘white’ case.
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Let us note that if our observations are generated by an ISA model then—unlike in the ICA task when dm = 1 (∀m)—
pairwise independence is not equivalent to mutual independence [17]. However, minimization of the pairwise dependence
of the estimated subspaces

JIpairwise(P) =
∑

m1 ̸=m2

I (ym1 ,ym2) → min
P∈PD

(145)

is an efficient approximation in many situations. An alternative approximation is to consider only the pairwise dependence
of the coordinates belonging to different subspaces:

JIpairwise1d(P) =
M∑

m1,m2=1;m1 ̸=m2

dm1∑
i1=1

dm2∑
i2=1

I
(
ym1
i1
, ym2

i2

)
→ min

P∈PD
. (146)

ISA optimization methods Let us fix an ISA objective J [Eq. (141)-(146)]. Our goal is to solve the ISA task, i.e.,
by the ISA separation principle to find the permutation (P) of the ICA elements minimizing J . Below we list a few
possibilities for finding P; the methods are covered by ITE.

Exhaustive way: The possible number of all permutations, i.e., the number of P matrices is D!, where ‘ !’ denotes
the factorial function. Considering that the ISA cost function is invariant to the exchange of elements within the
subspaces (see, e.g., (144)), the number of relevant permutations decreases to D!∏M

m=1 dm!
. This number can still be

enormous, and the related computations could be formidable justifying searches for efficient approximations that we
detail below.

Greedy way: Two estimated ICA components belonging to different subspaces are exchanged, if it decreases the value
of the ISA cost J , as long as such pairs exist [134].

‘Global’ way: Experiences show that greedy permutation search is often sufficient for the estimation of the ISA subspaces.
However, if the greedy approach cannot find the true ISA subspaces, then global permutation search method of higher
computational burden may become necessary [128]: the cross-entropy solution suggested for the traveling salesman
problem [101] can be adapted to this case.

Spectral clustering: Now, let us assume that source dimensions (dm) are not known in advance. The lack of such
knowledge causes combinatorial difficulty in such a sense that one should try all possible

D = d1 + . . .+ dM (dm > 0,M ≤ D) (147)

dimension allocations to the subspace (em) dimensions, where D is the dimension of the hidden source e. The
number of these f(D) possibilities grows quickly with the argument, its asymptotic behaviour is known [39, 146]:

f(D) ∼ eπ
√

2D/3

4D
√
3

(148)

as D → ∞. An efficient method with good scaling properties has been put forth in [90] for searching the permutation
group for the ISA separation theorem (see Table 13). This approach builds upon the fact that the mutual information
between different ISA subspaces em is zero due to the assumption of independence. The method assumes that
coordinates of em that fall into the same subspace can be paired by using the pairwise dependence of the coordinates.
The approach can be considered as objective (146) with unknown dm subspace dimensions. One may carry out the
clustering by applying spectral approaches (included in ITE), which are (i) robust and (ii) scale excellently, a single
general desktop computer can handle about a million observations (in our case estimated ICA elements) within
several minutes [154].

4.1.2 Extensions of ISA

Below we list some extensions of the ISA model and the ISA separation principle. These different extensions, however,
can be used in combinations, too. In all these models, (i) the dimension of the source components (dm) can be different
and (ii) one can apply the Amari-index as the performance measure (Section 4.3). The ITE package directly implements
the estimation of the following models20 (the relations of the different models are summarized in Fig.1):

20The ITE package includes demonstrations for all the touched directions. The name of the demo files are specified at the end the problem
definitions, see paragraphs ‘Separation principle’.
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Construct an undirected graph with nodes corresponding to ICA coordinates and edge
weights (similarities) defined by the pairwise statistical dependencies, i.e., the mutual
information of the estimated ICA elements: S = [Î(êICA,i, êICA,j)]

D
i,j=1. Cluster the

ICA elements, i.e., the nodes using similarity matrix S.

Table 13: Well-scaling approximation for the permutation search problem in the ISA separation theorem in case of
unknown subspace dimensions [estimate_clustering_UD1_S.m].

Linear systems:

AR-IPA:

Equations, assumptions: In the AR-IPA (autoregressive-IPA) task [47] (dm = 1, ∀m), [91] (dm ≥ 1), the
traditional i.i.d. assumption for the sources is generalized to AR time series: the hidden sources (sm ∈ Rdm)
are not necessarily independent in time, only their driving noises (em ∈ Rdm) are. The observation (x ∈ RD,
D =

∑M
m=1 dm) is an instantaneous linear mixture (A) of the source s:

xt = Ast, st =

Ls∑
i=1

Fist−i + et, (149)

where Ls is the order of the AR process, st =
[
s1t ; . . . ; s

M
t

]
and et =

[
e1t ; . . . ; e

M
t

]
∈ RD denote the hidden

sources and the hidden driving noises, respectively. (149) can be rewritten in the following concise form:

x = As, F[z]s = e (150)

using the polynomial of the time-shift operator F[z] := I−
∑Ls

i=1 Fiz
i ∈ R[z]D×D [62]. We assume that

1. polynomial matrix F[z] is stable, that is det(F[z]) ̸= 0, for all z ∈ C, |z| ≤ 1,
2. mixing matrix A ∈ RD×D is invertible (A ∈ GL(D)), and
3. e satisfies the ISA assumptions (see Section 4.1.1)

Goal: The aim of the AR-IPA task is to estimate hidden sources sm, dynamics F[z], driving noises em and
mixing matrix A or its W inverse given observations {xt}Tt=1. For the special case of Ls = 0, the ISA task
is obtained.

Separation principle: The AR-IPA estimation can be carried out by (i) applying AR fit to observation x,
(ii) followed by ISA on the estimated innovation of x [47, 91]. Demo: demo_AR_IPA.m.

MA-IPA:

Equations, assumptions: Here, the assumption on instantaneous linear mixture of the ISA model is weak-
ened to convolutions. This problem is called moving average independent process analysis (MA-IPA, also
known as blind subspace deconvolution) [129]. We describe this task for the undercomplete case. Assume
that the convolutive mixture of hidden sources em ∈ Rdm is available for observation (x ∈ RDx)

xt =

Le∑
l=0

Hlet−l, (151)

where
1. Dx > De (undercomplete, De =

∑M
m=1 dm),

2. the polynomial matrix H[z] =
∑Le

l=0 Hlz
l ∈ R[z]Dx×De has a (polynomial matrix) left inverse21, and

3. source e = [e1; . . . ; eM ] ∈ RDe satisfies the conditions of ISA.
Goal: The goal of this undercomplete MA-IPA problem (uMA-IPA problem, where ‘u’ stands for undercom-

plete) is to estimate the original em sources by using observations {xt}Tt=1 only. The case Le = 0 corresponds
to the ISA task, and in the blind source deconvolution problem [86] dm = 1 (∀m), and Le is a non-negative
integer.

21One can show for Dx > De that under mild conditions H[z] has a left inverse with probability 1 [99]; e.g., when the matrix [H0, . . . ,HLe ]
is drawn from a continuous distribution.

41



Note: We note that in the ISA task the full column rank of matrix H0 was presumed, which is equivalent to
the assumption that matrix H0 has left inverse. This left inverse assumption is extended in the uMA-IPA
model for the polynomial matrix H[z].

Separation principle:
• By applying temporal concatenation (TCC) on the observation, one can reduce the uMA-IPA estimation

problem to ISA [129]. Demo: demo_uMA_IPA_TCC.m.
• However, upon applying the TCC technique, the associated ISA problem can easily become ‘high dimen-

sional’. This dimensionality problem can be alleviated by the linear prediction approximation (LPA)
approach, i.e., AR fit, followed by ISA on the estimation innovation [130]. Demo: demo_uMA_IPA_LPA.m.

• In the complete (Dx = De) case, the H[z] polynomial matrix does not have (polynomial matrix)
left inverse in general. However, provided that the convolution can be represented by an infinite
order autoregressive [AR(∞)] process, one [121] can construct an efficient estimation method for the
hidden components via an asymptotically consistent LPA procedure augmented with ISA. Such AR(∞)
representation can be guaranteed by assuming the stability of H[z] [32]. Demo: demo_MA_IPA_LPA.m.

Post nonlinear models:

Equations, assumptions: In the post nonlinear ISA (PNL-ISA) problem [133] the linear mixing assumption of
the ISA model is alleviated. Assume that the observations (x ∈ RD) are post nonlinear mixtures (g(A·)) of
multidimensional independent sources (e ∈ RD):

xt = g(Aet), (152)

where the
• unknown function g : RD → RD is a component-wise transformation, i.e, g(v) = [g1(v1); . . . ; gD(vD)] and
g is invertible, and

• mixing matrix A ∈ RD×D and hidden source e satisfy the ISA assumptions.
Goal: The PNL-ISA problem is to estimate the hidden source components em knowing only the observations

{xt}Tt=1. For dm = 1, we get back the PNL-ICA problem [139] (for a review see [55]), whereas ‘g=identity’
leads to the ISA task.

Separation principle: the estimation of the PNL-ISA problem can be carried out on the basis of the mirror
structure of the task, applying gaussianization followed by linear ISA [133]. Demo: demo_PNL_ISA.m.

Complex models:

Equations, assumptions: One can define the independence, mutual information and entropy of complex random
variables via the Hilbert transformation [Eq. (95), (96), (103)]. Having these definitions at hand, the complex
ISA problem can be formulated analogously to the real case, the observations (xt ∈ CD) are generated as the
instantaneous linear mixture (A) of the hidden sources (et):

xt = Aet, (153)

where
• the unknown A ∈ CD×D mixing matrix is invertible (D =

∑M
m=1 dm),

• et is assumed to be i.i.d. in time t, and
• em ∈ Cdms are independent, that is I

(
φv

(
e1
)
, . . . , φv

(
eM
))

= 0.
Goal: The goal is to estimate the hidden source e and the mixing matrix A (or its W = A−1 inverse) using the

observation {xt}Tt=1. If all the components are one-dimensional (dm = 1, ∀m), one obtains the complex ICA
problem.

Separation principle:
• Supposing that the φv(e

m) ∈ R2dm variables are ‘non-Gaussian’, and exploiting the operation preserving
property of the Hilbert transformation, the solution of the complex ISA problem can be reduced to an ISA
task over the real domain with observation φv(x) and M pieces of 2dm-dimensional hidden components
φv(e

m). The consideration can be extended to linear models including AR, MA, ARMA (autoregressive
moving average), ARIMA (integrated ARMA), . . . terms [124]. Demo: demo_complex_ISA.m.
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• Another possible solution is to apply the ISA separation theorem, which remains valid even for complex
variables [129]: the solution can be accomplished by complex ICA and clustering of the complex ICA
elements. Demo: demo_complex_ISA_C.m.

Controlled models:

Equations, assumptions: In the ARX-IPA (ARX – autoregressive with exogenous input) problem [123] the AR-
IPA assumption holds (Eq. (149)), but the time evolution of the hidden source s can be influenced via control
variable ut ∈ RDu through matrices Bj ∈ RD×Du :

xt = Ast st =

Ls∑
i=1

Fist−i +

Lu∑
j=1

Bjut+1−j + et. (154)

Goal: The goal is to estimate the hidden source s, the driving noise e, the parameters of the dynamics and control
matrices ({Fi}Ls

i=1 and {Bj}Lu
j=1), as well as the mixing matrix A or its inverse W by using observations xt and

controls ut. In the special case of Lu = 0, the ARX-IPA task reduces to AR-IPA.
Separation principle: The solution can be reduced to ARX identification followed by ISA [123]. Demo:

demo_ARX_IPA.m.

Partially observed models:

Equations, assumptions: In the mAR-IPA (mAR – autoregressive with missing values) problem [122], the AR-
IPA assumptions (Eq. (149)) are relaxed by allowing a few coordinates of the mixed AR sources xt ∈ RD

to be missing at certain time instants. Formally, we observe yt ∈ RD instead of xt, where ‘mask mappings’
Mt : RD 7→ RD represent the coordinates and the time indices of the non-missing observations:

yt = Mt(xt), xt = Ast, st =

Ls∑
i=1

Fist−i + et. (155)

Goal: Our task is the estimation of the hidden source s, its driving noise e, parameters of the dynamics F[z], mixing
matrix A (or its inverse W) from observation {yt}Tt=1. The special case of ‘Mt = identity’ corresponds to the
AR-IPA task.

Separation principle: One can reduce the solution to mAR identification followed by ISA on the estimated inno-
vation process [122]. Demo: demo_mAR_IPA.m.

Models with nonparametric dynamics:

Equations, assumptions: In the fAR-IPA (fAR – functional autoregressive) problem [127], the parametric as-
sumption for the dynamics of the hidden sources is circumvented by functional AR sources:

xt = Ast, st = f(st−1, . . . , st−Ls) + et. (156)

Goal: The goal is to estimate the hidden sources sm ∈ Rdm including their dynamics f and their driving innovations
em ∈ Rdm as well as mixing matrix A (or its inverse W) given observations {xt}Tt=1. If we knew the parametric
form of f and if it were linear, then the problem would be AR-IPA.

Separation principle: The problem can be solved by nonparametric regression followed by ISA [127]. Demo:
demo_fAR_IPA.m.

4.2 Estimation via ITE
Having (i) the information theoretical estimators (Section 3), (ii) the ISA/IPA problems and separation principles (Sec-
tion 4.1) at hand, we now detail the solution methods offered by the ITE package. Due to the separation principles of the
IPA problem family, the solution methods can be implemented in a completely modular way; the estimation techniques
can be built up from the solvers of the obtained subproblems. From developer point of view, this flexibility makes it
possible to easily modify/extend the ITE toolbox. For example, (i) in case of ISA, one can select/replace the ICA method
and clustering technique applied independently, (ii) in case of AR-IPA one has freedom in chosing/extending the AR
identificator and the ISA solver, etc. This is the underlying idea of the solvers offered by the ITE toolbox.

In Section 4.2.1 the solution techniques for the ISA task are detailed. Extensions of the ISA problem are in the focus
of Section 4.2.2.
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ARX-IPA

Lu=0

��
mAR-IPA

Mt:identity(∀t) // AR-IPA

Ls=0

��

fAR-IPA
f : known, linearoo

MA-IPA
(BSSD)

Le=0 //

dm=1(∀m)

��

ISA
(I.I.D.-IPA)

dm=1(∀m)

��

PNL-ISA
g: known, identityoo

dm=1(∀m)

��
BSD

Le=0 // ICA PNL-ICA
g: known, identityoo

Figure 1: IPA problem family, relations. Arrows point to special cases. For example, ‘ISA
dm=1(∀m)−−−−−−−→ICA’ means that ICA

is a special case of ISA, when all the source components are one-dimensional.

4.2.1 ISA

As it has been detailed in Section 4.1.1, the ISA problem can be formulated as the optimization of information theoretical
objectives (see Eqs. (141), (142), (143), (144), (145), (146)). In the ITE package,

All the detailed ISA formulations:

• are available by the appropriate choice of the variable ISA.cost_type (see Table 14), and

• can be used by any entropy/mutual information estimator satisfying the ITE template construction (see Table 2,
Table 3, Table 8, Table 9 and Section 3.3).

The dimension of the subspaces can be given/unknown: the priori knowledge about the dimension of the sub-
spaces can be conveyed by the variable unknown_dimensions. unknown_dimensions=0 (=1) means given {dm}Mm=1

subspace dimensions (unknown subspace dimensions, it is sufficient to give M , the number of subspaces). In case of

• given subspace dimensions: clustering of the ICA elements can be carried out in ITE by the
exhaustive (ISA.opt_type = ’exhaustive’), greedy (ISA.opt_type = ’greedy’), or the cross-entropy
(ISA.opt_type = ’CE’) method.

• unknown subspace dimensions: clustering of the ICA elements can be performed by applying spectral clustering.
In this case, the clustering is based on the pairwise mutual information of the one-dimensional ICA elements
(Table 14) and the objective is (146), i.e., ISA.cost_type = ’Ipairwise1d’. The ITE package supports 4
different spectral clustering methods/implementations (Table 15):

– the unnormalized cut method (ISA.opt_type = ’SP1’), and two normalized cut techniques
(ISA.opt_type = ’SP2’ or ISA.opt_type = ’SP3’) [113, 82, 149] – the implementations are purely Mat-
lab/Octave, and

– a fast, normalized cut implementation [113, 20] in C++ with compilable mex files
(ISA.opt_type = ’NCut’).

The ISA estimator capable of handling these options is called estimate_ISA.m, and is accompanied by the demo file
demo_ISA.m. Let us take some examples for the parameters to set in demo_ISA.m:

Example 20 (ISA-1)

• Goal: the subspace dimensions {dm}Mm=1 are known; apply sum of entropy based ISA formulation (Eq. (143));
estimate the entropy via the Rényi entropy using k-nearest neighbors (S = {1, . . . , k}); optimize the objective in
a greedy way.

• Parameters to set: unknown_dimensions = 0; ISA.cost_type = ’sumH’;
ISA.cost_name = ’Renyi_kNN_1tok’, ISA.opt_type = ’greedy’.
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Cost function to minimize Name (ISA.cost_type)

I
(
y1, . . . ,yM

)
’I’∑M

m=1 H (ym) ’sumH’

−
∑M

m=1 I
(
ym
1 , ..., yM

dm

)
’sum-I’∑M−1

m=1 I
(
ym,

[
ym+1, ...,yM

])
’Irecursive’∑

m1 ̸=m2 I (y
m1 ,ym2) ’Ipairwise’∑M

m1,m2=1;m1 ̸=m2

∑dm1
i1=1

∑dm2
i2=1 I

(
ym1
i1

, ym2
i2

)
’Ipairwise1d’

Table 14: ISA formulations. 1− 4th row: equivalent, 5− 6th row: necessary conditions.

Optimization technique (ISA.opt_type) Principle Environment

’NCut’ normalized cut Matlab
’SP1’ unnormalized cut Matlab, Octave
’SP2’, ’SP3’ 2 normalized cut methods Matlab, Octave

Table 15: Spectral clustering optimizers for given number of subspaces (M) [unknown_dimensions=1]: clustering_UD1.m:
estimate_clustering_UD1_S.m.

Example 21 (ISA-2)

• Goal: the subspace dimensions {dm}Mm=1 are known; apply an ISA formulation based on the sum of mutual
information within the subspaces (Eq. (144)); estimate the mutual information via the KCCA method; optimize
the objective in a greedy way.

• Parameters to set: unknown_dimensions = 0; ISA.cost_type = ’sum-I’; ISA.cost_name = ’KCCA’,
ISA.opt_type = ’greedy’.

Example 22 (ISA-3)

• Goal: the subspace dimensions are unknown, only M , the number of the subspaces is given; the ISA objective
is based on the pairwise mutual information of the estimated ICA elements (Eq. (146)); estimate the mutual
information using the KGV method; optimize the objective via the NCut normalized cut method.

• Parameters to set: unknown_dimensions = 1; ISA.cost_type = ’Ipairwise1d’; ISA.cost_name = ’KGV’,
ISA.opt_type = ’NCut’.

In case of given subspace dimensions, the special structure of the ISA objectives can be taken into account to further
increase the efficiency of the optimization, i.e., the clustering step. The ITE package realizes this idea:

• In case of (i) one-dimensional mutual information based ISA formulation (Eq. (146)), and (ii) cross-entropy or
exhaustive optimization the S = [I(êICA,i, êICA,j)]

D
i,j=1 similarity matrix can be precomputed.

• In case of greedy optimization:

– upon applying ISA objective (146), the S = [I(êICA,i, êICA,j)]
D
i,j=1 similarity matrix can again be precomputed

giving rise to more efficient optimization.

– ISA formulations (143), (144) are both additive w.r.t. the estimated subspaces. Making use of this special
structure of these objective, it is sufficient to recompute the objective only on the touched subspaces while
greedily testing a new permutation candidate. Provided that the number of the subspaces (M) is high, the
decreased computational load of the specialized method is emphasized.

– objective (145) is pair-additive w.r.t. the subspaces. In this case, it is enough to recompute the objective on the
subspaces connected the actual subspace estimates. Again the increased efficiency is striking in case of large
number of subspaces.
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Cost type (ISA.cost_type) Recommended/chosen optimizer

’I’, ’Irecursive’ clustering_UD0_greedy_general.m

’sumH’, ’sum-I’ clustering_UD0_greedy_additive_wrt_subspaces.m

’Ipairwise’ clustering_UD0_greedy_pairadditive_wrt_subspaces.m

’Ipairwise1d’ clustering_UD0_greedy_pairadditive_wrt_coordinates.m

Table 16: Recommended/chosen optimizers for given subspace dimensions ({dm}Mm=1) [unknown_dimensions=0] applying
greedy [ISA.opt_type=’greedy’] ISA optimization: clustering_UD0.m.

Cost type (ISA.cost_type) Recommended/chosen optimizer

’I’, ’sumH’, ’sum-I’, ’Irecursive’, ’Ipairwise’ clustering_UD0_CE_general.m

’Ipairwise1d’ clustering_UD0_CE_pairadditive_wrt_coordinates.m

Table 17: Recommended/chosen optimizers for given subspace dimensions ({dm}Mm=1) [unknown_dimensions=0] applying
cross-entropy [ISA.opt_type=’CE’] ISA optimization: clustering_UD0.m.

The general and the recommended (which are chosen by default in the toolbox) ISA optimization methods of ITE are
listed Table 16 (greedy), Table 17 (cross-entropy), Table 18 (exhaustive).

Extending the capabilities of the ITE toolbox: In case of

• known subspaces dimensions ({dm}Mm=1): the clustering is carried out in clustering_UD0.m. Before clustering, first
the importance of the constant multipliers must be set in set_mult.m.22

– To add a new ISA formulation (ISA.cost_type):

∗ to be able to carry it out general optimization: it is sufficient to add the new cost_type entry to
clustering_UD0.m, and the computation of the new objective to cost_general.m.

∗ to be able to perform an existing, specialized (not general) optimization: add the new cost_type entry to
clustering_UD0.m, and the computation of the new objective to the corresponding cost procedure. For
example, in case of a new objective being additive w.r.t. subspaces (similarly to (143), (144)) it is sufficient
to modify cost_additive_wrt_subspaces_one_subspace.m in cost_additive_wrt_subspaces.m.

∗ to be able to perform a non-existing optimization: add the new cost_type entry to clustering_UD0.m

with the specialized solver.

– To add a new optimization method (ISA.opt_type): please follow the 3 examples included in
clustering_UD0.m.

• unknown subspace dimensions (M): clustering_UD1.m is responsible for the clustering step. It first computes the
S = [Î(êICA,i, êICA,j)]

D
i,j=1 similarity matrix, and then performs spectral clustering (see Table 13). To include a new

clustering technique, one only has to add it to a new case entry in estimate_clustering_UD1_S.m.
22For example, upon applying objective (143) multiplicative constants are irrelevant (important) in case of equal (different) dm subspace

dimensions.

Cost type (ISA.cost_type) Recommended/chosen optimizer

’I’, ’sumH’, ’sum-I’, ’Irecursive’, ’Ipairwise’ clustering_UD0_exhaustive_general.m

’Ipairwise1d’ clustering_UD0_exhaustive_pairadditive_wrt_coordinates.m

Table 18: Recommended/chosen optimizers for given subspace dimensions ({dm}Mm=1) [unknown_dimensions=0] applying
exhaustive [ISA.opt_type=’exhaustive’] ISA optimization: clustering_UD0.m.
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4.2.2 Extensions of ISA

Due to the IPA separation principles, the solution of the problem family can be carried out in a modular way. The solution
of all the presented IPA directions are demonstrated through examples in ITE, the demo files and the actual estimators
are listed in Table 19. For the obtained subtasks the ITE package provides many efficient estimators (see Table 20):

ICA, complex ICA:

• The fastICA method [48] and its complex variant [9] is one of the most popular ICA approach, it is available
in ITE.

• The EASI (equivariant adaptive separation via independence) [14] ICA method family realizes a very exciting
online, adaptive approach offering uniform performance w.r.t. the mixing matrix. It is capable of handling the
real and the complex case, too.

• As we have seen the search for the demixing matrix in ISA (specially in ICA) can be restricted to the orthogonal
group (W ∈ OD, see Section 4.1.1). Moreover, ortogonal matrices can be written as a product of elementary
Jacobi/Givens rotation matrices. The method carries out the search for W in the ICA problem by the sequential
optimization of such elementary rotations on a gradually fined scale. ITE supports Jacobi/Givens based ICA
optimization using general entropy and mutual information estimators (ICA.cost_type = ’sumH’ or ’I’) for
the real case; the pseudo-code of the method is given in Alg. 1.23 Let us take an example:

Example 23 (ISA-4)

– Goal:
∗ Task: ISA with known subspace dimensions {dm}Mm=1.
∗ ICA subtask: minimize the mutual information of the estimated coordinate pairs using the KCCA

objective; optimize the ICA cost via the Jacobi method,
∗ ISA subtask (clustering of the ICA elements): apply entopy sum based ISA formulation (Eq. (143))

and estimate the entropy via the Rényi entropy using k-nearest neighbors (S = {1, . . . , k}); optimize
the ISA objective in a greedy way.

– Parameters to set (see demo_ISA.m): unknown_dimensions = 0; ICA.cost_type = ’I’;
ICA.cost_name = ’KCCA’; ICA.opt_type = ’Jacobi1’; ISA.cost_type = ’sumH’;
ISA.cost_name = ’Renyi_kNN_1tok’; ISA.opt_type = ’greedy’.

• An alternative Jacobi optimization method with a different fining scheme in the rotation angle search is
also available in ITE, see Alg. 2. The optimization extends the idea of the RADICAL ICA method [63] to
general entropy, mutual information objectives. The RADICAL approach can be obtained in ITE by set-
ting ICA.cost_type = ’sumH’; ICA.cost_name = ’Shannon_spacing_V’; ICA.opt_type = ’Jacobi2’ (see
demo_ISA.m).

See estimate_ICA.m and estimate_complex_ICA.m.

AR identification: Identification of AR processes can be carried in the ITE toolbox in 5 different ways (see
estimate_AR.m):

• using the online Bayesian technique with normal-inverted Wishart prior [56, 89],
• applying [51]

– nonlinear least squares estimator based on the subspace representation of the system,
– exact maximum likelihood optimization using the BFGS (Broyden-Fletcher-Goldfarb-Shannon; or the

Newton-Raphson) technique,
– the combination of the previous two approaches.

• making use of the stepwise least squares technique [81, 107].

ARX identification: Identification of ARX processes can be carried out by the D-optimal technique of [89] assuming
normal-inverted Wishart prior; see estimate_ARX_IPA.m.

mAR identification: The
23The optimization extends the idea of the SWICA package [58].
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IPA model Reduction Demo (Estimator)

Task1 Task2

ISA ICA clustering of the ICA elements demo_ISA.m

(estimate_ISA.m)

AR-IPA AR fit ISA demo_AR_IPA.m

(estimate_AR_IPA.m)

ARX-IPA ARX fit ISA demo_ARX_IPA.m

(estimate_ARX_IPA.m)

mAR-IPA mAR fit ISA demo_mAR_IPA.m

(estimate_mAR_IPA.m)

complex ISA Hilbert transformation real ISA demo_complex_ISA.m

(estimate_complex_ISA.m)

complex ISA complex ICA clustering of the ICA elements demo_complex_ISA_C.m

(estimate_complex_ISA_C.m)

fAR-IPA nonparametric regression ISA demo_fAR_IPA.m

(estimate_fAR_IPA.m)

(complete) MA-IPA linear prediction (LPA) ISA demo_MA_IPA_LPA.m

(estimate_MA_IPA_LPA.m)

undercomplete MA-IPA temporal concatenation (TCC) ISA demo_uMA_IPA_TCC.m

(estimate_uMA_IPA_TCC.m)

undercomplete MA-IPA linear prediction (LPA) ISA demo_uMA_IPA_LPA.m

(estimate_uMA_IPA_LPA.m)

PNL-ISA gaussianization ISA demo_PNL_ISA.m

(estimate_PNL_ISA.m)

Table 19: IPA separation principles.

• online Bayesian technique with normal-inverted Wishart prior [56, 89],

• nonlinear least squares [51],

• exact maximum likelihood [51], and

• their combination [51]

are available for the identification of mAR processes; see estimate_mAR.m.

fAR identification: Identification of fAR processes in ITE can be carried out by the strongly consistent, recursive
Nadaraya-Watson estimator [42]; see estimate_fAR.m.

spectral clustering: The ITE toolbox provides 4 methods to perform spectral clustering (see
estimate_clustering_UD1_S.m):

• the unnormalized cut method, and two normalized cut techniques [113, 82, 149] – the implemetations are purely
Matlab/Octave, and

• a fast, normalized cut implementation [113, 20] in C++ with compilable mex files.

gaussianization: Gaussianization of the observations can be carried out by the efficient rank method [156], see
estimate_gaussianization.m.

Extending the capabilities of the ITE toolbox: additional methods for the obtained subtasks can be easily
embedded and instantly used in IPA, by simply adding a new ’switch: case’ entry to the subtask solvers listed in Table 20.

Beyond the solvers for the IPA subproblems detailed above, the ITE toolbox offers:

• 4 different alternatives for k-nearest neighbor estimation (Table 21):

– exact nearest neighbors: based on fast computation of pairwise distances and C++ partial sort (knn package).

– exact nearest neighbors: based on fast computation of pairwise distances.

– exact nearest neighbors: carried out by the knnsearch function of the Statistics Toolbox in Matlab.
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Algorithm 1 Jacobi optimization - 1; see estimate_ICA_Jacobi1.m.
1: Input:
2: whitened observation X = [x1, . . . ,xT ] ∈ Rd×T ,
3: ICA cost function on coordinate pairs J(z1, z2) = I(z1, z2) or J(z1, z2) = H(z1) +H(z2),
4: number of levels L(= 3 : default value), number of sweeps S(= d), number of angles A(= 90).
5: Notation:
6: R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. // rotation with angle θ

7: Initialization:
8: estimated demixing matrix Ŵ = I ∈ Rd×d, estimated source Ê = X ∈ Rd×T .
9: for l = 1 to L do

10: a =
⌈

A
2L−l

⌉
. // number of angles at the actual level

11: for s = 1 to S do
12: for all (i1, i2) ∈ {(i, j) : 1 ≤ i < j ≤ d} do
13: θ∗ = argminθ∈{ k

a
π
2 :k=0,...,a−1} J (R(θ)e([i1, i2], :)). // best rotation angle for the (i1, i2)

th coordinate pair
14: Apply the optimal rotation found (θ∗):
15: Ŵ([i1, i2], :) = R (θ∗)Ŵ([i1, i2], :),
16: Ê([i1, i2], :) = R (θ∗) Ê([i1, i2], :).
17: Output: Ŵ, Ê.

Algorithm 2 Jacobi optimization - 2; see estimate_ICA_Jacobi2.m.
1: Input:
2: whitened observation X = [x1, . . . ,xT ] ∈ Rd×T ,
3: ICA cost function on coordinate pairs J(z1, z2) = I(z1, z2) or J(z1, z2) = H(z1) +H(z2),
4: number of sweeps S(= d− 1 : default), number of angles A(= 150).
5: Notation:
6: R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. // rotation with angle θ

7: Initialization:
8: estimated demixing matrix Ŵ = I ∈ Rd×d, estimated source Ê = X ∈ Rd×T ,
9: minimum number of angles amin = A

1.3⌈S
2 ⌉

.

10: for s = 1 to S do
11: if s > S

2 then

12: a =
⌊
amin1.3

⌈s−S
2 ⌉
⌋
. // number of angles at the actual sweep

13: else
14: a = max (30, ⌊amin⌋). // number of angles at the actual sweep
15: for all (i1, i2) ∈ {(i, j) : 1 ≤ i < j ≤ d} do
16: θ∗ = argminθ∈{ k

a
π
2 :k=0,...,a−1} J (R(θ)e([i1, i2], :)). // best rotation angle for the (i1, i2)

th coordinate pair
17: Apply the optimal rotation found (θ∗):
18: Ŵ([i1, i2], :) = R (θ∗)Ŵ([i1, i2], :),
19: Ê([i1, i2], :) = R (θ∗) Ê([i1, i2], :).
20: Output: Ŵ, Ê.
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Subtask Estimator Method

ICA estimate_ICA.m ’fastICA’, ’EASI’, ’Jacobi1’, ’Jacobi2’
complex ICA estimate_complex_ICA.m ’fastICA’, ’EASI’
AR fit (LPA) estimate_AR.m ’NIW’, ’subspace’, ’subspace-LL’, ’LL’, ’stepwiseLS’
ARX fit estimate_ARX.m ’NIW’

mAR fit estimate_mAR.m ’NIW’, ’subspace’, ’subspace-LL’, ’LL’
fAR fit estimate_fAR.m ’recursiveNW’

spectral clustering estimate_clustering_UD1_S.m ’NCut’, ’SP1’, ’SP2’, ’SP3’
gaussianization estimate_gaussianization.m ’rank’

Table 20: IPA subtasks and estimators.

co.kNNmethod Principle Environment

’knnFP1’ exact NNs, fast pairwise distance computation and C++ partial sort Matlab, Octave
’knnFP2’ exact NNs, fast pairwise distance computation Matlab, Octave
’knnsearch’ exact NNs, Statistics Toolbox ∈ Matlab Matlab
’ANN’ approximate NNs, ANN library Matlab, Octavea

Table 21: k-nearest neighbor (kNN) methods. The main kNN function is kNN_squared_distances.m.

aSee Table 1.

– approximate nearest neighbors: implemented by the ANN library.

The method applied for the estimation can be chosen by setting co.method to ’knnFP1’, ’knnFP2’, ’knnsearch’,
or ’ANN’. For examples, please see:

– HRenyi_GSF_initialization.m, HShannon_kNN_k_initialization.m, HRenyi_kNN_1tok_initialization.m,
HRenyi_kNN_k_initialization.m, HRenyi_kNN_S_initialization.m, HRenyi_weightedkNN_initialization.m,
HTsallis_kNN_k_initialization.m,

– DL2_kNN_k_initialization.m, DRenyi_kNN_k_initialization.m, DTsallis_kNN_k_initialization.m,
DKL_kNN_kiTi_initialization.m, DHellinger_kNN_k_initialization.m, DKL_kNN_k_initialization.m,
DBhattacharyya_kNN_k_initialization.m, DBregman_kNN_k_initialization.m,

– CCE_kNN_k_initialization.m.

The central function of kNN computations is kNN_squared_distances.m.

• 4 techniques for minimum spanning tree computation (Table 22):

– the two functions of the MatlabBGL library can be envoked by setting co.STmethod to ’MatlabBGL_Prim’ or
’MatlabBGL_Kruskal’.

– the purely Matlab/Octave implementations based on the pmtk3 toolbox can be called by setting co.STmethod

to ’pmtk3_Prim’ or ’pmtk3_Kruskal’.

For an example, please see H_Renyi_MST_initialization.m. The central function for MST computation is
compute_MST.m.

To extend the capabilities of ITE in k-nearest neighbor or minimum spanning tree computation (which is also immediately
inherited to entropy, mutual information, divergence, association measure and cross quantity estimation), it sufficient to
the add the new method to kNN_squared_distances.m or compute_MST.m.

4.3 Performance Measure, the Amari-index
Here, we introduce the Amari-index, which can be used to measure the efficiency of the estimators in the ISA problem
and its extensions.
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co.MSTmethod Method Environment

’MatlabBGL_Prim’ Prim algorithm (MatlabBGL) Matlab, Octavea

’MatlabBGL_Kruskal’ Kruskal algorithm (MatlabBGL) Matlab, Octave
’pmtk3_Prim’ Prim algorithm (pmtk3) Matlab, Octave
’pmtk3_Kruskal’ Kruskal algorithm (pmtk3) Matlab, Octave

Table 22: Minimum spanning tree (MST) methods. The main MST function is compute_MST.m.

aSee Table 1.

(a) (b) (c) (d)

Figure 2: ISA demonstration (demo_ISA.m). (a): hidden components ({em}Mm=1). (b): observed, mixed signal (x). (c):
estimated components ({êm}Mm=1). (d): Hinton-diagram: the product of the mixing matrix and the estimated demixing
matrix; approximately block-permutation matrix with 2× 2 blocks.

Identification of the ISA model is ambiguous. However, the ambiguities of the model are simple: hidden components
can be determined up to permutation of the subspaces and up to invertible linear transformations within the subspaces
[142]. Thus, in the ideal case, the product of the estimated ISA demixing matrix ŴISA and the ISA mixing matrix A,
i.e., matrix

G = ŴISAA (157)

is a block-permutation matrix (also called block-scaling matrix [141]). This property can also be measured for source
components with different dimensions by a simple extension [127] of the Amari-index [3], that we present below. Namely,
assume that we have a weight matrix V ∈ RM×M made of positive matrix elements, and a q ≥ 1 real number. Loosely
speaking, we shrink the di×dj blocks of matrix G according to the weights of matrix V and apply the traditional Amari-
index for the matrix we obtain. Formally, one can (i) assume without loss of generality that the component dimensions
and their estimations are ordered in increasing order (d1 ≤ . . . ≤ dM , d̂1 ≤ . . . ≤ d̂M ), (ii) decompose G into di×dj blocks
(G =

[
Gij

]
i,j=1,...,M

) and define gij as the ℓq norm24 of the elements of the matrix Gij ∈ Rdi×dj , weighted with Vij :

gij = Vij

 di∑
k=1

dj∑
l=1

|
(
Gij

)
k,l

|q
 1

q

. (158)

Then the Amari-index with parameters V can be adapted to the ISA task of possibly different component dimensions as
follows

rV,q(G) :=
1

2M(M − 1)

 M∑
i=1

(∑M
j=1 g

ij

maxj gij
− 1

)
+

M∑
j=1

(∑M
i=1 g

ij

maxi gij
− 1

) . (159)

One can see that 0 ≤ rV,q(G) ≤ 1 for any matrix G, and rV,q(G) = 0 if and only if G is block-permutation matrix with
di×dj sized blocks. rV,q(G) = 1 is in the worst case, i.e, when all the gij elements are equal. Let us note that this measure
(159) is invariant, e.g., for multiplication with a positive constant: rcV = rV (∀c > 0). Weight matrix V can be uniform
(Vij = 1), or one can use weighing according to the size of the subspaces: Vij = 1/(didj). The Amari-index [Eq. (159)]
is available in the ITE package, see Amari_index_ISA.m. The G global matrix can be visualized by its Hinton-diagram
(hinton_diagram.m), Fig. 2 provides an illustration. This illustration has been obtained by running demo_ISA.m.

The Amari-index can also be used to measure the efficiency of the estimators of the IPA problem family detailed in
Section 4.1.2. The demo files in the ITE toolbox (see Table 19) contain detailed examples for the usage of the Amari-index
in the extensions of ISA.

24Alternative norms could also be used.
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4.4 Dataset-, Model Generators
One can generate observations from the ISA model and its extensions (Section 4.1.2) by the functions listed in Table 23.
The sources/driving noises can be chosen from many different types in ITE (see sample_subspaces.m):

3D-geom: In the 3D-geom test [95] ems are random variables uniformly distributed on 3-dimensional geometric forms
(dm = 3, M ≤ 6), see Fig. 3(a). The dataset generator is sample_subspaces_3D_geom.m.

Aw, ABC, GreekABC: In the Aω database [134] the distribution of the hidden sources em are uniform on 2-dimensional
images (dm = 2) of the English (M1 = 26) and Greek alphabet (M2 = 24). The number of components can be M =
M1+M2 = 50. Special cases of the database are the ABC (M ≤ 26) [94] and the GreekABC (M ≤ 24) [134] subsets.
For illustration, see Fig. 3(d). The dataset generators are called sample_subspaces_Aw.m, sample_subspaces_ABC.m
and sample_subspaces_GreekABC.m, respectively.

mosaic: The mosaic test [131] has 2-dimensional source components (dm = 2) generated from mosaic images. Sources
em are generated by sampling 2-dimensional coordinates proportional to the corresponding pixel intensities. In
other words, 2-dimensional images are considered as density functions. For illustration, see Fig. 3(h). The dataset
generator is sample_subspaces_mosaic.m.

IFS: Here [133], components sm are realizations of IFS25 based 2-dimensional (d = 2) self-similar structures. For all m a
({hk}k=1,...,K ,p = (p1, . . . , pK),v1} triple is chosen, where

• hk : R2 → R2 are affine transformations: hk(z) = Ckz+ dk (Ck ∈ R2×2,dk ∈ R2),

• p is a distribution over the indices {1, . . . ,K} (
∑K

k=1 pk = 1, pk ≥ 0), and

• for the initial value we chose v1 :=
(
1
2 ,

1
2

)
.

In the IFS dataset, T samples are generated in the following way: (i) v1 is given (t = 1), (ii) an index k(t) ∈
{1, . . . ,K} is drawn according to the distribution p and (iii) the next sample is generated as vt+1 := hk(t)(vt).
The resulting series {v1, . . . ,vT } was taken as a hidden source component sm and this way 9 components (M = 9,
D = 18) were constructed (see Fig. 3(c)). The generator of the dataset is sample_subspaces_IFS.m.

ikeda: In the ikeda test [127], the hidden smt = [smt,1, s
m
t,2] ∈ R2 sources realize the ikeda map

smt+1,1 = 1 + λm[smt,1 cos(w
m
t )− smt,2 sin(w

m
t )], (160)

smt+1,2 = λm[smt,1 sin(w
m
t ) + smt,2 cos(w

m
t )], (161)

where λm is a parameter of the dynamical system and

wm
t = 0.4− 6

1 + (smt,1)
2 + (smt,2)

2
. (162)

There are 2 components (M = 2) with initial points s11 = [20; 20], s21 = [−100; 30] and parameters λ1 =
0.9994, λ2 = 0.998, see Fig. 3(f) for illustration. Observation can be generated from this dataset using
sample_subspaces_ikeda.m.

lorenz: In the lorenz dataset [131], the sources (sm) correspond to 3-dimensional (dm = 3) deterministic chaotic time
series, the so-called Lorenz attractor [68] with different initial points (x0, y0, z0) and parameters (a, b, c). The Lorenz
attractor is described by the following ordinary differential equations:

ẋt = a(yt − xt), (163)
ẏt = xt(b− zt)− yt, (164)
żt = xtyt − czt. (165)

The differential equations are computed by the explicit Runge-Kutta (4,5) method in ITE. The number of components
can be M = 3. The dataset generator is sample_subspaces_lorenz.m. For illustration, see Fig. 3(g).

25IFS stands for iterated function system.
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(a) (b)

(c) (d)

(e) (f) (g)

(h)

Figure 3: Illustration of the 3D-geom (a), multiD-spherical (multiD1-. . . -DM -spherical) (b), IFS (c), Aw (subset on the
left: ABC, right: GreekABC ) (d), multiD-geom (multiD1-. . . -DM -geom) (e), ikeda (f), lorenz (g), and mosaic (h) datasets.

all-k-independent: In the all-k-independent database [94, 128], the dm-dimensional hidden components v := em are
created as follows: coordinates vi (i = 1, . . . , k) are independent uniform random variables on the set {0,. . . ,k-1},
whereas vk+1 is set to mod(v1 + . . .+ vk, k). In this construction, every k-element subset of {v1, . . . , vk+1} is made
of independent variables and dm = k + 1. The database generator is sample_subspaces_all_k_independent.m.

multiD-geom (multiD1-. . . -DM -geom): In this dataset ems are random variables uniformly distributed on
dm-dimensional geometric forms. Geometrical forms were chosen as follows: (i) the surface of the unit ball, (ii)
the straight lines that connect the opposing corners of the unit cube, (iii) the broken line between dm + 1 points
0 → e1 → e1 + e2 → . . .→ e1 + . . .+ edm (where ei is the i canonical basis vector in Rdm , i.e., all of its coordinates
are zero except the ith, which is 1), and (iv) the skeleton of the unit square. Thus, the number of components M
can be equal to 4 (M ≤ 4), and the dimension of the components (dm) can be scaled. In the multiD-geom case
the dimensions of the subspaces are equal (d1 = . . . = dM ); in case of the multiD1-. . . -DM -geom dataset, the dm
subspace dimensions can be different. For illustration, see Fig. 3(e). The associated dataset generator is called
sample_subspaces_multiD_geom.m.

multiD-spherical (multiD1-. . . -DM -spherical): In this case hidden sources em are spherical random variables [30].
Since spherical variables assume the form v = ρu, where u is uniformly distributed on the dm-dimensional unit
sphere, and ρ is a non-negative scalar random variable independent of u, they can be given by means of ρ. 3 pieces of
stochatistic representations ρ were chosen: ρ was uniform on [0, 1], exponential with parameter µ = 1 and lognormal
with parameters µ = 0, σ = 1. For illustration, see Fig. 3(b). In this case, the number of component can be 3 (M ≤ 3)
The dimension of the source components (dm) is fixed (can be varied) in the multiD-spherical (multiD1-. . . -DM -
spherical) dataset. Observations can be obtained from these datasets by sample_subspaces_multiD_spherical.m.

The datasets and their generators are summarized in Table 24 and Table 25. The plot_subspaces.m function can be
used to plot the databases (samples/estimations).
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Model Generator

ISA generate_ISA.m

complex ISA generate_complex_ISA.m

AR-IPA generate_AR_IPA.m

ARX-IPA generate_ARX_IPA_parameters.m

(u)MA-IPA generate_MA_IPA.m

mAR-IPA generate_mAR_IPA.m

fAR-IPA generate_fAR_IPA.m.m

Table 23: IPA model generators. Note: in case of the ARX-IPA model, the observations are generated online in accordance
with the online D-optimal ARX identification method.

Dataset (data_type) Description Subspace dimensions # of components i.i.d.

’3D-geom’ uniformly distributed (U) on 3D forms dm = 3 M ≤ 6 Y
’Aw’ U on English and Greek letters dm = 2 M ≤ 50 Y
’ABC’ U on English letters dm = 2 M ≤ 26 Y
’GreekABC’ U on Greek letters dm = 2 M ≤ 24 Y
’mosaic’ distributed according to mosaic images dm = 2 M ≤ 4 Y
’IFS’ self-similar construction dm = 2 M ≤ 9 N
’ikeda’ Ikeda map dm = 2 M = 2 N
’lorenz’ Lorenz attractor dm = 3 M ≤ 3 N
’all-k-independent’ k-tuples in the subspaces are independent scalable (dm = k + 1) M ≥ 1 Y
’multid-geom’ U on d-dimensional geometrical forms scalable (d = dm ≥ 1) M ≤ 4 Y
’multid1-d2-...-dM-geom’ U on dm-dimensional geometrical forms scalable (dm ≥ 1) M ≤ 4 Y
’multid-spherical’ spherical subspaces scalable (d = dm ≥ 1) M ≤ 3 Y
’multid1-d2-...-dM-spherical’ spherical subspaces scalable (dm ≥ 1) M ≤ 3 Y

Table 24: Description of the datasets. Last column: Y – yes, N – no.

Dataset (data_type) Generator

’3D-geom’ sample_subspaces_3D_geom.m

’Aw’ sample_subspaces_Aw.m

’ABC’ sample_subspaces_ABC.m

’GreekABC’ sample_subspaces_GreekABC.m

’mosaic’ sample_subspaces_mosaic.m

’IFS’ sample_subspaces_IFS.m

’ikeda’ sample_subspaces_ikeda.m

’lorenz’ sample_subspaces_lorenz.m

’all-k-independent’ sample_subspaces_all_k_independent.m

’multid-geom’, ’multid1-d2-...-dM-geom’ sample_subspaces_multiD_geom.m

’multid-spherical’, ’multid1-d2-...-dM-spherical’ sample_subspaces_multiD_spherical.m

Table 25: Generators of the datasets. The high-level sampling function of the datasets is sample_subspaces.m.
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5 Directory Structure of the Package
In this section, we describe the directory structure of the ITE toolbox. Directory

• code: code of ITE,

– H_I_D_A_C_K : estimators of entropy, mutual information, divergence, association and cross measures,
kernels on distributions (see Section 3).

∗ base: contains the base estimators; initialization and estimation functions (see Section 3.1).
∗ meta: the folder of meta estimators; initialization and estimation functions (see Section 3.2).
∗ utilities: code shared by base and meta.

– IPA: application of the information theoretical estimators in ITE (see Section 4):

∗ data_generation: IPA generators corresponding to different datasets and models.
· datasets: sampling from and plotting of the sources (see Table 24, Table 25, Fig. 3).
· models: IPA model generators, see Table 23.

∗ demos: IPA demonstrations and estimators, see Table 19 and Table 20.
∗ optimization: IPA optimization methods (see Table 14, Table 15, Table 16, Table 17, and Table 18).

– shared : code shared by H_I_D_A_C_K and IPA.

∗ downloaded, embedded : downloaded and embedded packages (see Section 2).

• doc: contains a link to this manual.
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A Citation of the ITE Toolbox
The citing information of the ITE toolbox is provided below in BibTeX format:

@ARTICLE{szabo12separation,

AUTHOR = {Zolt{\’a}n Szab{\’o} and Barnab{\’a}s P{\’o}czos and Andr{\’a}s L{\H{o}}rincz},

TITLE = {Separation Theorem for Independent Subspace Analysis and its Consequences},

JOURNAL = {Pattern Recognition},

YEAR = {2012},

volume = {45},

issue = {4},

pages = {1782-1791},

}

@ARTICLE{szabo07undercomplete,

AUTHOR = {Zolt{\’a}n Szab{\’o} and Barnab{\’a}s P{\’o}czos and Andr{\’a}s L{\H{o}}rincz},

TITLE = {Undercomplete Blind Subspace Deconvolution},

JOURNAL = {Journal of Machine Learning Research},

YEAR = {2007},

volume = {8},

pages = {1063-1095},

}

B Abbreviations
The abbreviations used in the paper are listed in Table 26.

C Functions with Octave-Specific Adaptations
Functions with Octave-specific adaptations are summarized in Table 27.

D Further Definitions
Below, some further definitions are enlisted for the self-containedness of the documentation:

Definition 1 (concordance ordering) In two dimensions (d = 2) a C1 copula is said to be smaller than the C2

copula (C1 ≺ C2) [80], if

C1(u) ≤ C2(u),
(
∀u ∈ [0, 1]2

)
. (166)

This pointwise partial ordering on the set of copulas is called concordance ordering.
In the general (d ≥ 2) case, a C1 copula is said to be smaller than the C2 copula (C1 ≺ C2) [52], if

C1(u) ≤ C2(u), and C̄1(u) ≤ C̄2(u)
(
∀u ∈ [0, 1]d

)
. (167)

Note:

• ‘≺’ is called concordance ordering; it again defines a partial ordering.

• The rationale behind requiring C1 ≤ C2 and C̄1 ≤ C̄2 is that we want to capture ‘simultaneously large’ and
‘simultaneously small’ tendencies.

• The two definitions [ (166), (167)] coincide only in the two-dimensional (d = 2) case.

Definition 2 (measure of concordance [103, 79, 80]) A κ numeric measure of association on pairs of random
variables (y1, y2 whose joint copula is C) is called a measure of concordance, if it satisfies the following properties:
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Abbreviation Meaning

ANN approximate nearest neighbor
AR autoregressive
ARIMA integrated ARMA
ARMA autoregressive moving average
ARX AR with exogenous input
BFGS Broyden-Fletcher-Goldfarb-Shannon
BSD blind source deconvolution
BSSD blind subspace deconvolution
CDSS continuously differentiable sample spacing
CE cross-entropy
EASI equivariant adaptive separation via independence
fAR functional AR
GV generalized variance
HS Hilbert-Schmidt
HSIC Hilbert-Schmidt independence criterion
ICA/ISA/IPA independent component/subspace/process analysis
i.i.d. independent identically distributed
IFS iterated function system
IPM integral probability metrics
ITE information theoretical estimators
JFD joint f-decorrelation
KCCA kernel canonical correlation analysis
KDE kernel density estimation
KL Kullback-Leibler
KGV kernel generalized variance
kNN k-nearest neighbor
LPA linear prediction approximation
MA moving average
mAR AR with missing values
MMD maximum mean discrepancy
NIW normal-inverted Wishart
NN nearest neighbor
PCA principal component analysis
PNL post nonlinear
QMI quadratic mutual information
RBF radial basis function
RKHS reproducing kernel Hilbert space
RP random projection

Table 26: Abbrevations.
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Function Role

ITE_install.m installation of the ITE package
hinton_diagram.m Hinton-diagram
estimate_clustering_UD1_S.m spectral clustering
control.m D-optimal control
sample_subspaces_lorenz.m sampling from the lorenz dataset
clinep.m the core of the 3D trajectory plot
plot_subspaces_3D_trajectory.m 3D trajectory plot
IGV_similarity_matrix.m similarity matrix for the GV measure
calculateweight.m weight computation in the weighted kNN method
kNN_squared_distances.m kNN computation
initialize_Octave_ann_wrapper_if_needed.m ann Octave wrapper initialization
IGV_estimation.m generalized variance estimation
SpectralClustering.m spectral clustering

Table 27: Functions with Octave-specific adaptations, i.e, the functions calling working_environment_Matlab.m (di-
rectly).

A1. Domain: it is defined for every (y1, y2) pair of continuous random variables,

A2. Range: κ
(
y1, y2

)
∈ [−1, 1], [κ

(
y1, y1

)
= 1, and κ

(
y1,−y1

)
= −1],

A3. Symmetry: κ
(
y1, y2

)
= κ

(
y2, y1

)
,

A4. Independence: if y1 and y2 are independent, then κ
(
y1, y2

)
= κ(Π) = 0,

A5. Change of sign: κ
(
−y1, y2

)
= −κ

(
y1, y2

)
[= κ

(
y1,−y2

)
],

A6. Coherence: if C1 ≺ C2, then κ(C1) ≤ κ(C2),26

A7. Continuity: if
(
y1t , y

2
t

)
is a sequence of continuous random variables with copula Ct, and if Ct converges to C

pointwise27, then limt→∞ κ(Ct) = κ(C).

Note: properties in the parentheses (‘[]’) can be derived from the others.

Definition 3 (multivariate measure of concordance [25, 140]) A multivariate measure of concordance is a κ
function that assigns to every continuous random variable y a real number and satisfies the following properties:

B1. Normalization:

B1a : κ
(
y1, . . . , yd

)
= 1 if each yi is an increasing function of every other yj (or in terms of copulas κ(M) = 1),

and

B1b : κ
(
y1, . . . , yd

)
= 0 if yi-s are independent (or in terms of copulas κ(Π) = 1).

B2. Monotonicity: C1 ≺ C2 ⇒ κ(C1) ≤ κ(C2).

B3. Continuity: If the cdf of the random variable sequence yt (Ft) converges to F , the cdf of y (limt→∞ Ft = F ),
then

lim
t→∞

κ(yt) = κ(y). (168)

[In terms of copulas: limt→∞ Ct = C (uniformly) ⇒ limt→∞ κ(Ct) = κ(C).]

B4. Permutation invariance: if {i1, ..., id} is permutation of {1, . . . , d}, then

κ
(
yi1 , . . . , yid

)
= κ

(
y1, . . . , yd

)
. (169)

26Hence the name concordance ordering.
27In fact uniform convergence of the copulas also holds, see [78] and B3 in Def. 3.
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B5. Duality:

κ
(
−y1, . . . ,−yd

)
= κ

(
y1, . . . , yd

)
. (170)

B6. Reflection symmetry property: ∑
ϵ1,...,ϵd=±1

κ
(
ϵ1y

1, . . . , ϵdy
d
)
= 0, (171)

where the sum is over all the 2d possibilities.

B7. Transition property: there exists a sequence of rd numbers such that for all y

rd−1κ
(
y2, . . . , yd

)
= κ

(
y1, . . . , yd

)
+ κ

(
−y1, . . . , yd

)
. (172)

Definition 4 (measure of dependence) [80] defined a numeric measure κ between two random variables y1 and y2
whose copula is C as a measure of dependence if it satisfies the following properties:

C1. Domain: κ is defined for every
(
y1, y2

)
pair.

C2. Symmetry: κ
(
y1, y2

)
= κ

(
y2, y1

)
.

C3. Range: κ
(
y1, y2

)
∈ [0, 1].

C4. Independence: κ
(
y1, y2

)
= 0 if and only if y1 and y2 are independent.

C5. Strictly monotone functional dependence: κ
(
y1, y2

)
= 1 if and only each of y1 and y2 is a strictly monotone

function of the other.

C6. Invariance to strictly monotone functions: if f1 and f2 are strictly monotone functions, then

κ
(
y1, y2

)
= κ

(
f1(y

1), f2(y
2)
)
. (173)

C7. Continuity: if
(
y1t , y

2
t

)
is a sequence of random variables with copula Cn, and if limt→∞ Ct = C (pointwise),

then

limt→∞κ(Ct) = κ(C). (174)

Definition 5 (multivariate measure of dependence) [153] defined the notion of measure of dependence in case
of d dimension as follows. A κ real-valued function is called a measure of dependence if it satisfies the properties:

D1. Domain: κ is defined for any continuously distributed y,

D2. Permutation invariance: if {i1, ..., id} is permutation of {1, . . . , d}, then

κ
(
yi1 , . . . , yid

)
= κ

(
y1, . . . , yd

)
. (175)

D3. Normalization: 0 ≤ κ
(
y1, . . . , yd

)
≤ 1.

D4. Independence: κ
(
y1, . . . , yd

)
= 0 if and only if yi-s are independent.

D5. Strictly monotone functional dependence: κ
(
y1, . . . , yd

)
= 1 if and only if each yi is an increasing function

of each of the others.

D6. Invariance to strictly monotone functions: If f1, . . . , fd are all strictly increasing functions, then

κ
(
y1, . . . , yd

)
= κ

(
f1
(
y1
)
, . . . , fd

(
yd
))
. (176)

D7. Normal case: Let y be normally distributed and ρij = cov
(
yi, yj

)
. If rij-s are either all non-negative, or all

non-positive then κ is a strictly increasing function of each of the |rij |-s.

59



D8. Continuity: If the random variable sequence yt converges in distribution to y, then

lim
t→∞

κ(yt) = κ(y). (177)

Definition 6 (semimetric space of negative type) Let Z be a non-empty set and let ρ : Z × Z → [0,∞) be a
function for which the following properties hold for all z, z′ ∈ Z:

1. ρ (z, z′) = 0 if and only if z = z′,

2. ρ (z, z′) = ρ (z′, z).

Then (Z, ρ) is called a semimetric space.28 A semimetric space is said to be of negative type if

T∑
i=1

T∑
j=1

aiajρ(zi, zj) ≤ 0 (178)

for ∀T ≥ 2, ∀z1, . . . , zT ∈ Z and ∀a1, . . . , aT ∈ R with
∑T

i=1 ai = 0.
Example:

• Euclidean spaces are of negative type.

• Let Z ⊆ Rd and ρ (z, z′) = ∥z − z′∥q2. Then (Z, ρ) is a semimetric space of negative type for q ∈ (0, 2].

Definition 7 ((covariant) Hilbertian metric) A ρ : X × X → R metric is Hilbertian if there exist a Hilbert space
H and an f : X → H isometry [41]:

ρ2(x, y) = ⟨f(x)− f(y), f(x)− f(y)⟩H = ∥f(x)− f(y)∥2H (∀x, y ∈ X ). (179)

Additionally, if X is the set of distributions (M1
+(X )) and ρ is independent of the dominating measure, then d is

called covariant. Intuitively, this means its value is invariant to arbitrary smooth coordinate transformations of the
underlying probability space; for example, it is no matter whether we take RGB, HSV, . . . color space.

Definition 8 ((Csiszár) f-divergence) Let us given a convex function f , for which f(1) = 0. The f-divergence of
the probability densities f1 and f2 on Rd is defined [22, 74, 2] as

Df (f1, f2) =

∫
Rd

f

[
f1(u)

f2(u)

]
f2(u)du. (180)

Notes:

• The f-divergence is also called Csiszár-Morimoto divergence or Ali-Silvey distance.

• Df (f1, f2) ≥ 0 with equality if and only if f1 = f2.

E Estimation Formulas – Lookup Table
In this section the computations of entropy (Section E.1), mutual information (Section E.2), divergence (Section E.3),
association (Section E.4) and cross (Section E.5) measures, and kernels on distributions (Section E.6) are summarized
briefly. This section is considered to be a quick lookup table. For specific details, please see the referred papers (Section 3).

Notations. ‘∗’ denotes transposition. 1 (0) stands for the vector whose all elements are equal to 1 (0); 1u, 0u

explicitly indicate the dimension (u). The RBF (radial basis function; also called the Gaussian kernel) is defined as

k(u,v) = e−
∥u−v∥2

2σ2 . (181)

tr(·) stands for trace. Let N(m,Σ) denote the density function of the normal random variable with mean m and covariance
Σ.

Vd =
πd/2

Γ
(
d
2 + 1

) =
2πd/2

dΓ
(
d
2

) (182)

28In contrast to a metric space, the triangle equality is not required.
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is the volume of the d-dimensional unit ball. ψ is the digamma function. Let

Iα =

∫
Rd

[f(u)]
α
du, (183)

where f is a probability density on Rd. The scalar product of A ∈ RL1×L2 , B ∈ RL1×L2 is ⟨A,B⟩ =
∑

i

∑
j AijBij . The

Hadamard product of A ∈ RL1×L2 , B ∈ RL1×L2 is (A ◦B)ij = AijBij . Let I be the indicator function. Let y(t) denote
the order statistics of {yt}Tt=1, (yt ∈ R), i.e., y(1) ≤ . . . ≤ y(T ); for y(i) = y(1) (i < 1) and y(i) = y(T ) (i > T ).

E.1 Entropy
Notations. Let Y1:T = (y1, . . . ,yT ) (yt ∈ Rd) stand for our samples. Let ρk(t) denote the Euclidean distance of the kth
nearest neighbor of yt in the sample Y1:T \{yt}. Let V ⊆ Rd be a finite set, S, S1, S2 ⊆ {1, . . . , k} are index sets. NNS(V )
stands for the S-nearest neighbor graph on V . NNS(V2, V1) denotes the S-nearest (from V1 to V2) neighbor graph. E is
the expectation operator.

• Shannon_kNN_k [59, 115, 34]:

Ĥ(Y1:T ) = log(T − 1)− ψ(k) + log(Vd) +
d

T

T∑
t=1

log (ρk(t)) . (184)

• Renyi_kNN_k [155, 64]:

Cα,k =

[
Γ(k)

Γ(k + 1− α)

] 1
1−α

, (185)

Îα(Y1:T ) =
T − 1

T
V 1−α
d C1−α

α,k

T∑
t=1

[ρk(t)]
d(1−α)

(T − 1)α
, (186)

ĤR,α(Y1:T ) =
1

1− α
log
(
Îα(Y1:T )

)
. (187)

• Renyi_kNN_1tok [95]:

S = {1, . . . , k}, (188)
V = Y1:T , (189)

L(V ) =
∑

(u,v)∈edges(NNS(V ))

∥u− v∥d(1−α)
2 , (190)

c = lim
T→∞

EU1:T ,ut:i.i.d.,∼Uniform([0,1]d)

[
L(U1:T )

Tα

]
, (191)

ĤR,α(Y1:T ) =
1

1− α
log

[
L(V )

cTα

]
. (192)

• Renyi_S [93]:

S ⊆ {1, . . . , k}, k ∈ S, (193)
V = Y1:T , (194)

L(V ) =
∑

(u,v)∈edges(NNS(V ))

∥u− v∥d(1−α)
2 , (195)

c = lim
T→∞

EU1:T ,ut:i.i.d.,∼Uniform([0,1]d)

[
L(U1:T )

Tα

]
, (196)

ĤR,α(Y1:T ) =
1

1− α
log

[
L(V )

cTα

]
. (197)
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• Renyi_weightedkNN [118]:

k1 = k1(T ) =
⌈
0.1

√
T
⌉
, (198)

k2 = k2(T ) =
⌈
2
√
T
⌉
, (199)

N =

⌊
T

2

⌋
(200)

M = T −N, (201)
V1 = Y1:N , (202)
V2 = YN+1:T , (203)
S = {k1, . . . , k2}, (204)

ηk =
β(k, 1− α)

Γ(1− α)

1

N
M1−αV 1−α

d

∑
(u,v)∈edges(NNS(V2,V1))

∥u− v∥d(1−α)
2 , (205)

Îα,w =
∑
k∈S

wkηk, (206)

ĤR,α(Y1:T ) =
1

1− α
log(Îα,w), (207)

where the wk = wk(T, d, k1, k2) weights can be precomputed.

• Renyi_MST [155]:

V = Y1:T , (208)

L(V ) = min
G∈ spanning trees on V

∑
(u,v)∈edges(G)

∥u− v∥d(1−α)
2 , (209)

c = lim
T→∞

EU1:T ,ut:i.i.d.,∼Uniform([0,1]d)

[
L(U1:T )

Tα

]
, (210)

ĤR,α(Y1:T ) =
1

1− α
log

[
L(V )

cTα

]
. (211)

• Renyi_GSF [19]:

S = {1, . . . , k}, (212)
V = Y1:T , (213)

L(V ) = min
G∈ spanning forest on NNS(V )

∑
(u,v)∈edges(G)

∥u− v∥d(1−α)
2 , (214)

c = lim
T→∞

EU1:T ,ut:i.i.d.,∼Uniform([0,1]d)

[
L(U1:T )

Tα

]
, (215)

ĤR,α(Y1:T ) =
1

1− α
log

[
L(V )

cTα

]
. (216)

• Tsallis_kNN_k [64]:

Cα,k =

[
Γ(k)

Γ(k + 1− α)

] 1
1−α

, (217)

Îα(Y1:T ) =
T − 1

T
V 1−α
d C1−α

α,k

T∑
t=1

[ρk(t)]
d(1−α)

(T − 1)α
, (218)

ĤT,α(Y1:T ) =
1− Îα(Y1:T )

α− 1
. (219)
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• Shannon_Edgeworth [45]: Since the Shannon entropy is invariant to additive constants (H(y) = H(y+m)), one can
assume without loss of generality that the expectation of y is zero. The Edgeworth expansion based estimation is

Ĥ(Y1:T ) = H(ϕd)−
1

12

 d∑
i=1

(
κi,i,i

)2
+ 3

d∑
i,j=1;i ̸=j

(
κi,i,j

)2
+

1

6

d∑
i,j,k=1;i<j<k

(
κi,j,k

)2 , (220)

where

yt = yt −
1

T

T∑
k=1

yk, (t = 1, . . . , T ) (221)

Σ = ˆcov(Y1:T ) =
1

T − 1

T∑
t=1

yt(yt)
∗, (222)

H(ϕd) =
1

2
log det(Σ) +

d

2
log(2π) +

d

2
, (223)

σi = ˆstd(yi) =
1

T − 1

T∑
t=1

(
yit
)2
, (i = 1, . . . , d) (224)

κijk = Ê
[
yiyjyk

]
=

1

T

T∑
t=1

yity
j
t y

k
t , (i, j, k = 1, . . . , d) (225)

κi,j,k =
κijk

σiσjσk
. (226)

• Shannon_Voronoi [73]: Let the Voronoi regions associated to samples y1, . . . ,yT be denoted by V1, . . . , VT (Vt ⊆ Rd).
The estimation is as follows:

Ĥ(Y1:T ) =
1

T −K

∑
Vi:vol(Vi )̸=∞

log [T × vol(Vi)] , (227)

where ‘vol’ denotes volume, and K is the number of Voronoi regions with finite volume.

• Shannon_spacing_V [147]:

m = m(T ) =
⌊√

T
⌋
, (228)

Ĥ(Y1:T ) =
1

T

T∑
t=1

log

(
T

2m

[
y(i+m) − y(i−m)

])
. (229)

• Shannon_spacing_Vb [29]:

m = m(T ) =
⌊√

T
⌋
, (230)

Ĥ(Y1:T ) =
1

T −m

T−m∑
t=1

log

[
T + 1

m
(y(t+m) − y(t))

]
+

T∑
k=m

1

k
+ log

(
m

T + 1

)
. (231)

• Shannon_spacing_Vpconst [83]:

m = m(T ) =
⌊√

T
⌋
, (232)

Ĥ(Y1:T ) =
1

T

T∑
t=1

log

[
T

ctm
(y(t+m) − y(t−m))

]
, (233)
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where

ct =


1, 1 ≤ t ≤ m,

2, m+ 1 ≤ t ≤ T −m,

1 T −m+ 1 ≤ t ≤ T.

(234)

It can be shown [83] that (229) = (233)+2m log(2)
T .

• Shannon_spacing_Vplin [26]:

m = m(T ) =
⌊√

T
⌋
, (235)

Ĥ(Y1:T ) =
1

T

T∑
t=1

log

[
T

ctm
(y(t+m) − y(t−m))

]
, (236)

where

ct =


1 + t−1

m , 1 ≤ t ≤ m,

2, m+ 1 ≤ t ≤ T −m,

1 + T−t
m T −m+ 1 ≤ t ≤ T.

(237)

• Shannon_spacing_LL [18]:

m = m(T ) =
⌊√

T
⌋
, (238)

ȳ(i) =
1

2m+ 1

i+m∑
j=i−m

y(j), (239)

Ĥ(Y1:T ) = − 1

T

T∑
t=1

log

[∑i+m
j=i−m

(
y(j) − ȳ(i)

)
(j − i)

T
∑i+m

j=i−m

(
y(j) − ȳ(i)

)2
]
. (240)

• Renyi_spacing_V [150]:

m = m(T ) =
⌊√

T
⌋
, (241)

ĤR,α(Y1:T ) =
1

1− α
log

[
1

T

T∑
t=1

(
T

2m

[
y(i+m) − y(i−m)

])1−α
]
. (242)

• Renyi_spacing_E [150]:

m = m(T ) =
⌊√

T
⌋
, (243)

t1 =

0∑
i=2−m

y(i+m) − y(i+m−1)

2

i+m−1∑
j=1

2

y(j+m) − y(j−m)

α

, (244)

t2 =

T+1−m∑
i=1

y(i) + y(i+m) − y(i−1) − y(i+m−1)

2

i+m−1∑
j=i

2

y(j+m) − y(j−m)

α

, (245)

t3 =
T∑

i=T+2−m

y(i) − y(i−1)

2

 T∑
j=i

2

y(j+m) − y(j−m)

α

, (246)

ĤR,α(Y1:T ) =
1

1− α
log

[
t1 + t2 + t3

Tα

]
. (247)
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• qRenyi_CDSS [84]:

m = m(T ) =
⌊√

T
⌋
, (248)

ĤR,2(Y1:T ) = − log

 30

T (T −m)

T−m∑
i=1

i+m−1∑
j=i+1

(y(j) − y(i+m))
2(y(j) − y(i))

2

(y(i+m) − y(i))5

 . (249)

• Shannon_KDP [120]:

adaptive (k-d) partitioning ⇒ A = {A1, . . . , AK}, (250)
Tk = # {t : 1 ≤ t ≤ T,yt ∈ Ak} , (251)

Ĥ(Y1:T ) =

K∑
k=1

Tk
T

log

[
T

Tk
vol(Ak)

]
, (252)

where ‘vol’ denotes volume.

• Shannon_MaxEnt1, Shannon_MaxEnt2 [21, 46]: Since the Shannon entropy is invariant to additive constants (H(y) =
H(y + m)), one can assume without loss of generality that the expectation of y is zero. The maximum entropy
distribution based entropy estimators (assuming y with unit standard deviation) take the form

H(n)−
[
k1E2 [G1(y)] + k2 (E [G2(y)]− E [G2(n)])

2
]

(253)

with suitably chosen ki ∈ R contants and Gi functions (i = 1, 2). In Eq. (253),

H(n) =
1 + log(2π)

2
(254)

denotes the entropy of the standard normal variable (n), and in practise expectations are changed to their empirical
variants. Particularly,

– Shannon_MaxEnt1:

σ̂ = σ̂ (Y1:T ) =

√√√√ 1

T − 1

T∑
t=1

(yt)
2
, (255)

y′t = yt/σ̂, (t = 1, . . . , T ) (256)

G1(z) = ze
−z2

2 , (257)
G2(z) = |z|, (258)

k1 =
36

8
√
3− 9

, (259)

k2 =
1

2− 6
π

, (260)

Ĥ0 = Ĥ0 (Y
′
1:T ) = H(n)−

k1( 1

T

T∑
t=1

G1 (y
′
t)

)2

+ k2

(
1

T

T∑
t=1

G2 (y
′
t)−

√
2

π

)2
 , (261)

Ĥ (Y1:T ) = Ĥ0 + log(σ̂). (262)

65



– Shannon_MaxEnt2:

σ̂ = σ̂ (Y1:T ) =

√√√√ 1

T − 1

T∑
t=1

(yt)
2
, (263)

y′t = yt/σ̂, (t = 1, . . . , T ) (264)

G1(z) = ze
−z2

2 , (265)

G2(z) = e
−z2

2 , (266)

k1 =
36

8
√
3− 9

, (267)

k2 =
24

16
√
3− 27

, (268)

Ĥ0 = Ĥ0 (Y
′
1:T ) = H(n)−

k1( 1

T

T∑
t=1

G1 (y
′
t)

)2

+ k2

(
1

T

T∑
t=1

G2 (y
′
t)−

1√
2

)2
 , (269)

Ĥ (Y1:T ) = Ĥ0 + log(σ̂). (270)

E.2 Mutual Information
Notations. For an Y1:T = (y1, . . . ,yT ) sample set (yt ∈ Rd), let F̂m denote the empirical estimation of Fm, the marginal
distribution function of the mth coordinate:

F̂m(y) =
T∑

t=1

I{ym
t ≤y}, (271)

let the vector of grades be defined as
U =

[
F1

(
y1
)
; . . . ;Fd

(
yd
)]

∈ [0, 1]d, (272)

and let its empirical analog, the ranks be

Ûmt = F̂m(ymt ) =
1

T
(rank of ymt in ym1 , . . . , y

m
T ), (m = 1, . . . , d). (273)

Finally, the empirical copula is defined as

ĈT (u) :=
1

T

T∑
t=1

d∏
i=1

I{Ûit≤ui},
(
u = [u1; . . . ;ud] ∈ [0, 1]d

)
, (274)

specially

ĈT

(
i1
T
, . . . ,

iT
T

)
=

# of y-s in the sample with y ≤ y(i1,...,iT )

T
, (∀j, ij = 1, . . . , T ) (275)

where y(i1,...,iT ) = [y(i1); . . . ; y(iT )] with y(ij) order statistics in the jth coordinate.

• HSIC [37]:

Hij = δij −
1

T
, (276)

(Km)ij = km
(
ym
i ,y

m
j

)
, (277)

ÎHSIC (Y1:T ) =
1

T 2

M−1∑
u=1

M∑
v=u+1

tr(KuHKvH). (278)

Currently, km-s are RBF-s.
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• KCCA, KGV [5, 129]:

κ2 =
κT

2
, (279)

Km =
[
km(ym

i ,y
m
j )
]
i,j=1,...,T

, (280)

H = I− 1

T
11∗, (281)

K̃m = HKmH, (282)
(K̃1 + κ2IT )

2 K̃1K̃2 · · · K̃1K̃M

K̃2K̃1 (K̃2 + κ2IT )
2 · · · K̃2K̃M

...
...

...
K̃MK̃1 K̃MK̃2 · · · (K̃M + κ2IT )

2




c1
c2
...

cM

 = (283)

= λ


(K̃1 + κ2IT )

2 0 · · · 0

0 (K̃2 + κ2I)
2 · · · 0

...
...

...
0 0 · · · (K̃M + κ2I)

2




c1
c2
...

cM

 .

Let us write Eq. (283) shortly as Ac = λBc. Let the minimal eigenvalue of this generalized eigenvalue problem be
λKCCA, and λKGV = det(A)

det(B) .

ÎKCCA (Y1:T ) = −1

2
log(λKCCA), (284)

ÎKGV (Y1:T ) = −1

2
log(λKGV). (285)

At the moment, km-s are RBF-s.

• Hoeffding [43, 33]: The estimation can be computed as

h2(d) =

(
2

(d+ 1)(d+ 2)
− 1

2d
d!∏d

i=0

(
i+ 1

2

) + 1

3d

)−1

, (286)

ÎΦ (Y1:T ) =

√√√√√h2(d)

 1

T 2

T∑
j=1

T∑
k=1

d∏
i=1

[
1−max(Ûij , Ûik)

]
− 2

T

1

2d

T∑
j=1

d∏
i=1

(
1− Û2

ij

)
+

1

3d

. (287)

Under small sample adjustment, one can obtain a similar nice expression:

h2(d, T )
−1 =

1

T 2

T∑
j=1

T∑
k=1

[
1−max

(
j

T
,
k

T

)]d
− 2

T

T∑
j=1

[
T (T − 1)− j(j − 1)

2T 2

]d
+

1

3d

[
(T − 1)(2T − 1)

2T 2

]d
, (288)

ÎΦ (Y1:T ) =
√
h2(d, T )(t1 − t2 + t3), (289)

where

t1 =
1

T 2

T∑
j=1

T∑
k=1

d∏
i=1

[
1−max(Ûij , Ûik)

]
, t2 =

2

T

1

2d

T∑
j=1

d∏
i=1

(
1− Û2

ij −
1− Ûij

T

)
, t3 =

1

3d

[
(T − 1)(2T − 1)

2T 2

]d
.

(290)

• SW1, SWinf [108, 153, 58]:

ÎSW1 (Y1:T ) = σ̂ = 12
1

T 2 − 1

T∑
i1=1

T∑
i2=1

∣∣∣∣ĈT

(
i1
T
,
i2
T

)
− i1
T

i2
T

∣∣∣∣ . (291)

The ÎSWinf estimation is performed similarly.
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• QMI_CS_KDE_direct, QMI_CS_KDE_iChol, QMI_ED_KDE_iChol [111]:

IQMI-CS
(
y1,y2

)
= log

[
L1L2

(L3)2

]
, (292)

IQMI-ED
(
y1,y2

)
= L1 + L2 − 2L3, (293)

(Km)ij = km(ym
i ,y

m
j ), (294)

L̂direct
1 =

1

T 2
⟨K1K2⟩ , (295)

L̂direct
2 =

1

T 4
(1∗

TK11) (1
∗
TK21) , (296)

L̂direct
3 =

1

T 3
1∗
TK1K21T , (297)

Km ≈ GmG∗
m, (298)

L̂iChol
1 =

1

T 2
1∗
d1

(G∗
1G2 ◦G∗

1G2)1d2 , (299)

L̂iChol
2 =

1

T 4
∥1∗

TG1∥22 ∥1
∗
TG2∥22 , (300)

L̂iChol
3 =

1

T 3
(1∗

TG1) (G
∗
1G2) (G

∗
21T ) . (301)

– QMI_CS_KDE_direct:

km(u,v) =
1√
2πσ

e−
∥u−v∥2

2σ2 (∀m), (302)

ÎQMI-CS
(
Y1

1:T ,Y
2
1:T

)
= log

[
L̂direct
1 L̂direct

2

(L̂direct
3 )2

]
. (303)

(304)

– QMI_CS_KDE_iChol:

km(u,v) = e−
∥u−v∥2

2σ2 (∀m), (305)

ÎQMI-CS
(
Y1

1:T ,Y
2
1:T

)
= log

[
L̂iChol
1 L̂iChol

2

(L̂iChol
3 )2

]
. (306)

(307)

– QMI_ED_KDE_iChol:

km(u,v) =
1(√
2πσ

)d e− ∥u−v∥2

2σ2 (∀m), (308)

ÎQMI-ED
(
Y1

1:T ,Y
2
1:T

)
= L̂iChol

1 + L̂iChol
2 − 2L̂iChol

3 . (309)

• dCov, dCor [138, 135]: The estimation can be carried out on the basis of the pairwise distances of the sample points:

akl =
∥∥y1

k − y1
l

∥∥α
2
, āk· =

1

T

T∑
l=1

akl, ā·l =
1

T

T∑
k=1

akl, ā·· =
1

T 2

T∑
k,l=1

akl, Akl = akl − āk· − ā·l + ā··, (310)

bkl =
∥∥y2

k − y2
l

∥∥α
2
, b̄k· =

1

T

T∑
l=1

bkl, b̄·l =
1

T

T∑
k=1

bkl, b̄·· =
1

T 2

T∑
k,l=1

bkl, Bkl = bkl − b̄k· − b̄·l + b̄··, (311)
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ÎdCov
(
Y1

1:T ,Y
2
1:T

)
=

1

T

√√√√ T∑
k,l=1

AklBkl =
1

T

√
⟨A,B⟩, (312)

ÎdVar
(
Y1

1:T

)
=

1

T

√√√√ T∑
k,l=1

(Akl)2 =
1

T

√
⟨A,A⟩, (313)

ÎdVar
(
Y2

1:T

)
=

1

T

√√√√ T∑
k,l=1

(Bkl)2 =
1

T

√
⟨B,B⟩, (314)

ÎdCor
(
Y1

1:T ,Y
2
1:T

)
=


IdCov(Y1

1:T ,Y2
1:T )√

IdVar(Y1
1:T ,Y1

1:T )IdVar(Y2
1:T ,Y2

1:T )
, if ÎdVar

(
Y1

1:T ,Y
1
1:T

)
IdVar

(
Y2

1:T ,Y
2
1:T

)
> 0,

0, otherwise.
(315)

E.3 Divergence
Notations. We have T1 and T2 i.i.d. samples from the two distributions (f1, f2) to be compared: Y1

1:T1
=
(
y1
1, . . . ,y

1
T1

)
,

Y2
1:T2

=
(
y2
1, . . . ,y

2
T2

)
(yi

t ∈ Rd). Let ρk(t) denote the Euclidean distance of the kth nearest neighbor of y1
t in the sample

Y1
1:T1

\{y1
t }, and similarly let νk(t) stand for the Euclidean distance of the kth nearest neighbor of y1

t in the sample
Y2

1:T2
\{y1

t }. Let us recall the definitions [Eq. (61), (63)]:

Dtemp1(α) =

∫
Rd

[f1(u)]
α
[f2(u)]

1−α
du, (316)

Dtemp2(a, b) =

∫
Rd

[f1(u)]
a
[f2(u)]

b
f1(y)du. (317)

The definition of Dtemp3 is as follows:

Dtemp3(α) =

∫
Rd

f1(u)f
α−1
2 (u)du. (318)

• L2_kNN_k [97, 96, 98]:

D̂L
(
Y1

1:T1
,Y2

1:T2

)
=

√√√√ 1

T1Vd

T1∑
t=1

[
k − 1

(T1 − 1)ρdk(t)
− 2(k − 1)

T2νdk(t)
+

(T1 − 1)ρdk(t)(k − 2)(k − 1)

(T2)2ν2dk (t)k

]
. (319)

• Tsallis_kNN_k [97, 96]:

Bk,α =
Γ(k)2

Γ(k − α+ 1)Γ(k + α− 1)
, (320)

D̂temp1
(
α;Y1

1:T1
,Y2

1:T2

)
= Bk,α

(T1 − 1)1−α

(T2)1−α

1

T1

T1∑
t=1

[
ρk(t)

νk(t)

]d(1−α)

, (321)

D̂T,α

(
Y1

1:T1
,Y2

1:T2

)
=

1

α− 1

[
D̂temp1

(
α;Y1

1:T1
,Y2

1:T2

)
− 1
]
. (322)

• Renyi_kNN_k [97, 96, 98]:

Bk,α =
Γ(k)2

Γ(k − α+ 1)Γ(k + α− 1)
, (323)

D̂temp1
(
α;Y1

1:T1
,Y2

1:T2

)
= Bk,α

(T1 − 1)1−α

(T2)1−α

1

T1

T1∑
t=1

[
ρk(t)

νk(t)

]d(1−α)

, (324)

D̂R,α

(
Y1

1:T1
,Y2

1:T2

)
=

1

α− 1
log
[
D̂temp1

(
α;Y1

1:T1
,Y2

1:T2

)]
. (325)
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• MMD_Ustat [36]:

k(u,v) = e−
∥u−v∥2

2σ2 , (326)

t1 =
1

(T1)2

T1∑
i,j=1

k
(
y1
i ,y

1
j

)
, (327)

t2 =
1

(T2)2

T2∑
i,j=1

k
(
y2
i ,y

2
j

)
, (328)

t3 =
2

T1T2

T1∑
i=1

T2∑
j=1

k
(
y1
i ,y

2
j

)
, (329)

D̂MMD
(
Y1

1:T1
,Y2

1:T2

)
=

√
t1 + t2 − t3. (330)

• MMD_Vstat [36]:

k(u,v) = e−
∥u−v∥2

2σ2 , (331)

t1 =
1

T1(T1 − 1)

T1∑
i=1

T1∑
j=1;j ̸=i

k
(
y1
i ,y

1
j

)
, (332)

t2 =
1

T2(T2 − 1)

T2∑
i=1

T2∑
j=1;j ̸=i

k
(
y2
i ,y

2
j

)
, (333)

t3 =
2

T1T2

T1∑
i=1

T2∑
j=1

k
(
y1
i ,y

2
j

)
, (334)

D̂MMD
(
Y1

1:T1
,Y2

1:T2

)
=

√
t1 + t2 − t3. (335)

• MMD_online [36]:

T ′ =

⌊
T1
2

⌋(
=

⌊
T2
2

⌋)
, (336)

h((x,y), (u,v)) = k(x,u) + k(y,v)− k(x,v)− k(y,u), (337)

D̂MMD
(
Y1

1:T ,Y
2
1:T

)
=

1

T ′

T ′∑
t=1

h
((
y1
2t−1,y

2
2t−1

)
,
(
y1
2t,y

2
2t

))
. (338)

Currently, k is RBF.

• Hellinger_kNN_k [92]:

Bk,a,b = V
−(a+b)
d

Γ(k)2

Γ(k − a)Γ(k − b)
, (339)

D̂temp2
(
a, b;Y1

1:T1
,Y2

1:T2

)
= (T1 − 1)−a(T2)

−bBk,a,b
1

T1

T1∑
t=1

[ρk(t)]
−da[νk(t)]

−db, (340)

D̂H
(
Y1

1:T1
,Y2

1:T2

)
=

√
1− D̂temp2

(
−1

2
,
1

2
;Y1

1:T1
,Y2

1:T2

)
. (341)
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• Bhattacharyya_kNN_k [8, 92]:

Bk,a,b = V
−(a+b)
d

Γ(k)2

Γ(k − a)Γ(k − b)
, (342)

D̂temp2
(
a, b;Y1

1:T1
,Y2

1:T2

)
= (T1 − 1)−a(T2)

−bBk,a,b
1

T1

T1∑
t=1

[ρk(t)]
−da[νk(t)]

−db, (343)

D̂B
(
Y1

1:T1
,Y2

1:T2

)
= − log

[
D̂temp2

(
−1

2
,
1

2
;Y1

1:T1
,Y2

1:T2

)]
. (344)

• KL_kNN_k [64, 87, 151]:

D̂
(
Y1

1:T1
,Y2

1:T2

)
=

d

T1

T1∑
t=1

log

[
νk(t)

ρk(t)

]
+ log

(
T2

T1 − 1

)
. (345)

• KL_kNN_kiTi [151]:

k1 = k1(T1) =
⌊√

T1

⌋
, (346)

k2 = k2(T2) =
⌊√

T2

⌋
, (347)

D̂
(
Y1

1:T1
,Y2

1:T2

)
=

1

T1

T1∑
t=1

log

[
k1
k2

T2
T1 − 1

νdk2
(t)

ρdk1
(t)

]
=

d

T1

T1∑
t=1

log

[
νk2(t)

ρk1
(t)

]
+ log

(
k1
k2

T2
T1 − 1

)
. (348)

• CS_KDE_iChol, ED_KDE_iChol [111];

Z1:2T =
[
Y1

1:T ,Y
2
1:T

]
, (349)

k(u,v) =
1(√
2πσ

)d e−∥u−v∥22
2σ2 , (350)

(K)ij = k(zi, zj), (351)

K =

[
K11 K12

K21 K22

]
∈ R(2T )×(2T ), (352)

K ≈ GG∗, (353)

DCS(f1, f2) = log

[
L1L2

(L3)2

]
, (354)

DED(f1, f2) = L1 + L2 − 2L3, (355)
e1 = [1T ;0T ], (356)
e2 = [0T ;1T ], (357)

L̂1 =
1

T 2
(e∗1G)(G∗e1), (358)

L̂2 =
1

T 2
(e∗2G)(G∗e2), (359)

L̂3 =
1

T 2
(e∗1G)(G∗e2), (360)

D̂CS
(
Y1

1:T ,Y
2
1:T

)
= log

[
L̂1L̂2

(L̂3)2

]
, (361)

D̂ED
(
Y1

1:T ,Y
2
1:T

)
= L̂1 + L̂2 − 2L̂3. (362)

• EnergyDist [136, 137]:

D̂EnDist(f1, f2) =
2

T1T2

T1∑
t1=1

T2∑
t2=1

ρ
(
y1
t1 ,y

2
t2

)
− 1

(T1)2

T1∑
t1=1

T1∑
t2=1

ρ
(
y1
t1 ,y

1
t2

)
− 1

(T2)2

T2∑
t1=1

T2∑
t2=1

ρ
(
y2
t1 ,y

2
t2

)
. (363)
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• Bregman_kNN_k [11, 23, 64]:

D̂temp3
(
α;Y1

1:T1
,Y2

1:T2

)
=

1

T1

T1∑
t=1

[
T2Cα,kVdν

d
k(t)

]1−α
=
T 1−α
2 C1−α

α,k V 1−α
d

T1

T1∑
t=1

ν
d(1−α)
k (t), (364)

D̂NB,α

(
Y1

1:T1
,Y2

1:T2

)
= Îα

(
Y2

1:T2

)
+

1

α− 1
Îα
(
Y1

1:T1

)
− α

α− 1
D̂temp3

(
α;Y1

1:T1
,Y2

1:T2

)
. (365)

where the Iα and the Dtemp3 quantities are defined in Eq. (183) and Eq. (318).

• symBregman_kNN_k [11, 23, 64], via Eq. (59):

D̂SB,α

(
Y1

1:T1
,Y2

1:T2

)
=

1

α− 1

[
Îα
(
Y1

1:T1

)
+ Îα

(
Y2

1:T2

)
− D̂temp3

(
α;Y1

1:T1
,Y2

1:T2

)
− D̂temp3

(
α;Y2

1:T2
,Y1

1:T1

)]
,

(366)

where the Iα and the Dtemp3 quantities are defined in Eq. (183) and Eq. (318).

E.4 Association Measures
Notations. We are given T samples from the random variable y ∈ Rd (Y1:T = (y1, . . . ,yT )) and our goal is to estimate
the association of its dm-dimensional components (y =

[
y1; . . . ;yM

]
, ym ∈ Rdm).

• Spearman1, Spearman2, Spearman3 [117, 153, 78, 105, 52, 80, 79, 106]: One can arrive at explicit formulas by
substituting the empirical copula of y (ĈT , see Eq. (275)) to the definitions of Âρi -s (i = 1, 2, 3; see Eqs. (69), (71),
(72)). The resulting nonparametric estimators are

Âρ1(Y1:T ) = Âρ1(ĈT ) = hρ(d)

[
2d
∫
[0,1]d

ĈT (u)du− 1

]
= hρ(d)

2d
T

T∑
j=1

d∏
i=1

(1− Ûij)− 1

 , (367)

Âρ2(Y1:T ) = Âρ2(ĈT ) = hρ(d)

[
2d
∫
[0,1]d

Π(u)dĈT (u)− 1

]
= hρ(d)

2d
T

T∑
j=1

d∏
i=1

Ûij − 1

 , (368)

Âρ3(Y1:T ) = Âρ3(ĈT ) =
Âρ1(Y1:T ) + Âρ2(Y1:T )

2
, (369)

where hρ(d) and Ûij are defined in Eq. (70) and Eq. (273), respectively.

• Spearman4 [57, 105]:

Âρ4(Y1:T ) = Âρ4(ĈT ) =
12

T

(
d

2

)−1 d∑
k,l=1;k<l

T∑
j=1

(1− Ûkj)(1− Ûlj)− 3, (370)

where Ûkj and Ûlj are defined in Eq. (273).

• CorrEntr_KDE_direct [100]:

k(u, v) = e−
(u−v)2

2σ2 , (371)

Y1:T =
[
y1
1:T ;y

2
1:T

]
, (yi

1:T ∈ R1×T ) (372)

ÂCorrEntr (Y1:T ) =
1

T

T∑
t=1

k
(
y1t , y

2
t

)
. (373)

72



• CCorrEntr_KDE_iChol [100, 111]:

k(u, v) = e−
(u−v)2

2σ2 , (374)

Y1:T =
[
y1
1:T ;y

2
1:T

]
, (yi

1:T ∈ R1×T ) (375)

Z1:2T =
[
y1
1:T ,y

2
1:T

]
, (376)

(K)ij = k(zi, zj), (377)

K =

[
K11 K12

K21 K22

]
∈ R(2T )×(2T ), (378)

K ≈ GG∗, (379)
e1 = [1T ;0T ], (380)
e2 = [0T ;1T ], (381)

L =

T∑
t1=1

T∑
t2=1

k
(
y1t1 , y

2
t2

)
, (382)

L̂ =
1

T 2
(e∗1G)(G∗e2), (383)

ÂCCorrEntr (Y1:T ) =
1

T

T∑
t=1

k
(
y1t , y

2
t

)
− L̂

T 2
. (384)

• CCorrEntr_KDE_Lapl [100, 16]:

k(u, v) = e−
|u−v|

σ , (385)

Y1:T =
[
y1
1:T ;y

2
1:T

]
, (yi

1:T ∈ R1×T ) (386)

L =
T∑

t1=1

T∑
t2=1

k
(
y1t1 , y

2
t2

)
=

T∑
t1=1

T∑
t2=1

e−
|y1

t1
−y2

t2 |
σ (387)

=

T∑
t1=1

e− y1
t1
σ

∑
{t2:y2

t2
≤y1

t1
}

e
y2
t2
σ + e

y1
t1
σ

∑
{t2:y2

t2
>y1

t1
}

e−
y2
t2
σ

 = [16], (388)

ÂCCorrEntr (Y1:T ) =
1

T

T∑
t=1

k
(
y1t , y

2
t

)
− L

T 2
. (389)

• CorrEntrCoeff_KDE_direct [100]:

k(u, v) = e−
(u−v)2

2σ2 , (390)

Y1:T =
[
y1
1:T ;y

2
1:T

]
, (yi

1:T ∈ R1×T ) (391)

C =
1

T

T∑
t=1

k
(
y1t , y

2
t

)
, (392)

ÂCorrEntrCoeff (Y1:T ) =
C − 1∗

TK121T

T 2√(
1− 1∗

TK111T

T 2

)(
1− 1∗

TK221T

T 2

) . (393)
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• CorrEntrCoeff_KDE_iChol [100, 111]:

Y1:T =
[
y1
1:T ;y

2
1:T

]
, (yi

1:T ∈ R1×T ) (394)

Z1:2T =
[
y1
1:T ,y

2
1:T

]
, (395)

k(u, v) = e−
(u−v)2

2σ2 , (396)
(K)ij = k(zi, zj), (397)

K =

[
K11 K12

K21 K22

]
∈ R(2T )×(2T ), (398)

K ≈ GG∗, (399)

C =
1

T

T∑
t=1

k
(
y1t , y

2
t

)
, (400)

e1 = [1T ;0T ]/T, (401)
e2 = [0T ;1T ]/T, (402)

ÂCorrEntrCoeff (Y1:T ) =
C − (e∗2G)(G∗e1)√

[1− (e∗1G)(G∗e1)] [1− (e∗2G)(G∗e2)]
. (403)

• Blomqvist [145, 106]: The empirical estimation of the survival function C̄ is

ˆ̄CT (u) =
1

T

T∑
t=1

d∏
i=1

I{Ûit>ui}, (u = [u1; . . . ;ud] ∈ [0, 1]d). (404)

The estimation of Blomqvist’s β is computed as

1/2 =

[
1

2
; . . . ;

1

2

]
∈ Rd, (405)

hβ(d) =
2d−1

2d−1 − 1
, (406)

Aβ

(
y1, . . . , yd

)
= Aβ(C) = hβ(d)

[
ĈT (1/2) +

ˆ̄CT (1/2)− 21−d
]
. (407)

• Spearman_lt [104]:

Âρlt(Y1:T ) = Âρlt(ĈT ) =

1
T

∑T
j=1

∏d
i=1(p− Ûij)

+ −
(

p2

2

)d
pd+1

d+1 −
(

p2

2

)d , (408)

where Ûij is defined in Eq. (273) and z+ = max(z, 0).

• Spearman_L [104]:

k = k(T ) =
⌊√

T
⌋
, (409)

Â = Âρlt(Y1:T ) = Âρlt(ĈT ) with p =
k

T
in Eq. (408), (410)

ÂρL(Y1:T ) = ÂρL(ĈT ) = Â. (411)

• Spearman_ut [104]: For the estimation we need three quantities, that we provide below (they were not computed in
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[104]): ∫
[1−p,1]d

ĈT (u)du =
1

T

T∑
j=1

d∏
i=1

[
1−max(Ûij , 1− p)

]
=: c, (412)

∫
[1−p,1]d

Π(u)du =

[
p(2− p)

2

]d
=: c1(p, d), (413)∫

[1−p,1]d
M(u)du =

pd(d+ 1− pd)

d+ 1
=: c2(p, d), (414)

where Ûij is defined in Eq. (273). Having these expressions at hand, the estimation can be simply written as [see
Eq. (85)]:

Âρut (Y1:T ) = Âρut(ĈT ) =
c− c1(p, d)

c2(p, d)− c1(p, d)
. (415)

• Spearman_U [104]:

k = k(T ) =
⌊√

T
⌋
, (416)

Â = Âρut(Y1:T ) = Âρut(ĈT ) with p =
k

T
in Eq. (415), (417)

ÂρU(Y1:T ) = ÂρU(ĈT ) = Â. (418)

E.5 Cross Quantities
Notations. We have T1 and T2 i.i.d. samples from the two distributions (f1, f2) to be compared: Y1

1:T1
=
(
y1
1, . . . ,y

1
T1

)
,

Y2
1:T2

=
(
y2
1, . . . ,y

2
T2

)
(yi

t ∈ Rd). Let νk(t) denote the Euclidean distance of the kth nearest neighbor of y1
t in the sample

Y2
1:T2

\{y1
t }.

• CE_kNN_k [64]:

ĈCE
(
Y1

1:T1
,Y2

1:T2

)
= log(Vd) + log(T2)− ψ(k) +

d

T1

T1∑
t=1

log [νk(t)] . (419)

E.6 Kernels on Distributions
Notations. We have T1 and T2 i.i.d. samples from the two distributions (f1, f2) whose similarity (kernel value) is to
be estimated: Y1

1:T1
=
(
y1
1, . . . ,y

1
T1

)
, Y2

1:T2
=
(
y2
1, . . . ,y

2
T2

)
(yi

t ∈ Rd). Let ρk(t) denote the Euclidean distance of the
kth nearest neighbor of y1

t in the sample Y1
1:T1

\{y1
t }, and similarly let νk(t) stand for the Euclidean distance of the kth

nearest neighbor of y1
t in the sample Y2

1:T2
\{y1

t }.

• ’expected’ [76]:

K̂exp
(
Y1

1:T1
,Y2

1:T2

)
=

1

T1T2

T1∑
i=1

T2∑
j=1

k
(
y1
i ,y

2
j

)
. (420)

• ’Bhattacharyya_kNN_k’ [8, 50, 92]:

Bk,a,b = V
−(a+b)
d

Γ(k)2

Γ(k − a)Γ(k − b)
, (421)

D̂temp2
(
a, b;Y1

1:T1
,Y2

1:T2

)
= (T1 − 1)−a(T2)

−bBk,a,b
1

T1

T1∑
t=1

[ρk(t)]
−da[νk(t)]

−db, (422)

K̂B
(
Y1

1:T1
,Y2

1:T2

)
= D̂temp2

(
−1

2
,
1

2
;Y1

1:T1
,Y2

1:T2

)
. (423)
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• ’PP_kNN_k’ [50, 92]:

Bk,a,b = V
−(a+b)
d

Γ(k)2

Γ(k − a)Γ(k − b)
, (424)

D̂temp2
(
a, b;Y1

1:T1
,Y2

1:T2

)
= (T1 − 1)−a(T2)

−bBk,a,b
1

T1

T1∑
t=1

[ρk(t)]
−da[νk(t)]

−db, (425)

K̂PP
(
Y1

1:T1
,Y2

1:T2

)
= D̂temp2

(
ρ− 1, ρ;Y1

1:T1
,Y2

1:T2

)
. (426)

References
[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of

Computer and System Sciences, 66:671–687, 2003.

[2] S. M. Ali and S. D. Silvey. A general class of coefficients of divergence of one distribution from another. Journal of
the Royal Statistical Society, Series B, 28:131–142, 1966.

[3] Shun-ichi Amari, Andrzej Cichocki, and Howard H. Yang. A new learning algorithm for blind signal separation.
Advances in Neural Information Processing Systems (NIPS), pages 757–763, 1996.

[4] Rosa I. Arriga and Santosh Vempala. An algorithmic theory of learning: Robust concepts and random projections.
Machine Learning, 63:161–182, 2006.

[5] Francis R. Bach and Michael I. Jordan. Kernel independent component analysis. Journal of Machine Learning
Research, 3:1–48, 2002.

[6] Michéle. Basseville. Divergence measures for statistical data processing - an annotated bibliography. Signal Process-
ing, 2012. To appear. hal.inria.fr/docs/00/54/23/37/PDF/PI-1961.pdf.

[7] J. Beirlant, E.J. Dudewicz, L. Győrfi, and E.C. van der Meulen. Nonparametric entropy estimation: An overview.
International Journal of Mathematical and Statistical Sciences, 6:17–39, 1997.

[8] Anil K. Bhattacharyya. On a measure of divergence between two statistical populations defined by their probability
distributions. Bulletin of the Calcutta Mathematical Society, 35:99–109, 1943.

[9] Ella Bingham and Aapo Hyvärinen. A fast fixed-point algorithm for independent component analysis of complex-
valued signals. International Journal of Neural Systems, 10(1):1–8, 2000.

[10] Nils Blomqvist. On a measure of dependence between two random variables. The Annals of Mathematical Statistics,
21:593–600, 1950.

[11] Lev M. Bregman. The relaxation method of finding the common points of convex sets and its application to
the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics,
7:200–217, 1967.

[12] J. Burbea and C.R. Rao. On the convexity of some divergence measures based on entropy functions. IEEE Trans-
actions on Information Theory, 28:489–495, 1982.

[13] Jean-François Cardoso. Multidimensional independent component analysis. In International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), pages 1941–1944, 1998.

[14] Jean-François Cardoso and Beate Hvam Laheld. Equivariant adaptive source separation. IEEE Transactions on
Signal Processing, 44:3017–3030, 1996.

[15] Jean-François Cardoso and Antoine Souloumiac. Blind beamforming for non-gaussian signals. IEE Proceedings F,
Radar and Signal Processing, 140(6):362–370, 1993.

[16] Aiyou Chen. Fast kernel density independent component analysis. In Independent Component Analysis and Blind
Signal Separation (ICA), pages 24–31, 2006.

76



[17] Pierre Comon. Independent component analysis, a new concept? Signal Processing, 36:287–314, 1994.

[18] Juan C. Correa. A new estimator of entropy. Communications in Statistics - Theory and Methods, 24:2439–2449,
1995.

[19] Jose A. Costa and Alfred O. Hero. Geodesic entropic graphs for dimension and entropy estimation in manifold
learning. IEEE Transactions on Signal Processing, 52:2210–2221, 2004.

[20] Timothee Cour, Stella Yu, and Jianbo Shi. Normalized cut segmentation code. Copyright 2004 University of
Pennsylvania, Computer and Information Science Department.

[21] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley and Sons, New York, USA,
1991.

[22] Imre Csiszár. Eine informationstheoretische ungleichung und ihre anwendung auf den beweis der ergodizitat von
markoffschen ketten. Publications of the Mathematical Institute of Hungarian Academy of Sciences, 8:85–108, 1963.

[23] Imre Csiszár. Generalized projections for non-negative functions. Acta Mathematica Hungarica, 68:161–185, 1995.

[24] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. Fetal electrocardiogram extraction by source subspace
separation. In IEEE SP/Athos Workshop on Higher-Order Statistics, pages 134–138, 1995.

[25] Ali Dolati and Manuel Úbeda-Flores. On measures of multivariate concordance. Journal of Probability and Statistical
Science, 4:147–164, 2006.

[26] Nader Ebrahimi, Kurt Pflughoeft, and Ehsan S. Soofi. Two measures of sample entropy. Statistics and Probability
Letters, 20:225–234, 1994.

[27] Dominik M. Endres and Johannes E. Schindelin. A new metric for probability distributions. IEEE Transactions on
Information Theory, 49:1858–1860, 2003.

[28] Jan Eriksson. Complex random vectors and ICA models: Identifiability, uniqueness and separability. IEEE Trans-
actions on Information Theory, 52(3), 2006.

[29] Bert Van Es. Estimating functionals related to a density by a class of statistics based on spacings. Scandinavian
Journal of Statistics, 19:61–72, 1992.

[30] Kai-Tai Fang, Samuel Kotz, and Kai Wang Ng. Symmetric multivariate and related distributions. Chapman and
Hall, 1990.

[31] Peter Frankl and Hiroshi Maehara. The Johnson-Lindenstrauss Lemma and the sphericity of some graphs. Journal
of Combinatorial Theory Series A, 44(3):355 – 362, 1987.

[32] Wayne A. Fuller. Introduction to Statistical Time Series. Wiley-Interscience, 1995.

[33] Sandra Gaißer, Martin Ruppert, and Friedrich Schmid. A multivariate version of Hoeffding’s phi-square. Journal of
Multivariate Analysis, 101:2571–2586, 2010.

[34] M. N. Goria, Nikolai N. Leonenko, V. V. Mergel, and P. L. Novi Inverardi. A new class of random vector entropy
estimators and its applications in testing statistical hypotheses. Journal of Nonparametric Statistics, 17:277–297,
2005.

[35] Arthur Gretton, Karsten M. Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alexander J. Smola. A kernel
method for the two sample problem. In Advances in Neural Information Processing Systems (NIPS), pages 513–520,
2007.

[36] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel
two-sample test. Journal of Machine Learning Research, 13:723–773, 2012.

[37] Arthur Gretton, Olivier Bousquet, Alexander Smola, and Bernhard Schölkopf. Measuring statistical dependence
with Hilbert-Schmidt norms. In International Conference on Algorithmic Learnng Theory (ALT), pages 63–78,
2005.

77



[38] A.B. Hamza and H. Krim. Jensen-Rényi divergence measure: theoretical and computational perspectives. In IEEE
International Symposium on Information Theory (ISIT), page 257, 2003.

[39] Godfrey H. Hardy and Srinivasa I. Ramanujan. Asymptotic formulae in combinatory analysis. Proceedings of the
London Mathematicl Society, 17(1):75–115, 1918.

[40] Jan Havrda and Frantĭsek Charvát. Quantification method of classification processes. concept of structural α-entropy.
Kybernetika, 3:30–35, 1967.

[41] Matthias Hein and Olivier Bousquet. Hilbertian metrics and positive definite kernels on probability measures. In
International Conference on Artificial Intelligence and Statistics (AISTATS), pages 136–143, 2005.

[42] Nadine Hilgert and Bruno Portier. Strong uniform consistency and asymptotic normality of a kernel based error
density estimator in functional autoregressive models. Statistical Inference for Stochastic Processes, 15(2):105–125,
2012.

[43] W. Hoeffding. Massstabinvariante korrelationstheorie. Schriften des Mathematischen Seminars und des Instituts für
Angewandte Mathematik der Universität Berlin, 5:181–233, 1940.

[44] Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal of Educational
Psychology, 24:417–441, 1933.

[45] Marc Van Hulle. Edgeworth approximation of multivariate differential entropy. Neural Computation, 17:1903–1910,
2005.

[46] Aapo Hyvärinen. New approximations of differential entropy for independent component analysis and projection
pursuit. In Advances in Neural Information Processing Systems (NIPS), pages 273–279, 1997.

[47] Aapo Hyvärinen. Independent component analysis for time-dependent stochastic processes. In International Con-
ference on Artificial Neural Networks (ICANN), pages 541–546, 1998.

[48] Aapo Hyvärinen and Erkki Oja. A fast fixed-point algorithm for independent component analysis. Neural Compu-
tation, 9(7):1483–1492, 1997.

[49] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality.
In ACM Symposium on Theory of Computing, 1998, pages 604–613.

[50] Tony Jebara, Risi Kondor, and Andrew Howard. Probability product kernels. Journal of Machine Learning Research,
5:819–844, 2004.

[51] Miguel Jerez, Jose Casals, and Sonia Sotoca. Signal Extraction for Linear State-Space Models: Including a free
MATLAB Toolbox for Time Series Modeling and Decomposition. LAP LAMBERT Academic Publishing, 2011.

[52] Harry Joe. Multivariate concordance. Journal of Multivariate Analysis, 35:12–30, 1990.

[53] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz maps into a Hilbert space. Contemporary
Mathematics, 26:189–206, 1984.

[54] Christian Jutten and Jeanny Hérault. Blind separation of sources: An adaptive algorithm based on neuromimetic
architecture. Signal Processing, 24:1–10, 1991.

[55] Christian Jutten and Juha Karhunen. Advances in blind source separation (BSS) and independent component
analysis (ICA) for nonlinear systems. International Journal of Neural Systems, 14(5):267–292, 2004.

[56] K. Rao Kadiyala and Sune Karlsson. Numerical methods for estimation and inference in bayesian VAR-models.
Journal of Applied Econometrics, 12:99–132, 1997.

[57] Maurice G. Kendall. Rank correlation methods. London, Griffin, 1970.

[58] Sergey Kirshner and Barnabás Póczos. ICA and ISA using Schweizer-Wolff measure of dependence. In International
Conference on Machine Learning (ICML), pages 464–471, 2008.

78



[59] L. F. Kozachenko and Nikolai N. Leonenko. A statistical estimate for the entropy of a random vector. Problems of
Information Transmission, 23:9–16, 1987.

[60] Solomon Kullback and Richard Leibler. On information and sufficiency. Annals of Mathematical Statistics, 22(1):79–
86, 1951.

[61] Jan Kybic. High-dimensional mutual information estimation for image registration. In International Conference on
Image Processing (ICIP), pages 1779–1782, 2004.

[62] Russell H. Lambert. Multichannel Blind Deconvolution: FIR matrix algebra and separation of multipath mixtures.
PhD thesis, University of Southern California, 1996.

[63] Erik Learned-Miller and III. John W. Fisher. ICA using spacings estimates of entropy. Journal of Machine Learning
Research, 4:1271–1295, 2003.

[64] Nikolai Leonenko, Luc Pronzato, and Vippal Savani. A class of Rényi information estimators for multidimensional
densities. Annals of Statistics, 36(5):2153–2182, 2008.

[65] Ping Li, Trevor J. Hastie, and Kenneth W. Hastie. Very sparse random projections. In International Conference on
Knowledge Discovery and Data Mining (KDD), pages 287–296, 2006.

[66] Jianhua Lin. Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory,
37:145–151, 1991.

[67] Weifeng Liu, P.P. Pokharel, and José C. Príncipe. Correntropy: Properties and applications in non-Gaussian signal
processing. IEEE Transactions on Signal Processing, 55:5286 – 5298, 2007.

[68] Edward Norton Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20:130–141, 1963.

[69] Russell Lyons. istance covariance in metric spaces. Annals of Probability, 2012. (To appear. http://php.indiana.
edu/~rdlyons/pdf/dcov.pdf).

[70] André F. T. Martins, Pedro M. Q. Aguiar, and Mário A. T. Figueiredo. Tsallis kernels on measures. In Information
Theory Workshop (ITW), pages 298–302, 2008.

[71] André F. T. Martins, Noah A. Smith, Eric P. Xing, Pedro M. Q. Aguiar, and Mário A. T. Figueiredo. Nonextensive
information theoretical kernels on measures. Journal of Machine Learning Research, 10:935–975, 2009.
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