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1 Introdution

Sine the pioneering work of Shannon [73℄, entropy, mutual information, divergene measures and their extensions have

found a broad range of appliations in many areas of mahine learning. Entropies provide a natural notion to quantify

the unertainty of random variables, mutual information type indies measure the dependene among its arguments,

divergenes o�er e�ient tools to de�ne the `distane' of probability measures. Partiularly, in the lassial Shannon

ase, these three onepts form a gradually widening hain: entropy is equal to the self mutual information of a random

variable, mutual information is idential to the divergene of the joint distribution and the produt of the marginals [14℄.

Appliations of Shannon entropy, -mutual information, -divergene and their generalizations over, for example, (i) feature

seletion, (ii) lustering, (iii) independent omponent/subspae analysis, (iii) image registration, (iv) boosting, (v) optimal

experiment design, (vi) ausality detetion, (vii) hypothesis testing, (viii) Bayesian ative learning, (ix) struture learning

in graphial models, (x) region-of-interest traking, among many others. For an exellent review on the topi, the reader

is referred to [6, 100, 97, 5, 57℄.

Independent omponent analysis (ICA) [37, 9, 10℄ a entral problem of signal proessing and its generalizations an

be formulated as optimization problems of information theoretial objetives. One an think of ICA as a oktail party

problem: we have some speakers (soures) and some mirophones (sensors), whih measure the mixed signals emitted by

the soures. The task is to estimate the original soures from the mixed observations only. Traditional ICA algorithms

are one-dimensional in the sense that all soures are assumed to be independent real valued random variables. However,

many important appliations underpin the relevane of onsidering extensions of ICA, suh as the independent subspae

analysis (ISA) problem [8, 15℄. In ISA, the independent soures an be multidimensional: we have a oktail-party, where

more than one group of musiians are playing at the party. Suessful appliations of ISA inlude (i) the proessing of

EEG-fMRI, ECG data and natural images, (ii) gene expression analysis, (iii) learning of fae view-subspaes, (iv) motion

segmentation, (v) single-hannel soure separation, (vi) texture lassi�ation, (vii) ation reognition in movies.

One of the most relevant and fundamental hypotheses of the ICA researh is the ISA separation priniple [8℄: the ISA

task an be solved by ICA followed by lustering of the ICA elements. This priniple (i) forms the basis of the state-

of-the-art ISA algorithms, (ii) an be used to design algorithms that sale well and e�iently estimate the dimensions

of the hidden soures, (iii) has been reently proved [85℄ and (iv) an be extended to di�erent linear-, ontrolled-, post

nonlinear-, omplex valued-, partially observed systems, as well as to systems with nonparametri soure dynamis. For

a reent review on the topi, see [88℄.

Although there exist many exiting appliations of information theoretial measures, to the best of our knowledge,

available pakages in this domain fous on (i) disrete variables, or (ii) quite speialized appliations and information

theoretial estimation methods. Our goal is to �ll in this serious gap by oming up with a (i) highly modular, (ii) free

and open soure, (iii) multi-platform toolbox, the ITE (information theoretial estimators) pakage, whih

1. is apable of estimating many di�erent variants of entropy, mutual information and divergene measures:

• Shannon-, Rényi-, Tsallis entropy; generalized variane (GV), kernel anonial orrelation analysis (KCCA),

kernel generalized variane (KGV), Hilbert-Shmidt independene riterion (HSIC), Shannon-, L2-, Rényi-,

Tsallis mutual information, opula-based kernel dependeny, multivariate version of Hoe�ding's Φ, Shweizer-
Wol�'s σ and κ; omplex variants of entropy and mutual information; L2-, Rényi-, Tsallis-, Kullbak-Leibler

divergene; Hellinger-, Bhattaharyya distane; maximum mean disrepany (MMD), and J-distane based on

• nonparametri methods

1

: k-nearest neighbors, generalized k-nearest neighbors, weighted k-nearest neighbors,

minimum spanning trees, geodesi spanning forests, random projetion, ensemble methods, sample spaing,

kernel tehniques.

2. o�ers a simple and uni�ed framework to

(a) easily onstrut new estimators from existing ones or from srath, and

(b) transparently use the obtained estimators in information theoretial optimization problems.

3. with a prototype appliation in ISA and its extensions inluding

• 6 di�erent ISA objetives,

1

It is highly advantageous to apply nonparametri approahes to estimate information theoretial quantities. The bottlenek of the 'opposite'

plug-in type methods, whih estimate the underlying density and then plug it in into the appropriate integral formula, is that the unknown

densities are nuisane parameters. As a result, plug-in type estimators sale poorly as the dimension is inreasing.
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• 4 optimization methods: (i) handling known and unknown subspae dimensions as well, with (ii) further

objetive-spei� aelerations,

• 5 extended problem diretions: (i) di�erent linear-, (ii) ontrolled-, (iii) post nonlinear-, (iii) omplex valued-,

(iv) partially observed models, (v) as well as systems with nonparametri soure dynamis; whih an be used

in ombinations as well.

The tehnial details of the ITE pakage are as follows:

• Author: Zoltán Szabó.

� Homepage: http://nipg.inf.elte.hu/szzoli

� Email: szzoli�s.elte.hu

� A�liation: Eötvös Loránd University, Faulty of Informatis, Pázmány Péter sétány 1/C, Budapest, H-1117,

Hungary.

• Doumentation of the soure: the soure ode of ITE has been enrihed with numerous omments, examples,

and pointers where the interested user an �nd further mathematial details about the embodied tehniques.

• Liense (GNU GPLv3 or later): ITE is free software: you an redistribute it and/or modify it under the terms of

the GNU General Publi Liense as published by the Free Software Foundation, either version 3 of the Liense, or (at

your option) any later version. This software is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Publi Liense for more details. You should have reeived a opy of the GNU

General Publi Liense along with ITE. If not, see <http://www.gnu.org/lienses/>.

• Citing: If you use the ITE toolbox in your work, please ite the papers [85, 88℄ (.bib in Appendix D).

• Platforms: The ITE pakage has been extensively tested on Windows and Linux. However, sine it is made of

standard Matlab/Otave and C/C++ �les, it is expeted to work on alternative platforms as well.

• Environments: Matlab

2

, Otave

3

.

• Requirements: The ITE pakage is self-ontained, it only needs

� a Matlab or an Otave environment with standard toolboxes:

∗ Matlab: Image Proessing, Optimization, Statistis.

∗ Otave

4

: Image Proessing (image), Statistis (statistis), Input/Output (io, required by statistis), Ordi-

nary Di�erential Equations (odepkg), Bindings to the GNU Sienti� Library (gsl), ANN wrapper (ann).

� a C/C++ ompiler�if you would like to further speed up the omputations.

• Comments, feedbaks: are welome.

• Homepage of the ITE toolbox: https://bitbuket.org/szzoli/ite/

The remainder of this doument is organized as follows. Setion 2 is about the installation of the ITE pakage. Setion 3

fouses on the estimation of information theoretial quantities (entropy, mutual information, divergene measures) and

their realization in ITE. In Setion 4, we present an appliation of Setion 3 inluded in the ITE toolbox. The appliation

onsiders the extension of independent subspae analysis (ISA, independent omponent analysis with multidimensional

soures) to di�erent linear-, ontrolled-, post nonlinear-, omplex valued-, partially observed problems, as well as problems

dealing with nonparametri soure dynamis, i.e., the independent proess analysis (IPA) problem family. Setion 5

is about the organization of the diretories of the ITE toolbox. Abbreviations of the paper are listed in Appendix A

(Table 21). Funtions with Otave-spei� adaptations are summarized in Appendix B (Table 22). A brief summary

(lookup table) of the underlying entropy, mutual information and divergene omputations an be found in Appendix C.

Citing information of the ITE pakage is provided in Appendix D.

2

http://www.mathworks.om/produts/matlab/

3

http://www.gnu.org/software/otave/

4

See http://otave.soureforge.net/pakages.php.
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2 Installation

This setion is about (i) the installation of the ITE toolbox, and (ii) the external pakages, dediated solvers embedded

in the ITE pakage. The purpose of this inlusion is twofold:

• to further inrease the e�ieny of ertain subtasks to be solved (e.g., k-nearest neighbor searh, �nding minimum

spanning trees, some subtasks revived by the IPA separation priniples (see Setion 4.1)),

• to provide both purely Matlab/Otave implementations, and speialized (often faster) non-Matlab/-Otave solutions

that an be alled from Matlab/Otave.

The ore of the ITE toolbox has been written in Matlab, as far it was possible in an Otave ompatible way. The partiular-

ities of Otave has been taken into aount by adapting the ode to the atual environment (Matlab/Otave). The working

environment an be queried (e.g., in ase of extending the pakage it is also useful) by the working_environment_Matlab.m

funtion inluded in ITE. Adaptations has been arried out in the funtions listed in Appendix B (Table 22). The fun-

tionalities extended by the external pakages are also available in both environments (Table 1).

Here, a short desription of the embedded/downloaded pakages (diretory 'shared/embedded', 'shared/downloaded')

is given:

1. fastICA (diretory 'shared/embedded/FastICA'; version 2.5):

• URL: http://researh.is.tkk.fi/ia/fastia/

• Liense: GNU GPLv2 or later.

• Solver: ICA (independent omponent analysis).

• Installation: Add it with subfolders to your Matlab/Otave PATH.

• Environment: Matlab, Otave.

• Note: By ommenting out the g_FastICA_interrupt variable in fpia.m, the fastia.m funtion an be

used in Otave, too. The provided fastICA ode in the ITE toolbox ontains this modi�ation.

2. Complex fastICA (diretory 'shared/embedded/CFastICA')

• URL: http://www.s.helsinki.fi/u/ebingham/software.html, http://users.is.aalto.fi/ella/

publiations/fastia_publi.m

• Liense: GNU GPLv2 or later.

• Solver: omplex ICA.

• Installation: Add it with subfolders to your Matlab/Otave PATH.

• Environment: Matlab, Otave.

3. ANN (approximate nearest neighbor) Matlab wrapper (diretory 'shared/embedded/ann_wrapperM'; ver-

sion 'Mar2012'):

• URL: http://www.wisdom.weizmann.a.il/~bagon/matlab.html, http://www.wisdom.weizmann.a.il/

~bagon/matlab_ode/ann_wrapper_Mar2012.tar.gz

• Liense: GNU LGPLv3.

• Solver: approximate nearest neighbor omputation.

• Installation: Follow the instrutions in the ANN wrapper pakage (README.txt: INSTALLATION) till

'ann_lass_ompile'. Note: If you use a more reent C++ ompiler (e.g., g++ on Linux), you have to inlude

the following 2 lines into the original ode to be able to ompile the soure:

(a) '#inlude <stdlib>' to 'ANNx.h'

(b) '#inlude <string>' to 'kd_tree.h'

The provided ANN ode in the ITE pakage ontains these modi�ations.

• Environment: Matlab, Otave

5

.

• Note: fast nearest neighbor alternative of knnsearh ∈ Matlab: Statistis Toolbox.

4. MatlabBGL (diretory 'shared/embedded/MatlabBGL', version 4.0)

5

At the time of writing this paper, the Otave ANN wrapper (http://otave.soureforge.net/ann/index.html, version 1.0.2) supports

2.9.12 ≤ Otave < 3.4.0. Aording to our experienes, however the ann wrapper an also be used for higher versions of Otave provided that (i)

a new swig pakage (www.swig.org/) is used (>=2.0.5), (ii) a new 'SWIG=swig' line is inserted in sr/ann/bindings/Make�le (the ITE pakage

ontains the modi�ed make�le), and (iii) the row ontaining 'typedef OCTAVE_IDX_TYPE otave_idx_type;' (in '.../otave/on�g.h') is

ommented out for the time of 'make'-ing.
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• URL: https://github.om/dgleih/matlab-bgl, http://www.mathworks.om/matlabentral/

fileexhange/10922

• Liense: 2-lause BSD, and GNU GPLv2 or later.

• Solver: minimum spanning trees: Prim and Kruskal algorithm.

• Installation: Add it with subfolders to your Matlab/Otave PATH. Note:

� The pakage inludes preompiled MEX �les for Windows (32-bit and 64-bit), and Linux (32-bit and 64-bit

for Matlab 2006b+), and MaOSX (32-bit Intel and 32-bit PPC).

� The pakage inludes soure ode to ompile on other platforms as well.

• Environment: Matlab, Otave

6

.

• Note: alternative of '14) = pmtk3' in �nding minimum spanning trees.

5. FastKICA (diretory 'shared/embedded/FastKICA', version 1.0):

• URL: http://people.kyb.tuebingen.mpg.de/arthur/fastkia.htm

• Liense: GNU GPL v2 or later.

• Solver: HSIC (Hilbert-Shmidt independene riterion) mutual information estimator.

• Installation: Add it with subfolders to your Matlab/Otave PATH.

• Environment: Matlab, Otave.

• Note: one an extend the implementation of HSIC to measure the dependene of dm-dimensional variables,

too. The ITE toolbox ontains this modi�ation.

6. NCut (Normalized Cut, diretory 'shared/embedded/NCut'; version 9):

• URL: http://www.seas.upenn.edu/~timothee/software/nut/nut.html, http://www.seas.upenn.edu/

~timothee/software/nut/Nut_9.zip

• Liense: GNU GPLv3.

• Solver: spetral lustering, �xed number of groups.

• Installation: Run ompileDir_simple.m from Matlab to the provided diretory of funtions.

• Environment: Matlab.

• Note: the pakage is a fast alternative of '11) = spetral lustering'.

7. sqdistane (diretory 'shared/embedded/sqdistane')

• URL: http://www.mathworks.om/matlabentral/fileexhange/24599-pairwise-distane-matrix/,

http://www.mathworks.om/matlabentral/fileexhange/24599-pairwise-distane-matrix?

download=true

• Liense: 2-lause BSD.

• Solver: fast pairwise distane omputation.

• Installation: Add it with subfolders to your Matlab/Otave PATH.

• Environment: Matlab, Otave.

• Note: ompares favourably to the Matlab/Otave funtion pdist.

8. TCA (diretory 'shared/embedded/TCA'; version 1.0):

• URL: http://www.di.ens.fr/~fbah/ta/index.htm, http://www.di.ens.fr/~fbah/ta/ta1_0.tar.

gz

• Liense: GNU GPLv2 or later.

• Solver: KCCA (kernel anonial orrelation analysis) / KGV (kernel generalized variane) estimator, inom-

plete Cholesky deomposition.

• Installation: Add it with subfolders to your Matlab/Otave PATH.

• Environment: Matlab, Otave.

• Note: Inomplete Cholesky fatorization an be arried out by the Matlab/Otave funtion hol_gauss.m.

One an also ompile the inluded hol_gauss. to attain improved performane. Funtions provided in the

ITE toolbox ontain extensions of the KCCA and KGV indies to measure the dependene of dm-dimensional

variables. The omputations have also been aelerated in ITE by '7) = sqdistane'.

9. Weighted kNN (kNN: k-nearest neighbor; diretory 'shared/embedded/weightedkNN' and the ore of

HRenyi_weightedkNN_estimation.m):

6

With some trik, the MatlabBGL works on Otave, see https://answers.launhpad.net/matlab-bgl/+question/48686.
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• URL: http://www-personal.umih.edu/~kksreddy/

• Liense: GNU GPLv3 or later.

• Solver: Rényi entropy estimator based on the weighted k-nearest neighbor method.

• Installation: Add it with subfolders to your Matlab/Otave PATH.

• Environment: Matlab, Otave.

• Note: in the weighted kNN tehnique the weights are optimized. Sine Matlab and Otave rely on di�erent

optimization engines, one has to adapt the weight estimation proedure to Otave. The alulateweight.m

funtion in ITE ontains this modi�ation.

10. E4 (diretory 'shared/embedded/E4'):

• URL: http://www.um.es/info/iae/e4/, http://www.um.es/info/iae/e4/downfiles/E4.zip

• Liense: GNU GPLv2 or later.

• Solver: AR (autoregressive) �t.

• Installation: Add it with subfolders to your Matlab/Otave PATH

7

.

• Environment: Matlab, Otave.

• Note: alternative of '13) = AR�t' in AR identi�ation.

11. spetral lustering (diretory 'shared/embedded/sp_lustering'):

• URL: http://www.mathworks.om/matlabentral/fileexhange/34412-fast-and-effiient-

spetral-lustering

• Liense: 2-lause BSD.

• Solver: spetral lustering.

• Installation: Add it with subfolders to your Matlab/Otave PATH.

• Environment: Matlab, Otave.

• Note: the pakage is a purely Matlab/Otave alternative of '6)=NCut'. It is advisable to alter the eigensystem

omputation in the SpetralClustering.m funtion to work stably in Otave; the modi�ation is inluded in

the ITE toolbox and is ativated in ase of Otave environment.

12. linep (diretory 'shared/embedded/linep'):

• URL: http://www.mathworks.om/matlabentral/fileexhange/8597-plot-3d-olor-line/ontent/

linep.m

• Liense: 2-lause BSD.

• Solver: Plots a 3D line with olor enoding along the length using the path funtion.

• Installation: Add it with subfolders to your Matlab/Otave PATH.

• Environment: Matlab, Otave.

• Note: (i) alling of the ylinder funtion (in linep.m) has to modi�ed somewhat to work in Otave, and (ii)

sine 'gnuplot (as of v4.2) only supports 3D �lled triangular pathes' one has to use the �tk graphis toolkit in

Otave for drawing. The inluded line.m ode in the ITE pakage ontains these modi�ations.

13. AR�t (diretory 'shared/downloaded/AR�t', version 'Marh 20, 2011')

• URL: http://www.gps.alteh.edu/~tapio/arfit/, http://www.gps.alteh.edu/~tapio/arfit/

arfit.zip.

• Liense: ACM.

• Solver: AR identi�ation.

• Installation: Download, extrat and add it with subfolders to your Matlab/Otave PATH.

• Environment: Matlab, Otave.

• Note: alternative of '10) = E4' in AR identi�ation.

14. pmtk3 (diretory 'shared/embedded/pmtk3', version 'Jan 2012')

• URL: http://ode.google.om/p/pmtk3, http://ode.google.om/p/pmtk3/downloads/detail?name=

pmtk3-3jan11.zip&an=2&q=.

• Liense: MIT.

• Solver: minimum spanning trees: Prim algorithm.

7

In Otave, this step results in a `warning: funtion .../shared/embedded/E4/veh.m shadows a ore library funtion'; it is OK, the two

funtions ompute the same quantity.
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• Installation: Add it with subfolders to your Matlab/Otave PATH.

• Environment: Matlab, Otave.

• Note: purely Matlab/Otave alternative of '4) = MatlabBGL' in �nding minimum spanning trees.

15. knn (diretory 'shared/embedded/knn', version 'Nov 02, 2010')

• URL: http://www.mathworks.om/matlabentral/fileexhange/28897-k-nearest-neighbor-searh,

http://www.mathworks.om/matlabentral/fileexhange/28897-k-nearest-neighbor-searh?

download=true

• Liense: 2-lause BSD.

• Solver: kNN searh.

• Installation: Run the inluded build ommand to ompile the partial sorting funtion top.pp. Add it with

subfolders to your Matlab/Otave PATH.

• Environment: Matlab, Otave.

• Note: Alternative of '3)=ANN' in �nding k-nearest neighbors.

16. SWICA (diretory 'shared/embedded/SWICA')

• URL: http://www.stat.purdue.edu/~skirshne/SWICA, http://www.stat.purdue.edu/~skirshne/SWICA/

swia.tar.gz

• Liense: 3-lause BSD.

• Solver: Shweizer-Wol�'s σ and κ estimation.

• Installation: Add it with subfolders to your Matlab/Otave PATH.

• Environment: Matlab, Otave.

• Note: one an also ompile the inluded SW_kappa.pp and SW_sigma.pp funtions to further aelerate

omputations (see 'build_SWICA.m').

A short summary of the pakages an be found in Table 1. To ease installation, the ITE pakage ontains an installation

sript, ITE_install.m. A typial usage is to d to the diretory 'ode' and all ITE_install(pwd). Running the sript

from Matlab/Otave, it (i) adds the main ITE diretory with subfolders to the Matlab/Otave PATH, (ii) downloads and

extrats the AR�t pakage, and (iii) ompiles the embedded ANN, NCut, TCA, SWICA, knn pakages, .pp aelerations

of the Hoe�ding's Φ [see Eq. (17)℄, Edgeworth expansion based entropy [see Eq.(118)℄ omputation, and the ontinuously

di�erentiable sample spaing (CDSS) based estimator [see Eq. (147)℄.

8

The ITE_install.m sript automatially detets

the working environment (Matlab/Otave) and performs the installation aordingly, for example, it deletes the ann

wrapper not suitable for the urrent working environment. The output of a suessful installation in Matlab is given

below (the Otave output is similar):

Example 1 (ITE installation (output; with ompilation))

>> ITE_install(pwd); %after d-ing to the ode diretory

Installation: started.

We are working in Matlab environment. => ann_wrapper for Otave: deleted.

ARfit pakage: downloading, extration: started.

ARfit pakage: downloading, extration: ready.

ITE diretory: added with subfolders to the Matlab PATH.

ANN ompilation: started.

ANN ompilation: ready.

NCut ompilation: started.

NCut ompilation: ready.

TCA (hol_gauss.) ompilation: started.

TCA (hol_gauss.) ompilation: ready.

SWICA (SW_kappa.pp, SW_sigma.pp) ompilation: started.

SWICA (SW_kappa.pp, SW_sigma.pp) ompilation: ready.

Hoeffding_term1.pp ompilation: started.

Hoeffding_term1.pp ompilation: ready.

Edgeworth_t1_t2_t3.pp ompilation: started.

8

The ITE pakage also o�ers purely Matlab/Otave implementations for the omputation of Hoe�ding's Φ, Edgeworth expansion based

entropy approximation and CDSS. Without ompilation, these Matlab/Otave implementations are evoked.
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Task Pakage Written in Environment Diretory

ICA fastICA Matlab Matlab, Otave shared/embedded/FastICA

omplex ICA omplex fastICA Matlab Matlab, Otave shared/embedded/CFastICA

kNN searh ANN C++ Matlab shared/embedded/ann_wrapperM

a

kNN searh ANN C++ Otave

b

shared/embedded/ann_wrapperO

a

Prim-, Kruskal algorithm MatlabBGL C++ Matlab, Otave



shared/embedded/MatlabBGL

HSIC estimation FastKICA Matlab Matlab, Otave shared/embedded/FastKICA

spetral lustering NCut C++ Matlab shared/embedded/NCut

fast pairwise distane omputation sqdistane Matlab Matlab, Otave shared/embedded/sqdistane

KCCA, KGV TCA Matlab, C Matlab, Otave shared/embedded/TCA

Rényi entropy via weighted kNNs weighted kNN Matlab Matlab, Otave shared/embedded/weightedkNN

AR �t E4 Matlab Matlab, Otave shared/embedded/E4

spetral lustering spetral lustering Matlab Matlab, Otave shared/embedded/sp_lustering

trajetory plot linep Matlab Matlab, Otave shared/embedded/linep

AR �t AR�t Matlab Matlab, Otave shared/downloaded/AR�t

Prim algorithm pmtk3 Matlab Matlab, Otave shared/embedded/pmtk3

kNN searh knn Matlab, C++ Matlab, Otave shared/embedded/knn

Shweizer-Wol�'s σ and κ SWICA Matlab, C++ Matlab, Otave shared/embedded/SWICA

Table 1: External, dediated pakages inreasing the e�ieny of ITE.

a

In `ann_wrapperM' `M' stands for Matlab, in `ann_wrapperO' `O' denotes Otave.

b

See footnote 5.



See footnote 6.

Edgeworth_t1_t2_t3.pp ompilation: ready.

ompute_CDSS.pp ompilation: started.

ompute_CDSS.pp ompilation: ready.

knn (top.pp) ompilation: started.

knn (top.pp) ompilation: ready.

-------------------

Installation tests:

ANN quik test: suessful.

NCut quik test: suessful.

ARfit quik test: suessful.

knn quik test: suessful.

3 Estimation of Information Theoretial Quantities

In this setion we fous on the estimation of information theoretial quantities. Partiularly, in the sequel, the underlying

idea how the estimators are implemented in ITE are detailed, aompanied with de�nitions, numerous examples and

extension possibilities/instrutions.

The ITE pakage supports the estimation of many di�erent variants of entropy, mutual information and divergene

measures:

1. From onstrution point of view, we distinguish two types of estimators in ITE: base (Setion 3.1) and meta (Se-

tion 3.2) ones. Meta estimators are derived from existing base/meta ones by taking into aount information

theoretial identities. For example, by onsidering the well-known

I
(
y1, . . . ,yM

)
=

M∑

m=1

H (ym) −H
([

y1; . . . ;yM
])

(1)

relation [14℄, one an estimate mutual information (I) by making use of existing entropy estimators (H).

2. From alling point of view, base and meta estimations follow exatly the same syntax (Setion 3.3).

This modular implementation of the ITE pakage, makes it possible to
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1. onstrut new estimators from existing ones, and

2. transparently use any of these estimators in information theoretial optimization problems (see Setion 4) � provided

that they follow a simple template desribed in Setion 3.3.

3.1 Base Estimators

This setion is about the base information theoretial estimators of the ITE pakage. Entropy estimation is in the fous of

Setion 3.1.1; in Setion 3.1.2 and Setion 3.1.3 we onsider mutual information and divergene estimation, respetively.

3.1.1 Entropy Estimators

Let us start with a simple example: our goal is to estimate the Shannon entropy [73℄

H(y) = −
∫

Rd

f(u) log f(u)du (2)

of a random variable y ∈ Rd
from whih we have i.i.d. (independent identially distributed) samples {yt}T

t=1, and f denotes
the density funtion of y. The estimation of Shannon entropy an be arried out, e.g., by k-nearest neighbor tehniques.

Let us also assume that multipliative ontants are also important for us � in many appliations, it is ompletely irrelevant

whether we estimate, for example, H(y) or cH(y), where c = c(d) is a onstant depending only on the dimension of y

(d), but not on the distribution of y. By using the ITE pakage, the estimation an be arried out as simply as follows:

Example 2 (Entropy estimation (base-1: usage))

>Y = rand(5,1000); %generate the data of interest (d=5, T=1000)

>mult = 1; %multipliative onstant is important

>o = HShannon_kNN_k_initialization(mult); %initialize the entropy ('H') estimator

%('Shannon_kNN_k'), inluding the value of k

>H = HShannon_kNN_k_estimation(Y,o); %perform entropy estimation

An alternative entropy measure of interest is the Rényi entropy [70℄ de�ned as

H
R,α(y) =

1

1 − α
log

∫

Rd

fα(u)du, ( α 6= 1) (3)

where the random variable y ∈ Rd
have density funtion f . The Tsallis entropy (also alled the Havrda and Charvát

entropy) [94, 27℄ is losely related to the Rényi entropy and is de�ned as

H
T,α(y) =

1

α− 1

(
1 −

∫

Rd

fα(u)du

)
, α 6= 1. (4)

In fat, the Shannon entropy [Eq. (2)℄ is a speial ase of the Rényi and the Tsallis entropy families by the

lim
α→1

H
R,α = H, lim

α→1
H
T,α = H (5)

limit relations. In the ITE toolbox, H
R,α and H

T,α an be estimated similarly to the Shannon entropy H (see Example 2):

Example 3 (Entropy estimation (base-2: usage))

>Y = rand(5,1000); %generate the data of interest (d=5, T=1000)

>mult = 1; %multipliative onstant is important

>o = HRenyi_kNN_k_initialization(mult); %initialize the entropy ('H') estimator ('Renyi_kNN_k'),

%inluding the value of k and α
>H = HRenyi_kNN_k_estimation(Y,o); %perform entropy estimation

Beyond k-nearest neighbor based H (see [41℄ (S = {1}), [75, 23℄ S = {k}; in ITE 'Shannon_kNN_k') and H
R,α estimation

methods [103, 45℄ (S = {k}; 'Renyi_kNN_k'), the ITE pakage also provide funtions for the estimation ofH
R,α(y) (y ∈ Rd)

using (i) k-nearest neighbors (S = {1, . . . , k}; 'Renyi_kNN_1tok') [64℄, (ii) generalized nearest neighbor graphs (S ⊆
{1, . . . , k}; 'Renyi_kNN_S') [62℄, (iii) weighted k-nearest neighbors ('Renyi_weightedkNN') [76℄, (iv) minimum spanning
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Estimated quantity Priniple d ost_name

Shannon entropy (H) k-nearest neighbors (S = {k}) d ≥ 1 'Shannon_kNN_k'

Rényi entropy (H
R,α) k-nearest neighbors (S = {k}) d ≥ 1 'Renyi_kNN_k'

Rényi entropy (H
R,α) k-nearest neighbors (S = {1, . . . , k}) d ≥ 1 'Renyi_kNN_1tok'

Rényi entropy (H
R,α) generalized nearest neighbor graphs (S ⊆ {1, . . . , k}) d ≥ 1 'Renyi_kNN_S'

Rényi entropy (H
R,α) weighted k-nearest neighbors d ≥ 1 'Renyi_weightedkNN'

Rényi entropy (H
R,α) minimum spanning trees d ≥ 1 'Renyi_MST'

Rényi entropy (H
R,α) geodesi spanning forests d ≥ 1 'Renyi_GSF'

Tsallis entropy (H
T,α) k-nearest neighbors (S = {k}) d ≥ 1 'Tsallis_kNN_k'

Shannon entropy (H) multivariate Edgeworth expansion d ≥ 1 'Shannon_Edgeworth'

Shannon entropy (H) Voronoi regions d ≥ 2 'Shannon_Voronoi'

Shannon entropy (H) approximate slope of the inverse distribution funtion d = 1 'Shannon_spaing_V'

Shannon entropy (H) a bias orreted version of 'Shannon_spaing_V' d = 1 'Shannon_spaing_Vb'

Shannon entropy (H) 'Shannon_spaing_V' with pieewise onstant orretion d = 1 'Shannon_spaing_Vponst'

Shannon entropy (H) 'Shannon_spaing_V' with pieewise linear orretion d = 1 'Shannon_spaing_Vplin'

Shannon entropy (H) loally linear regression d = 1 'Shannon_spaing_LL'

Rényi entropy (H
R,α) extension of 'Shannon_spaing_V' to H

R,α d = 1 'Renyi_spaing_V'

Rényi entropy (H
R,α) empiri entropy estimator of order m d = 1 'Renyi_spaing_E'

quadrati Rényi entropy (H
R,2) ontinuously di�erentiable sample spaing d = 1 'qRenyi_CDSS'

Table 2: Entropy estimators (base). Third olumn: dimension (d) onstraint.

trees ('Renyi_MST') [103℄, and (v) geodesi spanning forests ('Renyi_GSF') [12℄. The Tsallis entropy of a d-dimensional

random variable y (H
T,α(y)) an be estimated in ITE using the k-nearest neighbors method (S = {k}; 'Tsallis_kNN_k')

[45℄. The multivariate Edgeworth expansion- [31℄ and the Voronoi region [49℄ based Shannon entropy estimators are also

available in ITE ('Shannon_Edgeworth', 'Shannon_Voronoi'). For the one-dimensional ase (d = 1), beside the previous
tehniques, ITE o�ers sample spaing based estimators:

• Shannon entropy: by approximating the slope of the inverse distribution funtion [96℄ ('Shannon_spaing_V')

and its bias orreted variant [18℄ ('Shannon_spaing_Vb'). The method desribed in [11℄ applies lo-

ally linear regression ('Shannon_spaing_LL'). Pieewise onstant/linear orretion has been applied in [53℄

('Shannon_spaing_Vponst')/[16℄ ('Shannon_spaing_Vplin').

• Rényi entropy: The idea of [96℄ and the empiri entropy estimator of order m has been reently generalized to Rényi

entropies [99℄ ('Renyi_spaing_V', 'Renyi_spaing_E'). A ontinuously di�erentiable sample spaing (CDSS) based

quadrati Rényi entropy estimator was presented in [54℄ ('qRenyi_CDSS').

The base entropy estimators are summarized in Table 2; the alling syntax of these methods is the same as in Example 2

and Example 3, one only has to hange 'Shannon_kNN_k' (see Example 2) and 'Renyi_kNN_k' (see Example 3) to the

ost_name given in the last olumn of the table.

Note: the Renyi_kNN_1tok, Renyi_kNN_S, Renyi_MST, Renyi_GSF methods (see Table 2) estimate the Hα Rényi

entropy up to an additive onstant whih depends on the dimension d and α, but not on the distribution. In ertain ases,

suh additive onstants an also be relevant. They an be approximated via Monte-Carlo simulations, the omputations

are available in ITE. Let us take the example of Renyi_kNN_1tok, the estimation instrutions are as follows:

1. Set o.alpha (α) and o.k (k) in 'HRenyi_kNN_1tok_initialization.m'.

2. Estimate the additive onstant β = β(d, k, α) using 'estimate_HRenyi_onstant.m'.

3. Set the relevane of additive onstants in the initialization funtion 'HRenyi_kNN_1tok_initialization.m':

'o.additive_onstant_is_relevant = 1'.

4. Estimate the Rényi entropy (after initialization): 'HRenyi_kNN_1tok_estimation.m'.
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3.1.2 Mutual Information Estimators

In our next example, we onsider the estimation of the mutual information of the dm-dimensional omponents of the

random variable y =
[
y1, . . . ,yM

]
∈ R

d
(d =

∑M
m=1 dm):

I
(
y1, . . . ,yM

)
=

∫

Rd1

· · ·
∫

RdM

f
(
u1, . . . ,uM

)
log

[
f
(
u1, . . . ,uM

)
∏M

m=1 fm(um)

]
du1 · · · duM

(6)

using an i.i.d. sample set {yt}T
t=1 from y, where f is the joint density funtion of y and fm is its mth

marginal density, the

density funtion of ym
. As it is known, I

(
y1, . . . ,yM

)
is non-negative and is zero, if and only if the {ym}M

m=1 variables

are jointly independent [14℄. Mutual information an be e�iently estimated, e.g., on the basis of entropy [Eq. (1)℄ or

Kullbak-Leibler divergene; we will return to these derived approahes while presenting meta estimators in Setion 3.2.

There also exist other mutual information-like quantities measuring the independene of ym
s:

1. The kernel anonial orrelation analysis (KCCA) is de�ned as

I
KCCA

(y1,y2) = sup
f1∈F1,f2∈F2

ov[f1(y
1), f2(y

2)]√
var [f1(y1)] + κ ‖f1‖2

F1

√
var [f2(y2)] + κ ‖f2‖2

F2

, (κ > 0) (7)

for M = 2 omponents, where `ov' denotes ovariane and `var' stands for variane. In words, I
KCCA

is the

regularized form of the supremum orrelation of y1 ∈ Rd1
and y2 ∈ Rd2

over two `rih enough' reproduing kernel

Hilbert spaes (RKHSs), F
1
and F

2
. The omputation of IKCCA an be redued to a generalized eigenvalue problem

and the measure an be extended to M ≥ 2 omponents to measure pairwise independene [4, 85℄.

2. Let y =
[
y1; . . . ,yM

]
be a multidimensional Gaussian random variable with ovariane matrix C and let Ci,j ∈

Rdi×dj
denote the ross-ovariane between omponents of ym ∈ Rdm

. In the Gaussian ase, the mutual information

between omponents y1, . . . ,yM
is [14℄:

I
(
y1, . . . ,yM

)
= −1

2
log

(
detC

∏M
m=1 detCm,m

)
. (8)

If y is not normal then one an transform ym
s using feature mapping ϕ assoiated with an RKHS and apply

Gaussian approximation to obtain

I
KGV

(
y1, . . . ,yM

)
= −1

2
log

[
det(K)

∏M
m=1 det(Km,m)

]
, (9)

where φ(y) := [ϕ(y1); . . . ; ϕ(yM )], K := cov[φ(y)], and the sub-matries are K
i,j = cov[ϕ(yi),ϕ(yj)]. For further

details on the kernel generalized variane (KGV) method, see [4, 85℄.

3. Let us given two RKHSs F
1
and F

2
with assoiated feature maps ϕ1 and ϕ2. Let the orresponding ross-ovariane

operator be

Cy1,y2 = E
([

ϕ1(y
1) − µ1

]
⊗
[
ϕ2(y

2) − µ2)
])
, (10)

where ⊗ denotes tensor produt, E is the expetation and the mean embeddings are

µm = E[ϕm(ym)] (m = 1, 2). (11)

The Hilbert-Shmidt independene riterion (HSIC) [25℄ is de�ned as the Hilbert-Shmidt norm of the ross-

ovariane operator

I
HSIC

(
y1,y2

)
=
∥∥Cy1,y2

∥∥2

HS

. (12)

The HSIC measure an also be extended to the M ≥ 2 ase to measure pairwise independene.

4. The generalized variane (GV) measure [90℄ onsiders the deorrelation of two one-dimensional random variables

y1 ∈ R and y2 ∈ R (M = 2) over a �nite funtion set F:

I
GV

(
y1, y2

)
=
∑

f∈F

(
corr

[
f
(
y1
)
, f
(
y2
)])2

. (13)
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5. Let C be the opula of the random variable y =
[
y1; . . . ; yd

]
∈ Rd

. One may think of C as the distribution funtion

on [0, 1]d, whih links the joint distribution funtion (F ) and the marginals (Fi, i = 1, . . . , d):

F (y) = C
(
F1

(
y1
)
, . . . , Fd

(
yd
))
. (14)

It an be shown that the yi ∈ R variables are independent if and only if C, the opula of y equals to the produt

opula Π de�ned as

Π(u1, . . . , ud) =

d∏

i=1

ui. (15)

Using this result, the independene of yi
s an be measured by the (normalized) Lp

distane of C and Π:

(
hp(d)

∫

[0,1]d
|C(u) − Π(u)|p du

) 1

p

, (16)

where (i) 1 ≤ p ≤ ∞, (ii) by an appropriate hoie of the normalization onstant hp(d), the value of (16) belongs to
∈ [0, 1] for any C.

• For p = 2, the speial

I
Hoe�ding

(
y1, . . . , yd

)
=

(
h2(d)

∫

[0,1]d
[C(u) − Π(u)]2du

) 1

2

(17)

quantity

� is a generalization of Hoe�ding's Φ de�ned for d = 2 [29℄,

� an be analytially omputated [22℄.

• For p = 1 and p = ∞, we obtain the Shweizer-Wol�'s σ and κ [72℄, respetively. In this ase no expliit

expressions for the integrals are available. For small dimensional problems, however, the quantities an be

e�iently estimated numerially. ITE ontains methods for the M = 2 ase:

I
SW1

(
y1, y2

)
= σ = 12

∫

[0,1]2
|C(u) − Π(u)|du, (18)

I
SWinf

(
y1, y2

)
= κ = 4 sup

u∈[0,1]2
|C(u) − Π(u)|, (19)

using the SWICA pakage [40℄.

For an exellent introdution on opulas, see [50℄.

The estimation of these quantities an be arried out easily in the ITE pakage. Let us take the KCCA measure as an

example:

Example 4 (Mutual information estimation (base: usage))

>ds = [2;3;4℄; Y=rand(sum(ds),5000); %generate the data of interest (ds(m)=dim(ym
), T=5000)

>mult = 1; %multipliative onstant is important

>o = IKCCA_initialization(mult); %initialize the mutual information ('I') estimator ('KCCA')

>I = IKCCA_estimation(Y,ds,o); %perform mutual information estimation

The alling syntax of the mutual information estimators, are ompletely the same; one only has to hange 'KCCA' to the

ost_name given in the last olumn of the Table 3. The table summarizes the base mutual information estimators in ITE.
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Estimated quantity Priniple dm M ost_name

generalized variane (I
GV

) f-ovariane/-orrelation (f ∈ F, |F| < ∞) dm = 1 M ≥ 2 'GV'

Hilbert-Shmidt indep. riterion (I
HSIC

) HS norm of the ross-ovariane operator dm ≥ 1 M ≥ 2 'HSIC'

kernel anonial orrelation (I
KCCA

) sup orrelation over RKHSs dm ≥ 1 M ≥ 2 'KCCA'

kernel generalized variane (I
KGV

) Gaussian mutual information of the features dm ≥ 1 M ≥ 2 'KGV'

Hoe�ding's Φ (I
Hoe�ding

), multivariate L2
distane of the joint- and the produt opula dm = 1 M ≥ 2 'Hoeffding'

Shweizer-Wol�'s σ (I
SW1

) L1
distane of the joint- and the produt opula dm = 1 M = 2 'SW1'

Shweizer-Wol�'s κ (I
SWinf

) L∞
distane of the joint- and the produt opula dm = 1 M = 2 'SWinf'

Table 3: Mutual information estimators (base). Third olumn: dimension onstraint (dm; ym ∈ R
dm

). Fourth olumn:

onstraint for the number of omponents (M ; y =
[
y1; . . . ;yM

]
).

3.1.3 Divergene Estimators

Divergenes measure the `distane' between two probability densities, f1 : Rd 7→ R and f2 : Rd 7→ R. One of the most

well-known suh index is the Kullbak-Leibler divergene (also alled relative entropy) [42℄:

D(f1, f2) =

∫

Rd

f1(u) log

[
f1(u)

f2(u)

]
du. (20)

In pratise, one has independent, i.i.d. samples from f1 and f2, {y1
t }T1

t=1 and {y2
t }T2

t=1, respetively. The goal is to estimate

divergene D using these samples. Of ourse, there exist many variants/extensions of the traditional Kullbak-Leibler

divergene [97, 5℄; depending on the appliation addressed, di�erent divergenes an be advantageous. The ITE pakage

is apable of estimating the following divergenes:

1. L2 divergene:

D
L

(f1, f2) =

√∫

Rd

[f1(u) − f2(u)]
2
du. (21)

2. Tsallis divergene:

D
T,α(f1, f2) =

1

α− 1

(∫

Rd

fα
1 (u)f1−α

2 (u)du − 1

)
(α ∈ R \ {1}). (22)

3. Rényi divergene:

D
R,α(f1, f2) =

1

α− 1
log

∫

Rd

fα
1 (u)f1−α

2 (u)du (α ∈ R \ {1}). (23)

4. MMD (maximum mean disrepany) [24℄:

D
MMD

(f1, f2) = ‖µ1 − µ2‖2
F
, (24)

where µm is the mean embedding of fm (m = 1, 2) and F = F
1 = F

2
, see the de�nition of HSIC [Eq. (11)℄.

5. Hellinger distane:

D
H

(f1, f2) =

√
1

2

∫

Rd

[√
f1(u) −

√
f2(u)

]2
du =

√
1 −

∫

Rd

√
f1(u)

√
f2(u)du. (25)

6. Bhattaharyya distane:

D
B

(f1, f2) = − log

(∫

Rd

√
f1(u)

√
f2(u)du

)
. (26)

The Kullbak-Leibler divergene [Eq. (20)℄ is a speial of Tsallis' and Rényi's in limit sense:

lim
α→1

D
T,α = D, lim

α→1
D
R,α = D. (27)
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Estimated quantity Priniple d ost_name

L2 divergene (DL

) k-nearest neighbors (S = {k}) d ≥ 1 'L2_kNN_k'

Tsallis divergene (D
T,α) k-nearest neighbors (S = {k}) d ≥ 1 'Tsallis_kNN_k'

Rényi divergene (D
R,α) k-nearest neighbors (S = {k}) d ≥ 1 'Renyi_kNN_k'

maximum mean disrepany (D
MMD

) norm of the di�erene of mean embeddings, online d ≥ 1 'MMD_online'

Hellinger distane (D
H

) k-nearest neighbors (S = {k}) d ≥ 1 'Hellinger_kNN_k'

Bhattaharyya distane (D
B

) k-nearest neighbors (S = {k}) d ≥ 1 'Bhattaharyya_kNN_k'

Kullbak-Leibler divergene (D) k-nearest neighbors (S = {k}) d ≥ 1 'KL_kNN_k'

Kullbak-Leibler divergene (D) k-nearest neighbors (Si = {ki(Ti)}) d ≥ 1 'KL_kNN_kiTi'

Table 4: Divergene estimators (base). Third olumn: dimension (d) onstraint.

Let us also note that for (22), (23), (25) and (26), it is su�ient to estimate the

D
temp1

(α) =

∫

Rd

[f1(u)]α[f2(u)]1−αdu (28)

quantity, whih is alled the Bhattaharyya oe�ient for α = 1
2 (see (25) and (26)):

BC =

∫

Rd

√
f1(u)

√
f2(u)du ∈ [0, 1]. (29)

(28) an also be further generalized to

D
temp2

(a, b) =

∫

Rd

[f1(u)]
a
[f2(u)]

b
f1(u)du, (a, b ∈ R). (30)

The alling syntax of the divergene estimators in the ITE pakage are again uniform. In the following example, the

estimation of the Rényi divergene is illustrated using the k-nearest neighbor method:

Example 5 (Divergene estimation (base: usage))

>Y1 = randn(3,2000); Y2=randn(3,3000); %generate the data of interest (d=3, T1=2000, T2=3000)

>mult = 1; %multipliative onstant is important

>o = DRenyi_kNN_k_initialization(mult); %initialize the divergene ('D') estimator ('Renyi_kNN_k')

>D = DRenyi_kNN_k_estimation(Y1,Y2,o); %perform divergene estimation

Beyond the Rényi divergene D
R,α [66, 65, 67℄, the k-nearest neighbor tehnique an also be used to estimate the L2- (DL

)

[66, 65, 67℄, the Tsallis (D
T,α) divergene [66, 65℄, and of ourse, the speial Kullbak-Leibler divergene (D) [45, 56, 100℄.

A similar approah an be applied to the estimation of the (30) quantity [61℄. For the MMD measure, a linearly saling,

online method [24℄ has been implemented in ITE. Table 4 ontains the base divergene estimators of the ITE pakage. The

estimations an be arried out by hanging the name 'Renyi_kNN_k' in Example 5 to the ost_name in the last olumn

of the table.

3.2 Meta Estimators

Here, we present how one an easily derive in the ITE pakage new information theoretial estimators from existing ones

on the basis of relations between entropy, mutual information, divergene. These meta estimators are inluded in ITE. The

additional goal of this setion is to provide examples for meta estimator onstrution so that users ould simply reate

novel ones. In Setion 3.2.1, Setion 3.2.2 and Setion 3.2.3 we fous on entropy, mutual information and divergene

estimators, respetively.

3.2.1 Entropy Estimators

Here, we present the idea of the meta onstrution in entropy estimation through examples:
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1. The �rst example onsiders estimation via the ensemble approah. As it has been reently demonstrated the

omputational load of entropy estimation an be heavily dereased by (i) dividing the available samples into groups

and then (ii) omputing the averages of the group estimates [43℄. Formally, let the samples be denoted by {yt}T
t=1

(yt ∈ R
d
) and let us partition them into N groups of size g (gN = T ), {1, . . . , T} = ∪N

n=1In (Ii ∩ Ij = ∅, i 6= j) and
average the estimations based on the groups

H
ensemble

(y) =
1

N

N∑

n=1

Ĥ ({yt}t∈In
) . (31)

As a prototype example for meta entropy estimation the implementation of the ensemble method [Eq. (31)℄ is

provided below (see Example 6 and Example 7). In the example, the individual estimators in the ensemble are

based on k-nearest neighbors ('Shannon_kNN_k'). However, the �exibility of the ITE pakage allows to hange the

H estimator [r.h.s of (31)℄ to any other entropy tehnique (base/meta, see Table 2 and Table 5).

Example 6 (Entropy estimation (meta: initialization))

funtion [o℄ = Hensemble_initialization(mult)

o.name = 'ensemble'; %name of the estimator: 'ensemble'

o.mul = mult; %set whether multipliative onstant is important

o.group_size = 500; %group size (g=500)

o.member_name = 'Shannon_kNN_k'; %estimator used in the ensemble ('Shannon_kNN_k')

o.member_o = H_initialization(o.member_name,mult);%initialize the member in the ensemble,

%the value of 'mult' is passed

The estimation part is arried out in aordane with (31):

Example 7 (Entropy estimation (meta: estimation))

funtion [H℄ = Hensemble_estimation(Y,o)

g = o.group_size; %initialize group size (g)

num_of_samples = size(Y,2); %initialize number of samples (T)

num_of_groups = floor(num_of_samples/g); %initialize number of groups (N)

H = 0;

for k = 1 : num_of_groups %ompute the average over the ensemble

H = H + H_estimation(Y(:,(k-1)*g+1:k*g),o.member_o); %add the estimation

%of the initialized member

end

H = H / num_of_groups;

The usage of the de�ned method follows the syntax of base entropy estimators (Example 2, Example 3):

Example 8 (Entropy estimation (meta: usage))

>Y = rand(5,1000); %generate the data of interest (d=5, T=1000)

>mult = 1; %multipliative onstant is important

>o = Hensemble_initialization(mult); %initialize the entropy ('H') estimator ('ensemble'),

>H = Hensemble_estimation(Y,o); %perform entropy estimation

2. Sine (i) entropy an be estimated onsistently using pairwise distanes of sample points

9

, and (ii) random projetion

(RP) tehniques realize approximate isometri embeddings [36, 20, 34, 1, 46, 3, 48℄, one an onstrut e�ient

estimation methods by the integration of the ensemble and the RP tehnique.

Formally, the de�nition of the estimation is idential to that of the ensemble approah [Eq. (31)℄, exept for random

projetions Rn ∈ RdRP×d
(n = 1, . . . , N). The �nal estimation is

H
RPensemble

(y) =
1

N

N∑

n=1

Ĥ ({Rnyt}t∈In
) . (32)

9

The onstrution holds for other information theoretial quantities like mutual information and divergene.
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The approah shows exiting potentials with serious omputational speed-ups in independent subspae analysis [81℄

and image registration [82℄. The tehnique has been implemented in the ITE toolbox under the name 'RPensemble'

(see Table 5, HRPensemble_initialization.m, HRPensemble_estimation.m).

3. Information theoretial quantities an be de�ned over the omplex domain via the Hilbert transformation [17℄

ϕv : C
d ∋ v 7→ v ⊗

[
ℜ(·)
ℑ(·)

]
∈ R

2d, (33)

as the entropy of the mapped 2d-dimensional real variable

HC(y) := H(ϕv(y)). (34)

Relation (34) an be transformed to a meta entropy estimator, the method is available under the name 'omplex'

(see Table 5, Homplex_initialization.m, Homplex_estimation.m).

4. Using (3) and (4), the Tsallis entropy an be omputed from the Rényi entropy:

H
T,α(y) =

e(1−α)H
R,α(y) − 1

1 − α
. (35)

This relation is realized in ITE by the 'Tsallis_HRenyi' meta entropy estimator (see Table 5,

HTsallis_HRenyi_initialization.m, HTsallis_HRenyi_estimation.m). Making use of this approah, for ex-

ample, the Rényi entropy estimators of Table 2 an be instantly applied for Tsallis entropy estimation.

5. Let yG ∈ Rd
be a normal random variable with the same mean and ovariane as y:

yG ∼ fG = N(E(y), cov(y)). (36)

The Shannon entropy of a normal random variable an be expliitly omputed

H(yG) =
1

2
log
[
(2πe)d det(cov(y))

]
, (37)

moreover, H(y) equals to H(yG) minus the Kullbak-Leibler divergene [see Eq. (20)℄ of y ∼ f and fG [101℄:

H(y) = H(yG) −D(f, fG). (38)

The assoiated meta entropy estimator is alled 'Shannon_DKL_N' (see Table 5, HShannon_DKL_N_initialization.m,

HShannon_DKL_N_estimation.m).

6. If y ∈ [0, 1]d (∼ f), then the entropy of y equals to minus the Kullbak-Leibler divergene [see Eq. (20)℄ of f and

fU , the uniform distribution on [0, 1]d:
H(y) = −D(f, fU ). (39)

If y ∈ [a,b] = ×d
i=1[ai, bi] ⊆ Rd

(∼ f), then let y′ = Ay + d ∼ f ′
be its linearly transformed version to [0, 1]d,

where A = diag
(

1
bi−ai

)
∈ Rd×d

, d =
[

ai

ai−bi

]
∈ Rd

. Applying the previous result and the entropy transformation

rule under linear mappings [14℄, one obtains that

H(y) = −D(f ′, fU ) + log

[
d∏

i=1

(bi − ai)

]
. (40)

This meta entropy estimation tehnique is alled 'Shannon_DKL_U' in ITE (see Table 5,

HShannon_DKL_U_initialization.m, HShannon_DKL_U_estimation.m).

The meta entropy estimator methods in ITE are summarized in Table 5. The alling syntax of the estimators is idential

to Example 8, one only has to hange the name 'ensemble' to the ost_name of the target estimators, see the last olumn

of the table.
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Estimated quantity Priniple d ost_name

omplex entropy (HC) entropy of a real random vetor variable d ≥ 1 'omplex'

Shannon entropy (H) average the entropy over an ensemble d ≥ 1 'ensemble'

Shannon entropy (H) average the entropy over a random projeted ensemble d ≥ 1 'RPensemble'

Tsallis entropy (H
T,α) funtion of the Rényi entropy d ≥ 1 'Tsallis_HRenyi'

Shannon entropy (H) -KL divergene from the normal distribution d ≥ 1 'Shannon_DKL_N'

Shannon entropy (H) -KL divergene from the uniform distribution d ≥ 1 'Shannon_DKL_U'

Table 5: Entropy estimators (meta). Third olumn: dimension (d) onstraint.

3.2.2 Mutual Information Estimators

In this setion we are dealing with meta mutual information estimators:

1. As it has been seen in (1), mutual information an be expressed via entropy terms. The orresponding method is avail-

able in the ITE pakage under the name 'Shannon_HShannon' (see Table 6, IShannon_HShannon_initialization.m,

IShannon_HShannon_estimation.m). As a prototype example for meta mutual information estimator the imple-

mentation is provided below:

Example 9 (Mutual information estimator (meta: initialization))

funtion [o℄ = IShannon_HShannon_initialization(mult)

o.name = 'Shannon_HShannon'; %name of the estimator: 'Shannon_HShannon'

o.mul = mult; %set the importane of multipliative fators

o.member_name = 'Shannon_kNN_k'; %method used for entropy estimation: 'Shannon_kNN_k'

o.member_o = H_initialization(o.member_name,1);%initialize entropy estimation member, mult=1

Example 10 (Mutual information estimator (meta: estimation))

funtion [I℄ = IShannon_HShannon_estimation(Y,ds,o) %samples(Y), omponent dimensions(ds),

%initialized estimator (o)

num_of_omps = length(ds); %number of omponents, M

um_ds = umsum([1;ds(1:end-1)℄); %starting indies of the omponents

I = -H_estimation(Y,o.member_o); %minus the joint entropy, H([y1; ...;yM ]) using the

%initialized H estimator

for k = 1 : num_of_omps %add the entropy of the ym
omponents, H(ym

)

idx = [um_ds(k) : um_ds(k)+ds(k)-1℄;

I = I + H_estimation(Y(idx,:),o.member_o);%use the initialized H estimator

end

The usage of the meta mutual information estimators follow the syntax of base mutual information estimators (see

Example 4):

Example 11 (Mutual information estimator (meta: usage))

>ds = [1;2℄; Y=rand(sum(ds),5000); %generate the data of interest

%(ds(m)=dim(ym
), T=5000)

>mult = 1; %multipliative onstant is important

>o = IShannon_HShannon_initialization(mult); %initialize the mutual information ('I') estimator

%('Shannon_HShannon')

>I = IShannon_HShannon_estimation(Y,ds,o); %perform mutual information estimation

2. The mutual information of omplex random variables (y ∈ Cdm
) an be de�ned via the Hilbert transformation

[Eq. (33)℄:

IC

(
y1, . . . ,yM

)
= I

(
ϕv

(
y1
)
, . . . , ϕv

(
yM
))
. (41)

The relation is realized in ITE by the 'omplex' meta estimator (see Table 6, Iomplex_initialization.m,

Iomplex_estimation.m).
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Estimated quantity Priniple dm M ost_name

omplex mutual information (IC) mutual information of a real random vetor variable ≥ 1 ≥ 2 'omplex'

L2 mutual information (IL) L2-divergene of the joint and the produt of marginals ≥ 1 ≥ 2 'L2_DL2'

Rényi mutual information (I
R,α) Rényi divergene of the joint and the produt of marginals ≥ 1 ≥ 2 'Renyi_DRenyi'

opula-based kernel dependeny (I


) MMD div. of the joint opula and the uniform distribution = 1 ≥ 2 'MMD_DMMD'

Rényi mutual information (I
R,α) minus the Rényi entropy of the joint opula = 1 ≥ 2 'Renyi_HRenyi'

(Shannon) mutual information (I) entropy sum of the omponents minus the joint entropy ≥ 1 ≥ 2 'Shannon_HShannon'

Tsallis mutual information (I
T,α) L2-divergene of the joint and the produt of marginals ≥ 1 ≥ 2 'Tsallis_DTsallis'

Table 6: Mutual information estimators (meta). Third olumn: dimension onstraint (dm; ym ∈ Rdm
). Fourth olumn:

onstraint for the number of omponents (M ; y =
[
y1; . . . ;yM

]
).

3. The Shannon-, L2-, Tsallis- and Rényi mutual information an be expressed in terms of the orresponding divergene

of the joint (f) and the produt of marginals (

∏M
m=1 fm)

10

:

I
(
y1, . . . ,yM

)
= D

(
f,

M∏

m=1

fm

)
, IL

(
y1, . . . ,yM

)
= D

L

(
f,

M∏

m=1

fm

)
, (42)

I
T,α

(
y1, . . . ,yM

)
= D

T,α

(
f,

M∏

m=1

fm

)
, I

R,α

(
y1, . . . ,yM

)
= D

R,α

(
f,

M∏

m=1

fm

)
. (43)

Shannon mutual information is a speial ase of Rényi's and Tsallis' in limit sense:

I
R,α

α→1−−−→ I, I
T,α

α→1−−−→ I. (44)

The assoiated Rényi-, L2- and Tsallis meta mutual information estimators are available

in ITE using the names 'Renyi_DRenyi', 'L2_DL2' and 'Tsallis_DTsallis' (see Table 6,

IRenyi_DRenyi_initialization.m, IRenyi_DRenyi_estimation.m, IL2_DL2_initialization.m,

IL2_DL2_estimation.m, ITsallis_DTsallis_initialization.m, ITsallis_DTsallis_estimation.m).

4. [57℄ has reently de�ned a novel, robust, opula-based mutual information measure of the random variable ym ∈ R

(m = 1, . . . ,M) as the MMD divergene [Eq. (24)℄ of the joint opula and the M-dimensional uniform distribution

on [0, 1]M :

I


(
y1, . . . , yM

)
= D

MMD

(PZ, PU), (45)

where Z =
[
F1

(
y1
)
; . . . ;FM

(
yM
)]

∈ RM
is the joint opula, Fm is the umulative density funtion of ym

and

P denotes the distribution. The assoiated meta estimator available has the name 'MMD_DMMD' (see Table 6,

IMMD_DMMD_initialization.m, IMMD_DMMD_estimation.m) in ITE.

The alling syntax of the meta mutual information are idential (and the same as that of the base estimators, see

Setion 3.1.2), the possible methods are summarized in Table 6. The tehniques are identi�ed by their 'ost_name', see

the last olumn of the table.

3.2.3 Divergene Estimators

In this setion we fous on meta divergene estimators (Table 7). Our prototype example is the estimation of the

symmetrised Kullbak-Leibler divergene, the so-alled J-distane:

D
J

(f1, f2) = D(f1, f2) +D(f2, f1). (46)

The de�nition of meta divergene estimators follows the idea of meta entropy and mutual information estimators (see

Example 6, 7, 9 and 10). Initialization and estimation of the meta J-distane estimator an be arried out as follows:

Example 12 (Divergene estimator (meta: initialization))

10

For the de�nitions of f and fms, see Eq. (6). The divergene de�nitions an be found in Eqs. (20), (21), (22) and (23).
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Estimated quantity Priniple d ost_name

J-distane (D
J

) symmetrised Kullbak-Leibler divergene d ≥ 1 'Jdistane'

Table 7: Divergene estimators (meta). Third olumn: dimension (d) onstraint.

funtion [o℄ = DJdistane_initialization(mult)

o.name = 'Jdistane'; %name of the estimator: 'Jdistane'

o.mult = mult; %set whether multipliative onstant is important

o.member_name = 'Renyi_kNN_k'; %method used for Kullbak-Leibler divergene estimation

o.member_o = D_initialization(o.member_name,mult); %initialize the Kullbak-Leibler divergene

%estimator

Example 13 (Divergene estimator (meta: estimation))

funtion [D_J℄ = DJdistane_estimation(X,Y,o)

D_J = D_estimation(X,Y,o.member_o) + D_estimation(Y,X,o.member_o); %definition of J-distane

Having de�ned the J-distane estimator, the alling syntax is ompletely analogous to base estimators (see Example 5).

Example 14 (Divergene estimator (meta: usage))

>Y1 = rand(3,1000); Y2 = rand(3,2000); %generate the data of interest (d=3, T1=1000, T2=2000)

>mult = 1; %multipliative onstant is important

>o = DJdistane_initialization(mult); %initialize the divergene ('D') estimator ('Jdistane')

>D = DJdistane_estimation(Y1,Y2,o); %perform divergene estimation

3.3 Uniform Syntax of the Estimators

The modularity of the ITE pakage in terms of (i) the de�nition and usage of the base/meta entropy, mutual information

and divergene estimators, and the possibility to (ii) simple embed novel estimators an be assured by following the

templates:

1. Initialization:

Template 1 (Entropy estimator: initialization)

funtion [o℄ = H<ost_name>_initialization(mult)

o.name = <ost_name>;

o.mult = mult;

...

Template 2 (Mutual information estimator: initialization)

funtion [o℄ = I<ost_name>_initialization(mult)

o.name = <ost_name>

o.mult = mult;

...

Template 3 (Divergene estimator: initialization)

funtion [o℄ = D<ost_name>_initialization(mult)

o.name = <ost_name>

o.mult = mult;

...
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2. Estimation:

Template 4 (Entropy estimator: estimation)

funtion [H℄ = H<ost_name>_estimation(Y,o)

...

Template 5 (Mutual information estimator: estimation)

funtion [I℄ = I<ost_name>_estimation(Y,ds,o)

...

Template 6 (Divergene estimator: estimation)

funtion [D℄ = D<ost_name>_estimation(Y1,Y2,o)

...

The uni�ed implementation in the ITE toolbox, makes it possible to use high-level initialization and estimation of the

information theoretial quantities. The orresponding funtions are

• for initialization: H_initialization.m, I_initialization, D_initialization,

• for estimation: H_estimation.m, I_estimation, D_estimation

following the templates:

funtion [o℄ = H_initialization(ost_name,mult)

funtion [o℄ = I_initialization(ost_name,mult)

funtion [o℄ = D_initialization(ost_name,mult)

funtion [H℄ = H_estimation(Y,o)

funtion [I℄ = I_estimation(Y,ds,o)

funtion [D℄ = D_estimation(Y1,Y2,o)

Here, the ost_name of the entropy, mutual information and divergene estimator an be freely hosen in ase of

• entropy: from the last olumn of Table 2 and Table 5.

• mutual information: from the last olumn of Table 3 and Table 6.

• divergene: from the last olumn of Table 4 and Table 7.

By the ITE onstrution, following for the

• entropy: Template 1 (initialization) and Template 4 (estimation),

• mutual information: Template 2 (initialization) and Template 5 (estimation),

• divergene: Template 3 (initialization) and Template 6 (estimation),

user-de�ned estimators an be immediately used. Let us demonstrate idea of the high-level initialization and estimation

with a simple example, Example 2 an equivalently be written as:

11

Example 15 (Entropy estimation (high-level, usage))

>Y = rand(5,1000); %generate the data of interest (d=5, T=1000)

>ost_name = 'Shannon_kNN_k'; %selet the objetive (Shannon entropy) and

%its estimation method (k-nearest neighbor)

>mult = 1; %multipliative onstant is important

>o = H_initialization(ost_name,mult); %initialize the entropy estimator

>H = H_estimation(Y,o); %perform entropy estimation

11

One an perform mutual information and divergene estimations similarly.
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A more omplex example family will be presented in Setion 4. There, the basi idea will be the following:

1. Independent subspae analysis and its extensions an be formulated as the optimization of information theoretial

quantities. There exist many equivalent formulations (objetive funtions) in the literature, as well as approximate

objetives.

2. Choosing a given objetive funtion, estimators following the template syntaxes (Template 1-6) an be used simply

by giving their names (ost_name).

3. Moreover, the seleted estimator an be immediately used in di�erent optimization algorithms of the objetive.

4 ITE Appliation in Independent Proess Analysis (IPA)

In this setion we present an appliation of the entropy, mutual information and divergene estimators in independent

subspae analysis (ISA) and its extensions (IPA, independent proess analysis). Appliation of ITE in IPA serves as an

illustrative example, how omplex tasks formulated as information theoretial optimization problems an be takled by

the estimators detailed in Setion 3.

Setion 4.1 formulates the problem domain, the independent proess analysis (IPA) problem family. In Setion 4.2 the

solution methods of IPA are detailed. Setion 4.3 is about the Amari-index, whih an be used to measure the preision

of the IPA estimations. The IPA datasets inluded in the ITE pakage are introdued in Setion 4.4.

4.1 IPA Models

In Setion 4.1.1 we fous on the simplest linear model, whih allows hidden, independent multidimensional soures (sub-

spaes), the so-alled independent subspae analysis (ISA) problem. Setion 4.1.2 is about the extensions of ISA.

4.1.1 Independent Subspae Analysis (ISA)

The ISA problem is de�ned in the �rst paragraph. Then (i) the ISA ambiguities, (ii) equivalent ISA objetive funtions,

and (iii) the ISA separation priniple are detailed. Thanks to the ISA separation priniple one an de�ne many di�erent

equivalent lustering based ISA objetives and approximations; this is the topi of the next paragraph. ISA optimization

methods are presented in the last paragraph.

The ISA equations One may think of independent subspae analysis (ISA)

12

[8, 15℄ as a oktail party problem, where

(i) more than one group of musiians (soures) are playing at the party, and (ii) we have mirophones (sensors), whih

measure the mixed signals emitted by the soures. The task is to estimate the original soures from the mixed observations

only.

Formally, let us assume that we have an observation (x ∈ RDx
), whih is instantaneous linear mixture (A) of the

hidden soure (e), that is,

xt = Aet, (47)

where

1. the unknown mixing matrix A ∈ R
Dx×De

has full olumn rank,

2. soure et =
[
e1

t ; . . . ; e
M
t

]
∈ RDe

is a vetor onatenated (using Matlab notation ';') of omponents em
t ∈ Rdm

(De =
∑M

m=1 dm), subjet to the following onditions:

(a) et is assumed to be i.i.d. (independent identially distributed) in time t,

(b) there is at most one Gaussian variable among em
s; this assumption will be referred to as the `non-Gaussian'

assumption, and

() em
s are independent, that is I

(
e1, . . . , eM

)
= 0.

The goal of the ISA problem is to eliminate the e�et of the mixing (A) with a suitable W ∈ RDe×Dx
demixing matrix

and estimate the original soure omponents em
s by using observations {xt}T

t=1 only (ê = Wx). If all the em
soure

omponents are one-dimensional (dm = 1, ∀m), then the independent omponent analyis (ICA) task [37, 9, 10℄ is reovered.

For Dx > De the problem is alled underomplete, while the ase of Dx = De is regarded as omplete.

12

ISA is also alled multidimensional ICA, independent feature subspae analysis, subspae ICA, or group ICA in the literature. We will use

the ISA abbreviation.
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The ISA objetive funtion One may assume without loss of generality in ase of Dx ≥ De for the full olumn rank

matrix A that it is invertible�by applying prinipal omponent analysis (PCA) [30℄. The estimation of the demixing

matrix W = A−1
in ISA is equivalent to the minimization of the mutual information between the estimated omponents

(ym
),

J
I

(W) = I
(
y1, . . . ,yM

)
→ min

W∈GL(D)
, (48)

where y = Wx, y =
[
y1; . . . ;yM

]
, ym ∈ Rdm

, GL(D) denotes the set of D×D sized invertible matries, and D = De. The

joint mutual information [Eq. (48)℄ an also be expressed from only pair-wise mutual information by reursive methods

[14℄

I
(
y1, . . . ,yM

)
=

M−1∑

m=1

I
(
ym,

[
ym+1, ...,yM

])
. (49)

Thus, an equivalent information theoretial ISA objetive to (48) is

J
Ireursive

(W) =

M−1∑

m=1

I
(
ym,

[
ym+1, ...,yM

])
→ min

W∈GL(D)
. (50)

However, sine in ISA, it an be assumed without any loss of generality�applying zero mean normalization and

PCA�that

• x and e are white, i.e., their expetation value is zero, and their ovariane matrix is the identity matrix (I),

• mixing matrix A is orthogonal (A ∈ OD
), that is ATA = I, and

• the task is omplete (D = Dx = De),

one an restrit the optimization in (48) and (50) to the orthogonal group (W ∈ OD
). Under the whiteness assumption,

well-known identities of mutual information and entropy expressions [14℄ show that the ISA problem is equivalent to

J
sumH

(W) =

M∑

m=1

H (ym) → min
W∈OD

, (51)

JH,I(W) =
M∑

m=1

dm∑

i=1

H(ym
i ) −

M∑

m=1

I
(
ym
1 , . . . , y

m
dm

)
→ min

W∈OD
, (52)

JI,I(W) = I
(
y1
1 , . . . , y

M
dM

)
−

M∑

m=1

I
(
ym
1 , . . . , y

m
dm

)
→ min

W∈OD
, (53)

where ym =
[
ym
1 ; . . . ; ym

dm

]
.

The ISA ambiguities Identi�ation of the ISA model is ambiguous. However, the ambiguities of the model are simple:

hidden omponents an be determined up to permutation of the subspaes and up to invertible linear transformations

13

within the subspaes [93℄.

The ISA separation priniple One of the most exiting and fundamental hypotheses of the ICA researh is the ISA

separation priniple dating bak to 1998 [8℄: the ISA task an be solved by ICA preproessing and then lustering of

the ICA elements into statistially independent groups. While the extent of this onjeture, is still an open issue, it has

reently been rigorously proven for some distribution types [85℄. This priniple

• forms the basis of the state-of-the-art ISA algorithms,

• an be used to design algorithms that sale well and e�iently estimate the dimensions of the hidden soures and

• an be extended to di�erent linear-, ontrolled-, post nonlinear-, omplex valued-, partially observed systems, as well

as to systems with nonparametri soure dynamis.

For a reent review on the topi, see [88℄. The addressed extension diretions are (i) presented in Setion 4.1.2, (ii) are

overed by the ITE pakage. In the ITE pakage the solution of the ISA problem is based on the ISA separation priniple,

for a demonstration, see demo_ISA.m.

13

The ondition of invertible linear transformations simpli�es to orthogonal transformations for the `white' ase.
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Equivalent lustering based ISA objetives and approximations Aording to the ISA separation priniple, the

solution of the ISA task, i.e., the global optimum of the ISA ost funtion an be found by permuting/lustering the ICA

elements into statistially independent groups. Using the onept of demixing matries, it is su�ient to explore forms

WISA = PWICA, (54)

where (i) P ∈ RD×D
is a permutation matrix (P ∈ PD

) to be determined, (ii) WICA and WISA is the ICA and ISA

demixing matrix, respetively. Thus, assuming that the ISA separation priniple holds, and sine permuting does not

alter the ICA objetive [see, e.g., the �rst term in (52) and (53)℄, the ISA problem is equivalent to

J
I

(P) = I
(
y1, . . . ,yM

)
→ min

P∈PD
, (55)

J
Ireursive

(P) =

M−1∑

m=1

I
(
ym,

[
ym+1, ...,yM

])
→ min

P∈PD
, (56)

J
sumH

(P) =

M∑

m=1

H (ym) → min
P∈PD

, (57)

J
sum-I

(P) = −
M∑

m=1

I
(
ym
1 , ..., y

M
dm

)
→ min

P∈PD
. (58)

Let us note that if our observations are generated by an ISA model then�unlike in the ICA task when dm = 1 (∀m)�
pairwise independene is not equivalent to mutual independene [10℄. However, minimization of the pairwise dependene

of the estimated subspaes

J
Ipairwise

(P) =
∑

m1 6=m2

I (ym1 ,ym2) → min
P∈PD

(59)

is an e�ient approximation in many situations. An alternative approximation is to onsider only the pairwise dependene

of the oordinates belonging to di�erent subspaes:

J
Ipairwise1d

(P) =

M∑

m1,m2=1;m1 6=m2

dm1∑

i1=1

dm2∑

i2=1

I
(
ym1

i1
, ym2

i2

)
→ min

P∈PD
. (60)

ISA optimization methods Let us �x an ISA objetive J [Eq. (55)-(60)℄. Our goal is to solve the ISA task, i.e., by the

ISA separation priniple to �nd the permutation (P) of the ICA elements minimizing J . Below we list a few possibilities

for �nding P; the methods are overed by ITE.

Exhaustive way: The possible number of all permutations, i.e., the number of P matries is D!, where ` !' denotes

the fatorial funtion. Considering that the ISA ost funtion is invariant to the exhange of elements within the

subspaes (see, e.g., (58)), the number of relevant permutations dereases to

D!
Q

M
m=1

dm!
. This number an still be

enormous, and the related omputations ould be formidable justifying searhes for e�ient approximations that we

detail below.

Greedy way: Two estimated ICA omponents belonging to di�erent subspaes are exhanged, if it dereases the value

of the ISA ost J , as long as suh pairs exist [90℄.

`Global' way: Experienes show that greedy permutation searh is often su�ient for the estimation of the ISA subspaes.

However, if the greedy approah annot �nd the true ISA subspaes, then global permutation searh method of higher

omputational burden may beome neessary [84℄: the ross-entropy solution suggested for the traveling salesman

problem [69℄ an be adapted to this ase.

Spetral lustering: Now, let us assume that soure dimensions (dm) are not known in advane. The lak of suh

knowledge auses ombinatorial di�ulty in suh a sense that one should try all possible

D = d1 + . . .+ dM (dm > 0,M ≤ D) (61)
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Construt an undireted graph with nodes orresponding to ICA oordinates and edge

weights (similarities) de�ned by the pairwise statistial dependenies, i.e., the mutual

information of the estimated ICA elements: S = [Î(ê
ICA,i, êICA,j)]

D
i,j=1. Cluster the

ICA elements, i.e., the nodes using similarity matrix S.

Table 8: Well-saling approximation for the permutation searh problem in the ISA separation theorem in ase of unknown

subspae dimensions [estimate_lustering_UD1_S.m℄.

dimension alloations to the subspae (em
) dimensions, where D is the dimension of the hidden soure e. The

number of these f(D) possibilities grows quikly with the argument, its asymptoti behaviour is known [26, 95℄:

f(D) ∼ eπ
√

2D/3

4D
√

3
(62)

as D → ∞. An e�ient method with good saling properties has been put forth in [59℄ for searhing the permutation

group for the ISA separation theorem (see Table 8). This approah builds upon the fat that the mutual information

between di�erent ISA subspaes em
is zero due the assumption of independene. The method assumes that oor-

dinates of em
that fall into the same subspae an be paired by using the pairwise dependene of the oordinates.

This approahes an be onsidered as objetive (60), with unknown dm subspae dimensions. One may arry out

the lustering by applying spetral approahes (inluded in ITE), whih are (i) robust and (ii) sale exellently,

a single general desktop omputer an handle about a million observations (in our ase estimated ICA elements)

within several minutes [102℄.

4.1.2 Extensions of ISA

Below we list some extensions of the ISA model and the ISA separation priniple. These di�erent extensions, however,

an be used in ombinations, too. In all these models, (i) the dimension of the soure omponents (dm) an be di�erent

and (ii) one an apply the Amari-index as the performane measure (Setion 4.3). The ITE pakage diretly implements

the estimation of the following models

14

(the relations of the di�erent models are summarized in Fig.1):

Linear systems:

AR-IPA:

Equations, assumptions: In the AR-IPA (autoregressive-IPA) task [32℄ (dm = 1, ∀m), [60℄ (dm ≥ 1), the
traditional i.i.d. assumption for the soures is generalized to AR time series: the hidden soures (sm ∈ Rdm

)

are not neessarily independent in time, only their driving noises (em ∈ Rdm
) are. The observation (x ∈ RD

,

D =
∑M

m=1 dm) is an instantaneous linear mixture (A) of the soure s:

xt = Ast, st =

Ls∑

i=1

Fist−i + et, (63)

where Ls is the order of the AR proess, st =
[
s1
t ; . . . ; s

M
t

]
and et =

[
e1

t ; . . . ; e
M
t

]
∈ RD

denote the hidden

soures and the hidden driving noises, respetively. (63) an be rewritten in the following onise form:

x = As, F[z]s = e (64)

using the polynomial of the time-shift operator F[z] := I−∑Ls

i=1 Fiz
i ∈ R[z]D×D

[44℄. We assume that

1. polynomial matrix F[z] is stable, that is det(F[z]) 6= 0, for all z ∈ C, |z| ≤ 1,

2. mixing matrix A ∈ RD×D
is invertible (A ∈ GL(D)),

3. e satis�es the ISA assumptions (see Setion 4.1.1)

Goal: The aim of the AR-IPA task is to estimate hidden soures sm
, dynamis F[z], driving noises em

and

mixing matrix A or its W inverse given observations {xt}T
t=1. For the speial ase of Ls = 0, the ISA task

is obtained.

14

The ITE pakage inludes demonstrations for all the touhed diretions. The name of the demo �les are spei�ed at the end the problem

de�nitions, see paragraphs `Separation priniple'.
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Separation priniple: The AR-IPA estimation an be arried out by (i) applying AR �t to observation x,

(ii) followed by ISA on the estimated innovation of x [32, 60℄. Demo: demo_AR_IPA.m.

MA-IPA:

Equations, assumptions: Here, the assumption on instantaneous linear mixture of the ISA model is weak-

ened to onvolutions. This problem is alled moving average independent proess analysis (MA-IPA, also

known as blind subspae deonvolution) [85℄. We desribe this task for the underomplete ase. Assume

that the onvolutive mixture of hidden soures em ∈ Rdm
is available for observation (x ∈ RDx

)

xt =

Le∑

l=0

Hlet−l, (65)

where

1. Dx > De (underomplete, De =
∑M

m=1 dm),

2. the polynomial matrix H[z] =
∑Le

l=0 Hlz
l ∈ R[z]Dx×De

has a (polynomial matrix) left inverse

15

and

3. soure e = [e1; . . . ; eM ] ∈ RDe
satis�es the onditions of ISA.

Goal: The goal of this underomplete MA-IPA problem (uMA-IPA problem, where `u' stands for underom-

plete) is to estimate the original em
soures by using observations {xt}T

t=1 only. The ase Le = 0 orresponds
to the ISA task, and in the blind soure deonvolution problem [55℄ dm = 1 (∀m), and Le is a non-negative

integer.

Note: We note that in the ISA task the full olumn rank of matrix H0 was presumed, whih is equivalent to

the assumption that matrix H0 has left inverse. This left inverse assumption is extended in the uMA-IPA

model for the polynomial matrix H[z].

Separation priniple:

• By applying temporal onatenation (TCC) on the observation, one an redue the uMA-IPA estimation

problem to ISA [85℄. Demo: demo_uMA_IPA_TCC.m.

• However, upon applying the TCC tehnique, the assoiated ISA problem an easily beome `high dimen-

sional'. This dimensionality problem an be alleviated by the linear predition approximation (LPA)

approah, i.e., AR �t, followed by ISA on the estimation innovation [86℄. Demo: demo_uMA_IPA_LPA.m.

• In the omplete (Dx = De) ase, the H[z] polynomial matrix does not have (polynomial matrix)

left inverse in general. However, provided that the onvolution an be represented by an in�nite

order autoregressive [AR(∞)℄ proess, one [77℄ an onstrut an e�ient estimation method for the

hidden omponents via an asymptotially onsistent LPA proedure augmented with ISA. Suh AR(∞)

representation an be guaranteed by assuming the stability of H[z] [21℄. Demo: demo_MA_IPA_LPA.m.

Post nonlinear models:

Equations, assumptions: In the post nonlinear ISA (PNL-ISA) problem [89℄ the linear mixing assumption of

the ISA model is alleviated. Assume that the observations (x ∈ RD
) are post nonlinear mixtures (g(A·)) of

multidimensional independent soures (e ∈ RD
):

xt = g(Aet), (66)

where the

• unknown funtion g : RD → RD
is a omponent-wise transformation, i.e, g(v) = [g1(v1); . . . ; gD(vD)] and

g is invertible, and

• mixing matrix A ∈ RD×D
and hidden soure e satisfy the ISA assumptions.

Goal: The PNL-ISA problem is to estimate the hidden soure omponents em
knowing only the observations

{xt}T
t=1. For dm = 1, we get bak the PNL-ICA problem [91℄ (for a review see [38℄), whereas `g=identity' leads

to the ISA task.

Separation priniple: the estimation of the PNL-ISA problem an be arried out on the basis of the mirror

struture of the task, applying gaussianization followed by linear ISA [89℄. Demo: demo_PNL_ISA.m.

15

One an show for Dx > De that under mild onditions H[z] has a left inverse with probability 1 [68℄; e.g., when the matrix [H0, . . . ,HLe
]

is drawn from a ontinuous distribution.
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Complex models:

Equations, assumptions: One an de�ne the independene, mutual information and entropy of omplex random

variables via the Hilbert transformation [Eq. (33), (34), (41)℄. Having these de�nitions at hand, the omplex

ISA problem an be formulated analogously to the real ase, the observations (xt ∈ CD
) are generated as the

instantaneous linear mixture (A) of the hidden soures (et):

xt = Aet, (67)

where

• the unknown A ∈ CD×D
mixing matrix is invertible (D =

∑M
m=1 dm),

• et is assumed to be i.i.d. in time t,

• em ∈ Cdm
s are independent, that is I

(
ϕv

(
e1
)
, . . . , ϕv

(
eM
))

= 0.

Goal: The goal is to estimate the hidden soure e and the mixing matrix A (or its W = A−1
inverse) using the

observation {xt}T
t=1. If all the omponents are one-dimensional (dm = 1, ∀m), one obtains the omplex ICA

problem.

Separation priniple:

• Supposing that the ϕv(em) ∈ R2dm
variables are `non-Gaussian', and exploiting the operation preserving

property of the Hilbert transformation the solution of the omplex ISA problem an be redued to a ISA

task over the real domain with observation ϕv(x) and M piees of 2dm-dimensional hidden omponents

ϕv(em). The onsideration an be extended to linear models inluding AR, MA, ARMA (autoregressive

moving average), ARIMA (integrated ARMA), . . . terms [80℄. Demo: demo_omplex_ISA.m.

• Another possible solution is to apply the ISA separation theorem, whih remains valid even for omplex

variables [85℄: the solution an be aomplished by omplex ICA and lustering of the omplex ICA

elements. Demo: demo_omplex_ISA_C.m.

Controlled models:

Equations, assumptions: In the ARX-IPA (ARX�autoregressive with exogenous input) problem [79℄ the AR-IPA

assumption holds (Eq. (63)), but the time evolution of the hidden soure s an be in�uened via ontrol variable

ut ∈ RDu
through matries Bj ∈ RD×Du

:

xt = Ast st =

Ls∑

i=1

Fist−i +

Lu∑

j=1

Bjut+1−j + et. (68)

Goal: The goal is to estimate the hidden soure s, the driving noise e, the parameters of the dynamis and ontrol

matries ({Fi}Ls

i=1 and {Bj}Lu

j=1), as well as the mixing matrix A or its inverse W by using observations xt and

ontrols ut. In the speial ase of Lu = 0, the ARX-IPA task redues to AR-IPA.

Separation priniple: The solution an be redued to ARX identi�ation followed by ISA [79℄. Demo:

demo_ARX_IPA.m.

Partially observed models:

Equations, assumptions: In the mAR-IPA (mAR�autoregressive with missing values) problem [78℄, the AR-IPA

assumptions (Eq. (63)) are relaxed by allowing a few oordinates of the mixed AR soures xt ∈ RD
to be missing

at ertain time instants. Formally, we observe yt ∈ RD
instead of xt, where `mask mappings' Mt : RD 7→ RD

represent the oordinates and the time indies of the non-missing observations:

yt = Mt(xt), xt = Ast, st =

Ls∑

i=1

Fist−i + et. (69)

Goal: Our task is the estimation of the hidden soure s, its driving noise e, parameters of the dynamis F[z], mixing
matrix A (or its inverse W) from observation {yt}T

t=1. The speial ase of `Mt = identity' orresponds to the

AR-IPA task.
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ARX-IPA

Lu=0

��

mAR-IPA

Mt:identity(∀t)
//
AR-IPA

Ls=0

��

fAR-IPA

f : known, linear
oo

MA-IPA

(BSSD)

Le=0
//

dm=1(∀m)

��

ISA

(I.I.D.-IPA)

dm=1(∀m)

��

PNL-ISA

g: known, identity
oo

dm=1(∀m)

��

BSD

Le=0
//
ICA PNL-ICA

g: known, identity
oo

Figure 1: IPA problem family, relations. Arrows point to speial ases. For example, `ISA

dm=1(∀m)−−−−−−−→ICA' means that ICA

is a speial ase of ISA, when all the soure omponents are one-dimensional.

Separation priniple: One an redue the solution to mAR identi�ation followed by ISA on the estimated inno-

vation proess [78℄. Demo: demo_mAR_IPA.m.

Models with nonparametri dynamis:

Equations, assumptions: In the fAR-IPA (fAR�funtional autoregressive) problem [83℄, the parametri assump-

tion for the dynamis of the hidden soures is irumvented by funtional AR soures:

xt = Ast, st = f(st−1, . . . , st−Ls
) + et. (70)

Goal: The goal is to estimate the hidden soures sm ∈ Rdm
inluding their dynamis f and their driving innovations

em ∈ Rdm
as well as mixing matrix A (or its inverse W) given observations {xt}T

t=1. If we knew the parametri

form of f and if it were linear, then the problem would be AR-IPA.

Separation priniple: The problem an be solved by nonparametri regression followed by ISA [83℄. Demo:

demo_fAR_IPA.m.

4.2 Estimation via ITE

Having (i) the information theoretial estimators (Setion 3), (ii) the ISA/IPA problems and separation priniples (Se-

tion 4.1) at hand, we now detail the solution methods o�ered by the ITE pakage. Due the separation priniples of the

IPA problem family, the solution methods an be implemented in a ompletely modular way; the estimation tehniques

an be built up from the solvers of the obtained subproblems. From developer point of view, this �exibility makes it

possible to easily modify/extend the ITE toolbox. For example, (i) in ase of ISA, one an selet/replae the ICA method

and lustering tehnique applied independently, (ii) in ase of AR-IPA one has freedom in hosing/extending the AR

identi�ator and the ISA solver, et. This is the underlying idea of the solvers o�ered by the ITE toolbox.

In Setion 4.2.1 the solution tehniques for the ISA task are detailed. Extensions of the ISA problem are in the fous

of Setion 4.2.2.

4.2.1 ISA

As it has been detailed in Setion 4.1.1, the ISA problem an be formulated as the optimization of information theoretial

objetives (see Eqs. (55), (56), (57), (58), (59), (60)). In the ITE pakage,

All the detailed ISA formulations:

• are available by the appropriate hoie of the variable ost_type (see Table 9), and

• an be used by any entropy/mutual information estimator satisfying the ITE template onstrution (see Table 2,

Table 3, Table 5, Table 6 and Setion 3.3).
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Cost funtion to minimize Name (ost_type)

I
`

y
1, . . . ,yM

´

'I'

PM

m=1
H (ym) 'sumH'

−
PM

m=1
I

`

ym
1 , ..., yM

dm

´

'sum-I'

PM−1

m=1
I

`

y
m,

ˆ

y
m+1, ..., yM

˜´

'Ireursive'

P

m16=m2
I (ym1 ,ym2) 'Ipairwise'

PM

m1,m2=1;m1 6=m2

Pdm1

i1=1

Pdm2

i2=1 I
`

y
m1

i1
, y

m2

i2

´

'Ipairwise1d'

Table 9: ISA formulations. 1 − 4th
row: equivalent, 5 − 6th

row: neessary onditions.

Optimization tehnique (opt_type) Priniple Environment

'NCut' normalized ut Matlab

'SP1' unnormalized ut Matlab, Otave

'SP2', 'SP3' 2 normalized ut methods Matlab, Otave

Table 10: Spetral lustering optimizers for given number of subspaes (M) [unknown_dimensions=1℄: lustering_UD1.m:

estimate_lustering_UD1_S.m.

The dimension of the subspaes an be given/unknown: the priori knowledge about the dimension of the sub-

spaes an be onveyed by the variable unknown_dimensions. unknown_dimensions=0 (=1) means given {dm}M
m=1

subspae dimensions (unknown subspae dimensions, it is su�ient to give M , the number of subspaes). In ase of

• given subspae dimensions: lustering of the ICA elements an be arried out in ITE by the exhaus-

tive (opt_type = 'exhaustive'), greedy (opt_type = 'greedy'), or the ross-entropy (opt_type = 'CE')

method.

• unknown subspae dimensions: lustering of the ICA elements an be performed by applying spetral lustering.

In this ase, the lustering is based on the pairwise mutual information of the one-dimensional ICA elements

(Table 9) and the objetive is (60), i.e., ost_type = 'Ipairwise1d'. The ITE pakage supports 4 di�erent

spetral lustering methods/implementations (Table 10):

� the unnormalized ut method (opt_type = 'SP1'), and two normalized ut tehniques

(opt_type = 'SP2' or opt_type = 'SP3') [74, 52, 98℄ � the implemetations are purely Matlab/Otave,

and

� a fast, normalized ut implementation [74, 13℄ in C++ with ompilable mex �les (opt_type = 'NCut').

The ISA estimator apable of handling these options is alled estimate_ISA.m, and is aompanied by the demo �le

demo_ISA.m. Let us take some examples for the parameters to set in demo_ISA.m:

Example 16 (ISA-1)

• Goal: the subspae dimensions {dm}M
m=1 are known; apply sum of entropy based ISA formulation (Eq. (57));

estimate the entropy via the Rényi entropy using k-nearest neighbors (S = {1, . . . , k}); optimize the objetive in

a greedy way.

• Parameters to set: unknown_dimensions = 0; ost_type = 'sumH'; ost_name = 'Renyi_kNN_1tok',

opt_type = 'greedy'.

Example 17 (ISA-2)

• Goal: the subspae dimensions {dm}M
m=1 are known; apply an ISA formulation based on the sum of mutual

information within the subspaes (Eq. (58)); estimate the mutual information via the KCCA method; optimize

the objetive in a greedy way.

• Parameters to set: unknown_dimensions = 0; ost_type = 'sum-I'; ost_name = 'KCCA',

opt_type = 'greedy'.
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Cost type (ost_type) Reommended/hosen optimizer

'I', 'Ireursive' lustering_UD0_greedy_general.m

'sumH', 'sum-I' lustering_UD0_greedy_additive_wrt_subspaes.m

'Ipairwise' lustering_UD0_greedy_pairadditive_wrt_subspaes.m

'Ipairwise1d' lustering_UD0_greedy_pairadditive_wrt_oordinates.m

Table 11: Reommended/hosen optimizers for given subspae dimensions ({dm}M
m=1) [unknown_dimensions=0℄ applying

greedy [opt_type='greedy'℄ ISA optimization: lustering_UD0.m.

Cost type (ost_type) Reommended/hosen optimizer

'I', 'sumH', 'sum-I', 'Ireursive', 'Ipairwise' lustering_UD0_CE_general.m

'Ipairwise1d' lustering_UD0_CE_pairadditive_wrt_oordinates.m

Table 12: Reommended/hosen optimizers for given subspae dimensions ({dm}M
m=1) [unknown_dimensions=0℄ applying

ross-entropy [opt_type='CE'℄ ISA optimization: lustering_UD0.m.

Example 18 (ISA-3)

• Goal: the subspae dimensions are unknown, only M , the number of the subspaes is given; the ISA objetive

is based on the pairwise mutual information of the estimated ICA elements (Eq. (60)); estimate the mutual

information using the KGV method; optimize the objetive via the NCut normalized ut method.

• Parameters to set: unknown_dimensions = 0; ost_type = 'KGV'; ost_name = 'KGV', opt_type = 'NCut'.

In ase of given subspae dimensions, the speial struture of the ISA objetives an be taken into aount to further

inrease the e�ieny of the optimization, i.e., the lustering step. The ITE pakage realizes this idea:

• In ase of (i) one-dimensional mutual information based ISA formulation (Eq. (60)), and (ii) ross-entropy or ex-

haustive optimization the S = [I(ê
ICA,i

, ê
ICA,j

)]Di,j=1 similarity matrix an be preomputed.

• In ase of greedy optimization:

� upon applying ISA objetive (60), the S = [I(ê
ICA,i

, ê
ICA,j

)]Di,j=1 similarity matrix an again be preomputed

giving rise to more e�ient optimization.

� ISA formulations (57), (58) are both additive w.r.t. the estimated subspaes. Making use of this speial

struture of these objetive, it is su�ient to reompute the objetive only on the touhed subspaes while

greedily testing a new permutation andidate. Provided that the number of the subspaes (M) is high, the

dereased omputational load of the speialized method is emphasized.

� objetive (59) is pair-additive w.r.t. the subspaes. In this ase, it is enough to reompute the objetive on the

subspaes onneted the atual subspae estimates. Again the inreased e�ieny is striking in ase of large

number of subspaes.

The general and the reommended (whih are hosen by default in the toolbox) ISA optimization methods of ITE are

listed Table 11 (greedy), Table 12 (ross-entropy), Table 13 (exhaustive).

Extending the apabilities of the ITE toolbox: In ase of

Cost type (ost_type) Reommended/hosen optimizer

'I', 'sumH', 'sum-I', 'Ireursive', 'Ipairwise' lustering_UD0_exhaustive_general.m

'Ipairwise1d' lustering_UD0_exhaustive_pairadditive_wrt_oordinates.m

Table 13: Reommended/hosen optimizers for given subspae dimensions ({dm}M
m=1) [unknown_dimensions=0℄ applying

exhaustive [opt_type='exhaustive'℄ ISA optimization: lustering_UD0.m.
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• known subspaes dimensions ({dm}M
m=1): the lustering is arried out in lustering_UD0.m. Before lustering, �rst

the importane of the onstant multipliers must be set in set_mult.m.

16

� To add a new ISA formulation (ost_type):

∗ to be able to arry it out general optimization: it is su�ient to add the new ost_type entry to

lustering_UD0.m, and the omputation of the new objetive to ost_general.m.

∗ to be able to perform an existing, speialized (not general) optimization: add the new ost_type entry to

lustering_UD0.m, and the omputation of the new objetive to the orresponding ost proedure. For

example, in ase of a new objetive being additive w.r.t. subspaes (similarly to (57), (58)) it is su�ient

to modify ost_additive_wrt_subspaes_one_subspae.m in ost_additive_wrt_subspaes.m.

∗ to be able to perform a non-existing optimization: add the new ost_type entry to lustering_UD0.m

with the speialized solver.

� To add a new optimization method (opt_type): please follow the 3 examples inluded in lustering_UD0.m.

• unknown subspae dimensions (M): lustering_UD1.m is responsible for the lustering step. It �rst omputes the

S = [Î(ê
ICA,i, êICA,j)]

D
i,j=1 similarity matrix, and then performs spetral lustering (see Table 8). To inlude a new

lustering tehnique, one only has to add it to a new ase in estimate_lustering_UD1_S.m.

4.2.2 Extensions of ISA

Due to the IPA separation priniples, the solution of the problem family an be arried out in a modular way. The solution

of all the presented IPA diretions are demonstrated through examples in ITE, the demo �les and the atual estimators

are listed in Table 14. For the obtained subtasks the ITE pakage provides many e�ient estimators (see Table 15):

ICA, omplex ICA: The fastICA method [33℄ and its omplex variant [7℄ is one of the most popular ICA approah, it

is available in ITE. See estimate_ICA.m and estimate_omplex_ICA.m.

AR identi�ation: Identi�ation of AR proesses an be arried in the ITE toolbox in 5 di�erent ways (see

estimate_AR.m):

• using the online Bayesian tehnique with normal-inverted Wishart prior [39, 58℄,

• applying [35℄

� nonlinear least squares estimator based on the subspae representation of the system,

� exat maximum likelihood optimization using the BFGS (Broyden-Flether-Goldfarb-Shannon; or the

Newton-Raphson) tehnique,

� the ombination of the previous two approahes.

• making use of the stepwise least squares tehnique [51, 71℄.

ARX identi�ation: Identi�ation of ARX proesses an be arried out by the D-optimal tehnique of [58℄ assuming

normal-inverted Wishart prior; see estimate_ARX_IPA.m.

mAR identi�ation: The

• online Bayesian tehnique with normal-inverted Wishart prior [39, 58℄,

• nonlinear least squares [35℄,

• exat maximum likelihood [35℄, and

• their ombination [35℄

are available for the identi�ation of mAR proesses; see estimate_mAR.m.

fAR identi�ation: Identi�ation of fAR proesses in ITE an be arried out by the strongly onsistent, reursive

Nadaraya-Watson estimator [28℄; see estimate_fAR.m.

spetral lustering: The ITE toolbox provides 4 methods to perform spetral lustering (see

estimate_lustering_UD1_S.m):

16

For example, upon applying objetive (57) multipliative onstants are irrelevant (important) in ase of equal (di�erent) dm subspae

dimensions.
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IPA model Redution Demo (Estimator)

Task1 Task2

ISA ICA lustering of the ICA elements demo_ISA.m

(estimate_ISA.m)

AR-IPA AR �t ISA demo_AR_IPA.m

(estimate_AR_IPA.m)

ARX-IPA ARX �t ISA demo_ARX_IPA.m

(estimate_ARX_IPA.m)

mAR-IPA mAR �t ISA demo_mAR_IPA.m

(estimate_mAR_IPA.m)

omplex ISA Hilbert transformation real ISA demo_omplex_ISA.m

(estimate_omplex_ISA.m)

omplex ISA omplex ICA lustering of the ICA elements demo_omplex_ISA_C.m

(estimate_omplex_ISA_C.m)

fAR-IPA nonparametri regression ISA demo_fAR_IPA.m

(estimate_fAR_IPA.m)

(omplete) MA-IPA linear predition (LPA) ISA demo_MA_IPA_LPA.m

(estimate_MA_IPA_LPA.m)

underomplete MA-IPA temporal onatenation (TCC) ISA demo_uMA_IPA_TCC.m

(estimate_uMA_IPA_TCC.m)

underomplete MA-IPA linear predition (LPA) ISA demo_uMA_IPA_LPA.m

(estimate_uMA_IPA_LPA.m)

PNL-ISA gaussianization ISA demo_PNL_ISA.m

(estimate_PNL_ISA.m)

Table 14: IPA separation priniples.

• the unnormalized ut method, and two normalized ut tehniques [74, 52, 98℄ � the implemetations are purely

Matlab/Otave, and

• a fast, normalized ut implementation [74, 13℄ in C++ with ompilable mex �les.

gaussianization: Gaussianization of the observations an be arried out by the e�ient rank method [104℄, see

estimate_gaussianization.m.

Extending the apabilities of the ITE toolbox: additional methods for the obtained subtasks an be easily

embedded and instantly used in IPA, by simply adding a new 'swith: ase' entry to the subtask solvers listed in Table 15.

Beyond the solvers for the IPA subproblems detailed above, the ITE toolbox o�ers:

• 4 di�erent alternatives for k-nearest neighbor estimation (Table 16):

� exat nearest neighbors: based on fast omputation of pairwise distanes and C++ partial sort (knn pakage).

� exat nearest neighbors: based on fast omputation of pairwise distanes.

Subtask Estimator Method

ICA estimate_ICA.m 'fastICA'

omplex ICA estimate_omplex_ICA.m 'fastICA'

AR �t (LPA) estimate_AR.m 'NIW', 'subspae', 'subspae-LL', 'LL', 'stepwiseLS'

ARX �t estimate_ARX.m 'NIW'

mAR �t estimate_mAR.m 'NIW', 'subspae', 'subspae-LL', 'LL'

fAR �t estimate_fAR.m 'reursiveNW'

spetral lustering estimate_lustering_UD1_S.m 'NCut', 'SP1', 'SP2', 'SP3'

gaussianization estimate_gaussianization.m 'rank'

Table 15: IPA subtasks and estimators.
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o.kNNmethod Priniple Environment

'knnFP1' exat NNs, fast pairwise distane omputation and C++ partial sort Matlab, Otave

'knnFP2' exat NNs, fast pairwise distane omputation Matlab, Otave

'knnsearh' exat NNs, Statistis Toolbox ∈ Matlab Matlab

'ANN' approximate NNs, ANN library Matlab, Otave

a

Table 16: k-nearest neighbor (kNN) methods. The main kNN funtion is kNN_squared_distanes.m.

a

See Table 1.

o.MSTmethod Method Environment

'MatlabBGL_Prim' Prim algorithm (MatlabBGL) Matlab, Otave

a

'MatlabBGL_Kruskal' Kruskal algorithm (MatlabBGL) Matlab, Otave

'pmtk3_Prim' Prim algorithm (pmtk3) Matlab, Otave

'pmtk3_Kruskal' Kruskal algorithm (pmtk3) Matlab, Otave

Table 17: Minimum spanning tree (MST) methods. The main MST funtion is ompute_MST.m.

a

See Table 1.

� exat nearest neighbors: arried out by the knnsearh funtion of the Statistis Toolbox in Matlab.

� approximate nearest neighbors: implemented by the ANN library.

The method applied for the estimation an be hosen by setting o.method to 'knnFP1', 'knnFP2', 'knnsearh',

or 'ANN'. For examples, please see:

� HRenyi_GSF_initialization.m, HShannon_kNN_k_initialization.m, HRenyi_kNN_1tok_initialization.m,

HRenyi_kNN_k_initialization.m, HRenyi_kNN_S_initialization.m, HRenyi_weightedkNN_initialization.m,

� DL2_kNN_k_initialization.m, DRenyi_kNN_k_initialization.m, DTsallis_kNN_k_initialization.m.

The entral funtion of kNN omputations is kNN_squared_distanes.m.

• 4 tehniques for minimum spanning tree omputation (Table 17):

� the two funtions of the MatlabBGL library an be envoked by setting o.STmethod to 'MatlabBGL_Prim' or

'MatlabBGL_Kruskal'.

� the purely Matlab/Otave implementations based on the pmtk3 toolbox an be alled by setting o.STmethod

to 'pmtk3_Prim' or 'pmtk3_Kruskal'.

For an example, please see H_Renyi_MST_initialization.m. The entral funtion for MST omputation is

ompute_MST.m.

To extend the apabilities of ITE in k-nearest neighbor or minimum spanning tree omputation (whih is also imme-

diately inherited to entropy, mutual information, divergene estimation), it su�ient to the add the new method to

kNN_squared_distanes.m or ompute_MST.m.

4.3 Performane Measure, the Amari-index

Here, we introdue the Amari-index, whih an be used to measure the e�ieny of the estimators in the ISA problem

and its extensions.

Identi�ation of the ISA model is ambiguous. However, the ambiguities of the model are simple: hidden omponents

an be determined up to permutation of the subspaes and up to invertible linear transformations within the subspaes

[93℄. Thus, in the ideal ase, the produt of the estimated ISA demixing matrix Ŵ
ISA

and the ISA mixing matrix A, i.e.,

matrix

G = Ŵ
ISA

A (71)

is a blok-permutation matrix (also alled blok-saling matrix [92℄). This property an also be measured for soure

omponents with di�erent dimensions by a simple extension [83℄ of the Amari-index [2℄, that we present below. Namely,

34



(a) (b) () (d)

Figure 2: ISA demonstration (demo_ISA.m). (a): hidden omponents ({em}M
m=1). (b): observed, mixed signal (x). ():

estimated omponents ({êm}M
m=1). (d): Hinton-diagram: the produt of the mixing matrix and the estimated demixing

matrix; approximately blok-permutation matrix with 2 × 2 bloks.

assume that we have a weight matrix V ∈ R
M×M

made of positive matrix elements, and a q ≥ 1 real number. Loosely

speaking, we shrink the di × dj bloks of matrix G aording to the weights of matrix V and apply the traditional Amari-

index for the matrix we obtain. Formally, one an (i) assume without loss of generality that the omponent dimensions

and their estimations are ordered in inreasing order (d1 ≤ . . . ≤ dM , d̂1 ≤ . . . ≤ d̂M ), (ii) deompose G into di×dj bloks

(G =
[
Gij

]
i,j=1,...,M

) and de�ne gij
as the ℓq norm
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of the elements of the matrix Gij ∈ Rdi×dj
, weighted with Vij :

gij = Vij




di∑

k=1

dj∑

l=1

|
(
Gij

)
k,l

|q




1

q

. (72)

Then the Amari-index with parameters V an be adapted to the ISA task of possibly di�erent omponent dimensions as

follows

rV,q(G) :=
1

2M(M − 1)




M∑

i=1

(∑M
j=1 g

ij

maxj gij
− 1

)
+

M∑

j=1

(∑M
i=1 g

ij

maxi gij
− 1

)

 . (73)

One an see that 0 ≤ rV,q(G) ≤ 1 for any matrix G, and rV,q(G) = 0 if and only if G is blok-permutation matrix with

di×dj sized bloks. rV,q(G) = 1 is in the worst ase, i.e, when all the gij
elements are equal. Let us note that this measure

(73) is invariant, e.g., for multipliation with a positive onstant: rcV = rV (∀c > 0). Weight matrix V an be uniform

(Vij = 1), or one an use weighing aording to the size of the subspaes: Vij = 1/(didj). The Amari-index [Eq. (73)℄

is available in the ITE pakage, see Amari_index_ISA.m. The G global matrix an be visualized by its Hinton-diagram

(hinton_diagram.m), Fig. 2 provides an illustration. This illustration has been obtained by running demo_ISA.m.

The Amari-index an also be used to measure the e�ieny of the estimators of the IPA problem family detailed in

Setion 4.1.2. The demo �les in the ITE toolbox (see Table 14) ontain detailed examples for the usage of the Amari-index

in the extensions of ISA.

4.4 Dataset-, Model Generators

One an generate observations from the ISA model and its extensions (Setion 4.1.2) by the funtions listed in Table 18.

The soures/driving datasets an be hosen from many di�erent types in ITE (see sample_subspaes.m):

3D-geom: In the 3D-geom test [64℄ em
s are random variables uniformly distributed on 3-dimensional geometri forms

(dm = 3, M ≤ 6), see Fig. 3(a). The dataset generator is sample_subspaes_3D_geom.m.

Aw, ABC, GreekABC: In the Aω database [90℄ the distribution of the hidden soures em
are uniform on 2-dimensional

images (dm = 2) of the English (M1 = 26) and Greek alphabet (M2 = 24). The number of omponents an be M =
M1 +M2 = 50. Speial ases of the database are the ABC (M ≤ 26) [63℄ and the GreekABC (M ≤ 24) [90℄ subsets.
For illustration, see Fig. 3(d). The dataset generators are alled sample_subspaes_Aw.m, sample_subspaes_ABC.m

and sample_subspaes_GreekABC.m, respetively.

mosai: The mosai test [87℄ has 2-dimensional soure omponents (dm = 2) generated from mosai images. Soures

em
are generated by sampling 2-dimensional oordinates proportional to the orresponding pixel intensities. In

17

Alternative norms ould also be used.
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other words, 2-dimensional images are onsidered as density funtions. For illustration, see Fig. 3(h). The dataset

generator is sample_subspaes_mosai.m.

IFS: Here [89℄, omponents sm
are realizations of IFS

18

based 2-dimensional (d = 2) self-similar strutures. For all m a

({hk}k=1,...,K ,p = (p1, . . . , pK),v1} triple is hosen, where

• hk : R2 → R2
are a�ne transformations: hk(z) = Ckz + dk (Ck ∈ R2×2,dk ∈ R2

),

• p is a distribution over the indies {1, . . . ,K} (

∑K
k=1 pk = 1, pk ≥ 0), and

• for the initial value we hose v1 :=
(

1
2 ,

1
2

)
.

In the IFS dataset, T samples are generated in the following way: (i) v1 is given (t = 1), (ii) an index k(t) ∈
{1, . . . ,K} is drawn aording to the distribution p and (iii) the next sample is generated as vt+1 := hk(t)(vt).
The resulting series {v1, . . . ,vT } was taken as a hidden soure omponent sm

and this way 9 omponents (M = 9,
D = 18) were onstruted (see Fig. 3()). The generator of the dataset is sample_subspaes_IFS.m.

ikeda: In the ikeda test [83℄, the hidden sm
t = [sm

t,1, s
m
t,2] ∈ R

2
soures realize the ikeda map

sm
t+1,1 = 1 + λm[sm

t,1 cos(wm
t ) − sm

t,2 sin(wm
t )], (74)

sm
t+1,2 = λm[sm

t,1 sin(wm
t ) + sm

t,2 cos(wm
t )], (75)

where λm is a parameter of the dynamial system and

wm
t = 0.4 − 6

1 + (sm
t,1)

2 + (sm
t,2)

2
. (76)

There are 2 omponents (M = 2) with initial points s1
1 = [20; 20], s2

1 = [−100; 30] and parameters λ1 =
0.9994, λ2 = 0.998, see Fig. 3(f) for illustration. Observation an be generated from this dataset using

sample_subspaes_ikeda.m.

lorenz: In the lorenz dataset [87℄, the soures (sm
) orrespond to 3-dimensional (dm = 3) deterministi haoti time

series, the so-alled Lorenz attrator [47℄ with di�erent initial points (x0, y0, z0) and parameters (a, b, c). The

Lorenz attrator is desribed by the following ordinary di�erential equations:

ẋt = a(yt − xt), (77)

ẏt = xt(b− zt) − yt, (78)

żt = xtyt − czt. (79)

The di�erential equations are omputed by the expliit Runge-Kutta (4,5) method in ITE. The number of omponents

an be M = 3. The dataset generator is sample_subspaes_lorenz.m. For illustration, see Fig. 3(g).

all-k-independent: In the all-k-independent database [63, 84℄, the dm-dimensional hidden omponents v := em
are

reated as follows: oordinates vi (i = 1, . . . , k) are independent uniform random variables on the set {0,. . . ,k-1},

whereas vk+1 is set to mod(v1 + . . .+ vk, k). In this onstrution, every k-element subset of {v1, . . . , vk+1} is made

of independent variables and dm = k + 1. The database generator is sample_subspaes_all_k_independent.m.

multiD-geom (multiD1-. . . -DM -geom): In this dataset em
s are random variables uniformly distributed on

dm-dimensional geometri forms. Geometrial forms were hosen as follows: (i) the surfae of the unit ball, (ii)

the straight lines that onnet the opposing orners of the unit ube, (iii) the broken line between dm + 1 points

0 → e1 → e1 + e2 → . . .→ e1 + . . .+ edm
(where ei is the i anonial basis vetor in Rdm

, i.e., all of its oordinates

are zero exept the ith, whih is 1), and (iv) the skeleton of the unit square. Thus, the number of omponents M
an be equal to 4 (M ≤ 4), and the dimension of the omponents (dm) an be saled. In the multiD-geom ase

the dimensions of the subspaes are equal (d1 = . . . = dM ); in ase of the multiD1-. . . -DM -geom dataset, the dm

subspae dimensions an be di�erent. For illustration, see Fig. 3(e). The assoiated dataset generator is alled

sample_subspaes_multiD_geom.m.

18

IFS stands for iterated funtion system.

36



(a) (b)

() (d)

(e) (f) (g)

(h)

Figure 3: Illustration of the 3D-geom (a), multiD-spherial (multiD1-. . . -DM -spherial) (b), IFS (), Aw (subset on the

left: ABC, right: GreekABC ) (d), multiD-geom (multiD1-. . . -DM -geom) (e), ikeda (f), lorenz (g), and mosai (h) datasets.

multiD-spherial (multiD1-. . . -DM -spherial): In this ase hidden soures em
are spherial random variables [19℄.

Sine spherial variables assume the form v = ρu, where u is uniformly distributed on the dm-dimensional unit

sphere, and ρ is a non-negative salar random variable independent of u, they an be given by means of ρ. 3 piees of

stohatisti representations ρ were hosen: ρ was uniform on [0, 1], exponential with parameter µ = 1 and lognormal

with parameters µ = 0, σ = 1. For illustration, see Fig. 3(b). In this ase, the number of omponent an be 3 (M ≤ 3)
The dimension of the soure omponents (dm) is �xed (an be varied) in the multiD-spherial (multiD1-. . . -DM -

spherial) dataset. Observations an be obtained from these datasets by sample_subspaes_multiD_spherial.m.

The datasets and their generators are summarized in Table 19 and Table 20. The plot_subspaes.m funtion an be

used to plot the databases (samples/estimations).

Model Generator

ISA generate_ISA.m

omplex ISA generate_omplex_ISA.m

AR-IPA generate_AR_IPA.m

ARX-IPA generate_ARX_IPA_parameters.m

(u)MA-IPA generate_MA_IPA.m

mAR-IPA generate_mAR_IPA.m

fAR-IPA generate_fAR_IPA.m.m

Table 18: IPA model generators. Note: in ase of the ARX-IPA model, the observations are generated online in aordane

with the online D-optimal ARX identi�ation method.
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Dataset (data_type) Desription Subspae dimensions # of omponents i.i.d.

'3D-geom' uniformly distributed (U) on 3D forms dm = 3 M ≤ 6 Y

'Aw' U on English and Greek letters dm = 2 M ≤ 50 Y

'ABC' U on English letters dm = 2 M ≤ 26 Y

'GreekABC' U on Greek letters dm = 2 M ≤ 24 Y

'mosai' distributed aording to mosai images dm = 2 M ≤ 4 Y

'IFS' self-similar onstrution dm = 2 M ≤ 9 N

'ikeda' Ikeda map dm = 2 M = 2 N

'lorenz' Lorenz attrator dm = 3 M ≤ 3 N

'all-k-independent' k-tuples in the subspaes are independent salable (dm = k + 1) M ≥ 1 Y

'multid-geom' U on d-dimensional geometrial forms salable (d = dm ≥ 1) M ≤ 4 Y

'multid1-d2-...-dM-geom' U on dm-dimensional geometrial forms salable (dm ≥ 1) M ≤ 4 Y

'multid-spherial' spherial subspaes salable (d = dm ≥ 1) M ≤ 3 Y

'multid1-d2-...-dM-spherial' spherial subspaes salable (dm ≥ 1) M ≤ 3 Y

Table 19: Desription of the datasets. Last olumn: Y�yes, N�no.

Dataset (data_type) Generator

'3D-geom' sample_subspaes_3D_geom.m

'Aw' sample_subspaes_Aw.m

'ABC' sample_subspaes_ABC.m

'GreekABC' sample_subspaes_GreekABC.m

'mosai' sample_subspaes_mosai.m

'IFS' sample_subspaes_IFS.m

'ikeda' sample_subspaes_ikeda.m

'lorenz' sample_subspaes_lorenz.m

'all-k-independent' sample_subspaes_all_k_independent.m

'multid-geom', 'multid1-d2-...-dM-geom' sample_subspaes_multiD_geom.m

'multid-spherial', 'multid1-d2-...-dM-spherial' sample_subspaes_multiD_spherial.m

Table 20: Generators of the datasets. The high-level sampling funtion of the datasets is sample_subspaes.m.
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5 Diretory Struture of the Pakage

In this setion, we desribe the diretory struture of the ITE toolbox. Diretory

• ode: ode of ITE,

� H_I_D : entropy-, mutual information-, divergene estimators (see Setion 3).

∗ base: ontains the base estimators; initialization and estimation funtions (see Setion 3.1).

∗ meta: the folder of meta estimators; initialization and estimation funtions (see Setion 3.2).

∗ utilities : ode shared by base and meta.

� IPA: appliation of the information theoretial estimators in ITE (see Setion 4):

∗ data_generation: IPA generators orresponding to di�erent datasets and models.

· datasets : sampling from and plotting of the soures (see Table 19, Table 20, Fig. 3).

· models : IPA model generators, see Table 18.

∗ demos : IPA demonstrations and estimators, see Table 14 and Table 15.

∗ optimization: IPA optimization methods (see Table 9, Table 10, Table 11, Table 12, and Table 13).

� shared : ode shared by H_I_D and IPA.

∗ downloaded, embedded : downloaded and embedded pakages (see Setion 2).

• do: ontains a link to this manual.
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Abbreviation Meaning

ANN approximate nearest neighbor

AR autoregressive

ARIMA integrated ARMA

ARMA autoregressive moving average

ARX AR with exogenous input

BFGS Broyden-Flether-Goldfarb-Shannon

BSD blind soure deonvolution

BSSD blind subspae deonvolution

CDSS ontinuously di�erentiable sample spaing

CE ross-entropy

fAR funtional AR

GV generalized variane

HS Hilbert-Shmidt

HSIC Hilbert-Shmidt independene riterion

ICA/ISA/IPA independent omponent/subspae/proess analysis

i.i.d. independent identially distributed

IFS iterated funtion system

ITE information theoretial estimators

JFD joint f-deorrelation

KCCA kernel anonial orrelation analysis

KGV kernel generalized variane

kNN k-nearest neighbor

LPA linear predition approximation

MA moving average

mAR AR with missing values

MMD maximum mean disrepany

NIW normal-inverted Wishart

NN nearest neighbor

PCA prinipal omponent analysis

PNL post nonlinear

RBF radial basis funtion

RKHS reproduing kernel Hilbert spae

RP random projetion

Table 21: Abbrevations.

A Abbreviations

The abbreviations used in the paper are listed in Table 21.

B Funtions with Otave-Spei� Adaptations

Funtions with Otave-spei� adaptations are summarized in Table 22.

C Estimation Formulas � Lookup Table

In this setion the underlying entropy (Setion C.1), mutual information (Setion C.2) and divergene (Setion C.3)

omputations are summarized brie�y. This setion is onsidered to be a quik lookup table. For spei� details, please

see the referred papers (Setion 3).

Notations: `∗' denotes transposition. 1 (0) stands for the vetor whose all elements are equal to 1 (0); 1k, 0k expliitly

indiate the dimension (k). The RBF (radial basis funtion; also alled the Gaussian kernel) is de�ned as

k(u,v) = e−
‖u−v‖2

2σ2 . (80)
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Funtion Role

ITE_install.m installation of the ITE pakage

hinton_diagram.m Hinton-diagram

estimate_lustering_UD1_S.m spetral lustering

ontrol.m D-optimal ontrol

sample_subspae_lorenz.m sampling from the lorenz dataset

linep.m the ore of the 3D trajetory plot

plot_subspaes_3D_trajetory.m 3D trajetory plot

IGV_similarity_matrix.m similarity matrix for the GV measure

alulateweight.m weight omputation in the weighted kNN method

kNN_squared_distanes.m kNN omputation

initialize_Otave_ann_wrapper_if_needed.m ann Otave wrapper initialization

Table 22: Funtions with Otave-spei� adaptations.

tr(·) stands for trae. LetN(m,Σ) denote the density funtion of the normal random variable with mean m and ovariane

Σ. fU is the density funtion of the uniform distribution on [0, 1]d.

C.1 Entropy

Notations: Let Y1:T = (y1, . . . ,yT ) (yt ∈ Rd
) stand for our samples.

Vd =
πd/2

Γ
(

d
2 + 1

) =
2πd/2

dΓ
(

d
2

)
(81)

is the volume of the d-dimensional unit ball. ψ is the digamma funtion. Let ρk(t) denote the Eulidean distane of the

kth
nearest neighbor of yt in the sample Y1:T \{yt}. Let V ⊆ Rd

be a �nite set, S, S1, S2 ⊆ {1, . . . , k} are index sets.

NNS(V ) stands for the S-nearest neighbor graph on V . NNS(V2, V1) denotes the S-nearest (from V1 to V2) neighbor

graph. E is the expetation operator. In ase of d = 1, let y(t) denote the order statistis of yt, i.e., y(1) ≤ . . . ≤ y(T ); for

y(i) = y(1) (i < 1) and y(i) = y(T ) (i > T ).

• Shannon_kNN_k [41, 75, 23℄:

Ĥ(Y1:T ) = log(T − 1) − ψ(k) + log(Vd) +
d

T

T∑

t=1

log (ρk(t)) . (82)

• Renyi_kNN_k [103, 45℄:

Cα,k =

[
Γ(k)

Γ(k + 1 − α)

] 1

1−α

, (83)

Îα(Y1:T ) =
T − 1

T
V 1−α

d C1−α
α,k

T∑

t=1

[ρk(t)]d(1−α)

(T − 1)α
, (84)

Ĥ
R,α(Y1:T ) =

1

1 − α
log
(
Îα(Y1:T )

)
. (85)

• Renyi_kNN_1tok [64℄:

S = {1, . . . , k}, (86)

V = Y1:T , (87)

L(V ) =
∑

(u,v)∈edges(NNS(V ))

‖u − v‖d(1−α)
2 , (88)

c = lim
T→∞

EU1:T ,ut:i.i.d.,∼Uniform([0,1]d)

[
L(U1:T )

Tα

]
, (89)

Ĥ
R,α(Y1:T ) =

1

1 − α
log

[
L(V )

cTα

]
. (90)
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• Renyi_S [62℄:

S ⊆ {1, . . . , k}, k ∈ S, (91)

V = Y1:T , (92)

L(V ) =
∑

(u,v)∈edges(NNS(V ))

‖u − v‖d(1−α)
2 , (93)

c = lim
T→∞

EU1:T ,ut:i.i.d.,∼Uniform([0,1]d)

[
L(U1:T )

Tα

]
, (94)

Ĥ
R,α(Y1:T ) =

1

1 − α
log

[
L(V )

cTα

]
. (95)

• Renyi_weightedkNN [76℄:

k1 = k1(T ) =
⌈
0.1

√
T
⌉
, (96)

k2 = k2(T ) =
⌈
2
√
T
⌉
, (97)

N =

⌊
T

2

⌋
(98)

M = T −N, (99)

V1 = Y1:N , (100)

V2 = YN+1:T , (101)

S = {k1, . . . , k2}, (102)

ηk =
β(k, 1 − α)

Γ(1 − α)

1

N
M1−αV 1−α

d

∑

(u,v)∈edges(NNS(V2,V1))

‖u− v‖d(1−α)
2 , (103)

Îα,w =
∑

k∈S

wkηk, (104)

Ĥ
R,α(Y1:T ) =

1

1 − α
log(Îα,w), (105)

where the wk = wk(T, d, k1, k2) weights an be preomputed.

• Renyi_MST [103℄:

V = Y1:T , (106)

L(V ) = min
G∈ spanning trees on V

∑

(u,v)∈edges(G)

‖u− v‖d(1−α)
2 , (107)

c = lim
T→∞

EU1:T ,ut:i.i.d.,∼Uniform([0,1]d)

[
L(U1:T )

Tα

]
, (108)

Ĥ
R,α(Y1:T ) =

1

1 − α
log

[
L(V )

cTα

]
. (109)

• Renyi_GSF [12℄:

S = {1, . . . , k}, (110)

V = Y1:T , (111)

L(V ) = min
G∈ spanning forest on NNS(V )

∑

(u,v)∈edges(G)

‖u − v‖d(1−α)
2 , (112)

c = lim
T→∞

EU1:T ,ut:i.i.d.,∼Uniform([0,1]d)

[
L(U1:T )

Tα

]
, (113)

Ĥ
R,α(Y1:T ) =

1

1 − α
log

[
L(V )

cTα

]
. (114)
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• Tsallis_kNN_k [45℄:

Cα,k =

[
Γ(k)

Γ(k + 1 − α)

] 1

1−α

, (115)

Îα(Y1:T ) =
T − 1

T
V 1−α

d C1−α
α,k

T∑

t=1

[ρk(t)]d(1−α)

(T − 1)α
, (116)

Ĥ
T,α(Y1:T ) =

1 − Îα(Y1:T )

α− 1
. (117)

• Shannon_Edgeworth [31℄: Sine the Shannon entropy is invariant to additive onstants (H(y) = H(y+m)), one an
assume without loss of generality that the expetation of y is zero. The Edgeworth expansion based estimation is

Ĥ(Y1:T ) = H(φd) − 1

12




d∑

i=1

(
κi,i,i

)2
+ 3

d∑

i,j=1;i6=j

(
κi,i,j

)2
+

1

6

d∑

i,j,k=1;i<j<k

(
κi,j,k

)2


 , (118)

where

yt = yt −
1

T

T∑

k=1

yk, (t = 1, . . . , T ) (119)

Σ = ˆcov(Y1:T ) =
1

T − 1

T∑

t=1

yt(yt)
∗, (120)

H(φd) =
1

2
log det(Σ) +

d

2
log(2π) +

d

2
, (121)

σi = ˆstd(yi) =
1

T − 1

T∑

t=1

(
yi

t

)2
, (i = 1, . . . , d) (122)

κijk = Ê
[
yiyjyk

]
=

1

T

T∑

t=1

yi
ty

j
t y

k
t , (i, j, k = 1, . . . , d) (123)

κi,j,k =
κijk

σiσjσk
. (124)

• Shannon_Voronoi [49℄: Let the Voronoi regions assoiated to samples y1, . . . ,yT be denoted by V1, . . . , VT (Vt ⊆ Rd
).

The estimation is as follows:

Ĥ(Y1:T ) =
1

T −K

∑

Vi:vol(Vi) 6=∞

log [T × vol(Vi)] , (125)

where `vol' denotes volume, and K is the number of Voronoi regions with �nite volume.

• Shannon_spaing_V [96℄:

m = m(T ) =
⌊√

T
⌋
, (126)

Ĥ(Y1:T ) =
1

T

T∑

t=1

log

(
T

2m

[
y(i+m) − y(i−m)

])
. (127)

• Shannon_spaing_Vb [18℄:

m = m(T ) =
⌊√

T
⌋
, (128)

Ĥ(Y1:T ) =
1

T −m

T−m∑

t=1

log

[
T + 1

m
(y(t+m) − y(t))

]
+

T∑

k=m

1

k
+ log

(
m

T + 1

)
. (129)
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• Shannon_spaing_Vponst [53℄:

m = m(T ) =
⌊√

T
⌋
, (130)

Ĥ(Y1:T ) =
1

T

T∑

t=1

log

[
T

ctm
(y(t+m) − y(t−m))

]
, (131)

where

ct =





1, 1 ≤ t ≤ m,

2, m+ 1 ≤ t ≤ T −m,

1 T −m+ 1 ≤ t ≤ T.

(132)

It an be shown [53℄ that (127) = (131)+

2m log(2)
T .

• Shannon_spaing_Vplin [16℄:

m = m(T ) =
⌊√

T
⌋
, (133)

Ĥ(Y1:T ) =
1

T

T∑

t=1

log

[
T

ctm
(y(t+m) − y(t−m))

]
, (134)

where

ct =






1 + t−1
m , 1 ≤ t ≤ m,

2, m+ 1 ≤ t ≤ T −m,

1 + T−t
m T −m+ 1 ≤ t ≤ T.

(135)

• Shannon_spaing_LL [11℄:

m = m(T ) =
⌊√

T
⌋
, (136)

ȳ(i) =
1

2m+ 1

i+m∑

j=i−m

y(j), (137)

Ĥ(Y1:T ) = − 1

T

T∑

t=1

log

[∑i+m
j=i−m

(
y(j) − ȳ(i)

)
(j − i)

T
∑i+m

j=i−m

(
y(j) − ȳ(i)

)2

]
. (138)

• Renyi_spaing_V [99℄:

m = m(T ) =
⌊√

T
⌋
, (139)

Ĥ
R,α(Y1:T ) =

1

1 − α
log

[
1

T

T∑

t=1

(
T

2m

[
y(i+m) − y(i−m)

])1−α
]
. (140)
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• Renyi_spaing_E [99℄:

m = m(T ) =
⌊√

T
⌋
, (141)

t1 =

0∑

i=2−m

y(i+m) − y(i+m−1)

2




i+m−1∑

j=1

2

y(j+m) − y(j−m)




α

, (142)

t2 =

T+1−m∑

i=1

y(i) + y(i+m) − y(i−1) − y(i+m−1)

2




i+m−1∑

j=i

2

y(j+m) − y(j−m)




α

, (143)

t3 =

T∑

i=T+2−m

y(i) − y(i−1)

2




T∑

j=i

2

y(j+m) − y(j−m)




α

, (144)

Ĥ
R,α(Y1:T ) =

1

1 − α
log

[
t1 + t2 + t3

Tα

]
. (145)

• qRenyi_CDSS [54℄:

m = m(T ) =
⌊√

T
⌋
, (146)

Ĥ
R,2(Y1:T ) = − log



 30

T (T −m)

T−m∑

i=1

i+m−1∑

j=i+1

(y(j) − y(i+m))
2(y(j) − y(i))

2

(y(i+m) − y(i))5



 . (147)

C.2 Mutual Information

Let for an Y1:T = (y1, . . . ,yT ) sample set (yt ∈ Rd
) the empirial opula be de�ned as

ĈT

(
i1
T
, . . . ,

iT
T

)
:=

# of y-s in the sample with y ≤ y(i1,...,iT )

T
, (∀j, ij = 1, . . . , T ) (148)

where y(i1,...,iT ) = [y(i1); . . . ; y(iT )] with y(ij) order statistis in the jth
oordinate.

• HSIC [25℄:

Hij = δij −
1

T
, (149)

(Km)ij = km

(
ym

i ,y
m
j

)
, (150)

Î
HSIC

(Y1:T ) =
1

T 2

M−1∑

u=1

M∑

v=u+1

tr(KuHKvH). (151)

Currently, km-s are RBF-s.
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• KCCA, KGV [4, 85℄:

κ2 =
κT

2
, (152)

Km =
[
km(ym

i ,y
m
j )
]
i,j=1,...,T

, (153)

H = I − 1

T
11∗, (154)

K̃m = HKmH, (155)




(K̃1 + κ2IT )2 K̃1K̃2 · · · K̃1K̃M

K̃2K̃1 (K̃2 + κ2IT )2 · · · K̃2K̃M

.

.

.

.

.

.

.

.

.

K̃MK̃1 K̃MK̃2 · · · (K̃M + κ2IT )2







c1

c2

.

.

.

cM


 = (156)

= λ




(K̃1 + κ2IT )2 0 · · · 0

0 (K̃2 + κ2I)
2 · · · 0

.

.

.

.

.

.

.

.

.

0 0 · · · (K̃M + κ2I)
2







c1

c2

.

.

.

cM


 .

Let us write Eq. (156) shortly as Ac = λBc. Let the minimal eigenvalue of this generalized eigenvalue problem be

λ
KCCA

, and λ
KGV

= det(A)
det(B) .

Î
KCCA

(Y1:T ) = −1

2
log(λ

KCCA

), (157)

Î
KGV

(Y1:T ) = −1

2
log(λ

KGV

). (158)

At the moment, km
-s are RBF-s.

• Hoeffding [29, 22℄: Let I be the indiator funtion and F̂m the empirial marginal distribution funtion:

F̂m(y) =

T∑

t=1

I{ym
t ≤y}, (159)

and

Ûmt = F̂m(ym
t ) =

1

T
(rank of ym

t in ym
1 , . . . , y

m
T ). (160)

The estimation an be omputed as

h2(d) =

(
2

(d+ 1)(d+ 2)
− 1

2d

d!
∏d

i=0

(
i+ 1

2

) +
1

3d

)−1

, (161)

Î
Hoe�ding

(Y1:T ) =

√√√√√h2(d)





1

T 2

T∑

j=1

T∑

k=1

d∏

i=1

[
1 − max(Ûij , Ûik)

]
− 2

T

1

2d

T∑

j=1

d∏

i=1

(
1 − Û2

ij

)
+

1

3d




. (162)

Under small sample adjustment, one an obtain a similar nie expression:

h2(d, T )−1 =
1

T 2

T∑

j=1

T∑

k=1

[
1 − max

(
j

T
,
k

T

)]d

− 2

T

T∑

j=1

[
T (T − 1) − j(j − 1)

2T 2

]d

+
1

3d

[
(T − 1)(2T − 1)

2T 2

]d

,

(163)

Î
Hoe�ding

(Y1:T ) =
√
h2(d, T )(t1 − t2 + t3), (164)
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where

t1 =
1

T 2

T∑

j=1

T∑

k=1

d∏

i=1

[
1 − max(Ûij , Ûik)

]
, t2 =

2

T

1

2d

T∑

j=1

d∏

i=1

(
1 − Û2

ij −
1 − Ûij

T

)
, t3 =

1

3d

[
(T − 1)(2T − 1)

2T 2

]d

.

(165)

• SW1, SWinf [72, 40℄:

Î
SW1

(Y1:T ) = σ̂ = 12
1

T 2 − 1

T∑

i1=1

T∑

i2=1

∣∣∣∣ĈT

(
i1
T
,
i2
T

)
− i1
T

i2
T

∣∣∣∣ . (166)

The Î
SWinf

estimation is performed similarly.

C.3 Divergene

We have T1 and T2 i.i.d. samples from the distributions to be ompared: Y1
1:T1

=
(
y1

1, . . . ,y
1
T1

)
, Y2

1:T2
=
(
y2

1, . . . ,y
2
T2

)
.

Let ρk(t) denote the Eulidean distane of the kth
nearest neighbor of y1

t in the sample Y1
1:T1

\{y1
t }, and similarly let νk(t)

stand for the Eulidean distane of the kth
nearest neighbor of y1

t in the sample Y2
1:T2

\{y1
t }. Let us reall the de�nitions

[Eq. (28), (30)℄:

D
temp1

(α) =

∫

Rd

[f1(u)]α [f2(u)]1−α du, (167)

D
temp2

(a, b) =

∫

Rd

[f1(u)]a [f2(u)]b f1(y)du. (168)

• L2_kNN_k [66, 65, 67℄:

D̂
L

(
Y1

1:T1
,Y2

1:T2

)
=

√√√√ 1

T1Vd

T1∑

t=1

[
k − 1

(T1 − 1)ρd
k(t)

− 2(k − 1)

T2νd
k(t)

+
(T1 − 1)ρd

k(t)(k − 2)(k − 1)

(T2)2ν2d
k (t)k

]
. (169)

• Tsallis_kNN_k [66, 65℄:

Bk,α =
Γ(k)2

Γ(k − α+ 1)Γ(k + α− 1)
, (170)

D̂
temp1

(α) = Bk,α
(T1 − 1)1−α

(T2)1−α

1

T1

T1∑

t=1

[
ρk(t)

νk(t)

]d(1−α)

, (171)

D̂
T,α

(
Y1

1:T1
,Y2

1:T2

)
=

1

α− 1

[
D̂
temp1

(α) − 1
]
. (172)

• Renyi_kNN_k [66, 65, 67℄:

Bk,α =
Γ(k)2

Γ(k − α+ 1)Γ(k + α− 1)
, (173)

D̂
temp1

(α) = Bk,α
(T1 − 1)1−α

(T2)1−α

1

T1

T1∑

t=1

[
ρk(t)

νk(t)

]d(1−α)

, (174)

D̂
R,α

(
Y1

1:T1
,Y2

1:T2

)
=

1

α− 1
log
[
D̂
temp1

(α)
]
. (175)

• MMD_online [24℄:

T ′ =

⌊
T1

2

⌋(
=

⌊
T2

2

⌋)
, (176)

h((x,y), (u,v)) = k(x,u) + k(y,v) − k(x,v) − k(y,u), (177)

D̂
MMD

(
Y1

1:T ,Y
2
1:T

)
=

1

T ′

T ′∑

t=1

h
((

y1
2t−1,y

2
2t−1

)
,
(
y1

2t,y
2
2t

))
. (178)

Currently, k is RBF.
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• Hellinger_kNN_k [61℄:

Bk,a,b = V
−(a+b)
d

Γ(k)2

Γ(k − a)Γ(k − b)
, (179)

D̂
temp2

(a, b) = (T1 − 1)−a(T2)
−bBk,a,b

1

T1

T1∑

t=1

[ρk(t)]−da[νk(t)]−db, (180)

D̂
H

(
Y1

1:T1
,Y2

1:T2

)
=

√

1 − D̂
temp2

(
−1

2
,
1

2

)
. (181)

• Bhattaharyya_kNN_k [61℄:

Bk,a,b = V
−(a+b)
d

Γ(k)2

Γ(k − a)Γ(k − b)
, (182)

D̂
temp2

(a, b) = (T1 − 1)−a(T2)
−bBk,a,b

1

T1

T1∑

t=1

[ρk(t)]−da[νk(t)]−db, (183)

D̂
B

(
Y1

1:T1
,Y2

1:T2

)
= − log

[
D̂
temp2

(
−1

2
,
1

2

)]
. (184)

• KL_kNN_k [45, 56, 100℄:

D̂
(
Y1

1:T1
,Y2

1:T2

)
=

d

T1

T1∑

t=1

log

[
νk(t)

ρk(t)

]
+ log

(
T2

T1 − 1

)
. (185)

• KL_kNN_kiTi [100℄:

k1 = k1(T1) =
⌊√

T1

⌋
, (186)

k2 = k2(T2) =
⌊√

T2

⌋
, (187)

D̂
(
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1:T1
,Y2

1:T2

)
=

1

T1
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t=1

log

[
k1

k2
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=

d
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log

[
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ρk1
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)
. (188)

D Citation of the ITE Toolbox

The iting information of the ITE toolbox is provided below in BibTeX format:

�ARTICLE{szabo12separation,

AUTHOR = {Zolt{\'a}n Szab{\'o} and Barnab{\'a}s P{\'o}zos and Andr{\'a}s L{\H{o}}rinz},

TITLE = {Separation Theorem for Independent Subspae Analysis and its Consequenes},

JOURNAL = {Pattern Reognition},

YEAR = {2012},

volume = {45},

issue = {4},

pages = {1782-1791},

}

�ARTICLE{szabo07underomplete,

AUTHOR = {Zolt{\'a}n Szab{\'o} and Barnab{\'a}s P{\'o}zos and Andr{\'a}s L{\H{o}}rinz},

TITLE = {Underomplete Blind Subspae Deonvolution},

JOURNAL = {Journal of Mahine Learning Researh},

YEAR = {2007},

volume = {8},

pages = {1063-1095},

}

48



Referenes

[1℄ Dimitris Ahlioptas. Database-friendly random projetions: Johnson-Lindenstrauss with binary oins. Journal of

Computer and System Sienes, 66:671�687, 2003.

[2℄ Shun-ihi Amari, Andrzej Cihoki, and Howard H. Yang. A new learning algorithm for blind signal separation.

Neural Information Proessing Systems (NIPS), pages 757�763, 1996.

[3℄ Rosa I. Arriga and Santosh Vempala. An algorithmi theory of learning: Robust onepts and random projetions.

Mahine Learning, 63:161�182, 2006.

[4℄ Franis R. Bah and Mihael I. Jordan. Kernel independent omponent analysis. Journal of Mahine Learning

Researh, 3:1�48, 2002.

[5℄ Mihéle. Basseville. Divergene measures for statistial data proessing - an annotated bibliography. Signal Proess-

ing, 2012. To appear. hal.inria.fr/dos/00/54/23/37/PDF/PI-1961.pdf.

[6℄ J. Beirlant, E.J. Dudewiz, L. Gy®r�, and E.C. van der Meulen. Nonparametri entropy estimation: An overview.

International Journal of Mathematial and Statistial Sienes, 6:17�39, 1997.

[7℄ Ella Bingham and Aapo Hyvärinen. A fast �xed-point algorithm for independent omponent analysis of omplex-

valued signals. International Journal of Neural Systems, 10(1):1�8, 2000.

[8℄ Jean-François Cardoso. Multidimensional independent omponent analysis. In International Conferene on Aous-

tis, Speeh, and Signal Proessing (ICASSP), pages 1941�1944, 1998.

[9℄ Jean-François Cardoso and Antoine Souloumia. Blind beamforming for non-gaussian signals. IEE Proeedings F,

Radar and Signal Proessing, 140(6):362�370, 1993.

[10℄ Pierre Comon. Independent omponent analysis, a new onept? Signal Proessing, 36:287�314, 1994.

[11℄ Juan C. Correa. A new estimator of entropy. Communiations in Statistis - Theory and Methods, 24:2439�2449,

1995.

[12℄ Jose A. Costa and Alfred O. Hero. Geodesi entropi graphs for dimension and entropy estimation in manifold

learning. IEEE Transations on Signal Proessing, 52:2210�2221, 2004.

[13℄ Timothee Cour, Stella Yu, and Jianbo Shi. Normalized ut segmentation ode. Copyright 2004 University of

Pennsylvania, Computer and Information Siene Department.

[14℄ Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley and Sons, New York, USA,

1991.

[15℄ Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. Fetal eletroardiogram extration by soure subspae

separation. In IEEE SP/Athos Workshop on Higher-Order Statistis, pages 134�138, 1995.

[16℄ Nader Ebrahimi, Kurt P�ughoeft, and Ehsan S. Soo�. Two measures of sample entropy. Statistis and Probability

Letters, 20:225�234, 1994.

[17℄ Jan Eriksson. Complex random vetors and ICA models: Identi�ability, uniqueness and separability. IEEE Trans-

ations on Information Theory, 52(3), 2006.

[18℄ Bert Van Es. Estimating funtionals related to a density by a lass of statistis based on spaings. Sandinavian

Journal of Statistis, 19:61�72, 1992.

[19℄ Kai-Tai Fang, Samuel Kotz, and Kai Wang Ng. Symmetri multivariate and related distributions. Chapman and

Hall, 1990.

[20℄ Peter Frankl and Hiroshi Maehara. The Johnson-Lindenstrauss Lemma and the spheriity of some graphs. Journal

of Combinatorial Theory Series A, 44(3):355 � 362, 1987.

[21℄ Wayne A. Fuller. Introdution to Statistial Time Series. Wiley-Intersiene, 1995.

49



[22℄ Sandra Gaiÿer, Martin Ruppert, and Friedrih Shmid. A multivariate version of Hoe�ding's phi-square. Journal of

Multivariate Analysis, 101:2571�2586, 2010.

[23℄ M. N. Goria, Nikolai N. Leonenko, V. V. Mergel, and P. L. Novi Inverardi. A new lass of random vetor entropy

estimators and its appliations in testing statistial hypotheses. Journal of Nonparametri Statistis, 17:277�297,

2005.

[24℄ Arthur Gretton, Karsten M. Borgwardt, Malte J. Rash, Bernhard Shölkopf, and Alexander Smola. A kernel

two-sample test. Journal of Mahine Learning Researh, 13:723�773, 2012.

[25℄ Arthur Gretton, Olivier Bousquet, Alexander Smola, and Bernhard Shölkopf. Measuring statistial dependene

with Hilbert-Shmidt norms. In International Conferene on Algorithmi Learnng Theory (ALT), pages 63�78,

2005.

[26℄ Godfrey H. Hardy and Srinivasa I. Ramanujan. Asymptoti formulae in ombinatory analysis. Proeedings of the

London Mathematil Soiety, 17(1):75�115, 1918.

[27℄ Jan Havrda and Franti�sek Charvát. Quanti�ation method of lassi�ation proesses. onept of strutural α-entropy.
Kybernetika, 3:30�35, 1967.

[28℄ Nadine Hilgert and Bruno Portier. Strong uniform onsisteny and asymptoti normality of a kernel based error

density estimator in funtional autoregressive models. Statistial Inferene for Stohasti Proesses, 15(2):105�125,

2012.

[29℄ W. Hoe�ding. Massstabinvariante korrelationstheorie. Shriften des Mathematishen Seminars und des Instituts für

Angewandte Mathematik der Universität Berlin, 5:181�233, 1940.

[30℄ Harold Hotelling. Analysis of a omplex of statistial variables into prinipal omponents. Journal of Eduational

Psyhology, 24:417�441, 1933.

[31℄ Mar Van Hulle. Edgeworth approximation of multivariate di�erential entropy. Neural Computation, 17:1903�1910,

2005.

[32℄ Aapo Hyvärinen. Independent omponent analysis for time-dependent stohasti proesses. In International Con-

ferene on Arti�ial Neural Networks (ICANN), pages 541�546, 1998.

[33℄ Aapo Hyvärinen and Erkki Oja. A fast �xed-point algorithm for independent omponent analysis. Neural Compu-

tation, 9(7):1483�1492, 1997.

[34℄ Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the urse of dimensionality.

In ACM Symposium on Theory of Computing, 1998, pages 604�613.

[35℄ Miguel Jerez, Jose Casals, and Sonia Sotoa. Signal Extration for Linear State-Spae Models: Inluding a free

MATLAB Toolbox for Time Series Modeling and Deomposition. LAP LAMBERT Aademi Publishing, 2011.

[36℄ William B. Johnson and Joram Lindenstrauss. Extensions of Lipshitz maps into a Hilbert spae. Contemporary

Mathematis, 26:189�206, 1984.

[37℄ Christian Jutten and Jeanny Hérault. Blind separation of soures: An adaptive algorithm based on neuromimeti

arhiteture. Signal Proessing, 24:1�10, 1991.

[38℄ Christian Jutten and Juha Karhunen. Advanes in blind soure separation (BSS) and independent omponent

analysis (ICA) for nonlinear systems. International Journal of Neural Systems, 14(5):267�292, 2004.

[39℄ K. Rao Kadiyala and Sune Karlsson. Numerial methods for estimation and inferene in bayesian VAR-models.

Journal of Applied Eonometris, 12:99�132, 1997.

[40℄ Sergey Kirshner and Barnabás Pózos. ICA and ISA using Shweizer-Wol� measure of dependene. In International

Conferene on Mahine Learning (ICML), pages 464�471, 2008.

[41℄ L. F. Kozahenko and Nikolai N. Leonenko. A statistial estimate for the entropy of a random vetor. Problems of

Information Transmission, 23:9�16, 1987.

50



[42℄ Solomon Kullbak and Rihard Leibler. On information and su�ieny. Annals of Mathematial Statistis, 22(1):79�

86, 1951.

[43℄ Jan Kybi. High-dimensional mutual information estimation for image registration. In International Conferene on

Image Proessing (ICIP), pages 1779�1782, 2004.

[44℄ Russell H. Lambert. Multihannel Blind Deonvolution: FIR matrix algebra and separation of multipath mixtures.

PhD thesis, University of Southern California, 1996.

[45℄ Nikolai Leonenko, Lu Pronzato, and Vippal Savani. A lass of Rényi information estimators for multidimensional

densities. Annals of Statistis, 36(5):2153�2182, 2008.

[46℄ Ping Li, Trevor J. Hastie, and Kenneth W. Hastie. Very sparse random projetions. In International Conferene on

Knowledge Disovery and Data Mining (KDD), pages 287�296, 2006.

[47℄ Edward Norton Lorenz. Deterministi nonperiodi �ow. Journal of Atmospheri Sienes, 20:130�141, 1963.

[48℄ Ji�rí Matou�sek. On variants of the Johnson-Lindenstrauss lemma. Random Strutures and Algorithms, 33(2):142�156,

2008.

[49℄ Erik Miller. A new lass of entropy estimators for multi-dimensional densities. In International Conferene on

Aoustis, Speeh, and Signal Proessing (ICASSP), pages 297�300, 2003.

[50℄ Roger B. Nelsen. An Introdution to Copulas (Springer Series in Statistis). Springer, 2006.

[51℄ Arnold Neumaier and Tapio Shneider. Estimation of parameters and eigenmodes of multivariate autoregressive

models. ACM Transations on Mathematial Software, 27(1):27�57, 2001.

[52℄ Andrew Y. Ng, Mihael I. Jordan, and Yair Weiss. On spetral lustering: analysis and an algorithm. In Advanes

in Neural Information Proessing Systems (NIPS), pages 849�856, 2002.

[53℄ Hadi Alizadeh Noughabi and Naser Reza Arghami. A new estimator of entropy. Journal of Iranian Statistial

Soiety, 9:53�64, 2010.

[54℄ Umut Ozertem, Ismail Uysal, and Deniz Erdogmus. Continuously di�erentiable sample-spaing entropy estimation.

IEEE Transations on Neural Networks, 19:1978�1984, 2008.

[55℄ Mihael S. Pedersen, Jan Larsen, Ulrik Kjems, and Luas C. Parra. A survey of onvolutive blind soure separation

methods. In Springer Handbook of Speeh Proessing. Springer, 2007.

[56℄ Fernando Pérez-Cruz. Estimation of information theoreti measures for ontinuous random variables. In Advanes

in Neural Information Proessing Systems (NIPS), pages 1257�1264, 2008.

[57℄ Barnabás Pózos, Zoubin Ghahramani, and Je� Shneider. Copula-based kernel dependeny measures. In Interna-

tional Conferene on Mahine Learning (ICML), 2012.

[58℄ Barnabás Pózos and András L®rinz. Identi�ation of reurrent neural networks by Bayesian interrogation teh-

niques. Journal of Mahine Learning Researh, 10:515�554, 2009.

[59℄ Barnabás Pózos, Zoltán Szabó, Melinda Kiszlinger, and András L®rinz. Independent proess analysis without

a priori dimensional information. In International Conferene on Independent Component Analysis and Signal

Separation (ICA), pages 252�259, 2007.

[60℄ Barnabás Pózos, Bálint Takás, and András L®rinz. Independent subspae analysis on innovations. In European

Conferene on Mahine Learning (ECML), pages 698�706, 2005.

[61℄ Barnabás Pózos, Liang Xiong, Dougal Sutherland, and Je� Shneider. Support distribution mahines. Tehnial

report, Carnegie Mellon University, 2012. http://arxiv.org/abs/1202.0302.

[62℄ Dávid Pál, Barnabás Pózos, and Csaba Szepesvári. Estimation of Rényi entropy and mutual information based on

generalized nearest-neighbor graphs. In Neural Information Proessing Systems (NIPS), pages 1849�1857, 2011.

51



[63℄ Barnabás Pózos and András L®rinz. Independent subspae analysis using geodesi spanning trees. In International

Conferene on Mahine Learning (ICML), pages 673�680, 2005.

[64℄ Barnabás Pózos and András L®rinz. Independent subspae analysis using k-nearest neighborhood estimates. In

International Conferene on Arti�ial Neural Networks (ICANN), pages 163�168, 2005.

[65℄ Barnabás Pózos and Je� Shneider. On the estimation of α-divergenes. In International onferene on Arti�ial

Intelligene and Statistis (AISTATS), pages 609�617, 2011.

[66℄ Barnabás Pózos, Zoltán Szabó, and Je� Shneider. Nonparametri divergene estimators for independent subspae

analysis. In European Signal Proessing Conferene (EUSIPCO), pages 1849�1853, 2011.

[67℄ Barnabás Pózos, Liang Xiong, and Je� Shneider. Nonparametri divergene: Estimation with appliations to

mahine learning on distributions. In Unertainty in Arti�ial Intelligene (UAI), pages 599�608, 2011.

[68℄ Ravikiran Rajagopal and Lee C. Potter. Multivariate MIMO FIR inverses. IEEE Transations on Image Proessing,

12:458�465, 2003.

[69℄ Reuven Y. Rubinstein and Dirk P. Kroese. The Cross-Entropy Method. Springer, 2004.

[70℄ Alfréd Rényi. On measures of information and entropy. In Proeedings of the 4th Berkeley Symposium on Mathe-

matis, Statistis and Probability, pages 547�561, 1961.

[71℄ Tapio Shneider and Arnold Neumaier. Algorithm 808: AR�t - a Matlab pakage for the estimation of parameters

and eigenmodes of multivariate autoregressive models. ACM Transations on Mathematial Software, 27(1):58�65,

2001.

[72℄ B. Shweizer and E. F. Wol�. On nonparametri measures of dependene for random variables. The Annals of

Statistis, 9:879�885, 1981.

[73℄ Claude E. Shannon. A mathematial theory of ommuniation. Bell System Tehnial Journal, 27(3):379�423, 1948.

[74℄ Jianbo Shi and Jitendra Malik. Normalized uts and image segmentation. IEEE Transations on Pattern Analysis

and Mahine Intelligene, 22(8):888�905, 2000.

[75℄ Harshinder Singh, Neeraj Misra, Vladimir Hnizdo, Adam Fedorowiz, and Eugene Demhuk. Nearest neighbor

estimates of entropy. Amerian Journal of Mathematial and Management Sienes, 23:301�321, 2003.

[76℄ Kumar Sriharan and Alfred. O. Hero. Weighted k-NN graphs for Rényi entropy estimation in high dimensions. In

IEEE Workshop on Statistial Signal Proessing (SSP), pages 773�776, 2011.

[77℄ Zoltán Szabó. Complete blind subspae deonvolution. In International Conferene on Independent Component

Analysis and Signal Separation (ICA), pages 138�145, 2009.

[78℄ Zoltán Szabó. Autoregressive independent proess analysis with missing observations. In European Symposium on

Arti�ial Neural Networks, Computational Intelligene and Mahine Learning (ESANN), pages 159�164, 2010.

[79℄ Zoltán Szabó and András L®rinz. Towards independent subspae analysis in ontrolled dynamial systems. In ICA

Researh Network International Workshop (ICARN), pages 9�12, 2008.

[80℄ Zoltán Szabó and András L®rinz. Complex independent proess analysis. Ata Cybernetia, 19:177�190, 2009.

[81℄ Zoltán Szabó and András L®rinz. Fast parallel estimation of high dimensional information theoretial quantities

with low dimensional random projetion ensembles. In International Conferene on Independent Component Analysis

and Signal Separation (ICA), pages 146�153, 2009.

[82℄ Zoltán Szabó and András L®rinz. Distributed high dimensional information theoretial image registration via

random projetions. Digital Signal Proessing, 22(6):894�902, 2012.

[83℄ Zoltán Szabó and Barnabás Pózos. Nonparametri independent proess analysis. In European Signal Proessing

Conferene (EUSIPCO), pages 1718�1722, 2011.

52



[84℄ Zoltán Szabó, Barnabás Pózos, and András L®rinz. Cross-entropy optimization for independent proess analysis.

In International Conferene on Independent Component Analysis and Blind Soure Separation (ICA), pages 909�916,

2006.

[85℄ Zoltán Szabó, Barnabás Pózos, and András L®rinz. Underomplete blind subspae deonvolution. Journal of

Mahine Learning Researh, 8:1063�1095, 2007.

[86℄ Zoltán Szabó, Barnabás Pózos, and András L®rinz. Underomplete blind subspae deonvolution via linear pre-

dition. In European Conferene on Mahine Learning (ECML), pages 740�747, 2007.

[87℄ Zoltán Szabó, Barnabás Pózos, and András L®rinz. Auto-regressive independent proess analysis without ombi-

natorial e�orts. Pattern Analysis and Appliations, 13:1�13, 2010.

[88℄ Zoltán Szabó, Barnabás Pózos, and András L®rinz. Separation theorem for independent subspae analysis and its

onsequenes. Pattern Reognition, 45:1782�1791, 2012.

[89℄ Zoltán Szabó, Barnabás Pózos, Gábor Szirtes, and András L®rinz. Post nonlinear independent subspae analysis.

In International Conferene on Arti�ial Neural Networks (ICANN), pages 677�686, 2007.

[90℄ Zoltán Szabó and András L®rinz. Real and omplex independent subspae analysis by generalized variane. In

ICA Researh Network International Workshop (ICARN), pages 85�88, 2006.

[91℄ Anisse Taleb and Christian Jutten. Soure separation in post-nonlinear mixtures. IEEE Transations on Signal

Proessing, 10(47):2807�2820, 1999.

[92℄ Fabian J. Theis. Blind signal separation into groups of dependent signals using joint blok diagonalization. In IEEE

International Symposium on Ciruits and Systems (ISCAS), pages 5878�5881, 2005.

[93℄ Fabian J. Theis. Towards a general independent subspae analysis. In Neural Information Proessing Systems

(NIPS), pages 1361�1368, 2007.

[94℄ Constantino Tsallis. Possible generalization of Boltzmann-Gibbs statistis. Journal of Statistial Physis, 52:479�487,

1988.

[95℄ James V. Uspensky. Asymptoti formulae for numerial funtions whih our in the theory of partitions. Bulletin

of the Russian Aademy of Sienes, 14(6):199�218, 1920.

[96℄ Oldrih Vasiek. A test for normality based on sample entropy. Journal of the Royal Statistial Soiety, Series B,

38:54�59, 1976.

[97℄ T. Villmann and S. Haase. Mathematial aspets of divergene based vetor quantization using Fréhet-derivatives.

Tehnial report, University of Applied Sienes Mittweida, 2010.

[98℄ Ulrike von Luxburg. A tutorial on spetral lustering. Statistis and Computing, 17(4), 2007.

[99℄ Mark P. Wahowiak, Renata Smolikova, Georgia D. Tourassi, and Adel S. Elmaghraby. Estimation of generalized

entropies with sample spaing. Pattern Analysis and Appliations, 8:95�101, 2005.

[100℄ Quing Wang, Sanjeev R. Kulkarni, and Sergio Verdú. Divergene estimation for multidimensional densities via

k-nearest-neighbor distanes. IEEE Transations on Information Theory, 55:2392�2405, 2009.

[101℄ Quing Wang, Sanjeev R. Kulkarni, and Sergio Verdú. Universal estimation of information measures for analog

soures. Foundations And Trends In Communiations And Information Theory, 5:265�353, 2009.

[102℄ Donghui Yan, Ling Huang, and Mihael I. Jordan. Fast approximate spetral lustering. In International Conferene

on Knowledge Disovery and Data Mining (KDD), pages 907�916, 2009.

[103℄ Joseph E. Yukih. Probability theory of lassial Eulidean optimization problems. Leture Notes in Mathematis,

1675, 1998.

[104℄ Andreas Ziehe, Motoaki Kawanabe, Stefan Harmeling, and Klaus-Robert Müller. Blind separation of postnonlinear

mixtures using linearizing transformations and temporal deorrelation. Journal of Mahine Learning Researh,

4:1319�1338, 2003.

53


