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1 Introduction

Since the pioneering work of Shannon [65], entropy, mutual information, divergence measures and their extensions have
found a broad range of applications in many areas of machine learning. Entropies provide a natural notion to quantify
the uncertainty of random variables, mutual information type indices measure the dependence among its arguments,
divergences o�er e�cient tools to de�ne the `distance' of probability measures. Particularly, in the classical Shannon
case, these three concepts form a gradually widening chain: entropy is equal to the self mutual information of a random
variable, mutual information is identical to the divergence of the joint distribution and the product of the marginals [12].
Applications of Shannon entropy, -mutual information, -divergence and their generalizations cover, for example, (i) feature
selection, (ii) clustering, (iii) independent component/subspace analysis, (iii) image registration, (iv) boosting, (v) optimal
experiment design, (vi) causality detection, (vii) hypothesis testing, (viii) Bayesian active learning, (ix) structure learning
in graphical models, (x) region-of-interest tracking, among many others. For an excellent review on the topic, the reader
is referred to [6, 90, 88, 5, 49].

Independent component analysis (ICA) [33, 9, 10] a central problem of signal processing and its generalizations can
be formulated as optimization problems of information theoretical objectives. One can think of ICA as a cocktail party
problem: we have some speakers (sources) and some microphones (sensors), which measure the mixed signals emitted by
the sources. The task is to estimate the original sources from the mixed observations only. Traditional ICA algorithms
are one-dimensional in the sense that all sources are assumed to be independent real valued random variables. However,
many important applications underpin the relevance of considering extensions of ICA, such as the independent subspace
analysis (ISA) problem [8, 13]. In ISA, the independent sources can be multidimensional: we have a cocktail-party, where
more than one group of musicians are playing at the party. Successful applications of ISA include (i) the processing of
EEG-fMRI, ECG data and natural images, (ii) gene expression analysis, (iii) learning of face view-subspaces, (iv) motion
segmentation, (v) single-channel source separation, (vi) texture classi�cation, (vii) action recognition in movies.

One of the most relevant and fundamental hypotheses of the ICA research is the ISA separation principle [8]: the ISA
task can be solved by ICA followed by clustering of the ICA elements. This principle (i) forms the basis of the state-
of-the-art ISA algorithms, (ii) can be used to design algorithms that scale well and e�ciently estimate the dimensions
of the hidden sources, (iii) has been recently proved [77] and (iv) can be extended to di�erent linear-, controlled-, post
nonlinear-, complex valued-, partially observed systems, as well as to systems with nonparametric source dynamics. For
a recent review on the topic, see [80].

Although there exist many exciting applications of information theoretical measures, to the best of our knowledge,
available packages in this domain focus on (i) discrete variables, or (ii) quite specialized applications and information
theoretical estimation methods. Our goal is to �ll in this serious gap by coming up with a (i) highly modular, (ii) free
and open source, (iii) multi-platform toolbox, the ITE (information theoretical estimators) package, which

1. is capable of estimating many di�erent variants of entropy, mutual information and divergence measures:

• Shannon-, Rényi-, Tsallis entropy; generalized variance (GV), kernel canonical correlation analysis (KCCA),
kernel generalized variance (KGV), Hilbert-Schmidt independence criterion (HSIC), Shannon-, L2-, Rényi-,
Tsallis mutual information, copula-based kernel dependency, multivariate version of Hoe�ding's Φ, Schweizer-
Wol�'s σ and κ; complex variants of entropy and mutual information; L2-, Rényi-, Tsallis divergence; Hellinger-,
Bhattacharyya distance; maximum mean discrepancy (MMD), and J-distance based on

• nonparametric methods1: k-nearest neighbors, generalized k-nearest neighbors, weighted k-nearest neighbors,
minimum spanning trees, geodesic spanning forests, random projection, ensemble methods, kernel techniques.

2. o�ers a simple and uni�ed framework to

(a) easily construct new estimators from existing ones or from scratch, and

(b) transparently use the obtained estimators in information theoretical optimization problems.

3. with a prototype application in ISA and its extensions including

• 6 di�erent ISA objectives,

• 4 optimization methods: (i) handling known and unknown subspace dimensions as well, with (ii) further
objective-speci�c accelerations,

1It is highly advantageous to apply nonparametric approaches to estimate information theoretical quantities. The bottleneck of the 'opposite'
plug-in type methods, which estimate the underlying density and then plug it in into the appropriate integral formula, is that the unknown
densities are nuisance parameters. As a result, plug-in type estimators scale poorly as the dimension is increasing.
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• 5 extended problem directions: (i) di�erent linear-, (ii) controlled-, (iii) post nonlinear-, (iii) complex valued-,
(iv) partially observed models, (v) as well as systems with nonparametric source dynamics; which can be used
in combinations as well.

The technical details of the ITE package are as follows:

• Author: Zoltán Szabó.

� Homepage: http://nipg.inf.elte.hu/szzoli
� Email: szzoli@cs.elte.hu
� A�liation: Eötvös Loránd University, Faculty of Informatics, Pázmány Péter sétány 1/C, Budapest, H-1117,
Hungary.

• Documentation of the source: the source code of ITE has been enriched with numerous comments, examples,
and pointers where the interested user can �nd further mathematical details about the embodied techniques.

• License (GNU GPLv3 or later): ITE is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at
your option) any later version. This software is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License along with ITE. If not, see <http://www.gnu.org/licenses/>.

• Citing: If you use the ITE toolbox in your work, please cite the papers [77, 80] (.bib in Appendix D).

• Platforms: The ITE package has been extensively tested on Windows and Linux. However, since it is made of
standard Matlab/Octave and C++ �les, it is expected to work on alternative platforms as well.

• Environments: Matlab2, Octave3.

• Requirements: The ITE package is self-contained, it only needs a Matlab or an Octave environment with standard
toolboxes:

� Matlab: Image Processing, Optimization, Statistics.

� Octave4: Image Processing (image), Statistics (statistics), Input/Output (io, required by statistics), Ordinary
Di�erential Equations (odepkg), Bindings to the GNU Scienti�c Library (gsl), ANN wrapper (ann).

• Comments, feedbacks: are welcome.

• Homepage of the ITE toolbox: https://bitbucket.org/szzoli/ite/

The remainder of this document is organized as follows. Section 2 is about the installation of the ITE package. Section 3
focuses on the estimation of information theoretical quantities (entropy, mutual information, divergence measures) and
their realization in ITE. In Section 4, we present an application of Section 3 included in the ITE toolbox. The application
considers the extension of independent subspace analysis (ISA, independent component analysis with multidimensional
sources) to di�erent linear-, controlled-, post nonlinear-, complex valued-, partially observed problems, as well as problems
dealing with nonparametric source dynamics, i.e., the independent process analysis (IPA) problem family. Section 5
is about the organization of the directories of the ITE toolbox. Abbreviations of the paper are listed in Appendix A
(Table 21). Functions with Octave-speci�c adaptations are summarized in Appendix B (Table 22). A brief summary
(lookup table) of the underlying entropy, mutual information and divergence computations can be found in Appendix C.
Citing information of the ITE package is provided in Appendix D.

2http://www.mathworks.com/products/matlab/
3http://www.gnu.org/software/octave/
4See http://octave.sourceforge.net/packages.php.
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2 Installation

This section is about (i) the installation of the ITE toolbox, and (ii) the external packages, dedicated solvers embedded
in the ITE package. The purpose of this inclusion is twofold:

• to further increase the e�ciency of certain subtasks to be solved (e.g., k-nearest neighbor search, �nding minimum
spanning trees, some subtasks revived by the IPA separation principles (see Section 4.1)),

• to provide both purely Matlab/Octave implementations, and specialized (often faster) non-Matlab/-Octave solutions
that can be called from Matlab/Octave.

The core of the ITE toolbox has been written in Matlab, as far it was possible in an Octave compatible way. The particular-
ities of Octave has been taken into account by adapting the code to the actual environment (Matlab/Octave). The working
environment can be queried (e.g., in case of extending the package it is also useful) by the working_environment_Matlab.m
function included in ITE. Adaptations has been carried out in the functions listed in Appendix B (Table 22). The func-
tionalities extended by the external packages are also available in both environments (Table 1).

Here, a short description of the embedded/downloaded packages (directory 'shared/embedded', 'shared/downloaded')
is given:

1. fastICA (directory 'shared/embedded/FastICA'; version 2.5):

• URL: http://research.ics.tkk.fi/ica/fastica/
• License: GNU GPLv2 or later.
• Solver: ICA (independent component analysis).
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: By commenting out the g_FastICA_interrupt variable in fpica.m, the fastica.m function can be
used in Octave, too. The provided fastICA code in the ITE toolbox contains this modi�cation.

2. Complex fastICA (directory 'shared/embedded/CFastICA')

• URL: http://www.cs.helsinki.fi/u/ebingham/software.html, http://users.ics.aalto.fi/ella/

publications/cfastica_public.m

• License: GNU GPLv2 or later.
• Solver: complex ICA.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.

3. ANN (approximate nearest neighbor) Matlab wrapper (directory 'shared/embedded/ann_wrapperM'; ver-
sion 'Mar2012'):

• URL: http://www.wisdom.weizmann.ac.il/~bagon/matlab.html, http://www.wisdom.weizmann.ac.il/

~bagon/matlab_code/ann_wrapper_Mar2012.tar.gz

• License: GNU LGPLv3.
• Solver: approximate nearest neighbor computation.
• Installation: Follow the instructions in the ANN wrapper package (README.txt: INSTALLATION) till
'ann_class_compile'. Note: If you use a more recent C++ compiler (e.g., g++ on Linux), you have to include
the following 2 lines into the original code to be able to compile the source:
(a) '#include <cstdlib>' to 'ANNx.h'
(b) '#include <cstring>' to 'kd_tree.h'
The provided ANN code in the ITE package contains these modi�cations.

• Environment: Matlab, Octave5.
• Note: fast nearest neighbor alternative of knnsearch ∈ Matlab: Statistics Toolbox.

4. MatlabBGL (directory 'shared/embedded/MatlabBGL', version 4.0)

5At the time of writing this paper, the Octave ANN wrapper (http://octave.sourceforge.net/ann/index.html, version 1.0.2) supports
2.9.12 ≤ Octave < 3.4.0. According to our experiences, however the ann wrapper can also be used for higher versions of Octave provided that (i)
a new swig package (www.swig.org/) is used (>=2.0.5), (ii) a new 'SWIG=swig' line is inserted in src/ann/bindings/Make�le (the ITE package
contains the modi�ed make�le), and (iii) the row containing 'typedef OCTAVE_IDX_TYPE octave_idx_type;' (in '.../octave/con�g.h') is
commented out for the time of 'make'-ing.
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• URL: https://github.com/dgleich/matlab-bgl, http://www.mathworks.com/matlabcentral/

fileexchange/10922

• License: 2-clause BSD, and GNU GPLv2 or later.
• Solver: minimum spanning trees: Prim and Kruskal algorithm.
• Installation: Add it with subfolders to your Matlab/Octave PATH. Note:

� The package includes precompiled MEX �les for Windows (32-bit and 64-bit), and Linux (32-bit and 64-bit
for Matlab 2006b+), and MacOSX (32-bit Intel and 32-bit PPC).

� The package includes source code to compile on other platforms as well.
• Environment: Matlab, Octave6.
• Note: alternative of '14) = pmtk3' in �nding minimum spanning trees.

5. FastKICA (directory 'shared/embedded/FastKICA', version 1.0):

• URL: http://people.kyb.tuebingen.mpg.de/arthur/fastkica.htm
• License: GNU GPL v2 or later.
• Solver: HSIC (Hilbert-Schmidt independence criterion) mutual information estimator.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: one can extend the implementation of HSIC to measure the dependence of dm-dimensional variables,
too. The ITE toolbox contains this modi�cation.

6. NCut (Normalized Cut, directory 'shared/embedded/NCut'; version 9):

• URL: http://www.seas.upenn.edu/~timothee/software/ncut/ncut.html, http://www.seas.upenn.edu/
~timothee/software/ncut/Ncut_9.zip

• License: GNU GPLv3.
• Solver: spectral clustering, �xed number of groups.
• Installation: Run compileDir_simple.m from Matlab to the provided directory of functions.
• Environment: Matlab.
• Note: the package is a fast alternative of '11) = spectral clustering'.

7. sqdistance (directory 'shared/embedded/sqdistance')

• URL: http://www.mathworks.com/matlabcentral/fileexchange/24599-pairwise-distance-matrix/,
http://www.mathworks.com/matlabcentral/fileexchange/24599-pairwise-distance-matrix?

download=true

• License: 2-clause BSD.
• Solver: fast pairwise distance computation.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: compares favourably to the Matlab/Octave function pdist.

8. TCA (directory 'shared/embedded/TCA'; version 1.0):

• URL: http://www.di.ens.fr/~fbach/tca/index.htm, http://www.di.ens.fr/~fbach/tca/tca1_0.tar.

gz

• License: GNU GPLv2 or later.
• Solver: KCCA (kernel canonical correlation analysis) / KGV (kernel generalized variance) estimator, incom-
plete Cholesky decomposition.

• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: Incomplete Cholesky factorization can be carried out by the Matlab/Octave function chol_gauss.m.
One can also compile the included chol_gauss.c to attain improved performance. Functions provided in the
ITE toolbox contain extensions of the KCCA and KGV indices to measure the dependence of dm-dimensional
variables. The computations have also been accelerated in ITE by '7) = sqdistance'.

9. Weighted kNN (kNN: k-nearest neighbor; directory 'shared/embedded/weightedkNN' and the core of
HRenyi_weightedkNN_estimation.m):

6With some trick, the MatlabBGL works on Octave, see https://answers.launchpad.net/matlab-bgl/+question/48686.
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• URL: http://www-personal.umich.edu/~kksreddy/
• License: GNU GPLv3 or later.
• Solver: Rényi entropy estimator based on the weighted k-nearest neighbor method.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: in the weighted kNN technique the weights are optimized. Since Matlab and Octave rely on di�erent
optimization engines, one has to adapt the weight estimation procedure to Octave. The calculateweight.m

function in ITE contains this modi�cation.

10. E4 (directory 'shared/embedded/E4'):

• URL: http://www.ucm.es/info/icae/e4/, http://www.ucm.es/info/icae/e4/downfiles/E4.zip
• License: GNU GPLv2 or later.
• Solver: AR (autoregressive) �t.
• Installation: Add it with subfolders to your Matlab/Octave PATH7.
• Environment: Matlab, Octave.
• Note: alternative of '13) = AR�t' in AR identi�cation.

11. spectral clustering (directory 'shared/embedded/sp_clustering'):

• URL: http://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-efficient-

spectral-clustering

• License: 2-clause BSD.
• Solver: spectral clustering.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: the package is a purely Matlab/Octave alternative of '6)=NCut'. It is advisable to alter the eigensystem
computation in the SpectralClustering.m function to work stably in Octave; the modi�cation is included in
the ITE toolbox and is activated in case of Octave environment.

12. clinep (directory 'shared/embedded/clinep'):

• URL: http://www.mathworks.com/matlabcentral/fileexchange/8597-plot-3d-color-line/content/

clinep.m

• License: 2-clause BSD.
• Solver: Plots a 3D line with color encoding along the length using the patch function.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: (i) calling of the cylinder function (in clinep.m) has to modi�ed somewhat to work in Octave, and (ii)
since 'gnuplot (as of v4.2) only supports 3D �lled triangular patches' one has to use the �tk graphics toolkit in
Octave for drawing. The included cline.m code in the ITE package contains these modi�cations.

13. AR�t (directory 'shared/downloaded/AR�t', version 'March 20, 2011')

• URL: http://www.gps.caltech.edu/~tapio/arfit/, http://www.gps.caltech.edu/~tapio/arfit/

arfit.zip.
• License: ACM.
• Solver: AR identi�cation.
• Installation: Download, extract and add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: alternative of '10) = E4' in AR identi�cation.

14. pmtk3 (directory 'shared/embedded/pmtk3', version 'Jan 2012')

• URL: http://code.google.com/p/pmtk3, http://code.google.com/p/pmtk3/downloads/detail?name=

pmtk3-3jan11.zip&can=2&q=.
• License: MIT.
• Solver: minimum spanning trees: Prim algorithm.

7In Octave, this step results in a `warning: function .../shared/embedded/E4/vech.m shadows a core library function'; it is OK, the two
functions compute the same quantity.
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• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: purely Matlab/Octave alternative of '4) = MatlabBGL' in �nding minimum spanning trees.

15. knn (directory 'shared/embedded/knn', version 'Nov 02, 2010')

• URL: http://www.mathworks.com/matlabcentral/fileexchange/28897-k-nearest-neighbor-search,
http://www.mathworks.com/matlabcentral/fileexchange/28897-k-nearest-neighbor-search?

download=true

• License: 2-clause BSD.
• Solver: kNN search.
• Installation: Run the included build command to compile the partial sorting function top.cpp. Add it with
subfolders to your Matlab/Octave PATH.

• Environment: Matlab, Octave.
• Note: Alternative of '3)=ANN' in �nding k-nearest neighbors.

16. SWICA (directory 'shared/embedded/SWICA')

• URL: http://www.stat.purdue.edu/~skirshne/SWICA, http://www.stat.purdue.edu/~skirshne/SWICA/
swica.tar.gz

• License: 3-clause BSD.
• Solver: Schweizer-Wol�'s σ and κ estimation.
• Installation: Add it with subfolders to your Matlab/Octave PATH.
• Environment: Matlab, Octave.
• Note: one can also compile the included SW_kappa.cpp and SW_sigma.cpp functions to further accelerate
computations (see 'build_SWICA.m').

A short summary of the packages can be found in Table 1. To ease installation, the ITE package contains an installation
script, ITE_install.m. A typical usage is to cd to the directory 'code' and call ITE_install(pwd). Running the script
from Matlab/Octave, it (i) adds the main ITE directory with subfolders to the Matlab/Octave PATH, (ii) downloads
and extracts the AR�t package, and (iii) compiles the embedded ANN, NCut, TCA, SWICA, knn packages and a .cpp
acceleration of the Hoe�ding's Φ [see Eq. (17)] and Edgeworth expansion based entropy [see Eq.(109)] computations.8

The ITE_install.m script automatically detects the working environment (Matlab/Octave) and performs the installation
accordingly, for example, it deletes the ann wrapper not suitable for the current working environment. The output of a
successful installation in Matlab is given below (the Octave output is similar):

Example 1 (ITE installation (output; with compilation))

>> ITE_install(pwd); %after cd-ing to the code directory

Installation: started.

We are working in Matlab environment. => ann_wrapper for Octave: deleted.

ARfit package: downloading, extraction: started.

ARfit package: downloading, extraction: ready.

ITE directory: added with subfolders to the Matlab PATH.

ANN compilation: started.

ANN compilation: ready.

NCut compilation: started.

NCut compilation: ready.

TCA (chol_gauss.c) compilation: started.

TCA (chol_gauss.c) compilation: ready.

SWICA (SW_kappa.cpp, SW_sigma.cpp) compilation: started.

SWICA (SW_kappa.cpp, SW_sigma.cpp) compilation: ready.

Hoeffding_term1.cpp compilation: started.

Hoeffding_term1.cpp compilation: ready.

Edgeworth_t1_t2_t3.cpp compilation: started.

Edgeworth_t1_t2_t3.cpp compilation: ready.

8The ITE package also o�ers purely Matlab/Octave implementations for the computation of Hoe�ding's Φ and Edgeworth expansion based
entropy approximation. Without compilation, these Matlab/Octave implementations are evoked.
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Task Package Written in Environment Directory

ICA fastICA Matlab Matlab, Octave shared/embedded/FastICA
complex ICA complex fastICA Matlab Matlab, Octave shared/embedded/CFastICA
kNN search ANN C++ Matlab shared/embedded/ann_wrapperMa

kNN search ANN C++ Octaveb shared/embedded/ann_wrapperOa

Prim-, Kruskal algorithm MatlabBGL C++ Matlab, Octavec shared/embedded/MatlabBGL
HSIC estimation FastKICA Matlab Matlab, Octave shared/embedded/FastKICA
spectral clustering NCut C++ Matlab shared/embedded/NCut
fast pairwise distance computation sqdistance Matlab Matlab, Octave shared/embedded/sqdistance
KCCA, KGV TCA Matlab, C Matlab, Octave shared/embedded/TCA
Rényi entropy via weighted kNNs weighted kNN Matlab Matlab, Octave shared/embedded/weightedkNN
AR �t E4 Matlab Matlab, Octave shared/embedded/E4
spectral clustering spectral clustering Matlab Matlab, Octave shared/embedded/sp_clustering
trajectory plot clinep Matlab Matlab, Octave shared/embedded/clinep
AR �t AR�t Matlab Matlab, Octave shared/downloaded/AR�t
Prim algorithm pmtk3 Matlab Matlab, Octave shared/embedded/pmtk3
kNN search knn Matlab, C++ Matlab, Octave shared/embedded/knn
Schweizer-Wol�'s σ and κ SWICA Matlab, C++ Matlab, Octave shared/embedded/SWICA

Table 1: External, dedicated packages increasing the e�ciency of ITE.

aIn `ann_wrapperM' `M' stands for Matlab, in `ann_wrapperO' `O' denotes Octave.
bSee footnote 5.
cSee footnote 6.

knn (top.cpp) compilation: started.

knn (top.cpp) compilation: ready.

-------------------

Installation tests:

ANN quick test: successful.

NCut quick test: successful.

ARfit quick test: successful.

knn quick test: successful.

3 Estimation of Information Theoretical Quantities

In this section we focus on the estimation of information theoretical quantities. Particularly, in the sequel, the underlying
idea how the estimators are implemented in ITE are detailed, accompanied with de�nitions, numerous examples and
extension possibilities/instructions.

The ITE package supports the estimation of many di�erent variants of entropy, mutual information and divergence
measures:

1. From construction point of view, we distinguish two types of estimators in ITE: base (Section 3.1) and meta (Sec-
tion 3.2) ones. Meta estimators are derived from existing base/meta ones by taking into account information
theoretical identities. For example, by considering the well-known

I
(
y1, . . . ,yM

)
=

M∑
m=1

H (ym) −H
([

y1; . . . ;yM
])

(1)

relation [12], one can estimate mutual information (I) by making use of existing entropy estimators (H).

2. From calling point of view, base and meta estimations follow exactly the same syntax (Section 3.3).

This modular implementation of the ITE package, makes it possible to

1. construct new estimators from existing ones, and

2. transparently use any of these estimators in information theoretical optimization problems (see Section 4) � provided
that they follow a simple template described in Section 3.3.
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3.1 Base Estimators

This section is about the base information theoretical estimators of the ITE package. Entropy estimation is in the focus of
Section 3.1.1; in Section 3.1.2 and Section 3.1.3 we consider mutual information and divergence estimation, respectively.

3.1.1 Entropy Estimators

Let us start with a simple example: our goal is to estimate the Shannon entropy [65]

H(y) = −
∫

Rd

f(y) log f(y)dy (2)

of a random variable y ∈ Rd from which we have i.i.d. (independent identically distributed) samples {yt}T
t=1, and f denotes

the density function of y. The estimation of Shannon entropy can be carried out, e.g., by k-nearest neighbor techniques.
Let us also assume that multiplicative contants are also important for us � in many applications, it is completely irrelevant
whether we estimate, for example, H(y) or cH(y), where c = c(d) is a constant depending only on the dimension of y
(d), but not on the distribution of y. By using the ITE package, the estimation can be carried out as simply as follows:

Example 2 (Entropy estimation (base-1: usage))

>Y = rand(5,1000); %generate the data of interest (d=5, T=1000)

>mult = 1; %multiplicative constant is important

>co = HShannon_kNN_k_initialization(mult); %initialize the entropy ('H') estimator

%('Shannon_kNN_k'), including the value of k

>H = HShannon_kNN_k_estimation(Y,co); %perform entropy estimation

An alternative entropy measure of interest is the Rényi entropy [62] de�ned as

HR,α(y) =
1

1 − α
log
∫

Rd

fα(y)dy, ( α 6= 1) (3)

where the random variable y ∈ Rd have density function f . The Tsallis entropy (also called the Havrda and Charvát
entropy) [86, 23] is closely related to the Rényi entropy and is de�ned as

HT,α(y) =
1

α− 1

(
1 −

∫
Rd

fα(y)dy
)
, α 6= 1. (4)

In fact, the Shannon entropy [Eq. (2)] is a special case of the Rényi and the Tsallis entropy families by the

lim
α→1

HR,α = H, lim
α→1

HT,α = H (5)

limit relations. In the ITE toolbox, HR,α and HT,α can be estimated similarly to the Shannon entropy H (see Example 2):

Example 3 (Entropy estimation (base-2: usage))

>Y = rand(5,1000); %generate the data of interest (d=5, T=1000)

>mult = 1; %multiplicative constant is important

>co = HRenyi_kNN_k_initialization(mult); %initialize the entropy ('H') estimator ('Renyi_kNN_k'),

%including the value of k and α
>H = HRenyi_kNN_k_estimation(Y,co); %perform entropy estimation

Beyond k-nearest neighbor based H (see [37] (S = {1}), [67, 19] S = {k}) and HR,α estimation methods [92, 41]
(S = {k}), the ITE package also provide functions for the estimation of HR,α(y) (y ∈ Rd) using (i) k-nearest neighbors
(S = {1, . . . , k}) [56], (ii) generalized nearest neighbor graphs (S ⊆ {1, . . . , k}) [54], (iii) weighted k-nearest neighbors [68],
(iv) minimum spanning trees [92, 55], and (v) geodesic spanning forests [55]. The Tsallis entropy of a d-dimensional random
variable y (HT,α(y)) can be estimated in ITE using the k-nearest neighbors method (S = {k}) [41]. The multivariate
Edgeworth expansion based Shannon entropy estimator [27] is also available in ITE. The base entropy estimators are
summarized in Table 2; the calling syntax of these methods is the same as in Example 2 and Example 3, one only has to
change 'Shannon_kNN_k' (see Example 2) and 'Renyi_kNN_k' (see Example 3) to the cost_name given in the last column
of the table.
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Estimated quantity Principle Name (cost_name)

Shannon entropy (H) k-nearest neighbors (S = {k}) 'Shannon_kNN_k'

Rényi entropy (HR,α) k-nearest neighbors (S = {k}) 'Renyi_kNN_k'

Rényi entropy (HR,α) k-nearest neighbors (S = {1, . . . , k}) 'Renyi_kNN_1tok'

Rényi entropy (HR,α) generalized nearest neighbor graphs (S ⊆ {1, . . . , k}) 'Renyi_kNN_S'

Rényi entropy (HR,α) weighted k-nearest neighbors 'Renyi_weightedkNN'

Rényi entropy (HR,α) minimum spanning trees 'Renyi_MST'

Rényi entropy (HR,α) geodesic spanning forests 'Renyi_GSF'

Tsallis entropy (HT,α) k-nearest neighbors (S = {k}) 'Tsallis_kNN_k'

Shannon entropy (H) multivariate Edgeworth expansion 'Shannon_Edgeworth'

Table 2: Entropy estimators (base).

Note: the Renyi_kNN_1tok, Renyi_kNN_S, Renyi_MST, Renyi_GSF methods (see Table 2) estimate the Hα Rényi
entropy up to an additive constant which depends on the dimension d and α, but not on the distribution. In certain cases,
such additive constants can also be relevant. They can be approximated via Monte-Carlo simulations, the computations
are available in ITE. Let us take the example of Renyi_kNN_1tok, the estimation instructions are as follows:

1. Set co.alpha (α) and co.k (k) in 'HRenyi_kNN_1tok_initialization.m'.

2. Estimate the additive constant β = β(d, k, α) using 'estimate_HRenyi_constant.m'.

3. Set the relevance of additive constants in the initialization function 'HRenyi_kNN_1tok_initialization.m':
'co.additive_constant_is_relevant = 1'.

4. Estimate the Rényi entropy (after initialization): 'HRenyi_kNN_1tok_estimation.m'.

3.1.2 Mutual Information Estimators

In our next example, we consider the estimation of the mutual information of the dm-dimensional components of the
random variable y =

[
y1, . . . ,yM

]
∈ Rd (d =

∑M
m=1 dm):

I
(
y1, . . . ,yM

)
=
∫

Rd1

· · ·
∫

RdM

f
(
y1, . . . ,yM

)
log

[
f
(
y1, . . . ,yM

)∏M
m=1 fm(ym)

]
dy1 · · ·dyM (6)

using an i.i.d. sample set {yt}T
t=1 from y, where f is the joint density function of y and fm is its mth marginal density, the

density function of ym. As it is known, I
(
y1, . . . ,yM

)
is non-negative and is zero, if and only if the {ym}M

m=1 variables
are jointly independent [12]. Mutual information can be e�ciently estimated, e.g., on the basis of entropy [Eq. (1)] or
Kullback-Leibler divergence; we will return to these derived approaches while presenting meta estimators in Section 3.2.

There also exist other mutual information-like quantities measuring the independence of yms:

1. The kernel canoncial correlation analysis (KCCA) is de�ned as

IKCCA(y1,y2) = sup
f1∈F1,f2∈F2

cov[f1(y1), f2(y2)]√
var [f1(y1)] + κ ‖f1‖2

F1

√
var [f2(y2)] + κ ‖f2‖2

F2

, (κ > 0) (7)

for M = 2 components, where `cov' denotes covariance and `var' stands for variance. In words, IKCCA is the
regularized form of the supremum correlation of y1 ∈ Rd1 and y2 ∈ Rd2 over two `rich enough' reproducing kernel
Hilbert spaces (RKHSs), F1 and F2. The computation of IKCCA can be reduced to a generalized eigenvalue problem
and the measure can be extended to M ≥ 2 components to measure pairwise independence [4, 77].

2. Let y =
[
y1; . . . ,yM

]
be a multidimensional Gaussian random variable with covariance matrix C and let Ci,j ∈

Rdi×dj denote the cross-covariance between components of ym ∈ Rdm . In the Gaussian case, the mutual information
between components y1, . . . ,yM is [12]:

I
(
y1, . . . ,yM

)
= −1

2
log

(
detC∏M

m=1 detCm,m

)
. (8)

12



If y is not normal then one can transform yms using feature mapping ϕ associated with an RKHS and apply
Gaussian approximation to obtain

IKGV
(
y1, . . . ,yM

)
= −1

2
log

[
det(K)∏M

m=1 det(Km,m)

]
, (9)

where φ(y) := [ϕ(y1); . . . ; ϕ(yM )], K := cov[φ(y)], and the sub-matrices are Ki,j = cov[ϕ(yi),ϕ(yj)]. For further
details on the kernel generalized variance (KGV) method, see [4, 77].

3. Let us given two RKHSs F1 and F2 with associated feature maps ϕ1 and ϕ2. Let the corresponding cross-covariance
operator be

Cy1,y2 = E
([

ϕ1(y1) − µ1

]
⊗
[
ϕ2(y2) − µ2)

])
, (10)

where ⊗ denotes tensor product, E is the expectation and the mean embeddings are

µm = E[ϕm(ym)] (m = 1, 2). (11)

The Hilbert-Schmidt independence criterion (HSIC) [21] is de�ned as the Hilbert-Schmidt norm of the cross-
covariance operator

IHSIC
(
y1,y2

)
=
∥∥Cy1,y2

∥∥2

HS
. (12)

The HSIC measure can also be extended to the M ≥ 2 case to measure pairwise independence.

4. The generalized variance (GV) measure [82] considers the decorrelation of two one-dimensional random variables
y1 ∈ R and y2 ∈ R (M = 2) over a �nite function set F:

IGV
(
y1, y2

)
=
∑
f∈F

(
corr

[
f
(
y1
)
, f
(
y2
)])2

. (13)

5. Let C be the copula of the random variable y =
[
y1; . . . ; yM

]
∈ RM . One may think of C as the distribution function

on [0, 1]M , which links the joint distribution function (F ) and the marginals (Fm, i = 1, . . . ,M):

F (y) = C
(
F1

(
y1
)
, . . . , FM

(
yM
))
. (14)

It can be shown that the yi ∈ R variables are independent if and only if C, the copula of y equals to the product
copula Π de�ned as

Π(u1, . . . , uM ) =
M∏

m=1

um. (15)

Using this result, the independence of yis can be measured by the (normalized) Lp distance of C and Π:(
hp(d)

∫
[0,1]d

|C(u) − Π(u)|p du

) 1
p

, (16)

where (i) 1 ≤ p ≤ ∞, (ii) by an appropriate choice of the normalization constant hp(d), the value of (16) belongs to
∈ [0, 1] for any C.

• For p = 2, the special

IHoe�ding
(
y1, . . . , yd

)
=

(
h2(d)

∫
[0,1]d

[C(u) − Π(u)]2du

) 1
2

(17)

quantity

� is a generalization of Hoe�ding's Φ de�ned for d = 2 [25],

� can be analytically computated [18].
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Estimated quantity Principle Name (cost_name)

generalized variance (IGV) f-covariance/-correlation (f ∈ F, |F| < ∞) 'GV'

Hilbert-Schmidt (HS) independence criterion (IHSIC) HS norm of the cross-covariance operator 'HSIC'

kernel canonical correlation (IKCCA) sup correlation over RKHSs 'KCCA'

kernel generalized variance (IKGV) Gaussian mutual information of the features 'KGV'

multivariate version of Hoe�ding's Φ (IHoe�ding) L2 distance of the joint- and the product copula 'Hoeffding'

Schweizer-Wol�'s σ (ISW1) L1 distance of the joint- and the product copula 'SW1'

Schweizer-Wol�'s κ (ISWinf) L∞ distance of the joint- and the product copula 'SWinf'

Table 3: Mutual information estimators (base).

• For p = 1 and p = ∞, we obtain the Schweizer-Wol�'s σ and κ [64], respectively. In this case no explicit
expressions for the integrals are available. For small dimensional problems, however, the quantities can be
e�ciently estimated numerically. ITE contains methods for the M = 2 case:

ISW1

(
y1, y2

)
= σ = 12

∫
[0,1]2

|C(u) − Π(u)|du, (18)

ISWinf

(
y1, y2

)
= κ = 4 sup

u∈[0,1]2
|C(u) − Π(u)|, (19)

using the SWICA package [36].

For an excellent introduction on copulas, see [45].

The estimation of these quantities can be carried out easily in the ITE package. Let us take the KCCA measure as an
example:

Example 4 (Mutual information estimation (base: usage))

>ds = [2;3;4]; Y=rand(sum(ds),5000); %generate the data of interest (ds(m)=dim(ym), T=5000)

>mult = 1; %multiplicative constant is important

>co = IKCCA_initialization(mult); %initialize the mutual information ('I') estimator ('KCCA')

>I = IKCCA_estimation(Y,ds,co); %perform mutual information estimation

The calling syntax of the mutual information estimators, are completely the same; one only has to change 'KCCA' to the
cost_name given in the last column of the Table 3. The table summarizes the base mutual information estimators in ITE.

3.1.3 Divergence Estimators

Divergences measure the `distance' between two probability densities, f1 : Rd 7→ R and f2 : Rd 7→ R. One of the most
well-known such index is the Kullback-Leibler divergence [38]:

D(f1, f2) =
∫

Rd

∫
Rd

f1
(
y1
)
log

[
f1
(
y1
)

f2 (y2)

]
dy1dy2. (20)

In practise, one has independent, i.i.d. samples from f1 and f2, {y1
t }

T1
t=1 and {y2

t }
T2
t=1, respectively. The goal is to estimate

divergence D using these samples. Of course, there exist many variants/extensions of the traditional Kullback-Leibler
divergence [88, 5]; depending on the application addressed, di�erent divergences can be advantageous. The ITE package
is capable of estimating the following divergences:

1. L2 divergence:

DL(f1, f2) =

√∫
Rd

[f1(y) − f2(y)]2 dy. (21)

2. Tsallis divergence:

DT,α(f1, f2) =
1

α− 1

(∫
Rd

fα
1 (y)f1−α

2 (y)dy − 1
)

(α ∈ R \ {1}). (22)
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3. Rényi divergence:

DR,α(f1, f2) =
1

α− 1
log
∫

Rd

fα
1 (y)f1−α

2 (y)dy (α ∈ R \ {1}). (23)

4. MMD (maximum mean discrepancy) [20]:

DMMD(f1, f2) = ‖µ1 − µ2‖2
F , (24)

where µm is the mean embedding of fm (m = 1, 2) and F = F1 = F2, see the de�nition of HSIC [Eq. (11)].

5. Hellinger distance:

DH(f1, f2) =

√
1 −

∫
Rd

√
f1(y)

√
f2(y)dy. (25)

6. Bhattacharyya distance:

DB(f1, f2) = − log
(∫

Rd

√
f1(y)

√
f2(y)dy

)
. (26)

The Kullback-Leibler divergence [Eq. (20)] is a special of Tsallis' and Rényi's in limit sense:

lim
α→1

DT,α = D, lim
α→1

DR,α = D. (27)

Let us also note that for (22), (23), (25) and (26), it is su�cient to estimate the

D(α) =
∫

Rd

[f1(y)]α[f2(y)]1−αdy (28)

quantity, which is called the Bhattacharyya coe�cient for α = 1
2 (see (25) and (26)):

BC =
∫

Rd

√
f1(y)

√
f2(y)dy ∈ [0, 1]. (29)

(28) can also be further generalized to

D(a, b) =
∫

Rd

[f1(y)]a [f2(y)]b f1(y)dy, (a, b ∈ R). (30)

The calling syntax of the divergence estimators in the ITE package are again uniform. In the following example, the
estimation of the Rényi divergence is illustrated using the k-nearest neighbor method:

Example 5 (Divergence estimation (base: usage))

>Y1 = randn(3,2000); Y2=randn(3,3000); %generate the data of interest (d=3, T1=2000, T2=3000)

>mult = 1; %multiplicative constant is important

>co = DRenyi_kNN_k_initialization(mult); %initialize the divergence ('D') estimator ('Renyi_kNN_k')

>D = DRenyi_kNN_k_estimation(Y1,Y2,co); %perform divergence estimation

Beyond the Rényi divergence DR,α [58, 57, 59], the k-nearest neighbor technique can also be used to estimate the L2-
(DL) [58, 57, 59] and the Tsallis (DT,α) divergence [58, 57]. A similar approach can be applied to the estimation of the
(30) quantity [53]. For the MMD measure, a linearly scaling, online method [20] has been implemented in ITE. Table 4
contains the base divergence estimators of the ITE package. The estimations can be carried out by changing the name
'Renyi_kNN_k' in Example 5 to the cost_name in the last column of the table. The samples numbers (T1 and T2) in the
divergence estimators can be di�erent, except for, of course the online MMD technique, where T1 = T2.

3.2 Meta Estimators

Here, we present how one can easily derive in the ITE package new information theoretical estimators from existing ones
on the basis of relations between entropy, mutual information, divergence. These meta estimators are included in ITE. The
additional goal of this section is to provide examples for meta estimator construction so that users could simply create
novel ones. In Section 3.2.1, Section 3.2.2 and Section 3.2.3 we focus on entropy, mutual information and divergence
estimators, respectively.
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Estimated quantity Principle Name (cost_name)

L2 divergence (DL) k-nearest neighbors (S = {k}) 'L2_kNN_k'

Tsallis divergence (DT,α) k-nearest neighbors (S = {k}) 'Tsallis_kNN_k'

Rényi divergence (DR,α) k-nearest neighbors (S = {k}) 'Renyi_kNN_k'

maximum mean discrepancy (DMMD) norm of the di�erence of mean embeddings, online 'MMD_online'

Hellinger distance (DH) k-nearest neighbors (S = {k}) 'Hellinger_kNN_k'

Bhattacharyya distance (DB) k-nearest neighbors (S = {k}) 'Bhattacharyya_kNN_k'

Table 4: Divergence estimators (base).

3.2.1 Entropy Estimators

Here, we present the idea of the meta construction in entropy estimation through examples:

1. The �rst example considers estimation via the ensemble approach. As it has been recently demonstrated the
computational load of entropy estimation can be heavily decreased by (i) dividing the available samples into groups
and then (ii) computing the averages of the group estimates [39]. Formally, let the samples be denoted by {yt}T

t=1

(yt ∈ Rd) and let us partition them into N groups of size g (gN = T ), {1, . . . , T} = ∪N
n=1In (Ii ∩ Ij = ∅, i 6= j) and

average the estimations based on the groups

Hensemble(y) =
1
N

N∑
n=1

Ĥ ({yt}t∈In) . (31)

As a prototype example for meta entropy estimation the implementation of the ensemble method [Eq. (31)] is
provided below (see Example 6 and Example 7). In the example, the individual estimators in the ensemble are
based on k-nearest neighbors ('Shannon_kNN_k'). However, the �exibility of the ITE package allows to change the
H estimator [r.h.s of (31)] to any other entropy technique (base/meta, see Table 2 and Table 5).

Example 6 (Entropy estimation (meta: initialization))

function [co] = Hensemble_initialization(mult)

co.name = 'ensemble'; %name of the estimator: 'ensemble'

co.mul = mult; %set whether multiplicative constant is important

co.group_size = 500; %group size (g=500)

co.member_name = 'Shannon_kNN_k'; %estimator used in the ensemble ('Shannon_kNN_k')

co.member_co = H_initialization(co.member_name,mult);%initialize the member in the ensemble,

%the value of 'mult' is passed

The estimation part is carried out in accordance with (31):

Example 7 (Entropy estimation (meta: estimation))

function [H] = Hensemble_estimation(Y,co)

g = co.group_size; %initialize group size (g)

num_of_samples = size(Y,2); %initialize number of samples (T)

num_of_groups = floor(num_of_samples/g); %initialize number of groups (N)

H = 0;

for k = 1 : num_of_groups %compute the average over the ensemble

H = H + H_estimation(Y(:,(k-1)*g+1:k*g),co.member_co); %add the estimation

%of the initialized member

end

H = H / num_of_groups;

The usage of the de�ned method follows the syntax of base entropy estimators (Example 2, Example 3):
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Estimated quantity Principle Name (cost_name)

complex entropy (HC) entropy of a real random vector variable 'complex'

Shannon entropy (H) average the entropy over an ensemble 'ensemble'

Shannon entropy (H) average the entropy over a random projected ensemble 'RPensemble'

Tsallis entropy (HT,α) Rényi entropy → Tsallis entropy 'Tsallis_HRenyi'

Table 5: Entropy estimators (meta).

Example 8 (Entropy estimation (meta: usage))

>Y = rand(5,1000); %generate the data of interest (d=5, T=1000)

>mult = 1; %multiplicative constant is important

>co = Hensemble_initialization(mult); %initialize the entropy ('H') estimator ('ensemble'),

>H = Hensemble_estimation(Y,co); %perform entropy estimation

2. Since (i) entropy can be estimated consistently using pairwise distances of sample points9, and (ii) random projection
(RP) techniques realize approximate isometric embeddings [32, 16, 30, 1, 42, 3, 44], one can construct e�cient
estimation methods by the integration of the ensemble and the RP technique.

Formally, the de�nition of the estimation is identical to that of the ensemble approach [Eq. (31)], except for random
projections Rn ∈ RdRP ×d (n = 1, . . . , N). The �nal estimation is

HRPensemble(y) =
1
N

N∑
n=1

Ĥ ({Rnyt}t∈In) . (32)

The approach shows exciting potentials with serious computational speed-ups in independent subspace analysis [73]
and image registration [74]. The technique has been implemented in the ITE toolbox under the name 'RPensemble'
(see Table 5, HRPensemble_initialization.m, HRPensemble_estimation.m).

3. Information theoretical quantities can be de�ned over the complex domain via the Hilbert transformation [14]

ϕv : Cd 3 v 7→ v ⊗
[

<(·)
=(·)

]
∈ R2d, (33)

as the entropy of the mapped 2d-dimensional real variable

HC(y) := H(ϕv(y)). (34)

Relation (34) can be transformed to a meta entropy estimator, the method is available under the name 'complex'
(see Table 5, Hcomplex_initialization.m, Hcomplex_estimation.m).

4. Using (3) and (4), the Tsallis entropy can be computed from the Rényi entropy:

HT,α(y) =
e(1−α)HR,α(y) − 1

1 − α
. (35)

This relation is realized in ITE by the 'Tsallis_HRenyi' meta entropy estimator (see Table 5,
HTsallis_HRenyi_initialization.m, HTsallis_HRenyi_estimation.m). Making use of this approach, for ex-
ample, the Rényi entropy estimators of Table 2 can be instantly applied for Tsallis entropy estimation.

The meta entropy estimator methods in ITE are summarized in Table 5. The calling syntax of the estimators is identical
to Example 8, one only has to change the name 'ensemble' to the cost_name of the target estimators, see the last column
of the table.

9The construction holds for other information theoretical quantities like mutual information and divergence.
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3.2.2 Mutual Information Estimators

In this section we are dealing with meta mutual information estimators:

1. As it has been seen in (1), mutual information can be expressed via entropy terms. The corresponding method is avail-
able in the ITE package under the name 'Shannon_HShannon' (see Table 6, IShannon_HShannon_initialization.m,
IShannon_HShannon_estimation.m). As a prototype example for meta mutual information estimator the imple-
mentation is provided below:

Example 9 (Mutual information estimator (meta: initialization))

function [co] = IShannon_HShannon_initialization(mult)

co.name = 'Shannon_HShannon'; %name of the estimator: 'Shannon_HShannon'

co.mul = mult; %set the importance of multiplicative factors

co.member_name = 'Shannon_kNN_k'; %method used for entropy estimation: 'Shannon_kNN_k'

co.member_co = H_initialization(co.member_name,1);%initialize entropy estimation member, mult=1

Example 10 (Mutual information estimator (meta: estimation))

function [I] = IShannon_HShannon_estimation(Y,ds,co) %samples(Y), component dimensions(ds),

%initialized estimator (co)

num_of_comps = length(ds); %number of components, M

cum_ds = cumsum([1;ds(1:end-1)]); %starting indices of the components

I = -H_estimation(Y,co.member_co); %minus the joint entropy, H([y1; ...;yM ]) using the

%initialized H estimator

for k = 1 : num_of_comps %add the entropy of the ym components, H(ym)

idx = [cum_ds(k) : cum_ds(k)+ds(k)-1];

I = I + H_estimation(Y(idx,:),co.member_co);%use the initialized H estimator

end

The usage of the meta mutual information estimators follow the syntax of base mutual information estimators (see
Example 4):

Example 11 (Mutual information estimator (meta: usage))

>ds = [1;2]; Y=rand(sum(ds),5000); %generate the data of interest

%(ds(m)=dim(ym), T=5000)

>mult = 1; %multiplicative constant is important

>co = IShannon_HShannon_initialization(mult); %initialize the mutual information ('I') estimator

%('Shannon_HShannon')

>I = IShannon_HShannon_estimation(Y,ds,co); %perform mutual information estimation

2. The mutual information of complex random variables (y ∈ Cdm) can be de�ned via the Hilbert transformation
[Eq. (33)]:

IC
(
y1, . . . ,yM

)
= I

(
ϕv

(
y1
)
, . . . , ϕv

(
yM
))
. (36)

The relation is realized in ITE by the 'complex' meta estimator (see Table 6, Icomplex_initialization.m,
Icomplex_estimation.m).

3. The Shannon-, L2-, Tsallis- and Rényi mutual information can be expressed in terms of the corresponding divergence
of the joint (f) and the product of marginals (

∏M
m=1 fm)10:

I
(
y1, . . . ,yM

)
= D

(
f,

M∏
m=1

fm

)
, IL

(
y1, . . . ,yM

)
= DL

(
f,

M∏
m=1

fm

)
, (37)

IT,α

(
y1, . . . ,yM

)
= DT,α

(
f,

M∏
m=1

fm

)
, IR,α

(
y1, . . . ,yM

)
= DR,α

(
f,

M∏
m=1

fm

)
. (38)

10For the de�nitions of f and fms, see Eq. (6). The divergence de�nitions can be found in Eqs. (20), (21), (22) and (23).
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Estimated quantity Principle Name (cost_name)

complex mutual information (IC) mutual information of a real random vector variable 'complex'

L2 mutual information (IL) L2-divergence of the joint and the product of marginals 'L2_DL2'

Rényi mutual information (IR,α) Rényi divergence of the joint and the product of marginals 'Renyi_DRenyi'

copula-based kernel dependency (Ic) MMD div. of the joint copula and the uniform distribution 'MMD_DMMD'

Rényi mutual information (IR,α) minus the Rényi entropy of the joint copula 'Renyi_HRenyi'

(Shannon) mutual information (I) entropy sum of the components minus the joint entropy 'Shannon_HShannon'

Tsallis mutual information (IT,α) L2-divergence of the joint and the product of marginals 'Tsallis_DTsallis'

Table 6: Mutual information estimators (meta).

Shannon mutual information is a special case of Rényi's and Tsallis' in limit sense:

IR,α
α→1−−−→ I, IT,α

α→1−−−→ I. (39)

The associated Rényi-, L2- and Tsallis meta mutual information estimators are available
in ITE using the names 'Renyi_DRenyi', 'L2_DL2' and 'Tsallis_DTsallis' (see Table 6,
IRenyi_DRenyi_initialization.m, IRenyi_DRenyi_estimation.m, IL2_DL2_initialization.m,
IL2_DL2_estimation.m, ITsallis_DTsallis_initialization.m, ITsallis_DTsallis_estimation.m).

4. [49] has recently de�ned a novel, robust, copula-based mutual information measure of the random variable ym ∈ R
(m = 1, . . . ,M) as the MMD divergence [Eq. (24)] of the joint copula and the M-dimensional uniform distribution
on [0, 1]M :

Ic
(
y1, . . . , yM

)
= DMMD(PZ, PU), (40)

where Z =
[
F1

(
y1
)
; . . . ;FM

(
yM
)]

∈ RM is the joint copula, Fm is the cumulative density function of ym and
P denotes the distribution. The associated meta estimator available has the name 'MMD_DMMD' (see Table 6,
IMMD_DMMD_initialization.m, IMMD_DMMD_estimation.m) in ITE.

The calling syntax of the meta mutual information are identical (and the same as that of the base estimators, see
Section 3.1.2), the possible methods are summarized in Table 6. The techniques are identi�ed by their 'cost_name', see
the last column of the table.

3.2.3 Divergence Estimators

In this section we focus on meta divergence estimators (Table 7). Our prototype example is the estimation of the
symmetrised Kullback-Leibler divergence, the so-called J-distance (also called the Jensen-Shannon divergence):

DJ(f1, f2) = D(f1, f2) +D(f2, f1). (41)

The de�nition of meta divergence estimators follows the idea of meta entropy and mutual information estimators (see
Example 6, 7, 9 and 10). Initialization and estimation of the meta J-distance estimator can be carried out as follows:

Example 12 (Divergence estimator (meta: initialization))

function [co] = DJdistance_initialization(mult)

co.name = 'Jdistance'; %name of the estimator: 'Jdistance'

co.mult = mult; %set whether multiplicative constant is important

co.member_name = 'Renyi_kNN_k'; %method used for Kullback-Leibler divergence estimation

co.member_co = D_initialization(co.member_name,mult); %initialize the Kullback-Leibler divergence

%estimator

Example 13 (Divergence estimator (meta: estimation))

function [D_J] = DJdistance_estimation(X,Y,co)

D_J = D_estimation(X,Y,co.member_co) + D_estimation(Y,X,co.member_co); %definition of J-distance

Having de�ned the J-distance estimator, the calling syntax is completely analogous to base estimators (see Example 5).
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Estimated quantity Principle Name (cost_name)

J-distance (DJ) symmetrised Kullback-Leibler divergence 'Jdistance'

Table 7: Divergence estimators (meta).

Example 14 (Divergence estimator (meta: usage))

>Y1 = rand(3,1000); Y2 = rand(3,2000); %generate the data of interest (d=3, T1=1000, T2=2000)

>mult = 1; %multiplicative constant is important

>co = DJdistance_initialization(mult); %initialize the divergence ('D') estimator ('Jdistance')

>D = DJdistance_estimation(Y1,Y2,co); %perform divergence estimation

3.3 Uniform Syntax of the Estimators

The modularity of the ITE package in terms of (i) the de�nition and usage of the base/meta entropy, mutual information
and divergence estimators, and the possibility to (ii) simple embed novel estimators can be assured by following the
templates:

1. Initialization:

Template 1 (Entropy estimator: initialization)

function [co] = H<cost_name>_initialization(mult)

co.name = <cost_name>;

co.mult = mult;

...

Template 2 (Mutual information estimator: initialization)

function [co] = I<cost_name>_initialization(mult)

co.name = <cost_name>

co.mult = mult;

...

Template 3 (Divergence estimator: initialization)

function [co] = D<cost_name>_initialization(mult)

co.name = <cost_name>

co.mult = mult;

...

2. Estimation:

Template 4 (Entropy estimator: estimation)

function [H] = H<cost_name>_estimation(Y,co)

...

Template 5 (Mutual information estimator: estimation)

function [I] = I<cost_name>_estimation(Y,ds,co)

...
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Template 6 (Divergence estimator: estimation)

function [D] = D<cost_name>_estimation(Y1,Y2,co)

...

The uni�ed implementation in the ITE toolbox, makes it possible to use high-level initialization and estimation of the
information theoretical quantities. The corresponding functions are

• for initialization: H_initialization.m, I_initialization, D_initialization,

• for estimation: H_estimation.m, I_estimation, D_estimation

following the templates:

function [co] = H_initialization(cost_name,mult)

function [co] = I_initialization(cost_name,mult)

function [co] = D_initialization(cost_name,mult)

function [H] = H_estimation(Y,co)

function [I] = I_estimation(Y,ds,co)

function [D] = D_estimation(Y1,Y2,co)

Here, the cost_name of the entropy, mutual information and divergence estimator can be freely chosen in case of

• entropy: from the last column of Table 2 and Table 5.

• mutual information: from the last column of Table 3 and Table 6.

• divergence: from the last column of Table 4 and Table 7.

By the ITE construction, following for the

• entropy: Template 1 (initialization) and Template 4 (estimation),

• mutual information: Template 2 (initialization) and Template 5 (estimation),

• divergence: Template 3 (initialization) and Template 6 (estimation),

user-de�ned estimators can be immediately used. Let us demonstrate idea of the high-level initialization and estimation
with a simple example, Example 2 can equivalently be written as:11

Example 15 (Entropy estimation (high-level, usage))

>Y = rand(5,1000); %generate the data of interest (d=5, T=1000)

>cost_name = 'Shannon_kNN_k'; %select the objective (Shannon entropy) and

%its estimation method (k-nearest neighbor)

>mult = 1; %multiplicative constant is important

>co = H_initialization(cost_name,mult); %initialize the entropy estimator

>H = H_estimation(Y,co); %perform entropy estimation

A more complex example family will be presented in Section 4. There, the basic idea will be the following:

1. Independent subspace analysis and its extensions can be formulated as the optimization of information theoretical
quantities. There exist many equivalent formulations (objective functions) in the literature, as well as approximate
objectives.

2. Choosing a given objective function, estimators following the template syntaxes (Template 1-6) can be used simply
by giving their names (cost_name).

3. Moreover, the selected estimator can be immediately used in di�erent optimization algorithms of the objective.

11One can perform mutual information and divergence estimations similarly.
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4 ITE Application in Independent Process Analysis (IPA)

In this section we present an application of the entropy, mutual information and divergence estimators in independent
subspace analysis (ISA) and its extensions (IPA, independent process analysis). Application of ITE in IPA serves as an
illustrative example, how complex tasks formulated as information theoretical optimization problems can be tackled by
the estimators detailed in Section 3.

Section 4.1 formulates the problem domain, the independent process analysis (IPA) problem family. In Section 4.2 the
solution methods of IPA are detailed. Section 4.3 is about the Amari-index, which can be used to measure the precision
of the IPA estimations. The IPA datasets included in the ITE package are introduced in Section 4.4.

4.1 IPA Models

In Section 4.1.1 we focus on the simplest linear model, which allows hidden, independent multidimensional sources (sub-
spaces), the so-called independent subspace analysis (ISA) problem. Section 4.1.2 is about the extensions of ISA.

4.1.1 Independent Subspace Analysis (ISA)

The ISA problem is de�ned in the �rst paragraph. Then (i) the ISA ambiguities, (ii) equivalent ISA objective functions,
and (iii) the ISA separation principle are detailed. Thanks to the ISA separation principle one can de�ne many di�erent
equivalent clustering based ISA objectives and approximations; this is the topic of the next paragraph. ISA optimization
methods are presented in the last paragraph.

The ISA equations One may think of independent subspace analysis (ISA)12 [8, 13] as a cocktail party problem, where
(i) more than one group of musicians (sources) are playing at the party, and (ii) we have microphones (sensors), which
measure the mixed signals emitted by the sources. The task is to estimate the original sources from the mixed observations
only.

Formally, let us assume that we have an observation (x ∈ RDx), which is instantaneous linear mixture (A) of the
hidden source (e), that is,

xt = Aet, (42)

where

1. the unknown mixing matrix A ∈ RDx×De has full column rank,

2. source et =
[
e1

t ; . . . ; e
M
t

]
∈ RDe is a vector concatenated (using Matlab notation ';') of components em

t ∈ Rdm

(De =
∑M

m=1 dm), subject to the following conditions:

(a) et is assumed to be i.i.d. (independent identically distributed) in time t,

(b) there is at most one Gaussian variable among ems; this assumption will be referred to as the `non-Gaussian'
assumption, and

(c) ems are independent, that is I
(
e1, . . . , eM

)
= 0.

The goal of the ISA problem is to eliminate the e�ect of the mixing (A) with a suitable W ∈ RDe×Dx demixing matrix
and estimate the original source components ems by using observations {xt}T

t=1 only (ê = Wx). If all the em source
components are one-dimensional (dm = 1,∀m), then the independent component analyis (ICA) task [33, 9, 10] is recovered.
For Dx > De the problem is called undercomplete, while the case of Dx = De is regarded as complete.

The ISA objective function One may assume without loss of generality in case of Dx ≥ De for the full column rank
matrix A that it is invertible�by applying principal component analysis (PCA) [26]. The estimation of the demixing
matrix W = A−1 in ISA is equivalent to the minimization of the mutual information between the estimated components
(ym),

JI(W) = I
(
y1, . . . ,yM

)
→ min

W∈GL(D)
, (43)

12ISA is also called multidimensional ICA, independent feature subspace analysis, subspace ICA, or group ICA in the literature. We will use
the ISA abbreviation.
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where y = Wx, y =
[
y1; . . . ;yM

]
, ym ∈ Rdm , GL(D) denotes the set of D×D sized invertible matrices, and D = De. The

joint mutual information [Eq. (43)] can also be expressed from only pair-wise mutual information by recursive methods
[12]

I
(
y1, . . . ,yM

)
=

M−1∑
m=1

I
(
ym,

[
ym+1, ...,yM

])
. (44)

Thus, an equivalent information theoretical ISA objective to (43) is

JIrecursive(W) =
M−1∑
m=1

I
(
ym,

[
ym+1, ...,yM

])
→ min

W∈GL(D)
. (45)

However, since in ISA, it can be assumed without any loss of generality�applying zero mean normalization and
PCA�that

• x and e are white, i.e., their expectation value is zero, and their covariance matrix is the identity matrix (I),

• mixing matrix A is orthogonal (A ∈ OD), that is AT A = I, and

• the task is complete (D = Dx = De),

one can restrict the optimization in (43) and (45) to the orthogonal group (W ∈ OD). Under the whiteness assumption,
well-known identities of mutual information and entropy expressions [12] show that the ISA problem is equivalent to

JsumH(W) =
M∑

m=1

H (ym) → min
W∈OD

, (46)

JH,I(W) =
M∑

m=1

dm∑
i=1

H(ym
i ) −

M∑
m=1

I
(
ym
1 , . . . , y

m
dm

)
→ min

W∈OD
, (47)

JI,I(W) = I
(
y1
1 , . . . , y

M
dM

)
−

M∑
m=1

I
(
ym
1 , . . . , y

m
dm

)
→ min

W∈OD
, (48)

where ym =
[
ym
1 ; . . . ; ym

dm

]
.

The ISA ambiguities Identi�cation of the ISA model is ambiguous. However, the ambiguities of the model are simple:
hidden components can be determined up to permutation of the subspaces and up to invertible linear transformations13

within the subspaces [85].

The ISA separation principle One of the most exciting and fundamental hypotheses of the ICA research is the ISA
separation principle dating back to 1998 [8]: the ISA task can be solved by ICA preprocessing and then clustering of
the ICA elements into statistically independent groups. While the extent of this conjecture, is still an open issue, it has
recently been rigorously proven for some distribution types [77]. This principle

• forms the basis of the state-of-the-art ISA algorithms,

• can be used to design algorithms that scale well and e�ciently estimate the dimensions of the hidden sources and

• can be extended to di�erent linear-, controlled-, post nonlinear-, complex valued-, partially observed systems, as well
as to systems with nonparametric source dynamics.

For a recent review on the topic, see [80]. The addressed extension directions are (i) presented in Section 4.1.2, (ii) are
covered by the ITE package. In the ITE package the solution of the ISA problem is based on the ISA separation principle,
for a demonstration, see demo_ISA.m.

13The condition of invertible linear transformations simpli�es to orthogonal transformations for the `white' case.
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Equivalent clustering based ISA objectives and approximations According to the ISA separation principle, the
solution of the ISA task, i.e., the global optimum of the ISA cost function can be found by permuting/clustering the ICA
elements into statistically independent groups. Using the concept of demixing matrices, it is su�cient to explore forms

WISA = PWICA, (49)

where (i) P ∈ RD×D is a permutation matrix (P ∈ PD) to be determined, (ii) WICA and WISA is the ICA and ISA
demixing matrix, respectively. Thus, assuming that the ISA separation principle holds, and since permuting does not
alter the ICA objective [see, e.g., the �rst term in (47) and (48)], the ISA problem is equivalent to

JI(P) = I
(
y1, . . . ,yM

)
→ min

P∈PD
, (50)

JIrecursive(P) =
M−1∑
m=1

I
(
ym,

[
ym+1, ...,yM

])
→ min

P∈PD
, (51)

JsumH(P) =
M∑

m=1

H (ym) → min
P∈PD

, (52)

Jsum-I(P) = −
M∑

m=1

I
(
ym
1 , ..., y

M
dm

)
→ min

P∈PD
. (53)

Let us note that if our observations are generated by an ISA model then�unlike in the ICA task when dm = 1 (∀m)�
pairwise independence is not equivalent to mutual independence [10]. However, minimization of the pairwise dependence
of the estimated subspaces

JIpairwise(P) =
∑

m1 6=m2

I (ym1 ,ym2) → min
P∈PD

(54)

is an e�cient approximation in many situations. An alternative approximation is to consider only the pairwise dependence
of the coordinates belonging to di�erent subspaces:

JIpairwise1d(P) =
M∑

m1,m2=1;m1 6=m2

dm1∑
i1=1

dm2∑
i2=1

I
(
ym1

i1
, ym2

i2

)
→ min

P∈PD
. (55)

ISA optimization methods Let us �x an ISA objective J [Eq. (50)-(55)]. Our goal is to solve the ISA task, i.e., by the
ISA separation principle to �nd the permutation (P) of the ICA elements minimizing J . Below we list a few possibilities
for �nding P; the methods are covered by ITE.

Exhaustive way: The possible number of all permutations, i.e., the number of P matrices is D!, where ` !' denotes
the factorial function. Considering that the ISA cost function is invariant to the exchange of elements within the
subspaces (see, e.g., (53)), the number of relevant permutations decreases to D!

QM
m=1 dm!

. This number can still be

enormous, and the related computations could be formidable justifying searches for e�cient approximations that we
detail below.

Greedy way: Two estimated ICA components belonging to di�erent subspaces are exchanged, if it decreases the value
of the ISA cost J , as long as such pairs exist [82].

`Global' way: Experiences show that greedy permutation search is often su�cient for the estimation of the ISA subspaces.
However, if the greedy approach cannot �nd the true ISA subspaces, then global permutation search method of higher
computational burden may become necessary [76]: the cross-entropy solution suggested for the traveling salesman
problem [61] can be adapted to this case.

Spectral clustering: Now, let us assume that source dimensions (dm) are not known in advance. The lack of such
knowledge causes combinatorial di�culty in such a sense that one should try all possible

D = d1 + . . .+ dM (dm > 0,M ≤ D) (56)
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Construct an undirected graph with nodes corresponding to ICA coordinates and edge
weights (similarities) de�ned by the pairwise statistical dependencies, i.e., the mutual
information of the estimated ICA elements: S = [Î(êICA,i, êICA,j)]Di,j=1. Cluster the
ICA elements, i.e., the nodes using similarity matrix S.

Table 8: Well-scaling approximation for the permutation search problem in the ISA separation theorem in case of unknown
subspace dimensions [estimate_clustering_UD1_S.m].

dimension allocations to the subspace (em) dimensions, where D is the dimension of the hidden source e. The
number of these f(D) possibilities grows quickly with the argument, its asymptotic behaviour is known [22, 87]:

f(D) ∼ eπ
√

2D/3

4D
√

3
(57)

as D → ∞. An e�cient method with good scaling properties has been put forth in [51] for searching the permutation
group for the ISA separation theorem (see Table 8). This approach builds upon the fact that the mutual information
between di�erent ISA subspaces em is zero due the assumption of independence. The method assumes that coor-
dinates of em that fall into the same subspace can be paired by using the pairwise dependence of the coordinates.
This approaches can be considered as objective (55), with unknown dm subspace dimensions. One may carry out
the clustering by applying spectral approaches (included in ITE), which are (i) robust and (ii) scale excellently,
a single general desktop computer can handle about a million observations (in our case estimated ICA elements)
within several minutes [91].

4.1.2 Extensions of ISA

Below we list some extensions of the ISA model and the ISA separation principle. These di�erent extensions, however,
can be used in combinations, too. In all these models, (i) the dimension of the source components (dm) can be di�erent
and (ii) one can apply the Amari-index as the performance measure (Section 4.3). The ITE package directly implements
the estimation of the following models14 (the relations of the di�erent models are summarized in Fig.1):

Linear systems:

AR-IPA:

Equations, assumptions: In the AR-IPA (autoregressive-IPA) task [28] (dm = 1, ∀m), [52] (dm ≥ 1), the
traditional i.i.d. assumption for the sources is generalized to AR time series: the hidden sources (sm ∈ Rdm)
are not necessarily independent in time, only their driving noises (em ∈ Rdm) are. The observation (x ∈ RD,

D =
∑M

m=1 dm) is an instantaneous linear mixture (A) of the source s:

xt = Ast, st =
Ls∑
i=1

Fist−i + et, (58)

where Ls is the order of the AR process, st =
[
s1
t ; . . . ; s

M
t

]
and et =

[
e1

t ; . . . ; e
M
t

]
∈ RD denote the hidden

sources and the hidden driving noises, respectively. (58) can be rewritten in the following concise form:

x = As, F[z]s = e (59)

using the polynomial of the time-shift operator F[z] := I −
∑Ls

i=1 Fiz
i ∈ R[z]D×D [40]. We assume that

1. polynomial matrix F[z] is stable, that is det(F[z]) 6= 0, for all z ∈ C, |z| ≤ 1,
2. mixing matrix A ∈ RD×D is invertible (A ∈ GL(D)),
3. e satis�es the ISA assumptions (see Section 4.1.1)

Goal: The aim of the AR-IPA task is to estimate hidden sources sm, dynamics F[z], driving noises em and
mixing matrix A or its W inverse given observations {xt}T

t=1. For the special case of Ls = 0, the ISA task
is obtained.

14The ITE package includes demonstrations for all the touched directions. The name of the demo �les are speci�ed at the end the problem
de�nitions, see paragraphs `Separation principle'.
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Separation principle: The AR-IPA estimation can be carried out by (i) applying AR �t to observation x,
(ii) followed by ISA on the estimated innovation of x [28, 52]. Demo: demo_AR_IPA.m.

MA-IPA:

Equations, assumptions: Here, the assumption on instantaneous linear mixture of the ISA model is weak-
ened to convolutions. This problem is called moving average independent process analysis (MA-IPA, also
known as blind subspace deconvolution) [77]. We describe this task for the undercomplete case. Assume
that the convolutive mixture of hidden sources em ∈ Rdm is available for observation (x ∈ RDx)

xt =
Le∑
l=0

Hlet−l, (60)

where

1. Dx > De (undercomplete, De =
∑M

m=1 dm),

2. the polynomial matrix H[z] =
∑Le

l=0 Hlz
l ∈ R[z]Dx×De has a (polynomial matrix) left inverse15 and

3. source e = [e1; . . . ; eM ] ∈ RDe satis�es the conditions of ISA.

Goal: The goal of this undercomplete MA-IPA problem (uMA-IPA problem, where `u' stands for undercom-
plete) is to estimate the original em sources by using observations {xt}T

t=1 only. The case Le = 0 corresponds
to the ISA task, and in the blind source deconvolution problem [48] dm = 1 (∀m), and Le is a non-negative
integer.

Note: We note that in the ISA task the full column rank of matrix H0 was presumed, which is equivalent to
the assumption that matrix H0 has left inverse. This left inverse assumption is extended in the uMA-IPA
model for the polynomial matrix H[z].

Separation principle:

• By applying temporal concatenation (TCC) on the observation, one can reduce the uMA-IPA estimation
problem to ISA [77]. Demo: demo_uMA_IPA_TCC.m.

• However, upon applying the TCC technique, the associated ISA problem can easily become `high dimen-
sional'. This dimensionality problem can be alleviated by the linear prediction approximation (LPA)
approach, i.e., AR �t, followed by ISA on the estimation innovation [78]. Demo: demo_uMA_IPA_LPA.m.

• In the complete (Dx = De) case, the H[z] polynomial matrix does not have (polynomial matrix)
left inverse in general. However, provided that the convolution can be represented by an in�nite
order autoregressive [AR(∞)] process, one [69] can construct an e�cient estimation method for the
hidden components via an asymptotically consistent LPA procedure augmented with ISA. Such AR(∞)
representation can be guaranteed by assuming the stability of H[z] [17]. Demo: demo_MA_IPA_LPA.m.

Post nonlinear models:

Equations, assumptions: In the post nonlinear ISA (PNL-ISA) problem [81] the linear mixing assumption of
the ISA model is alleviated. Assume that the observations (x ∈ RD) are post nonlinear mixtures (g(A·)) of
multidimensional independent sources (e ∈ RD):

xt = g(Aet), (61)

where the

• unknown function g : RD → RD is a component-wise transformation, i.e, g(v) = [g1(v1); . . . ; gD(vD)] and
g is invertible, and

• mixing matrix A ∈ RD×D and hidden source e satisfy the ISA assumptions.

Goal: The PNL-ISA problem is to estimate the hidden source components em knowing only the observations
{xt}T

t=1. For dm = 1, we get back the PNL-ICA problem [83] (for a review see [34]), whereas `g=identity' leads
to the ISA task.

Separation principle: the estimation of the PNL-ISA problem can be carried out on the basis of the mirror
structure of the task, applying gaussianization followed by linear ISA [81]. Demo: demo_PNL_ISA.m.

15One can show for Dx > De that under mild conditions H[z] has a left inverse with probability 1 [60]; e.g., when the matrix [H0, . . . ,HLe ]
is drawn from a continuous distribution.
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Complex models:

Equations, assumptions: One can de�ne the independence, mutual information and entropy of complex random
variables via the Hilbert transformation [Eq. (33), (34), (36)]. Having these de�nitions at hand, the complex
ISA problem can be formulated analogously to the real case, the observations (xt ∈ CD) are generated as the
instantaneous linear mixture (A) of the hidden sources (et):

xt = Aet, (62)

where

• the unknown A ∈ CD×D mixing matrix is invertible (D =
∑M

m=1 dm),

• et is assumed to be i.i.d. in time t,

• em ∈ Cdms are independent, that is I
(
ϕv

(
e1
)
, . . . , ϕv

(
eM
))

= 0.

Goal: The goal is to estimate the hidden source e and the mixing matrix A (or its W = A−1 inverse) using the
observation {xt}T

t=1. If all the components are one-dimensional (dm = 1, ∀m), one obtains the complex ICA
problem.

Separation principle:

• Supposing that the ϕv(em) ∈ R2dm variables are `non-Gaussian', and exploiting the operation preserving
property of the Hilbert transformation the solution of the complex ISA problem can be reduced to a ISA
task over the real domain with observation ϕv(x) and M pieces of 2dm-dimensional hidden components
ϕv(em). The consideration can be extended to linear models including AR, MA, ARMA (autoregressive
moving average), ARIMA (integrated ARMA), . . . terms [72]. Demo: demo_complex_ISA.m.

• Another possible solution is to apply the ISA separation theorem, which remains valid even for complex
variables [77]: the solution can be accomplished by complex ICA and clustering of the complex ICA
elements. Demo: demo_complex_ISA_C.m.

Controlled models:

Equations, assumptions: In the ARX-IPA (ARX�autoregressive with exogenous input) problem [71] the AR-IPA
assumption holds (Eq. (58)), but the time evolution of the hidden source s can be in�uenced via control variable
ut ∈ RDu through matrices Bj ∈ RD×Du :

xt = Ast st =
Ls∑
i=1

Fist−i +
Lu∑
j=1

Bjut+1−j + et. (63)

Goal: The goal is to estimate the hidden source s, the driving noise e, the parameters of the dynamics and control
matrices ({Fi}Ls

i=1 and {Bj}Lu
j=1), as well as the mixing matrix A or its inverse W by using observations xt and

controls ut. In the special case of Lu = 0, the ARX-IPA task reduces to AR-IPA.

Separation principle: The solution can be reduced to ARX identi�cation followed by ISA [71]. Demo:
demo_ARX_IPA.m.

Partially observed models:

Equations, assumptions: In the mAR-IPA (mAR�autoregressive with missing values) problem [70], the AR-IPA
assumptions (Eq. (58)) are relaxed by allowing a few coordinates of the mixed AR sources xt ∈ RD to be missing
at certain time instants. Formally, we observe yt ∈ RD instead of xt, where `mask mappings' Mt : RD 7→ RD

represent the coordinates and the time indices of the non-missing observations:

yt = Mt(xt), xt = Ast, st =
Ls∑
i=1

Fist−i + et. (64)

Goal: Our task is the estimation of the hidden source s, its driving noise e, parameters of the dynamics F[z], mixing
matrix A (or its inverse W) from observation {yt}T

t=1. The special case of `Mt = identity' corresponds to the
AR-IPA task.

27



ARX-IPA

Lu=0

��
mAR-IPA

Mt:identity(∀t) // AR-IPA

Ls=0

��

fAR-IPA
f : known, linearoo

MA-IPA
(BSSD)

Le=0 //

dm=1(∀m)

��

ISA
(I.I.D.-IPA)

dm=1(∀m)

��

PNL-ISA
g: known, identityoo

dm=1(∀m)

��
BSD

Le=0 // ICA PNL-ICA
g: known, identityoo

Figure 1: IPA problem family, relations. Arrows point to special cases. For example, `ISA
dm=1(∀m)−−−−−−−→ICA' means that ICA

is a special case of ISA, when all the source components are one-dimensional.

Separation principle: One can reduce the solution to mAR identi�cation followed by ISA on the estimated inno-
vation process [70]. Demo: demo_mAR_IPA.m.

Models with nonparametric dynamics:

Equations, assumptions: In the fAR-IPA (fAR�functional autoregressive) problem [75], the parametric assump-
tion for the dynamics of the hidden sources is circumvented by functional AR sources:

xt = Ast, st = f(st−1, . . . , st−Ls) + et. (65)

Goal: The goal is to estimate the hidden sources sm ∈ Rdm including their dynamics f and their driving innovations
em ∈ Rdm as well as mixing matrix A (or its inverse W) given observations {xt}T

t=1. If we knew the parametric
form of f and if it were linear, then the problem would be AR-IPA.

Separation principle: The problem can be solved by nonparametric regression followed by ISA [75]. Demo:
demo_fAR_IPA.m.

4.2 Estimation via ITE

Having (i) the information theoretical estimators (Section 3), (ii) the ISA/IPA problems and separation principles (Sec-
tion 4.1) at hand, we now detail the solution methods o�ered by the ITE package. Due the separation principles of the
IPA problem family, the solution methods can be implemented in a completely modular way; the estimation techniques
can be built up from the solvers of the obtained subproblems. From developer point of view, this �exibility makes it
possible to easily modify/extend the ITE toolbox. For example, (i) in case of ISA, one can select/replace the ICA method
and clustering technique applied independently, (ii) in case of AR-IPA one has freedom in chosing/extending the AR
identi�cator and the ISA solver, etc. This is the underlying idea of the solvers o�ered by the ITE toolbox.

In Section 4.2.1 the solution techniques for the ISA task are detailed. Extensions of the ISA problem are in the focus
of Section 4.2.2.

4.2.1 ISA

As it has been detailed in Section 4.1.1, the ISA problem can be formulated as the optimization of information theoretical
objectives (see Eqs. (50), (51), (52), (53), (54), (55)). In the ITE package,

All the detailed ISA formulations:

• are available by the appropriate choice of the variable cost_type (see Table 9), and

• can be used by any entropy/mutual information estimator satisfying the ITE template construction (see Table 2,
Table 3, Table 5, Table 6 and Section 3.3).
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Cost function to minimize Name (cost_type)

I
`

y1, . . . ,yM
´

'I'
PM

m=1 H (ym) 'sumH'

−
PM

m=1 I
`

ym
1 , ..., yM

dm

´

'sum-I'
PM−1

m=1 I
`

ym,
ˆ

ym+1, ...,yM
˜´

'Irecursive'
P

m1 6=m2 I (ym1 ,ym2) 'Ipairwise'
PM

m1,m2=1;m1 6=m2

Pdm1
i1=1

Pdm2
i2=1 I

`

ym1
i1

, ym2
i2

´

'Ipairwise1d'

Table 9: ISA formulations. 1 − 4th row: equivalent, 5 − 6th row: necessary conditions.

Optimization technique (opt_type) Principle Environment

'NCut' normalized cut Matlab
'SP1' unnormalized cut Matlab, Octave
'SP2', 'SP3' 2 normalized cut methods Matlab, Octave

Table 10: Spectral clustering optimizers for given number of subspaces (M) [unknown_dimensions=1]: clustering_UD1.m:
estimate_clustering_UD1_S.m.

The dimension of the subspaces can be given/unknown: the priori knowledge about the dimension of the sub-
spaces can be conveyed by the variable unknown_dimensions. unknown_dimensions=0 (=1) means given {dm}M

m=1

subspace dimensions (unknown subspace dimensions, it is su�cient to give M , the number of subspaces). In case of

• given subspace dimensions: clustering of the ICA elements can be carried out in ITE by the exhaus-
tive (opt_type = 'exhaustive'), greedy (opt_type = 'greedy'), or the cross-entropy (opt_type = 'CE')
method.

• unknown subspace dimensions: clustering of the ICA elements can be performed by applying spectral clustering.
In this case, the clustering is based on the pairwise mutual information of the one-dimensional ICA elements
(Table 9) and the objective is (55), i.e., cost_type = 'Ipairwise1d'. The ITE package supports 4 di�erent
spectral clustering methods/implementations (Table 10):

� the unnormalized cut method (opt_type = 'SP1'), and two normalized cut techniques
(opt_type = 'SP2' or opt_type = 'SP3') [66, 47, 89] � the implemetations are purely Matlab/Octave,
and

� a fast, normalized cut implementation [66, 11] in C++ with compilable mex �les (opt_type = 'NCut').

The ISA estimator capable of handling these options is called estimate_ISA.m, and is accompanied by the demo �le
demo_ISA.m. Let us take some examples for the parameters to set in demo_ISA.m:

Example 16 (ISA-1)

• Goal: the subspace dimensions {dm}M
m=1 are known; apply sum of entropy based ISA formulation (Eq. (52));

estimate the entropy via the Rényi entropy using k-nearest neighbors (S = {1, . . . , k}); optimize the objective in
a greedy way.

• Parameters to set: unknown_dimensions = 0; cost_type = 'sumH'; cost_name = 'Renyi_kNN_1tok',
opt_type = 'greedy'.

Example 17 (ISA-2)

• Goal: the subspace dimensions {dm}M
m=1 are known; apply an ISA formulation based on the sum of mutual

information within the subspaces (Eq. (53)); estimate the mutual information via the KCCA method; optimize
the objective in a greedy way.

• Parameters to set: unknown_dimensions = 0; cost_type = 'sum-I'; cost_name = 'KCCA',
opt_type = 'greedy'.
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Cost type (cost_type) Recommended/chosen optimizer

'I', 'Irecursive' clustering_UD0_greedy_general.m

'sumH', 'sum-I' clustering_UD0_greedy_additive_wrt_subspaces.m

'Ipairwise' clustering_UD0_greedy_pairadditive_wrt_subspaces.m

'Ipairwise1d' clustering_UD0_greedy_pairadditive_wrt_coordinates.m

Table 11: Recommended/chosen optimizers for given subspace dimensions ({dm}M
m=1) [unknown_dimensions=0] applying

greedy [opt_type='greedy'] ISA optimization: clustering_UD0.m.

Cost type (cost_type) Recommended/chosen optimizer

'I', 'sumH', 'sum-I', 'Irecursive', 'Ipairwise' clustering_UD0_CE_general.m

'Ipairwise1d' clustering_UD0_CE_pairadditive_wrt_coordinates.m

Table 12: Recommended/chosen optimizers for given subspace dimensions ({dm}M
m=1) [unknown_dimensions=0] applying

cross-entropy [opt_type='CE'] ISA optimization: clustering_UD0.m.

Example 18 (ISA-3)

• Goal: the subspace dimensions are unknown, only M , the number of the subspaces is given; the ISA objective
is based on the pairwise mutual information of the estimated ICA elements (Eq. (55)); estimate the mutual
information using the KGV method; optimize the objective via the NCut normalized cut method.

• Parameters to set: unknown_dimensions = 0; cost_type = 'KGV'; cost_name = 'KGV', opt_type = 'NCut'.

In case of given subspace dimensions, the special structure of the ISA objectives can be taken into account to further
increase the e�ciency of the optimization, i.e., the clustering step. The ITE package realizes this idea:

• In case of (i) one-dimensional mutual information based ISA formulation (Eq. (55)), and (ii) cross-entropy or ex-
haustive optimization the S = [I(êICA,i, êICA,j)]Di,j=1 similarity matrix can be precomputed.

• In case of greedy optimization:

� upon applying ISA objective (55), the S = [I(êICA,i, êICA,j)]Di,j=1 similarity matrix can again be precomputed
giving rise to more e�cient optimization.

� ISA formulations (52), (53) are both additive w.r.t. the estimated subspaces. Making use of this special
structure of these objective, it is su�cient to recompute the objective only on the touched subspaces while
greedily testing a new permutation candidate. Provided that the number of the subspaces (M) is high, the
decreased computational load of the specialized method is emphasized.

� objective (54) is pair-additive w.r.t. the subspaces. In this case, it is enough to recompute the objective on the
subspaces connected the actual subspace estimates. Again the increased e�ciency is striking in case of large
number of subspaces.

The general and the recommended (which are chosen by default in the toolbox) ISA optimization methods of ITE are
listed Table 11 (greedy), Table 12 (cross-entropy), Table 13 (exhaustive).

Extending the capabilities of the ITE toolbox: In case of

Cost type (cost_type) Recommended/chosen optimizer

'I', 'sumH', 'sum-I', 'Irecursive', 'Ipairwise' clustering_UD0_exhaustive_general.m

'Ipairwise1d' clustering_UD0_exhaustive_pairadditive_wrt_coordinates.m

Table 13: Recommended/chosen optimizers for given subspace dimensions ({dm}M
m=1) [unknown_dimensions=0] applying

exhaustive [opt_type='exhaustive'] ISA optimization: clustering_UD0.m.
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• known subspaces dimensions ({dm}M
m=1): the clustering is carried out in clustering_UD0.m. Before clustering, �rst

the importance of the constant multipliers must be set in set_mult.m.16

� To add a new ISA formulation (cost_type):

∗ to be able to carry it out general optimization: it is su�cient to add the new cost_type entry to
clustering_UD0.m, and the computation of the new objective to cost_general.m.

∗ to be able to perform an existing, specialized (not general) optimization: add the new cost_type entry to
clustering_UD0.m, and the computation of the new objective to the corresponding cost procedure. For
example, in case of a new objective being additive w.r.t. subspaces (similarly to (52), (53)) it is su�cient
to modify cost_additive_wrt_subspaces_one_subspace.m in cost_additive_wrt_subspaces.m.

∗ to be able to perform a non-existing optimization: add the new cost_type entry to clustering_UD0.m

with the specialized solver.

� To add a new optimization method (opt_type): please follow the 3 examples included in clustering_UD0.m.

• unknown subspace dimensions (M): clustering_UD1.m is responsible for the clustering step. It �rst computes the
S = [Î(êICA,i, êICA,j)]Di,j=1 similarity matrix, and then performs spectral clustering (see Table 8). To include a new
clustering technique, one only has to add it to a new case in estimate_clustering_UD1_S.m.

4.2.2 Extensions of ISA

Due to the IPA separation principles, the solution of the problem family can be carried out in a modular way. The solution
of all the presented IPA directions are demonstrated through examples in ITE, the demo �les and the actual estimators
are listed in Table 14. For the obtained subtasks the ITE package provides many e�cient estimators (see Table 15):

ICA, complex ICA: The fastICA method [29] and its complex variant [7] is one of the most popular ICA approach, it
is available in ITE. See estimate_ICA.m and estimate_complex_ICA.m.

AR identi�cation: Identi�cation of AR processes can be carried in the ITE toolbox in 5 di�erent ways (see
estimate_AR.m):

• using the online Bayesian technique with normal-inverted Wishart prior [35, 50],

• applying [31]

� nonlinear least squares estimator based on the subspace representation of the system,

� exact maximum likelihood optimization using the BFGS (Broyden-Fletcher-Goldfarb-Shannon; or the
Newton-Raphson) technique,

� the combination of the previous two approaches.

• making use of the stepwise least squares technique [46, 63].

ARX identi�cation: Identi�cation of ARX processes can be carried out by the D-optimal technique of [50] assuming
normal-inverted Wishart prior; see estimate_ARX_IPA.m.

mAR identi�cation: The

• online Bayesian technique with normal-inverted Wishart prior [35, 50],

• nonlinear least squares [31],

• exact maximum likelihood [31], and

• their combination [31]

are available for the identi�cation of mAR processes; see estimate_mAR.m.

fAR identi�cation: Identi�cation of fAR processes in ITE can be carried out by the strongly consistent, recursive
Nadaraya-Watson estimator [24]; see estimate_fAR.m.

spectral clustering: The ITE toolbox provides 4 methods to perform spectral clustering (see
estimate_clustering_UD1_S.m):

16For example, upon applying objective (52) multiplicative constants are irrelevant (important) in case of equal (di�erent) dm subspace
dimensions.
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IPA model Reduction Demo (Estimator)

Task1 Task2

ISA ICA clustering of the ICA elements demo_ISA.m

(estimate_ISA.m)

AR-IPA AR �t ISA demo_AR_IPA.m

(estimate_AR_IPA.m)

ARX-IPA ARX �t ISA demo_ARX_IPA.m

(estimate_ARX_IPA.m)

mAR-IPA mAR �t ISA demo_mAR_IPA.m

(estimate_mAR_IPA.m)

complex ISA Hilbert transformation real ISA demo_complex_ISA.m

(estimate_complex_ISA.m)

complex ISA complex ICA clustering of the ICA elements demo_complex_ISA_C.m

(estimate_complex_ISA_C.m)

fAR-IPA nonparametric regression ISA demo_fAR_IPA.m

(estimate_fAR_IPA.m)

(complete) MA-IPA linear prediction (LPA) ISA demo_MA_IPA_LPA.m

(estimate_MA_IPA_LPA.m)

undercomplete MA-IPA temporal concatenation (TCC) ISA demo_uMA_IPA_TCC.m

(estimate_uMA_IPA_TCC.m)

undercomplete MA-IPA linear prediction (LPA) ISA demo_uMA_IPA_LPA.m

(estimate_uMA_IPA_LPA.m)

PNL-ISA gaussianization ISA demo_PNL_ISA.m

(estimate_PNL_ISA.m)

Table 14: IPA separation principles.

• the unnormalized cut method, and two normalized cut techniques [66, 47, 89] � the implemetations are purely
Matlab/Octave, and

• a fast, normalized cut implementation [66, 11] in C++ with compilable mex �les.

gaussianization: Gaussianization of the observations can be carried out by the e�cient rank method [93], see
estimate_gaussianization.m.

Extending the capabilities of the ITE toolbox: additional methods for the obtained subtasks can be easily
embedded and instantly used in IPA, by simply adding a new 'switch: case' entry to the subtask solvers listed in Table 15.

Beyond the solvers for the IPA subproblems detailed above, the ITE toolbox o�ers:

• 4 di�erent alternatives for k-nearest neighbor estimation (Table 16):

� exact nearest neighbors: based on fast computation of pairwise distances and C++ partial sort (knn package).

� exact nearest neighbors: based on fast computation of pairwise distances.

Subtask Estimator Method

ICA estimate_ICA.m 'fastICA'

complex ICA estimate_complex_ICA.m 'fastICA'

AR �t (LPA) estimate_AR.m 'NIW', 'subspace', 'subspace-LL', 'LL', 'stepwiseLS'
ARX �t estimate_ARX.m 'NIW'

mAR �t estimate_mAR.m 'NIW', 'subspace', 'subspace-LL', 'LL'
fAR �t estimate_fAR.m 'recursiveNW'

spectral clustering estimate_clustering_UD1_S.m 'NCut', 'SP1', 'SP2', 'SP3'
gaussianization estimate_gaussianization.m 'rank'

Table 15: IPA subtasks and estimators.
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co.kNNmethod Principle Environment

'knnFP1' exact NNs, fast pairwise distance computation and C++ partial sort Matlab, Octave
'knnFP2' exact NNs, fast pairwise distance computation Matlab, Octave
'knnsearch' exact NNs, Statistics Toolbox ∈ Matlab Matlab
'ANN' approximate NNs, ANN library Matlab, Octavea

Table 16: k-nearest neighbor (kNN) methods. The main kNN function is kNN_squared_distances.m.

aSee Table 1.

co.MSTmethod Method Environment

'MatlabBGL_Prim' Prim algorithm (MatlabBGL) Matlab, Octavea

'MatlabBGL_Kruskal' Kruskal algorithm (MatlabBGL) Matlab, Octave
'pmtk3_Prim' Prim algorithm (pmtk3) Matlab, Octave
'pmtk3_Kruskal' Kruskal algorithm (pmtk3) Matlab, Octave

Table 17: Minimum spanning tree (MST) methods. The main MST function is compute_MST.m.

aSee Table 1.

� exact nearest neighbors: carried out by the knnsearch function of the Statistics Toolbox in Matlab.

� approximate nearest neighbors: implemented by the ANN library.

The method applied for the estimation can be chosen by setting co.method to 'knnFP1', 'knnFP2', 'knnsearch',
or 'ANN'. For examples, please see:

� HRenyi_GSF_initialization.m, HShannon_kNN_k_initialization.m, HRenyi_kNN_1tok_initialization.m,
HRenyi_kNN_k_initialization.m, HRenyi_kNN_S_initialization.m, HRenyi_weightedkNN_initialization.m,

� DL2_kNN_k_initialization.m, DRenyi_kNN_k_initialization.m, DTsallis_kNN_k_initialization.m.

The central function of kNN computations is kNN_squared_distances.m.

• 4 techniques for minimum spanning tree computation (Table 17):

� the two functions of the MatlabBGL library can be envoked by setting co.STmethod to 'MatlabBGL_Prim' or
'MatlabBGL_Kruskal'.

� the purely Matlab/Octave implementations based on the pmtk3 toolbox can be called by setting co.STmethod

to 'pmtk3_Prim' or 'pmtk3_Kruskal'.

For an example, please see H_Renyi_MST_initialization.m. The central function for MST computation is
compute_MST.m.

To extend the capabilities of ITE in k-nearest neighbor or minimum spanning tree computation (which is also imme-
diately inherited to entropy, mutual information, divergence estimation), it su�cient to the add the new method to
kNN_squared_distances.m or compute_MST.m.

4.3 Performance Measure, the Amari-index

Here, we introduce the Amari-index, which can be used to measure the e�ciency of the estimators in the ISA problem
and its extensions.

Identi�cation of the ISA model is ambiguous. However, the ambiguities of the model are simple: hidden components
can be determined up to permutation of the subspaces and up to invertible linear transformations within the subspaces
[85]. Thus, in the ideal case, the product of the estimated ISA demixing matrix ŴISA and the ISA mixing matrix A, i.e.,
matrix

G = ŴISAA (66)

is a block-permutation matrix (also called block-scaling matrix [84]). This property can also be measured for source
components with di�erent dimensions by a simple extension [75] of the Amari-index [2], that we present below. Namely,
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(a) (b) (c) (d)

Figure 2: ISA demonstration (demo_ISA.m). (a): hidden components ({em}M
m=1). (b): observed, mixed signal (x). (c):

estimated components ({êm}M
m=1). (d): Hinton-diagram: the product of the mixing matrix and the estimated demixing

matrix; approximately block-permutation matrix with 2 × 2 blocks.

assume that we have a weight matrix V ∈ RM×M made of positive matrix elements, and a q ≥ 1 real number. Loosely
speaking, we shrink the di ×dj blocks of matrix G according to the weights of matrix V and apply the traditional Amari-
index for the matrix we obtain. Formally, one can (i) assume without loss of generality that the component dimensions

and their estimations are ordered in increasing order (d1 ≤ . . . ≤ dM , d̂1 ≤ . . . ≤ d̂M ), (ii) decompose G into di×dj blocks
(G =

[
Gij

]
i,j=1,...,M

) and de�ne gij as the `q norm17 of the elements of the matrix Gij ∈ Rdi×dj , weighted with Vij :

gij = Vij

 di∑
k=1

dj∑
l=1

|
(
Gij

)
k,l

|q
 1

q

. (67)

Then the Amari-index with parameters V can be adapted to the ISA task of possibly di�erent component dimensions as
follows

rV,q(G) :=
1

2M(M − 1)

 M∑
i=1

(∑M
j=1 g

ij

maxj gij
− 1

)
+

M∑
j=1

(∑M
i=1 g

ij

maxi gij
− 1

) . (68)

One can see that 0 ≤ rV,q(G) ≤ 1 for any matrix G, and rV,q(G) = 0 if and only if G is block-permutation matrix with
di×dj sized blocks. rV,q(G) = 1 is in the worst case, i.e, when all the gij elements are equal. Let us note that this measure
(68) is invariant, e.g., for multiplication with a positive constant: rcV = rV (∀c > 0). Weight matrix V can be uniform
(Vij = 1), or one can use weighing according to the size of the subspaces: Vij = 1/(didj). The Amari-index [Eq. (68)]
is available in the ITE package, see Amari_index_ISA.m. The G global matrix can be visualized by its Hinton-diagram
(hinton_diagram.m), Fig. 2 provides an illustration. This illustration has been obtained by running demo_ISA.m.

The Amari-index can also be used to measure the e�ciency of the estimators of the IPA problem family detailed in
Section 4.1.2. The demo �les in the ITE toolbox (see Table 14) contain detailed examples for the usage of the Amari-index
in the extensions of ISA.

4.4 Dataset-, Model Generators

One can generate observations from the ISA model and its extensions (Section 4.1.2) by the functions listed in Table 18.
The sources/driving datasets can be chosen from many di�erent types in ITE (see sample_subspaces.m):

3D-geom: In the 3D-geom test [56] ems are random variables uniformly distributed on 3-dimensional geometric forms
(dm = 3, M ≤ 6), see Fig. 3(a). The dataset generator is sample_subspaces_3D_geom.m.

Aw, ABC, GreekABC: In the Aω database [82] the distribution of the hidden sources em are uniform on 2-dimensional
images (dm = 2) of the English (M1 = 26) and Greek alphabet (M2 = 24). The number of components can be M =
M1 +M2 = 50. Special cases of the database are the ABC (M ≤ 26) [55] and the GreekABC (M ≤ 24) [82] subsets.
For illustration, see Fig. 3(d). The dataset generators are called sample_subspaces_Aw.m, sample_subspaces_ABC.m
and sample_subspaces_GreekABC.m, respectively.

mosaic: The mosaic test [79] has 2-dimensional source components (dm = 2) generated from mosaic images. Sources
em are generated by sampling 2-dimensional coordinates proportional to the corresponding pixel intensities. In

17Alternative norms could also be used.
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other words, 2-dimensional images are considered as density functions. For illustration, see Fig. 3(h). The dataset
generator is sample_subspaces_mosaic.m.

IFS: Here [81], components sm are realizations of IFS18 based 2-dimensional (d = 2) self-similar structures. For all m a
({hk}k=1,...,K ,p = (p1, . . . , pK),v1} triple is chosen, where

• hk : R2 → R2 are a�ne transformations: hk(z) = Ckz + dk (Ck ∈ R2×2,dk ∈ R2),

• p is a distribution over the indices {1, . . . ,K} (
∑K

k=1 pk = 1, pk ≥ 0), and

• for the initial value we chose v1 :=
(

1
2 ,

1
2

)
.

In the IFS dataset, T samples are generated in the following way: (i) v1 is given (t = 1), (ii) an index k(t) ∈
{1, . . . ,K} is drawn according to the distribution p and (iii) the next sample is generated as vt+1 := hk(t)(vt).
The resulting series {v1, . . . ,vT } was taken as a hidden source component sm and this way 9 components (M = 9,
D = 18) were constructed (see Fig. 3(c)). The generator of the dataset is sample_subspaces_IFS.m.

ikeda: In the ikeda test [75], the hidden sm
t = [sm

t,1, s
m
t,2] ∈ R2 sources realize the ikeda map

sm
t+1,1 = 1 + λm[sm

t,1 cos(wm
t ) − sm

t,2 sin(wm
t )], (69)

sm
t+1,2 = λm[sm

t,1 sin(wm
t ) + sm

t,2 cos(wm
t )], (70)

where λm is a parameter of the dynamical system and

wm
t = 0.4 − 6

1 + (sm
t,1)2 + (sm

t,2)2
. (71)

There are 2 components (M = 2) with initial points s1
1 = [20; 20], s2

1 = [−100; 30] and parameters λ1 =
0.9994, λ2 = 0.998, see Fig. 3(f) for illustration. Observation can be generated from this dataset using
sample_subspaces_ikeda.m.

lorenz: In the lorenz dataset [79], the sources (sm) correspond to 3-dimensional (dm = 3) deterministic chaotic time
series, the so-called Lorenz attractor [43] with di�erent initial points (x0, y0, z0) and parameters (a, b, c). The
Lorenz attractor is described by the following ordinary di�erential equations:

ẋt = a(yt − xt), (72)

ẏt = xt(b− zt) − yt, (73)

żt = xtyt − czt. (74)

The di�erential equations are computed by the explicit Runge-Kutta (4,5) method in ITE. The number of components
can be M = 3. The dataset generator is sample_subspaces_lorenz.m. For illustration, see Fig. 3(g).

all-k-independent: In the all-k-independent database [55, 76], the dm-dimensional hidden components v := em are
created as follows: coordinates vi (i = 1, . . . , k) are independent uniform random variables on the set {0,. . . ,k-1},
whereas vk+1 is set to mod(v1 + . . .+ vk, k). In this construction, every k-element subset of {v1, . . . , vk+1} is made
of independent variables and dm = k + 1. The database generator is sample_subspaces_all_k_independent.m.

multiD-geom (multiD1-. . . -DM -geom): In this dataset ems are random variables uniformly distributed on
dm-dimensional geometric forms. Geometrical forms were chosen as follows: (i) the surface of the unit ball, (ii)
the straight lines that connect the opposing corners of the unit cube, (iii) the broken line between dm + 1 points
0 → e1 → e1 + e2 → . . .→ e1 + . . .+ edm (where ei is the i canonical basis vector in Rdm , i.e., all of its coordinates
are zero except the ith, which is 1), and (iv) the skeleton of the unit square. Thus, the number of components M
can be equal to 4 (M ≤ 4), and the dimension of the components (dm) can be scaled. In the multiD-geom case
the dimensions of the subspaces are equal (d1 = . . . = dM ); in case of the multiD1-. . . -DM -geom dataset, the dm

subspace dimensions can be di�erent. For illustration, see Fig. 3(e). The associated dataset generator is called
sample_subspaces_multiD_geom.m.

18IFS stands for iterated function system.
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(a) (b)

(c) (d)

(e) (f) (g)

(h)

Figure 3: Illustration of the 3D-geom (a), multiD-spherical (multiD1-. . . -DM -spherical) (b), IFS (c), Aw (subset on the
left: ABC, right: GreekABC ) (d), multiD-geom (multiD1-. . . -DM -geom) (e), ikeda (f), lorenz (g), and mosaic (h) datasets.

multiD-spherical (multiD1-. . . -DM -spherical): In this case hidden sources em are spherical random variables [15].
Since spherical variables assume the form v = ρu, where u is uniformly distributed on the dm-dimensional unit
sphere, and ρ is a non-negative scalar random variable independent of u, they can be given by means of ρ. 3 pieces of
stochatistic representations ρ were chosen: ρ was uniform on [0, 1], exponential with parameter µ = 1 and lognormal
with parameters µ = 0, σ = 1. For illustration, see Fig. 3(b). In this case, the number of component can be 3 (M ≤ 3)
The dimension of the source components (dm) is �xed (can be varied) in the multiD-spherical (multiD1-. . . -DM -
spherical) dataset. Observations can be obtained from these datasets by sample_subspaces_multiD_spherical.m.

The datasets and their generators are summarized in Table 19 and Table 20. The plot_subspaces.m function can be
used to plot the databases (samples/estimations).

Model Generator

ISA generate_ISA.m

complex ISA generate_complex_ISA.m

AR-IPA generate_AR_IPA.m

ARX-IPA generate_ARX_IPA_parameters.m

(u)MA-IPA generate_MA_IPA.m

mAR-IPA generate_mAR_IPA.m

fAR-IPA generate_fAR_IPA.m.m

Table 18: IPA model generators. Note: in case of the ARX-IPA model, the observations are generated online in accordance
with the online D-optimal ARX identi�cation method.
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Dataset (data_type) Description Subspace dimensions # of components i.i.d.

'3D-geom' uniformly distributed (U) on 3D forms dm = 3 M ≤ 6 Y
'Aw' U on English and Greek letters dm = 2 M ≤ 50 Y
'ABC' U on English letters dm = 2 M ≤ 26 Y
'GreekABC' U on Greek letters dm = 2 M ≤ 24 Y
'mosaic' distributed according to mosaic images dm = 2 M ≤ 4 Y
'IFS' self-similar construction dm = 2 M ≤ 9 N
'ikeda' Ikeda map dm = 2 M = 2 N
'lorenz' Lorenz attractor dm = 3 M ≤ 3 N
'all-k-independent' k-tuples in the subspaces are independent scalable (dm = k + 1) M ≥ 1 Y
'multid-geom' U on d-dimensional geometrical forms scalable (d = dm ≥ 1) M ≤ 4 Y
'multid1-d2-...-dM-geom' U on dm-dimensional geometrical forms scalable (dm ≥ 1) M ≤ 4 Y
'multid-spherical' spherical subspaces scalable (d = dm ≥ 1) M ≤ 3 Y
'multid1-d2-...-dM-spherical' spherical subspaces scalable (dm ≥ 1) M ≤ 3 Y

Table 19: Description of the datasets. Last column: Y�yes, N�no.

Dataset (data_type) Generator

'3D-geom' sample_subspaces_3D_geom.m

'Aw' sample_subspaces_Aw.m

'ABC' sample_subspaces_ABC.m

'GreekABC' sample_subspaces_GreekABC.m

'mosaic' sample_subspaces_mosaic.m

'IFS' sample_subspaces_IFS.m

'ikeda' sample_subspaces_ikeda.m

'lorenz' sample_subspaces_lorenz.m

'all-k-independent' sample_subspaces_all_k_independent.m

'multid-geom', 'multid1-d2-...-dM-geom' sample_subspaces_multiD_geom.m

'multid-spherical', 'multid1-d2-...-dM-spherical' sample_subspaces_multiD_spherical.m

Table 20: Generators of the datasets. The high-level sampling function of the datasets is sample_subspaces.m.
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5 Directory Structure of the Package

In this section, we describe the directory structure of the ITE toolbox. Directory

• code: code of ITE,

� H_I_D : entropy-, mutual information-, divergence estimators (see Section 3).

∗ base: contains the base estimators; initialization and estimation functions (see Section 3.1).

∗ meta: the folder of meta estimators; initialization and estimation functions (see Section 3.2).

∗ utilities: code shared by base and meta.

� IPA: application of the information theoretical estimators in ITE (see Section 4):

∗ data_generation: IPA generators corresponding to di�erent datasets and models.

· datasets: sampling from and plotting of the sources (see Table 19, Table 20, Fig. 3).

· models: IPA model generators, see Table 18.

∗ demos: IPA demonstrations and estimators, see Table 14 and Table 15.

∗ optimization: IPA optimization methods (see Table 9, Table 10, Table 11, Table 12, and Table 13).

� shared : code shared by H_I_D and IPA.

∗ downloaded, embedded : downloaded and embedded packages (see Section 2).

• doc: documentation of the ITE toolbox; contains the current manual.
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Abbreviation Meaning

ANN approximate nearest neighbor
AR autoregressive
ARIMA integrated ARMA
ARMA autoregressive moving average
ARX AR with exogenous input
BFGS Broyden-Fletcher-Goldfarb-Shannon
BSD blind source deconvolution
BSSD blind subspace deconvolution
CE cross-entropy
fAR functional AR
GV generalized variance
HSIC Hilbert-Schmidt independence criterion
ICA/ISA/IPA independent component/subspace/process analysis
i.i.d. independent identically distributed
IFS iterated function system
ITE information theoretical estimators
JFD joint f-decorrelation
KCCA kernel canonical correlation analysis
KGV kernel generalized variance
kNN k-nearest neighbor
LPA linear prediction approximation
MA moving average
mAR AR with missing values
MMD maximum mean discrepancy
NIW normal-inverted Wishart
NN nearest neighbor
PCA principal component analysis
PNL post nonlinear
RKHS reproducing kernel Hilbert space
RP random projection

Table 21: Abbrevations.

A Abbreviations

The abbreviations used in the paper are listed in Table 21.

B Functions with Octave-Speci�c Adaptations

Functions with Octave-speci�c adaptations are summarized in Table 22.

C Estimation Formulas � Lookup Table

In this section the underlying entropy (Section C.1), mutual information (Section C.2) and divergence (Section C.3)
computations are summarized brie�y. This section is considered to be a quick lookup table. For speci�c details, please
see the referred papers (Section 3).

C.1 Entropy

Notations: Let Y1:T = (y1, . . . ,yT ) (yt ∈ Rd) stand for our samples.

Vd =
πd/2

Γ
(

d
2 + 1

) =
2πd/2

dΓ
(

d
2

) (75)
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Function Role

ITE_install.m installation of the ITE package
hinton_diagram.m Hinton-diagram
estimate_clustering_UD1_S.m spectral clustering
control.m D-optimal control
sample_subspace_lorenz.m sampling from the lorenz dataset
clinep.m the core of the 3D trajectory plot
plot_subspaces_3D_trajectory.m 3D trajectory plot
IGV_similarity_matrix.m similarity matrix for the GV measure
calculateweight.m weight computation in the weighted kNN method
kNN_squared_distances.m kNN computation
initialize_Octave_ann_wrapper_if_needed.m ann Octave wrapper initialization

Table 22: Functions with Octave-speci�c adaptations.

is the volume of the d-dimensional unit ball. ψ is the digamma function. et is the directed edge pointing from yt to its
kth nearest neighbor. Let V ⊆ Rd be a �nite set, S, S1, S2 ⊆ {1, . . . , k} are index sets. NNS(V ) stands for the S-nearest
neighbor graph on V . NNS(V2, V1) denotes the S-nearest (from V1 to V2) neighbor graph. E is the expectation operator.

Cα,k =
[

Γ(k)
Γ(k + 1 − α)

] 1
1−α

, Îα(Y1:T ) =
T − 1
T

V 1−α
d C1−α

α,k

T∑
t=1

‖et‖d(1−α)
2

(T − 1)α
. (76)

In case of d = 1, let y(t) denote the order statistics of yt, i.e., y(1) ≤ . . . ≤ y(T ); for y(i) = y(1) (i < 1) and y(i) = y(T )

(i > T ).

• Shannon_kNN_k [37, 67, 19]:

Ĥ(Y1:T ) = log(T − 1) − ψ(k) + log(Vd) +
d

T

T∑
t=1

log (‖et‖2) . (77)

• Renyi_kNN_k [92, 41]:

ĤR,α(Y1:T ) =
1

1 − α
log
(
Îα(Y1:T )

)
. (78)

• Renyi_kNN_1tok [56]:

S = {1, . . . , k}, (79)

V = Y1:T , (80)

L(V ) =
∑

(u,v)∈edges(NNS(V ))

‖u − v‖d(1−α)
2 , (81)

c = lim
T→∞

EU1:T ,ut:i.i.d.,∼Uniform([0,1]d)

[
L(U1:T )
Tα

]
, (82)

ĤR,α(Y1:T ) =
1

1 − α
log
[
L(V )
cTα

]
. (83)
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• Renyi_S [54]:

S ⊆ {1, . . . , k}, k ∈ S, (84)

V = Y1:T , (85)

L(V ) =
∑

(u,v)∈edges(NNS(V ))

‖u − v‖d(1−α)
2 , (86)

c = lim
T→∞

EU1:T ,ut:i.i.d.,∼Uniform([0,1]d)

[
L(U1:T )
Tα

]
, (87)

ĤR,α(Y1:T ) =
1

1 − α
log
[
L(V )
cTα

]
. (88)

• Renyi_weightedkNN [68]:

k1 = k1(T ) =
⌈
0.1

√
T
⌉
, (89)

k2 = k2(T ) =
⌈
2
√
T
⌉
, (90)

N =
⌊
T

2

⌋
(91)

M = T −N, (92)

V1 = Y1:N , (93)

V2 = YN+1:T , (94)

S = {k1, . . . , k2}, (95)

ηk =
β(k, 1 − α)
Γ(1 − α)

1
N
M1−αV 1−α

d

∑
(u,v)∈edges(NNS(V2,V1))

‖u − v‖d(1−α)
2 , (96)

Îα,w =
∑
k∈S

wkηk, (97)

ĤR,α(Y1:T ) =
1

1 − α
log(Îα,w), (98)

where the wk = wk(T, d, k1, k2) weights can be precomputed.

• Renyi_MST [92, 55]:

V = Y1:T , (99)

L(V ) = min
G∈ spanning trees on V

∑
(u,v)∈edges(G)

‖u − v‖d(1−α)
2 , (100)

c = lim
T→∞

EU1:T ,ut:i.i.d.,∼Uniform([0,1]d)

[
L(U1:T )
Tα

]
, (101)

ĤR,α(Y1:T ) =
1

1 − α
log
[
L(V )
cTα

]
. (102)

• Renyi_GSF [55]:

S = {1, . . . , k}, (103)

V = Y1:T , (104)

L(V ) = min
G∈ spanning forest on NNS(V )

∑
(u,v)∈edges(G)

‖u − v‖d(1−α)
2 , (105)

c = lim
T→∞

EU1:T ,ut:i.i.d.,∼Uniform([0,1]d)

[
L(U1:T )
Tα

]
, (106)

ĤR,α(Y1:T ) =
1

1 − α
log
[
L(V )
cTα

]
. (107)
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• Tsallis_kNN_k [41]:

ĤT,α(Y1:T ) =
1 − Îα(Y1:T )

α− 1
. (108)

• Shannon_Edgeworth [27]: Since the Shannon entropy is invariant to additive constants (H(y) = H(y+m)), one can
assume without loss of generality that the expectation of y is zero. The Edgeworth expansion based estimation is

Ĥ(Y1:T ) = H(φd) −
1
12

 d∑
i=1

(
κi,i,i

)2
+ 3

d∑
i,j=1;i 6=j

(
κi,i,j

)2
+

1
6

d∑
i,j,k=1;i<j<k

(
κi,j,k

)2 , (109)

where

yt = yt −
1
T

T∑
k=1

yk, (t = 1, . . . , T ) (110)

Σ = ˆcov(Y1:T ) =
1

T − 1

T∑
t=1

yt(yt)∗, (111)

H(φd) =
1
2

log det(Σ) +
d

2
log(2π) +

d

2
, (112)

σi = ˆstd(yi) =
1

T − 1

T∑
t=1

(
yi

t

)2
, (i = 1, . . . , d) (113)

κijk = Ê
[
yiyjyk

]
=

1
T

T∑
t=1

yi
ty

j
t y

k
t , (i, j, k = 1, . . . , d) (114)

κi,j,k =
κijk

σiσjσk
. (115)

Here, `∗' denotes transposition.

C.2 Mutual Information

Let for an Y = (y1, . . . ,yT ) sample set (yt ∈ Rd) the empirical copula be de�ned as

ĈT

(
i1
T
, . . . ,

iT
T

)
:=

# of y-s in the sample with y ≤ y(i1,...,iT )

T
, (∀j, ij = 1, . . . , T ) (116)

where y(i1,...,iT ) = [y(i1); . . . ; y(iT )] with y(ij) order statistics in the jth coordinate.

• HSIC [21]:

Hij = δij −
1
T
, (117)

(Km)ij = km(ym
i ,y

m
j ), (118)

ÎHSIC
(
y1, . . . ,yM

)
=

1
T 2

M−1∑
u=1

M∑
v=u+1

tr(KuHKvH), (119)

where tr(·) denotes trace. Currently, the Gaussian kernel is used:

km(u,v) = e−
‖u−v‖2

2σ2 (∀m). (120)
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• KCCA, KGV [4, 77]:

κ2 =
κT

2
, (121)

Km = [km(ym
i ,y

m
j )]i,j=1,...,T , (122)

H = I − 1
T

11∗, (123)

K̃m = HKmH, (124)
(K̃1 + κ2IT )2 K̃1K̃2 · · · K̃1K̃M

K̃2K̃1 (K̃2 + κ2IT )2 · · · K̃2K̃M

...
...

...

K̃MK̃1 K̃MK̃2 · · · (K̃M + κ2IT )2




c1

c2

...
cM

 = (125)

= λ


(K̃1 + κ2IT )2 0 · · · 0

0 (K̃2 + κ2I)2 · · · 0
...

...
...

0 0 · · · (K̃M + κ2I)2




c1

c2

...
cM

 .

Here, 1 denotes denote a vector whose all elements are equal to 1. Let us write Eq. (125) shortly as Ac = λBc. Let
the minimal eigenvalue of this generalized eigenvalue problem be λKCCA, and λKGV = det(A)

det(B) .

ÎKCCA
(
y1, . . . ,yM

)
= −1

2
log(λKCCA), (126)

ÎKGV
(
y1, . . . ,yM

)
= −1

2
log(λKGV). (127)

At the moment,

km(u,v) = e−
‖u−v‖2

2σ2 (∀m). (128)

• Hoeffding [25, 18]: Let I be the indicator function and F̂m the empirical marginal distribution function:

F̂m(y) =
T∑

t=1

I{ym
t ≤y}, (129)

and

Ûmt = F̂m(ym
t ) =

1
T

(rank of ym
t in ym

1 , . . . , y
m
T ). (130)

The estimation can be computed as

h2(d) =

(
2

(d+ 1)(d+ 2)
− 1

2d

d!∏d
i=0

(
i+ 1

2

) +
1
3d

)−1

, (131)

ÎHoe�ding
(
y1, . . . , yd

)
=

√√√√√h2(d)

 1
T 2

T∑
j=1

T∑
k=1

d∏
i=1

[
1 − max(Ûij , Ûik)

]
− 2
T

1
2d

T∑
j=1

d∏
i=1

(
1 − Û2

ij

)
+

1
3d

. (132)

Under small sample adjustment, one can obtain a similar nice expression:

h2(d, T )−1 =
1
T 2

T∑
j=1

T∑
k=1

[
1 − max

(
j

T
,
k

T

)]d

− 2
T

T∑
j=1

[
T (T − 1) − j(j − 1)

2T 2

]d

+
1
3d

[
(T − 1)(2T − 1)

2T 2

]d

,

(133)

ÎHoe�ding
(
y1, . . . , yd

)
=
√
h2(d, T )(t1 − t2 + t3), (134)
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where

t1 =
1
T 2

T∑
j=1

T∑
k=1

d∏
i=1

[
1 − max(Ûij , Ûik)

]
, t2 =

2
T

1
2d

T∑
j=1

d∏
i=1

(
1 − Û2

ij −
1 − Ûij

T

)
, t3 =

1
3d

[
(T − 1)(2T − 1)

2T 2

]d

.

(135)

• SW1, SWinf [64, 36]:

ÎSW1

(
y1, y2

)
= σ̂ = 12

1
T 2 − 1

T∑
i1=1

T∑
i2=1

∣∣∣∣ĈT

(
i1
T
,
i2
T

)
− i1
T

i2
T

∣∣∣∣ . (136)

The ÎSWinf estimation is performed similarly.

C.3 Divergence

We have T1 and T2 i.i.d. samples from the distributions to be compared: Y1 =
(
y1

1, . . . ,y
1
T1

)
, Y2 =

(
y2

1, . . . ,y
2
T2

)
. Let

ρk(t) denote the Euclidean distance of the kth nearest neighbor of y1
t in the sample Y1\{y1

t }, and similarly let νk(t) stand
for the Euclidean distance of the kth nearest neighbor of y1

t in the sample Y2\{y2
t }. Let us recall the de�nitions [Eq. (28),

(30)]:

D(α) =
∫

Rd

[f1(y)]α [f2(y)]1−α dy, (137)

D(a, b) =
∫

Rd

[f1(y)]a [f2(y)]b f1(y)dy. (138)

• L2_kNN_k [58, 57, 59]:

D̂L =

√√√√ 1
T1Vd

T1∑
t=1

[
k − 1

(T1 − 1)ρd
k(t)

− 2(k − 1)
T2νd

k(t)
+

(T1 − 1)ρd
k(y1

t )(k − 2)(k − 1)
(T2)2ν2d

k (t)k

]
. (139)

• Tsallis_kNN_k [58, 57]:

Bk,α =
Γ(k)2

Γ(k − α+ 1)Γ(k + α− 1)
, (140)

D̂(α) = Bk,α
(T1 − 1)1−α

(T2)1−α

1
T1

T1∑
t=1

[
ρk(t)
νk(t)

]d(1−α)

, (141)

D̂T,α =
1

α− 1

[
D̂(α) − 1

]
. (142)

• Renyi_kNN_k [58, 57, 59]:

D̂R,α =
1

α− 1
log D̂(α). (143)

• MMD_online [20]:

T ′ =
⌊
T1

2

⌋(
=
⌊
T2

2

⌋)
, (144)

h((x,y), (u,v)) = k(x,u) + k(y,v) − k(x,v) − k(y,u), (145)

D̂MMD =
1
T ′

T ′∑
t=1

h
((

y1
2t−1,y

2
2t−1

)
,
(
y1

2t,y
2
2t

))
. (146)

Currently,

k(u,v) = e−
‖u−v‖2

2σ2 . (147)
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• Hellinger_kNN_k [53]:

Bk,a,b = V
−(a+b)
d

Γ(k)2

Γ(k − a)Γ(k − b)
, (148)

D̂(a, b) = (T1 − 1)−a(T2)−bBk,a,b
1
T1

T1∑
t=1

[ρk(t)]−da[νk(t)]−db, (149)

D̂H =

√
1 − D̂

(
−1

2
,
1
2

)
. (150)

• Bhattacharyya_kNN_k [53]:

D̂B = − log D̂
(
−1

2
,
1
2

)
. (151)

D Citation of the ITE Toolbox

The citing information of the ITE toolbox is provided below in BibTeX format:

@ARTICLE{szabo12separation,

AUTHOR = {Zolt{\'a}n Szab{\'o} and Barnab{\'a}s P{\'o}czos and Andr{\'a}s L{\H{o}}rincz},

TITLE = {Separation Theorem for Independent Subspace Analysis and its Consequences},

JOURNAL = {Pattern Recognition},

YEAR = {2012},

volume = {45},

issue = {4},

pages = {1782-1791},

}

@ARTICLE{szabo07undercomplete,

AUTHOR = {Zolt{\'a}n Szab{\'o} and Barnab{\'a}s P{\'o}czos and Andr{\'a}s L{\H{o}}rincz},

TITLE = {Undercomplete Blind Subspace Deconvolution},

JOURNAL = {Journal of Machine Learning Research},

YEAR = {2007},

volume = {8},

pages = {1063-1095},

}

References

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of
Computer and System Sciences, 66:671�687, 2003.

[2] Shun-ichi Amari, Andrzej Cichocki, and Howard H. Yang. A new learning algorithm for blind signal separation.
Neural Information Processing Systems (NIPS), pages 757�763, 1996.

[3] Rosa I. Arriga and Santosh Vempala. An algorithmic theory of learning: Robust concepts and random projections.
Machine Learning, 63:161�182, 2006.

[4] Francis R. Bach and Michael I. Jordan. Kernel independent component analysis. Journal of Machine Learning
Research, 3:1�48, 2002.

[5] Michéle. Basseville. Divergence measures for statistical data processing - an annotated bibliography. Signal Processing,
2012. To appear. hal.inria.fr/docs/00/54/23/37/PDF/PI-1961.pdf.

[6] J. Beirlant, E.J. Dudewicz, L. Gy®r�, and E.C. van der Meulen. Nonparametric entropy estimation: An overview.
International Journal of Mathematical and Statistical Sciences, 6:17�39, 1997.

45



[7] Ella Bingham and Aapo Hyvärinen. A fast �xed-point algorithm for independent component analysis of complex-
valued signals. International Journal of Neural Systems, 10(1):1�8, 2000.

[8] Jean-François Cardoso. Multidimensional independent component analysis. In International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 1941�1944, 1998.

[9] Jean-François Cardoso and Antoine Souloumiac. Blind beamforming for non-gaussian signals. IEE Proceedings F,
Radar and Signal Processing, 140(6):362�370, 1993.

[10] Pierre Comon. Independent component analysis, a new concept? Signal Processing, 36:287�314, 1994.

[11] Timothee Cour, Stella Yu, and Jianbo Shi. Normalized cut segmentation code. Copyright 2004 University of Penn-
sylvania, Computer and Information Science Department.

[12] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley and Sons, New York, USA,
1991.

[13] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. Fetal electrocardiogram extraction by source subspace
separation. In IEEE SP/Athos Workshop on Higher-Order Statistics, pages 134�138, 1995.

[14] Jan Eriksson. Complex random vectors and ICA models: Identi�ability, uniqueness and separability. IEEE Transac-
tions on Information Theory, 52(3), 2006.

[15] Kai-Tai Fang, Samuel Kotz, and Kai Wang Ng. Symmetric multivariate and related distributions. Chapman and Hall,
1990.

[16] Peter Frankl and Hiroshi Maehara. The Johnson-Lindenstrauss Lemma and the sphericity of some graphs. Journal
of Combinatorial Theory Series A, 44(3):355 � 362, 1987.

[17] Wayne A. Fuller. Introduction to Statistical Time Series. Wiley-Interscience, 1995.

[18] Sandra Gaiÿer, Martin Ruppert, and Friedrich Schmid. A multivariate version of Hoe�ding's phi-square. Journal of
Multivariate Analysis, 101:2571�2586, 2010.

[19] M. N. Goria, Nikolai N. Leonenko, V. V. Mergel, and P. L. Novi Inverardi. A new class of random vector entropy
estimators and its applications in testing statistical hypotheses. Journal of Nonparametric Statistics, 17:277�297,
2005.

[20] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel two-
sample test. Journal of Machine Learning Research, 13:723�773, 2012.

[21] Arthur Gretton, Olivier Bousquet, Alexander Smola, and Bernhard Schölkopf. Measuring statistical dependence with
Hilbert-Schmidt norms. In International Conference on Algorithmic Learnng Theory (ALT), pages 63�78, 2005.

[22] Godfrey H. Hardy and Srinivasa I. Ramanujan. Asymptotic formulae in combinatory analysis. Proceedings of the
London Mathematicl Society, 17(1):75�115, 1918.

[23] Jan Havrda and Franti�sek Charvát. Quanti�cation method of classi�cation processes. concept of structural α-entropy.
Kybernetika, 3:30�35, 1967.

[24] Nadine Hilgert and Bruno Portier. Strong uniform consistency and asymptotic normality of a kernel based error
density estimator in functional autoregressive models. Statistical Inference for Stochastic Processes, 15(2):105�125,
2012.

[25] W. Hoe�ding. Massstabinvariante korrelationstheorie. Schriften des Mathematischen Seminars und des Instituts für
Angewandte Mathematik der Universität Berlin, 5:181�233, 1940.

[26] Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal of Educational
Psychology, 24:417�441, 1933.

[27] Marc Van Hulle. Edgeworth approximation of multivariate di�erential entropy. Neural Computation, 17:1903�1910,
2005.

46



[28] Aapo Hyvärinen. Independent component analysis for time-dependent stochastic processes. In International Confer-
ence on Arti�cial Neural Networks (ICANN), pages 541�546, 1998.

[29] Aapo Hyvärinen and Erkki Oja. A fast �xed-point algorithm for independent component analysis. Neural Computa-
tion, 9(7):1483�1492, 1997.

[30] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In
ACM Symposium on Theory of Computing, 1998, pages 604�613.

[31] Miguel Jerez, Jose Casals, and Sonia Sotoca. Signal Extraction for Linear State-Space Models: Including a free
MATLAB Toolbox for Time Series Modeling and Decomposition. LAP LAMBERT Academic Publishing, 2011.

[32] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz maps into a Hilbert space. Contemporary
Mathematics, 26:189�206, 1984.

[33] Christian Jutten and Jeanny Hérault. Blind separation of sources: An adaptive algorithm based on neuromimetic
architecture. Signal Processing, 24:1�10, 1991.

[34] Christian Jutten and Juha Karhunen. Advances in blind source separation (BSS) and independent component analysis
(ICA) for nonlinear systems. International Journal of Neural Systems, 14(5):267�292, 2004.

[35] K. Rao Kadiyala and Sune Karlsson. Numerical methods for estimation and inference in bayesian VAR-models.
Journal of Applied Econometrics, 12:99�132, 1997.

[36] Sergey Kirshner and Barnabás Póczos. ICA and ISA using Schweizer-Wol� measure of dependence. In International
Conference on Machine Learning (ICML), pages 464�471, 2008.

[37] L. F. Kozachenko and Nikolai N. Leonenko. A statistical estimate for the entropy of a random vector. Problems of
Information Transmission, 23:9�16, 1987.

[38] Solomon Kullback and Richard Leibler. On information and su�ciency. Annals of Mathematical Statistics, 22(1):79�
86, 1951.

[39] Jan Kybic. High-dimensional mutual information estimation for image registration. In International Conference on
Image Processing (ICIP), pages 1779�1782, 2004.

[40] Russell H. Lambert. Multichannel Blind Deconvolution: FIR matrix algebra and separation of multipath mixtures.
PhD thesis, University of Southern California, 1996.

[41] Nikolai Leonenko, Luc Pronzato, and Vippal Savani. A class of Rényi information estimators for multidimensional
densities. Annals of Statistics, 36(5):2153�2182, 2008.

[42] Ping Li, Trevor J. Hastie, and Kenneth W. Hastie. Very sparse random projections. In International Conference on
Knowledge Discovery and Data Mining (KDD), pages 287�296, 2006.

[43] Edward Norton Lorenz. Deterministic nonperiodic �ow. Journal of Atmospheric Sciences, 20:130�141, 1963.

[44] Ji�rí Matou�sek. On variants of the Johnson-Lindenstrauss lemma. Random Structures and Algorithms, 33(2):142�156,
2008.

[45] Roger B. Nelsen. An Introduction to Copulas (Springer Series in Statistics). Springer, 2006.

[46] Arnold Neumaier and Tapio Schneider. Estimation of parameters and eigenmodes of multivariate autoregressive
models. ACM Transactions on Mathematical Software, 27(1):27�57, 2001.

[47] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: analysis and an algorithm. In Advances
in Neural Information Processing Systems (NIPS), pages 849�856, 2002.

[48] Michael S. Pedersen, Jan Larsen, Ulrik Kjems, and Lucas C. Parra. A survey of convolutive blind source separation
methods. In Springer Handbook of Speech Processing. Springer, 2007.

[49] Barnabás Póczos, Zoubin Ghahramani, and Je� Schneider. Copula-based kernel dependency measures. In Interna-
tional Conference on Machine Learning (ICML), 2012.

47



[50] Barnabás Póczos and András L®rincz. Identi�cation of recurrent neural networks by Bayesian interrogation techniques.
Journal of Machine Learning Research, 10:515�554, 2009.

[51] Barnabás Póczos, Zoltán Szabó, Melinda Kiszlinger, and András L®rincz. Independent process analysis without a pri-
ori dimensional information. In International Conference on Independent Component Analysis and Signal Separation
(ICA), pages 252�259, 2007.

[52] Barnabás Póczos, Bálint Takács, and András L®rincz. Independent subspace analysis on innovations. In European
Conference on Machine Learning (ECML), pages 698�706, 2005.

[53] Barnabás Póczos, Liang Xiong, Dougal Sutherland, and Je� Schneider. Support distribution machines. Technical
report, Carnegie Mellon University, 2012. http://arxiv.org/abs/1202.0302.

[54] Dávid Pál, Barnabás Póczos, and Csaba Szepesvári. Estimation of Rényi entropy and mutual information based on
generalized nearest-neighbor graphs. In Neural Information Processing Systems (NIPS), pages 1849�1857, 2011.

[55] Barnabás Póczos and András L®rincz. Independent subspace analysis using geodesic spanning trees. In International
Conference on Machine Learning (ICML), pages 673�680, 2005.

[56] Barnabás Póczos and András L®rincz. Independent subspace analysis using k-nearest neighborhood estimates. In
International Conference on Arti�cial Neural Networks (ICANN), pages 163�168, 2005.

[57] Barnabás Póczos and Je� Schneider. On the estimation of α-divergences. In International conference on Arti�cial
Intelligence and Statistics (AISTATS), pages 609�617, 2011.

[58] Barnabás Póczos, Zoltán Szabó, and Je� Schneider. Nonparametric divergence estimators for independent subspace
analysis. In European Signal Processing Conference (EUSIPCO), pages 1849�1853, 2011.

[59] Barnabás Póczos, Liang Xiong, and Je� Schneider. Nonparametric divergence: Estimation with applications to
machine learning on distributions. In Uncertainty in Arti�cial Intelligence (UAI), pages 599�608, 2011.

[60] Ravikiran Rajagopal and Lee C. Potter. Multivariate MIMO FIR inverses. IEEE Transactions on Image Processing,
12:458�465, 2003.

[61] Reuven Y. Rubinstein and Dirk P. Kroese. The Cross-Entropy Method. Springer, 2004.

[62] Alfréd Rényi. On measures of information and entropy. In Proceedings of the 4th Berkeley Symposium on Mathematics,
Statistics and Probability, pages 547�561, 1961.

[63] Tapio Schneider and Arnold Neumaier. Algorithm 808: AR�t - a Matlab package for the estimation of parameters
and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27(1):58�65,
2001.

[64] B. Schweizer and E. F. Wol�. On nonparametric measures of dependence for random variables. The Annals of
Statistics, 9:879�885, 1981.

[65] Claude E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):379�423, 1948.

[66] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888�905, 2000.

[67] Harshinder Singh, Neeraj Misra, Vladimir Hnizdo, Adam Fedorowicz, and Eugene Demchuk. Nearest neighbor
estimates of entropy. American Journal of Mathematical and Management Sciences, 23:301�321, 2003.

[68] Kumar Sricharan and Alfred. O. Hero. Weighted k-NN graphs for Rényi entropy estimation in high dimensions. In
IEEE Workshop on Statistical Signal Processing (SSP), pages 773�776, 2011.

[69] Zoltán Szabó. Complete blind subspace deconvolution. In International Conference on Independent Component
Analysis and Signal Separation (ICA), pages 138�145, 2009.

[70] Zoltán Szabó. Autoregressive independent process analysis with missing observations. In European Symposium on
Arti�cial Neural Networks, Computational Intelligence and Machine Learning (ESANN), pages 159�164, 2010.

48



[71] Zoltán Szabó and András L®rincz. Towards independent subspace analysis in controlled dynamical systems. In ICA
Research Network International Workshop (ICARN), pages 9�12, 2008.

[72] Zoltán Szabó and András L®rincz. Complex independent process analysis. Acta Cybernetica, 19:177�190, 2009.

[73] Zoltán Szabó and András L®rincz. Fast parallel estimation of high dimensional information theoretical quantities with
low dimensional random projection ensembles. In International Conference on Independent Component Analysis and
Signal Separation (ICA), pages 146�153, 2009.

[74] Zoltán Szabó and András L®rincz. Distributed high dimensional information theoretical image registration via random
projections. Digital Signal Processing, 22(6):894�902, 2012.

[75] Zoltán Szabó and Barnabás Póczos. Nonparametric independent process analysis. In European Signal Processing
Conference (EUSIPCO), pages 1718�1722, 2011.

[76] Zoltán Szabó, Barnabás Póczos, and András L®rincz. Cross-entropy optimization for independent process analysis.
In International Conference on Independent Component Analysis and Blind Source Separation (ICA), pages 909�916,
2006.

[77] Zoltán Szabó, Barnabás Póczos, and András L®rincz. Undercomplete blind subspace deconvolution. Journal of
Machine Learning Research, 8:1063�1095, 2007.

[78] Zoltán Szabó, Barnabás Póczos, and András L®rincz. Undercomplete blind subspace deconvolution via linear predic-
tion. In European Conference on Machine Learning (ECML), pages 740�747, 2007.

[79] Zoltán Szabó, Barnabás Póczos, and András L®rincz. Auto-regressive independent process analysis without combi-
natorial e�orts. Pattern Analysis and Applications, 13:1�13, 2010.

[80] Zoltán Szabó, Barnabás Póczos, and András L®rincz. Separation theorem for independent subspace analysis and its
consequences. Pattern Recognition, 45:1782�1791, 2012.

[81] Zoltán Szabó, Barnabás Póczos, Gábor Szirtes, and András L®rincz. Post nonlinear independent subspace analysis.
In International Conference on Arti�cial Neural Networks (ICANN), pages 677�686, 2007.

[82] Zoltán Szabó and András L®rincz. Real and complex independent subspace analysis by generalized variance. In ICA
Research Network International Workshop (ICARN), pages 85�88, 2006.

[83] Anisse Taleb and Christian Jutten. Source separation in post-nonlinear mixtures. IEEE Transactions on Signal
Processing, 10(47):2807�2820, 1999.

[84] Fabian J. Theis. Blind signal separation into groups of dependent signals using joint block diagonalization. In IEEE
International Symposium on Circuits and Systems (ISCAS), pages 5878�5881, 2005.

[85] Fabian J. Theis. Towards a general independent subspace analysis. In Neural Information Processing Systems (NIPS),
pages 1361�1368, 2007.

[86] Constantino Tsallis. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52:479�487,
1988.

[87] James V. Uspensky. Asymptotic formulae for numerical functions which occur in the theory of partitions. Bulletin
of the Russian Academy of Sciences, 14(6):199�218, 1920.

[88] T. Villmann and S. Haase. Mathematical aspects of divergence based vector quantization using Fréchet-derivatives.
Technical report, University of Applied Sciences Mittweida, 2010.

[89] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4), 2007.

[90] Quing Wang, Sanjeev R. Kulkarni, and Sergio Verdú. Divergence estimation for multidimensional densities via
k-nearest-neighbor distances. IEEE Transactions on Information Theory, 55:2392�2405, 2009.

[91] Donghui Yan, Ling Huang, and Michael I. Jordan. Fast approximate spectral clustering. In International Conference
on Knowledge Discovery and Data Mining (KDD), pages 907�916, 2009.

49



[92] Joseph E. Yukich. Probability theory of classical Euclidean optimization problems. Lecture Notes in Mathematics,
1675, 1998.

[93] Andreas Ziehe, Motoaki Kawanabe, Stefan Harmeling, and Klaus-Robert Müller. Blind separation of postnonlinear
mixtures using linearizing transformations and temporal decorrelation. Journal of Machine Learning Research, 4:1319�
1338, 2003.

50


