ITE (Information Theoretical Estimators) Matlab/Octave Toolbox
Release 0.17

Zoltan Szabd

November 6, 2012

Contents
1 Introduction

2 Installation

3 Estimation of Information Theoretical Quantities
3.1 Base Estimators e e e e e e e e e
3.1.1 Entropy Estimators L
3.1.2 Mutual Information Estimators L
3.1.3 Divergence Estimators e
3.2 Meta Estimators Lo e e e
3.2.1 Entropy Estimators o
3.2.2 Mutual Information Estimators
3.2.3 Divergence Estimators oL e
3.3 Uniform Syntax of the Estimators e
4 ITE Application in Independent Process Analysis (IPA)
4.1 TPA Models o e e
4.1.1 Independent Subspace Analysis (ISA)
4.1.2 Extensions of ISA L e
4.2 Estimation via ITE L 0 e e e e
4.2.1 ISA o e
4.2.2 Extensions of ISA L L
4.3 Performance Measure, the Amari-index L
4.4 Dataset-, Model Generators L L e e
5 Directory Structure of the Package
A Abbreviations
B Functions with Octave-Specific Adaptations
C Estimation Formulas — Lookup Table
C.1 Entropy o o e e
C.2 Mutual Information L e
C.3 DIvergence e e

D Citation of the ITE Toolbox

10
11
11
12
14
15
16
18
19
20

22
22
22
25
28
28
31
33
34

38

39

39

39
39
42
44

45

List of Figures

1
2
3

IPA problem family, relations L e 28
ISA demonstration e 34
Illustration of the datasets e 36

List of Tables

0O U WwN -

I I R e R e e e Y o T i =]
N = OWWoe IO Uk W m=O

External, dedicated packages increasing the efficiency of ITE 10
Entropy estimators (base) 12
Mutual information estimators (base) Lo 14
Divergence estimators (base) 16
Entropy estimators (meta) L. e 17
Mutual information estimators (meta)o e e 19
Divergence estimators (meta) Lo 20
Well-scaling approximation for the permutation search problem in ISA 25
ISA formulations oL e e e 29
Optimizers for unknown subspace dimensions, spectral clustering method 29
Optimizers for given subspace dimensions, greedy method L. 30
Optimizers for given subspace dimensions, cross-entropy method L. 30
Optimizers for given subspace dimensions, exhaustive method L. 30
IPA separation principles Lo e e e 32
IPA subtasks and estimators L L e e 32
k-nearest neighbor methods L e 33
Minimum spanning tree methodso e 33
IPA model generators L e e e 36
Description of the datasets o e e e 37
Generators of the datasets L L 37
Abbrevations L e 39
Functions with Octave-specific adaptations e 40

List of Examples

00~ O Tt Wi~

e e e e e e e = O
O O U WNH~=O

ITE installation (output; with compilation) 9
Entropy estimation (base-1: Usage) o e e 11
Entropy estimation (base-2: usage) e e e e 11
Mutual information estimation (base: usage) e 14
Divergence estimation (base: usage) L e 15
Entropy estimation (meta: initialization) Lo L 16
Entropy estimation (meta: estimation) Lol 16
Entropy estimation (meta: usage)o Lo e 17
Mutual information estimator (meta: initialization) oL o oo oL 18
Mutual information estimator (meta: estimation) L. L oo 18
Mutual information estimator (meta: usage) 18
Divergence estimator (meta: initialization) L L 19
Divergence estimator (meta: estimation) oL L oo 19
Divergence estimator (meta: Usage)o 20
Entropy estimation (high-level, usage) L 21
S 7 29
ISA-2 o 29
ISA-3 o 30

List of Templates

S T W N =

Entropy estimator: initialization L L e 20
Mutual information estimator: initializationo 20
Divergence estimator: initializationo L 20
Entropy estimator: estimation oL 20
Mutual information estimator: estimationo L 20
Divergence estimator: estimation Ll L 21

1 Introduction

Since the pioneering work of Shannon [65], entropy, mutual information, divergence measures and their extensions have
found a broad range of applications in many areas of machine learning. Entropies provide a natural notion to quantify
the uncertainty of random variables, mutual information type indices measure the dependence among its arguments,
divergences offer efficient tools to define the ‘distance’ of probability measures. Particularly, in the classical Shannon
case, these three concepts form a gradually widening chain: entropy is equal to the self mutual information of a random
variable, mutual information is identical to the divergence of the joint distribution and the product of the marginals [12].
Applications of Shannon entropy, -mutual information, -divergence and their generalizations cover, for example, (i) feature
selection, (ii) clustering, (iii) independent component,/subspace analysis, (iii) image registration, (iv) boosting, (v) optimal
experiment design, (vi) causality detection, (vii) hypothesis testing, (viii) Bayesian active learning, (ix) structure learning
in graphical models, (x) region-of-interest tracking, among many others. For an excellent review on the topic, the reader
is referred to [6, 90, 88, 5, 49].

Independent component analysis (ICA) [33, 9, 10] a central problem of signal processing and its generalizations can
be formulated as optimization problems of information theoretical objectives. One can think of ICA as a cocktail party
problem: we have some speakers (sources) and some microphones (sensors), which measure the mixed signals emitted by
the sources. The task is to estimate the original sources from the mixed observations only. Traditional ICA algorithms
are one-dimensional in the sense that all sources are assumed to be independent real valued random variables. However,
many important applications underpin the relevance of considering extensions of ICA, such as the independent subspace
analysis (ISA) problem [8, 13]. In ISA, the independent sources can be multidimensional: we have a cocktail-party, where
more than one group of musicians are playing at the party. Successful applications of ISA include (i) the processing of
EEG-IMRI, ECG data and natural images, (ii) gene expression analysis, (iii) learning of face view-subspaces, (iv) motion
segmentation, (v) single-channel source separation, (vi) texture classification, (vii) action recognition in movies.

One of the most relevant and fundamental hypotheses of the ICA research is the ISA separation principle [8]: the ISA
task can be solved by ICA followed by clustering of the ICA elements. This principle (i) forms the basis of the state-
of-the-art ISA algorithms, (ii) can be used to design algorithms that scale well and efficiently estimate the dimensions
of the hidden sources, (iii) has been recently proved [77] and (iv) can be extended to different linear-, controlled-, post
nonlinear-, complex valued-, partially observed systems, as well as to systems with nonparametric source dynamics. For
a recent review on the topic, see [80].

Although there exist many exciting applications of information theoretical measures, to the best of our knowledge,
available packages in this domain focus on (i) discrete variables, or (ii) quite specialized applications and information
theoretical estimation methods. Our goal is to fill in this serious gap by coming up with a (i) highly modular, (ii) free
and open source, (iii) multi-platform toolbox, the ITE (information theoretical estimators) package, which

1. is capable of estimating many different variants of entropy, mutual information and divergence measures:

e Shannon-, Rényi-, Tsallis entropy; generalized variance (GV), kernel canonical correlation analysis (KCCA),
kernel generalized variance (KGV), Hilbert-Schmidt independence criterion (HSIC), Shannon-, Ls-, Rényi-,
Tsallis mutual information, copula-based kernel dependency, multivariate version of Hoeffding’s ®, Schweizer-
Wolff’s o and k; complex variants of entropy and mutual information; Lo-, Rényi-, Tsallis divergence; Hellinger-,
Bhattacharyya distance; maximum mean discrepancy (MMD), and J-distance based on

e nonparametric methods': k-nearest neighbors, generalized k-nearest neighbors, weighted k-nearest neighbors,
minimum spanning trees, geodesic spanning forests, random projection, ensemble methods, kernel techniques.

2. offers a simple and unified framework to

(a) easily construct new estimators from existing ones or from scratch, and

(b) transparently use the obtained estimators in information theoretical optimization problems.
3. with a prototype application in ISA and its extensions including

o 6 different ISA objectives,

e 4 optimization methods: (i) handling known and unknown subspace dimensions as well, with (ii) further
objective-specific accelerations,

1Tt is highly advantageous to apply nonparametric approaches to estimate information theoretical quantities. The bottleneck of the ’opposite’
plug-in type methods, which estimate the underlying density and then plug it in into the appropriate integral formula, is that the unknown
densities are nuisance parameters. As a result, plug-in type estimators scale poorly as the dimension is increasing.

e 5 extended problem directions: (i) different linear-, (ii) controlled-, (iii) post nonlinear-, (iii) complex valued-,
(iv) partially observed models, (v) as well as systems with nonparametric source dynamics; which can be used
in combinations as well.

The technical details of the ITE package are as follows:

Author: Zoltan Szabo.

— Homepage: http://nipg.inf.elte.hu/szzoli

— Email: szzoli@cs.elte.hu

— Affiliation: E6tvos Lorand University, Faculty of Informatics, Pazmany Péter sétany 1/C, Budapest, H-1117,
Hungary.

Documentation of the source: the source code of ITE has been enriched with numerous comments, examples,
and pointers where the interested user can find further mathematical details about the embodied techniques.

License (GNU GPLv3 or later): ITE is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at
your option) any later version. This software is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License along with ITE. If not, see <http://www.gnu.org/licenses/>.

Citing: If you use the ITE toolbox in your work, please cite the papers [77, 80] (.bib in Appendix D).

Platforms: The ITE package has been extensively tested on Windows and Linux. However, since it is made of
standard Matlab/Octave and C++ files, it is expected to work on alternative platforms as well.

Environments: Matlab?, Octave?.

Requirements: The ITE package is self-contained, it only needs a Matlab or an Octave environment with standard
toolboxes:

— Matlab: Image Processing, Optimization, Statistics.

— Octave*: Image Processing (image), Statistics (statistics), Input/OQutput (io, required by statistics), Ordinary
Differential Equations (odepkg), Bindings to the GNU Scientific Library (gsl), ANN wrapper (ann).

Comments, feedbacks: are welcome.

Homepage of the ITE toolbox: https://bitbucket.org/szzoli/ite/

The remainder of this document is organized as follows. Section 2 is about the installation of the ITE package. Section 3
focuses on the estimation of information theoretical quantities (entropy, mutual information, divergence measures) and
their realization in ITE. In Section 4, we present an application of Section 3 included in the ITE toolbox. The application
considers the extension of independent subspace analysis (ISA, independent component analysis with multidimensional
sources) to different linear-, controlled-, post nonlinear-, complex valued-, partially observed problems, as well as problems
dealing with nonparametric source dynamics, i.e., the independent process analysis (IPA) problem family. Section 5
is about the organization of the directories of the ITE toolbox. Abbreviations of the paper are listed in Appendix A
(Table 21). Functions with Octave-specific adaptations are summarized in Appendix B (Table 22). A brief summary
(lookup table) of the underlying entropy, mutual information and divergence computations can be found in Appendix C.
Citing information of the ITE package is provided in Appendix D.

2http://www.mathworks.com/products/matlab/
Shttp://www.gnu.org/software/octave/
4See http://octave.sourceforge.net/packages.php.

2 Installation

This section is about (i) the installation of the ITE toolbox, and (ii) the external packages, dedicated solvers embedded
in the ITE package. The purpose of this inclusion is twofold:

e to further increase the efficiency of certain subtasks to be solved (e.g., k-nearest neighbor search, finding minimum
spanning trees, some subtasks revived by the IPA separation principles (see Section 4.1)),

e to provide both purely Matlab/Octave implementations, and specialized (often faster) non-Matlab /-Octave solutions
that can be called from Matlab/Octave.

The core of the ITE toolbox has been written in Matlab, as far it was possible in an Octave compatible way. The particular-
ities of Octave has been taken into account by adapting the code to the actual environment (Matlab/Octave). The working
environment can be queried (e.g., in case of extending the package it is also useful) by the working_environment_Matlab.m
function included in ITE. Adaptations has been carried out in the functions listed in Appendix B (Table 22). The func-
tionalities extended by the external packages are also available in both environments (Table 1).

Here, a short description of the embedded/downloaded packages (directory ’shared/embedded’, ’shared /downloaded’)
is given:

1. fastICA (directory ’shared /embedded /FastICA’; version 2.5):

URL: http://research.ics.tkk.fi/ica/fastica/

License: GNU GPLv2 or later.

Solver: ICA (independent component analysis).

Installation: Add it with subfolders to your Matlab/Octave PATH.

Environment: Matlab, Octave.

Note: By commenting out the g_FastICA_interrupt variable in fpica.m, the fastica.m function can be
used in Octave, too. The provided fastICA code in the ITE toolbox contains this modification.

2. Complex fastICA (directory 'shared/embedded/CFastICA’)

e URL: http://www.cs.helsinki.fi/u/ebingham/software.html, http://users.ics.aalto.fi/ella/
publications/cfastica_public.m

License: GNU GPLv2 or later.

Solver: complex ICA.

Installation: Add it with subfolders to your Matlab/Octave PATH.

Environment: Matlab, Octave.

3. ANN (approximate nearest neighbor) Matlab wrapper (directory ’shared/embedded/ann _wrapperM’; ver-
sion "Mar2012’):

e URL: http://www.wisdom.weizmann.ac.il/“bagon/matlab.html, http://www.wisdom.weizmann.ac.il/
“bagon/matlab_code/ann_wrapper_Mar2012.tar.gz

e License: GNU LGPLv3.

e Solver: approximate nearest neighbor computation.

e Installation: Follow the instructions in the ANN wrapper package (README.txt: INSTALLATION) till
’ann__class _compile’. Note: If you use a more recent C++ compiler (e.g., g+-+ on Linux), you have to include
the following 2 lines into the original code to be able to compile the source:

(a) ’#include <cstdlib>’ to ’"ANNx.h’
(b) ’#include <cstring>’ to ’kd _tree.h’
The provided ANN code in the ITE package contains these modifications.
e Environment: Matlab, Octave®.
e Note: fast nearest neighbor alternative of knnsearch € Matlab: Statistics Toolbox.

4. MatlabBGL (directory ’shared/embedded/MatlabBGL’, version 4.0)

5At the time of writing this paper, the Octave ANN wrapper (http://octave.sourceforge.net/ann/index.html, version 1.0.2) supports
2.9.12 < Octave < 3.4.0. According to our experiences, however the ann wrapper can also be used for higher versions of Octave provided that (i)
a new swig package (www.swig.org/) is used (>=2.0.5), (ii) a new ’SWIG=swig’ line is inserted in src/ann/bindings/Makefile (the ITE package
contains the modified makefile), and (iii) the row containing ’typedef OCTAVE IDX TYPE octave idx_type;’ (in ’.../octave/config.h’) is
commented out for the time of 'make’-ing.

e URL: https://github.com/dgleich/matlab-bgl, http://www.mathworks.com/matlabcentral/
fileexchange/10922
License: 2-clause BSD, and GNU GPLv2 or later.
Solver: minimum spanning trees: Prim and Kruskal algorithm.
Installation: Add it with subfolders to your Matlab/Octave PATH. Note:
— The package includes precompiled MEX files for Windows (32-bit and 64-bit), and Linux (32-bit and 64-bit
for Matlab 2006b+), and MacOSX (32-bit, Intel and 32-bit PPC).
— The package includes source code to compile on other platforms as well.
Environment: Matlab, Octave®.
Note: alternative of '14) = pmtk3’ in finding minimum spanning trees.

5. FastKICA (directory ’shared /embedded/FastKICA’, version 1.0):

URL: http://people.kyb.tuebingen.mpg.de/arthur/fastkica.htm

License: GNU GPL v2 or later.

Solver: HSIC (Hilbert-Schmidt independence criterion) mutual information estimator.

Installation: Add it with subfolders to your Matlab/Octave PATH.

Environment: Matlab, Octave.

Note: one can extend the implementation of HSIC to measure the dependence of d,,-dimensional variables,
too. The ITE toolbox contains this modification.

6. NCut (Normalized Cut, directory ’shared /embedded /NCut’; version 9):

e URL: http://www.seas.upenn.edu/"timothee/software/ncut/ncut.html, http://wuw.seas.upenn.edu/
“timothee/software/ncut/Ncut_9.zip

License: GNU GPLv3.

Solver: spectral clustering, fixed number of groups.

Installation: Run compileDir_simple.m from Matlab to the provided directory of functions.
Environment: Matlab.

Note: the package is a fast alternative of '11) = spectral clustering’.

7. sqdistance (directory ’shared /embedded /sqdistance’)

e URL: http://www.mathworks.com/matlabcentral/fileexchange/24599-pairwise-distance-matrix/,
http://www.mathworks.com/matlabcentral/fileexchange/24599-pairwise-distance-matrix?
download=true

License: 2-clause BSD.

Solver: fast pairwise distance computation.

Installation: Add it with subfolders to your Matlab/Octave PATH.

Environment: Matlab, Octave.

Note: compares favourably to the Matlab/Octave function pdist.

8. TCA (directory ’shared /embedded/TCA’; version 1.0):

e URL: http://www.di.ens.fr/"fbach/tca/index.htm, http://www.di.ens.fr/ fbach/tca/tcal_0.tar.
gz

e License: GNU GPLv2 or later.

e Solver: KCCA (kernel canonical correlation analysis) / KGV (kernel generalized variance) estimator, incom-
plete Cholesky decomposition.

o Installation: Add it with subfolders to your Matlab/Octave PATH.

e Environment: Matlab, Octave.

e Note: Incomplete Cholesky factorization can be carried out by the Matlab/Octave function chol_gauss.m.
One can also compile the included chol_gauss.c to attain improved performance. Functions provided in the
ITE toolbox contain extensions of the KCCA and KGV indices to measure the dependence of d,,-dimensional
variables. The computations have also been accelerated in ITE by ’7) = sqdistance’.

9. Weighted kNN (kNN: k-nearest neighbor; directory ’shared/embedded/weightedkNN’ and the core of
HRenyi_weightedkNN_estimation.m):

6With some trick, the MatlabBGL works on Octave, see https://ansvers.launchpad.net/matlab-bgl/+question/48686.

URL: http://www-personal.umich.edu/ kksreddy/

License: GNU GPLv3 or later.

Solver: Rényi entropy estimator based on the weighted k-nearest neighbor method.

Installation: Add it with subfolders to your Matlab/Octave PATH.

Environment: Matlab, Octave.

Note: in the weighted kNN technique the weights are optimized. Since Matlab and Octave rely on different
optimization engines, one has to adapt the weight estimation procedure to Octave. The calculateweight.m
function in ITE contains this modification.

10. E4 (directory ’shared/embedded /E4’):

URL: http://www.ucm.es/info/icae/e4/, http://www.ucm.es/info/icae/e4/downfiles/E4.zip
License: GNU GPLv2 or later.

Solver: AR (autoregressive) fit.

Installation: Add it with subfolders to your Matlab/Octave PATHT.

Environment: Matlab, Octave.

Note: alternative of '13) = ARfit’ in AR identification.

11. spectral clustering (directory ’shared/embedded/sp _clustering’):

URL: http://www.mathworks.com/matlabcentral/fileexchange/34412-fast-and-efficient-
spectral-clustering

License: 2-clause BSD.

Solver: spectral clustering.

Installation: Add it with subfolders to your Matlab/Octave PATH.

Environment: Matlab, Octave.

Note: the package is a purely Matlab/Octave alternative of ’6)=NCut’. It is advisable to alter the eigensystem
computation in the SpectralClustering.m function to work stably in Octave; the modification is included in
the ITE toolbox and is activated in case of Octave environment.

12. clinep (directory ’shared/embedded/clinep’):

URL: http://www.mathworks.com/matlabcentral/fileexchange/8597-plot-3d-color-line/content/
clinep.m

License: 2-clause BSD.

Solver: Plots a 3D line with color encoding along the length using the patch function.

Installation: Add it with subfolders to your Matlab/Octave PATH.

Environment: Matlab, Octave.

Note: (i) calling of the cylinder function (in clinep.m) has to modified somewhat to work in Octave, and (ii)
since "gnuplot (as of v4.2) only supports 3D filled triangular patches’ one has to use the fltk graphics toolkit in
Octave for drawing. The included cline.m code in the ITE package contains these modifications.

13. ARfit (directory ’shared /downloaded/ARfit’, version "March 20, 2011’)

URL: http://www.gps.caltech.edu/"tapio/arfit/, http://www.gps.caltech.edu/ tapio/arfit/
arfit.zip.

License: ACM.

Solver: AR identification.

Installation: Download, extract and add it with subfolders to your Matlab/Octave PATH.

Environment: Matlab, Octave.

Note: alternative of '10) = E4’ in AR identification.

14. pmtk3 (directory ’shared/embedded/pmtk3’, version 'Jan 2012°)

URL: http://code.google.com/p/pmtk3, http://code.google.com/p/pmtk3/downloads/detail?name=
pmtk3-3janll.zip&can=2&q=.

License: MIT.

Solver: minimum spanning trees: Prim algorithm.

"In Octave, this step results in a ‘warning: function .../shared/embedded/E4/vech.m shadows a core library function’; it is OK, the two
functions compute the same quantity.

e Installation: Add it with subfolders to your Matlab/Octave PATH.
e Environment: Matlab, Octave.
e Note: purely Matlab/Octave alternative of ’4) = MatlabBGL’ in finding minimum spanning trees.

15. knn (directory ’shared/embedded/knn’, version 'Nov 02, 2010”)

e URL: http://www.mathworks.com/matlabcentral/fileexchange/28897-k-nearest-neighbor-search,
http://www.mathworks.com/matlabcentral/fileexchange/28897-k-nearest-neighbor-search?
download=true

License: 2-clause BSD.

Solver: kNN search.

Installation: Run the included build command to compile the partial sorting function top.cpp. Add it with
subfolders to your Matlab/Octave PATH.

e Environment: Matlab, Octave.

e Note: Alternative of ’3)=ANN’ in finding k-nearest neighbors.

16. SWICA (directory ’shared/embedded/SWICA”)

e URL: http://www.stat.purdue.edu/ skirshne/SWICA, http://www.stat.purdue.edu/ skirshne/SWICA/
swica.tar.gz

License: 3-clause BSD.

Solver: Schweizer-Wolft’s ¢ and « estimation.

Installation: Add it with subfolders to your Matlab/Octave PATH.

Environment: Matlab, Octave.

Note: one can also compile the included SW_kappa.cpp and SW_sigma.cpp functions to further accelerate
computations (see 'build_SWICA.m’).

A short summary of the packages can be found in Table 1. To ease installation, the ITE package contains an installation
script, ITE_install.m. A typical usage is to cd to the directory 'code’ and call ITE_install(pwd). Running the script
from Matlab/Octave, it (i) adds the main ITE directory with subfolders to the Matlab/Octave PATH, (ii) downloads
and extracts the ARfit package, and (iii) compiles the embedded ANN, NCut, TCA, SWICA, knn packages and a .cpp
acceleration of the Hoeffding’s @ [see Eq. (17)] and Edgeworth expansion based entropy [see Eq.(109)] computations.?
The ITE_install.m script automatically detects the working environment (Matlab/Octave) and performs the installation
accordingly, for example, it deletes the ann wrapper not suitable for the current working environment. The output of a
successful installation in Matlab is given below (the Octave output is similar):

Example 1 (ITE installation (output; with compilation))

>> ITE_install(pwd); %after cd-ing to the code directory
Installation: started.

We are working in Matlab environment. => ann_wrapper for (Octave: deleted.
ARfit package: downloading, extraction: started.

ARfit package: downloading, extraction: ready.

ITE directory: added with subfolders to the Matlab PATH.
ANN compilation: started.

ANN compilation: ready.

NCut compilation: started.

NCut compilation: ready.

TCA (chol_gauss.c) compilation: started.

TCA (chol_gauss.c) compilation: ready.

SWICA (SW_kappa.cpp, SW_sigma.cpp) compilation: started.
SWICA (SW_kappa.cpp, SW_sigma.cpp) compilation: ready.
Hoeffding_terml.cpp compilation: started.
Hoeffding_terml.cpp compilation: ready.
Edgeworth_t1_t2_t3.cpp compilation: started.
Edgeworth_t1_t2_t3.cpp compilation: ready.

8The ITE package also offers purely Matlab/Octave implementations for the computation of Hoeffding’s ® and Edgeworth expansion based
entropy approximation. Without compilation, these Matlab/Octave implementations are evoked.

Task Package Written in Environment Directory

ICA fastICA Matlab Matlab, Octave shared/embedded/FastICA
complex ICA complex fastICA Matlab Matlab, Octave shared/embedded/CFastICA

kNN search ANN C++ Matlab shared/embedded/ann_wrapperM*®
kNN search ANN C++ Octave’ shared/embedded/ann_wrapperO®
Prim-, Kruskal algorithm MatlabBGL C++ Matlab, Octave® shared/embedded/MatlabBGL
HSIC estimation FastKICA Matlab Matlab, Octave shared/embedded/FastKICA
spectral clustering NCut C++ Matlab shared/embedded/NCut

fast pairwise distance computation sqdistance Matlab Matlab, Octave shared/embedded/sqdistance
KCCA, KGV TCA Matlab, C Matlab, Octave shared/embedded/TCA

Rényi entropy via weighted kNNs weighted kNN Matlab Matlab, Octave shared/embedded/weightedk NN
AR fit E4 Matlab Matlab, Octave shared/embedded/E4

spectral clustering spectral clustering Matlab Matlab, Octave shared/embedded/sp_clustering
trajectory plot clinep Matlab Matlab, Octave shared/embedded/clinep

AR fit ARfit Matlab Matlab, Octave shared/downloaded/ARfit

Prim algorithm pmtk3 Matlab Matlab, Octave shared/embedded/pmtk3

kNN search knn Matlab, C++ Matlab, Octave shared/embedded/knn
Schweizer-Wolft’s o and & SWICA Matlab, C++ Matlab, Octave shared/embedded/SWICA

Table 1: External, dedicated packages increasing the efficiency of ITE.

¢In ‘ann_wrapperM’ ‘M’ stands for Matlab, in ‘ann_wrapperO’ ‘O’ denotes Octave.

bSee footnote 5.
¢See footnote 6.

knn (top.cpp) compilation: started.
knn (top.cpp) compilation: ready.

Installation tests:

ANN quick test: successful.
NCut quick test: successful.
ARfit quick test: successful.
knn quick test: successful.

3 Estimation of Information Theoretical Quantities

In this section we focus on the estimation of information theoretical quantities. Particularly, in the sequel, the underlying
idea how the estimators are implemented in ITE are detailed, accompanied with definitions, numerous examples and
extension possibilities/instructions.

The ITE package supports the estimation of many different variants of entropy, mutual information and divergence

measures:

1. From construction point of view, we distinguish two types of estimators in ITE: base (Section 3.1) and meta (Sec-
tion 3.2) ones. Meta estimators are derived from existing base/meta ones by taking into account information
theoretical identities. For example, by considering the well-known

I(y'.oyM)=> HEy™ - H([ys . .:y"]) (1)

relation [12], one can estimate mutual information (I) by making use of existing entropy estimators (H).

2. From calling point of view, base and meta estimations follow exactly the same syntax (Section 3.3).

This modular implementation of the ITE package, makes it possible to

1. construct new estimators from existing ones, and

2. transparently use any of these estimators in information theoretical optimization problems (see Section 4) — provided
that they follow a simple template described in Section 3.3.

10

3.1 Base Estimators

This section is about the base information theoretical estimators of the ITE package. Entropy estimation is in the focus of
Section 3.1.1; in Section 3.1.2 and Section 3.1.3 we consider mutual information and divergence estimation, respectively.

3.1.1 Entropy Estimators

Let us start with a simple example: our goal is to estimate the Shannon entropy [65]
H(y)=— [[(y)log/(y)dy (2)
R

of a random variable y € R from which we have i.i.d. (independent identically distributed) samples {y;}7_,, and f denotes
the density function of y. The estimation of Shannon entropy can be carried out, e.g., by k-nearest neighbor techniques.
Let us also assume that multiplicative contants are also important for us — in many applications, it is completely irrelevant
whether we estimate, for example, H(y) or cH(y), where ¢ = ¢(d) is a constant depending only on the dimension of y
(d), but not on the distribution of y. By using the ITE package, the estimation can be carried out as simply as f{ollows:

Example 2 (Entropy estimation (base-1: usage))

>Y = rand(5,1000); %generate the data of interest (d=5, T=1000)

>mult = 1; Jmultiplicative constant is important

>co = HShannon kNN_k_initialization(mult); %initialize the entropy (’H’) estimator
%(?Shannon_kNN_k’), including the value of k

>H = HShannon_kNN_k_estimation(Y,co); %perform entropy estimation

An alternative entropy measure of interest is the Rényi entropy [62] defined as

1
11—«

Hia(y) = =108 | 1"y, (o #1) g
where the random variable y € R? have density function f. The Tsallis entropy (also called the Havrda and Charvat
entropy) [86, 23] is closely related to the Rényi entropy and is defined as

o) = 2 (1= [Fay) . a1 (@

a—1
In fact, the Shannon entropy [Eq. (2)] is a special case of the Rényi and the Tsallis entropy families by the

1111’11 HR,a = H, 1111’11 HT,a =H (5)

limit relations. In the ITE toolbox, Hg o and Hrt . can be estimated similarly to the Shannon entropy H (see Example 2):
Example 3 (Entropy estimation (base-2: usage))

>Y = rand(5,1000); hgenerate the data of interest (d=5, T=1000)

>mult = 1; Jmultiplicative constant is important

>co = HRenyi_kNN_k_initialization(mult); %initialize the entropy (’H’) estimator (’Renyi_kNN_k’),
%including the value of k and «

>H = HRenyi_kNN_k_estimation(Y,co); Jperform entropy estimation

Beyond k-nearest neighbor based H (see [37] (S = {1}), [67, 19] S = {k}) and Hpg,, estimation methods [92, 41]
(S = {k}), the ITE package also provide functions for the estimation of Hg o(y) (y € R?) using (i) k-nearest neighbors
(S ={1,...,k}) [56], (ii) generalized nearest neighbor graphs (S C {1,...,k}) [54], (iil) weighted k-nearest neighbors [68],
(iv) minimum spanning trees [92, 55], and (v) geodesic spanning forests [55]. The Tsallis entropy of a d-dimensional random
variable y (Hrt o(y)) can be estimated in ITE using the k-nearest neighbors method (S = {k}) [41]. The multivariate
Edgeworth expansion based Shannon entropy estimator [27] is also available in ITE. The base entropy estimators are
summarized in Table 2; the calling syntax of these methods is the same as in Example 2 and Example 3, one only has to
change ’Shannon_kNN_k’ (see Example 2) and 'Renyi_kNN_k’ (see Example 3) to the cost_name given in the last column
of the table.

11

Estimated quantity Principle Name (cost_name)

Shannon entropy (H) k-nearest neighbors (S = {k}) ’Shannon_kNN_k’
Rényi entropy (Hgr,o) k-nearest neighbors (S = {k}) ’Renyi_kNN_k’

Rényi entropy (Hgr,o) k-nearest neighbors (S = {1,...,k}) ’Renyi_kNN_1tok’
Rényi entropy (Hgr,.) generalized nearest neighbor graphs (S C {1,...,k}) ’Renyi_kNN_S’

Rényi entropy (Hgr,o) weighted k-nearest neighbors ’Renyi_weightedkNN’
Rényi entropy (Hr,o) minimum spanning trees ’Renyi_MST’

Rényi entropy (Hr,o) geodesic spanning forests ’Renyi_GSF’

Tsallis entropy (Hr,) k-nearest neighbors (S = {k}) ’Tsallis_kNN_k’
Shannon entropy (H) multivariate Edgeworth expansion ’Shannon_Edgeworth’

Table 2: Entropy estimators (base).

Note: the Renyi_kNN_1tok, Renyi_kNN_S, Renyi_MST, Renyi_GSF methods (see Table 2) estimate the H, Rényi
entropy up to an additive constant which depends on the dimension d and «, but not on the distribution. In certain cases,
such additive constants can also be relevant. They can be approximated via Monte-Carlo simulations, the computations
are available in ITE. Let us take the example of Renyi_kNN_1tok, the estimation instructions are as follows:

1. Set co.alpha («) and co.k (k) in 'HRenyi_kNN_1tok_initialization.m’.
2. Estimate the additive constant 5 = ((d, k, @) using ’estimate_HRenyi_constant.m’.

3. Set the relevance of additive constants in the initialization function 'HRenyi_kNN_itok_initialization.m’:
‘co.additive_constant_is_relevant = 1’.

4. Estimate the Rényi entropy (after initialization): 'HRenyi_kNN_ltok_estimation.m’.

3.1.2 Mutual Information Estimators

In our next example, we consider the estimation of the mutual information of the d,,-dimensional components of the
random variable y = [y',...,yM] € RY (d = XM _ d,,):

m=1"m

1 MY _ 1 M Ft--y™) 1 qoM
I(y,...,y)7/]1@1 /Rde(y,...,y)loglﬂj\ml_lfm(ym) dy dy (6)

using an i.i.d. sample set {y;}._; from y, where f is the joint density function of y and f,, is its m‘® marginal density, the
density function of y™. As it is known, [(yl7 . ,yM) is non-negative and is zero, if and only if the {y™}M_, variables
are jointly independent [12]. Mutual information can be efficiently estimated, e.g., on the basis of entropy [Eq. (1)] or
Kullback-Leibler divergence; we will return to these derived approaches while presenting meta estimators in Section 3.2.

There also exist other mutual information-like quantities measuring the independence of y™s:

th

1. The kernel canoncial correlation analysis (KCCA) is defined as

1 2
IKCCA(y17y2) = sup COV[fl(g’), f2(y?)] :
F1ETFL, f2E€F2 \/var Ay + Al \/var [fa(y2)] + 5 || fall o

for M = 2 components, where ‘cov’ denotes covariance and ‘var’ stands for variance. In words, Ixcca is the
regularized form of the supremum correlation of y' € R% and y? € R% over two ‘rich enough’ reproducing kernel
Hilbert spaces (RKHSs), F* and F2. The computation of Ixkcca can be reduced to a generalized eigenvalue problem
and the measure can be extended to M > 2 components to measure pairwise independence [4, 77].

. (k>0) (7)

2. Let y = [y';...,y™] be a multidimensional Gaussian random variable with covariance matrix C and let C™J €
R%*4; denote the cross-covariance between components of y™ € R% . In the Gaussian case, the mutual information
between components y*', ...,y is [12]:

I(yl,...,yM):—;log<HdetC>. (8)

M Jet Cmom

m=1

If y is not normal then one can transform y™s using feature mapping ¢ associated with an RKHS and apply
Gaussian approximation to obtain

Ixav (yla e ayM) = _% log [HM dzte(t’(clz:m’m)] ’ v
m=1

where @(y) = [p(y1);...;0(y™M)], K := cov[¢(y)], and the sub-matrices are K/ = cov[p(y?), @ (y?)]. For further
details on the kernel generalized variance (KGV) method, see [4, 77].

. Let us given two RKHSs F' and 2 with associated feature maps 1 and 5. Let the corresponding cross-covariance
operator be

Cyry2 = E([p1(y") —] © [p2(y®) — p2)]) , (10)
where ® denotes tensor product, E is the expectation and the mean embeddings are

pm = Elpm(y™)] (m=1,2). (11)

The Hilbert-Schmidt independence criterion (HSIC) [21] is defined as the Hilbert-Schmidt norm of the cross-
covariance operator

Insic (v',¥%) = Hcy%y2H12qs' (12)

The HSIC measure can also be extended to the M > 2 case to measure pairwise independence.

. The generalized variance (GV) measure [82] considers the decorrelation of two one-dimensional random variables
y' € R and y? € R (M = 2) over a finite function set F:

oy (v89%) = > (corr [f (1) . f (4)])° (13)

feF

. Let C be the copula of the random variable y = [yl; - yM] € RM. One may think of C as the distribution function
on [0,1]™ which links the joint distribution function (F) and the marginals (F,,, i =1,..., M):

Fly)=C(Fi(y"),---. Fu (¥™)) - (14)

It can be shown that the y* € R variables are independent if and only if C, the copula of y equals to the product
copula IT defined as

M
H(ul,...,uM): H U, - (15)
m=1

Using this result, the independence of 3’s can be measured by the (normalized) L? distance of C' and II:

p

(hpw) /. 1]d|c<u>—n<u>pdu) , (16)

where (i) 1 < p < o0, (ii) by an appropriate choice of the normalization constant h,(d), the value of (16) belongs to
€ [0, 1] for any C.

e For p = 2, the special

Inoettding (¥ - - ~,yd) = <h2(d)/

quantity
— is a generalization of Hoeflding’s ® defined for d = 2 [25],
— can be analytically computated [18].

13

Estimated quantity Principle Name (cost_name)

generalized variance (Igv) f-covariance/-correlation (f € F, |F| < o0) GV
Hilbert-Schmidt (HS) independence criterion (Igsic) HS norm of the cross-covariance operator YHSIC’®
kernel canonical correlation (Ixcca) sup correlation over RKHSs ’KCCA’
kernel generalized variance (Ixav) Gaussian mutual information of the features YKGV?
multivariate version of Hoeffding’s ® (IHoefding) L? distance of the joint- and the product copula ’Hoeffding’
Schweizer-Wolff’s o (Isw1) L' distance of the joint- and the product copula ?SW1?
Schweizer-Wolfl’s & (Iswinf) L® distance of the joint- and the product copula ’SWinf’

Table 3: Mutual information estimators (base).

e For p = 1 and p = oo, we obtain the Schweizer-Wolff’s ¢ and x [64], respectively. In this case no explicit
expressions for the integrals are available. For small dimensional problems, however, the quantities can be
efficiently estimated numerically. ITE contains methods for the M = 2 case:

Lsws (1 9?) =0 = 12 /[1€ = Tawjan (18)
0,1]2

Fowe (,0%) = 5 =4 _smp_[C(u) ~ () (19)
uecl(0,1 2

using the SWICA package [36].
For an excellent introduction on copulas, see [45].

The estimation of these quantities can be carried out easily in the ITE package. Let us take the KCCA measure as an
example:

Example 4 (Mutual information estimation (base: usage))

>ds = [2;3;4]; Y=rand(sum(ds),5000); %generate the data of interest (ds(m)=dim(y™), T=5000)

>mult = 1; Jmultiplicative constant is important
>co = IKCCA_initialization(mult); %initialize the mutual information (°I’) estimator (’KCCA?)
>I = IKCCA_estimation(Y,ds,co); %perform mutual information estimation

The calling syntax of the mutual information estimators, are completely the same; one only has to change ’KCCA’ to the
cost_name given in the last column of the Table 3. The table summarizes the base mutual information estimators in ITE.
3.1.3 Divergence Estimators

Divergences measure the ‘distance’ between two probability densities, f; : R? — R and f» : R? — R. One of the most
well-known such index is the Kullback-Leibler divergence [38]:

A6 192
D= [[5 dy'dy>. 20

() Re JR () f2(y?) (20)
In practise, one has independent, i.i.d. samples from f1 and fa, {ytl}tT;1 and {y?}tTil, respectively. The goal is to estimate
divergence D using these samples. Of course, there exist many variants/extensions of the traditional Kullback-Leibler
divergence [88, 5]; depending on the application addressed, different divergences can be advantageous. The ITE package
is capable of estimating the following divergences:

1. Lo divergence:

Dy (f1, f2) = \//Rd [fi(y) — f2(y)] dy. (21)

2. Tsallis divergence:

Dra(hnf) = ([0@y 1) @er\) (22)

14

3. Rényi divergence:

Dualfifo) = g log [ROy (@ eR\ {1}, (23)
4. MMD (maximum mean discrepancy) [20]:
Dyivin(f1, f2) = |1 — w25, (24)

where p,, is the mean embedding of f,, (m = 1,2) and F = F! = F2, see the definition of HSIC [Eq. (11)].

5. Hellinger distance:

DH(f17f2)=\/1—/Rdvf1(Y)vf2(Y)dY- (25)

6. Bhattacharyya distance:

Dr(f1, f>) = —log < /R) W\/Wdy) : (26)

The Kullback-Leibler divergence [Eq. (20)] is a special of Tsallis’ and Rényi’s in limit sense:

lim Dr,o = D, lim Do = D. (27)
Let us also note that for (22), (23), (25) and (26), it is sufficient to estimate the

D) = | (RG] "y (28)

quantity, which is called the Bhattacharyya coefficient for a = % (see (25) and (26)):

BC = /R VAGIWEGy € ,1]. (29)

(28) can also be further generalized to

D) = [(RN &) ANy, (@beR) (30)

The calling syntax of the divergence estimators in the ITE package are again uniform. In the following example, the
estimation of the Rényi divergence is illustrated using the k-nearest neighbor method:

Example 5 (Divergence estimation (base: usage))

>Y1 = randn(3,2000); Y2=randn(3,3000); %generate the data of interest (d=3, 77=2000, 75=3000)
>mult = 1; %multiplicative constant is important

>co = DRenyi_kNN_k_initialization(mult); %initialize the divergence (’D’) estimator (’Renyi_kNN_k’)
>D = DRenyi_kNN_k_estimation(Y1,Y2,co); Yperform divergence estimation

Beyond the Rényi divergence Dg o [58, 57, 59|, the k-nearest neighbor technique can also be used to estimate the Lo-
(D1) [58, 57, 59] and the Tsallis (D o) divergence [58, 57]. A similar approach can be applied to the estimation of the
(30) quantity [53]. For the MMD measure, a linearly scaling, online method [20] has been implemented in ITE. Table 4
contains the base divergence estimators of the ITE package. The estimations can be carried out by changing the name
'Renyi_kNN_k’ in Example 5 to the cost_name in the last column of the table. The samples numbers (77 and T5) in the
divergence estimators can be different, except for, of course the online MMD technique, where T7 = T5.

3.2 Meta Estimators

Here, we present how one can easily derive in the ITE package new information theoretical estimators from existing ones
on the basis of relations between entropy, mutual information, divergence. These meta estimators are included in ITE. The
additional goal of this section is to provide examples for meta estimator construction so that users could simply create
novel ones. In Section 3.2.1, Section 3.2.2 and Section 3.2.3 we focus on entropy, mutual information and divergence
estimators, respectively.

15

Estimated quantity Principle Name (cost_name)

L, divergence (D) k-nearest neighbors (S = {k}) ’L2_kNN_k’

Tsallis divergence (D,) k-nearest neighbors (S = {k}) >Tsallis_kNN_k’

Rényi divergence (Dg,q) k-nearest neighbors (S = {k}) ’Renyi_kNN_k’
maximum mean discrepancy (Dymp) norm of the difference of mean embeddings, online *MMD_online’

Hellinger distance (Dy) k-nearest neighbors (S = {k}) ’Hellinger kNN_k’
Bhattacharyya distance (Dg) k-nearest neighbors (S = {k}) ’Bhattacharyya_kNN_k’

3.2.1

Here,

1.

Table 4: Divergence estimators (base).

Entropy Estimators

we present the idea of the meta construction in entropy estimation through examples:

The first example considers estimation via the ensemble approach. As it has been recently demonstrated the
computational load of entropy estimation can be heavily decreased by (i) dividing the available samples into groups
and then (ii) computing the averages of the group estimates [39]. Formally, let the samples be denoted by {y;}7_;
(y: € RY) and let us partition them into N groups of size g (9N =T, {1,..., T} =UN_ I, (I, N I; =0, i # j) and
average the estimations based on the groups

N
Hensemble Z ﬁ {Yt}tel (31)

As a prototype example for meta entropy estimation the implementation of the ensemble method [Eq. (31)] is
provided below (see Example 6 and Example 7). In the example, the individual estimators in the ensemble are
based on k-nearest neighbors (’Shannon_kNN_k’). However, the flexibility of the ITE package allows to change the
H estimator [r.h.s of (31)] to any other entropy technique (base/meta, see Table 2 and Table 5).

Example 6 (Entropy estimation (meta: initialization))

function [co] = Hensemble_initialization(mult)

co.name = ’ensemble’; Y%name of the estimator: ’ensemble’
co.mul = mult; %set whether multiplicative constant is important
co.group_size = 500; %hgroup size (g=500)

co.member_name = ’Shannon_kNN_k’; %estimator used in the ensemble (’Shannon_kNN_k?)
co.member_co = H_initialization(co.member_name,mult) ;%initialize the member in the ensemble,
%the value of ’mult’ is passed

The estimation part is carried out in accordance with (31):

Example 7 (Entropy estimation (meta: estimation))

function [H] = Hensemble_estimation(Y,co)

g = co.group_size; %initialize group size (g)
num_of_samples = size(Y,2); %initialize number of samples (T)
num_of_groups = floor(num_of_samples/g); ‘%initialize number of groups (N)

H=0;
for k = 1 : num_of_groups %compute the average over the ensemble
H = H + H_estimation(Y(:, (k-1)*g+1:k*g),co.member_co); %add the estimation
%of the initialized member
end

H = H / num_of_groups;

The usage of the defined method follows the syntax of base entropy estimators (Example 2, Example 3):

16

Estimated quantity Principle Name (cost_name)

complex entropy (Hc) entropy of a real random vector variable ’complex’
Shannon entropy (H) average the entropy over an ensemble ’ensemble’
Shannon entropy (H) average the entropy over a random projected ensemble ’RPensemble’
Tsallis entropy (Ht,) Rényi entropy — Tsallis entropy ’Tsallis_HRenyi’

Table 5: Entropy estimators (meta).

Example 8 (Entropy estimation (meta: usage))

>Y = rand(5,1000); %generate the data of interest (d=5, T=1000)

>mult = 1; Ymultiplicative constant is important

>co = Hensemble_initialization(mult); %initialize the entropy (’H’) estimator (’ensemble’),
>H = Hensemble_estimation(Y,co); %perform entropy estimation

2. Since (i) entropy can be estimated consistently using pairwise distances of sample points?, and (ii) random projection
(RP) techniques realize approximate isometric embeddings [32, 16, 30, 1, 42, 3, 44], one can construct efficient
estimation methods by the integration of the ensemble and the RP technique.

Formally, the definition of the estimation is identical to that of the ensemble approach [Eq. (31)], except for random

projections R,, € R4%r>4 (n = 1,... N). The final estimation is
1 .
HRPensemble(Y) = N nzl o ({RnYt}tEIn) . (32)

The approach shows exciting potentials with serious computational speed-ups in independent subspace analysis [73]
and image registration [74]. The technique has been implemented in the ITE toolbox under the name 'RPensemble’
(see Table 5, HRPensemble_initialization.m, HRPensemble_estimation.m).

3. Information theoretical quantities can be defined over the complex domain via the Hilbert transformation [14]

@U:CdavHV(@[gE:;]ERM, (33)

as the entropy of the mapped 2d-dimensional real variable
He(y) := H(po(y))- (34)

Relation (34) can be transformed to a meta entropy estimator, the method is available under the name ’complex’
(see Table 5, Hcomplex_initialization.m, Hcomplex_estimation.m).

4. Using (3) and (4), the Tsallis entropy can be computed from the Rényi entropy:

e(1—e)Hr a(y) _ 1

Hr o(y) = (35)

1—«
This relation is realized in ITE by the ’'Tsallis_HRenyi’ meta entropy estimator (see Table 35,
HTsallis_HRenyi_initialization.m, HTsallis_HRenyi_estimation.m). Making use of this approach, for ex-
ample, the Rényi entropy estimators of Table 2 can be instantly applied for Tsallis entropy estimation.

The meta entropy estimator methods in ITE are summarized in Table 5. The calling syntax of the estimators is identical
to Example 8, one only has to change the name ’ensemble’ to the cost_name of the target estimators, see the last column
of the table.

9The construction holds for other information theoretical quantities like mutual information and divergence.

17

3.2.2 Mutual Information Estimators
In this section we are dealing with meta mutual information estimators:

1. Asit has been seen in (1), mutual information can be expressed via entropy terms. The corresponding method is avail-
able in the ITE package under the name ’Shannon_HShannon’ (see Table 6, IShannon_HShannon_initialization.m,
IShannon_HShannon_estimation.m). As a prototype example for meta mutual information estimator the imple-
mentation is provided below:

Example 9 (Mutual information estimator (meta: initialization))

function [co] = IShannon_HShannon_initialization(mult)
co.name = ’Shannon_HShannon’; Y%name of the estimator: ’Shannon_HShannon’
co.mul = mult; %set the importance of multiplicative factors

co.member_name = ’Shannon_kNN_k’; Ymethod used for entropy estimation: ’Shannon_kNN_k’
co.member_co = H_initialization(co.member_name,1);%initialize entropy estimation member, mult=1

Example 10 (Mutual information estimator (meta: estimation))

function [I] = IShannon_HShannon_estimation(Y,ds,co) %samples(Y), component dimensions(ds),
%initialized estimator (co)
num_of_comps = length(ds); Jnumber of components, M
cum_ds = cumsum([1;ds(l:end-1)1); %starting indices of the components
I = -H_estimation(Y,co.member_co); Jminus the joint entropy, H([yl;...;yM]) using the
%initialized H estimator
for k = 1 : num_of_comps %add the entropy of the y™ components, H(y™)

idx [cum_ds(k) : cum_ds(k)+ds(k)-1]1;
I =1 + H_estimation(Y(idx,:),co.member_co);%use the initialized H estimator
end

The usage of the meta mutual information estimators follow the syntax of base mutual information estimators (see
Example 4):

Example 11 (Mutual information estimator (meta: usage))

>ds = [1;2]; Y=rand(sum(ds),5000); %generate the data of interest
%(ds(m)=dim(y™), T=5000)
>mult = 1; Jmultiplicative constant is important

>co = IShannon_HShannon_initialization(mult); %initialize the mutual information (’I’) estimator
% (’Shannon_HShannon’)
>I = IShannon_HShannon_estimation(Y,ds,co); °A,perform mutual information estimation

2. The mutual information of complex random variables (y € C%) can be defined via the Hilbert transformation
[Eq. (33)) 1 M 1 M
Ic(y,...,y):I((p,u(y),...,gov(y)) (36)

The relation is realized in ITE by the ’complex’ meta estimator (see Table 6, Icomplex_initialization.m,
Icomplex_estimation.m).

3. The Shannon-, Ls-, Tsallis- and Rényi mutual information can be expressed in terms of the corresponding divergence
of the joint (f) and the product of marginals (JTX_, fn):

M M
I(ylﬂayM):D<f7Hfm>7 IL(ylv,yA[>:DL<faHfm>7 (37)
m=1

m=1

M M
IT7Ot (y17"'7y1w) :DT,a (fa H fm>7 IR,O(<y17"'7yA4>:DR,a <f7 H fm) (38)
m=1 m=1

10For the definitions of f and fms, see Eq. (6). The divergence definitions can be found in Egs. (20), (21), (22) and (23).

18

Estimated quantity Principle Name (cost_name)

complex mutual information (Ic) mutual information of a real random vector variable ’complex’

L> mutual information (Ir) Ls-divergence of the joint and the product of marginals ’L2_DL2’

Rényi mutual information (Ir,a) Rényi divergence of the joint and the product of marginals ’Renyi_DRenyi’
copula-based kernel dependency (I.) MMD div. of the joint copula and the uniform distribution ’MMD_DMMD’

Rényi mutual information (Ig,a) minus the Rényi entropy of the joint copula ’Renyi_HRenyi’
(Shannon) mutual information (I) entropy sum of the components minus the joint entropy ’Shannon_HShannon’
Tsallis mutual information (It,«) Lo-divergence of the joint and the product of marginals ’Tsallis_DTsallis’

Table 6: Mutual information estimators (meta).

Shannon mutual information is a special case of Rényi’s and Tsallis’ in limit sense:

Ino 2251, Iro 2251 (39)
The associated Rényi-, Lo- and Tsallis meta mutual information estimators are available
in ITE using the mnames ’'Renyi_DRenyi’, °L2_DL2’ and ’Tsallis_DTsallis’ (see Table 6,
IRenyi_DRenyi_initialization.m, IRenyi_DRenyi_estimation.m, IL2_DL2_initialization.m,

IL2_DL2_estimation.m, ITsallis_DTsallis_initialization.m, ITsallis_DTsallis_estimation.m).

[49] has recently defined a novel, robust, copula-based mutual information measure of the random variable y™ € R
(m=1,...,M) as the MMD divergence [Eq. (24)] of the joint copula and the M-dimensional uniform distribution
on [0,1]M:

L (y",...,y™) = Dan(Pz, Pu), (40)
where Z = [Fy (y');...; Fu (y™)] € RM is the joint copula, Fp, is the cumulative density function of y™ and

P denotes the distribution. The associated meta estimator available has the name ’MMD_DMMD’ (see Table 6,
IMMD_DMMD_initialization.m, IMMD_DMMD_estimation.m) in ITE.

The calling syntax of the meta mutual information are identical (and the same as that of the base estimators, see
Section 3.1.2), the possible methods are summarized in Table 6. The techniques are identified by their ’cost_name’, see
the last column of the table.

3.2.3

Divergence Estimators

In this section we focus on meta divergence estimators (Table 7). Our prototype example is the estimation of the
symmetrised Kullback-Leibler divergence, the so-called J-distance (also called the Jensen-Shannon divergence):

DJ(flva):D<f17f2)+D(f27f1)' (41)

The definition of meta divergence estimators follows the idea of meta entropy and mutual information estimators (see
Example 6, 7, 9 and 10). Initialization and estimation of the meta J-distance estimator can be carried out as follows:

Example 12 (Divergence estimator (meta: initialization))

function [co] = DJdistance_initialization(mult)

Co.

co

Cco.
Cco.

name = ’Jdistance’; %name of the estimator: ’Jdistance’
.mult = mult; %set whether multiplicative constant is important
member_name = ’Renyi_kNN_k’; %method used for Kullback-Leibler divergence estimation

member_co = D_initialization(co.member_name,mult); %initialize the Kullback-Leibler divergence
%estimator

Example 13 (Divergence estimator (meta: estimation))

function [D_J] = DJdistance_estimation(X,Y,co)

D_

J = D_estimation(X,Y,co.member_co) + D_estimation(Y,X,co.member_co); %definition of J-distance

Having defined the J-distance estimator, the calling syntax is completely analogous to base estimators (see Example 5).

19

Estimated quantity Principle Name (cost_name)

J-distance (Djy) symmetrised Kullback-Leibler divergence ’Jdistance’

Table 7: Divergence estimators (meta).

Example 14 (Divergence estimator (meta: usage))

>Y1 = rand(3,1000); Y2 = rand(3,2000); Ygenerate the data of interest (d=3, 77=1000, 75=2000)
>mult = 1; fmultiplicative constant is important

>co = DJdistance_initialization(mult); %initialize the divergence (’D’) estimator (’Jdistance’)
>D = DJdistance_estimation(Y1,Y2,co); Yperform divergence estimation

3.3 Uniform Syntax of the Estimators

The modularity of the ITE package in terms of (i) the definition and usage of the base/meta entropy, mutual information
and divergence estimators, and the possibility to (ii) simple embed novel estimators can be assured by following the
templates:

1. Initialization:

Template 1 (Entropy estimator: initialization)

function [co] = H<cost_name>_initialization(mult)
co.name = <cost_name>;
co.mult = mult;

Template 2 (Mutual information estimator: initialization)

function [co] = I<cost_name>_initialization(mult)
co.name = <cost_name>

co.mult = mult;

Template 3 (Divergence estimator: initialization)
function [co] = D<cost_name>_initialization(mult)

co.name = <cost_name>
co.mult = mult;

2. Estimation:

Template 4 (Entropy estimator: estimation)

function [H] = H<cost_name>_estimation(Y,co)

Template 5 (Mutual information estimator: estimation)

function [I] = I<cost_name>_estimation(Y,ds,co)

20

Template 6 (Divergence estimator: estimation)

function [D] = D<cost_name>_estimation(Y1,Y2,co)

The unified implementation in the ITE toolbox, makes it possible to use high-level initialization and estimation of the
information theoretical quantities. The corresponding functions are

e for initialization: H_initialization.m, I_initialization, D_initialization,
e for estimation: H_estimation.m, I_estimation, D_estimation

following the templates:

function [co] H_initialization(cost_name,mult)
function [co] = I_initialization(cost_name,mult)
function [co] D_initialization(cost_name,mult)
function [H] = H_estimation(Y,co)

function [I] I_estimation(Y,ds,co)

function [D] D_estimation(Y1,Y2,co)

Here, the cost_name of the entropy, mutual information and divergence estimator can be freely chosen in case of
e entropy: from the last column of Table 2 and Table 5.
e mutual information: from the last column of Table 3 and Table 6.
o divergence: from the last column of Table 4 and Table 7.
By the ITE construction, following for the
e entropy: Template 1 (initialization) and Template 4 (estimation),
e mutual information: Template 2 (initialization) and Template 5 (estimation),
e divergence: Template 3 (initialization) and Template 6 (estimation),

user-defined estimators can be immediately used. Let us demonstrate idea of the high-level initialization and estimation
with a simple example, Example 2 can equivalently be written as:'!

Example 15 (Entropy estimation (high-level, usage))

>Y = rand(5,1000); %generate the data of interest (d=5, T=1000)

>cost_name = ’Shannon_kNN_k’; %select the objective (Shannon entropy) and
%its estimation method (k-nearest neighbor)

>mult = 1; f4multiplicative constant is important

>co = H_initialization(cost_name,mult); %initialize the entropy estimator

>H = H_estimation(Y,co); %perform entropy estimation

A more complex example family will be presented in Section 4. There, the basic idea will be the following:

1. Independent subspace analysis and its extensions can be formulated as the optimization of information theoretical
quantities. There exist many equivalent formulations (objective functions) in the literature, as well as approximate
objectives.

2. Choosing a given objective function, estimators following the template syntaxes (Template 1-6) can be used simply
by giving their names (cost_name).

3. Moreover, the selected estimator can be immediately used in different optimization algorithms of the objective.

11 One can perform mutual information and divergence estimations similarly.

21

4 ITE Application in Independent Process Analysis (IPA)

In this section we present an application of the entropy, mutual information and divergence estimators in independent
subspace analysis (ISA) and its extensions (IPA, independent process analysis). Application of ITE in IPA serves as an
illustrative example, how complex tasks formulated as information theoretical optimization problems can be tackled by
the estimators detailed in Section 3.

Section 4.1 formulates the problem domain, the independent process analysis (IPA) problem family. In Section 4.2 the
solution methods of IPA are detailed. Section 4.3 is about the Amari-index, which can be used to measure the precision
of the IPA estimations. The IPA datasets included in the ITE package are introduced in Section 4.4.

4.1 IPA Models

In Section 4.1.1 we focus on the simplest linear model, which allows hidden, independent multidimensional sources (sub-
spaces), the so-called independent subspace analysis (ISA) problem. Section 4.1.2 is about the extensions of ISA.

4.1.1 Independent Subspace Analysis (ISA)

The ISA problem is defined in the first paragraph. Then (i) the ISA ambiguities, (ii) equivalent ISA objective functions,
and (iii) the ISA separation principle are detailed. Thanks to the ISA separation principle one can define many different
equivalent clustering based ISA objectives and approximations; this is the topic of the next paragraph. ISA optimization
methods are presented in the last paragraph.

The ISA equations One may think of independent subspace analysis (ISA)!'? [8, 13] as a cocktail party problem, where
(i) more than one group of musicians (sources) are playing at the party, and (ii) we have microphones (sensors), which
measure the mixed signals emitted by the sources. The task is to estimate the original sources from the mixed observations
only.

Formally, let us assume that we have an observation (x € RP+), which is instantaneous linear mixture (A) of the

hidden source (e), that is,
x¢ = Aey, (42)

where

1. the unknown mixing matrix A € RP=>*Pe has full column rank,

2. source e, = [ef;...;eM] € RP< is a vector concatenated (using Matlab notation ’;’) of components e}* € Ré»

(D, = fo:l dpm), subject to the following conditions:

(a) e is assumed to be i.i.d. (independent identically distributed) in time ¢,

(b) there is at most one Gaussian variable among e€™s; this assumption will be referred to as the ‘non-Gaussian’
assumption, and

(c) e™s are independent, that is I (e',...,eM) = 0.

The goal of the ISA problem is to eliminate the effect of the mixing (A) with a suitable W € RP<*P= demizing matriz
and estimate the original source components €™s by using observations {x;}_, only (& = Wx). If all the ™ source
components are one-dimensional (d,, = 1,¥m), then the independent component analyis (ICA) task [33, 9, 10] is recovered.
For D, > D, the problem is called undercomplete, while the case of D, = D, is regarded as complete.

The ISA objective function One may assume without loss of generality in case of D, > D, for the full column rank
matrix A that it is invertible-by applying principal component analysis (PCA) [26]. The estimation of the demixing
matrix W = A~! in ISA is equivalent to the minimization of the mutual information between the estimated components
™),

JW) =TI (y, ... yM i 4
(W) =1(y',....y)—>WGHC1;1£1(D), (43)

12ISA is also called multidimensional ICA, independent feature subspace analysis, subspace ICA, or group ICA in the literature. We will use
the ISA abbreviation.

22

wherey = Wx, y = [y!...;yM], y™ € Rém, GL(D) denotes the set of D x D sized invertible matrices, and D = D,. The
joint mutual information [Eq. (43)] can also be expressed from only pair-wise mutual information by recursive methods
[12]

M-1

I(yl,...,yM) = Z I(ym, [ymH,...,yM}). (44)

m=1
Thus, an equivalent information theoretical ISA objective to (43) is

M-1
JIrecursive(W) = Z I (ym7 [ym+17 -.-7}’]\4]) -

m=1

min . (45)
WEeGL(D)

However, since in ISA, it can be assumed without any loss of generality—applying zero mean normalization and
PCA—that

e x and e are white, i.e., their expectation value is zero, and their covariance matrix is the identity matrix (I),

e mixing matrix A is orthogonal (A € OP), that is ATA =1, and

e the task is complete (D = D, = D.),

one can restrict the optimization in (43) and (45) to the orthogonal group (W € OP). Under the whiteness assumption,
well-known identities of mutual information and entropy expressions [12] show that the ISA problem is equivalent to

M
Jsumu (W) = ﬂ; H(y™) — min, (46)
M dp, M
JH,I(W):”;;H(UT)_;I(U?Z7yg:n) HWI%%ID’ (47)
M
JIvI(W) = I (y%7 Tt ’y%u) - 72221] (y11ﬂ7 e vyg:,,> - “gIéi(Ilea (48)

m. m]

where y™ = [yl e Y

The ISA ambiguities Identification of the ISA model is ambiguous. However, the ambiguities of the model are simple:
hidden components can be determined up to permutation of the subspaces and up to invertible linear transformations'®
within the subspaces [85].

The ISA separation principle One of the most exciting and fundamental hypotheses of the ICA research is the ISA
separation principle dating back to 1998 [8]: the ISA task can be solved by ICA preprocessing and then clustering of
the ICA elements into statistically independent groups. While the extent of this conjecture, is still an open issue, it has
recently been rigorously proven for some distribution types [77]. This principle

o forms the basis of the state-of-the-art ISA algorithms,
e can be used to design algorithms that scale well and efficiently estimate the dimensions of the hidden sources and

e can be extended to different linear-, controlled-, post nonlinear-, complex valued-, partially observed systems, as well
as to systems with nonparametric source dynamics.

For a recent review on the topic, see [80]. The addressed extension directions are (i) presented in Section 4.1.2, (ii) are
covered by the ITE package. In the ITE package the solution of the ISA problem is based on the ISA separation principle,
for a demonstration, see demo_ISA.m.

13The condition of invertible linear transformations simplifies to orthogonal transformations for the ‘white’ case.

23

Equivalent clustering based ISA objectives and approximations According to the ISA separation principle, the
solution of the ISA task, i.e., the global optimum of the ISA cost function can be found by permuting/clustering the ICA
elements into statistically independent groups. Using the concept of demixing matrices, it is sufficient to explore forms

Wisa = PWica, (49)

where (i) P € RP*P is a permutation matrix (P € PP) to be determined, (ii) Wica and Wiga is the ICA and ISA
demixing matrix, respectively. Thus, assuming that the ISA separation principle holds, and since permuting does not
alter the ICA objective [see, e.g., the first term in (47) and (48)], the ISA problem is equivalent to

J(P)=1(y',...,.yM™ i 50
I() (y Y) - Pn;’anD7 ()
M-1
Jr ursive P)= I 7n7 m+17.“7 M i) 51
Irecurs e() mZ:l (y [y y]) _’PIQ;DHD ()
GumH Z H 777 — min (52)
' pepp’
M
Jsum-1(P) = — mZ:1[(yi",. . yé\fb) — PIgDnD . (53)

Let us note that if our observations are generated by an ISA model then—unlike in the ICA task when d,,, =1 (Ym)—
pairwise independence is not equivalent to mutual independence [10]. However, minimization of the pairwise dependence
of the estimated subspaces

Jipairwise(P) = I(y™, y™m i 54
tpairise(P) = > I (y™,y™?) — min (54)
miF#ma

is an efficient approximation in many situations. An alternative approximation is to consider only the pairwise dependence
of the coordinates belonging to different subspaces:

dm 1 m2

JIpairwiseld(P) = Z Z Z Z/“ aylz - Pnelng . (55)

mi,ma=1;mi7#mo i1=112=1

ISA optimization methods Let us fix an ISA objective J [Eq. (50)-(55)]. Our goal is to solve the ISA task, i.e., by the
ISA separation principle to find the permutation (P) of the ICA elements minimizing J. Below we list a few possibilities
for finding P; the methods are covered by ITE.

Exhaustive way: The possible number of all permutations, i.e., the number of P matrices is D!, where ‘" denotes
the factorial function. Considering that the ISA cost function is invariant to the exchange of elements within the

subspaces (see, e.g., (53)), the number of relevant permutations decreases to ML This number can still be

1dm!’
enormous, and the related computations could be formidable justifying searches for efﬁc1ent approximations that we

detail below.

Greedy way: Two estimated ICA components belonging to different subspaces are exchanged, if it decreases the value
of the ISA cost J, as long as such pairs exist [82].

‘Global’ way: Experiences show that greedy permutation search is often sufficient for the estimation of the ISA subspaces.
However, if the greedy approach cannot find the true ISA subspaces, then global permutation search method of higher
computational burden may become necessary [76]: the cross-entropy solution suggested for the traveling salesman
problem [61] can be adapted to this case.

Spectral clustering: Now, let us assume that source dimensions (d,,) are not known in advance. The lack of such
knowledge causes combinatorial difficulty in such a sense that one should try all possible

D=di+...+dy (dpn>0,M<D) (56)

24

Construct an undirected graph with nodes corresponding to ICA coordinates and edge
weights (similarities) defined by the pairwise statistical dependencies, i.e., the mutual

information of the estimated ICA elements: S = [I(é1ca i, €1ca j)|{j=- Cluster the
ICA elements, i.e., the nodes using similarity matrix S.

Table 8: Well-scaling approximation for the permutation search problem in the ISA separation theorem in case of unknown
subspace dimensions [estimate_clustering UD1_S.m).

dimension allocations to the subspace (™) dimensions, where D is the dimension of the hidden source e. The
number of these f(D) possibilities grows quickly with the argument, its asymptotic behaviour is known [22, 87]:

e™V/2D/3
4DV/3

as D — oo. An efficient method with good scaling properties has been put forth in [51] for searching the permutation
group for the ISA separation theorem (see Table 8). This approach builds upon the fact that the mutual information
between different ISA subspaces €™ is zero due the assumption of independence. The method assumes that coor-
dinates of €™ that fall into the same subspace can be paired by using the pairwise dependence of the coordinates.
This approaches can be considered as objective (55), with unknown d,, subspace dimensions. One may carry out
the clustering by applying spectral approaches (included in ITE), which are (i) robust and (ii) scale excellently,
a single general desktop computer can handle about a million observations (in our case estimated ICA elements)
within several minutes [91].

f(D) ~ (57)

4.1.2 Extensions of ISA

Below we list some extensions of the ISA model and the ISA separation principle. These different extensions, however,
can be used in combinations, too. In all these models, (i) the dimension of the source components (d,,) can be different
and (ii) one can apply the Amari-index as the performance measure (Section 4.3). The ITE package directly implements
the estimation of the following models'* (the relations of the different models are summarized in Fig.1):

Linear systems:

AR-TPA:

Equations, assumptions: In the AR-TPA (autoregressive-TPA) task [28] (d,, = 1, Ym), [52] (dm > 1), the
traditional 4.i.d. assumption for the sources is generalized to AR time series: the hidden sources (s™ € R%)
are not necessarily independent in time, only their driving noises (™ € R%) are. The observation (x € R,

D= Z%Zl d,,) is an instantaneous linear mixture (A) of the source s:
Ls
Xy = Asy, St = Z Fisi—i + e, (58)
i=1

where L, is the order of the AR process, s; = [s{;...;s)] and e, = [e];...;e}] € R” denote the hidden
sources and the hidden driving noises, respectively. (58) can be rewritten in the following concise form:

x = As, Flzls=e (59)

using the polynomial of the time-shift operator F[z] := T — 3.2 Fyz' € R[z]P*P [40]. We assume that
1. polynomial matrix F[z] is stable, that is det(F[z]) # 0, for all z € C, |z| < 1,
2. mixing matrix A € RP*P is invertible (A € GL(D)),
3. e satisfies the ISA assumptions (see Section 4.1.1)
Goal: The aim of the AR-IPA task is to estimate hidden sources s™, dynamics F[z], driving noises e™ and
mixing matrix A or its W inverse given observations {x;}._,. For the special case of L, = 0, the ISA task
is obtained.

14The ITE package includes demonstrations for all the touched directions. The name of the demo files are specified at the end the problem
definitions, see paragraphs ‘Separation principle’.

25

Separation principle: The AR-IPA estimation can be carried out by (i) applying AR fit to observation x,
(ii) followed by ISA on the estimated innovation of x [28, 52]. Demo: demo_AR_IPA.m.

MA-IPA:

Equations, assumptions: Here, the assumption on instantaneous linear mixture of the ISA model is weak-
ened to convolutions. This problem is called moving average independent process analysis (MA-IPA, also
known as blind subspace deconvolution) [77]. We describe this task for the undercomplete case. Assume
that the convolutive mixture of hidden sources €™ € R%m is available for observation (x € RP=)

Le
Xt = ZHletfl, (60)
=0

where
1. D, > D, (undercomplete, D, = 2%:1 dm),
2. the polynomial matrix H[z] = ZZL:CO H;2' € R[z]P=*P¢ has a (polynomial matrix) left inverse
3. source e = [e!;...;eM] € RPe satisfies the conditions of ISA.

Goal: The goal of this undercomplete MA-IPA problem (uMA-IPA problem, where ‘v’ stands for undercom-
plete) is to estimate the original e™ sources by using observations {x;}7_; only. The case L. = 0 corresponds
to the ISA task, and in the blind source deconvolution problem [48] d,, = 1 (Vm), and L. is a non-negative
integer.

5 and

Note: We note that in the ISA task the full column rank of matrix Hy was presumed, which is equivalent to
the assumption that matrix Hy has left inverse. This left inverse assumption is extended in the uMA-IPA
model for the polynomial matrix H][z].

Separation principle:

e By applying temporal concatenation (TCC) on the observation, one can reduce the uMA-TPA estimation
problem to ISA [77]. Demo: demo_uMA_IPA_TCC.m.

e However, upon applying the TCC technique, the associated ISA problem can easily become ‘high dimen-
sional’. This dimensionality problem can be alleviated by the linear prediction approximation (LPA)
approach, i.e., AR fit, followed by ISA on the estimation innovation [78]. Demo: demo_uMA_IPA_LPA.m.

e In the complete (D, = D.) case, the H[z] polynomial matrix does not have (polynomial matrix)
left inverse in general. However, provided that the convolution can be represented by an infinite
order autoregressive [AR(oco)] process, one [69] can construct an efficient estimation method for the
hidden components via an asymptotically consistent LPA procedure augmented with ISA. Such AR(c0)
representation can be guaranteed by assuming the stability of H[z] [17]. Demo: demo_MA_IPA_LPA.m.

Post nonlinear models:

Equations, assumptions: In the post nonlinear ISA (PNL-ISA) problem [81] the linear mixing assumption of
the ISA model is alleviated. Assume that the observations (x € R”) are post nonlinear mixtures (g(A-)) of
multidimensional independent sources (e € RP):

x; = g(Aey), (61)

where the

e unknown function g : R” — R? is a component-wise transformation, i.e, g(v) = [g1(v1);...;9p(vp)] and
g is invertible, and
e mixing matrix A € RP*? and hidden source e satisfy the ISA assumptions.

Goal: The PNL-ISA problem is to estimate the hidden source components €™ knowing only the observations

{x;}1_,. For d,, = 1, we get back the PNL-ICA problem [83] (for a review see [34]), whereas ‘g=identity’ leads
to the ISA task.

Separation principle: the estimation of the PNL-ISA problem can be carried out on the basis of the mirror
structure of the task, applying gaussianization followed by linear ISA [81]. Demo: demo_PNL_ISA.m.

150ne can show for D, > D, that under mild conditions H[z] has a left inverse with probability 1 [60]; e.g., when the matrix [Ho,...,Hp_]
is drawn from a continuous distribution.

26

Complex models:

Equations, assumptions: One can define the independence, mutual information and entropy of complex random
variables via the Hilbert transformation [Eq. (33), (34), (36)]. Having these definitions at hand, the complex
ISA problem can be formulated analogously to the real case, the observations (x; € C?) are generated as the
instantaneous linear mixture (A) of the hidden sources (e;):

X; = Aey, (62)

where
e the unknown A € CP*P mixing matrix is invertible (D = Zﬁf:l dpm),
e ¢; is assumed to be i.i.d. in time ¢,
e €™ € C%ns are independent, that is I (o, (e'),..., 0, (€M)) =0.

Goal: The goal is to estimate the hidden source e and the mixing matrix A (or its W = A~! inverse) using the
observation {x;}7_,. If all the components are one-dimensional (d,, = 1, ¥m), one obtains the complex ICA
problem.

Separation principle:

e Supposing that the ¢,(e™) € R2% variables are ‘non-Gaussian’, and exploiting the operation preserving
property of the Hilbert transformation the solution of the complex ISA problem can be reduced to a ISA
task over the real domain with observation ¢, (x) and M pieces of 2d,,-dimensional hidden components
©y(€™). The consideration can be extended to linear models including AR, MA,; ARMA (autoregressive
moving average), ARIMA (integrated ARMA), ...terms [72]. Demo: demo_complex_ISA.m.

e Another possible solution is to apply the ISA separation theorem, which remains valid even for complex
variables [77]: the solution can be accomplished by complex ICA and clustering of the complex ICA
elements. Demo: demo_complex_ISA_C.m.

Controlled models:

Equations, assumptions: In the ARX-IPA (ARX-autoregressive with exogenous input) problem [71] the AR-TPA
assumption holds (Eq. (58)), but the time evolution of the hidden source s can be influenced via control variable
u; € RP« through matrices B; € RP*Du;

Lg L.,
x; = As; se=Y Fisi i+ Y Bjugij+e. (63)
i=1 j=1

Goal: The goal is to estimate the hidden source s, the driving noise e, the parameters of the dynamics and control
matrices ({F;}2:, and {B; }f;l), as well as the mixing matrix A or its inverse W by using observations x; and
controls u;. In the special case of L, = 0, the ARX-IPA task reduces to AR-IPA.

Separation principle: The solution can be reduced to ARX identification followed by ISA [71]. Demo:
demo_ARX_IPA.m.

Partially observed models:

Equations, assumptions: In the mAR-IPA (mAR-autoregressive with missing values) problem [70], the AR-IPA
assumptions (Eq. (58)) are relaxed by allowing a few coordinates of the mixed AR sources x; € R to be missing
at certain time instants. Formally, we observe y; € R instead of x;, where ‘mask mappings’ M, : RP — RP
represent the coordinates and the time indices of the non-missing observations:

L
v = My(xy), x¢ = Asy, Sy = ZFiSt—i + ey. (64)
i=1

Goal: Our task is the estimation of the hidden source s, its driving noise e, parameters of the dynamics F[z], mixing
matrix A (or its inverse W) from observation {y;}7_,. The special case of ‘M; = identity’ corresponds to the
AR-TPA task.

27

ARX-TPA

Lou=0
M, :identity (Vt) f: known, linear
mAR-IPA AR-IPA fAR-TPA
L,=0
MA-IPA L.=0 ISA g: known, identity
(BSSD) (LLD.-IPA) PNL-ISA
dpm=1(Vm) dpm=1(Vm) dp=1(Vm)
L.= : known, identi
BSD . ICA O Y PNLICA

dm=1(¥
Figure 1: TPA problem family, relations. Arrows point to special cases. For example, ‘ISAﬂICA’ means that ICA
is a special case of ISA, when all the source components are one-dimensional.

Separation principle: One can reduce the solution to mAR identification followed by ISA on the estimated inno-
vation process [70]. Demo: demo_mAR_IPA.m.

Models with nonparametric dynamics:

Equations, assumptions: In the fAR-IPA (fAR—functional autoregressive) problem [75], the parametric assump-
tion for the dynamics of the hidden sources is circumvented by functional AR sources:

Xt = ASt, St :f(Stfl,...,St,Ls) + €. (65)

Goal: The goal is to estimate the hidden sources s € R% including their dynamics f and their driving innovations
e™ € R as well as mixing matrix A (or its inverse W) given observations {x;}7_,. If we knew the parametric
form of f and if it were linear, then the problem would be AR-IPA.

Separation principle: The problem can be solved by nonparametric regression followed by ISA [75]. Demo:
demo_fAR_TPA.m.

4.2 Estimation via ITE

Having (i) the information theoretical estimators (Section 3), (ii) the ISA /TPA problems and separation principles (Sec-
tion 4.1) at hand, we now detail the solution methods offered by the ITE package. Due the separation principles of the
IPA problem family, the solution methods can be implemented in a completely modular way; the estimation techniques
can be built up from the solvers of the obtained subproblems. From developer point of view, this flexibility makes it
possible to easily modify /extend the ITE toolbox. For example, (i) in case of ISA, one can select/replace the ICA method
and clustering technique applied independently, (ii) in case of AR-IPA one has freedom in chosing/extending the AR
identificator and the ISA solver, etc. This is the underlying idea of the solvers offered by the ITE toolbox.

In Section 4.2.1 the solution techniques for the ISA task are detailed. Extensions of the ISA problem are in the focus
of Section 4.2.2.

4.2.1 ISA

As it has been detailed in Section 4.1.1, the ISA problem can be formulated as the optimization of information theoretical
objectives (see Eqs. (50), (51), (52), (53), (54), (55)). In the ITE package,

All the detailed ISA formulations:

e are available by the appropriate choice of the variable cost_type (see Table 9), and

e can be used by any entropy/mutual information estimator satisfying the ITE template construction (see Table 2,
Table 3, Table 5, Table 6 and Section 3.3).

28

Cost function to minimize Name (cost_type)

I(ifjlwwyM) T

Zm:]&H(Ym) ? sumH?

_Zmzll(y{na'“ayé\{n) ’sum-1°2

Zi\rf;l I (ym’ [mHy ~-7YMD ’Irecursive’
n

Em1¢m2 I(y™,y’ ’Ipairwise’

M dmy dmy my mo , . . s
Z'nu,'mg:l;rnlyé'mg Z'lel ig=1 I (yzl 72/1-2) IpalI‘Wlseld

Table 9: ISA formulations. 1 — 4" row: equivalent, 5 — 6" row: necessary conditions.

Optimization technique (opt_type) Principle Environment
’NCut’ normalized cut Matlab

’SP1’ unnormalized cut Matlab, Octave
’SP2’, ’SP3? 2 normalized cut methods Matlab, Octave

Table 10: Spectral clustering optimizers for given number of subspaces (M) [unknown_dimensions=1|: clustering_ UD1.m:
estimate_clustering UD1_S.m.

The dimension of the subspaces can be given/unknown: the priori knowledge about the dimension of the sub-
spaces can be conveyed by the variable unknown_dimensions. unknown_dimensions=0 (=1) means given {d,, }}_,
subspace dimensions (unknown subspace dimensions, it is sufficient to give M, the number of subspaces). In case of

e given subspace dimensions: clustering of the ICA elements can be carried out in ITE by the exhaus-
tive (opt_type = ’exhaustive’), greedy (opt_type = ’greedy’), or the cross-entropy (opt_type = ’CE’)
method.

e unknown subspace dimensions: clustering of the ICA elements can be performed by applying spectral clustering.
In this case, the clustering is based on the pairwise mutual information of the one-dimensional ICA elements
(Table 9) and the objective is (55), i.e., cost_type = ’Ipairwiseld’. The ITE package supports 4 different
spectral clustering methods/implementations (Table 10):

— the unnormalized cut method (opt_type = ’SP1’); and two normalized cut techniques
(opt_type = ’SP2’ or opt_type = ’SP3’) [66, 47, 89] — the implemetations are purely Matlab/Octave,
and

— a fast, normalized cut implementation [66, 11] in C++ with compilable mex files (opt_type = ’NCut?).

The ISA estimator capable of handling these options is called estimate_ISA.m, and is accompanied by the demo file
demo_ISA.m. Let us take some examples for the parameters to set in demo_ISA.m:

Example 16 (ISA-1)

e Goal: the subspace dimensions {d,}M_, are known; apply sum of entropy based ISA formulation (Eq. (52));
estimate the entropy via the Rényi entropy using k-nearest neighbors (S = {1,...,k}); optimize the objective in
a greedy way.

o Parameters to set: unknown_dimensions = 0; cost_type = ’sumH’; cost_name = ’Renyi_kNN_1tok’,
opt_type = ’greedy’.
Example 17 (ISA-2)
e Goal: the subspace dimensions {d,,}*_, are known; apply an ISA formulation based on the sum of mutual

information within the subspaces (Eq. (53)); estimate the mutual information via the KCCA method; optimize
the objective in a greedy way.

e Parameters to set: unknown_dimensions = O; cost_type = ’sum-I’; cost_name = ’KCCA’,
opt_type = ’greedy’.

29

Cost type (cost_type) Recommended/chosen optimizer

’I’, ’Irecursive’ clustering _UDO_greedy_general.m

sumH’, ’sum-I’ clustering_UDO_greedy_additive_wrt_subspaces.m
’Ipairwise’ clustering UDO_greedy_pairadditive_wrt_subspaces.m
’Ipairwiseld’ clustering UDO_greedy_pairadditive_wrt_coordinates.m

Table 11: Recommended /chosen optimizers for given subspace dimensions ({d,,}}_,) [unknown_dimensions=0] applying
greedy [opt_type=’greedy’] ISA optimization: clustering UDO.m.

Cost type (cost_type) Recommended/chosen optimizer
’I’, ’sumH’, >sum-I’, ’Irecursive’, ’Ipairwise’ clustering_UDO_CE_general.m
’Ipairwiseld’ clustering UDO_CE_pairadditive_wrt_coordinates.m

Table 12: Recommended/chosen optimizers for given subspace dimensions ({d,, }}/_,) [unknown_dimensions=0] applying
cross-entropy [opt_type=’CE’] ISA optimization: clustering_UDO.m.

Example 18 (ISA-3)

e Goal: the subspace dimensions are unknown, only M, the number of the subspaces is given; the ISA objective
is based on the pairwise mutual information of the estimated ICA elements (Fq. (55)); estimate the mutual
information using the KGV method; optimize the objective via the NCut normalized cut method.

o Parameters to set: unknown_dimensions = 0; cost_type = ’KGV’; cost_name = ’KGV’, opt_type = ’NCut’.

In case of given subspace dimensions, the special structure of the ISA objectives can be taken into account to further
increase the efficiency of the optimization, i.e., the clustering step. The ITE package realizes this idea:

e In case of (i) one-dimensional mutual information based ISA formulation (Eq. (55)), and (ii) cross-entropy or ex-
haustive optimization the S = [I(érca i, éICA,j)}i?jzl similarity matrix can be precomputed.

e In case of greedy optimization:

— upon applying ISA objective (55), the S = [I(érca i, éICA,j)H,)j:I similarity matrix can again be precomputed
giving rise to more efficient optimization.

— ISA formulations (52), (53) are both additive w.r.t. the estimated subspaces. Making use of this special
structure of these objective, it is sufficient to recompute the objective only on the touched subspaces while
greedily testing a new permutation candidate. Provided that the number of the subspaces (M) is high, the
decreased computational load of the specialized method is emphasized.

— objective (54) is pair-additive w.r.t. the subspaces. In this case, it is enough to recompute the objective on the
subspaces connected the actual subspace estimates. Again the increased efficiency is striking in case of large
number of subspaces.

The general and the recommended (which are chosen by default in the toolbox) ISA optimization methods of ITE are
listed Table 11 (greedy), Table 12 (cross-entropy), Table 13 (exhaustive).
Extending the capabilities of the ITE toolbox: In case of

Cost type (cost_type) Recommended/chosen optimizer

’I’, ’sumH’, ’sum-I’, ’Irecursive’, ’Ipairwise’ clustering_UDO_exhaustive_general.m
’Ipairwiseld’ clustering_UDO_exhaustive_pairadditive_wrt_coordinates.m

Table 13: Recommended /chosen optimizers for given subspace dimensions ({d,,}}_,) [unknown_dimensions=0] applying
exhaustive [opt_type=’exhaustive’| ISA optimization: clustering_UDO.m.

30

e known subspaces dimensions ({d, }M_,

the importance of the constant multipliers must be set in set_mult.m.

): the clustering is carried out in clustering_UDO.m. Before clustering, first
16

— To add a new ISA formulation (cost_type):

* to be able to carry it out general optimization: it is sufficient to add the new cost_type entry to
clustering_UDO.m, and the computation of the new objective to cost_general.m.

* to be able to perform an existing, specialized (not general) optimization: add the new cost_type entry to
clustering UDO.m, and the computation of the new objective to the corresponding cost procedure. For
example, in case of a new objective being additive w.r.t. subspaces (similarly to (52), (53)) it is sufficient
to modify cost_additive_wrt_subspaces_one_subspace.m in cost_additive_wrt_subspaces.m.

* to be able to perform a non-existing optimization: add the new cost_type entry to clustering UDO.m
with the specialized solver.

— To add a new optimization method (opt_type): please follow the 3 examples included in clustering_UDO.m.

e unknown subspace dimensions (M): clustering_UD1.m is responsible for the clustering step. It first computes the

S = [I(érca éICA’j)]szl similarity matrix, and then performs spectral clustering (see Table 8). To include a new
clustering technique, one only has to add it to a new case in estimate_clustering UD1_S.m.

4.2.2 Extensions of ISA

Due to the IPA separation principles, the solution of the problem family can be carried out in a modular way. The solution
of all the presented IPA directions are demonstrated through examples in ITE, the demo files and the actual estimators
are listed in Table 14. For the obtained subtasks the ITE package provides many efficient estimators (see Table 15):

ICA, complex ICA: The fastICA method [29] and its complex variant [7] is one of the most popular ICA approach, it
is available in ITE. See estimate_ICA.m and estimate_complex_ICA.m.

AR identification: Identification of AR processes can be carried in the ITE toolbox in 5 different ways (see
estimate_AR.m):
e using the online Bayesian technique with normal-inverted Wishart prior [35, 50],

e applying [31]
— nonlinear least squares estimator based on the subspace representation of the system,

— exact maximum likelihood optimization using the BFGS (Broyden-Fletcher-Goldfarb-Shannon; or the
Newton-Raphson) technique,

— the combination of the previous two approaches.

e making use of the stepwise least squares technique [46, 63].

ARX identification: Identification of ARX processes can be carried out by the D-optimal technique of [50] assuming
normal-inverted Wishart prior; see estimate_ARX_IPA.m.

mAR identification: The

e online Bayesian technique with normal-inverted Wishart prior [35, 50],
e nonlinear least squares [31],
o exact maximum likelihood [31], and

o their combination [31]
are available for the identification of mAR processes; see estimate_mAR.m.

fAR identification: Identification of fAR processes in ITE can be carried out by the strongly consistent, recursive
Nadaraya-Watson estimator [24]; see estimate_fAR.m.

spectral clustering: The ITE toolbox provides 4 methods to perform spectral clustering (see
estimate_clustering_UD1_S.m):

16For example, upon applying objective (52) multiplicative constants are irrelevant (important) in case of equal (different) d,, subspace
dimensions.

31

IPA model Reduction Demo (Estimator)
Taskl Task2

ISA ICA clustering of the ICA elements demo_ISA.m
(estimate_ISA.m)

AR-IPA AR fit ISA demo_AR_IPA.m
(estimate_AR_IPA.m)

ARX-IPA ARX fit ISA demo_ARX_IPA.m
(estimate_ARX_IPA.m)

mAR-IPA mAR fit ISA demo_mAR_IPA.m
(estimate_mAR_IPA.m)

complex ISA Hilbert transformation real ISA demo_complex_ISA.m

complex ISA

fAR-IPA

(complete) MA-TPA
undercomplete MA-IPA
undercomplete MA-TPA

PNL-ISA

complex ICA

nonparametric regression
linear prediction (LPA)
temporal concatenation (TCC)
linear prediction (LPA)

gaussianization

clustering of the ICA elements
ISA
ISA
ISA
ISA

ISA

(estimate_complex_ISA.m)
demo_complex_ISA_C.m
(estimate_complex_ISA_C.m)
demo_fAR_IPA.m
(estimate_fAR_IPA.m)
demo_MA_IPA_LPA.m
(estimate_MA_IPA_LPA.m)
demo_uMA_IPA_TCC.m
(estimate_uMA_IPA_TCC.m)
demo_uMA_TPA_LPA.m
(estimate_uMA_IPA_LPA.m)
demo_PNL_ISA.m
(estimate_PNL_ISA.m)

Table 14: TPA separation principles.

e the unnormalized cut method, and two normalized cut techniques [66, 47, 89] — the implemetations are purely
Matlab/Octave, and

e a fast, normalized cut implementation [66, 11] in C++ with compilable mex files.

gaussianization: Gaussianization of the observations can be carried out by the efficient rank method [93], see
estimate_gaussianization.m.

Extending the capabilities of the ITE toolbox: additional methods for the obtained subtasks can be easily
embedded and instantly used in IPA, by simply adding a new ’switch: case’ entry to the subtask solvers listed in Table 15.
Beyond the solvers for the IPA subproblems detailed above, the ITE toolbox offers:

o 4 different alternatives for k-nearest neighbor estimation (Table 16):

— exact nearest neighbors: based on fast computation of pairwise distances and C++ partial sort (knn package).

— exact nearest neighbors: based on fast computation of pairwise distances.

Subtask Estimator Method

ICA estimate_ICA.m >fastICA’

complex ICA estimate_complex_ICA.m >fastICA’

AR fit (LPA) estimate_AR.m ’NIW’, ’subspace’, >subspace-LL’, ’LL’°, ’stepwiseLS’
ARX fit estimate_ARX.m PNIW?

mAR fit estimate_mAR.m ’NIW’, ’subspace’, ’subspace-LL’, ’LL’

fAR fit estimate_fAR.m ’recursivelNW’

spectral clustering estimate_clustering UD1_S.m ’NCut’, >SP1’, ’SP2’, >SP3’

gaussianization estimate_gaussianization.m ’rank’

Table 15: IPA subtasks and estimators.

32

co.kNNmethod Principle Environment

’knnFP1’ exact NNs, fast pairwise distance computation and C++ partial sort ~Matlab, Octave
’knnFP2’ exact NNs, fast pairwise distance computation Matlab, Octave
’knnsearch’ exact NNs, Statistics Toolbox € Matlab Matlab

JANN? approximate NNs; ANN library Matlab, Octave®

Table 16: k-nearest neighbor (kNN) methods. The main kNN function is kNN_squared_distances.m.

“See Table 1.

co.MSTmethod Method Environment
’MatlabBGL_Prim’ Prim algorithm (MatlabBGL) Matlab, Octave®
’MatlabBGL_Kruskal’ Kruskal algorithm (MatlabBGL) Matlab, Octave
’pmtk3_Prim’ Prim algorithm (pmtk3) Matlab, Octave
>pmtk3_Kruskal’ Kruskal algorithm (pmtk3) Matlab, Octave

Table 17: Minimum spanning tree (MST) methods. The main MST function is compute_MST.m.

%See Table 1.

— exact nearest neighbors: carried out by the knnsearch function of the Statistics Toolbox in Matlab.
— approximate nearest neighbors: implemented by the ANN library.

The method applied for the estimation can be chosen by setting co.method to knnFP1’, *knnFP2’, knnsearch’,
or ’ANN’. For examples, please see:

— HRenyi_GSF_initialization.m, HShannon_kNN_k_initialization.m, HRenyi_kNN_1ltok_initialization.m,
HRenyi_kNN_k_initialization.m, HRenyi_kNN_S_initialization.m, HRenyi_weightedkNN_initialization.m,

— DL2_kNN_k_initialization.m, DRenyi_kNN_k_initialization.m, DTsallis_kNN_k_initialization.m.
The central function of kNN computations is kNN_squared_distances.m.
e 4 techniques for minimum spanning tree computation (Table 17):

— the two functions of the MatlabBGL library can be envoked by setting co.STmethod to *MatlabBGL_Prim’ or
’MatlabBGL_Kruskal’.

— the purely Matlab/Octave implementations based on the pmtk3 toolbox can be called by setting co.STmethod
to ’pmtk3_Prim’ or ’pmtk3_Kruskal’.

For an example, please see H_Renyi_MST_initialization.m. The central function for MST computation is
compute_MST.m.

To extend the capabilities of ITE in k-nearest neighbor or minimum spanning tree computation (which is also imme-
diately inherited to entropy, mutual information, divergence estimation), it sufficient to the add the new method to
kNN_squared_distances.m or compute_MST.m.

4.3 Performance Measure, the Amari-index

Here, we introduce the Amari-index, which can be used to measure the efficiency of the estimators in the ISA problem
and its extensions.

Identification of the ISA model is ambiguous. However, the ambiguities of the model are simple: hidden components
can be determined up to permutation of the subspaces and up to invertible linear transformations within the subspaces
[85]. Thus, in the ideal case, the product of the estimated ISA demixing matrix Wisa and the ISA mixing matrix A, i.e.,
matrix

G = WisA A (66)

is a block-permutation matrix (also called block-scaling matrix [84]). This property can also be measured for source
components with different dimensions by a simple extension [75] of the Amari-index [2], that we present below. Namely,

33

A B AV
CD D A

(a) (b) (c) (d)

Figure 2: ISA demonstration (demo_ISA.m). (a): hidden components ({€™}M_,). (b): observed, mixed signal (x). (c):
estimated components ({&™}M_). (d): Hinton-diagram: the product of the mixing matrix and the estimated demixing

matrix; approximately block-permutation matrix with 2 x 2 blocks.

assume that we have a weight matrix V. € RM*M made of positive matrix elements, and a ¢ > 1 real number. Loosely
speaking, we shrink the d; x d; blocks of matrix G according to the weights of matrix V and apply the traditional Amari-
index for the matrix we obtain. Formally, one can (i) assume without loss of generality that the component dimensions
and their estimations are ordered in increasing order (d; < ... < dyy, dy<...< cZM), (ii) decompose G into d; x d; blocks

(G =[G"Y],,_,) and define g as the {; norm'” of the elements of the matrix G € R%*%, weighted with V;;:
1
dz J a4
g7 =Vi; [YD 1(GY) Jedl”] - (67)
k=1 1=1

Then the Amari-index with parameters V can be adapted to the ISA task of possibly different component dimensions as

follows
1 M ZM g gii
G) = =17 i=1 —1 .
7"V,q() QM(M _ 1) Z <man gz]) + Z (max gz]) (68)

i=1

One can see that 0 < rv 4(G) < 1 for any matrix G, and rv ¢(G) = 0 if and only if G is block-permutation matrix with
d; x d; sized blocks. 7v ¢(G) = 11is in the worst case, i.e, when all the g% elements are equal. Let us note that this measure
(68) is invariant, e.g., for multiplication with a positive constant: r.v = rv (Ve > 0). Weight matrix V can be uniform
(Vij = 1), or one can use weighing according to the size of the subspaces: V;; = 1/(d;d;). The Amari-index [Eq. (68)]
is available in the ITE package, see Amari_index_ISA.m. The G global matrix can be visualized by its Hinton-diagram
(hinton_diagram.m), Fig. 2 provides an illustration. This illustration has been obtained by running demo_ISA.m.

The Amari-index can also be used to measure the efficiency of the estimators of the IPA problem family detailed in
Section 4.1.2. The demo files in the ITE toolbox (see Table 14) contain detailed examples for the usage of the Amari-index
in the extensions of ISA.

4.4 Dataset-, Model Generators

One can generate observations from the ISA model and its extensions (Section 4.1.2) by the functions listed in Table 18.
The sources/driving datasets can be chosen from many different types in ITE (see sample_subspaces.m):

3D-geom: In the 3D-geom test [56] €™s are random variables uniformly distributed on 3-dimensional geometric forms
(dm =3, M < 6), see Fig. 3(a). The dataset generator is sample_subspaces_3D_geom.m.

Aw, ABC, GreekABC: In the Aw database [82] the distribution of the hidden sources € are uniform on 2-dimensional
images (d., = 2) of the English (M; = 26) and Greek alphabet (M = 24). The number of components can be M =
M; + My = 50. Special cases of the database are the ABC (M < 26) [55] and the GreekABC (M < 24) [82] subsets.
For illustration, see Fig. 3(d). The dataset generators are called sample_subspaces_Aw.m, sample_subspaces_ABC.m
and sample_subspaces_GreekABC.m, respectively.

mosaic: The mosaic test [79] has 2-dimensional source components (d,, = 2) generated from mosaic images. Sources
e™ are generated by sampling 2-dimensional coordinates proportional to the corresponding pixel intensities. In

17 Alternative norms could also be used.

34

other words, 2-dimensional images are considered as density functions. For illustration, see Fig. 3(h). The dataset
generator is sample_subspaces_mosaic.m.

IFS: Here [81], components s™ are realizations of IFS'® based 2-dimensional (d = 2) self-similar structures. For all m a

({hx}k=1,..x,Pp= (p1,-..,PK),v1} triple is chosen, where

e h; : R? — R? are affine transformations: hy(z) = Cpz + d;, (Cy € R?**2.d, € R?),

e p is a distribution over the indices {1,..., K} (Eszlpk =1,p; > 0), and

e for the initial value we chose vi := (1,1).
In the IFS dataset, T samples are generated in the following way: (i) vy is given (¢ = 1), (ii) an index k(t) €
{1,..., K} is drawn according to the distribution p and (iii) the next sample is generated as v;i1 = hy(ve).
The resulting series {v1,...,vr} was taken as a hidden source component s™ and this way 9 components (M =9,
D = 18) were constructed (see Fig. 3(c)). The generator of the dataset is sample_subspaces_IFS.m.

ikeda: In the ikeda test [75], the hidden s} = [s{", s}'y] € R? sources realize the ikeda map

Stp11 = 1+ Alsyy cos(wy™) — sy sin(w;™)], (69)
81410 = Am[syy sin(wy”) + sty cos(wi™)], (70)

where A\, is a parameter of the dynamical system and

6

w* =04 — .
! L+ (s74)? + (s7%)?

(71)

There are 2 components (M = 2) with initial points s} = [20;20], s? = [-100;30] and parameters \; =

0.9994, Ao = 0.998, see Fig. 3(f) for illustration. Observation can be generated from this dataset using
sample_subspaces_ikeda.m.

lorenz: In the lorenz dataset [79], the sources (s™) correspond to 3-dimensional (d, = 3) deterministic chaotic time
series, the so-called Lorenz attractor [43] with different initial points (xo, o, 20) and parameters (a, b, ¢). The
Lorenz attractor is described by the following ordinary differential equations:

l"t = a(yt — LIJt), (72)
U = 2¢(b— zt) — yi, (73)
2t = TtYt — CZ¢. (74)

The differential equations are computed by the explicit Runge-Kutta (4,5) method in ITE. The number of components
can be M = 3. The dataset generator is sample_subspaces_lorenz.m. For illustration, see Fig. 3(g).

all-k-independent: In the all-k-independent database [55, 76], the d,,-dimensional hidden components v := e™ are
created as follows: coordinates v; (¢ = 1,...,k) are independent uniform random variables on the set {0,... k-1},
whereas vg41 is set to mod(vy + ... + vk, k). In this construction, every k-element subset of {vy,...,v511} is made

of independent variables and d,,, = k + 1. The database generator is sample_subspaces_all_k_independent.m.

multiD-geom (multiD;-...-Dy/-geom): In this dataset e™s are random variables uniformly distributed on
dm-dimensional geometric forms. Geometrical forms were chosen as follows: (i) the surface of the unit ball, (i)
the straight lines that connect the opposing corners of the unit cube, (iii) the broken line between d,, + 1 points
0—e —e +e — ... e +...+eq, (wheree; is the i canonical basis vector in R i.e., all of its coordinates
are zero except the i*", which is 1), and (iv) the skeleton of the unit square. Thus, the number of components M
can be equal to 4 (M < 4), and the dimension of the components (d,,) can be scaled. In the multiD-geom case
the dimensions of the subspaces are equal (di = ... = dy); in case of the multiD;-...-Dyr-geom dataset, the d,,
subspace dimensions can be different. For illustration, see Fig. 3(e). The associated dataset generator is called
sample_subspaces_multiD_geom.m.

18]FS stands for iterated function system.

35

(b)

g e%
.l. x i‘i"

Figure 3: Tllustration of the 3D-geom (a), multiD-spherical (multiD;-. . .-Das-spherical) (b), IFS (c), Aw (subset on the
left: ABC, right: GreekABC) (d), multiD-geom (multiD1-. .. -Dyr-geom) (e), ikeda (f), lorenz (g), and mosaic (h) datasets.

multiD-spherical (multiD;-...-Dj/-spherical): In this case hidden sources €™ are spherical random variables [15].
Since spherical variables agsume the form v = pu, where u is uniformly distributed on the d,,-dimensional unit
sphere, and p is a non-negative scalar random variable independent of u, they can be given by means of p. 3 pieces of
stochatistic representations p were chosen: p was uniform on [0, 1], exponential with parameter u = 1 and lognormal
with parameters u = 0, 0 = 1. For illustration, see Fig. 3(b). In this case, the number of component can be 3 (M < 3)
The dimension of the source components (d,,) is fixed (can be varied) in the multiD-spherical (multiD-...-Dys-
spherical) dataset. Observations can be obtained from these datasets by sample_subspaces_multiD_spherical.m.

The datasets and their generators are summarized in Table 19 and Table 20. The plot_subspaces.m function can be
used to plot the databases (samples/estimations).

Model Generator

ISA generate_ISA.m

complex ISA generate_complex_ISA.m
AR-IPA generate_AR_IPA.m

ARX-IPA generate_ARX_IPA_parameters.m
(u)MA-IPA generate_MA_IPA.m

mAR-IPA generate_mAR_IPA.m

fAR-IPA generate_fAR_IPA.m.m

Table 18: IPA model generators. Note: in case of the ARX-IPA model, the observations are generated online in accordance
with the online D-optimal ARX identification method.

36

Dataset (data_type) Description Subspace dimensions # of components i.i.
’3D-geom’ uniformly distributed (U) on 3D forms dm =3 M<6 Y
YAw? U on English and Greek letters dm =2 M <50 Y
’ABC? U on English letters dm =2 M <26 Y
’GreekABC’ U on Greek letters dm =2 M <24 Y
’mosaic’ distributed according to mosaic images dm =2 M <4 Y
’IFS? self-similar construction dm =2 M<9 N
’ikeda’ Tkeda map dm =2 M =2 N
’lorenz’ Lorenz attractor dm =3 M <3 N
’all-k-independent’ k-tuples in the subspaces are independent scalable (d,, =k+1) M >1 Y
‘multid-geom’ U on d-dimensional geometrical forms scalable (d=d, >1) M <4 Y
‘multid;-d2-...-d-geom’ U on dm-dimensional geometrical forms scalable (dm > 1) M <4 Y
’multid-spherical’ spherical subspaces scalable (d=dm >1) M <3 Y
‘multid;-da-...-djy/-spherical’ spherical subspaces scalable (dm > 1) M<3 Y

Table 19: Description of the datasets. Last column: Y—yes, N-no.

Dataset (data_type)

Generator

’3D-geom’

’AW’

’ABC?

’GreekABC?

’mosaic’

’IFS?

’ikeda’

’lorenz’
’all-k-independent’

sample_subspaces_3D_geom.m
sample_subspaces_Aw.m
sample_subspaces_ABC.m
sample_subspaces_GreekABC.m
sample_subspaces_mosaic.m
sample_subspaces_IFS.m
sample_subspaces_ikeda.m
sample_subspaces_lorenz.m
sample_subspaces_all_k_independent.m

’multid-geom’, multidi-d2-...-da-geom’ sample_subspaces_multiD_geom.m

’multid-spherical’,

’multidi-da-...-dy-spherical’ sample_subspaces_multiD_spherical.m

Table 20: Generators of the datasets. The high-level sampling function of the datasets is sample_subspaces.m.

37

5 Directory Structure of the Package
In this section, we describe the directory structure of the ITE toolbox. Directory

e code: code of ITE,

— H I D: entropy-, mutual information-, divergence estimators (see Section 3).

* Dase: contains the base estimators; initialization and estimation functions (see Section 3.1).
* meta: the folder of meta estimators; initialization and estimation functions (see Section 3.2).
x wutilities: code shared by base and meta.

— IPA: application of the information theoretical estimators in ITE (see Section 4):

* data_ generation: IPA generators corresponding to different datasets and models.
- datasets: sampling from and plotting of the sources (see Table 19, Table 20, Fig. 3).
- models: TPA model generators, see Table 18.
x demos: IPA demonstrations and estimators, see Table 14 and Table 15.
* optimization: IPA optimization methods (see Table 9, Table 10, Table 11, Table 12, and Table 13).

— shared: code shared by H I D and IPA.
* downloaded, embedded: downloaded and embedded packages (see Section 2).

e doc: documentation of the ITE toolbox; contains the current manual.

38

A Abbreviations

Abbreviation

Meaning

ANN
AR
ARIMA
ARMA
ARX
BFGS
BSD
BSSD
CE
fAR
GV
HSIC
ICA/ISA/IPA
ii.d.
IF'S
ITE
JFED
KCCA
KGV
kNN
LPA
MA
mAR
MMD
NIW
NN
PCA
PNL
RKHS
RP

approximate nearest neighbor
autoregressive

integrated ARMA

autoregressive moving average

AR with exogenous input
Broyden-Fletcher-Goldfarb-Shannon
blind source deconvolution

blind subspace deconvolution
Ccross-entropy

functional AR

generalized variance
Hilbert-Schmidt independence criterion
independent component/subspace/process analysis
independent identically distributed
iterated function system
information theoretical estimators
joint f-decorrelation

kernel canonical correlation analysis
kernel generalized variance
k-nearest neighbor

linear prediction approximation
moving average

AR with missing values

maximum mean discrepancy
normal-inverted Wishart

nearest neighbor

principal component analysis

post nonlinear

reproducing kernel Hilbert space
random projection

Table 21: Abbrevations.

The abbreviations used in the paper are listed in Table 21.

B Functions with Octave-Specific Adaptations

Functions with Octave-specific adaptations are summarized in Table 22.

C Estimation Formulas — Lookup Table

In this section the underlying entropy (Section C.1), mutual information (Section C.2) and divergence (Section C.3)
computations are summarized briefly. This section is considered to be a quick lookup table. For specific details, please

see the referred papers (Section 3).

C.1 Entropy

Notations: Let Yi.7 = (y1,.-

. y7) (y: € R?) stand for our samples.

7Td/2 2ﬂ_d/2

M) @)

39

Function Role

ITE_install.m installation of the ITE package
hinton_diagram.m Hinton-diagram

estimate_clustering UD1_S.m spectral clustering

control.m D-optimal control

sample_subspace_lorenz.m sampling from the lorenz dataset

clinep.m the core of the 3D trajectory plot
plot_subspaces_3D_trajectory.m 3D trajectory plot

IGV_similarity_matrix.m similarity matrix for the GV measure
calculateweight.m weight computation in the weighted kNN method
kNN_squared_distances.m kNN computation

initialize_Octave_ann_wrapper_if_needed.m ann Octave wrapper initialization

Table 22: Functions with Octave-specific adaptations.

is the volume of the d-dimensional unit ball. ¢ is the digamma function. e; is the directed edge pointing from y; to its
kth nearest neighbor. Let V' C RY be a finite set, S, 51,52 C {1,...,k} are index sets. NNg(V) stands for the S-nearest
neighbor graph on V. NNg(Va, V1) denotes the S-nearest (from Vi to V2) neighbor graph. E is the expectation operator.

d(l1—a)
2

T'(k = . T—1_ 4 uiasle
(%kz[()} , IJYMQZT%I%&kEZ(ﬁl
t=1

P Tk +1-a)) (76)

In case of d = 1, let y(+) denote the order statistics of y;, i.e., yuy < ... < yr); for yu)y = yay (0 < 1) and yuy = yr)
(i>T).

e Shannon_kNN_k [37, 67, 19]:

T
. d
H(Yy7) =log(T — 1) — (k) +1og(Va) + 7 D _log ([lec]l,) - (77)
t=1
e Renyi_kNN_k [92, 41]:
. 1 R
HR,a(YI:T) = 1_ o 10g (a(leT)) . (78)
e Renyi_kNN_1tok [56]:
S={1,...,k}, (79)
V=Yir, (80)
d(l—«
L(V) = > = w5, (81)
(u,v)€edges(NNg(V))
. L(Uy.r)
c= Tlgr(l)o EUl;T,ut:i‘i.d.,NUniform([O,l]d) {TQ) (82)
. 1 L(V)
HR’Q(Y1:T> = m].Og |: CTO‘ :| . (83)

40

e Renyi_S [54]:

SC{l,.. k}LkeS,

V=Y.r

L(V) =

e Renyi_weightedkNN [68]:

e Renyi_MST [92, 55]:

e Renyi_GSF [55]:

)

>

d(1—
lu — |5,

(u,v)€edges(NNg(V))

d(l—a)
2

. L(Uy.r)
¢ = Tlgnoo EUl;T,ut:i.i.d.,NUniform([O,1]”) |: Ta ’
. 1 L(V)
Hp o(Y17) = —— .
Ra(Yur) 1a0g[cTQ}
ky = ki (T) = [0.1\/:7] ,
ko = ko(T) = [Nﬂ :
T
N=|—
H
M =T — N,
Vl = Yl:N7
‘/2 = YN+1:T7
S ={ky,..., ka},
ﬁ(k’ﬂ 1- Ot) 1 —a -
Uk:mﬁMl le Z [u—vl
(u,v)€edges(NNg(Va,V7))
A
keS
N 1 o
HR,a(leT) - 1—a log(Ioz,w)a
where the wy, = wi (T, d, k1, k2) weights can be precomputed.
V=Y.ir,
I _ . _ d(l—a)
(V) Ge spannﬁlgl;rirees on V Z Hu V||2 ’
(u,v)€edges(G)
. L(Uy.r)
c= Tlgnoo EUl;T,ut:i.i.d.7~Uniform([O,1]d) [Ta)
. 1 L(V)
Hp o(Yi7) = ——1 .
Ra(Yir) =37 Og[cTa}
S=A{1,...,k},
V= Yl:Ta
L(V) = : _ d(l1—a)
() G€ spanning glrlg;t on NNg(V) Z Hu VH2 ’

¢ = Thj}m EULTq,ut:i‘i.d.7~Uniform([0,1]d) [Ta

L(V)} |

HR@ (YI:T) =

1

1—

log [

cT~

41

(u,v)€edges(G)
L(Uy.7)

|\

7

(99)
(100)

(101)

(102)

(103)
(104)

(105)

(106)

(107)

e Tsallis_kNN_k [41]:

1—1,(Yyr)

HT,a(Yl:T) = p—

(108)

e Shannon_Edgeworth [27]: Since the Shannon entropy is invariant to additive constants (H(y) = H(y +m)), one can
assume without loss of generality that the expectation of y is zero. The Edgeworth expansion based estimation is

d d
ES 1 1,1, z 1 3 1 d,k 2
H(Yrr) = H(ba) = 35 | D (+7) +3 Z N 2 T (109)
i=1 i,j=1;i7#] 1,5, k=1;1<j<k
where
_ 1 Syt =1,...,T 110
Yt =Yt T_Yb(— PR) ()
1 I
S =cov(Yir) = 5— ;yt(yt)*, (111)
1 d d
H(dq) = B log det(X) + 3 log(27) + 2 (112)
- 1 4 i\ 2
0; = std(y') = ﬁZ@z) , (i=1,....d) (113)
"fijk:EA‘ yyy Zytytyta Zjak:17"'7d) (114)
. ijk
ik = BT (115)
000k
Here, ‘«’ denotes transposition.
C.2 Mutual Information
Let for an Y = (y1,...,yr) sample set (y; € R%) the empirical copula be defined as
A i1 iT # of y-s in the sample with y <y, . ir) .
Crl=,...,=) := . Vi i, =1,...,T 11
T (T) T) T) (]723 9 9) (6)
where y i, i) = [Y@r)s - - -5 Y(ir)) With y(,) order statistics in the 4t coordinate.
e HSIC [21]:
go—s. 1 (117)
ij — Vij Ta
(Km)ij = km(yﬁy;-”) (118)
M—1
Insic (yhs ..oy T2 > Z tr(K,HK, H), (119)
u=1 v=u+1
where tr(-) denotes trace. Currently, the Gaussian kernel is used:
m _lu—vp?
Em(u,v) =€ 202 (Vm). (120)

42

o KCCA, KGV [4, 77):

KT
R = -, (121)
K™ = [k"(yi", 7)ij=1,..75 (122)
1
H=I--11" 12
T (123)
K™ =HK™H, (124)
(f{1 + kolp)? KIK?2 KIKM c
K?K! (K? + kol7)? -+ K2KM C2
. . . = (125)
KJWRI KJWR2 s (KM + HQIT>2 CMm
(Kl + HQIT)2 0 s 0 c1
0 (K? + koI)? - 0 c2
=A : : :
0 0 o (KM 4 ko0)2) \em

Here, 1 denotes denote a vector whose all elements are equal to 1. Let us write Eq. (125) shortly as Ac = ABc. Let

the minimal eigenvalue of this generalized eigenvalue problem be Axcca, and Akgy = %ﬁg;.

Ixcoa (y' ... oyM) = _%bg()\KCCA)v (126)
Ixav (y' ... 7)’M) = _%bg()\KGV)- (127)

At the moment,
E™(u,v) = 67% (Vm). (128)

e Hoeffding [25, 18]: Let I be the indicator function and FE,,, the empirical marginal distribution function:

T
y) = Zﬂ{y{"'éy}v (129)
t=1
and
3 n m 1 m m m
Unt = Fn(y") = T(rank of " in y", ..., y7). (130)
The estimation can be computed as
2 1 d! 1\
h2(d) = (T 9d —d ., +)) (131)
d+1)(d+2) 2977% (i+4) 3
T 9 1 d 1
. 1 o 2 2
Tnoetiding (Y55 y") = EZZH{I—IH&X Uik)]—fydz_ (1—U) 34 ((132)
j=lk=1i=1 Jj=1li=1
Under small sample adjustment, one can obtain a similar nice expression:
ha(d, Z L (4 _3§T: T(C-1)-jG-1]", 1 [(T-nEer-1]°
Ly \T'T T Z 2772 3d 2772 ’
(133)
jHoeffding (yla s 7yd) = \/h2(d7 T)(tl —t2+ t3)7 (134)

43

where

| LT d o
EZZH[l—maXU Uik)}, to =

Jj=1k=11i=1

e SW1, SWinf [64, 36]:

The fSWinf estimation is performed similarly.

C.3 Divergence

We have T and 715 i.i.d. samples from the distributions to be compared: Y! = (y%7 .

7Y%‘1)7 Y2 = (y%

—1)(2T - 1)]d

(135)

(136)

7yi). Let

pr(t) denote the Euclidean distance of the k*" nearest neighbor of y} in the sample Y!\{y}}, and similarly let v4(¢) stand
for the Euclidean distance of the k*" nearest neighbor of y} in the sample Y2\ {y?}. Let us recall the definitions [Eq. (28),

(30)]:

D) = [[N)" dy.
D)= [6@ L) fiay

e L2_kNN_k [58, 57, 59):

2k — 1)

(T = Dpt(yi)(k —2)(k —

1)

e Tsallis_kNN_k [58, 57]:

d(t) Tt

(T2 1)k

_ L'(k)?
Bi.a = Fk—a+Dl(k+a—1)
A B (Tl _ 1)1—()¢ 1 T pk(t) d(1—a)
D(a) = Bl@aWi 2 |:I/k(t):|)
Dra= o i 1 [D(a) - 1}
e Renyi_kNN_k [58, 57, 59]:
DR,a - IOgD(OZ)
e MMD_online [20]:
Ty
"= [31(-[3])
h(x,y), (w,v)) = k(x,) k(y,v) = k(x,v) = k(y,),

Dywp = T,Zh Yar-1:¥2i-1) » (Y20, ¥31)) -

Currently,

t=

k(u,v) =e"

1

Jlu—v]?

44

252

(137)

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)

(147)

e Hellinger kNN_k [53]:

- I'(k)?
By =V, 14
koo =Va O F R T T =b)’ (148)
X 1 &
Dlah) = (T = 1) (1) B Y lonl0] (] (149)
t=1
R “ 11
Du=/1-D(-=2). 1
. (-33) (150)
e Bhattacharyya_kNN_k [53]:
. . 11
Dg=—-logD|—=,=-).
o =10z (~3.5) (151)

D Citation of the ITE Toolbox

The citing information of the ITE toolbox is provided below in BibTeX format:

Q@ARTICLE{szabol2separation,

AUTHOR = {Zolt{\’a}n Szab{\’0} and Barnab{\’a}s P{\’o}czos and Andr{\’a}s L{\H{o}}rincz},
TITLE = {Separation Theorem for Independent Subspace Analysis and its Consequences},
JOURNAL = {Pattern Recognition},
YEAR = {2012},
volume = {45},
issue = {43,
pages = {1782-1791}%,
}
Q@ARTICLE{szaboO7undercomplete,
AUTHOR = {Zolt{\’a}n Szab{\’0} and Barnab{\’a}s P{\’o}czos and Andr{\’a}s L{\H{o}}rincz},
TITLE = {Undercomplete Blind Subspace Deconvolution},
JOURNAL = {Journal of Machine Learning Research},
YEAR = {2007},
volume = {8},
pages = {1063-1095},
}
References

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of
Computer and System Sciences, 66:671-687, 2003.

[2] Shun-ichi Amari, Andrzej Cichocki, and Howard H. Yang. A new learning algorithm for blind signal separation.
Neural Information Processing Systems (NIPS), pages 757-763, 1996.

[3] Rosa I. Arriga and Santosh Vempala. An algorithmic theory of learning: Robust concepts and random projections.
Machine Learning, 63:161-182, 2006.

[4] Francis R. Bach and Michael 1. Jordan. Kernel independent component analysis. Journal of Machine Learning
Research, 3:1-48, 2002.

[5] Michéle. Basseville. Divergence measures for statistical data processing - an annotated bibliography. Signal Processing,
2012. To appear. hal.inria.fr/docs/00/54/23/37/PDF/PI-1961.pdf.

[6] J. Beirlant, E.J. Dudewicz, L. Gy6rfi, and E.C. van der Meulen. Nonparametric entropy estimation: An overview.
International Journal of Mathematical and Statistical Sciences, 6:17-39, 1997.

45

7]

18]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Ella Bingham and Aapo Hyvérinen. A fast fixed-point algorithm for independent component analysis of complex-
valued signals. International Journal of Neural Systerns, 10(1):1-8, 2000.

Jean-Francois Cardoso. Multidimensional independent component analysis. In International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 1941-1944, 1998.

Jean-Frangois Cardoso and Antoine Souloumiac. Blind beamforming for non-gaussian signals. IFE Proceedings F,
Radar and Signal Processing, 140(6):362-370, 1993.

Pierre Comon. Independent component analysis, a new concept? Signal Processing, 36:287-314, 1994.

Timothee Cour, Stella Yu, and Jianbo Shi. Normalized cut segmentation code. Copyright 2004 University of Penn-
sylvania, Computer and Information Science Department.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley and Sons, New York, USA,
1991.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. Fetal electrocardiogram extraction by source subspace
separation. In IEEE SP/Athos Workshop on Higher-Order Statistics, pages 134-138, 1995.

Jan Eriksson. Complex random vectors and ICA models: Identifiability, uniqueness and separability. IEEE Transac-
tions on Information Theory, 52(3), 2006.

Kai-Tai Fang, Samuel Kotz, and Kai Wang Ng. Symmetric multivariate and related distributions. Chapman and Hall,
1990.

Peter Frankl and Hiroshi Maehara. The Johnson-Lindenstrauss Lemma and the sphericity of some graphs. Journal
of Combinatorial Theory Series A, 44(3):355 — 362, 1987.

Wayne A. Fuller. Introduction to Statistical Time Series. Wiley-Interscience, 1995.

Sandra Gaifer, Martin Ruppert, and Friedrich Schmid. A multivariate version of Hoeffding’s phi-square. Journal of
Multivariate Analysis, 101:2571-2586, 2010.

M. N. Goria, Nikolai N. Leonenko, V. V. Mergel, and P. L. Novi Inverardi. A new class of random vector entropy
estimators and its applications in testing statistical hypotheses. Journal of Nonparametric Statistics, 17:277-297,
2005.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schélkopf, and Alexander Smola. A kernel two-
sample test. Journal of Machine Learning Research, 13:723-773, 2012.

Arthur Gretton, Olivier Bousquet, Alexander Smola, and Bernhard Schoélkopf. Measuring statistical dependence with
Hilbert-Schmidt norms. In International Conference on Algorithmic Learnng Theory (ALT), pages 63-78, 2005.

Godfrey H. Hardy and Srinivasa I. Ramanujan. Asymptotic formulae in combinatory analysis. Proceedings of the
London Mathematicl Society, 17(1):75-115, 1918.

Jan Havrda and Frantisek Charvét. Quantification method of classification processes. concept of structural a-entropy.
Kybernetika, 3:30-35, 1967.

Nadine Hilgert and Bruno Portier. Strong uniform consistency and asymptotic normality of a kernel based error
density estimator in functional autoregressive models. Statistical Inference for Stochastic Processes, 15(2):105-125,
2012.

W. Hoeffding. Massstabinvariante korrelationstheorie. Schriften des Mathematischen Seminars und des Instituts fir
Angewandte Mathematik der Universitat Berlin, 5:181-233, 1940.

Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal of Educational
Psychology, 24:417-441, 1933.

Marc Van Hulle. Edgeworth approximation of multivariate differential entropy. Neural Computation, 17:1903-1910,
2005.

46

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

42|

[43]
[44]

[45]
[46]

[47]

[48]

[49]

Aapo Hyvirinen. Independent component analysis for time-dependent stochastic processes. In International Confer-
ence on Artificial Neural Networks (ICANN), pages 541-546, 1998.

Aapo Hyvirinen and Erkki Oja. A fast fixed-point algorithm for independent component analysis. Neural Computa-
tion, 9(7):1483-1492, 1997.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In
ACM Symposium on Theory of Computing, 1998, pages 604—613.

Miguel Jerez, Jose Casals, and Sonia Sotoca. Signal Extraction for Linear State-Space Models: Including a free
MATLAB Toolbozx for Time Series Modeling and Decomposition. LAP LAMBERT Academic Publishing, 2011.

William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz maps into a Hilbert space. Contemporary
Mathematics, 26:189-206, 1984.

Christian Jutten and Jeanny Hérault. Blind separation of sources: An adaptive algorithm based on neuromimetic
architecture. Signal Processing, 24:1-10, 1991.

Christian Jutten and Juha Karhunen. Advances in blind source separation (BSS) and independent component analysis
(ICA) for nonlinear systems. International Journal of Neural Systems, 14(5):267-292, 2004.

K. Rao Kadiyala and Sune Karlsson. Numerical methods for estimation and inference in bayesian VAR-models.
Journal of Applied Econometrics, 12:99-132, 1997.

Sergey Kirshner and Barnabas Poczos. ICA and ISA using Schweizer-Wolff measure of dependence. In International
Conference on Machine Learning (ICML), pages 464-471, 2008.

L. F. Kozachenko and Nikolai N. Leonenko. A statistical estimate for the entropy of a random vector. Problems of
Information Transmission, 23:9-16, 1987.

Solomon Kullback and Richard Leibler. On information and sufficiency. Annals of Mathematical Statistics, 22(1):79-
86, 1951.

Jan Kybic. High-dimensional mutual information estimation for image registration. In International Conference on
Image Processing (ICIP), pages 1779-1782, 2004.

Russell H. Lambert. Multichannel Blind Deconvolution: FIR matriz algebra and separation of multipath mixtures.
PhD thesis, University of Southern California, 1996.

Nikolai Leonenko, Luc Pronzato, and Vippal Savani. A class of Rényi information estimators for multidimensional
densities. Annals of Statistics, 36(5):2153-2182, 2008.

Ping Li, Trevor J. Hastie, and Kenneth W. Hastie. Very sparse random projections. In International Conference on
Knowledge Discovery and Data Mining (KDD), pages 287-296, 2006.

Edward Norton Lorenz. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20:130-141, 1963.

Jiti Matougek. On variants of the Johnson-Lindenstrauss lemma. Random Structures and Algorithms, 33(2):142-156,
2008.

Roger B. Nelsen. An Introduction to Copulas (Springer Series in Statistics). Springer, 2006.

Arnold Neumaier and Tapio Schneider. Estimation of parameters and eigenmodes of multivariate autoregressive
models. ACM Transactions on Mathematical Software, 27(1):27-57, 2001.

Andrew Y. Ng, Michael 1. Jordan, and Yair Weiss. On spectral clustering: analysis and an algorithm. In Advances
in Neural Information Processing Systems (NIPS), pages 849-856, 2002.

Michael S. Pedersen, Jan Larsen, Ulrik Kjems, and Lucas C. Parra. A survey of convolutive blind source separation
methods. In Springer Handbook of Speech Processing. Springer, 2007.

Barnabas Poczos, Zoubin Ghahramani, and Jeff Schneider. Copula-based kernel dependency measures. In Interna-
tional Conference on Machine Learning (ICML), 2012.

47

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]
[66]

67]

[68]

[69]

[70]

Barnabés Péczos and Andras Lérincz. Identification of recurrent neural networks by Bayesian interrogation techniques.
Journal of Machine Learning Research, 10:515-554, 2009.

Barnabas Poczos, Zoltan Szabo, Melinda Kiszlinger, and Andrés Lérincz. Independent process analysis without a pri-
ori dimensional information. In International Conference on Independent Component Analysis and Signal Separation
(ICA), pages 252-259, 2007.

Barnabéas Poczos, Balint Takécs, and Andras Loérincz. Independent subspace analysis on innovations. In European
Conference on Machine Learning (ECML), pages 698706, 2005.

Barnabas Poczos, Liang Xiong, Dougal Sutherland, and Jeff Schneider. Support distribution machines. Technical
report, Carnegie Mellon University, 2012. http://arxiv.org/abs/1202.0302.

David Pal, Barnabas Péczos, and Csaba Szepesvari. Estimation of Rényi entropy and mutual information based on
generalized nearest-neighbor graphs. In Neural Information Processing Systems (NIPS), pages 1849-1857, 2011.

Barnabas Poczos and Andras Lérincz. Independent subspace analysis using geodesic spanning trees. In International
Conference on Machine Learning (ICML), pages 673-680, 2005.

Barnabés Péczos and Andras Lérincz. Independent subspace analysis using k-nearest neighborhood estimates. In
International Conference on Artificial Neural Networks (ICANN), pages 163-168, 2005.

Barnabas Poczos and Jeff Schneider. On the estimation of a-divergences. In International conference on Artificial
Intelligence and Statistics (AISTATS), pages 609-617, 2011.

Barnabéas Poczos, Zoltan Szabd, and Jeff Schneider. Nonparametric divergence estimators for independent subspace
analysis. In Furopean Signal Processing Conference (EUSIPCO), pages 1849-1853, 2011.

Barnabas Poczos, Liang Xiong, and Jeff Schneider. Nonparametric divergence: Estimation with applications to
machine learning on distributions. In Uncertainty in Artificial Intelligence (UAI), pages 599-608, 2011.

Ravikiran Rajagopal and Lee C. Potter. Multivariate MIMO FIR, inverses. IEEE Transactions on Image Processing,
12:458-465, 2003.

Reuven Y. Rubinstein and Dirk P. Kroese. The Cross-Entropy Method. Springer, 2004.

Alfréd Rényi. On measures of information and entropy. In Proceedings of the Jth Berkeley Symposium on Mathematics,
Statistics and Probability, pages 547-561, 1961.

Tapio Schneider and Arnold Neumaier. Algorithm 808: ARfit - a Matlab package for the estimation of parameters
and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27(1):58-65,
2001.

B. Schweizer and E. F. Wolff. On nonparametric measures of dependence for random variables. The Annals of
Statistics, 9:879-885, 1981.

Claude E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):379-423, 1948.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888-905, 2000.

Harshinder Singh, Neeraj Misra, Vladimir Hnizdo, Adam Fedorowicz, and Eugene Demchuk. Nearest neighbor
estimates of entropy. American Journal of Mathematical and Management Sciences, 23:301-321, 2003.

Kumar Sricharan and Alfred. O. Hero. Weighted k-NN graphs for Rényi entropy estimation in high dimensions. In
IEEE Workshop on Statistical Signal Processing (SSP), pages 773-776, 2011.

Zoltan Szabd. Complete blind subspace deconvolution. In International Conference on Independent Component
Analysis and Signal Separation (ICA), pages 138-145, 2009.

Zoltan Szabd. Autoregressive independent process analysis with missing observations. In European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), pages 159-164, 2010.

48

[71]

[72]

73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]
[90]

[91]

Zoltén Szab6 and Andrés Lérincz. Towards independent subspace analysis in controlled dynamical systems. In ICA
Research Network International Workshop (ICARN), pages 9-12, 2008.

Zoltan Szabo6 and Andras Lorincz. Complex independent process analysis. Acta Cybernetica, 19:177-190, 2009.

Zoltan Szab6 and Andrés Lorincz. Fast parallel estimation of high dimensional information theoretical quantities with
low dimensional random projection ensembles. In International Conference on Independent Component Analysis and
Signal Separation (ICA), pages 146-153, 2009.

Zoltén Szabo and Andrés Lérincz. Distributed high dimensional information theoretical image registration via random
projections. Digital Signal Processing, 22(6):894-902, 2012.

Zoltan Szab6 and Barnabas Poéczos. Nonparametric independent process analysis. In Furopean Signal Processing
Conference (EUSIPCO), pages 1718-1722, 2011.

Zoltédn Szabo6, Barnabas Poczos, and Andréas Lérincz. Cross-entropy optimization for independent process analysis.
In International Conference on Independent Component Analysis and Blind Source Separation (ICA), pages 909-916,
2006.

Zoltan Szabd, Barnabés Poéczos, and Andras Loérincz. Undercomplete blind subspace deconvolution. Jouwrnal of
Machine Learning Research, 8:1063-1095, 2007.

Zoltan Szab6, Barnabas Poczos, and Andras Lorincz. Undercomplete blind subspace deconvolution via linear predic-
tion. In European Conference on Machine Learning (ECML), pages 740-747, 2007.

Zoltan Szab6, Barnabas Poczos, and Andras Lérincz. Auto-regressive independent process analysis without combi-
natorial efforts. Pattern Analysis and Applications, 13:1-13, 2010.

Zoltan Szabo, Barnabés Poczos, and Andras Lérincz. Separation theorem for independent subspace analysis and its
consequences. Pattern Recognition, 45:1782-1791, 2012.

Zoltén Szabo, Barnabés Poczos, Gabor Szirtes, and Andréas Lérincz. Post nonlinear independent subspace analysis.
In International Conference on Artificial Neural Networks (ICANN), pages 677-686, 2007.

Zoltén Szabo and Andras Lérincz. Real and complex independent subspace analysis by generalized variance. In ICA
Research Network International Workshop (ICARN), pages 85-88, 2006.

Anisse Taleb and Christian Jutten. Source separation in post-nonlinear mixtures. IEEE Transactions on Signal
Processing, 10(47):2807-2820, 1999.

Fabian J. Theis. Blind signal separation into groups of dependent signals using joint block diagonalization. In IEFFE
International Symposium on Circuits and Systems (ISCAS), pages 5878-5881, 2005.

Fabian J. Theis. Towards a general independent subspace analysis. In Neural Information Processing Systems (NIPS),
pages 1361-1368, 2007.

Constantino Tsallis. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52:479-487,
1988.

James V. Uspensky. Asymptotic formulae for numerical functions which occur in the theory of partitions. Bulletin
of the Russian Academy of Sciences, 14(6):199-218, 1920.

T. Villmann and S. Haase. Mathematical aspects of divergence based vector quantization using Fréchet-derivatives.
Technical report, University of Applied Sciences Mittweida, 2010.

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4), 2007.

Quing Wang, Sanjeev R. Kulkarni, and Sergio Verdd. Divergence estimation for multidimensional densities via
k-nearest-neighbor distances. IEEE Transactions on Information Theory, 55:2392-2405, 2009.

Donghui Yan, Ling Huang, and Michael 1. Jordan. Fast approximate spectral clustering. In International Conference
on Knowledge Discovery and Data Mining (KDD), pages 907-916, 2009.

49

[92] Joseph E. Yukich. Probability theory of classical Euclidean optimization problems. Lecture Notes in Mathematics,
1675, 1998.

[93] Andreas Ziehe, Motoaki Kawanabe, Stefan Harmeling, and Klaus-Robert Miiller. Blind separation of postnonlinear

mixtures using linearizing transformations and temporal decorrelation. Journal of Machine Learning Research, 4:1319—
1338, 2003.

50

