
AVR core in Verilog

Martin Vejnár

November 24, 2010

Martin Vejnár AVR core in Verilog



AVR architecture overview

32 8-bit registers

8-bit ALU, few 16-bit instructions (ADIW)

jump, call, branch and skip instructions

16-bit wide program memory space

8-bit wide data memory space

0x00–0x20 registers
0x20–0x5f I/O memory
0x60–0xffff SRAM

gcc backend is available

Martin Vejnár AVR core in Verilog



Interface

Clock and reset

prog data, prog addr

ram data in, ram data out, ram addr, ram rd, ram wr

For all intents and purposes, I/O and SRAM behave the
same, some I/O registers are actually memory-mapped.

The RAM interface includes file registers and I/O space.
ram rd and ram wr are generated for file registers, but are
satisfied internally

Transactions cannot be stalled.

No interrupt, WDT and SLEEP support.

Martin Vejnár AVR core in Verilog



Access timing

Program data are assumed to be available on the clock cycle
after the address was set, i.e. program instructions are
prefetched.

Data are expected to be available at the same clock cycle the
address was exposed.

This is necessary to satisfy a repeated sequence of in r16,

addr; out addr, r16.

This means that the SRAM block is clocked on the negative
edge.

Martin Vejnár AVR core in Verilog



Instruction processing

Instructions are decoded with a single long casez statement
and executed immediately.

Memory access is handled asynchronously (in instruction
should completed in a single cycle)

Sometimes the instruction takes more than one cycle

jumps (the instruction buffer to be flushed)
two-word instructions
program memory loads

Martin Vejnár AVR core in Verilog



Summary

Worked with a program that uses UART and LCD.

More peripherals can be added easily by mapping them into
the data memory.

The unfinished version can be clocked at 48MHz maximum
(AVR chips support 20MHz only).

Once finished, any program compiled with gcc targeting
atmega48 or compatible core should be supported.

Martin Vejnár AVR core in Verilog



Related work

OpenCores lists several implementations

avr core, VHDL, classic core (no multiplier), precise timings
pAVR, VHDL, nice docs, claims to be faster than AVR
Navré, Verilog, longer cycles, similar to my implementation

Martin Vejnár AVR core in Verilog


