AVR core in Verilog

Martin Vejnar

November 24, 2010

Martin Vejnar AVR core in Verilog



AVR architecture overview

32 8-bit registers
8-bit ALU, few 16-bit instructions (ADIW)
jump, call, branch and skip instructions

16-bit wide program memory space

8-bit wide data memory space

o 0x00-0x20 registers
o 0x20-0x5f I/O memory
o 0x60-0xffff SRAM

gcc backend is available

Martin Vejnar AVR core in Verilog



Interface

Clock and reset
prog_data, prog_addr
ram_data_in, ram_data_out, ram_addr, ram_rd, ram_wr

For all intents and purposes, 1/0 and SRAM behave the
same, some |/O registers are actually memory-mapped.

@ The RAM interface includes file registers and 1/0 space.
ram_rd and ram_wr are generated for file registers, but are
satisfied internally

@ Transactions cannot be stalled.
@ No interrupt, WDT and SLEEP support.

Martin Vejnar AVR core in Verilog



@ Program data are assumed to be available on the clock cycle
after the address was set, i.e. program instructions are
prefetched.

o Data are expected to be available at the same clock cycle the
address was exposed.

@ This is necessary to satisfy a repeated sequence of in ri16,
addr; out addr, rié.

@ This means that the SRAM block is clocked on the negative
edge.

Martin Vejnar AVR core in Verilog



Instruction processing

@ Instructions are decoded with a single long casez statement
and executed immediately.
@ Memory access is handled asynchronously (in instruction
should completed in a single cycle)
@ Sometimes the instruction takes more than one cycle
o jumps (the instruction buffer to be flushed)

e two-word instructions
e program memory loads

Martin Vejnar AVR core in Verilog



@ Worked with a program that uses UART and LCD.

@ More peripherals can be added easily by mapping them into
the data memory.

@ The unfinished version can be clocked at 48MHz maximum
(AVR chips support 20MHz only).

@ Once finished, any program compiled with gcc targeting
atmega48 or compatible core should be supported.

Martin Vejnar AVR core in Verilog



Related work

@ OpenCores lists several implementations

e avr_core, VHDL, classic core (no multiplier), precise timings
e pAVR, VHDL, nice docs, claims to be faster than AVR
o Navré, Verilog, longer cycles, similar to my implementation

Martin Vejnar AVR core in Verilog



