
GUITARDSP Project v1.0
Report

Guitar Effects Processor in Java

Final project
of the course of

Object-Oriented Programming

Submitted by
657291 - Francesco Del Duchetto

francesc.delduchetto@studio.unibo.it

Date:
April 2, 2014

School of Science
University of Bologna

Cesena, FC, 47521

Abstract

GuitarDSP is an application written in Java that allows to modify a sound
file in real time, applying on it some effects.
The ultimate purpose is to simulate a multi-effect pedal for guitar but due for
time this version of the project allows user to modify an audio source taken by a
.wav file stored on the pc.

Contents

1 Introduction 1

2 Work Done 2
2.1 Application design . 2

2.1.1 MVC pattern . 4
2.1.2 Effects . 9

3 Considerations 12
3.1 Workflow . 12

3.1.1 In-development changes 12
3.2 Possible troubles . 12

4 Future Work 13

5 Conclusion 14

References 15

i

1 Introduction
With the advent of the digital world the way in which the sound is managed
has been revolutioned increasing the versatility and the capability of the audio
effects. Now a guitarist doesn’t have to spend a lot of money, buying pedals, to
use the effects and find its own sound: there are on the market a lot of pedals
that are able to emulate (pretty well) the most famous analog effects of the major
manufacturers and that are more powerful than their corresponding analog.

Digital effects allow to experiment new processing techniques creating new
sounds that in the analog domain are impossible to obtain; also they guarantees
more safety because the musician must not have to deal with cables and possible
damages of the circuits.

With this project I try to create an application that is able to process an audio
stream with some DSP algorithm. It use the Java Sound API[1], particularly
the package javax.sound.sampled to obtain the input and output lines from the
system.
It is equipped with a graphical interface developed using the Swing library.

The ultimate aim of the project is to allow user to plug its guitar jack in
the mic input of the pc and to start playing modifying the sound in real-time
with the effects provided by the application. Now the application can process
an input stream given from an audio file stored on the PC because the real-time
functionality involve in many difficulties, such as noise and latency, that due for
time I have not yet been able to overcome.

1

2 Work Done

2.1 Application design

In this stage of the work was designed the structure of the application, studying
the best way to organize the entities and the operations between them.

The global operation is based on the Model-View-Controller pattern that
indicates the guidelines to write a good GUI-based application. This pattern
is very useful because it helps the programmer to write highly reusable and
extensible code when he has to work with a user interface. Its philosophy is to
split the general operation into three parts: the management of the graphical
interface (View), the management of data and functionalities (Model) and the
communications between the View and the Model (Controller).

The application is composed by the following packages:

Main: contains only the main class that launches the application.
View: contains the classes that compose the user interface.
Model: contains the classes that manage the internal operation, namely the

streaming and processing of the sound.
Controller: contains a class that translates user interactions with the View to

commands for the Model, and also it modifies the user interface according
to signals from the Model.

Effects: contains the effects that implement the DSP algorithms to modify the
input signal.

2

Below there’s a simple diagram that broadly shows how conceptually the
application works with the packages:

Main

Controller

View Model

Effects

Main starts Controller which shows the View and initializes the Model. User
interactions are delivered from View to Model and vice versa by Controller. The
Model uses Effects to modify the input.

3

2.1.1 MVC pattern

As we said previously most of the entities of the application are grouped into the
three packages that make up the MVC pattern.
Below are shown these packages with the classes composing them.

View

View

View(Controller)
registerObserver(ViewObserver): void
getFileChooser(): JFileChooser
getFileNameTxt(): JTextField
getComponentIndex(Component): int
createEffectPanel(Effect): void
setComponentColor(Component, Color): void
setStartStopButtonText(String): void

EffectPanel

EffectPanel(ViewObserver, Effect)

WavFileFilter

getDescription(): String
accept(File): boolean

«interface»
ViewObserver

getWindowListener(): WindowListener
getOpenButtonListener(): ActionListener
getAddButtonListener(JButton): ActionListener
getStartStopButtonListener(): ActionListener
getInputParameterSldListener(

InputParameter<Number>,JSlider,JLabel):
ChangeListener

getUpperSwitchBtnListener(JPanel): ActionListener
getLowerSwitchBtnListener(JPanel): ActionListener
getRemoveEffectBtnListener(JPanel): ActionListener
getGraphBtnListener(): ActionListener

GraphView

GraphView()
repaint(short[]): void

GraphPanel

GraphPanel()
paintComponent(Graphics): void

4

View: extends JFrame. It shows the graphical interface on which the user can
interact with the application.
The Controller, to receive the user actions, must implement the ViewOb-
server interface and must register itself as an Observer of this class.

EffectPanel: extends JPanel. It is the panel that is added when you click the
button to add an effect. It allows the user to vary the parameters of the
Effect thus customizing the output sound.

WavFileFilter: extends FileFilter. It is used by the JFileChooser to filter out,
in the window that allows user to select a file, the files that doesn’t have
the .wav extension.

ViewObserver: it is an interface that must be implemented by the Controller.
Therefore the Controller must provide the Listeners of the View’s com-
ponents.

GraphView: it shows the graph of the audio signal processed with the Effects.
It contains only a GraphPanel that shows the signal. It refreshes the graph
every time that the repaint(short[]) method is called, taking the new buffer
that must be shown.

GraphPanel: it’s the JPanel that contains the graph of the signal. It draws
the output signal according to the size of the JFrame which can be re-
sized by the user. This function is made by overriding the paintCompo-
nent(Graphics) method.

5

Model

Model

Model(Controller)
getAvailableEffects(): List<Class

<? extends Effect> >
getEffects(): List<Effect>
addEffect(Effects): void
removeEffect(int): void
exchangeEffects(int, int): void
getInputAttenuation():

InputParameter<Double>
startStream(String): void
stopStream(): void

Streamer

Streamer(SourceDataLine, File,AudioFormat,
InputParameter<Double>, Controller, Model)

run(): void
stopStream(): void

AudioSettings

getAudioSettings(): AudioSettings
getAudioFormat(): AudioFormat
getBufferFrames(): int
getBufferLength(): int
getSampleRate(): int
getSampleSizeInBits(): int
getShortBufferLength(): int
getNumChannels(): int
getSigned(): boolean
getBigEndian(): boolean

InputParameter<N>

InputParameter(String, N, N, N)
getValue(): N
getMaxValue(): N
getMinValue(): N
getIntValue(): int
getIntMaxValue(): int
getIntMinValue(): int
getName(): String
setValue(N): void
setIntValue(int): void

6

Model: it manages the whole operation of the application. It is able to start a
new Streamer and to stop it, also it manages the Effects allowing the user
to add, remove and exchange them.

Streamer: extends Thread. When started it creates a new thread which flows
the audio from the input stream to the output line applying the effects
added by the user. Every time it reads a new buffer from the input line it
asks to the Model the list of Effects that it must apply, allowing the user
to add, remove and exchange effects during the streaming of the file. The
Streamer also call the updateGraph(short[]) method of Controller every
time that a new buffer is processed, refreshing the graph.

InputParameter<N>: extends Observable. It encapsulates the idea of pa-
rameter that can be varied at run-time modifying the state of an Effect.
For example it is used by the OverdriveEffect to allow the user to modify
the power of distortion.
It is a generic class where N must extends Number. It provides however
methods to access the value as int number because the JSlider, which is
used to vary its value, works with int numbers.
It also notifies its Observers when its value is changed. An Effect can
register itself as Observer of their InputParameters.

AudioSettings: it follows the agreement of the Singleton pattern, in fact its
constructor is private and the only existing instance can be taken only by
calling the AudioSettings.getAudioSettings method.
I chose to make it a Singleton pattern because there are no reasons to
have more than one instance of this class at the same time and also to
avoid having to pass its reference to every object that needs it.
It provides methods to retrieve the audio technical information, such as
the frame size or the buffer length used.

7

Controller

Controller

Controller()
showErrorDialog(String): void
streamStarted(): void
streamStopped(): void
createGraphView(): void
updateGraph(short[]): void
getInputAttenuation(): InputParameter<Double>
getWindowListener(): WindowListener
getOpenButtonListener(): ActionListener
getAddButtonListener(JButton): ActionListener
getStartStopButtonListener(): ActionListener
getPopupMenuItemListener(Class<Effect>): PopupMenuItemListener
getInputParameterSldListener(InputParameter<Number>,

JSlider,JLabel): ChangeListener
getUpperSwitchBtnListener(JPanel): ActionListener
getLowerSwitchBtnListener(JPanel): ActionListener
getRemoveEffectBtnListener(JPanel): ActionListener
getGraphButtonListener(): ActionListener

PopupMenuItemListener

PopupMenuItemListener(Class<Effect>)
actionPerformed(ActionEvent): void

Controller: its constructor creates a new View and a new Model acting as a
link between them. It implements ViewObserver and therefore provides
the Listeners for the View. It also supplies methods to allow the Model
to report when a stream is started or stopped and methods to create and
to update the GraphView.

PopupMenuItemListener: it handles the operations to do when an item, con-
tained in the pop-up that allows the user to select an effect, is pressed. It
says the Model to create a new Effect and it says the View to add a new
EffectPanel for the Effect created.

8

2.1.2 Effects

Effects

«interface»
Effect

process(short[], int): void
initialize(): void
getInputParameters(): List

<InputParameter
<? extends Number»

«annotation»
Attributes

name(): String
isShowable(): boolean

ButterworthLPFilterEffect

ButterworthLPFilterEffect()
process(short[],int):void
getInputParameters():List<

InputParameters<
? extends Numbers»

initialize():void
update(Observable,Object): void

OverdriveEffect

OverdriveEffect()
process(short[],int):void
getInputParameters():List<

InputParameters<
? extends Numbers»

initialize():void
update(Observable,Object): void

ReverbEffect

ReverbEffect()
process(short[],int):void
getInputParameters():List<

InputParameters<
? extends Numbers»

initialize():void
update(Observable,Object):void

FlangerEffect

FlangerEffect()
process(short[],int):void
getInputParameters():List<

InputParameters<
? extends Numbers»

initialize():void
update(Observable,Object):void

DelayEffect

DelayEffect()
process(short[],int):void
getInputParameters():List<

InputParameters<? extends Numbers»
initialize():void
update(Observable,Object): void

DelayLine

MAX_DELAY_LENGTH:int

DelayLine(
InputParameter<Integer>)

getResponse(short[],int):short[]
getDelayLength():

InputParameters<Integer>
getFeedback():

InputParameter<Double>
emptyDelayBuffer():void

9

Effect: it is an Interface that extends Observer because it can register itself to
receive a notification by some of its InputParameter.
Each class that implement this interface must be able to:

• process a given buffer of shorts;

• initialize itself resetting its environment;

• return the InputParameters that the user can modify.

Attributes: it is an Annotation that stores the name of the Effect and also it
allows to know if it’s show-able to the user since some effects are for inner
use and the user can’t use it directly. This annotations is necessary because
allows, through reflection, to know which effects the user can select before
they are instantiated.
This Annotation allow, in the future, to add new Effects without modifying
the View.

DelayLine: it isn’t an effect because it doesn’t modifies the original sound but
it simply stores, in a circular buffer, an infinite series of the given sounds
according to these parameters:

Delay length: it defines the length of the circular buffer, changing the
perception of the sound reflection’s distance.

Feedback: it defines the amount of the original sound that must be
stored. Its value can vary in the range [0, 1], if the value is 0 the
effect doesn’t store any delay, if the value is 1 it stores the sound
with the same volume as the original.

To get the dealy response associated to the original buffer you must call
getResponse(originalBuffer, bufferLength).

DelayEffect: it is a simple effect that use a DelayLine to perform an echo
effect on the original sound. It allows the user to modify the length of the
delay and the gain value of the echoes. [2].

FlangerEffect: is an Effect that mixes the original sound with a delayed copy
of the original signal. The delay time is continuously varied by a low
frequency.
This effect doesn’t use any delay lines because the DelayLine keeps an
infinite series of previously echoes while it needs only the previous delayed
sound.[3] The parameters that the user can modify are:

Frequency: the frequency of the sin function that continuously modify
the delay length.

10

Excursion: the range in which the delay can vary.

Depth: modifies the percentage of delayed sound over the original sound.

ButterworthLPFilterEffect: it’s a low pass filter that filters the frequencies
above a given bound which can be varied by the user[4]. It isn’t showable
to the user, it’s only used by the OverdriveEffect and by the ReverbEffect.

OverdriveEffect: it applies a non-linear distortion function to the original sound[5].
The “sound” of the distortion is varied through two parameters:

Drive: modifies the power of the distortion, if its value is equal to 0 the
output sound is the same as the original signal and higher is the value
more the sound is amplified and like a square wave.

Cutoff: manages the ButterworthLPFilterEffect that cut the higher fre-
quencies that in a real situation doesn’t occur and allows user to
change the “color” of the distortion.

Using the GraphView we can clearly see the effect of these two parameters
on the original signal.

ReverbEffect: it simulates the echoes that occurs for example in a church or
in a concert hall. Often this effect is added to a registration to make the
sound less dry and more pleasant.
The algorithm implemented is based on the Schroeder Reverberator [6] that
suggest to apply two stages of delay to the incoming sound:

Early reflections: is implemented using some delay lines chained in se-
ries. The delay lengths are very small to increase the density of the
audio impulses and different from each other to make a good spatial-
ization of the echoes.

Late reflections: is implemented using some delay lines chained in paral-
lel. Their delay lengths are longer than the previous and varying them
we can simulate the size of the rooms in which the reverb occurs.
The late reflections are filtered with a ButterworthLPFilterEffect to
simulate the air absorption of the high frequencies.

11

3 Considerations

3.1 Workflow

1. The design of the project started with a study of the Java Sound API to
understand how it works and how its tools could meet my needs.

2. Then I designed an initial architecture of the entities starting to write some
code.

3. At this point I had to search some resources on the web that helped me to
understand how I actually had to implement the effects.

3.1.1 In-development changes

During the development of the project there was few changes from the initial
intentions:

1. I implemented the effects extending the abstract class Control provided
by the javax.sound.sampled package which represents a control that the
line requested can have but then I choose to refactor the effects under
the new interface Effect to have more movement’s freedom and because
conceptually, in my opinion, it is better a choice.

2. I had decided to make the View and the Model unique using the Singleton
pattern but then I changed this setting to allow in the future to add some
of these if necessary.

3. I decided to remove the audio settings in the Model refactoring them in
the entity AudioSettings in which I will be able to add, in the future, the
methods to modify these settings according to user’s needs.

4. Lately I added the functionality that allows the user to see the output audio
signal in a graph.

3.2 Possible troubles

It is recommended not to use an overdrive effect before a delay or a reverb effect
because the overdrive saturation, that is replicated many time by the delay, will
overflow the buffers producing only noise.

12

4 Future Work
As already said my goal is to allow real-time processing of the sound coming
from the mic line of the PC.
These are the next features needed:

• Make the application able to take the input stream from the mic line and
to allow the user to change the audio settings adjusting them according to
its needs and to the machine capabilities.

• Implement a noise reduction algorithm due to interferences from the PC.

• Add the ability to save a specific configuration of the effects allowing the
user to resume it when he wants.

• Create a kind of foot-switcher that handle the commands of the application,
maybe using Arduino.

13

5 Conclusion
This project gave me the possibility to enhance my knowledge of the Object
Oriented Programming paradigm by dealing with the development of an exciting
application.

The development of the project took me quite some time that maybe slightly
exceeded the limit of one hundred hours considering the time to understand the
Java Sound API, to study the DSP algorithms and to make this report.

14

References
[1] Java Sound API

http://docs.oracle.com/javase/tutorial/sound/index.html

[2] Smith, J.O. "Feedback comb filters", in Physical Audio Signal Processing,
https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html

[3] Smith, J.O. "Flanging", in Physical Audio Signal Processing,
https://ccrma.stanford.edu/~jos/pasp/Flanging.html

[4] Baum Dev Blog "Butterworth low pass filter",
http://baumdevblog.blogspot.it/2010/11/butterworth-lowpass-
filter-coefficients.html

[5] Cheng-Hao Chang "A Guitar Overdrive/Distortion Effect of Digital Signal
Processing ",
http://ses.library.usyd.edu.au/bitstream/2123/7624/2/DESC9115_
DAS_Assign02_310106370.pdf

[6] Smith, J.O. "Schroeder Reverberators", in Physical Audio Signal Process-
ing,
https://ccrma.stanford.edu/~jos/pasp/Schroeder_Reverberators.
html

15

http://docs.oracle.com/javase/tutorial/sound/index.html
https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Flanging.html
http://baumdevblog.blogspot.it/2010/11/butterworth-lowpass-filter-coefficients.html
http://baumdevblog.blogspot.it/2010/11/butterworth-lowpass-filter-coefficients.html
http://ses.library.usyd.edu.au/bitstream/2123/7624/2/DESC9115_DAS_Assign02_310106370.pdf
http://ses.library.usyd.edu.au/bitstream/2123/7624/2/DESC9115_DAS_Assign02_310106370.pdf
https://ccrma.stanford.edu/~jos/pasp/Schroeder_Reverberators.html
https://ccrma.stanford.edu/~jos/pasp/Schroeder_Reverberators.html

	Introduction
	Work Done
	Application design
	MVC pattern
	Effects

	Considerations
	Workflow
	In-development changes

	Possible troubles

	Future Work
	Conclusion
	References

