
Kestrel: An XMPP-Based Framework for Many Task
Computing Applications

Lance Stout, Michael A. Murphy, and Sebastien Goasguen
School of Computing
Clemson University

Clemson, SC 29634-0974 USA
{lstout, mamurph, sebgoa}@clemson.edu

ABSTRACT
This paper presents a new distributed computing framework
for Many Task Computing (MTC) applications, based on
the Extensible Messaging and Presence Protocol (XMPP).
A lightweight, highly available system, named Kestrel, has
been developed to explore XMPP-based techniques for im-
proving MTC system tolerance to faults that result from
scaling and intermittent computing agent presence. By lever-
aging technologies used in large instant messaging systems
that scale to millions of clients, this MTC system is designed
to scale to millions of agents at various levels of granularity:
cores, machines, clusters, and even sensors, which makes it
a good fit for MTC.

Kestrel’s architecture is inspired by the distributed de-
sign of pilot job frameworks on the grid as well as botnets,
with the addition of a commodity instant messaging pro-
tocol for communications. Whereas botnet command-and-
control systems have frequently used a combination of In-
ternet Relay Chat (IRC), Distributed Hash Table (DHT),
and other Peer-to-Peer (P2P) technologies, Kestrel utilizes
XMPP for its presence notification capabilities, which al-
low the system to maintain continuous tracking of machine
presence and state in real time. XMPP is also easily exten-
sible with application-specific subprotocols, which can be
utilized to transfer machine profile descriptions and job re-
quirements. These sub-protocols can be used to implement
distributed matching of jobs to systems, using a mechanism
similar to ClassAds in the Condor High Throughput Com-
puting (HTC) system.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Design, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MTAGS ’09 November 16th, 2009, Portland, Oregon, USA.
Copyright c© 2009 ACM 978-1-60558-714-1/09/11 ...$10.00.

Keywords
MTC, XMPP, grid, distributed, cluster, scheduling

1. INTRODUCTION
Many-Task Computing (MTC) applications span a broad

range of possible configurations, but utilizing “large num-
bers of computing resources over short periods of time to
accomplish many computational tasks, where the primary
metrics are in seconds” [1] is one of the emphasized aspects.
Marshalling and releasing computational resources with the
temporal granularity needed for such applications is prob-
lematic on the grid and in overlays such as Virtual Organi-
zation Clusters (VOC) [2, 3] where compute nodes can be
created and destroyed on demand.

Kestrel is designed to explore methods of creating a fault-
tolerant, scalable, and cross-platform job scheduling system
for heterogeneous, intermittently connected compute nodes.
Kestrel addresses the problem posed by interrupted connec-
tivity of both computing agents and user agents by building
on the Extensible Messaging and Presence Protocol (XMPP)
[4, 5]. The presence notification system provided by XMPP
allows Kestrel manager nodes to track resource availability
in the compute node pool in real time. Kestrel can immedi-
ately remove computings node from a list of available nodes,
preventing the scheduling of jobs on nonexistent machines.
Other intermittently connected agents do not necessarily
have to be of a computational nature. For example, a small
swarm of robotic agents with network capabilities could be
joined in a resource pool where scheduled jobs are physi-
cal actions to be performed. The scale of current instant
messaging systems indicates that an XMPP based frame-
work would allow for the creation of extremely large pools
of heterogeneos agents for real-time computing. The cross-
platform criterion is achieved by implementing the system
in Python [6] using the SleekXMPP [7] library.

The remainder of this paper is organized as follows. Re-
lated work is presented in section 2. The network archi-
tecture of Kestrel is discussed in section 3, after which the
specific network protocols are presented in section 4. Section
5 describes the message protocol format used for transmis-
sion of Kestrel messages over the network. An overview of
the architecture of the current implementation of Kestrel
is presented in section 6. Conclusions and future work are
described in section 7.

2. RELATED WORK
The Condor High Throughput Computing (HTC) system

specializes in managing computationally intensive jobs and
is used around the globe for managing grids and clusters
[8, 9]. The Condor architecture is composed of a central
manager running collector and negotiator daemons, submit
nodes running a schedd daemon, and execute nodes running
a startd daemon. The submit and execute nodes communi-
cate with the central manager to share ClassAds describing
the capabilities of the machine. Periodically, job requests
are matched against the capabilities advertised in the Clas-
sAds. Once a match is made and the affected nodes noti-
fied, a direct connection is established between the matched
submit and execute node to allow both the job executable
and the job output to be transferred between the machines.
While Condor is an excellent system for cycle scavenging and
cluster computing on physical hosts, the direct connections
between submit host and worker cannot cross NAT bound-
aries. In addition, since collector updates occur periodically
instead of continuously, operation may be sub-optimal in
environments with intermittently connected worker nodes.
Kestrel is inspired by the Condor architecture but replaces
all communications with XMPP which adds a real-time com-
puting capability as well as extremely large scale.

An XMPP based scheduling system was implemented in
Weis and Lewis [10] for ad-hoc grid computing.This sys-
tem was developed specifically to parallelize the computa-
tion of optimized meander line radio frequency identification
(RFID) antennas. With a static list of machines available
for use by the scheduler, the controlling XMPP client would
contact any machines not connected to the XMPP server to
start the XMPP worker daemon [10]. While similar in struc-
ture to Kestrel, the scheduler was intended for distributing
jobs of a single type to known machines; it was not meant
as a general MTC framework.

A proposed hybrid peer to peer (P2P) botnet, proposed
in Wang et al. [11], replaces the single command and control
machine found in typical botnet architectures with a group
of servant bots interconnected via a P2P protocol. As an
additional means to avoid detection, the botnet does not use
Internet relay chat (IRC) – commonly used by other botnets
– for its communications channel. [11] Kestrel utilizes a
similar distributed command and control architecture for
increasing fault-tolerance; indeed, multiple XMPP servers
offer both redundancy and horizontal scalability.

3. NETWORK ARCHITECTURE
The network in a Kestrel pool is comprised of four types

of nodes: managers, workers, users, and XMPP servers. It
is possible for more than one node to be present on a single
physical or virtual machine. The XMPP servers may be
configured to act as a cluster using a distributed database
to keep roster and status information synchronized [12, 13].
All other nodes then connect to an XMPP server. Since an
intermediary is used for communication instead of requiring
nodes to connect directly to each other, NAT traversal is
not an issue.

User nodes are client applications used to submit job re-
quests or query the status of previously submitted jobs.
These nodes are highly transient, connected only while send-
ing a user request to a manager node and waiting for a reply.
Job execution can take place without requiring the submit-
ter’s computer to remain connected to the pool. Upon the
user’s next connection to the system, completion notices can
be requested for previously submitted jobs.

Manager nodes serve as the equivalent of a collector and
negotiator combination in a Condor pool. As such, every
message sent in a Kestrel pool is either sent to or sent from
a manager node. Due to the large number of messages
processed by a manager, particularly presence notifications,
there are two classes of managers, which use two different
XMPP implementation methods. The first class of manager
is a regular XMPP client application that is useful for pools
with only a few hundred to a thousand nodes [14]. By using
a regular client, the XMPP server can immediately send of-
fline presence notifications to worker and user nodes if the
manager disconnects, since the server maintains the man-
ager’s roster. However, once a pool has grown past several
thousand machines, there is a significant increase in startup
times because the roster must be sent to the manager, block-
ing any other messages. Thus, the second class of manager
is an XMPP server component that is able to act like a nor-
mal client, except that it maintains its own roster instead
of relying on the server. If either type of manager goes of-
fline, the rest of the pool will still be able to complete any
previously scheduled jobs.

Worker nodes track local machine status and handle ac-
tual job execution. Using XMPP presence notification, a
worker alerts the manager by changing its online status to
“available” when it is available to run queued jobs. Once
a job is started, the worker node status changes to “busy,”
allowing the manager to bypass the claimed worker when
scheduling new jobs. In the event that a worker is termi-
nated or the underlying machine is powered off, the manager
will receive an offline presence notification allowing any jobs
that had been running on the failed worker to be rescheduled
on another worker.

4. NETWORK PROTOCOL

4.1 Identifiers
Every entity inside an XMPP system has a unique identi-

fier known as a Jabber ID, or JID [4]. These identifiers have
the form username@server/resource. The username
and server portion of the JID, or bare JID, appears iden-
tical in structure to a regular email address. If specified,
the optional resource string allows for an identity to have
multiple connections to the XMPP server. In Kestrel, the
pool of worker agents is organized by assigning a username
to each physical machine, allowing the host to be identified
by the bare JID. Each CPU core of the machine is indi-
vidually addressed by adding a resource to the JID. Thus,
the third core in a quad core machine could be identified
by worker362@kestrelpool/3. Security is provided by
allowing each agent in the pool to have its own password.

An alternative implementation would be to use a single
bare JID to address all worker nodes in the pool, with each
worker uniquely addressable by adding a resource identifier,
producing a JID such as worker@kestrelpool/362. By
utilizing different usernames, workers can be logically split
into categories by physical location, operating system, or
intended use. Using this naming convention has the benefit
of drastically reducing the number of entries in the manager
agent’s roster. However, this implementation requires that
all machines sharing the same bare JID also share the same
password.

Kestrel is able to utilize either naming convention. In
addition, Kestrel is extensible to other naming conventions,

as long as each agent in the pool has a unique JID.

4.2 Message Types
The XMPP protocol provides three different message types.

The first type, presence notification, is used to indicate the
availability of an agent and can carry a status message de-
scribing the agent’s current state. Chat messages are used
mainly for sending instant messages between humans. These
messages do not require any acknowledgment in reply. XMPP
guarantees that chat messages will be received in order, but
not that they will arrive. Messages requiring a response are
called ”iq” requests. These requests return status codes in
response to each query message. Within an iq message, both
content that adheres to the ad-hoc command format [15]or
other, custom namespaced XML content can be transferred.

Kestrel uses presence notifications to track availability
of worker agents and chat messages for communication of
commands and data between agents. Other XMPP based
scheduling systems have used an iq message approach us-
ing an XML protocol for inter-agent messages. Such an
arrangement was described by Weis and Lewis for use in
an ad-hoc grid computing system for generating RFID an-
tennas [10]. However, to simplify development and test-
ing, Kestrel has used chat messages that can be sent via a
stock instant messaging client. Thus, the pool can be man-
aged using Pidgin [16], Adium [17], or any other XMPP
capable instant messaging client, as well as through normal
command-line programs. The content of the chat messages
follows a custom sub-protocol using JavaScript Object No-
tation (JSON) [18] instead of XML. The content is stored in
a JSON dictionary, which always includes a ”type” attribute
specifying the purpose of the message. For example, a type
of worker_profile would indicate a message containing
machine attributes sent from a worker agent to a manager
agent, as shown in figure 1. A typical sequence of messages
generated during the lifetime of a worker are shown in figure
2.

<message from="manager@kestrel_pool"
to="worker42@kestrel_pool">

{"type": "profile_request"}
</message>

Figure 1: A request for details about the machine
managed by a worker agent.

5. PROFILE FORMATS
The format chosen to represent machine profiles (the Kestrel

equivalent of a Condor ClassAd) is based on JavaScript Ob-
ject Notation (JSON). The JSON standard provides for key-
value pairs in the form of dictionaries and also support for
lists and other data structures. By using this format, a ma-
chine profile can be easily read and parsed using standard
library calls. A few machine attributes are universal, such
as the name of the operating system, the number of CPU
cores, and the amount of available RAM. Additional, op-
tional attributes for a machine can be specified through the
use of tags. Each machine profile may contain a ”provides”
section, consisting of a list of custom tags as illustrated in
figure 3.

The format for a job request is similar to a machine pro-
file. The difference is that it specifies what a job requires

Figure 2: Flow of information during the life cycle
of a worker agent.

{
"os": "Ubuntu",
"os_version": "9.04",
"cores": "4",
"ram": "4032",
"provides": ["PYTHON_2.6", "MERCURIAL_1.2"]

}

Figure 3: Sample Machine Profile

rather than what a machine provides. The JSON standard
does not have a built in facility for expressing the relation-
ships needed for requirement specifications. To overcome
this limitation, a way to express relationships using dictio-
naries and lists was developed. Each job request contains
the attribute ”requires” which can be either a dictionary or
a list. In the case of a list, then it is just a listing of custom
tags that must be matched. A dictionary signifies that more
specific rules are requested. Each key in the dictionary is
the name of the attribute being compared in the relation-
ship. Equality is expressed by assigning a string or numeric
value to that attribute. Thus, to express ”cores == 2” the
following would be used:

"requires": {"cores": 2}

However, sometimes there is a set of possible values that
are acceptable. In this case, a list of values is assigned to the
attribute to represent an OR relationship. The relationship
”cores == 2 OR cores == 4” would be expressed as:

"requires": {"cores": [2, 4]}

Another use case is specifying relationships other than
equality, such as greater than relations. Also, since specify-
ing multiple such relationships would normally make sense
in an AND expression, dictionaries are used to represent

these requirements. For the relation ”cores > 1 and cores <
10” then the representation would be:

"requires": {"cores": {">": 1, "<": 10}}

The list and dictionary semantics can be combined to
make more powerful expressions. Specifying that a job re-
quires a machine where ”cores = 4 OR cores > 6” is true,
then the ”requires” attribute would be:

"requires": {"cores": [4, {">": 6}]}

Likewise, the statement ”cores != 2 AND cores != 5” can
be represented as:

"requires": {"cores": {"!=": [2, 5]}}

Any job request that requires both complex relationship
rules and matching against a set of tags, the ”has” attribute
can be used in the ”requires” section.

{
"command": "monte_carlo.py",
"queue": 1000,
"requires": {"cores": 4,

"has": "PYTHON_2.6"}
}

Figure 4: A job request for executing monte carlo.py
1000 times on quad-core machines that have Python
2.6 installed.

6. PROGRAM ARCHITECTURE
The Kestrel software has several logical components, in-

cluding an XMPP interface, database interface, and job schedul-
ing mechanism. Early versions of Kestrel combined these
components into a single tier with all system logic located
in the XMPP client code. Unit testing of the early imple-
mentations revealed issues related to tight coupling. As a
result, the implementation architecture was changed to an
event driven design.

Event driven architectures allow sections of a program
to be separated from each other, resulting in loose cou-
pling. Decoupling boundaries can be established whereby all
the components inside a boundary can directly access each
other, and messages can be sent across the decoupling bor-
der through events [19].In Kestrel, these events are managed
by a central kernel. Event names are registered with the
corresponding event handler at application initiation time.
The registration allows for the different program variations
for worker, manager, and users to be created using a single
code-base by selecting role-specific events.

Figure 5 shows the relationship between the various col-
lections of event handlers. These collections are either for
use internally in any of the three program variations, or are
used as an interface between the outside world and the in-
ternal system. For production use, XMPP event handlers
provide the interface component. For testing purposes, a
unit test runner provides a separate, more limited interface.

6.1 Event Types
There are three main types of events used in Kestrel. The

first group is related to data storage. Instead of calling
database functions or passing SQL directly to a database

Figure 5: Program Architecture.

while processing XMPP events, events are triggered for cre-
ate, read, update, or delete (CRUD) operations on each type
of entity. For example, an update_worker_entry event
is triggered whenever a worker comes online, resulting in
an update to its online status in the database. For read
operations, the database event handler will also return the
appropriate database record.

The second group of events can be split into subgroups
matching the three program variations. Worker events are
related to receiving job requests and the starting and stop-
ping of job execution. User events are the simplest group,
receiving responses to queries to the manager about the sta-
tus of jobs and handling any cancellation requests.

The largest collection of events are manager-related. In
addition to events triggered by worker status changes and
user requests, there are job scheduling events. The schedule_jobs
event is triggered after every job request and cancellation
and whenever a worker becomes available. This event is
not periodic, since a job that cannot be scheduled immedi-
ately will still not be runnable until the state of the pool
changes. Since scheduling is a separate event in the system,
the scheduling algorithm is easily replaceable by specifying
a different event handler during registration.

The final set of events is related to node communication.
In the current implementation of Kestrel, these events are
handled by XMPP-specific functions that form an interface
between the internal system and the network. In particular,
there are many cases where messages must be sent between
nodes, such as notifying a worker of a job match. In that

case, a send_job_request event is triggered to alert the
XMPP interface to send the actual message using the data
provided in the event. It would be possible to create other
interfaces using other network protocols as long as the same
set of events could be provided.

6.2 Event Anatomy
Each event carries two pieces of information: the data

passed during event triggering and an event trace (figure 6).
When an event is triggered at the top level of the program,
the event trace is empty. When the event handler finishes
processing and returns to the top level, the trace will contain
the name of every event triggered as a result of the initial
event. In addition to the name of each event, the trace
includes the data passed to that event. For events that do
not occur at the top level, the trace will already contain
information on the events that have already been triggered.
The trace is important because it allows chains of events to
be checked with unit tests.

[
("worker_available", {

"jid":"worker@kestrel_pool"}),

("update_worker_entry", {
"jid":’worker@kestrel_pool",
"status":"AVAILABLE"}),

("schedule_worker", {
"jid":’worker@kestrel_pool"})

]

Figure 6: An event trace generated by a worker
changing its status to available.

7. CONCLUSIONS AND FUTURE WORK
The use of XMPP for communicating between compute

nodes enables resource tracking in real time. By eliminat-
ing delays between the disconnection of a compute node and
the manager node receiving notice of the disconnect, fewer
jobs can be scheduled for phantom machines. The real time
tracking applies to the manager nodes as well, allowing the
system to respond to any outages or overloading by spawn-
ing new manager nodes immediately, retaining both fault
tolerance and scalability.

Future extensions to Kestrel could include more robust
mechanisms for mitigating potential data loss after node
disconnects. For example, job queue data must be main-
tained whenever a manager goes offline. Other information
in the pool is inherently decentralized: each worker knows
the specifics of the local machine upon which it is running.
Thus, as workers come back online, machine state informa-
tion is restored in the system. However, job information is
centralized in manager nodes. In the event of termination
or outage, if a manager is replaced with a new node that has
no prior knowledge of jobs in the pool, then all pending jobs
will be lost. In a more optimal case, the same manager node
is able to restart with its database intact, thereby avoiding
job losses except for jobs submitted during the outage.

To ensure that jobs are retained after the loss of the man-
ager, a simple archival strategy can be used. In addition
to executing jobs, worker nodes are employed as archivists,

saving job requests as backups. Upon receiving a job re-
quest, the manager chooses a number of workers and then
forwards the job for storage rather than execution. When a
worker node comes online, the profile it sends to the man-
ager includes a flag indicating whether or not data have been
archived on the worker . The manager can request that the
archived data be sent, so that the database can be updated
with any new job entries provided by the worker. Different
archival storage policies are possible, enabling different sets
of workers to be selected to store portions of the database.

8. REFERENCES
[1] I. Raicu, I. Foster, and Y. Zhao, “Many-task

computing for grids and supercomputers,” in
Many-Task Computing on Grids and Supercomputers,
2008. MTAGS 2008. Workshop on, Nov. 2008, pp.
1–11.

[2] M. A. Murphy, M. Fenn, and S. Goasguen, “Virtual
Organization Clusters,” in 17th Euromicro
International Conference on Parallel, Distributed, and
Network-Based Processing (PDP 2009), Weimar,
Germany, February 2009.

[3] M. A. Murphy, B. Kagey, M. Fenn, and S. Goasguen,
“Dynamic provisioning of Virtual Organization
Clusters,” in 9th IEEE International Symposium on
Cluster Computing and the Grid (CCGrid ’09),
Shanghai, China, May 2009.

[4] P. Saint-Andre. (2004, October) Extensible messaging
and presence protocol (xmpp): Core. IETF. [Online].
Available: http://www.ietf.org/rfc/rfc3920.txt

[5] ——. (2004, October) Extensible messaging and
presence protocol (xmpp): Instant messaging and
presence. IETF. [Online]. Available:
http://www.ietf.org/rfc/rfc3921.txt

[6] Python programming language. Python Software
Foundation. [Online]. Available:
http://www.python.org

[7] N. Fritz. [Online]. Available:
http://code.google.com/p/sleekxmpp/

[8] T. Tannenbaum, D. Wright, K. Miller, and M. Livny,
“Condor – a distributed job scheduler,” in Beowulf
Cluster Computing with Linux, T. Sterling, Ed. MIT
Press, October 2001.

[9] M. L. Douglas Thain, Todd Tannenbaum, “How to
measure a large open source distributed system,”
Concurrency and Computation: Practice and
Experience, vol. 8, no. 15, December 2006.

[10] G. Weis and A. Lewis, “Using xmpp for ad-hoc grid
computing - an application example using parallel ant
colony optimisation,” in Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International
Symposium on, May 2009, pp. 1–4.

[11] C. Z. P Wang, S Sparks, “An advanced hybrid
peer-to-peer botnet,” in Dependable and Secure
Computing, IEEE Transactions on : Accepted for
future publication, vol. PP, 2003.

[12] Ejabberd. Process One. [Online]. Available:
http://www.process-one.net/en/ejabberd/

[13] badlop. (2006, 12) Ejabberd. [Online]. Available:
http://www.ejabberd.im/features

[14] J. Moffitt. (2008, August) Thoughts on scalable xmpp
bots. [Online]. Available:

http://metajack.im/2008/08/04/thoughts-on-scalable-
xmpp-bots/

[15] M. Miller. (2005, June) Xep-0050: Ad-hoc commands.
XMPP Standards Foundation. [Online]. Available:
http://xmpp.org/extensions/xep-0050.html

[16] Pidgin, the universal chat client. [Online]. Available:
http://www.pidgin.im

[17] Adium. [Online]. Available: http://www.adium.im

[18] D. Crockford. Introducing json. [Online]. Available:
json.org

[19] J. van Hoof. (2006, November) How eda extends soa
and why it is important. [Online]. Available:
http://soa-eda.blogspot.com/2006/11/how-eda-
extends-soa-and-why-it-is.html

