
Java Persistence API

The Object/Relational paradigm mismatch

Lifecycle of an entity

Developing simple entities

Persistent identity (primary key)

Persistence Context

EntityManager API

Entity life cycle callbacks

Basic relational mapping

Agenda

Granularity

Subtypes

Identity

Associations

Object Graph Navigation

The Object/Relational
paradigm mismatch

The DAO pattern

Java application

Data Access Object

JDBC

The DAO pattern

Java application

Data Access Object

JDBC

Contains SQL as Strings

Hard to maintain

Database specific

A lot of “dumb” code

Java application

JPA

JDBC

Data Access Object

Map Java classes to tables using annotations

Including relations and inheritance

Use a OO query language

abstraction on database specific sql

An API to persist, update, delete and get Entities

Java Persistence API

Standardize ORM into single Java Persistence
API

Usable in both Java SE and Java EE

Based on best practices from EJB 2.x,
Hibernate, JDO, TopLink, etc.

Support for pluggable, third-party persistence
providers

Java Persistence API

Persistent objects

Entities, not Entity Beans

Java objects, not ‘components’

Concrete classes

Support use of new keyword

Indicated by @Entity annotation

Entities, reborn!

JPA Implementations

JPA

Hibernate EclipseLink OpenJPA ...

Use standardized API for most tasks

Use provider specific API for advanced
features

Basic mapping

@Entity to make a class an Entity

@Id to configure Primary Key

required for each Entity

@GeneratedValue to let the
database generate keys

By default each field is persisted

Define generator strategy type

AUTO, IDENTITY, TABLE, SEQUENCE

Depends on the underlying database

Persistent Identity

EntityManager

API for object/relational mapping (ORM)

Inject with @PersistenceContext

Persistence Context

Set of “managed” entities (at runtime)

Synchronizing entities
with the database

Insert a new instance of the entity into the
database

The entity instance becomes managed in the
Persistence Context

Example: Persist

New

Detached

RemovedManaged

persist()

refresh()

merge()
Persistence Context ends

persist()

remove()

new ()

find ()

State of detached entity gets merged into a
managed copy of the entity

merge() returns managed entity with different
Java identity than detached entity

Example: Merge

Find on primary key

EntityManager returns a managed entity

Returns null when key does not exists

Example: Find

Removal via EntityManager API

Entities must be managed to be removed

E.g. do a find() first

Use EJB-QL for batch deletes

Removing entities

JPA provides enough flexibility to start from
either direction:

Database > Entities

Entities > Database

Elementary schema mappings:

Table and column mappings:

@Table

@Column

Basic relational mapping

Mapping example

Common relationships supported:

@ManyToOne, @OneToOne, @OneToMany,
@ManyToMany

Unidirectional or bidirectional

Owning side of relationship can specify physical
mapping

@JoinColumn

@JoinTable

Relationships

Contact

 id name addr_fk

Address

 id street city

One-to-One

 id name

Orders LineItem

 id item

Orders_LineItem

orders_id item_id

One-to-Many unidirectional

 id name

Orders LineItem

 id item

One-to-Many bidirectional

order_id

passive

Lazy loading

Multi-value associations are by default loaded
lazily

prevents loading the whole database...

Collections are proxied and will be loaded
when used

An entity must be managed to load associations!

LazyInitializationException

One side is the “owning” side

The other side is “passive”

the passive side does not synchronize changes

Bidirectional mappings

works Doesn’t work; Relation is not set!

Common trick to work with passive relations

Fixing the passive side

Set the owning side

Cascading

The referenced order is
not persisted yet

TransientObjectException

Cascading can be set on all relationship annotations

Default: no cascading

Values: PERSIST, MERGE, REMOVE, REFRESH, ALL

Decide on entity-by-entity the most appropriate
cascading setting

Cascading operations

Entities can extend:

Other entities

Other plain Java classes

Mapping inheritance hierarchy to:

Single table: everything in one table

Requires discriminator value

Joined: each class in a separate table

Table per concrete class

Inheritance

Pet

 id name

Pet

 id can_fly

Bird

 id breed

Dog

Bird

 id name can_fly

Dog

 id name breed

 id name breed can_fly dscSingle Table

Joined Tables

Table per
concrete class

Inheritance mapping
strategies

Single Table
Employee

 id name platform commision

 1 Paul Java null

 2 Jaap null 50

DTYPE

Programmer

Sales

Single Table

Fast for each type of query

Always hit a single table

Subclass fields must be nullable!

Joined table
Employee

ID name

1 Paul

Sales

ID commission

2 50

Programmer

ID platform

1 Java

2 Jaap

Normalized in the database

Multiple tables for each type of query

Joined table

Employee

ID name

Sales

ID commission

2 50

Programmer

ID platform

1 Java
namename

Paul Jaap

De-normalized in the database

Single table queries for specific types

Slow union query for querying all employees

Embedables
Map multiple classes to a single table

Purchase
!"#$!%&
'(")(*)+,(!-&!'%#$.&(!%/
0!(+&1%23)#$.&(!%/
42+&%23)#$.&(!%/

Value collections

Collections of simple types or embedables

Employee
!"#$!%&
%23)#$.&(!%/
+242(5#$.&(!%/

Employee_emailAddresses

63-4'5))1!"#$!%&
)32!47""()++)+#$.&(!%/

1

N

EntityManager is a factory for Query objects

Using createQuery() methods

Uses new and improved EJB-QL

Queries can return entities, non-entities, or
projections of entity data

Native queries

Not portable across databases!

Queries

Query language for entities

Vendor and implementation independent

Similar to SQL, with slightly different syntax

Translated to SQL using a dialect at runtime

JPQL

Query examples
Select all Employees (polymorphic)

Select only Programmers

Where clause

Between keyword

Subquery

Query examples
Where clause on relation

Same as above

Executing a query

Query results
Return managed entity

Return List<Object[]>

Return List<Name>

Join queries

A join is generated automatically when:

a path expression is used in the select

+)4),&
$$$$$$$$")-2(&3)%&819%23)$2+$,'41:1:1;
$$$$$$$$)3-4'5)):19%23)$2+$,'4181:1$
$$$$0('3
$$$$$$$$63-4'5))$)3-4'5)):1;
$$$$$$$$*)-2(&3)%&$")-2(&3)%&81$
$$$$<=)()
$$$$$$$$)3-4'5)):19")-2(&3)%&1!">")-2(&3)%&819!"

Employees without a department are excluded

Join queries

Use the join keywords

+)4),&
$$$$$$$$")-2(&3)%&819%23)$2+$,'41:1:1;
$$$$$$$$)3-4'5)):19%23)$2+$,'4181:1$
$$$$0('3
$$$$$$$$63-4'5))$)3-4'5)):1$
$$$$4)0&$'?&)($@'!%
$$$$$$$$*)-2(&3)%&$")-2(&3)%&81$
$$$$$$$$$$$$'%$)3-4'5)):19")-2(&3)%&1!">")-2(&3)%&819!"

Employees without a department are now included

Join queries

Use the join keywords to return collections

+)4),&
$$$$$$$$")-2(&3)%&:19%23)$2+$,'41:1:1;
$$$$$$$$)3-4'5))+819%23)$2+$,'4181:1$
$$$$0('3
$$$$$$$$*)-2(&3)%&$")-2(&3)%&:1$
$$$$!%%)($@'!%
$$$$$$$$63-4'5))$)3-4'5))+81$
$$$$$$$$$$$$'%$")-2(&3)%&:19!">)3-4'5))+819")-2(&3)%&1!"

Join queries

Use the join keywords to prefetch collections

Would normally be lazy loaded

Case expressions

Conditional expressions

+)4),&
$$$$$$$$)3-4'5)):19%23)$2+$,'41:1:1;
$$$$$$$$,2+)$
$$$$$$$$$$$$<=)%$)3-4'5)):19*ABC6>DC('/(233)(D$&=)%$
DE''4$")F$/?5D$
$$$$$$$$$$$$)4+)$DG?+&$+'3)$/?5D$
$$$$$$$$)%"$2+$,'4181:1$
$$$$0('3
$$$$$$$$63-4'5))$)3-4'5)):1

Bulk updates

Updating or deleting many entities can be done
in a bulk update

much cheaper than iterating and updating in
Java!

$?-"2&)
$$$$$$$$63-4'5))$
$$$$+)&
$$$$$$$$+242(5>+242(5H8::

Named queries

Specify re-usable queries on Entity class

Native queries

JPQL only supports a subview of SQL

unsupported features examples:

Inline views, hierarchical queries, stored
procedures and vender specific extensions

API more friendly than JDBC

Supports mapping to Entity classes

Native queries

Map result to Employee objects

Each column must be a property on the Entity

SqlResultMapping

Specify how query results are mapped to an
Entity

Criteria API

The criteria API is used to build queries from
code

Useful for queries that are dynamically created
at runtime

e.g. a search screen with optional fields

Does not replace JPQL

Criteria API
CriteriaBuilder

contains methods to construct a query (equals, gt, max etc.)

CriteriaQuery

uses a fluent API to build the query

the type parameter should be the type that is returned by the
SELECT

Root

the first Entity in the FROM

where clause

equals operator

on the ‘name’ property

the argument

predicates and paths

define AND predicate

path expression

select clause

List<Employee>

List<String>

select clause cont’d
List<Name>

List<Object[]>

joins

Join defaults to INNER

Use explicit joins to create OUTER joins

Fetch Join

Subselect

Type-safe Meta Model
The criteria API so far is not type-safe

how do you know “name” is a valid property?

The criteria API can be used type-safe by
introducing a static meta-model

Static meta-model

example entity

Static meta-model

the name property is now type-safe

Generating the meta-
model

Vendor specific

Integration in IDEs, Maven and ANT

Optimistic locking

Make sure two transactions don’t modify the
same entity without knowing about the other

Optimistic - data can probably be updated
without problems

Use a version column in the entity

No real database lock required

@Version

Version can be an int, long or timestamp

Automatically used by JPA during updates

Throws @2F2I9-)(+!+&)%,)9J-&!3!+&!,K',L6I,)-&!'%$

?-"2&)
$$$$$$$$E'%&2,&$
$$$$+)&
$$$$$$$$F)(+!'%>M$
$$$$<=)()
$$$$$$$$!">M$
$$$$$$$$2%"$F)(+!'%>M

Advanced Lock Modes

A lock mode can be set using

EntityManager.lock()

EntityManager.refresh()

EntityManager.find()

Query.setLockMode()
K',LN'")A5-)9JCAONO.AOE

K',LN'")A5-)9JCAONO.AOE1PJQE61OREQ6N6RA

Optimistic Read lock

Prevent an entity to be changed during a
transaction

optimistic approach to Repeatable Read
isolation

transactions fails if
another transaction
changed the Employee

Optimistic Write Lock

Force incrementing the version number

even when the entity is not updated!

Useful for updating the version of a root entity
if related entities change

Pessimistic Locking
Locks rows in the database directly

.6K6EAPJQSC*7A6

Use with care, causes scaling problems easily

only use when write concurrency is very high

Pessimistic Timeouts

JPA doesn’t describe how timeouts must be
implemented

There is a hint however

Caching

Application

EntityManager

Persistence Context

first level cache

EntityManagerFactory

Persistence Context

shared cache

JDBC Driver

Table/Column caching

Using the shared cache

Providers may choose how to use a shared
cache

Hibernate offers advanced tuning but is
disabled by default

EclipseLink is simpler but works out-of-the-
box

Using the shared cache

Enable or disable caching for an entity using
TE2,=)2U4)V&(?)W024+)X

Default cache usage is configured in
persistence.xml

Hibernate example
configuration

ehcache.xml

Cache properties

Cache properties can be passed to most
EntityManager methods

Lifecycle Events
Create life-cycle event listeners

@PrePersist / @PostPersist

@PreUpdate / @PostUpdate

@PreRemove / @PostRemove

@PostLoad

Set of entities and related classes that share the
same configuration

Each unit must have unique name

Empty string is also considered unique

Packaging and deployment unit

Standard jar file

Contains persistence.xml file in META-INF/

Optionally, contains orm.xml file in META-
INF/

Persistence Unit

Contains one or more <persistence-unit>
elements

 persistence.xml

Out-of-container configuration

 persistence.xml

EJB3 configuration

Validation

Bean Validation API (JSR-303)

Define field constraints on Entities

Constraints are validated on persist

Many other frameworks integrate with Bean
Validation

e.g. JSF 2.0 and Spring 3

Validation Example

@Null

@NotNull

AssertTrue

AssertFalse

@Min

@Max

@DecimalMin

@DecimalMax

@Size

@Digits

@Past

@Future

@Pattern

Invoking Validation

F24!"2&'(9F24!"2&)VJU@),&$!%+&2%,);$E42++YMZ999$/('?-+X

Creating constraints

Create annotation

Implement validator class

Creating constraints

Validation Groups
Define different sets of constraints for different
situations

Trigger validation only for a certain constraint

