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Chapter 1

Beginning

1.1 Description

SINGE (Spherical INertia-Gravity Eigenmode) is a code computing linear eigenmodes of
incompressible, stratified fluids enclosed in a spherical cavity (full sphere or spherical shell).
In addition to the Navier-Stokes equation it takes into account the co-density equation in the
Boussinesq framework.
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# SINGE means monkey in French!

SINGE uses finite differences (second order) in the radial direction and a spherical har-
monic decomposition (pseudo-spectral). SINGE is written entirely in Python 3' with the
Numpy /Scipy packages. It uses the Python version of the blazingly fast spherical harmonic
transform library SHTns. Finally, it also relies on PETSc/SLEPc libraries (and their Python
wrappers petscdpy /slepcdpy) for efficiently solving the generalised eigenvalue problem in paral-
lel, using direct or iterative methods. Thus SINGE efficiently runs on your laptop or on parallel
clusters.

A post-processing program, based on the one developed in the XSHELLS code, is provided
to extract useful data and to export fields to Matplotlib or Paraview.

SINGE is free software, distributed under the CeCILL Licence (compatible with GNU GPL):
everybody is free to use, modify and contribute to the code.

!Compatible with Python 2.7


https://bitbucket.org/nschaeff/shtns
http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html

1.2 Requirements

1.2.1 For SINGE itself

SINGE should work on any Unix-like system (like GNU /Linux or MacOS X). To run SINGE,
you have to to install:

e C++ and Fortran compilers with OpenMP support,
e the PETSc library,
e the SLEPc library,
and the following Python environment
e Python 3 (>= 3.2), including the scientific packages Numpy, Scipy and mpidpy,
e the SHTns library,
e the Python wrappers petscdpy and slepcdpy.

Note that SINGE has been written from scratch in Python 3, but it should be compatible with
Python (>=2.7) thanks to the imports

from __future__ import absolute_import
from __future__ import division

from __future__ import print_function
from __future__ import unicode_literals

at the beginning of each *.py file.
Finally, graphical outputs need

e the graphical package matplotlib, or GNU Octave,

e the XSHELLS code (xspp library). See the XSHELLS manual in the same directory for
further details. A better solution will be find later. ..

The following item is not mandatory:

e a shared MPI library (with thread support). You can also let petsc downloading its own
MPI library (recommended for new users).

1.3 Installation

Installing the required Python environment should not be difficult on Unix-like systems.
For instance for Debian users (also Ubuntu and cie, Linux Mint...)

sudo apt-get install python3 python3-numpy python3-scipy

To install SHTNS with Python 3, the reader must refer to the webpage https://users.
isterre.fr/nschaeff/SHTns/python.html

The tricky part is the installation of PETSc and SLEPc. In all cases, install first PETSc with
complex scalars (mandatory because of the eigenvalue problem studied). Then it depends on the
architecture of the computer that you are using. .. Please read the (exhaustive) documentation
on the websites of PETSc and SLEPc.


http://www.mcs.anl.gov/petsc/
http://slepc.upv.es/
http://www.numpy.org/
https://www.scipy.org/
https://pypi.python.org/pypi/mpi4py
https://bitbucket.org/nschaeff/shtns
https://bitbucket.org/petsc/petsc4py
https://bitbucket.org/slepc/slepc4py
http://matplotlib.org/
https://www.gnu.org/software/octave/
https://bitbucket.org/nschaeff/xshells
https://users.isterre.fr/nschaeff/SHTns/python.html
https://users.isterre.fr/nschaeff/SHTns/python.html

The installation process also depends on the external packages you want to use, such as
SUPERLU DIST or MUMPS. Most of the external packages depend on other packages, which
must be installed first. Note that some installation configurations are also incompatible, such
as MUMPS with 64-bits integers. If you want to install such external libraries, it is recom-
mended for new users to let PETSc downloading and installing them (to avoid any compatibility
problem).

Please find below some configuration options which should work on personal laptops:

# 32-bits with MUMPS, SuperLu, SuperLu_Dist

./configure --with-cc=gcc --with-cxx=g++ --with-fc=gfortran
--with-scalar-type=complex --with-mumps=1 --with-superlu=1 --with-superlu_dist=1
--with-fortran-kernels=1 --with-debugging=no --download-mpich
--download-scalapack --download-metis --download-parmetis --download-mumps
--download-superlu --download-superlu_dist

# 32-bits with SuperLu_Dist, SuperLu

./configure --with-cc=gcc --with-cxx=g++ --with-fc=gfortran
--with-scalar-type=complex --with-superlu=1 --with-superlu_dist=1
--download-mpich --download-scalapack --download-metis --download-parmetis
--download-superlu --download-superlu_dist

# 64-bits with PASTIX

./configure --with-64-bit-indices=1 --with-cc=gcc --with-cxx=g++
--with-fc=gfortran --with-scalar-type=complex --with-ptscotch=1 --with-pastix=1
--download-mpich --download-scalapack --download-metis --download-parmetis
--download-ptscotch --download-pastix

# 64-bits SuperLu_Dist

./configure --with-64-bit-indices=1 --with-cc=gcc --with-cxx=g++
--with-fc=gfortran --with-scalar-type=complex --with-superlu_dist=1
--with-fortran-kernels=1 --with-debugging=no --download-mpich

--download-scalapack --download-metis --download-parmetis --download-superlu_dist

# SLEPc installation (same for 32 and 64-bits)
# With arpack

./configure --with-arpack

make

make install

# Otherwise
./configure
make

make install

Note that the debugging mode was disabled with
--with-fortran-kernels=1 --with-debugging=no

for faster simulations.



1.4 Configuration file params.py

There is a single configuration file, called params.py. It is read by (almost) all of the scripts.
Beware: the params.py file must not be saved in the same directory as the scripts, but in your
working directory. Otherwise, the params.py located in the scripts’ directory will be loaded by
default at each simulation, even if SINGE is launched from a different working directory with
another params. py!

1.5 Running SINGE

There are two running modes in SINGE, one for free-eigenmodes computations and one to
compute the onset of linear convection.

1.5.1 Free eigenmodes

Here are the steps the user must follow to compute free eigenmodes with SINGE.

1. Adapt the params. py file and copy it in the working directory (different from the directory
containing the scripts).

2. Compute the A and B matrix (sequential) with the command
python3 path_to_script/singe_matrix_eig.py

3. Call of the eigenvalue solver in parralel on nb mpi process with the command-line options
(see later)

mpiexec -n nb python3 path_to_script/singe_petsc_mpi.py options
4. Export into xshells format (sequential)

python3 path_to_script/singe_to_xshells.py

1.5.2 Onset of thermal convection

Different from the other case.
Coming soon. ..

1.5.3 SLEPc options

To call the SLEPc eigensolver, options must be specified by the user, such as the direct or
implicit solver used, the linear algebra package used, the nature of the eigenvalue problem. .. For
the moment, only a direct solver using a LU decomposition (sequential or parallel) has been
tested. A complete description of these options can be found on the website of SLEPc and in
the SLEPc user manual available on the website.

For that solver, params.py contains a set of predefined options:

e nev: minimal number of eigenvalues to compute,

e ncv: proxy for the size of the Krylov subspace. ncv > 2nev at least. 10 times is a good
value. Note that the higher ncv is, the more the problem is memory-bound and the more
the cpu time increases.


http://slepc.upv.es/documentation/manual.htm

e eig: part of the spectrum to compute.

— °LM’: Largest magnitude,
— ?SM’: Smallest magnitude,
— ’LR’: Largest real,

— ’SR’: Smallest magnitude,
— °LI’: Largest imaginary,
— ’SI’: Smallest imaginary,
— ?TM’: Target magnitude,
— ?TR’: Target real,

— ’TI’: Target imaginary.

e 7: the target 7. Must be a complex (e.g. -1e-3 - 0.015%1j),
e tol: tolerance of reject eigenvalues. le — 12 is the default value.

e maxit: maximum number of iterations.

Example

nev = 10

ncv = 100

eig = TM’

tau = -10%x(-3) - 0.015%1j
tol = 10**(-12)

maxit = 40

Then the user must specify some command-line options. Here is an example which works
pretty well for the case studied in Vidal & Schaeffer (GJI,2015), using the shift and invert
method with MUMPS

-eps_monitor_conv -eps_balance oneside
-st_type sinvert -st_pc_factor_mat_solver_package mumps

or with SUPERLU _DIST (only solver available for 64-bits integers)

-eps_monitor_conv -eps_balance oneside
-st_type sinvert -st_pc_factor_mat_solver_package superlu_dist

1.6 Outputs

Whatever the file params.py, Here are the outputs generated by SINGE:

e A.mtx and B.mtx are the sparse matrices of the eigenvalue problem

AX = \BX; (1.1)

e Eigenval.txt: list of the eigenvalues A. The first column corresponds to the real part o
and the second to the imaginary part w;



e Real_Eigenvec.npy and Imag_Eigenvec.npy: real and imaginary parts of the eigenvec-
tors (temp files);

o fieldX#.out: field X (velocity or temperature) corresponding to the # eigenvalue in
Eigenval.txt (XSHELLS format).

1.7 Citing

If you use SINGE for research work, you must cite (for the moment) the two articles

e J. Vidal & N. Schaeffer, Quasi-geostrophic modes in the Earth’s fluid core with an outer
stably stratified layer, Geophys. J. Int. 202, 2182-2193, 10.1093/gji/ggv282 (2015)

e N. Schaeffer, Efficient Spherical Harmonic Transforms aimed at pseudo-spectral numerical
simulations, Geochem. Geophys. Geosyst. 14, 751-758, doi:10.1002/ggge.20071 (2013)


http://dx.doi.org/10.1093/gji/ggv282
http://dx.doi.org/10.1002/ggge.20071

Chapter 2

Setting up the simulation with params.py

The file params.par is a Python file used as a parameter file. Example configuration files
can be found in the Examples directory.

2.1 Modelling

2.1.1 Equations and controlling parameters

SINGE can solves the eigenvalue-eigenmode pairs of the Navier-Stokes equation in a rotating
reference frame. Optionally it can include (i) a radial buoyancy force in the Boussinesq approx-
imation, where the buoyancy obeys an advection-diffusion equation. Precisely, the following
equations can be solved by SINGE:

M+2Q(Zxu)=—-Vr+vV*u+ Rafr, (2.1)
N+ N2(r)u, = V30
V.-u=0,

where

e )\ is the eigenvalue (see later);

u is the velocity field;

0 is a codensity (or temperature, or buoyancy) in the Boussinesq formulation;

v is the kinematic viscosity of the fluid and is set by the variable nu in params.py;

k is the thermal diffusivity of the fluid and is set by the variable kappa in params.py;

)y is the amplitude of the rotation vector of the rotating reference frame, along the
vertical unitary axis z. It is set by the variable Omega0 in params.py;

N2(r) = %% is the Brunt-Viisala frequency depending on the imposed base temperature

profile Ty(r). In params.py, it is defined by a function def function N2r(r): depending
of the radial variable.

7 is the dynamic reduced pressure, which is eliminated by taking the curl of equation

(2.1).



Note that it is up to the user to choose dimensional or non-dimensional control parameters. To
disable the thermal equation, one must fix Ra=0 in params. py.
The governing equations are recast as an generalised eigenvalue problem

AX = \BX, (2.4)
with A and B two linear operators and the eigenvalue
A=o0+iw, (2.5)

where o is the damping rate and w the frequency of the eigenmode.

2.1.2 Internal representation of vector fields
Vector fields are represented internally using a poloidal/toroidal decomposition

u="V x (Tr) + V x V x (Pr), (2.6)

where r is the radial position vector, and 7" and P are the toroidal and poloidal scalars respec-
tively. This decomposition ensures that the vector field u is divergence-free.

The scalar fields T" and P for each radial shell are then decomposed on the basis of spherical
harmonics. For that, the velocity and temperature fields are separated according to their
equatorial symmetry:

e cquatorially symmetric field such that

[uﬂ Ug, u¢] (Tv 97 ¢) = [um —Uy, U¢] (T’ ™= 97 ¢>»
9(7”, 67 ¢) = 9(7", ™= 97 (b)

This symmetry is enabled with sym=’pos’ in params.py.

e antiequatorially symmetric field such that

[trs ug, ug) (r,0,0) = [—up, ug, —ug] (r,m =0, 9), (2.9)
O(r,0,0) = —0(r,m — 0, 0). (2.10)

This symmetry is enabled with sym=’neg’ in params.py.

2.1.3 Boundary conditions

Temperature (or buoyancy). Boundary conditions are either fixed temperature

=0 (2.11)
or or fixed flux 56
o =0. (2.12)



Velocity. For the full sphere, the velocity field satisfies a regularity boundary condition at
the center, imposed on the poloidal and toroidal scalars. At a shell boundary, the velocity field
always satisfies the impermeability condition

u-r=0, (2.13)
where T is the unitary radial vector. Then, it must satisfy either the stress-free condition
Tx (G-T)=0, (2.14)
where 7 is the stress tensor, or the no-slip boundary condition
uxt=0. (2.15)

The inner and outer boundary conditions are set in params.py and allow to select indepen-
dently the appropriate boundary conditions:

e bc_o and be_o for the velocity field. bc_i = 0 for the full sphere, bc_i = 1 for stress free
and bc_i = 2 for no-slip. BC at the outer boundary are similar.

e bc_i_temp and bc_o_temp for the temperature field. bc_i temp = 0 for the full sphere,
bc i temp = 1 for fixed flux and bc i temp = 2 for imposed temperature. BC at the
outer boundary are similar.

2.2 Spatial discretization

2.2.1 Radial grid

As XSHELLS, SINGE uses second order finite differences in radius. The total number
of radial grid intervals (number of points - 1) is defined in params.py by the variable N. The
radial extent of both velocity and temperature fields is set using rO and rf variables, determing
the radius of the first and last shells. The NR grid points will be distributed between radii
corresponding to the minimum and maximum of these values. reg must be equal to ’irreg’
(resp. ’reg’) for an irregular (resp. a regular) radial mesh.

The irregular grid(recommanded choice) refines the number of points in the boundary layers,
and this refinement can be controlled by the two variables nin and nout, the first and the
second being the number of points reserved for the inner and outer boundary layer respectively,
reinforcing the normal refinement.

Example The following lines in params.py define a grid from 0 to 1, with a
total of 241 radial grid points, with 10 and 5 points reserved to the refinement
of the inner and outer boundary layer respectively.

reg = ’irreg’
r0 =0
rf =1
error = 2
N =2
nin = 10
nout =5

In the case of no-slip boundary condition, it is necessary to have enough points in the
boundary layer not to induced a wrong Ekman pumping in the bulk. Following Dormy (PhD
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thesis, 1997), 10 points in the BL is a sufficient condition. To ensure it, the user may adjust nin
and nout. A good (maybe too restrictive) condition is to choose them such that the variable
hmin (which is printed in the terminal) is 10 times smaller than v/F, where FE is the Ekman
number.

2.2.2 Angular grid and spherical harmonic truncation

SINGE uses spherical harmonics to represent fields of a given azimutal symmetry m in the
spherical volume

Fr,0,0) =Y f71(r)Y"(0,9) (2.16)

where Y, is the spherical harmonic of degree ¢ and order m. Numerically, the expansion
stores only m = 0 and the given m in longitude, with a truncation of the spherical harmonic
degree at maximum degree Lmax. In params.py, Lmax is arbitrary but such that Lmax > m.
Note that the true Lmax is modified by SINGE and may be Lmax + 1, in order to have the
same number of unknowns for poloidal and toroidal scalars satisfying the equatorial symmetry
condition specified by the user.

The angular grid (spanning the co-latitude 6 and longitude ¢) consists of nphi regularly
spaced points in longitude, and nlat gauss nodes in latitude which are internally specified by
SHTNS.

Finally, note that only half of the number of spherical harmonic degrees is actually stored,
because of the chosen equatorial symmetry.

2.3 Eigenvalue solver

Following Rieutord (1997) and Dintrans & Rieutord (1999), the eigenvalue problem (2.4)
is not solved by SINGE. Instead, a spectral transform is applied, namely the shift and invert
method. The eigenvalue problem (2.4) is converted into the eigenvalue problem

(A—7B)"'BX = 6X, (2.17)

where 7 is the target eigenvalue and 6 the new eigenvalue linked to A by

1

0 = .
A—T

(2.18)

This transformation is effective for finding eigenvalues near 7, since the eigenvalues 6 of the
operator that are largest in magnitude correspond to the eigenvalues A of the original problem
that are closest to the shift 7 in absolute value. Note that the eigenvectors remain unchanged.

Note that there are other spectral transforms, such as the Cayley transform, which can
be used with the corresponding command-line option. Please refer to the SLEPc manual for
further details.

10



Chapter 3

Post-processing with xspp

Fields are stored in binary files (see 1.6), using the custom format developped for XSHELLS.
They can be handled after the simulation by the xspp command line program.

3.1 Using the xspp command-line tool

Compile the program by typing make xspp. Invoking it without arguments (by running
./xspp) will print a help screen including the commands and their syntax.

Example The following will display information about the file fieldU. job
(resolution, precision, time of the snapshot, ...):

./xspp fieldU. job
To compute the energy and maximum value of the curl of the field:
./xspp fieldU.job curl nrj max

To extract the field values along a line spanning the z-axis from x = —1 to
x = 0.8, and also display total energy of field:

./xspp fieldU.job line -1,0,0 0.8,0,0 nrj

Add two fields and save the result to a new file (the first file will set the
resolution for the result):

./xspp £ieldT_0004. job + £ieldTO.job save fieldT_total_0004.job

Extract only a given range of spherical harmonic coefficients (2 to 31) and
computes the corresponding energy:

./xspp fieldB.job 1lim 2:31 nrj

Note that xspp is not parallelized using MPI, so that for very big cases you might run
out of memory (although it can operate out-of-core — without actually loading the whole file
in memory — in some cases). As a workaround you can always reduce the spherical harmonic
truncation while reading your big files with the 11im option (see example avobe).

11



3.2 Extract and plot 2D slices

One of the most common usage for xspp is to extract two-dimensional slices of the 3D data
stored in spectral representation in the field files. Four types of 2D slices are available:

e Meridian cuts (a plane containing the z-axis), with the merid command;
e Equatorial cuts (the plane z = 0), with the equat command,

e Surface data (on a sphere of given radius r), with the surf command,

e Disc cuts (an arbitrary plane), with the disc command;

When these commands are given to xspp, it will write text files corresponding to the required
cuts. They can then be loaded and displayed using matlab, octave or python with matplotlib
(see next sections).

Example A meridian cut at ¢ = 0:
./xspp fieldU.job merid

An equatorial cut, and a meridian cut at ¢ = 4bdegrees, of the vorticity
(curl of U)

./xspp fieldU.job curl equat merid 45

Extract the field at the spherical surface closest to r = 0.9, using only the
symmetric components.

./xspp fieldU.job sym O surf 0.9

Make a cut at z = 0.7, using 200 azimuthal points, with field truncated at
harmonic degree 60:

./xspp fieldU.job 1lim 0:60 disc 200 0,0,0.7

3.2.1 plotting with matlab/octave

Matlab or Octave scripts are located in the matlab dierectory. There are scripts to load
and plot cuts obtained with xspp.

Example Produce a meridian cut with xspp:
./xspp fieldU.job merid

Then, from octave (or matlab), load and plot the ¢-component of the field
in this meridional slice:

> [Vphi,r,theta] = load_merid(’o_Vp.0’);
> plot_merid(r,theta,Vphi)

12



3.2.2 plotting with python/matplotlib

The python module xsplot is provided to load and display cuts produced by xspp. It can
be used interactively or within scripts. Such Python scripts using matplotlib and xsplot are
located in the matplotlib dierectory, and can be called from command line. xsplot can also
be used directly from command line and will guess the type of cut of your file and display it
accordingly.

The python module should be installed by calling make install, or explicitly python
setup.py install -user from the python subdirectory, to install it for the current user only.

Example Produce a meridian and an equatorial cut with xspp:
./xspp fieldU.job merid equat

From command prompt, quickly load and plot all three components in cylin-
drical coordinates of the field in this meridional slice, as well as in the equa-
torial plane.

xsplot o_Vs.0 o_Vp.0 o_Vz.0 o_equat

Alternatively, from an Ipython interpreter (or notebook, or script), load and
plot the ¢-component of the field in the meridional and equatorial slices:

import xsplot

r,theta,Vphi = xsplot.load_merid(’o_Vp.0’)
xsplot.plot_merid(r,theta,Vphi)
s,phi,Vs,Vp,Vz = xsplot.load_disc(’o_equat’)
xsplot.plot_disc(s,phi, Vp)

vV V V V V

3.3 3D visualization with paraview

From the paraview website: ParaView is an open-source, multi-platform data analysis and
visualization application. ParaView users can quickly build visualizations to analyze their data
using qualitative and quantitative techniques.

Full spatial fields can be saved to XDMF format, which can be loaded by paraview. Note
that the HDF5 library is required for this to work, and must be found by the configure script.
If so, Simply run:

make xspp
./xspp fieldB_0004.job hdf5 B_cartesian.hb

The file B_cartesian.h5.xdmf describes the cartesian components of the vector field B on a
spherical grid that can be read directly by paraview (if prompted for a loader, select "XDME").
3.4 Advanced post-processing using pyxshells

For more complex post-processing, xspp may not be enough. The python module pyxshells

allows you to quickly write your own scripts to work directly with the spectral fields stored in
the field files output by SINGE, cast them to spatial domain, and so on...
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