
Universität Karlsruhe (TH)
Forschungsuniversität · gegründet 1825

Fakultät für Informatik
Institut für Programmstrukturen
und Datenorganisation
Lehrstuhl Prof. Goos

The GrGen.NET User Manual

Refers to GrGen.NET Release 4.5.6

www.grgen.net

Edgar Jakumeit

Jakob Blomer Rubino Geiß

January 12, 2020

ii

A B S T R AC T

GrGen.NET: transformation of structures made easy – with
languages for graph modeling, pattern matching and rewrit-
ing, as well as rule control; brought to life by a compiler and
a rapid prototyping environment offering graphical and step-
wise debugging. The Graph Rewrite Generator allows you to
develop at the abstraction level of graph representations, lead-
ing to applications performing comparably to conventionally
developed ones. This user manual contains both, normative
statements in the sense of a reference manual as well as an
informal guide to the features and usage of GrGen.NET.

This manual is licensed under the terms of the Creative Commons
Attribution-Share Alike 3.0 Germany license. The license is available
at http://creativecommons.org/licenses/by-sa/3.0/de/

iii

http://creativecommons.org/licenses/by-sa/3.0/de/

iv

FO R E WO R D FO R R E L E A S E 1 . 4

First of all a word about the term “graph rewriting”. Some would rather say “graph trans-
formation”; some even think there is a difference between these two. We don’t see such
differences and use graph rewriting for consistency.

The GrGen project started in spring 2003 with the diploma thesis of Sebastian Hack un-
der supervision of Rubino Geiß. At that time we needed a tool to find patterns in graph based
intermediate representations used in compiler construction. We imagined a tool that is fast,
expressive, and easy to integrate into our compiler infrastructure. So far Optimix[Ass00] was
the only tool that brought together the areas of compiler construction and graph rewriting.
However its approach is to feature many provable properties of the system per se, such as
termination, confluence of derivations, and complete coverage of graphs. This is achieved by
restricting the expressiveness of the whole formalism below Turing-completeness. Our tool
GrGen in contrast should be Turing-complete. Thus GrGen.NET provides the user with
strong expressiveness but leaves the task of proving such properties to the user.

To get a prototype quickly, we delegated the costly task of subgraph matching to a
relational database system [Hac03]. Albeit the performance of this implementation could be
improved substantially over the years, we believed that there was more to come. Inspired by
the PhD thesis of Heiko Dörr [Dör95] we reimplemented our tool to use search plan driven
graph pattern matching of its own. This matching algorithm evolved over time [Sza05,
Bat05b, Bat05a, Bat06, BKG08] and has been ported from C to C# [KG07, Kro07]. In the
year 2005 Varró [VVF06] independently proposed a similar search plan based approach.

Though we started four years ago to facilitate some compiler construction problems, in
the meantime GrGen.NET has grown into a general purpose tool for graph rewriting.

We want to thank all co-workers and students that helped during the design and imple-
mentation of GrGen.NET as well as the writing of this manual. Especially we want to thank
Dr. Sebastian Hack, G. Veit Batz, Michael Beck, Tom Gelhausen, Moritz Kroll, Dr. Andreas
Ludwig, and Dr. Markus Noga. Finally, all this would not happened without the productive
atmosphere and the generous support that Prof. Goos provides at his chair.

We wish all readers of the manual—and especially all users of GrGen.NET—a pleasant
graph rewrite experience. We hope you enjoy using GrGen.NET as much as we enjoy de-
veloping it.

Thank you for using GrGen.NET.

Karlsruhe in July 2007, Rubino Geiß on behalf of the GrGen.NET-Team

v

vi

FO R E WO R D

Since the preceding foreword was written a lot has happened: Dr. Rubino Geiß finished his
dissertation [Gei08] and left; Prof. Goos retired. The succeeding Professor had no commit-
ment to graph rewriting, so GrGen switched from a university project developed by students
and assistants to an open source project (which is still hosted at the IPD, reachable from
www.grgen.net).

The first steps of development from version 1.4 onwards, at that time still at Karlsruhe
University, were the porting of GrGen.NET from C to C# [Kro07] by Moritz Kroll, which
allowed for a faster pace of development, and the addition of support for undirected edges
and fine grain pattern conditions [Buc08] by Sebastian Buchwald. Many thanks to them for
their work towards the milestone version 2.5 [JBK10] and for their continued support.

Another first step was the addition of alternative patterns and subpatterns by me in
the context of my master’s thesis, allowing for structural recursion [Jak08, HJG08]. While
working on this thesis I fell in love with GrGen.NET. It did several things in just the most
elegant way possible – but it had weak spots regarding not-statically-fixed patterns as well
as programmability and extensibility. People in love do foolish things: after graduating I
devoted much of my free time of the upcoming years to continue developing, in order to
close the gaps. I was dragged along by the feeling that graph rewriting is an underrated
programming paradigm, just lacking a general-purpose language and a development environ-
ment advanced enough to materialize that vision. (Besides programming language design is
a highly interesting activity.) With version 4.4 of GrGen.NET this is accomplished.

We want to thank the organizers of GraBaTs[RVG08]/TTC, the annual meeting of the
graph rewrite tool community, which gave us the possibility to ruthlessly steal the best ideas
of the competing tools. Thanks to Berthold Hoffmann, and the discussions in “French”. And
many thanks to several early users giving valuable feedback, a lot of bug reports, and even
code (which is of course the best contribution you can give to an open source project), by
name: Bugra Derre, Paul Bedaride, Normen Müller, Pieter van Gorp and Nicholas Tung.
Many thanks to all the others that contributed since then. If you want to contribute or if
you have a question, don’t hesitate to contact the GrGen.NET-Team via email to grgen at
the host given by ipd.info.uni-karlsruhe.de.

The rule-and-pattern-based transformation of graph-based representations is a perfect fit
for knowledge-intensive tasks, for tasks built on models where the relations play a central
part, and for linguistic applications. A much better fit than predicate logic or the lambda
calculus typically misused for modelling them, or relational algebra that funnily fails when
the relations become the important part, or tedious traditional programming. Go and build
a great application (e.g. an AI that enslaves humanity :) with GrGen.NET for them.

We wish you a pleasant graph rewriting experience.

Karlsruhe in July 2014, Edgar Jakumeit on behalf of the GrGen.NET-Team

vii

www.grgen.net

viii

C O N T E N T S

1 Introduction 1

1.1 What Is GrGen.NET? . 1

1.2 When to Use GrGen.NET . 1

1.3 An Example Graph-Based Representation 1

1.4 When Not to Use GrGen.NET 4

1.5 What Is Graph Rewriting? . 4

1.6 An Example For Rewriting . 5

1.7 An Example Rule Application on the Representation. 6

1.8 Why to use GrGen.NET . 8

2 Overview 9

2.1 System Overview . 9

2.2 The Tools . 10

2.2.1 GrGen.exe . 11

2.2.2 GrShell.exe . 12

2.2.3 LibGr.dll . 13

2.2.4 lgspBackend.dll . 13

2.2.5 yComp.jar . 13

2.3 The Languages and their Features 14

2.3.1 Graph Model Language . 14

2.3.2 Rule and Computations Language . 15

2.3.3 Rule Application Control Language 16

2.3.4 Shell Language . 17

3 Quickstart 19

3.1 Downloading & Installing. 19

3.2 Creating a Graph Model . 20

3.3 Creating Graphs . 20

3.4 The Rewrite Rules . 22

3.5 Applying the Rules . 24

3.6 Debugging and Output. 24

4 Graph Model Language 27

4.1 Building Blocks . 28

4.1.1 Base Types . 29

4.2 Type Declarations . 29

4.2.1 Node and Edge Types . 30

4.2.2 Attributes and Attribute Types . 34

4.2.3 Enumeration Types . 35

4.2.4 Hints on Modeling . 36

ix

x

5 Rule Language 39

5.1 Building Blocks . 40

5.1.1 Graphlets . 40

5.2 Rules and Tests . 43

5.3 Pattern Part . 48

5.3.1 Isomorphic and Homomorphic Matching 50

5.4 Replace/Modify Part . 51

5.4.1 Implicit Definition of the Preservation Morphism r 51

5.4.2 Specification Modes for Graph Transformation 52

5.4.3 Syntax . 53

6 Basic Types and Attribute Evaluation Expressions 57

6.1 Built-In Types . 57

6.2 Expressions . 58

6.3 Boolean Expressions . 59

6.4 Relational Expressions . 59

6.5 Arithmetic and Bitwise Expressions 61

6.6 String Expressions . 62

6.7 Type Expressions . 64

6.8 Primary Expressions. 65

6.9 Operator Priorities . 69

7 Nested Patterns 71

7.1 Negative Application Condition (NAC) 72

7.2 Positive Application Condition (PAC). 74

7.3 Pattern Cardinality (iterated / multiple / optional) 75

7.4 Alternative Patterns. 77

7.5 Nested Pattern Rewriting. 80

8 Subpatterns and Yielding 83

8.1 Subpattern Declaration and Subpattern Entity Declaration 83

8.1.1 Recursive Patterns . 84

8.2 Subpattern Rewriting . 88

8.2.1 Deletion and Preservation of Subpatterns 91

8.3 Local Variables, Ordered Evaluation, and Yielding Outwards 93

8.4 Flow Example, Regular Expression Syntax, and Locking 100

9 Rule Application Control Language (Sequences) 107

9.1 Rule Application . 108

9.2 Logical and Sequential Connectives 110

9.3 Simple Variable Handling. 111

9.4 Decisions and Loops . 113

9.5 Quick reference table . 114

10 Advanced Matching and Rewriting 115

10.1 Rule and Pattern Modifiers . 116

10.2 Static Type Constraint. 117

10.3 Exact Dynamic Type . 119

10.4 Retyping . 120

10.5 Copy . 121

xi

10.6 Node Merging . 122

10.7 Edge Redirection . 123

10.8 Attribute Initialization . 123

11 Embedded Sequences and Textual Output 125

11.1 Exec and Emit in Rules . 125

11.2 Deferred Exec and Emithere in Nested and Subpatterns 127

12 Computations (Attribute Evaluation Statements) 129

12.1 Assignments . 130

12.2 Local Variable Declarations . 131

12.3 Control flow . 131

12.4 Embedded Exec . 134

12.5 Computation Definition and Call. 135

12.5.1 Function Definition and Call . 135

12.5.2 Procedure Definition And Call . 140

12.6 The Big Picture . 143

13 Container Types and Computations 149

13.1 Built-In Types and Concept of Containers 149

13.2 Set Operations . 150

13.3 Map Operations . 152

13.4 Array Operations . 155

13.5 Deque Operations. 160

13.6 Storage Access in the Rules . 163

13.7 Hints on container usage . 164

14 Graph Type and Computations 167

14.1 Built-In Types . 167

14.2 Graph Functions And Procedures 167

14.2.1 Graph Updates / Basic Graph Manipulation 167

14.2.2 Graph Query by Types . 168

14.2.3 Graph Query by Neighbourhood . 169

14.2.4 Subtle Points in the Semantics . 176

14.3 Subgraph Operations . 177

14.4 File Operations. 178

14.5 Graph comparison . 179

14.6 Visited Flags. 182

14.7 Graph Processing Environment Procedures. 184

14.7.1 Transaction Handling . 184

14.7.2 Misc. Global Procedures . 184

15 Filtering and Sorting of Matches 185

15.1 Filter Functions . 185

15.2 Auto-Generated Filters . 187

15.3 Auto-Supplied Filters . 188

15.4 Filter calls. 189

16 Advanced Modelling (Object-Oriented and Graph-Oriented Programming) 191

16.1 Methods . 192

16.1.1 Function Method Definition and Call 192

16.1.2 Procedure Method Definition And Call 192

xii

16.2 Packages . 196

16.2.1 Package Definition in the Model . 197

16.2.2 Package Definition in the Actions . 198

16.3 Graph Nesting . 200

17 Sequence Computations 203

17.1 Sequence Statements . 203

17.2 Sequence Expression. 207

17.3 Graph and Subgraph Based Queries and Updates 210

17.4 Storage Handling in the Sequences 212

17.5 Quick Reference Table . 214

18 Advanced Control with Backtracking 215

18.1 Sequence Definitions (Procedural Abstraction) 215

18.2 Transactions, Backtracking, and Pause Insertions 216

18.3 For Loops . 219

18.4 Indeterministic Choice . 220

18.5 Quick Reference Table . 222

19 Transformation Techniques 225

19.1 Merge and Split Nodes . 226

19.2 Node Replacement Grammars . 230

19.3 Mapping in a Rewriting Tool . 232

19.4 Comparing Structures . 233

19.5 Copying Structures . 235

19.5.1 Built-In Graph Copying . 237

19.6 Data Flow Analysis for Computing Reachability 237

19.7 State Space Enumeration . 242

20 GrShell Language 245

20.1 Common Commands . 245

20.2 Graph Creation . 246

20.3 Graph Input and Output . 250

20.4 Sequence Execution and Profiles 253

20.5 Variables . 253

20.6 Building Blocks . 254

20.7 Attribute Assignment and Graph Manipulation 256

20.8 Model and Graph Queries . 257

20.9 Validation Commands . 259

20.10Graph Change Recording and Replaying. 260

20.11Inclusion and Conditional Execution 261

20.12File System Commands and External Shell Execution 262

20.13Shell and Environment Configuration 262

20.14Compilation Configuration . 263

20.15Backend, Graph, and Actions Selection 264

20.16LGSPBackend Custom Commands 265

21 Visualization and Debugging 269

21.1 Graph Visualization Commands (Nested Layout) 269

21.2 yComp Usage . 279

21.3 Debugging Related Commands 279

21.4 Using the Debugger . 280

xiii

21.5 Subrule Debugging and Programmed Halts. 284

21.6 Watchpoint configuration . 285

21.7 Debugging related functionality 287

22 Indices and Performance Optimization 289

22.1 Search Plans . 289

22.2 Find, Don’t Search . 291

22.2.1 Type Indices . 291

22.2.2 Neighbourhood Indices . 291

22.2.3 The Costs . 293

22.2.4 Consequences For Optimization . 294

22.2.5 Search Planning On Request . 296

22.2.6 Attribute Indices . 297

22.2.7 Incidence Count Indices . 299

22.2.8 Name Index . 301

22.2.9 Uniqueness Index . 303

22.3 Location Passing and Memorization 305

22.4 Profile and Parallelize . 306

22.5 Compilation and Static Knowledge 307

22.6 Miscellaneous Things . 308

23 Examples 317

23.1 Fractals . 317

23.2 Busy Beaver . 319

23.2.1 Graph Model . 319

23.2.2 Rule Set . 319

23.2.3 Rule Execution with GrShell . 321

24 Application Programming Interface 325

24.1 Interface to the Host Graph. 326

24.2 Interface to the Rules . 327

24.3 Interface of the Graph Processing Environment 329

24.4 Import/Export and Miscellaneous Stuff 330

24.5 External Class, Function and Procedure Implementation 335

24.6 External Filter and Sequence Implementation. 336

24.7 Graph Events . 337

24.8 Action Events . 339

25 Extensions 341

25.1 External Attribute Types. 341

25.2 External Function Types . 342

25.3 External Procedure Types . 342

25.4 External Filter Functions . 343

25.5 External Sequences . 343

25.6 External Emitting and Parsing 344

25.7 External Cloning and Comparison 344

25.8 Shell Commands . 344

25.9 Shell and Compiler Parameters 345

25.10Annotations . 345

xiv

26 Understanding and Extending GrGen.NET 347

26.1 How to Build . 347
26.2 The Generated Code . 348
26.3 Search Planning in Code Generation 360
26.4 The Code Generator. 363

26.4.1 Frontend . 363
26.4.2 Backend . 366

27 Development Goals and Design Decisions 371

27.1 Expressiveness . 371
27.2 General-Purpose Graph Rewriting 372
27.3 Performance . 373
27.4 Understandability and Learnability 374
27.5 Development Convenience . 375
27.6 Well Founded Semantics . 375
27.7 Platform Independence. 376
27.8 General-Purpose Graph Transformation 377

Bibliography 379

Index 384

C H A P T E R 1

I N T R O D U C T I O N

1.1 What Is GrGen.NET?

GrGen (Graph Rewrite Generator) is a software development tool that offers programming
languages optimized for graph structured data, with declarative pattern matching and rewrit-
ing at their core, with support for imperative and object-oriented programming, and a bit of
database-like query-result processing. The generative programming system featuring a graph-
ical debugger eases the transformation of graph-based representations, as they are needed in
e.g. engineering, model transformation, computer linguistics, or compiler construction.

1.2 When to Use GrGen.NET

You may be interested in using GrGen.NET if you have to tackle the task of changing meshes
of linked objects, i.e. graph-like data structures; anytime the focus is on the relationship in
between your data entities, and esp. if your algorithms operate upon data entities that stand
in multiple relations to each other.

These tasks are traditionally handled by pointer structures and pointer structure navi-
gation-, search-, and replacement routines written by hand – this low-level, pointer-fiddling
code can be generated automatically by GrGen.NET for you. You specify your transforma-
tion task on a higher level of abstraction with nodes connected by edges, and rewrite rules
consisting of patterns to be searched as well as modifications to be carried out. GrGen.NET
then generates the algorithmic core of your application. You specify the what with declar-
ative rules, GrGen.NET takes care of the how ; similar to SQL expressions implemented
by database engines, or to grammar rules implemented by parser generators. Development
is supported by visual debugging, you work on a visualization of your network and the rule
applications inside it. The debugger and the pattern based languages boost your productivity
for graph-representation-based tasks way beyond traditional programming. Due to all the
optimizations implemented in the pattern matching engine you still gain high-performance
solutions. Altogether, GrGen.NET offers the highest combined speed of development and
execution you can find for those kind of tasks.

1.3 An Example Graph-Based Representation

Let’s have a look at an example of a graph-based representation GrGen.NET is well suited
for – a simplified version of the graph-based compiler intermediate representation Firm1

that GrGen was originally developed for. Nodes represent machine instructions, e.g. a Load
fetches a value from an address or an Add sums two values. Edges indicate dependencies
between nodes, e.g. an Add requires that its two operands are available before it can be
executed. Each instruction is located within a basic block, all nodes within the Block are
executed if the Block is executed (in an order allowed by the dependencies).

Figure 1.1 shows the program graph for the following C-function:

1www.libfirm.org

1

www.libfirm.org

2 Introduction

Figure 1.1: Program graph of a minimum plus one function, with block containment visualized
as containment left, and the plain graph right.

1.3 An Example Graph-Based Representation 3

i n t MinPlus (i n t x , i n t y)
{

i n t min ;

i f (x < y) {
min = x ;

} e l s e {
min = y ;

}

re turn min + 1 ;
}

Program execution begins at the Start node, which also produces the initial memory state
and the given Arguments. The Start and the Arguments belong to the special StartBlock. The
Cmp compares the arguments, its result is used by the Cond to carry out a conditional jump
depending on the result of the comparison. After following the Jmp of the then- or the else-
Block, the program execution is continued at Block $D. The Phi2 chooses one of its operands
depending on the previously executed block, here Argument 1 if the Cond was evaluated to
True, or Argument 2 if Cond was evaluated to False. The Constant 1 is added to the value
selected by the Phi, before the result is returned by the Return. The end of the program
execution is represented by the special EndBlock which by convention contains exactly one
End. If you want to learn more about this representation or typical transformations over it,
have a look at the compiler case[BJ11a] of the TTC 2011 where this representation was used
or our solution [BJ11c].

The key points here are that

1. this is a mesh of objects (denoting operations),

2. that stand to each other in 3 relations (control flow (red), data flow (brown), and
memory flow (blue) 3),

3. and a major part of the information is encoded in the connection structure (topology),
which is explicitly and directly represented with edges.

You find such representations in other domains than programming languages and compil-
ers, too. The knowledge of an agent about the exterior world can be represented intuitively
like this with semantic nets, you could use GrGen.NET for reasoning over them. Models
as understood by model driven engineering are typically graphs, with GrGen.NET you can
implement a model transformation between models, or into a lower-level program represen-
tation. When working in computational linguistics you may be interested in modeling an
abstract syntax graph in GrGen.NET; the recursive and iterated patterns that allow to pro-
cess tree-like data structures declaratively render GrGen.NET an excellent match for such
tasks. But also in engineering or architecture where you need to describe the buildup of the
modeled system from components, here you can derive context-sensitively system blueprints
or simulate their behaviour. You find help not only in modelling them, but also in deriving
all interesting configurations or simulating all interesting execution traces. In form of the
built-in support for a backtracking search through a search space or even the enumeration of
a state space with isomorphic state pruning, guided by match ordering and filtering.

2a helper node from the static single assignment form employed; in [BBH+13] you find more information
and a simple algorithm for constructing SSA from an abstract syntax tree

3we use dependencies, i.e. the direction is reversed compared to the flow

4 Introduction

1.4 When Not to Use GrGen.NET

There is nothing to gain from GrGen.NET if scalars, lists or arrays are sufficient to model
your domain, which is the case for a lot of tasks in computing indeed. (But which is not the
case for others which would be better modeled with trees and especially graphs, but aren’t
because of the cost of maintaining pointer structures by hand.) GrGen.NET is likely too
heavyweight if you are just interested in computing shortest paths in simple graphs. You’re
better off with a traditional graph library and its set of pre-implemented algorithms – the
library can be learned quicker and the algorithms can be reused directly. GrGen.NET with
its domain-specific languages in contrast requires time to learn and some effort to specify or
code a solution in (only afterwards are you rewarded with a much higher pace of development).

The graph rewrite generator is not the right tool for you if you’re searching for a visual
environment to teach children programming – it’s a powerful tool for (software) engineers.
Simpler and less powerful languages like story diagrams[FNTZ00] that can be learned quicker
and understood more intuitively may be a better match here. Neither is it what you need if
your graph structured data is to be interactively edited by an end user instead of being auto-
matically transformed by rules, patterns, and algorithms (the editor generator DiaGen[Dia]
may be of interest in the former case).

Each object-oriented program contains a heap of objects pointing to each other that
can be understood as a graph like representation, with objects being the nodes and the
references being the (fixed) edges. In contrast to object-oriented programming is the topology
in graph-oriented programming as offered by GrGen.NET not hidden and encapsulated in
the objects, but globally open for inspection and modification; open and readily accessible
for pattern matching and rewriting. Prefer the closed heaps if you don’t need a global view
on the data, they are cheaper and the information hiding cuts dependencies.

1.5 What Is Graph Rewriting?

The notion of graph rewriting as understood by GrGen.NET is a method for declaratively
specifying “changes” to a graph. This is comparable to term rewriting (and thus partly to
functional programming). Normally you use one or more graph rewrite rules to accomplish a
certain task. GrGen.NET implements an SPO-based approach (as default). In the simplest
case such a graph rewrite rule consists of a tuple L→ R, whereas L—the left hand side of the
rule—is called pattern graph and R—the right hand side of the rule—is the rewrite graph.

L R

H H ′

Pattern Graph

Match m

Host Graph

Rewrite Graph

Result Graph

Preservation Morphism r

Rule

Rule Application

Figure 1.2: Basic Idea of Graph Rewriting

Moreover we need to identify graph elements (nodes or edges) of L and R for preserving
them during rewrite. This is done by a preservation morphism r mapping elements from L
to R; the morphism r is injective, but needs to be neither surjective nor total. Together with
a rule name p we have p : L

r−→ R.
The transformation is done by application of a rule to a host graph H. To do so, we have

to find an occurrence of the pattern graph in the host graph. Mathematically speaking, such

1.6 An Example For Rewriting 5

a match m is an isomorphism from L to a subgraph of H. This morphism may not be unique,
i.e. there may be several matches. Afterwards we change the matched spot m(L) of the host
graph, such that it becomes an isomorphic subgraph of the rewrite graph R. Elements of L
not mapped by r are deleted from m(L) during rewrite. Elements of R not in the image of r
are inserted into H, all others (elements that are mapped by r) are retained. The outcome

of these steps is the resulting graph H ′. In symbolic language: H
m,p
==⇒ H ′.

1.6 An Example For Rewriting

We’ll have a look at a small example. Graph elements (nodes and edges) are labeled with
an identifier. If a type is necessary then it is stated after a colon. We start using a special
case to construct our host graph: an empty pattern always produces exactly one4 match
(independent of the host graph). So we construct an apple by applying

p0 : ∅ −→

e1

e2

e3 e4

e5

to the empty host graph. As the result we get an apple as new host graph H. Now we want
to rewrite our apple with stem to an apple with a leaflet. So we apply

p1 :

a

b

x −→

c

b

y z

to H and get the new host graph H1, something like this:

e1

e2

e3 e4

e5

p1
=====⇒

e1

e2

e6 e7

e4

e5

What happened? GrGen.NET has arbitrarily chosen one match out of the set of possible
matches, because x matches edge e3 as well as e1. A correct solution could make use of edge

4Because of the uniqueness of the total and totally undefined morphism.

6 Introduction

type information. We have to change rule p0 to generate the edge e1 with a special type
“stem”. And this time we will even keep the stem. So let

p2 :

a

b

x : stem −→

c

b

a

xy
z

.

If we apply p2 to the modified H1 this leads to

e1 : stem

e2

e3 e4

e5

p2
=====⇒

e1 : stem

e2

e3 e4

e5

.

1.7 An Example Rule Application on the Representation

An interesting transformation that can be applied on the compiler intermediate representation
introduced in section 1.3 is constant folding. Figure 1.3 highlights the effect of applying the
following example rule by showing the situation before it is applied and afterwards:

1 rule foldCond {

2 cond:Cond -df0:Dataflow-> c0:Const;

3 falseBlock:Block -falseEdge:False-> cond;

4 trueBlock:Block -trueEdge:True-> cond;

5 alternative {

6 TrueCond {

7 if { c0.value == 1; }

8 modify {

9 delete(falseEdge);

10 -jmpEdge:Controlflow<trueEdge>->;

11 }

12 }

13 FalseCond {

14 if { c0.value == 0; }

15 modify {

16 delete(trueEdge);

17 -jmpEdge:Controlflow<falseEdge>->;

18 }

19 }

20 }

21 modify {

22 delete(df0);

23 jmp:Jmp<cond>;

24 }

25 }

1.7 An Example Rule Application on the Representation 7

The rule foldCond is used to replace a conditional jump by an unconditional jump, iff it
depends just on a constant value. To this end, the cond is retyped to Jmp, and the dependency
on the constant value c0 is deleted. The syntax name:type declares a node of the given type.
An edge is declared with the same syntax, just inscribed into an edge --> representation.
An <original> suffix denotes retyping, specifying the original element to be retyped. The
pattern matches furtheron the blocks where execution continues: trueBlock and falseBlock.
In the true case (if { c0.value == 1; }), the falseEdge to the falseBlock is deleted and
the trueEdge to the trueBlock retyped to a normal Controlflow edge; in the false case, the
opposite is carried out.

Here the true case applies as you can see from the value 1 inscribed in the matched
constant $5. The elements from the graph that were bound to the pattern elements are
highlighted in light-brown, with their pattern name suffixed in double angles, e.g. the cond

was matched to $7 . Blocks that become unreachable (without control flow predecessors)
are assumed to get deleted in a later step of the transformation, as are duplicate constants.
The benefits of using GrGen.NET can be already felt from this example, they increase at
an accelerating speed as the patterns (and rewrites) grow in size and complexity. Note that
the rule is modular, i.e. independent from other functionality — traditionally, functionality
is smeared over multiple graph representation traversal passes, and multiple steps of a pass.

(a) Before folding the Cond, match highlighted. (b) After folding the Cond.

Figure 1.3: Situation reached during folding the program graph of the minimum plus one
function when applied to constant arguments (rendered by the debugger).

8 Introduction

1.8 Why to use GrGen.NET

GrGen.NET offers processing of graph representations at their natural level of abstraction.
Graph representations are typically employed in engineering (blueprints, designs), model

transformation (models), computer linguistics (syntax graphs, semantic nets), or compiler
construction (intermediate representations, program graphs) – but a graph is maybe the
most natural representation of the data of your domain, too?

GrGen.NET is built on a rich and efficient metamodel implementing multi-graphs, with
multiple inheritance on node and edge types. The nodes and edges are wired in scalable
ringlists, which give access to their incident elements in constant time, to all elements of a
type in constant time, and allow to add and delete elements in constant time.

GrGen.NET features modular rules that don’t smear functionality into traversal code as
is the case in traditional pointer structure passes. It offers declarative graph patterns of high
expressiveness, saving you a lot of boilerplate code that would be needed for coding them
manually. And it implements efficient graph change rollback, thus allowing you to easily
crawl search spaces without own bookkeeping (for undoing the changes).

GrGen.NET contains a C#-like programming language, so you don’t run against walls
in case of subtasks where the rules and patterns don’t work well. The general-purpose system
is highly extensible and customizable, you can express solutions fitting well to your task at
hand.

GrGen.NET offers the convenience of dedicated languages with well-readable syntax and
static type checking, instead of clunky internal DSLs, limited annotations, or annoying XML.
Its languages are brought to life by an optimizing compiler that prunes not needed generality
and generates pattern matchers adapted to the characteristics of the host graph at hand. A
runtime library is supplied that implements an easy-to-use API, and features built-in graph
serialization and deserialization.

The system ships with a readily available shell application for file mapping tasks, which
especially offers step-wise and visual debugging, saving you from chasing reference chains
in the debugger of your programming language. Further mature development support is
offered with search plan explanation and profiling instrumentation. Moreover, GrGen.NET
is properly documented in an extensive user manual.

Traditional programming of graph representation processing is tedious, it requires careful
orchestration of functionality attached to passes, boilerplate code for patterns, and low-
level pointer fiddling. You are more productive with GrGen.NET in one-shot-coding a
solution, but esp. are you so for a continuous development process or when changes are
needed afterwards, a GrGen.NET-specification can be adapted at a much higher pace.

Altogether, GrGen.NET offers the highest combined speed of development and execution
for graph representation processing you can find.

C H A P T E R 2

OV E R V I E W

GrGen.NET is combined from two groups of components: The first consists of the com-
piler grgen and two runtime libraries, which offer the basic functionality of the system;
the compiler transforms specifications of declarative graph rewrite rules into highly efficient
.NET-assemblies. The second consists of the interactive command line GrShell and the
graph viewer yComp, which offer a rapid prototyping environment supporting graphical and
stepwise debugging of rules that are controlled by sequences.

2.1 System Overview

Figure 2.1 gives an overview of the GrGen.NET system components and the involved files.

Model
.gm

Actions
.grg

Shell
Script
.grs

App
.cs

libGr
.dll

Model
.dll

lgsp
Backend

.dll

Actions
.dll

Application.exe

GrShell.exe

GrGen.exe

csc.exe

User

creates

creates

creates

creates

generates / compiles

compiles

GrGen-based algorithmic core
uses /
references

uses /
references

Defines and implements API

Runtime libs Generated libs

in Model Language

in Rule Language with
embedded Sequences

in Model Language

in GrShell Language with
embedded Sequences

in C# / a .NET language with
embedded Sequences

Figure 2.1: GrGen.NET system components and artifacts

A graph rewrite system1 is defined by a rule set file (*.grg, written in the rule and
computations language), which may include further rule set files, and use zero or more graph
model description files (*.gm, written in the model language). Executable code is generated
from these specifications by GrGen.exe; the generated parts are assisted by the runtime
libraries libGr and lgspBackend. Together they form the system that can be used via
an API by arbitrary .NET-applications, for the processing of a graph-based representation.

1In this context, system is less a grammar rewrite system, but rather a set of interacting software compo-
nents.

9

10 Overview

One application employing the API is shipped with GrGen.NET, the shell application
GrShell. It may be used interactively, esp. for debugging, or may be scripted (in the shell
language, which allows via libGr to execute sequences, a concise language offered to control
rule applications).

Figure 2.2 depicts the major runtime objects.

Application.exe

Debugger

GrShell.exe

modifies

yComp.exe

Graph

Graph Processing
Environment

Sequence
(calls Actions)

displays

displays

request execution of

modifies

executes

manages transactions
 stores variables

Figure 2.2: GrGen.NET major runtime objects

The central object is the graph, it adheres to the specified graph model. (In general
you have to distinguish between a graph model on the meta level, a host graph created as
instance of the graph model, and a statically specified pattern graph of a rule that matches
a portion of the host graph at runtime). It may be modified directly by GrShell, or by
a user application. But typically is it changed by the application of one of the generated
actions, most often from within a sequence, which is parsed into an operator tree and then
interpreted, by the graph processing environment. The processing environment maintains the
global variables in addition, and modifies the graph directly in case of transaction rollback
(based on the graph change events recorded since transaction start).

The GrShell is a readily available execution environment that is sufficient for mapping
tasks that require only console or file output. But even when you want to integrate a graph
based algorithmic core into your existing .NET application, or are forced to write one because
you must supply a long-running application reacting to events from the environment, esp. to
user input, may you be interested in additionally using the GrShell because of its debugging
abilities. Employing the graph viewer yComp it can visualize the graph at any time during
execution. Moreover, it can visualize the application of a rule, highlighting the matched
pattern in the host graph, and the changes carried out. It can do so for actions executed
from a sequence, which can be executed step-by-step, under debugger control, highlighting
the currently executed rule in the sequence.

2.2 The Tools

All the programs and libraries of GrGen.NET are open source licensed under LGPL. Notice
that the yComp graph viewer is not a part of GrGen.NET; yComp is closed source and
ships with its own license granted by yFiles for academic use – this means above all that
you are not allowed to ship it with a release of your own commercial software, in contrast to

2.2 The Tools 11

the GrGen.NET libraries.

Executing a generated graph rewrite system requires .NET 2.0 or later; compiling and
debugging a graph rewrite system in addition requires JAVA 1.5 or later. You find the tools
in the bin subdirectory of your GrGen.NET installation.

2.2.1 GrGen.exe

The GrGen.exe assembly implements the GrGen.NET generator. The Gr-
Gen.NET generator parses a rule set and its model files and compiles them
into .NET assemblies. The compiled assemblies form a specific graph rewriting
system together with the GrGen.NET backend.

Usage
[mono] GrGen.exe [-keep [<dest-dir>]] [-use <existing-dir>] [-debug]

[-b <backend-dll>] [-o <output-dir>] [-r <assembly-path>]

[-lazynic] [-noinline] [-profile]

[-statistics <statisticsfile>]

<rule-set>
rule-set is a file containing a rule set specification according to Chapter 5. Usually such
a file has the suffix .grg. The suffix .grg may be omitted. By default GrGen.NET
tries to write the compiled assemblies into the same directory as the rule set file. This
can be changed by the optional parameter output-dir.

Options
-keep Keep the generated C# source files. If dest-dir is omitted, a subdirectory

tmpgrgenn2 within the current directory will be created. The destination
directory contains:

• printOutput.txt—a snapshot of stdout during program execution.

• NameModel.cs—the C# source file(s) of the rule-setModell.dll as-
sembly.

• NameActions intermediate.cs—a preliminary version of the C#
source file of the rule-set ’s actions assembly. This file is for internal
debug purposes only (it contains the frontend actions output).

• NameActions.cs—the C# source file of the rule-setActions.dll as-
sembly.

-use Don’t re-generate C# source files. Instead use the files in existing-dir
to build the assemblies.

-debug Compile the assemblies with debug information (also adds some va-
lidity checking code).

-lazynic Negatives, Independents, and Conditions are only executed at the
end of matching (normally asap).

-noinline Subpattern usages and independents are not inlined.
-profile Instruments the matcher code to count the search steps carried out.
-statistics Generate matchers that are optimized for graphs of the class de-

scribed by the statisticsfile (see 20.16 on how to save such statistics).
-b Use the backend library backend-dll (default is LGSPBackend).
-r Link the assembly assembly-path as reference to the compilation re-

sult.
-o Store generated assemblies in output-dir.

2n is an increasing number.

12 Overview

Requires
.NET 2.0 (or above) or Mono 1.2.3 (or above). Java Runtime Environment 1.5 (or
above).

NOTE (1)

Regarding the column information in the error reports of the compiler please note that tabs
count as one character.

NOTE (2)

As .NET supports integration with native code, you may even use a GrGen.NET-generated
graph rewriting kernel from a native application.

NOTE (3)

The grgen compiler consists of a Java frontend used by the C# backend grgen.exe. The
java frontend can be executed itself to get a visualization of the model and the rewrite rules,
in the form of a dump of the compiler IR as a .vcg file:
java -jar grgen.jar -i yourfile.grg

NOTE (4)

If you run into Unable to process specification: The system cannot find the

file specified errors, grgen is typically not able to execute the JAVA frontend. Check
whether your path contains a zombie java variable from an old installation pointing to
nowhere; remove it in this case. Installing a JDK to a non system path and adding the
bin folder of the JDK to the path variable may help. (Normally just installing a JRE is
sufficient.)

2.2.2 GrShell.exe

The GrShell.exe is a shell application on top of the libGr. GrShell is
capable of creating, manipulating, and dumping graphs as well as performing
graph rewriting with graphical debug support. For further information about
the GrShell language see Chapter 20.

Usage
[mono] grShell.exe [-N] [-SI] [-C "<commands>"] <grshell-script>*

Opens the interactive shell. The GrShell will include and execute the commands in the
optional list of grshell-scripts (usually *.grs files) in the given order. The grs suffixes
may be omitted. GrShell returns 0 on successful execution, or in non-interactive
mode -1 if the specified shell script could not be executed, or -2 if a validate with
exitonfailure failed. This allows you to build a test-suite consisting of shell scripts.

2.2 The Tools 13

Options
-N Enables non-debug non-gui mode which exits on error with an error code in-

stead of waiting for user input.
-SI Show Includes prints out to the console when includes are entered and left.
-C Execute the quoted GrShell commands immediately (before the first script

file). If you want the quoted part on a single line (so without line breaks),
you have to use a double semicolon ;; to separate commands. Take care that
an exec inside such a command line needs to be exited with #§ then (to open
and immediately close a shell comment, needed as exec terminator in face of
missing newline termination).

Requires
.NET 2.0 (or above) or Mono 1.2.3 (or above).

NOTE (5)

The shell supports some new set configuration options that map to the grgen compiler
flags (see 20.14), use them before any new graph commands so that matchers are generated
according to the compiler flags you would use if you would execute the compiler directly.

EXAMPLE (1)

The shell script GrgenifyMovieDatabase.sh from examples/MovieDatabase-TTC2014

shows how to execute an embedded GrShell-script on all files in a folder, in a version
with the -C option with line breaks, a version on a single line, and a version employing a
here-document circumventing the option this way.

2.2.3 LibGr.dll

The libGr is a .NET assembly implementing GrGen.NET’s API. See the extracted HTML
documentation for interface descriptions at http://www.grgen.net/doc/API_4_4/; a short
introduction is given in chapter 24.

2.2.4 lgspBackend.dll

The lgspBackend is a .NET assembly containing the libGr SearchPlan backend, the only
backend supported by GrGen.NET as of now, implementing together with the generated
assemblies the API offered by libGr. It allows to analyze the graph and to regenerate the
matcher programs at runtime, on user request, see 20.16. For a more detailed introduction
have a look at chapter 26.

2.2.5 yComp.jar

yComp [KBG+07] is a graph visualization tool based on yFiles [yWo07]. It is well integrated
and shipped with GrGen.NET, but it’s not a part of GrGen.NET. yComp implements
several graph layout algorithms and has file format support for VCG, GML and YGF among
others.

http://www.grgen.net/doc/API_4_4/

14 Overview

Usage
Usually yComp will be loaded by the GrShell. You might want to open yComp
manually by typing
java -jar yComp.jar [<graph-file>]

Or by executing the batch file ycomp under Linux / ycomp.bat under Windows, which
will start yComp on the given file with increased heap space. The graph-file may be
any graph file in a supported format. yComp will open this file on startup.

Hints
The layout algorithm compiler graph (yComp’s default setting, a version of hierarchic
optimized for graph based compiler intermediate representations) may not be a good
choice for your graph at hand. Instead organic or orthogonal might be worth trying.
Use the rightmost blue play button to start the layout process. Depending on the graph
size this may take a while.

Requires
Java Runtime Environment 1.5 (or above).

2.3 The Languages and their Features

The process of graph rewriting at runtime can be divided into four steps: Creating an instance
graph according to a model, searching a pattern aka finding a match, performing changes to
the matched spot in the host graph, and, finally, selecting which rule(s) to apply where next.

This process is programmed at specification time utilizing a graph model language, a rule
and computations language, and the sequences language for controlling rule applications.

2.3.1 Graph Model Language

At the foundation you find the graph model (meta-model) language given with class defini-
tions in the style of an object-oriented programming language, with some influences of data
definition languages as offered by databases.

It allows you to specify node and edge types, with multiple inheritance on the types (see
Chapter 4). They are used in building a typed, directed multigraph (supporting multiple
edges of the same type between two nodes). In addition, you may declare undirected and ar-
bitrarily directed edges; or may even register external types with GrGen.NET. Furthermore,
connection assertions allow you to restrict the “shape” of the graphs.

Node and edge types can be equipped with typed attributes, of the commonly known
elementary types (integer and floating-point numbers, strings, booleans, and enums) or of
some container types (available are hashmap and array based types). In addition, methods
supporting dynamic dispatch may be given.

Moreover, you may configure indices (see Chapter 22): attribute indices for a quick lookup
of a graph element based on the attribute value, or incidence count indices for a quick lookup

2.3 The Languages and their Features 15

based on the number of incident edges. Several indices are already built-in and automatically
used by the pattern matchers, notably the type index for quick lookups based on element
type, and the incident elements index giving access to the neighbouring elements in constant
time.

2.3.2 Rule and Computations Language

On top of the graph model language and at the heart of GrGen.NET do you find the rule
and computations language.

It supports pattern-based rules, which are built by a pattern to be matched and a rewrite to
be carried out; or put differently: a left-hand-side precondition pattern and a right-hand-side
postcondition pattern (see Chapter 5). A pattern is described by graphlets, a specification of
nodes connected by edges in an intuitive, easily writable, easily readable, and easily change-
able syntax. Complex patterns are combined from elementary patterns with nested patterns
(defining alternative, optional, multiple and iterated structures, or negative and independent
application conditions, see Chapter 7) and subpattern definitions and usages (see Chapter 8).
Besides those parts for declarative processing of structural information are attribute conditions
(see Chapter 6) and attribute evaluations available, the former are expressions computing an
output value by reading attributes of matched elements, the latter are statements changing
attribute values with assignments.

The attribute processing expressions and statements are in fact parts of a full-fledged
imperative programming language integrated with the declarative pattern-based rule language
(see Chapter 12). The expressions can query the graph with a multitude of available functions
in addition to reading the attributes of matched elements and carrying out computations with
the attributes; they compute a value and can be abstracted into functions. The statements
support direct graph changes and supply control flow statements and def variable declarations
in addition to the attribute assignments; they change the state and can be abstracted into
procedures. You especially find subgraph operations for the processing of nested graphs, with
subgraph extraction, subgraph comparison, and subgraph insertion (see Chapter 14).

Pattern matching can be adjusted fine-grained with homomorphic matching for selected
elements (with hom declarations, so they can match the same graph elements), overriding the
default isomorphic matching, and with type constraints (forbidding certain static types or
requiring equivalence of dynamic typeofs).

The rewrite part of a rule keeps, adds and deletes graph elements according to the SPO
approach, as specified by element declarations and references in the LHS and RHS patterns
(there are three additional rule application semantics available: DPO or exact patterns only
or induced subgraphs only). The rewrite part supports two modes of specification: A rule
can either express the changes to the match (modify-mode, requiring deletion to be specified
explicitly) or specify a whole new subgraph (replace-mode).

A rich bouquet of single element rewrite operations is available on top of the basic ones
with retyping aka relabeling, that allows to change the type of a graph element while keep-
ing its incident elements, with the creation of new nodes/edges of only dynamically known
types or as exact copies of other nodes/edges, and with node merging and edge redirection
constructs (see Chapter 10). Besides changing the graph can you emit user-defined text to
stdout or files (supporting model-to-text transformations; see Chapter 11).

A special class of computations are available with the post-match filter functions (see
Chapter 15), that allow to inspect and manipulate the set of matches found when applying
a rule (with all bracketing). This way you can accumulate information over the matches, or
filter the matches set for the most interesting matches. Several filters for sorting and clipping
are already supplied or can be generated automatically on request. Symmetry reduction is
available with a filter for duplicate matches due to permuted elements from automorphic
patterns.

GrGen.NET rules are modular or local : you just note down the functionality. Typically

16 Overview

it is smeared into graph traversal code of global visiting passes. This limits the changes needed
during development and maintenance, and together with the concise and easily editable
patterns saves you from many large-scale tedious modifications that are normally needed
in those cases. You are still free to build local (or even global) passes by combining rules
and tests (tests are rules with only a LHS pattern) utilizing parameters: input and output
parameters are supported by rules and tests, the subpatterns, and functions and procedures.
They are typically used to define and advance the location of processing in the graph, but
they are also used for attribute computations. In addition visited flags can be queried and
written, for marking already processed elements.

Subpatterns allow for pattern reuse, and allow via subpattern recursion to match sub-
structures extending into depth (e.g. iterated paths – but for just checking an iterated path
condition, i.e. the transitive closure of a relation, there are predefined and even more efficient
functions available that can be simply called.) Iterated patterns allow to match substructures
splitting into breadth (e.g multinodes). Both combined allow to match entire tree like struc-
tures within a single rule application. Subpatterns and nested patterns are matched from
the outermost to the innermost patterns with recursive descent, handing already matched
elements down; on ascend, they can yield elements found out to the def elements of their
containing pattern. The nested patterns and subpatterns also support nested rewrite parts, so
that complex structures are not only matched (parsing), but can also get rewritten (transduc-
tion) — yielding structure directed transformation, alongside structures defined by graphlets
combined in an EBNF-grammar-like way[Jak11].

Those features and their optimized implementation (offering e.g. pattern matcher paral-
lelization with a simple annotation) crown GrGen.NET the king of graph pattern matching
and rewriting, and allow you to process graph representations at their natural level of abstrac-
tion, with a flexibility and performance coming near to what you can achieve by programming
things by hand.

A graph rewrite system described in those languages can be employed via an API by
.NET-applications, typically written in C# (see Chapter 24). The other way round you can
include C#-code into your specifications by using external types or calling external functions
and procedures, as well as sequences (see Chapter 25).

2.3.3 Rule Application Control Language

On top of the rules and computations language do you find the sequences language, for
controlling the application of the rules (and procedures or functions), determining which rule
to apply where next.

This strategy language allows to determine the rule that is called next by its control
operators and constructs (see Chapter 9). The basic ones available are the sequential and
logical operators, the decisions, and the loops (defining the control-flow orchestration). The
location where to apply a rule may be defined with parameters handed into the called rules,
and received back from them. The sequences support variables to store the locations (for
data-flow orchestration). A rule may be applied for the first match found, or for all matches
that are available with all-bracketing.

The sequences offer a computations sublanguage that supports calling procedures and
functions, basic graph querying and modification, visited flags management, and storages
manipulation (see Chapter 17). The first ones allow to bypass the rules of the layer below
for simple tasks, and especially allow to extract, insert and compare subgraphs. Visited flags
used in marking processed elements must be allocated and freed, the sequence computations
are the right place to do so. Most usages are related to storages which are variables of
container type storing graph elements, they esp. allow to build transformations following a
wavefront running over the graph (see Chapter 13 for more on containers).

The sequences can be abstracted into a sequence definition that can then be called in
the place of a rule. This way common parts can be reused, but especially is it possible to

2.3 The Languages and their Features 17

program a recursive strategy. For simulation runs, several indeterministic choice operators
are available.

Advanced constructs are available with transactions angles and backtracking double angles
capable of rolling back changes carried out on the graph to get back to the state of the graph
again from before their nested content was applied (see Chapter 18). With them you can
easily try things out without having to invest into programming the bookkeeping needed to
revert to an old state. They allow to systematically run through a search space, or even to
enumerate a state space, materializing interesting states reached in time out into space.

Those sequences are available in an integrated form in the rule language (see Chapter 11).
After applying the direct effects of a rule it is possible to apply an embedded sequence for
follow-up tasks that just can’t be expressed with a single rule application; those sequences
have access to the elements of their containing rule, they allow to build complex transforma-
tions with rule-sequence-rule call chains.

2.3.4 Shell Language

Those were the features of the languages at the core of the GrGen.NET-System (imple-
mented by the generator grgen.exe and the runtime libraries libGr and lgspBackend). In
addition, the GrGen.NET system supplies a shell application, the GrShell, which offers
besides some common commands, variable handling constructs, and file system commands
several constructs for graph handling and visualization, as well as constructs for sequence
execution and debugging. Furthermore, some switches are available to configure the shell and
the graph processing environment, as well as the grgen compiler.

Regarding graph handling you find commands for graph creation and manipulation, graph
export and import, and graph change recording plus replaying (see Chapter 20). For graph
creation 3 simple new commands are available, one for creating an empty graph, one for
creating a node, and one for creating an edge (in between two nodes). The GRS exporter
serializes with the same syntax, which is also expected by the GRS importer. Write a file in
this simple format if the available import formats are not supported by your data source.

For direct graph manipulation you find deletion and retyping commands in addition to
the creation commands, and commands for assigning attributes of graph elements. More-
over, export and import commands are available for serializing a graph to a file, and for
unserializing a graph from a file (in GRS, GXL and XMI/ecore formats). Changes that are
occurring to a graph may be recorded to a GRS and later replayed or simply imported.
Change recording allows for post-problem debugging, but allows also to use GrGen.NET
as a kind of embedded database that persists changes as they appear.

The graph and the model can be queried furtheron for e.g. the defined types (utilizing a
reflection-like interface) or the attributes of a graph element. The graph may be validated
against the connection assertions specified in the model, or against a sequence that gets
executed on a clone of the host graph.

Regarding sequence execution you find the central exec command that is interpreting the
following sequence (in fact by delegating the parsing and execution to libGr). In addition,
action profiles may be shown. They are available when profiling instrumentation was
switched on, telling about the number of search steps or graph accesses carried out.

The actions can be replaced at runtime by loading another actions library; the backend
could be, but currently there is only one available, the lgspBackend. This backend supports
further custom commands, that start with a custom graph or custom actions prefix. They
allow to analyze the graph in order to compile some statistics about the characteristics
of the graph that are of relevance for the pattern matcher. And in the following to re-
generate the pattern matchers at runtime (gen searchplans) given the knowledge about the
characteristics of the graph, yielding matchers which are adapted to the host graph and thus
typically faster than the default pattern matchers generated statically into the blue. You can
inspect the search plans in use with the explain custom command.

18 Overview

The debugger component of the GrShell allows to debug a sequence execution step-
by-step, highlighting the currently executed rule in the sequence, and displaying the current
graph in the graph viewer yComp; in detail mode even the match found and the rewrite
carried out by the rule are highlighted in the graph (see Chapter 21).

The graph visualization is highly customizable. You can choose one from several available
layout algorithms. You can define e.g. the colors, the shapes of nodes, or the linestyle of
edges, based on the type of the graph elements, or exclude uninteresting types altogether
from the display. You can pick the attributes that are to be shown directly (normally they
are only displayed on mouse-over). Furthermore, you can configure visual graph nesting by
declaring edges as containment edges, thus keeping large graphs with containment or tree
relations understandable. For large graphs that are beyond the capabilities of the graph
viewer you can define that only the matches plus their context up to a certain depth are
displayed. Altogether, you can tailor the graph display to what you need, transforming an
unreadable haystack which is what large graphs tend to become (if not rendered utilizing the
means from above) into a well-readable representation.

C H A P T E R 3

Q U I C K S TA R T

In this chapter we’ll build a graph rewrite system from scratch. We will use GrGen.NET
to construct non-deterministic state machines, and to remove ε-transitions from them. This
chapter gives a quick tour of GrGen.NET and the process of using it; it esp. highlights its
look and feel. For comprehensive specifications, please take a look at the succeeding chapters.

3.1 Downloading & Installing

If you are reading this document, you probably have already downloaded the GrGen.NET
software from our website (http://www.grgen.net). Make sure you have the following sys-
tem requirements installed and available in the search path:

• Java 1.5 or above

• Mono 1.2.3 or above / Microsoft .NET 2.0 or above

If you’re using Linux: Unpack the package to a directory of your choice, for example into
/opt/grgen:

mkdir /opt/grgen

tar xvfj GrGenNET-V1_3_1-2007-12-06.tar.bz2

mv GrGenNET-V1_3_1-2007-12-06/* /opt/grgen/

rmdir GrGenNET-V1_3_1-2007-12-06

Add the /opt/grgen/bin directory to your search paths, for instance if you use bash add a
line to your /home/.profile file.

export PATH=/opt/grgen/bin:$PATH

Furthermore we create a directory for our GrGen.NET data, for instance by mkdir /home/grgen.

If you’re using Microsoft Windows: Extract the .zip archive to a directory of your choice
and add the bin subdirectory to your search path via control panel → system properties /
environment variables. Execute the GrGen.NET assemblies from a command line window
(Start → Run... → cmd). For MS .NET the mono prefix is neither applicable nor needed.

NOTE (6)

You might be interested in the syntax highlighting specifications of the GrGen.NET-
languages supplied for the vim, Emacs, and Notepad++ editors in the syntaxhighlighting

subdirectory.

19

http://www.grgen.net

20 Quickstart

3.2 Creating a Graph Model

In the directory /home/grgen we create a text file StateMachine.gm that contains the graph
meta model for our state machine1. By graph meta model we mean a set of node types and
edge types which are available for building state machine graphs (see Chapter 4). Figure 3.1
shows the meta model.

1 node class State {

2 id: int;

3 }

4

5 abstract node class SpecialState extends State;

6 node class StartState extends SpecialState;

7 node class FinalState extends SpecialState;

8 node class StartFinalState extends StartState, FinalState;

9

10 edge class Transition {

11 Trigger: string;

12 }

13

14 const edge class EpsilonTransition extends Transition;

Figure 3.1: Meta Model for State Machines

What have we done? We specified two base types, State for state nodes and Transition

for transition edges that will connect the state nodes. State has an integer attribute id,
and Transition has a string attribute Trigger which indicates the character sequence for
switching from the source state node to the destination state node. The other types inherit
from those base types (keyword extends). Inheritance works basically like inheritance in
object oriented languages, as does the abstract modifier for SpecialState, meaning that
you cannot create a node of that precise type (only nodes of non-abstract subtypes). With
StartFinalState we have constructed a “diamond” type hierarchy, highlighting the support
for multiple inheritance.

3.3 Creating Graphs

Let’s test our graph meta model by creating a state machine graph. We will use the GrShell
(see Chapter 20) and—for visualization—yComp. To get everything working we need a rule
set file, too. For the moment we just create an almost empty file removeEpsilons.grg in
the /home/grgen directory, containing only the line

1 #using "StateMachine.gm"

Now, we could start by launching the GrShell and by typing the commands interactively.
However, in most of the cases this is not the preferred way, as we want to execute the same
steps multiple times. So instead, we create a GrShell script removeEpsilons.grs, in the
/home/grgen directory. Figure 3.2 shows this script. Run the script by executing grshell

removeEpsilons.grs. The first time you execute the script, it might take a while because
GrGen.NET has to compile the meta model and the rule set into .NET assemblies.

The graph viewer yComp opens and after clicking the blue play “layout graph” button
on the very right side of the button bar, you get a window similar to figure 3.3 (see also
Section 2.2.5). Quit yComp and exit the GrShell by typing exit.

1You’ll find the source code of this quick start example shipped with the GrGen.NET package in the
examples/FiniteStateMachine/ directory.

3.3 Creating Graphs 21

1 new graph removeEpsilons "StateMachineGraph"

2

3 new :StartState($=S, id=0)

4 new :FinalState($=F, id=3)

5 new :State($="1", id=1)

6 new :State($="2", id=2)

7 new @(S)-:Transition(Trigger="a")-> @("1")

8 new @("1")-:Transition(Trigger="b")-> @("2")

9 new @("2")-:Transition(Trigger="c")-> @(F)

10 new @(S)-:EpsilonTransition-> @("2")

11 new @("1")-:EpsilonTransition-> @(F)

12 new @(S)-:EpsilonTransition-> @(F)

13

14 show graph ycomp

Figure 3.2: Constructing a state machine graph in GrShell

Figure 3.3: A first state machine (with ε-transitions)

22 Quickstart

Our script first creates an empty graph of the meta model StateMachine (which is refer-
enced by the rule set removeEpsilons.grg) with the name StateMachineGraph. Thereafter,
it creates the nodes and edges, with a name:type colon notation – the names are optional and
missing here. Note the inplace-arrow notation for edges (-Edge-> resp. -:EdgeType->). As
you can see, attributes of graph elements can be set during creation with a call-like syntax.
The $ and @ notation is due to the usage of persistent names. Persistent names are set on
creation by $=Identifier and used later on by @(Identifier) to retrieve the graph element
bound to them. In addition to persistent names, another kind of “names” is available in the
GrShell with the global variables, which would appear before the colon, but we did not use
them in this script. Persistent names must be identifier strings and not numbers, that’s why
we have to use the quote chars around "1" and "2".

3.4 The Rewrite Rules

We will now add the real rewrite rules to the rule set file removeEpsilons.grg. The
idea is to “forward” normal transitions over ε-transitions one after another, i.e. if we have
a pattern like a:State -:EpsilonTransition-> b:State -ne:Transition-> c:State do
we add another a -ne-> c. After all transitions have been forwarded we can remove the
ε-transitions alltogether. The complete rule set is shown in figure 3.4. See Chapter 5 for the
rule set language reference.

Let’s inspect the rule set specification in detail: The rule set file consists of a number of
rules and tests, each of them bearing a name, like forwardTransition. Rules contain a
pattern specified by semicolon-terminated graphlets, and a rewrite part given with a nested
modify or replace block. Tests contain only a pattern; they are used to check for a certain
pattern without doing any rewrite operations. If a rule is applied, GrGen.NET tries to find
the pattern within the host graph, for instance within the graph we created in Section 3.3. Of
course there could be several matches for a pattern—GrGen.NET will choose one of them
arbitrarily (technically the first match in an implementation defined order).

Figure 3.4 also displays the syntax name:NodeType for nodes and -name:EdgeType-> for
Edges, which we have already seen in Section 3.3, again with an optional name. But here
the meaning of a declaration name:Type depends on whether it appears in the pattern or
the rewrite part. A declaration in the pattern defines a pattern element that is to be bound
by searching, resp. matching in the host graph, whereas a declaration in the rewrite part
defines an element that is to be created (so only the latter does the same as its counterpart
from the shell script). An element with a name assigned to can be referenced from another
graphlet, or from the rewrite block, by noting down simply the name for a node, or using the
syntax -name-> for an edge (a name can be referenced in the same or nested blocks). If you
want to “do something” with your specified graph element “in another location” (which may
mean simply linking a node to another edge), define a name; otherwise an anonymous graph
element will work fine (like the :FinalState or -:EpsilonTransistion-> declarations that
will be bound to a node of type FinalState resp. an edge of type EpsilonTransition, but
are inaccessible for other operations) . Also have a look at example 8 on page 44 for additional
pattern specifications.

The rewrite part can be given in one of two modes, modify mode or replace mode. In
replace mode, every graph element of the pattern which is not referenced within the replace

block is deleted. The modify mode, in contrast, deletes nothing (by default), but just adds or
keeps graph elements. Instead, the modify part allows for explicit deletion of graph elements
by using a delete command inside the modify block.

What else do we use? We employ negative patterns; they prevent their containing rule
from getting applied if the negative pattern is found. We also use attribute conditions noted
down inside an if {...} to express non-structural constraints; a rule is only applicable if
all such conditions are evaluated to true. Attributes of graph elements are accessed with dot

3.4 The Rewrite Rules 23

1 #using "StateMachine.gm"

2

3 test checkStartState {

4 x:StartState;

5 negative {

6 x;

7 y:StartState;

8 }

9 }

10

11 test checkDoublettes {

12 negative {

13 x:State -e:Transition-> y:State;

14 hom(x,y);

15 x -doublette:Transition-> y;

16 if {typeof(doublette) == typeof(e);}

17 if { ((typeof(e) == EpsilonTransition) || (e.Trigger == doublette.Trigger)); }

18 }

19 }

20

21 rule forwardTransition {

22 x:State -:EpsilonTransition-> y:State -e:Transition-> z:State;

23 hom(x,y,z);

24 negative {

25 x -exists:Transition-> z;

26 if {typeof(exists) == typeof(e);}

27 if { ((typeof(e) == EpsilonTransition) || (e.Trigger == exists.Trigger)); }

28 }

29 modify {

30 x -forward:typeof(e)-> z;

31 eval {forward.Trigger = e.Trigger;}

32 }

33 }

34

35 rule addStartFinalState {

36 x:StartState -:EpsilonTransition-> :FinalState;

37 modify {

38 y:StartFinalState<x>;

39 emit("Start state (", x.id, ") mutated into a start-and-final state");

40 }

41 }

42

43 rule addFinalState {

44 x:State -:EpsilonTransition-> :FinalState;

45 if {typeof(x) < SpecialState;}

46 modify {

47 y:FinalState<x>;

48 }

49 }

50

51 rule removeEpsilonTransition {

52 -:EpsilonTransition->;

53 replace {}

54 }

Figure 3.4: Rule set for removing ε-transitions

24 Quickstart

notation (as in e.Trigger). The hom(x,y) and hom(x,y,z) statements mean “match the
embraced nodes homomorphically”, i.e. they can (but don’t have to) be matched to the same
node within the host graph.

The eval {...} statement in the rewrite part is used to evaluate or recalculate attributes
of graph elements. The emit statement prints a string to stdout. Have a look at the
statement y:StartFinalState<x> in addStartFinalState: we retype the node x. That
means that the newly created node y can be found at the position of x in the graph, that it
bears its persistent name, and that the attributes common to the new and the previous type
keep their old values – only the node type is changed or casted to StartFinalState.

3.5 Applying the Rules

The created rewrite rules are transformation primitives, we must compose them in order
to implement more complex functionality. For instance we don’t want to forward just one
ε-transition as forwardTransition would do; we want to forward them all. Such a rule
composition is called a graph rewrite sequence (see Chapter 9). We add the following line to
our shell script removeEpsilons.grs:

1 debug exec checkStartState && !checkDoublettes && (forwardTransition* | addStartFinalState |

addFinalState* | removeEpsilonTransition* | true)

This looks like a boolean expression and in fact it behaves similarly. The whole expression
is evaluated from left to right. A rule is successfully evaluated if a match could be found
(and is rewritten, but this won’t change the execution result). The negation operator ! just
toggles the result. We first check for a valid state machine, i.e. if the host graph contains
exactly one start state and no redundant transitions. Thereafter we do the actual rewriting.
These three steps are connected by lazy-evaluation-ands (&&), i.e. if one of them fails the
evaluation will be canceled. We continue with disjunctively connected rules (by |). The
eager operator causes all rules to get executed, but only one must find a match to count as a
success; the final true ensures overall success. The * is used to apply the rule repeatedly as
long as a match can be found. This includes applying the rule zero times. Even in this case
Rule* is still successful.

3.6 Debugging and Output

If you execute the modified GrShell script, GrGen.NET starts its debugger. This way
you can follow the execution of the graph rewrite sequence step by step in yComp. Just
play around with the keys d, s, and r in GrShell: the d key lets you follow a single rule
application in a matching and a rewriting step, highlighting the found spot in the graph; the
s key jumps to the next rule; and the r key runs to the end of the graph rewrite sequence.
After sequence execution, you should see a graph like the one in Figure 3.5.

If everything is working fine you can delete the debug keyword in front of the exec and
just (re)use this sequence as you need to. Maybe you want to save a visualization of the
resulting graph. This is possible by typing dump graph mygraph.vcg in GrShell, which is
then writing mygraph.vcg into the current directory in the VCG format readable by yComp.
Or you want to save the resulting graph as such, to continue processing later on. Say export

mygraph.grs in GrShell then, it will write a file composed of new commands as is our input
file from Figure 3.2, but containing the ε-free graph.

Feel free to browse the examples folder shiped with GrGen.NET; have a look at the
succession of examples in the FiniteStateMachine and ProgramGraphs subfolders, they give
an overview over most of the capabilities of the software.

3.6 Debugging and Output 25

Figure 3.5: A state machine without ε-transitions

26 Quickstart

C H A P T E R 4

G R A P H M O D E L L A N G U AG E

The graph model language lays the foundation for GrGen.NET. It allows to specify node
and edge classes bearing typed attributes that are used in building and wiring the graph.
Additionally, enumeration types can be declared, to be used as attribute types (the other
available attribute types are built-in and don’t need to be declared, they can be just used).

EXAMPLE (2)

The following toy example of a model of road maps gives a rough picture of the language:

1 enum Resident {VILLAGE = 500, TOWN = 5000, CITY = 50000}

2

3 node class Sight;

4

5 node class City {

6 Size:Resident;

7 }

8

9 const node class Metropolis extends City {

10 River:String;

11 }

12

13 abstract node class AbandonedCity extends City;

14 node class GhostTown extends AbandonedCity;

15

16 edge class Street;

17 edge class Trail extends Street;

18 edge class Highway extends Street

19 connect Metropolis[+] --> Metropolis[+]

20 {

21 Jam:boolean = false;

22 }

In this chapter as well as in Chapter 20 (GrShell) we use excerpts of Example 2 (the
Map model) for illustration purposes.

The key features of GrGen.NET graph models as described by Geiß et al. [GBG+06,
KG07] are given below:

Types
Nodes and edges are typed. This is similar to classes in common (object-oriented)
programming languages. GrGen.NET edge types can be directed or undirected.

Attributes

27

28 Graph Model Language

Nodes and edges may possess attributes. The set of attributes assigned to a node or
edge is determined by its type. The attributes themselves are typed, too.

Inheritance
Node and edge types (classes) can be composed by multiple inheritance. Node and
Edge are built-in root types of node and edge types, respectively. Inheritance eases the
specification of attributes because subtypes inherit the attributes of their super types.

Connection Assertions
To specify that certain edge types should only connect specific node types a given
number of times, we include connection assertions.

Furthermore, node and edge types may be extended with methods in addition to at-
tributes. They may get bundled into packages, preventing name collisions. And they support
the concept of graph nesting with attributes of type graph. You find more regarding this in
Chapter 16. In Chapter 22 do you find more on indices, which allow you to quickly access
the elements of the graph that are of interest to you.

4.1 Building Blocks

NOTE (7)

The following syntax specifications make heavy use of syntax diagrams (also known as rail
diagrams). Syntax diagrams provide a visualization of EBNFa grammars. Follow a path
along the arrows through a diagram to get a valid sentence of the nonterminal defined by the
diagram (and in combination the language). Ellipses represent terminals whereas rectangles
represent non-terminal uses. For further information on syntax diagrams see [MMJW91].

aExtended Backus–Naur Form.

Basic elements of the GrGen.NET graph model language are identifiers to denominate node
types, edge types, and attributes. The model’s name itself is given by its file name. The
GrGen.NET graph model language is case sensitive.

Ident, IdentDecl
A non-empty character sequence of arbitrary length consisting of letters, digits, or under-
scores. The first character must not be a digit. Ident and IdentDecl differ in their role:
While IdentDecl is a defining occurrence of an identifier, Ident is a using occurrence. An
IdentDecl may be annotated. See Section 25.10 for annotations of declarations.

NOTE (8)

The GrGen.NET model language does not distinguish between declarations and definitions.
More precisely, every declaration is also a definition. For instance, the following C-like pseudo
GrGen.NET model language code is illegal:

1 node class t_node;

2 node class t_node {

3 ...

4 }

Using an identifier before defining it is allowed. Every used identifier has to be defined exactly
once.

4.2 Type Declarations 29

NodeType, EdgeType, EnumType
These are (semantic) specializations of Ident to restrict an identifier to denote a node type,
an edge type, or an enum type, respectively.

4.1.1 Base Types

The GrGen.NET model language has built-in types for nodes and edges. All nodes have
the attribute-less, built-in type Node as their ancestor. All edges have the abstract (see
Section 4.2), attribute-less, built-in type AEdge as their ancestor.

The AEdge has two non-abstract built-in children: UEdge as base type for undirected edges
and Edge as base type for directed edges. The direction for AEdge and its anchestors that
do not inherit from Edge or UEdge is undefined or arbitrary . Because there is the “magic of
direction” linked to the edge base types, it is recommended to use the keywords directed,
undirected, and arbitrary in order to specify inheritance (see Section 4.2). As soon as you
decided for directed or undirected edge classes within your type hierarchy, you are not able
to let ancestor classes inherited from a contradicting base type, of course. That is, no edge
may be directed and undirected. This is an exception of the concept of multi-inheritance.
Figure 4.1 shows the edge type hierarchy.

AEdge

Edge UEdge

...
user-defined

arbitrary edge classes
...

...
user-defined

directed edge classes
...

...
user-defined

undirected edge classes
...

user-defined
directed edge class n

Figure 4.1: Type Hierarchy of GrGen.NET Edges

4.2 Type Declarations

GraphModel

�
� ClassDeclaration ��

�EnumDeclaration �

�AdvancedModelDeclarations �

�ModelUsage �

�

�

-

30 Graph Model Language

The graph model consists of zero or multiple type declarations. ClassDeclaration defines a
node type or an edge type. EnumDeclaration defines an enum type to be used as a type for
attributes of nodes or edges. Like all identifier definitions, types do not need to be declared
before they are used (but of course must be declared somewhere). The AdvancedModelDec-
larations are differentiated in Chapter 16. In addition, other models may be used (esp.
supplying base classes to extend); this happens in the same way as models are used from the
rules, see section 5.2 and the #using directive for more on this.

4.2.1 Node and Edge Types

ClassDeclaration

�
�- abstract

�� �
�

�
�- const

�� �
�

�
�

�- NodeClass�
��

�- arbitrary
�� ��

�- directed
�� ��- undirected
�� �

�

�

- EdgeClass

�

-

Defines a new node type or edge type. The keyword abstract indicates that you cannot
instantiate graph elements of this type. Instead non-abstract types must be derived from
the type in order to create graph elements. The abstract-property will not be inherited by
subclasses.

EXAMPLE (3)

We adjust our map model and make city abstract:

1 abstract node class City {

2 Size:int;

3 }

4 abstract node class AbandonedCity extends City;

5 node class GhostTown extends AbandonedCity;

You will be able to create nodes of type GhostTown, but not of type City or AbandonedCity.
However, nodes of type GhostTown are also of type AbandonedCity as well as of type City

and they have the attribute Size, hence.

The keyword const indicates that rules may not write to attributes (see also Section 5.4,
eval). However, such attributes are still writable by libGr and GrShell directly. This
property applies to attributes defined in the current class, only. It does not apply to inherited
attributes. The const property will not be inherited by subclasses, either. If you want a
subclass to have the const property, you have to set the const modifier explicitly.

The keywords arbitrary, directed, and undirected specify the direction “attribute”
of an edge class and thus its inheritance. An arbitrary edge inherits from AEdge, it is
always abstract and neither directed nor undirected. A directed edge inherits from Edge.

4.2 Type Declarations 31

An undirected edge inherits from UEdge. If you do not specify any of those keywords, a
directed edge is chosen by default. See also Section 4.1.1

NodeClass

- node
�� �- class

�� �- IdentDecl �
�- extends

�� �- NodeType�
� ,

����
�

�

�

�
�- ;

����
�- {���- AttributeDeclarations - }

���
�

-

Defines a new node type. Node types can inherit from other node types defined within the
same file. If the extends clause is omitted, NodeType will inherit from the built-in type Node.
Optionally nodes can possess attributes.

EdgeClass

- edge
�� �- class

�� �- IdentDecl �
�- extends

�� �- EdgeType�
� ,

����
�

�

�

�
��

�ConnectionAssertions �

�

- ;
����

�- {���- AttributeDeclarations - }
���

�

-

Defines a new edge type. Edge types can inherit from other edge types defined within the
same file. If the extends clause is omitted, EdgeType will inherit from the built-in type Edge.
Optionally edges can possess attributes. A connection assertion specifies that certain edge
types should only connect specific nodes a given number of times. (see Section 4.1.1)

NOTE (9)

GrGen.NET supports multiple inheritance on nodes and edges – use it!
• Your nodes have something in common? Then factor it out into some base class. This works
very well because of the support for multiple inheritance; you don’t have to decide what is
the primary hierarchy, forcing you to fall back to alternative patterns in the situations you
need a different classification. Fine grain type hierarchies not only allow for concise matching
patterns and rules, but deliver good matching performance, too (the search space is reduced
early).
• Your edges have something in common? Then just do the same, edges are first class citizens.

32 Graph Model Language

Connection Assertions

A connection assertion allow you to specify a constraint on the topology. It allows you to
specify the node types an edge may connect to, and the multiplicities with which such edges
appear on the nodes. It is denoted as a pair of node types, optionally with their multiplicities.

NOTE (10)

It is not forbidden to create graphs that are invalid according to connection assertions. Gr-
Gen.NET just enables you to check whether a graph is valid or not. See also Section 20.9,
validate. This is in contrast to type graphs as implemented by tools leaning further towards
theory, and more practically useful – often, constraints need to be violated temporarily during
transformation.

ConnectionAssertions

- connect
�� � - NodeConstraint - -->

�� ��
�- <--

�� ��- --
�� ��- ?--?
�� �

�

- NodeConstraint�

�- copy
�� �- extends

�� �

�

�

� ,
����

�

-

NodeConstraint

- NodeType �
�- MultiplicityConstraint

�

-

MultiplicityConstraint

- [
���- *

����
�- +

����- Number

�- RangeConstraint

�

-]
���-

RangeConstraint

- Number - :
���- *

����
�- Number

�

-

4.2 Type Declarations 33

A connection assertion is best understood as a simple pattern of the form (cf. graphlets 5.1.1)
:SourceNodeType -:EdgeType-> :TargetNodeType, of which every occurrence in the graph
is searched. In contrast to a real such pattern and the node types only edges of exactly the
given edge type are taken into account. Per node of SourceNodeType (or a subtype) it is
counted how often it was covered by a match of the pattern starting at it, and per node of
TargetNodeType (or a subtype) it is counted how often it was covered by a match of the
pattern ending at it. The numbers must be in the range specified at the SourceNodeType

and the TargetNodeType for the connection assertion to be fulfilled. Giving no multiplicity
constraint is equivalent to [*], i.e. [0,∞[, i.e. unconstrained.

Please take care of non-disjoint source/target types/subtypes in the case of undirected
and especially arbitrary edges. In the case of multiple connection assertions, all are checked
and errors for each one reported; for strict validation to succeed at least one of them must
match. It might happen that none of the connection assertions of an EdgeType are matching
an edge of this type in the graph. This is accepted in the case of normal validation (throwing
connection assertions without multiplicities effectively back to nops); but as you normally
want to see only the specified connections occurring in the graph, there is the additional mode
of strict validation: if an edge is not covered by a single matching connection, validation fails.
Furtheron there is the strict-only-specified mode, which only does strict validation of the
edges for which connection assertions are given. See Section 20.9, validate, for an example.

The arrow syntax is based on the GrGen.NET graphlet specification (see Section 5.1.1).
The different kinds of arrows distinguish between directed, undirected, and arbitrary edges.
The --> arrow means a directed edge aiming towards a node of the target node type (or
one of its subtypes). The A<--B connection assertion is equivalent to the B-->A connection
assertion. The -- arrow is used for undirected edges. The ?--? arrow means an arbitrary
edge, i.e. directed as well as undirected ia possible (fixed by the concrete type inheriting from
it); in case of a directed edge the connection pattern gets matched in both directions. Number
is an int constant as defined in Chapter 6. Table 4.1 describes the multiplicity definitions.

[n:*] The number of edges incident to a node of that type is unbounded. At least n
edges must be incident to nodes of that type.

[n:m] At least n edges must be incident to nodes of that type, but at most m edges
may be incident to nodes of that type (m ≥ n ≥ 0 must hold).

[*] Abbreviation for [0:*].
[+] Abbreviation for [1:*].
[n] Abbreviation for [n:n].

Abbreviation for [1].

Table 4.1: GrGen.NET node constraint multiplicities

In order to apply the connection assertions of the supertypes to an EdgeType, you may use
the keywords copy extends. The copy extends assertion “imports” the connection asser-
tions of the direct ancestors of the declaring edge. This is a purely syntactical simplification,
i. e. the effect of using copy extends is the same as copying the connection assertions from
the direct ancestors by hand.

34 Graph Model Language

4.2.2 Attributes and Attribute Types

With attributes you model the specific properties of your node and edge classes. They are
typed variables contained in the class, which are instantiated together with the node or edge.

AttributeDeclaration

�
�- const

�� �
�

- IdentDecl - :

���- AttributeType �
�- =

���- Expression

�

- ;
����

�- AttributeOverwrite

�

-

AttributeType

- PrimitiveType�
�- EnumType

�- ContainerType

�

-

AttributeOverwrite

- Ident - =
���- Expression -

An AttributeDeclaration defines an attribute of a node or edge class. Possible types
are primitive types, enumeration types (enum, cf. Section 4.2.3), and container types. See
Section 6.1 for a list of built-in primitive types, and Section 14.1 for a list of built-in container
types. Furthermore, attributes may be of node or edge or graph type, so they may be directly
pointing to a node or an edge (seldom useful and discouraged), or to a subgraph (containers
may contain that types, too, this holds also for container-typed attributes).

Optionally, attributes may be initialized with a constant expression (meaning only con-
stants and other attributes are allowed). The expression has to be of a type compatible to
the type of the declared attribute. See Chapter 6 for the GrGen.NET types and expressions
reference. The AttributeOverwrite clause lets you overwrite initialization values of attributes
of super classes. The initialization values are evaluated in the order as they appear in the
graph model file.

NOTE (11)

The following attribute declarations are illegal because of the order of evaluation of initial-
ization values:

1 x:int = y;

2 y:int = 42;

Note that GrGen.NET lacks a concept of overwriting for attributes (in contrast to their
values). On a path in the type hierarchy graph from a type up to the built-in root type
there must be exactly one declaration for each attribute identifier. Furthermore, if multiple
paths from a type up to the built-in root type exist, the declaring types for an attribute
identifier must be the same on all such paths. This is equivalent to virtual inheritance in
C++ parlance.

4.2 Type Declarations 35

4.2.3 Enumeration Types

EnumDeclaration

- enum
�� �- IdentDecl - {

���- IdentDecl �
�- =

���- IntExpr

�

�
� ,

����
�

- }
���-

Defines an enum type. An enum type is a collection of so called enum items, which are
used to define and name the values you want to distinguish (when using this type within
your model). Those are internally associated with integral numbers, which may be specified
explicitly. Accordingly, a GrGen.NET enum can be casted to an int (see Section 6.1).
The following notes and examples highlight the relationship of enum items to integers, but
most often you are only interested in the main functionality: the case distinction with names
encoded in the enum (and are then free to ignore these finer points).

NOTE (12)

An enum type and an int are different things, but in expressions enum values are implicitly
casted to int values as needed (see Section 6.1). The other direction is not available at all,
cf. the following Note.

NOTE (13)

Assignments of int values to something that has an enum type are forbidden (see Section 6.1).
Only inside a declaration of an enum type an int value may be assigned to the enum item
that is currently declared.

EXAMPLE (4)

1 enum Color {RED, GREEN, BLUE}

2 enum Resident {VILLAGE = 500, TOWN = 5000, CITY = 50000}

3 enum AsInC {A = 2, B, C = 1, D, E = (int)Resident::VILLAGE + C}

Consider, e.g., the declaration of the enum item E: By explicit and implicit casts of
Resident::VILLAGE and C to int we get the int value 501, which is assigned to E. Moreover,
the semantics is as in C [SAI+90]. So, the following holds: RED = 0, GREEN = 1, BLUE = 2,
A = 2, B = 3, C = 1, D = 2, and E = 501.

NOTE (14)

The C-like semantics of enum item declarations implies that multiple items of one enum type
can be associated with the same same int value. Moreover, it implies, that an enum item
must not be used before its definition. This also holds for items of other enum types, meaning
that the items of another enum type can only be used in the definition of an enum item, when
the other enum type is defined before the enum type currently defined.

36 Graph Model Language

4.2.4 Hints on Modeling

The modeling of the example from the introduction (cf. 1.3) that was chosen for the compiler
case[BJ11a] is suboptimal regarding its usage of integer attributes to denote positions. This
stems from the usage of indices into arrays in its originating compiler intermediate represen-
tation Firm, and esp. its implementation. The right way to handle this in GrGen.NET are
edges explicitly denoting the successor relationship.

The basic points in modeling with GrGen.NET are:

• Use types and inheritance as much as possible, on nodes as well as edges.

• Represent relationships directly and explicitly with typed edges, one for each relation-
ship (modeling entities as nodes and relationships with edges in between them).

• Use edges of type contains to denote containment, pointing from the containing ele-
ment to its children. If you have distinguished types of containment, use contains as
abstract base class, from which the concrete ones that get instantiated are inheriting.

• Use edges of type next to denote orderings or successor relationships, pointing from the
predecessor to the successor element in the ordering. If you have distinguished types
of ordering, use next as abstract base class, from which the concrete ones that get
instantiated are inheriting.

• If you have an ordered containment, up to a statically not known depth, use edges of
both kinds at the same time. With contains to denote the containment in the ordered
tree, and next to order the contained children of an element (so a node is incident to
both kinds of edges).

• If you have an ordered containment with a statically known depth, use containment
edges of dedicated types, with the type representing the order. Example: if you im-
plement binary trees, use an edge of type left and an edge of type right to point to
the left and right sibling. This is easier to process and less memory hungry than the
modeling needed for the full case.

NOTE (15)

If you implement an if-then-else in a syntax graph, use a node of type IfThenElse that
points with a condition edge to the starting node of the condition expression, and a then

edge to the starting node of the true case statements, and an else edge to the starting
node of the false case statements (with statements inheriting from a Statement node class,
being linked by next edges, and expressions being typically binary trees, inheriting from an
Expression node class, being linked by edges of a type representing an ordered containment).
This modeling of the syntax tree backbone is complemented with edges from the uses (nodes
representing entities using other entities) to the definitions (nodes representing entities that
can be used, in a textual syntax typically defined by a name that is mentioned when used)
to build the full syntax graph.

4.2 Type Declarations 37

NOTE (16)

Don’t materialize transitive relationsships. Point only to the immediate/direct successor,
and compute transitive reachability as needed (with the isReachable predicates, or the
reachable functions, or recursive subpatterns).

NOTE (17)

Don’t materialize bidirectional relationships with two edges. Use undirected edges, or pretend
they are unidirectional.

NOTE (18)

If you need to mark nodes in the graph, but only very few of them at the same time, think of
reflexive edges of a special type. If the marking is sparse, they are the most efficient solution,
before attributes, even before visited flags.

As a concluding remark: the graph model is the thing everything else is built upon. It
is worthwhile your continued attention. When you model things for the first time, you may
be lucky in getting it fully right from the start, but it is more likely you find possibilities to
make it better and increase its amenability for processing later on – don’t hesitate to improve
it then. The real star when working with GrGen.NET is the adequately-modeled graph
representation.

38 Graph Model Language

C H A P T E R 5

R U L E L A N G U AG E

The rule set language forms the core of GrGen.NET. Rule files refer to zero 1 or more graph
models, and specify a set of rewrite rules. The rule language covers tests and rules, with
a pattern specification built mainly from graphlets, potentially with homomorphic matching.
Rewrite specifications may be given nested inside a rule in the form of a replace or modify
block. Attributes of graph elements can be checked within if clauses and assigned within
eval blocks.

The following rewrite rule gives an impression of the basic constructs that we will cover
in this chapter (attribute expressions and assignments are covered in Chapters 6 and 12).

EXAMPLE (5)

1 #using "SomeModel.gm"

2

3 test t(n:Node, k:Node) : (Node) {

4 n --> . --> l:Node --> k;

5 hom(l, k);

6 return(l);

7 }

8

9 rule r {

10 n:N -e:E-> n;

11 if{ n.a <= e.a; }

12

13 replace {

14 n --> m:N;

15 eval { m.a = n.a + 1; }

16 }

17 }

18

19 rule s(var i:int) : (Node, N, int) {

20 :N <-- n:N --> m:Node;

21 m <--> l:Node -:E-> n;

22 if{ n.a <= i; }

23

24 modify {

25 delete(n);

26 return(m, l, n.a + 1);

27 }

28 }

1Omitting a graph meta model means that GrGen.NET uses a default graph model. The default model
consists of the base type Node for vertices and the base type Edge for edges.

39

40 Rule Language

5.1 Building Blocks

The GrGen.NET rule set language is case sensitive. The language makes use of several
identifier specializations in order to denominate all the GrGen.NET entities.

Ident, IdentDecl
A non-empty character sequence of arbitrary length consisting of letters, digits, or under-
scores. The first character must not be a digit. Ident may be an identifier defined in a graph
model (see Section 4.1). Ident and IdentDecl differ in their role: While IdentDecl is a defining
occurrence of an identifier, Ident is a using occurrence. An IdentDecl non-terminal can be
annotated. See Section 25.10 for annotations of declarations.

NOTE (19)

As in the GrGen.NET model language (see note 8) every declaration is also a definition.
Using an identifier before defining it is allowed. Every used identifier has to be defined exactly
once.

ModelIdent, TypeIdent, NodeType, EdgeType
These are (semantic) specializations of Ident. TypeIdent matches every type identifier, i.e. a
node type, an edge type, an enumeration type or a primitive type. All the type identifiers
are actually type expressions. See Section 6.7 for the use of type expressions.

5.1.1 Graphlets

Graphlet

- GraphletNode �
�- Continuation

�

�
�- Continuation

�

- ;
���-

Continuation

- GraphletEdge �
�- GraphletNode �

�- Continuation

�

�

-

A graphlet specifies a connected subgraph. GrGen.NET provides graphlets as a descriptive
notation to define both, patterns to search for as well as the subgraphs that replace or modify
matched spots in a host graph. Any graph can be specified piecewise by a set of graphlets. In
Example 5, line 10, the graphlet n:N -e:E-> n begins with a node declaration n:N, followed
by the continuation graphlet -e:E-> n, declaring an edge e:E, leading again to the node n,
referenced by its name.

All the graph elements of a graphlet have names. The name is either user-assigned
or a unique internal, non-accessible name. In the second case the graph element is called
anonymous. For illustration purposes we use a $<number> notation to denote anonymous
graph elements in this document. For example the graphlet n:N --> m:Node contains an
anonymous edge; thus can be understood as n -$1:Edge-> m. Names must not be redefined;
once defined, a name is bound to a graph element. We use the term “binding of names”

5.1 Building Blocks 41

because a name not only denotes a graph element of a graphlet but also denotes the mapping
of the abstract graph element of a graphlet to a concrete graph element of a host graph. So
graph elements of different names are pairwise distinct except for homomorphically matched
graph elements (see Section 5.3). For instance v:NodeType1 -e:EdgeType-> w:NodeType2

selects some node of type NodeType1 that is connected to a node of type NodeType2 by an
edge of type EdgeType and binds the names v, w, and e. If v and w are not explicitly marked
as homomorphic, the graph elements they bind to are distinct. The binding of names allows
for splitting a single graphlet into multiple graphlets as well as defining cyclic structures.

EXAMPLE (6)

The following graphlet (n1, n2, and n3 are defined somewhere else)

1 n1 --> n2 --> n3 <-- n1;

is equivalent to

1 n2 --> n3;

2 n1 --> n2;

3 n3 <-- n1;

and n1 --> n3 is equivalent to n3 <-- n1, of course.

The visibility of names is determined by scopes. Scopes can be nested. Names of surrounding
scopes are visible in inner scopes. Usually a scope is defined by { and }. In Example 5,
lines 13 to 16, the rewrite part uses n from the surrounding scope, and declares m that is not
available in the nesting pattern. And in Example 59, lines 13 to 17, the negative condition
uses n3 from the surrounding scope and declares n4 and e1.

GraphletNode

- Ident�
�- .

�����
�- IdentDecl

�

- :
���- NodeType�

�- AdvancedNodeTypeConstructs

�

�

-

Specifies a node of type NodeType; the alternative advanced node constructs are explained in
chapter 10. The . is an anonymous node of the base type Node; remember that every node
type has Node as super type.

Graphlet Meaning

x:NodeType; The name x is bound to a node of type NodeType or one of its subtypes.
:NodeType; $1:NodeType

.; $1:Node

x; The node to which x is bound to.

42 Rule Language

GraphletEdge

- -
���- EdgeRefinement - ->

�� ��
�- <-

�� �- EdgeRefinement - -
����- <-

�� �- EdgeRefinement - ->
�� ��- ?-

�� �- EdgeRefinement - -?
�� ��- Redirect

�

-

EdgeRefinement

�
�- Ident

��
�- IdentDecl

�

- :
���- EdgeType�

�- AdvancedEdgeTypeConstructs

�

�

-

A GraphletEdge specifies an edge. Anonymous edges are specified by an empty EdgeRe-
finement clause, i. e. -->, <--, <-->, --, ?--? or -:T->, <-:T-, . . . for an edge type T,
respectively. A non-empty EdgeRefinement clause allows for detailed edge type specifica-
tion. The alternative advanced edge constructs as well as the Redirect clause are explained
in chapter 10.

The different kind of arrow tips distinguish between directed, undirected, and arbitrary
edges (see also Section 4.1.1). The arrows --> and <-- are used for directed edges with a
defined source and target. The arrow -- is used for undirected edges. The pattern part
allows for further arrow tips, namely ?--? for arbitrary edges and <--> for directed edges
with undefined direction. Note that <--> is not equivalent to the --> ; <-- ; statements.
In order to produce a match for the arrow <-->, it is sufficient that one of the statements
-->, <-- matches. If an edge type is specified (through the EdgeRefinement clause), this
type has to correspond to the arrow tips, of course.

Graphlet Meaning

-e:EdgeType-> ; The name e is bound to an edge of type EdgeType or one of its
subtypes.

-:EdgeType-> ; -$1:EdgeType-> ;

--> ; -$1:Edge-> ;

<--> ; -$1:Edge-> ; or <-$1:Edge- ;

-- ; -$1:UEdge-> ;

?--? ; -$1:AEdge-> ;

-e-> ; The edge, e is bound to.

As the above table shows, edges can be defined and used separately, i.e. without their incident
nodes. Accidentally “redirecting” an edge is prevented by compiler checks (you must explicitly
use the Redirect clause to achieve this): The graphlets

-e:Edge-> .;

x:Node -e-> y:Node;

are illegal, because the edge e would have two destinations: an anonymous node and y.
However, the graphlets

-e-> ;

x:Node -e:Edge-> y:Node;

5.2 Rules and Tests 43

are allowed, but the first graphlet -e-> is superfluous. In particular this graphlet does not
identify or create any “copies”, neither if the graphlet occurs in the pattern part nor if it
occurs in the rewrite part.

EXAMPLE (7)

Some attempts to specify a loop edge:

Graphlet Meaning

x:Node -e:Edge-> x; The edge e is a loop.
x:Node -e:Edge-> ; -e-> x; The edge e is a loop.
-e:Edge-> x:Node; The edge e may or may not be a loop.
. -e:Edge-> .; The edge e is certainly not a loop.

NOTE (20)

Although both, the pattern part and the rewrite part use graphlets, there are subtle differ-
ences between them. Most of the differences can be seen in chapter 10 where the advanced
constructs are explained .

5.2 Rules and Tests

The structure of a rule set file is as follows:

RuleSet

- FileHeader - ActionDeclaration�
�- SubpatternDeclaration

�- RewriteSequenceDefinition

�- FunctionDefinition

�- ProcedureDefinition

�- FilterFunctionDefinition

�- PackageDefinitionAction

�

�

�

�

-

FileHeader

�
�- ModelUsage�

�
�

�

�
�- RulesInclusion�

�
�

�

�
�- GlobalVarDecl�

�
�

�

-

44 Rule Language

EXAMPLE (8)

Some graphlets:

x:Node --> . --> . --> . --> x;

. <-- x:Node --> .;

. <-- x --> .;

e1 : stem

e2

e3 e4

e5

. <-e1:stem- n1:Node -e2:Edge-> . -e3:Edge-> .

-e4:Edge-> . -e5:Edge-> n1;

n1 --> n2:Node;

n1 --> n2;

. --> . <-- . <-- . --> .;

e -e:Edge->

<-- . <-e- . --> ;

And some illegal graphlets:

. -e:Edge-> .; . -e-> .; Would affect redirecting of edge e.

x -e:T-> y; x -e-> x; Would affect redirecting of edge e.

<-- --> ; There must be at least a node between the edges.

5.2 Rules and Tests 45

ModelUsage

- #using
�� �- Filename -

RulesInclusion

- #include
�� �- Filename -

GlobalVarDecl

- ::
�� �- IdentDecl - :

���- NodeType - ;
����

�- -
���- ::

�� �- IdentDecl - :
���- EdgeType - ->

�� �- ;
����- var

�� ��
�- ref

�� �
�

- ::
�� �- IdentDecl - :

���- VarType - ;
���

�

-

A rule set built on the graph models you are using consists primarily of actions, i.e.
rewrite rules and tests, plus further constructs that will be introduced in later chapters.
Additionally you may include further rule language files. (As a hint regarding the syntax
diagrams: please note that the bottom rail in the RuleSet diagram departs before the end
and joins in after the FileHeader, i.e. it denotes a looping back edge (a fast forward edge
would have split and join points at the same positions but of the opposite direction)).

Furthermore, you may declare graph global variables; this is a pure declaration that
they will exist with the given type during execution. It renders them accessible in the rules
(esp. the attribute condition and attribute evaluation), but you must define and assign
them before rule execution outside of the rules. They are made available to allow for an
easy parameterization of entire transformations, defining the environment; other uses are
discouraged. See Chapter 9 for more on this. (Use ref for container types and var for the
other (non-node or edge) types.)

In case of multiple graph models, GrGen.NET uses the union of these models. In case
of multiple includes, GrGen.NET uses the union of these actions. In this case beware of
conflicting declarations. You may use packages as a remedy, in the model for conflicting data
units, or in the actions for conflicting computation units – or you may use name prefixes as
you would do in the C programming language.

ActionDeclaration

- TestDeclaration�
�- RuleDeclaration

�

-

TestDeclaration

- TestModifier - test
�� �- ActionSignature - {

���- Pattern - }
���- FiltersDecl -

RuleDeclaration

- RuleModifier - rule
�� �- ActionSignature - {

���- Pattern - Rewrite - }
���- FiltersDecl -

Declares a single rewrite rule such as SomeRule. It consists of a pattern part (see Section 5.3)
in conjunction with its rewrite part (see Section 5.4). A test has no rewrite specification.
It’s intended to check whether (and maybe how many times) a pattern occurs (see example
9). For an explanation of the available modifiers see Section 10.1, for an explanation of the
filters see Section 15 and Section 25.4.

46 Rule Language

EXAMPLE (9)

We define a test SomeCond

1 test SomeCond {

2 n:SeldomNodeType;

3 }

and execute in GrShell:

1 exec SomeCond & SomeRule

SomeRule will only be executed, if a node of type SeldomNodeType exists. For graph rewrite
sequences in GrShell see Section 20.4.

ActionSignature

- IdentDecl �
�- Parameters

�

�
�- :

���- ReturnTypes

�

-

The signature sets the name of a rewrite rule to IdentDecl and optionally names and types
of formal parameters as well as a list of return types. Parameters and return types provide
users with the ability to exchange graph elements between rules, similar to parameters of
procedural languages. This way it is possible to specify where a rule should be applied.

Parameters

- (
����

�- Parameter�
� ,

����
�

�

-)
���-

Parameter

- IdentDecl - :
���- NodeType �

�- InputTypeSpecification

�

�
�- -

���- IdentDecl - :
���- EdgeType �

�- InputTypeSpecification

�

- ->
�� �

�- var
�� ��

�- ref
�� �

�

- IdentDecl - :

���- VarType

�

-

InputTypeSpecification

- <
���- NodeEdgeType�

�- null
�� ��- NodeEdgeType - +

���- null
�� ��- null

�� �- +
���- NodeEdgeType

�

- >
���-

5.2 Rules and Tests 47

Within a rule, graph element parameters are treated as graph elements of the pattern -
just predefined. It is your task to ensure the elements handed in satisfy the interface, i.e.
parameters must not be null and must be of the type specified or a subtype of the type
specified (in contrast to some old versions). If you need more flexibility and want to call the
rule with parameters not fulfilling the interface you can append an input type specification
to the relevant parameters, which consists of the type to accept at the action interface, or
null, or both, enclosed in left and right angles. If the input type specification type is given,
but the more specific pattern element type is not satisfied, matching simply fails. If null
is declared in the input type specification and given at runtime, the element is searched
in the host graph. Don’t use null parameters unless you need them, because every null
parameter doubles the number of matcher routines which get generated. Non-graph element
parameters must be prefixed by the var or ref-keyword; VarType is one of the attribute
types supported by GrGen.NET (cf. 6.1 and 14.1). The primitive types require the var

prefix and are handed in by-value; the generic types require the ref prefix and are handed in
by-reference. Please note that the effect of assigning to a var/ref parameter in eval (see 5.4)
is undefined (concerning the parameters as well as the argument); they are only available for
reading, the by-ref parameters additionally for set/map-addition and removal (cf. 11)

EXAMPLE (10)

The test t that checks whether node n1 is adjacent to n2 (connected by an undirected edge
or incoming directed edge or outgoing directed edge)

1 test t(n1:Node<null>, n2:Node<null>) {

2 n1 ?--? n2;

3 }

is equivalent to the tests t1-t4 which are chosen dependent on what parameters are defined.

1 test t1(n1:Node, n2:Node) {

2 n1 ?--? n2;

3 }

4 test t2(n1:Node) {

5 n1 ?--? n2:Node;

6 }

7 test t3(n2:Node) {

8 n1:Node ?--? n2;

9 }

10 test t4 {

11 n1:Node ?--? n2:Node;

12 }

So if both parameters are not defined, t4 is chosen, which succeeds as soon as there are two
distinct nodes in the graph connected by some edge.

ReturnTypes

- (
��� - NodeType�

�- EdgeType

�- VarType

�

�

� ,
����

�

-)
���-

48 Rule Language

The return types specify edge and node types of graph elements that are returned by the
replace/modify part. If return types are specified, the return statement is mandatory. Oth-
erwise no return statement must occur. See also Section 5.4, return.

EXAMPLE (11)

We extend SomeRule (Example 59) with a user defined node to match and we want it to
return the rewritten graph elements n5 and e1.

1 rule SomeRuleExt(varnode:Node):(Node, EdgeTypeB) {

2 n1:NodeTypeA;

3 ...

4

5 replace {

6 varnode;

7 ...

8 return(n5, e1);

9 eval {

10 ...

We do not define varnode within the pattern part because this is already covered by the
parameter specification itself.

5.3 Pattern Part

Pattern

�
�PatternStatement �

�

�
�- ReturnStatement

�

-

A pattern consists of zero or more pattern statements and, (only) in case of a test, an
optional return statement. All the pattern statements must be fulfilled by a subgraph of the
host graph in order to form a match. An empty pattern always produces exactly one (empty)
match. This is caused by the uniqueness of the total and totally undefined function. For an
explanation of the pattern modifiers dpo, identification, dangling, induced, and exact

see Section 10.1.

Names defined for graph elements may be used by other pattern statements as well as
by replace/modify statements. Like all identifier definitions, such names may be used before
their declaration. See Section 5.1 for a detailed explanation of names and graphlets.

5.3 Pattern Part 49

NOTE (21)

The application of a rule is not deterministic (remember the example of the introduction in
Section 1.6), there may be more than one subgraph that matches the pattern. In this case
the location which is rewritten is chosen arbitrarily (in fact matching is just stopped after the
first match following an implementation-defined order is found). But when you compute all
matches, you can select deterministically one of them with a post-matches filter, cf. chapter
15, or you can do so on API level, see chapter 24.
The rule from the rule set to apply in contrast is chosen deterministically by default by
the graph rewrite sequence (GrGen.NET follows the programmed in contrast to the graph
grammar approach), but you can introduce non-determinism there with the $ flag prepended
to a sequence operator, cf. 9.1, or the dedicated indeterministic choices specified in section
18.4.

PatternStatement

- Graphlet - ;
����

�- HomomorphySpecification - ;
����- exact

�� ��
�- induced

�� �
�

- (
���- Ident�

� ,
����

�

-)
���

�- if
�� �- {���- BooleanExpr - ;

����
�

�

- }
���

�- if
�� �- (

���- BooleanExpr -)
���- ;

����- NestedPattern

�- SubpatternEntityDeclaration

�

-

The semantics of the various pattern statements are given below:

Graphlet
Graphlets specify connected subgraphs. See Section 5.1 for a detailed explanation of
graphlets.

Isomorphic/Homomorphic Matching
See Subsection 5.3.1 for a discussion of this.

Attribute Conditions
The Java-like attribute conditions (keyword if) in the pattern part allow for further
restriction of the applicability of a rule. The pattern can only match if the BooleanEx-
pression (see chapter 6) is evaluated to true.

Pattern Modifiers
Additionally to modifiers that apply to a pattern as a whole, you may also specify pat-
tern modifiers for a specific set of nodes. Accordingly the list of identifiers for a pattern
modifier must not contain any edge identifier. See Section 10.1 for an explanation of
the exact and induced modifiers.

50 Rule Language

NestedPattern
will be explained in 7.1,7.2,7.3,7.4.

SubpatternEntityDeclaration
will be explained in 8.1.

Keep in mind that using type constraints or the typeof operator might be helpful. See
Section 6.7 for further information.

ReturnStatement

- return
�� �- (

��� - Ident�
�- Expression

�

�
� ,

����
�

-)
���- ;

���-

Returned graph elements (given by their name) and value entities (given by an expression
computing them) must appear in the same order as defined by the return types in the sig-
nature (see Section 5.2, ActionSignature). Their types must be compatible to the return
types specified.

NOTE (22)

If you are using a graph at the API level without shell-provided names accessible by the
nameof-operator, you may want to number the graph elements for dumping like this (alter-
natively you may use the unique index, cf. 22.2.9; it does not allow you manual handling,
but it also altogether spares you from manual handling):

1 rule numberNode(var id:int) : (int)

2 {

3 n:NodeWithIntId;

4 if { n.id == 0; }

5

6 modify {

7 eval {

8 n.id = id;

9 }

10 return (id + 1);

11 }

12 }

5.3.1 Isomorphic and Homomorphic Matching

HomomorphySpecification

- hom
�� �- (

���- Ident�
� ,

����
�

-)
���- ;

����
�- independent

�� �- (
���- Ident �

�- TypeConstraint

�

-)
���- ;

���

�

-

The matching of pattern elements to host graph elements in GrGen.NET is isomorphic
(injective) by default, i.e. two pattern elements can not be bound to the same host graph

5.4 Replace/Modify Part 51

element. The hom operator specifies the nodes or edges that may be matched homomorphi-
cally. In contrast to the default isomorphic matching, the specified graph elements may be
mapped to the same graph element in the host graph. Note that the graph elements must
have a common subtype. Several homomorphically matched graph elements will be mapped
to a graph element of a common subtype. In Example 59 nodes n1 and n2 may be the same
node. This is possible because they are of the same type (NodeTypeA). Inside a NAC/PAC
the hom operator may only operate on graph elements that are either defined or used in
the NAC/PAC (cf. 7.1/7.2). Nested negative/independent blocks inherit the hom declara-
tions of their nesting pattern. In contrast to previous versions of GrGen hom delarations are
non-transitive, i.e hom(a,b) and hom(b,c) don’t cause hom(a,c) unless specified.

The independent operator specifies the node or edge given within the parentheses to
be homomorphic to all the other pattern elements. With the constraint clause following,
exceptions can be given defining the pattern elements it must be distinct to. Thus we got a
specification mode requesting homomorphic matching with additional isomorphy exceptions
in contrast to the default mode, requesting isomorphic matching with additional homomor-
phy exception. It is recommended to not use the independent operator, it it potentially
dangerous allowing to carry out conflicting rewrites, with an element a to be deleted, element
b to be kept, and element c to be retyped, all mapping to the same graph element (you
will experience funny effects and/or crashes in this case; the hom operator offers some static
checks against this). The operator is available as a last resort for some situations in matching
complex structures with iterated and subpatterns, in which it is unfeasible or not possible
to explicitly give elements the pattern element may be homomorphic to, because they were
matched in a pattern at an arbitrary distance in the derivation path which only dynamically
called the pattern of interest, i.e. they can’t be referenced by name, cf. 8.4.

5.4 Replace/Modify Part

Besides specifying the pattern, a main task of a rule is to specify the transformation of a
matched subgraph within the host graph. Such a transformation specification defines the
transition from the left hand side (LHS) to the right hand side (RHS), i.e. which graph
elements of a match will be kept, which of them will be deleted and which graph elements
have to be newly created.

5.4.1 Implicit Definition of the Preservation Morphism r

In theory the transformation specification is done by defining the preservation morphism r.
In GrGen.NET the preservation morphism r is defined implicitly by using names both in

L R

H H ′

Pattern Graph

Match m

Host Graph

Rewrite Graph

Result Graph

Preservation Morphism r

Rule

Rule Application

Figure 5.1: Process of Graph Transformation

pattern graphlets and rewrite graphlets. Remember that to each of the graph elements a
name is bound to, either user defined or internally defined. If such a name is used in a
rewrite graphlet, the denoted graph element will be kept. Otherwise the graph element will

52 Rule Language

be deleted. By defining a name in a rewrite graphlet a corresponding graph element will be
newly created. So in a rewrite pattern anonymous graph elements will always be created.
Using a name multiple times has the same effect as a single using occurrence. In case of a
conflict between deletion and preservation, deletion is prioritized. If an incident node of an
edge gets deleted, the edge will be deleted as well (in compliance to the SPO semantics).

Pattern (LHS) Rewrite (RHS) r : L −→ R Meaning

x:T; x; r : lhs .x 7→ rhs .x Preservation
x:T; lhs .x /∈ def(r) Deletion

x:T; rhs .x /∈ ran(r) Creation
x:T; x:T; — Illegal, redefinition of x
-e:T-> ; -e-> x:Node; — Illegal, redirection of e
x:N -e:E-> y:N; x -e-> ; r : {lhs .x} 7→ {rhs .x} Deletion of y. Hence del-

etion of e.

Table 5.1: Definition of the preservation morphism r

5.4.2 Specification Modes for Graph Transformation

For the task of rewriting, GrGen.NET provides two different modes: A replace mode and a
modify mode.

Replace mode
The semantics of this mode is to delete every graph element of the pattern that is not
used (referenced) in the rewrite part, keep every graph element that is used, and create
every additionally defined graph element. “Using” means that the name of a graph
element occurs in a rewrite graphlet. Attribute calculations are no using occurrences.
In Example 11 the nodes varnode and n3 will be kept. The node n1 is replaced by the
node n5 preserving n1’s edges. The anonymous edge instance between n1 and n2 only
occurs in the pattern and therefore gets deleted.
See Section 5.4.1 for a detailed explanation of the transformation semantics.

Modify mode
The modify mode can be regarded as a rewrite part in replace mode, where every pattern
graph element is added (occurs) before the first rewrite statement. In particular all the
anonymous graph elements are kept. Additionally this mode supports the delete

operator that deletes every element given as an argument. Deletion takes place after all
other rewrite operations. Multiple deletion of the same graph element is allowed (but
pointless) as well as deletion of just created elements (pointless, too).

NOTE (23)

In general modify mode should be preferred as it allows to read the rewrite part as
a diff of the changes to be made to the pattern part, whereas replace mode requires
comparing the LHS and RHS pattern while reading to find out about the changes. Only
if most of the pattern is to be deleted is the replace mode advantageous, pinpointing
what should stay. (Furthermore it might be simpler to generate code for, just dumping
both patterns.)

5.4 Replace/Modify Part 53

EXAMPLE (12)

How might Example 11 look in modify mode? We have to denominate the anonymous edge
between n1 and n2 in order to delete it. The node varnode should be kept and does not need
to appear in the modify part. So we have

1 rule SomeRuleExtModify(varnode: Node): (Node, EdgeTypeB) {

2 ...

3 n1 -e0:Edge-> n2;

4 ...

5 modify {

6 n5:NodeTypeC<n1>;

7 n3 -e1:EdgeTypeB-> n5;

8 delete(e0);

9 eval {

10 ...

5.4.3 Syntax

Rewrite

- replace
�� ��

�- modify
�� �

�

- {
����

�RewriteStatement �

�

�
�- ReturnStatement

�

�
�

��
�ExecStatement �

�

- }
���-

Selects whether replace mode or modify mode is used. Several rewrite statements describe the
transformation from the pattern subgraph to the destination subgraph. The ReturnStatement
was already introduced, for tests it can appear in the pattern part. Inside rules it can only
be given in the rewrite part. The ExecStatement will be introduced in chapter 11.

RewriteStatement

- Graphlet - ;
����

�- delete
�� �- (

���- Ident�
� ,

����
�

-)
���- ;

���
�- eval

�� �- {���- ComputationStatement�
�

�

- }
���

�- SubpatternRewriteApplication

�

-

The semantics of the various rewrite statements are:

54 Rule Language

Graphlet
Analogous to a pattern graphlet; a specification of a connected subgraph. Its graph
elements are either kept because they are elements of the pattern or added otherwise.
Names defined in the pattern part must not be redefined in the rewrite graphlet. See
Section 5.1 for a detailed explanation of graphlets.

Deletion
The delete operator is only available in modify mode. It deletes the specified pattern
graph elements. Multiple occurrences of delete statements are allowed. Deletion
statements are executed after all other rewrite statements. Multiple deletion of the
same graph element is allowed (but pointless) as well as deletion of just created elements
(pointless, too).

Computation (Attribute Evaluation)
If a rule is applied, then the attributes of matched and inserted graph elements will be
recalculated according to the eval statements. Besides attribute evaluations, further
computations may be executed and side effects applied, see Chapter 12 for more on
this.

SubpatternRewriteApplication
will be explained in 8.2.

Several attribute evaluation parts may be given within the rewrite block. Multiple eval-
uation statements will be internally concatenated, preserving their order. Evaluation takes
place before any graph element specified to be deleted by the rule gets deleted and after all
the new elements (according to the rule rewrite part) have been created. You may read (and
write, although this is pointless) attributes of graph elements to be deleted.

EXAMPLE (13)

1 ...

2 modify {

3 ...

4 eval { y.i = 40; }

5 eval { y.j = 0; }

6 x:IJNode;

7 y:IJNode;

8 delete(x);

9 eval {

10 x.i = 1;

11 y.j = x.i;

12 x.i = x.i + 1;

13 y.i = y.i + x.i;

14 }

15 }

This toy example yields y.i = 42, y.j = 1.

5.4 Replace/Modify Part 55

EXAMPLE (14)

The images from above visualize the basic graph operations introduced in this chapter, ren-
dered by the debugger (cf. Chapter 21).
The figure to the left shows how the pattern of example rule r from below is matched in a tiny
example graph (built from nodes of types Node and N, the latter bearing an attribute i of type
int, and edges of type Edge). Matched nodes are colored in light-brown, in contrast to the
default yellow of unmatched nodes $1 and $3, and have the name of the pattern element that
was mapped to them inscribed, here we see pattern node n matched to $0, and pattern node
m matched to $2. The unmatched edges $4 and $7 are shown with a thin arrow, the matched
edge $5 with a thick arrow, in addition it has the auto-assigned name edge0 inscribed. The
attribute condition n.i == 42 is satisfied as can be seen from the infotag shown at node $0.
Note that m could have been matched to $1 instead.
The figure to the right shows how the modifications of the rewrite part are applied at the
matched spot. Node $2 bound to m is deleted, this is shown with gray color (”fade to gray”);
according to SPO semantics, it drags edges $4 and $5 with it. Node $8 is created for pattern
node o, and edge $9 for pattern edge edge1 (which is again an auto-generated name, which is
what GrGen.NET does under the covers for anonymous pattern elements.) Graph element
creation is visualized in green color. Additionally, the attribute assignment n.i = n.i + 1

was carried out.

1 rule r

2 {

3 n:N --> m:Node;

4 if{ n.i == 42; }

5

6 modify {

7 delete(m);

8 n --> o:Node;

9 eval { n.i = n.i + 1; }

10 }

11 }

56 Rule Language

C H A P T E R 6

B A S I C T Y P E S A N D AT T R I B U T E E VA L U AT I O N
E X P R E S S I O N S

6.1 Built-In Types

Besides user-defined node types, edge types, and enumeration types (as introduced in Chap-
ter 4), GrGen.NET supports the built-in primitive types in Table 6.1 (and built-in generic
types, cf. 13). The exact type format is backend specific. The LGSPBackend maps the
GrGen.NET primitive types to the corresponding C# primitive types.

boolean Covers the values true and false

byte, short, int, long A signed integer, with 8 bits, with 16 bits, with 32 bits, with
64 bits

float, double A floating-point number, with single precision, with double
precision

string A character sequence of arbitrary length
object Contains a .NET object

Table 6.1: GrGen.NET built-in primitive types

PPPPPPPPPto
from

enum boolean int double string object

enum =/—
boolean =
int implicit = (int)

double implicit implicit =
string implicit implicit implicit implicit = implicit
object (object) (object) (object) (object) (object) =

Table 6.2: GrGen.NET type casts

Table 6.2 lists GrGen.NET’s implicit type casts and the allowed explicit type casts. Of
course you are free to express an implicit type cast by an explicit type cast as well as “cast”
a type to itself. The int is the default integer type, in the table it stands for all the integer
types. The double is the default floating point type, in the table it stands for all the floating
points types. The integer types are implicitly casted upwards from smaller to larger types
(byte < short < int < long), whereas a downcast requires an explicit cast. The byte and
short types are not used in computations, they are casted up to int (or long if required
by the context.) The floating point types are implicitly casted upwards (float < double),
and require an explicit cast downwards, too. As specified by the table, integer numbers are
automatically casted to floating point numbers, and castable with an explicit cast vice versa.
According to the table neither implicit nor explicit casts from int to any enum type are
allowed. This is because the range of an enum type is very sparse in general. For the same

57

58 Basic Types and Attribute Evaluation Expressions

reason implicit and explicit casts between enum types are also forbidden. Thus, enum values
can only be assigned to attributes having the same enum type. A cast of an enum value to
a string value will return the declared name of the enum value. A cast of an object value to
a string value will return “null” or it will call the toString() method of the .NET object.
Everything is implicitly casted to string to enable concise text output without the need for
boilerplate casting. Be careful with assignments of objects: GrGen.NET does not know
your .NET type hierarchy and therefore it cannot check two objects for type compatibility.
Objects of type object are not very useful for GrGen.NET processing and the im/exporters
can’t handle them, but they can be used on the API level.

EXAMPLE (15)

• Allowed:
x.myfloat = x.myint; x.mydouble = (float) x.myint;

x.mystring = (string) x.mybool;

• Forbidden:
x.myfloat = x.mydouble; and x.myint = (int) x.mybool;

MyEnum1 = (MyEnum1Type) int; and MyEnum2 = (MyEnum2Type) MyEnum1; where
myenum1 and myenum2 are different enum types.

NOTE (24)

Unlike an eval part (which must not contain assignments to node or edge attributes) the
declaration of an enum type can contain assignments of int values to enum items (see Sec-
tion 4.2). The reason is, that the range of an enum type is just defined in that context.

6.2 Expressions

GrGen.NET supports numerous operations on the entities of the types introduced above,
which are organized into left associative expressions (so a⊗ b⊗ c is evaluated as (a⊗ b)⊗ c).
In the following they will be explained with their semantics and relative priorities one type
after another in the order of the rail diagram below.

Expression

- BoolExpr�
�- RelationalExpr

�- IntExpr

�- FloatExpr

�- StringExpr

�- TypeExpr

�- PrimaryExpr

�

-

6.3 Boolean Expressions 59

6.3 Boolean Expressions

The boolean expressions combine boolean values with logical operations. They bind weaker
than the relational expressions which bind weaker than the other expressions.

BoolExpr

�
�- !

���
�

- PrimaryExpr�

�- BoolExpr - ?
���- BoolExpr - :

���- BoolExpr

�- BoolExpr - BinBoolOperator - BoolExpr

�- RelationalExpr

�

-

The unary ! operator negates a Boolean. The binary BinBoolOperator is one of the operators
in Table 6.3. The ternary ? operator is a simple if-then-else: If the first BoolExpr is evaluated

^
Logical XOR. True, iff either the first or the second
Boolean expression is true.

&&

||
Logical AND and OR. Lazy evaluation.

&

|
Logical AND and OR. Strict evaluation.

Table 6.3: Binary Boolean operators, in ascending order of precedence

to true, the operator returns the second BoolExpr, otherwise it returns the third BoolExpr.

6.4 Relational Expressions

The relational expressions compare entities of different kinds, mapping them to the type
boolean. They are an intermediary that allows to obtain the boolean type required by the
decisions from the other types. They bind stronger than the boolean expressions but weaker
than all the other non-boolean expressions.

RelationalExpr

- Expression - CompareOperator - Expression -

The CompareOperator is one of the following operators:

< <= == != >= > ~~ in

Their semantics are type dependent.
For arithmetic expressions on int and float or double types the semantics is given by

Table 6.4 (by implicit casting they can also by used with all enum types).
For expressions on string types lexicographic order is used for comparisons, the exact

semantics is given by Table 6.5.
Boolean types and object types support only the == and the != operators; on boolean

values they denote equivalence and antivalence, and on object types they tell whether the
references are the same, thus the objects identical.

For type expressions the semantics of compare operators are given by table 6.6, the rule
to remember is: types grow larger with extension/refinement. An example is given in 6.7.

60 Basic Types and Attribute Evaluation Expressions

A == B True, iff A is the same number as B.
A != B True, iff A is a different number than B.
A < B True, iff A is smaller than and not equal B.
A > B True, iff A is greater than and not equal B.
A <= B True, iff A is smaller than (or equal) B.
A >= B True, iff A is greater than (or equal) B.

Table 6.4: Compare operators on arithmetic expressions

A == B True, iff A is the same string as B.
A != B True, iff A is not the same string as B.
A < B True, iff the first character where A and B differ is smaller for A, or A is a prefix

of B.
A > B True, iff the first character where A and B differ is smaller for B, or B is a prefix

of A.
A <= B True, iff the first character where A and B differ is smaller for A, or A is a prefix

of B, or A is the same as B.
A >= B True, iff the first character where A and B differ is smaller for B, or B is a prefix

of A, or B is the same as A.

Table 6.5: Compare operators on string expressions

A == B True, iff A and B are identical. Different types in a type hierarchy are not
identical.

A != B True, iff A and B are not identical.
A < B True, iff A is a supertype of B, but A and B are not identical.
A > B True, iff A is a subtype of B, but A and B are not identical.
A <= B True, iff A is a supertype of B or A and B are identical.
A >= B True, iff A is a subtype of B or A and B are identical.

Table 6.6: Compare operators on type expressions

6.5 Arithmetic and Bitwise Expressions 61

NOTE (25)

A < B corresponds to the direction of the arrow in an UML class diagram.

NOTE (26)

Node and Edge are the least specific, thus bottom elements ⊥ of the type hierarchy,
i.e. the following holds:

• ∀n ∈ TypesNode : Node <= n

• ∀e ∈ TypesEdge : Edge <= e

The main use of the in operator is for checking membership in a container type, see
Chapter 13.

The ~~ operator allows to compare graphs, supplementing == and != in this role, see
Chapter 14.

6.5 Arithmetic and Bitwise Expressions

The arithmetic and bitwise expressions combine integer and floating point values with the
arithmetic operations usually available in programming languages and integer values with
bitwise logical operations (interpreting integer values as bit-vectors).

IntExpr

�
�- +

����- -
����- ∼���

�

- PrimaryExpr�

�- BoolExpr - ?
���- IntExpr - :

���- IntExpr

�- IntExpr - BinIntOperator - IntExpr

�

-

The ∼ operator is the bitwise complement. That means every bit of an integer value will be
flipped. The ? operator is a simple if-then-else: If the BoolExpr is evaluated to true, the op-
erator returns the first IntExpr, otherwise it returns the second IntExpr. The BinIntOperator
is one of the operators in Table 6.7.

If one operand is long the operation is carried out with 64 Bits, otherwise the operation
is carried out with 32 Bits, i.e. int-sized — even if all the operands are of type byte or
short.

62 Basic Types and Attribute Evaluation Expressions

^

&

|

Bitwise XOR, AND and OR

<<

>>

>>>

Bitwise shift left, bitwise shift right and
bitwise shift right prepending zero bits (unsigned mode)

+

-
Addition and subtraction

*

/

%

Multiplication, integer division, and modulo

Table 6.7: Binary integer operators, in ascending order of precedence

FloatExpr

�
�- +

����- -
���

�

- PrimaryExpr�

�- BoolExpr - ?
���- FloatExpr - :

���- FloatExpr

�- FloatExpr - BinFloatOperator - FloatExpr

�

-

The ? operator is a simple if-then-else: If the BoolExpr is evaluated to true, the operator
returns the first FloatExpr, otherwise it returns the second FloatExpr. The BinFloatOperator
is one of the operators in Table 6.8.

+

-
Addition and subtraction

*

/

%

Multiplication, division and modulo

Table 6.8: Binary float operators, in ascending order of precedence

NOTE (27)

The % operator on float values works analogous to the integer modulo operator. For instance
4.5 % 2.3 == 2.2.

If one operand is double the operation is carried out with 64 Bits, otherwise the operation
is carried out with 32 Bits, i.e. float-sized.

6.6 String Expressions

String expressions combine string values by string operations, with integer numbers used as
helpers to denote positions in the strings (and giving the result of length counting).

6.6 String Expressions 63

StringExpr

- PrimaryExpr �
�- MethodSelector

�

�
�- StringExpr - +

���- StringExpr

�- StringExpr - in
�� �- StringExpr

�

-

MethodSelector

- .
���- MethodName - (

����
�- Variable�

� ,
����

�

�

-)
���-

The operator + concatenates two strings. The operator in returns true if the left string
is contained in the right string (false otherwise). There are several operations on strings
available in method call notation (MethodSelector), these are

.length()

returns length of string, as int

.startsWith(strToSearchFor)

returns whether the string begins with strToSearchFor:string, as boolean

.endsWith(strToSearchFor)

returns whether the string ends with strToSearchFor:string, as boolean

.indexOf(strToSearchFor)

returns first position where strToSearchFor:string appears at, as int, or -1 if not
found

.indexOf(strToSearchFor, startIndex)

returns first position where strToSearchFor:string appears at (moving to the end),
when we start the search for it at string position startIndex:int, as int, or -1 if not
found

.lastIndexOf(strToSearchFor)

returns last position strToSearchFor:string appears at, as int, or -1 if not found

.lastIndexOf(strToSearchFor, startIndex)

returns last position strToSearchFor:string appears at (moving to the begin), when
we start the search for it at string position startIndex:int, as int, or -1 if not found

.substring(startIndex, length)

returns substring of given length:int from startIndex:int on

.substring(startIndex)

returns substring from startIndex:int on (of full remaining length)

.replace(startIndex, length, replaceStr)

returns string with substring from startIndex:int on of given length:int replaced
by replaceStr:int

.toLower()

returns a lowercase version of the string

64 Basic Types and Attribute Evaluation Expressions

.toUpper()

returns an uppercase version of the string

.asArray(separator)

returns the original string exploded to an array of substrings (array<string>), at each
occurence of the separator:string; the separators are not included in the array. If
separator is empty, you get the original string exploded to an array of single-character
strings (an array<string> contains an asString method for reversal).

EXAMPLE (16)

For n.str == "foo bar foo" the operations yield
n.str.length()==11

n.str.startsWith("foo")==true

n.str.endsWith("foo")==true

n.str.indexOf("foo")==0

n.str.indexOf("foo", 1)==8

n.str.lastIndexOf("foo")==8

n.str.substring(4,3)=="bar"

n.str.substring(4)=="bar foo"

n.str.replace(4,3,"foo")=="foo foo foo"

n.str.toUpper()=="FOO BAR FOO"

n.str.asArray(" ")==array<string>["foo","bar","foo"]

6.7 Type Expressions

TypeExpr

- TypeIdent�
�- typeof

�� �- (
���- NodeOrEdge -)

���
�

-

A type expression identifies a type (and—in terms of matching—also its subtypes). A type
expression is either a type identifier itself or the type of a graph element. The type expression
typeof(x) stands for the type of the host graph element x is actually bound to.

EXAMPLE (17)

T

T1

T2

T4

T3

The expression typeof(x)<=T2 applied to the type hierarchy on the left
side yields true if x is a graph element of type T or T1 or T2. The
expression typeof(x)>T2 only yields true for x being a graph element
of type T4. The expression T1<T3 always yields true.

6.8 Primary Expressions 65

6.8 Primary Expressions

After we’ve seen the all the ways to combine expressions, finally we’ll have a look at the
atoms the expressions are built of.

PrimaryExpr

- CastExpr�
�- MemberAccess

�- FunctionCall

�- VarIdent

�- ::
�� �- GlobalVarIdent

�- nameof
�� �- (

����
�- NodeOrEdge

�

-)
���

�- uniqueof
�� �- (

����
�- NodeOrEdge

�

-)
���

�- random
�� �- (

����
�- IntExpr

�

-)
���

�- (
���- Expression -)

���

�

-

The nameof query returns the name (persistent name, see example 131 or 22.2.8) of the
given graph element as string (graphs elements of pure LGSPGraphs bear no name, then the
query fails, but normally you are using LGSPNamedGraphs). Besides nodes or edges, subgraphs
may be given, then the name of the subgraph is returned. If no argument is given, the name
of the graph (the current host graph) is returned.

The uniqueof query returns the unique id (see 22.2.9) of the given graph element as int
(you only receive a unique id in case uniqueness was declared in the model). Besides nodes
or edges, subgraphs may be given, then the unique id of the subgraph is returned. If no
argument is given, the unique if of the graph (the current host graph) is returned.

The random function returns a double random value in between 0.0 and 1.0 if called
without an argument, or, if an integer argument value is given, an integer random value in
between 0 and the value given, excluding the value itself.

CastExpr

- (
���- PrimitiveType -)

���- PrimaryExpr -

MemberAccess

- NodeOrEdge - .
���- Ident -

FunctionCall

- FunctionName - (
����

�- Expr�
� ,

����
�

�

-)
���-

66 Basic Types and Attribute Evaluation Expressions

The cast expression returns the original value casted to the new prefixed type. The
member access n.a returns the value of the attribute a of the graph element n. A function
call employs an external (attribute evaluation) function (cf. 25.2), or a (internal) user-defined
function (see 12.5.1), or one of the following built-in functions contained in the built-in
package Math or in the built-in package Time (for more on packages see 16.2.2):

Math::min(.,.)

returns the smaller of the two argument values, which must be of the same numeric
type (i.e. both either byte or short or int or long or float or double)

Math::max(.,.)

returns the greater of the two argument values, which must be of the same numeric
type (i.e. both either byte or short or int or long or float or double)

Math::abs(.)

returns the absolute value of the argument, which must be of numeric type (i.e. byte

or short or int or long or float or double)

Math::ceil(.)

returns the ceiling of the argument, which must be of type double

Math::floor(.)

returns the floor of the argument, which must be of type double

Math::round(.)

returns the argument rounded, which must be of type double

Math::truncate(.)

returns the argument truncated, which must be of type double

Math::pow(.,.)

returns the first argument value to the power of the second value; both must be of type
double

Math::pow(.)

returns e to the power of the argument value, which must be of type double

Math::log(.,.)

returns the logarithm of the first argument value regarding the base given by the second
value; both must be of type double

Math::log(.,.)

returns the logarithm of the argument value that must be of type double regarding the
base e

Math::sgn(.)

returns the signum of the argument, which must be of type double (−1 if negative, 1
if positive, 0 if zero)

Math::sin(.)

returns the sine of the argument, which must be of type double

Math::cos(.)

returns the cosine of the argument, which must be of type double

Math::tan(.)

returns the tangent of the argument, which must be of type double

6.8 Primary Expressions 67

Math::arcsin(.)

returns the inverse of the sine for the argument, which must be of type double

Math::arccos(.)

returns the inverse of the cosine for the argument, which must be of type double

Math::arctan(.)

returns the inverse of the tangent for the argument, which must be of type double

Math::pi()

returns the constant π, of type double

Math::e()

returns the constant e, of type double

Math::byteMin()

returns the smallest number supported by type byte

Math::byteMax()

returns the largest number supported by type byte

Math::shortMin()

returns the smallest number supported by type short

Math::shortMax()

returns the largest number supported by type short

Math::intMin()

returns the smallest number supported by type int

Math::intMax()

returns the largest number supported by type int

Math::longMin()

returns the smallest number supported by type long

Math::longMax()

returns the largest number supported by type long

Math::floatMin()

returns the smallest number supported by type float

Math::floatMax()

returns the largest number supported by type float

Math::doubleMin()

returns the smallest number supported by type double

Math::doubleMax()

returns the largest number supported by type double

Time::now(.)

returns the current UTC time as long, given as windows file time (i.e. 100ns ticks since
1601-01-01)

Literal

- Constant�
�- ContainerConstructor

�

-

68 Basic Types and Attribute Evaluation Expressions

Constant

- EnumLit�
�- Number

�- HexNumber

�- FloatingNumber

�- QuotedText

�- BoolLit

�- NullLit

�

-

The Constants are:

EnumLit
Is the value of an enum type, given in notation EnumType ’::’ EnumValue.

Number
Is a byte or short or int or long number in decimal notation without decimal point,
postfixed by y or Y for byte, postfixed by s or S for short, postfixed by l or L for long,
or of int type if not postfixed.

HexNumber
Is a byte or short or int or long number in hexadecimal notation starting with 0x,
the different types are distinguished by the suffix as for a decimal notation number.

FloatingNumber
Is a float or double number in decimal notation with decimal point, postfixed by f

or F for float, maybe postfixed by d or D for double .

QuotedText
Is a string constant. It consists of a sequence of characters, enclosed by double quotes.

BoolLit
Is a constant of boolean type, i.e. one of the literals true or false.

NullLit
Is the one constant of object type, the literal null.

EXAMPLE (18)

Some examples of literals:

1 Apple::ToffeeApple // an enum literal

2 42y // an integer number in decimal notation of byte type

3 42s // an integer number in decimal notation of short type

4 42 // an integer number in decimal notation of int type

5 42L // an integer number in decimal notation of long type

6 0x7eadbeef // an integer number in hexadecimal notation of int type

7 0xdeadbeefL // an integer number in hexadecimal notation of long type

8 3.14159 // a double number

9 3.14159f // a float number

10 "ve rule and 0wn ze vorld" // a text literal

11 true // a bool literal

12 null // the object literal

6.9 Operator Priorities 69

6.9 Operator Priorities

The priorities of all available operators are shown in ascending order in the table below, the
dots mark the positions of the operands, the commas separate the operators available on the
respective priority level.

01 . ? . : .

02 . || .

03 . && .

04 . | .

05 . ^ .

06 . & .

07 . \ .

08 . ==,!=,~~ .

09 . <,<=,>,>=,in .

10 . <<,>>,>>> .

11 . +,- .

12 . *,%,/ .

13 ~,!,-,+ .

Table 6.9: All operators, in ascending order of precedence

70 Basic Types and Attribute Evaluation Expressions

C H A P T E R 7

N E S T E D PAT T E R N S

The extension of the rule set language described in the chapter 5 by nested patterns in this
chapter 7 and the following chapter 8 greatly enhances the flexibility and expressiveness of
pattern matching and rewriting. The following patterns to match a simplified abstract syntax
tree give a rough picture of the language of nested and subpatterns:

EXAMPLE (19)

1 test method

2 {

3 m:Method <-- n:Name; // signature of method consisting of name

4 iterated { // and 0-n parameters

5 m <-- :Variable;

6 }

7

8 :AssignmentList(m); // body consisting of a list of assignment statements

9 }

10

11 pattern AssignmentList(prev:Node)

12 {

13 optional { // nothing or a linked assignment and again a list

14 prev --> a:Assign; // assignment node

15 a -:target-> v:Variable; // which has a variable as target

16 :Expression(a); // and an expression which defines the left hand side

17 :AssignmentList(a); // next one, plz

18 }

19 }

20

21 pattern Expression(root:Expr)

22 {

23 alternative { // expression may be

24 Binary { // a binary expression of an operator and two expresions

25 root <-- expr1:Expr;

26 :Expression(expr1);

27 root <-- expr2:Expr;

28 :Expression(expr2);

29 root <-- :Operator;

30 }

31 Unary { // or a unary expression which is a variable (reading it)

32 root <-- v:Variable;

33 }

34 }

35 }

71

72 Nested Patterns

Until now we have seen rules and tests with one left hand side static pattern specification
in a direct 1:1 correspondence with its dynamic match in the host graph on a successful
application. From now on we will increase the expressiveness of the pattern language, and
dependent on it the rewrite language, to describe much finer and more flexible what patterns
to accept. This will be done by pattern specifications built up from multiple static pattern
piece specifications, where the pieces may be matched dynamically zero, one, or multiple
times, or are forbidden to exists for the entire pattern to be matched. These rule set lan-
guage constructs can be split into nested patterns (negative application condition, positive
application condition, nested pattern with cardinality, alternative patterns) and subpatterns
(subpattern declaration and subpattern entity declaration, subrule declaration and usage),
in this chapter we will focus on the nested patterns:

NestedPattern

- NegativeApplicationCondition�
�- PositiveApplicationCondition

�- NestedPatternWithCardinality

�- AlternativePatterns

�

-

7.1 Negative Application Condition (NAC)

NegativeApplicationCondition

- negative
�� �- {����

�PatternStatement �

�

- }
���-

With negative application conditions (keyword negative) we can specify graph patterns
which forbid the application of a rule if any of them is present in the host graph (cf. [Sza05]).
NACs possess a scope of their own, i.e. names defined within a NAC do not exist outside the
NAC. Identifiers from surrounding scopes must not be redefined. If they are not explicitly
mentioned, the NAC gets matched independent from them, i.e. elements inside a negative
are hom(everything from the outside) by default. But referencing the element from the
outside within the negative pattern causes it to get matched isomorphically/distinct to the
other elements in the negative pattern. This is a bit unintuitive if you think of extending the
pattern by negative elements, but cleaner and more powerful: just think of NACs to simply
specify a pattern which should not be in the graph, with the possibility of forcing elements
to be the same as in the enclosing pattern by name equality.

EXAMPLE (20)

We specify a variable which is not badly typed, i.e. a node x of type Variable which must
not be target of an edge of type type with a source node of type BadType:

1 x:Variable;

2 negative {

3 x <-:type- :BadType;

4 }

7.1 Negative Application Condition (NAC) 73

Because NACs have their “own” binding, using NACs leads to specifications which might
look a bit redundant.

EXAMPLE (21)

Let’s check the singleton condition, meaning there’s exactly one node of the type to check, for
the type RootNamespace. The following specification is wrong (it will never return a match):

1 x:RootNamespace;

2 negative {

3 y:RootNamespace;

4 }

Instead we have to specify the complete forbidden pattern inside the NAC. This is done by:

1 x:RootNamespace;

2 negative {

3 x;

4 y:RootNamespace; // now it is ensured that y must be different from x

5 }

Btw: the x; is not a special construct, it’s a normal graphlet (cf. 5.1.1).

If there are several patterns which should not occur, use several negatives. If there are
exceptions to the forbidden pattern, use nested negatives. As a straight-forward generaliza-
tion of negatives within positive patterns, negatives may get nested to an arbitrary depth.
Matching of the nested negative pattern causes the matching of the nesting pattern to fail.

EXAMPLE (22)

A fabricated example using parallel as well as nested negatives:

1 test onlyOneChildOrAllChildrenHaveExactlyOneCommonChild

2 {

3 root:Class;

4 negative {

5 root -:extending-> :Class; // root does not extend another class

6 }

7 root <-:extending- c1:Class; // a class c1 extends root

8 negative {

9 c1;

10 root <-:extending- c2:Class; // there is no c2 which extends root

11 negative {

12 c1 <-:extending- child:Class -:extending-> c2; // except c1 and c2 have a common child

13 negative { // and c1 has no further children

14 child;

15 c1 <-:extending- :Class;

16 }

17 negative { // and c2 has no further children

18 child;

19 c2 <-:extending- :Class;

20 }

21 }

22 }

23 }

74 Nested Patterns

7.2 Positive Application Condition (PAC)

PositiveApplicationCondition

- independent
�� �- {����

�PatternStatement �

�

- }
���-

With positive application conditions (keyword independent) we can specify graph pat-
terns which, in contrast to negative application conditions, must be present in the host graph
to cause the matching of the enclosing pattern to succeed. Together with NACs they share
the property of opening a scope, with elements being independent from the surrounding scope
(i.e. a host graph element can easily get matched to a pattern element and a PAC element
with a different name, unless the pattern element is referenced in the PAC). They are used to
improve the logical structure of rules by separating a pure condition from the main pattern
of the rule amenable to rewriting. They are used when all matches of a pattern are wanted,
and a part of that pattern is available in the graph multiple times, but should not cause
combinatorially additional matches; then the independent can be used to check only for the
existence of that part, limiting the all-matching to the core pattern. They are really needed
if subpatterns want to match elements which were already matched during the subpattern
derivation.

EXAMPLE (23)

A further fabricated example rather giving the intention using independent patterns to check
some conditions with only the main pattern available to rewriting:

1 rule moveMethod

2 {

3 c:Class --> m:Method;

4 csub -:extending-> c;

5 csub:Class -e:Edge-> msub:Method;

6

7 independent {

8 // a complicated pattern to find out that m and msub have same signatures

9 }

10 independent {

11 // a complicated pattern to find out that msub is only using variables available in c

12 }

13 independent {

14 // a complicated pattern to find out that m is not used

15 }

16

17 modify { // move method upwards

18 delete(m);

19 delete(e);

20 c --> msub;

21 }

22 }

7.3 Pattern Cardinality (iterated / multiple / optional) 75

7.3 Pattern Cardinality (iterated / multiple / optional)

NestedPatternWithCardinality

- iterated
�� ��

�- multiple
�� ��- optional
�� �

�

- {
���- NestedBody - }

���-

NestedBody

- PatternStatement�
�

�

�
�- NestedRewriting

�

-

The blocks allow to specify how often the nested pattern – opening a scope – is to be
matched. Matching will be carried out eagerly, i.e. if the construct is not limiting the number
of matches and a further match is possible it will be done. (The nested body will be explained
in Section 7.5.)

The Iterated Block

The iterated block is matching the contained subpattern as often as possible, succeeding even
in the case the contained pattern is not available (thus it will never fail). It was included in
the language to allow for matching breadth-splitting structures, as in capturing all methods
of a class in a program graph.

EXAMPLE (24)

1 test methods

2 {

3 c:Class;

4 iterated {

5 c --> m:Method;

6 }

7 }

The Multiple Block

The multiple block is working like the iterated block, but expects the contained subpattern
to be available at least once; if it is not, matching of the multiple block and thus its enclosing
pattern fails.

EXAMPLE (25)

1 test oneOrMoreMethods

2 {

3 c:Class;

4 multiple {

5 c --> m:Method;

6 }

7 }

76 Nested Patterns

The Optional Block

The optional block is working like the iterated block, but matches the contained subpattern at
most once; further occurrences of the subpattern are left unmatched. If the nested pattern is
available, it will get matched, otherwise it won’t; matching of the optional block will succeed
either way.

EXAMPLE (26)

1 test variableMaybeInitialized

2 {

3 v:Variable; // match variable

4 optional { // and an initialization with a different one if available

5 v <-- otherV:Variable;

6 }

7 }

Iteration Breaking

If an application condition inside an iteration block fails, then that potential match of the
iterated pattern is thrown away and matching continues trying to find further matches.
Sometimes a different behaviour is wanted, with an application condition terminating the
iteration and causing it to fail. This would allow to check with a single rule that ”every
pattern X must also satisfy Y” holds. This behaviour is supported with the break keyword
prepended to an application condition, transforming it into an iteration breaking condition.

EXAMPLE (27)

If the negative matches, not only the current iteration instance is prevented from matching,
but the entire iterated (and thus the test) is failing to match:

1 test forEachXMustNotBeTheCaseY

2 {

3 iterated {

4 <X>;

5 break negative {

6 <Y>;

7 }

8 }

9 }

If the independent does not match, not only the current iteration instance is prevented from
matching, but the entire iterated (and thus the test) is failing to match:

1 test forEachXMustBeTheCaseY

2 {

3 iterated {

4 <X>;

5 break independent {

6 <Y>;

7 }

8 }

9 }

7.4 Alternative Patterns 77

NOTE (28)

Pattern cardinality constructs are match/rewrite-all enumeration blockers. For every pattern
instance, the iterated/... yields only one match, even if in all mode (used in/from all-bracketed
rules).

7.4 Alternative Patterns

AlternativePatterns

- alternative
�� �- {���- CaseName - {

���- NestedBody - }
����

�
�

- }
���-

With the alternative block you can specify several nested alternative patterns. One of
them must get matched for the matching of the alternative (and thus its directly nesting
pattern) to succeed, and only one of them is matched per match of the alternative / overall
pattern. The order of matching the alternative patterns is unspecified, especially it is not
guaranteed that a case gets matched before the case textually following – if you want to
ensure that a case cannot get matched if another case could be matched, you must explicitly
prevent that from happening by adding negatives to the cases. In contrast to the iterated
which locally matches everything available and inserts this combined match into the current
match, the alternative decides for one case match which it inserts into the current match
tree, ignoring other possible matches by other cases.

EXAMPLE (28)

1 test feature(c:Class)

2 {

3 alternative // a feature of the class is either

4 {

5 FeatureMethod { // a method

6 c --> :Method;

7 }

8 FeatureVariable { // or a variable

9 c --> :Variable;

10 }

11 FeatureConstant { // or a constant

12 c ---> :Constant;

13 }

14 }

15 }

78 Nested Patterns

EXAMPLE (29)

1 test variableMaybeInitialized

2 {

3 v:Variable; // match variable

4 alternative { // and an initialization with a different one if available

5 Empty {

6 // the empty pattern matches always

7 negative { // so prevent it to match if initialization is available

8 v <-- otherV:Variable;

9 }

10 }

11 Initialized { // initialization

12 v <-- otherV:Variable;

13 }

14 }

15 }

EXAMPLE (30)

When working with the subtyping hierarchy one may be interested in matching in a first step
an abstract base class, specifying the rewriting behaviour for this base class once, and in a
refinement step in an alternative the different possible subtypes, then being able to access
their specific attributes and being able of giving different additional rewrite parts.

1 test refineFeature

2 {

3 f:Feature; // match abstract base class Feature

4

5 alternative {

6 Variable {

7 v:Variable<f>; // try to cast to concrete Variable, if succeeds we can access the

Variable attributes

8 }

9 Method {

10 m:Method<f>; // try to cast to a concrete Method, if succeeds we can access the Method

attributes

11 }

12 }

13

14 modify {

15 // do stuff common to a Feature here

16 }

17 }

7.4 Alternative Patterns 79

EXAMPLE (31)

The image from above shows an example how a structure is matched by several pieces. At
the left, the plain host graph, at the right with the match of classWithStuff inscribed.

1 test classWithStuff

2 {

3 c:Class; // get a class

4

5 multiple { // get all of its methods, expect at least one

6 c --> m:Method;

7 independent { // expect an argument variable

8 m -:ref-> v:Variable;

9 }

10 }

11

12 alternative // additionally, match one of either

13 {

14 FeatureVariable { // a variable

15 c --> v:Variable;

16 }

17 FeatureConstant { // or a constant

18 c --> ct:Constant;

19 }

20 }

21 }

The example matches a class node c and its contained methods with a multiple pattern
– note the 3 instances of the pattern in the host graph getting captured by the single pat-
tern description (/(.)+/1/m reads as multiple pattern (see Table 8.2 explaining the regular
expression syntax), match instance 1 (starting at 0), pattern element m.)
Additionally, one of the alternative cases of a variable or a constant is matched – here we got
two potential patterns, from which only one is matched, capturing node $4 out of the potential
targets $4, $5, $6 (/(.|.)/FeatureVariable/v reads as alternative, case FeatureVariable,
pattern element v.)
The independent that is used to reference a parameter variable v from method m allows to
re-match an already matched variable that would be otherwise shut out from getting matched
again (happened here with node $7, matched from instances 0 and 1 of the multiple pattern;
a graph element is annotated with all matching pattern elements).

80 Nested Patterns

7.5 Nested Pattern Rewriting

Until now we focused on the pattern matching of nested and subpatterns – but we’re not
only interested in finding patterns combined from several pattern pieces, we want to rewrite
the pattern pieces, too. So we will extend the language of the structure parser introduced
so far into a language for a structure transducer. This does not hold for the application
conditions, which are pure conditions, but for all the other language constructs introduced
in this chapter.

NestedRewriting

- replace
�� ��

�- modify
�� �

�

- {
����

�RewriteStatement �

�

- }
���-

Syntactically the rewrite is specified by a modify or replace clause nested directly within
the scope of each nested pattern; in addition to the rewrite clause nested within the top level
pattern. Semantically for every instance of a pattern piece matched its dependent rewrite is
applied. So in the same manner the complete pattern is assembled from pattern pieces, the
complete rewrite gets assembled from rewrite pieces (or operationally: rewriting is done along
the match tree by rewriting one pattern piece after the other). Note that return statements
are not available as in the top level rewrite part of a rule, and the exec statements are slightly
different.

For a static pattern specification like the iterated block yielding dynamically a combined
match of zero to many pattern matches, every submatch is rewritten, according to the rewrite
specification applied to the host graph elements of the match bound to the pattern elements
(if the pattern was matched zero times, no dependent rewrite will be triggered - but note
that zero matches still means success for an iterated, so the dependent rewrite piece of the
enclosing pattern will be applied). This allows e.g. for reversing all edges in the iterated-
example (denoting containment in the class), as it is shown in the first of the following
two examples. For the alternative construct the rewrite is specified directly at every nested
pattern, i.e. alternative case as shown in the second of the following two examples); the
rewrite of the matched case will be applied.

Nodes and edges from the pattern containing the nested pattern containing the nested
rewrite are only available for deletion or retyping inside the nested rewrite if it can be statically
determined this is unambiguous, i.e. only happening once. So only the rewrites of alternative
cases, optional patterns or subpatterns may contain deletions or retypings of elements not
declared in their pattern (in contrast to iterated and multiple pattern rewrites).

7.5 Nested Pattern Rewriting 81

EXAMPLE (32)

1 rule methods

2 {

3 c:Class;

4 iterated {

5 c --> m:Method;

6

7 replace {

8 c <-- m;

9 }

10 }

11

12 replace {

13 c;

14 }

15 }

EXAMPLE (33)

1 rule methodWithTwoOrThreeParameters(m:Method)

2 {

3 alternative {

4 Two {

5 m <-- n:Name;

6 m <-e1:Edge- v1:Variable;

7 m <-e2:Edge- v2:Variable;

8 negative {

9 v1; v2; m <-- :Variable;

10 }

11

12 modify {

13 delete(e1); m --> v1;

14 delete(e2); m --> v2;

15 }

16 }

17 Three {

18 m <-- n:Name;

19 m <-e1:Edge- v1:Variable;

20 m <-e2:Edge- v2:Variable;

21 m <-e3:Edge- v3:Variable;

22

23 modify {

24 delete(e1); m --> v1;

25 delete(e2); m --> v2;

26 delete(e3); m --> v3;

27 }

28 }

29

30 //modify { can be omitted - see below

31 //}

32 }

82 Nested Patterns

NOTE (29)

In case you got a rule or pattern with an empty modify clause, with all the real work going
on in an alternative or an iterated, you can omit the empty modify clause. This is a
small syntactic convenience reducing noise which is strictly restricted to the top level pattern
— omitting rewrite parts of nested patterns specifies the entire pattern to be match-only
(like a test; this must be consistent for all nested patterns).

EXAMPLE (34)

This is an example which shows how to decide with an alternative on the target type of a
retyping depending on the context. Please note the omitted rewrite (cf. 29).

1 rule alternativeRelabeling

2 {

3 m:Method;

4

5 alternative {

6 private {

7 if { m.access == Access::private; }

8

9 modify {

10 pm:PrivateMethod<m>;

11 }

12 }

13 static {

14 negative {

15 m <-- c;

16 }

17

18 modify {

19 sm:StaticMethod<m>;

20 }

21 }

22 }

23 }

C H A P T E R 8

S U B PAT T E R N S A N D Y I E L D I N G

After the introduction of the nested patterns in chapter 7 we will now have a look at the
subpatterns, with the split into subpattern declaration plus subpattern entity declaration
and subrule declaration plus usage, the other means to greatly enhances the flexibility and
expressiveness of pattern matching and rewriting.

8.1 Subpattern Declaration and Subpattern Entity Declaration

Subpatterns were introduced to factor out a common recurring pattern – a shape – into a
named subpattern type, ready to be reused at points the pattern should get matched. The
common recurring pattern is specified in a subpattern declaration and used by a subpattern
entity declaration.

SubpatternDeclaration

- pattern
�� �- IdentDecl �

�- Parameters

�

�
�- modify

�� ��
�- replace

�� �
�

- Parameters

�

�

�
�- {���- SubpatternBody - }

���-

SubpatternBody

- PatternStatement�
�

�

�
�- SubpatternRewriting

�

-

Subpattern declarations define a subpattern type denoting the specified shape in the
global namespace; the parameters specify some context elements the pattern may refer to,
but which are not part of the pattern itself. So they are only syntactically the same as
test/rule-parameters (which are members of the pattern part). A further difference is the
lack of ReturnTypes; they are not actions, just a helper in constructing complex patterns. In
order to get values out they employ the language construct of def entities which are yielded
to (cf. 8.3 later in this chapter). Subpatterns can receive additional rewrite parameters, in
addition to the pattern parameters, in contrast to the actions; they can be used to hand in
nodes which are created in the rewrite part of the action or subpattern which contains the
subpattern entity. (The nested body will be explained in Section 8.2.)

83

84 Subpatterns and Yielding

SubpatternEntityDeclaration

- Ident - :
���- SubpatternType - (

����
� - Ident�

�- Expression

�

�
� ,

����
�

�

-)
���- ;

���-

Subpattern entity declarations instantiate an entity of the subpattern type (i.e. specified
shape), which means the subpattern must get matched for the matching of the enclosing
pattern to succeed. The arguments given are bound to the corresponding parameters of the
subpattern. If you prefer a syntactical point of view, you may see the subpattern entity as a
placeholder, which gets substituted in place by the textual body of the subpattern declaration
under renaming of the parameters to the arguments. If you prefer an operational point of
view, you may see the subpattern entity as a call to the matcher routine searching for the
specified pattern from the given arguments on (constructing a match piece, which is the base
for rewriting of that part).

EXAMPLE (35)

1 pattern TwoParameters(mp:Method)

2 {

3 mp <-- :Variable;

4 mp <-- :Variable;

5 }

6 test methodAndFurther

7 {

8 m:Method <-- n:Name;

9 tp:TwoParameters(m);

10 }

In the given example a subpattern TwoParameters is declared, connecting the context element
mp via two edges to two variable nodes. The test methodAndFurther is using the subpattern
via the declaration of the entity tp of type TwoParameters, binding the context element
to its local node m. The resulting test after subpattern derivation is equivalent to the test
methodWithTwoParameters.

1 test methodWithTwoParameters

2 {

3 m:Method <-- n:Name;

4 m <-- :Variable;

5 m <-- :Variable;

6 }

8.1.1 Recursive Patterns

Subpatterns can be combined with alternative patterns or the cardinality patterns into re-
cursive subpatterns, i.e. subpatterns which may contain themselves. Subpatterns containing
themselves alone – directly or indirectly – would never yield a match as an infinite pattern
can’t be found in a limited graph.

8.1 Subpattern Declaration and Subpattern Entity Declaration 85

EXAMPLE (36)

1 test iteratedPath

2 {

3 root:Assign;

4 negative { --> root; }

5 :IteratedPath(root); // match iterated path = assignment list

6 }

7

8 pattern IteratedPath(prev:Node)

9 {

10 optional { // nothing or a linked assignment and again a list

11 prev --> a:Assign; // assignment node

12 :IteratedPath(a); // next one, plz

13 }

14 }

The code above searches an iterated path from the root node on, here an assignment list.
The iterated path with the optional is equivalent to the code below. Note the negative which
ensures you get a longest match – without it the empty case may be chosen lazily just in
the beginning. Please note that if you only need to check for the existence of such a simple
iterated path you can use the reachable functions, or even better isReachable predicates
introduced in 14.2.3.

1 pattern IteratedPath(prev:Node)

2 {

3 alternative {

4 Empty {

5 negative {

6 prev --> a:Assign;

7 }

8 }

9 Further {

10 prev --> a:Assign;

11 :IteratedPath(a);

12 }

13 }

14 }

The code below searches an iterated path like the code above, just that it stops when a
maximum length is reached. The bounded iterated path is realized by calling a pattern
with the requested maximum depth, counting the depth parameter down with each recursion
step, until the limit checked by a condition is reached. The boundedReachable functions
introduced in 14.2.3 should be preferred in a simple case like this.

1 test boundedIteratedPath(root:Assign)

2 {

3 :BoundedIteratedPath(root, 3); // match iterated path of depth 3

4 }

5

6 pattern BoundedIteratedPath(prev:Node, var depth:int)

7 {

8 optional { // nothing or a linked assignment and again a list

9 prev --> a:Assign; // assignment node

10 :IteratedPath(a, depth-1); // next one, plz

11 if{ depth >= 1; } // stop when we have reached max depth

12 }

13 }

86 Subpatterns and Yielding

EXAMPLE (37)

1 rule removeMiddleAssignment

2 {

3 a1:Assign --> a2:Assign --> a3:Assign;

4 independent {

5 :IteratedPath(a1,a3)

6 }

7

8 replace {

9 a1; a3;

10 }

11 }

12

13 pattern IteratedPath(begin:Assign, end:Assign)

14 {

15 alternative { // an iterated path from begin to end is either

16 Found { // the begin assignment directly linked to the end assignment (base case)

17 begin --> end;

18 }

19 Further { // or an iterated path from the node after begin to end (recursive case)

20 begin --> intermediate:Assign;

21 :IteratedPath(intermediate, end);

22 }

23 }

24 }

This is once more a fabricated example, for an iterated path from a source node to a distinc-
tive target node, and an example for the interplay of subpatterns and positive application
conditions to check complex conditions independent from the pattern already matched. Here,
three nodes a1,a2,a3 of type Assign forming a list connected by edges are searched, and if
found, a2 gets deleted, but only if there is an iterated path of directed edges from a1 to a3.
The path may contain the host graph node matched to a2 again. Without the independent

this would not be possible, as all pattern elements – including the ones originating from sub-
patterns – get matched isomorphically. The same path specified in the pattern of the rule –
not in the independent – would not get matched if it would go through the host graph node
matched to b, as it is locked by the isomorphy constraint. Again, the reachable functions
and isReachable predicates introduced in 14.2.3 are the better choice here. They always
match independently from the patterns (so when you need locking, you cannot employ them),
can be used directly, and are implemented (more) efficiently.

With recursive subpatterns you can already capture neatly structures extending into depth
(as iterated paths) and also structures extending into breadth (as forking patterns, although
the cardinality statements are often much better suited to this task). But combined with an
iterated block, you may even match structures extending into breadth and depth, like e.g.
an inheritance hierarchy of classes in our example domain of program graphs, see example
38, i.e. you can match a spanning tree in the graph. This gives you a very powerful and
flexible notation to capture large, complex patterns built up in a structured way from simple,
connected pieces (as e.g. abstract syntax trees of programming languages).

NOTE (30)

If you are working with hierarchic structures like that, you might be interested in the capa-
bilities of GrShell/yComp for nested layout as described and shown in 21.1/54).

8.1 Subpattern Declaration and Subpattern Entity Declaration 87

EXAMPLE (38)

1 pattern SpanningTree(root:Class)

2 {

3 iterated {

4 root <-:extending- next:Class;

5 :SpanningTree(next);

6 }

7 }

EXAMPLE (39)

The image from above visualizes the matching of structures extending into depth and splitting
into breadth, employing the pattern of test db from below.

1 test db(root:Node)

2 {

3 iterated {

4 root --> child:N;

5 }

6 dbc:chain(root);

7 }

8 pattern chain(begin:Node)

9 {

10 alternative {

11 again {

12 begin --> next:Node;

13 c:chain(next);

14 }

15 end {

16 negative { begin --> .; }

17 }

18 }

19 }

88 Subpatterns and Yielding

EXAMPLE (40)

The example from the previous page utilizes the nested and subpatterns introduced in this
and the previous chapter; it matches db from a root node handed in on, in a tiny example
graph (built from nodes of types Node and N, and edges of type Edge).
The breadth-splitting structure is collected with an iterated pattern around the center
node bound to the pattern node root. The graph elements are annotated in the debugger
(cf. Chapter 21) as usual with their pattern element name – plus the (sub)pattern nesting
path that lead to the instance of this pattern.
The (.)*/1/child at the middle-right node tells that the node is contained in an iterated
pattern (using the regular expression syntax for the iterated, see Table 8.2), that this is
instance 1 (starting at 0, here we got 3 matches of the iterated, so ending at instance count
2, and that the name of the element in the pattern is child.
The depth-extending structure is collected with a subpattern chain employed from the test
with the instance dbc starting at the node bound to the pattern node root. It uses itself
recursively with the subpattern instance c, from the node next on, which is reached with one
edge-following-step from the input node begin on.
The /dbc/(.|.)/again/next at the middle node of the chain tells that the node was matched
on the subpattern instance named dbc, in an alternative (using regular expression syntax for
the alternative), in the pattern of the again case, to the pattern node named next. The
same node is annotated with an/dbc/(.|.)/again/c/begin, which stems from the fact that
the node appears also in the next nesting step (subpattern call), in the instance c of the
subpattern instantiated in the branch again; as begin node handed in to chain.
Breadth-splitting structure-matching is typically following contains edges, while depth-
extending structure-matching is typically following next edges, please take a look at the
Hints on Modeling 4.2.4.
The (sub)pattern nesting paths can get long, cluttering display, so from a certain size on,
only the size of the path is printed in the debugger.

8.2 Subpattern Rewriting

Alongside the separation into subpattern declaration and subpattern entity declaration, sub-
pattern rewriting is separated into a nested rewrite specification given within the subpattern
declaration defining how the rewrite looks like and a subpattern rewrite application given
within the rewrite part of the pattern containing the subpattern entity declaration request-
ing the rewrite to be actually applied.

8.2 Subpattern Rewriting 89

SubpatternRewriting

- replace
�� ��

�- modify
�� �

�

- {
����

�RewriteStatement �

�

- }
���-

The subpattern rewriting specifications within the subpattern declaration looks like a
nested rewriting specification, but additionally there may be rewrite parameters given in the
subpattern header (cf. 8.1) which can be referenced in the rewrite body. (Most elements can
be handed in with normal parameters, but elements created in the rewrite part of the user
of the subpattern can only be handed in at rewrite time.)

SubpatternRewriteApplication

- Ident - (
����

�- Ident�
� ,

����
�

�

-)
���- ;

����

�- SubpatternOccurence

�- SubpatternExecEmit

�

-

The SubpatternRewriteApplication is part of the RewriteStatement already introduced (cf.
5.4.3). The subpattern rewrite application is given within the rewrite part of the pattern
containing the subpattern entity declaration, in call notation on the declared subpattern
identifier. It causes the rewrite part of the subpattern to get used; if you leave it out, the
subpattern is simply kept untouched. The SubpatternOccurence is explained in the next
subsection 8.2.1. The SubpatternExecEmit is explained in chapter 11.

90 Subpatterns and Yielding

EXAMPLE (41)

This is an example for a subpattern rewrite application.

1 pattern TwoParametersAddDelete(mp:Method)

2 {

3 mp <-- v1:Variable;

4 mp <-- :Variable;

5

6 modify {

7 delete(v1);

8 mp <-- :Variable;

9 }

10 }

11 rule methodAndFurtherAddDelete

12 {

13 m:Method <-- n:Name;

14 tp:TwoParametersAddDelete(m);

15

16 modify {

17 tp(); // trigger rewriting of the TwoParametersAddDelete instance

18 }

19 }

EXAMPLE (42)

This is another example for a subpattern rewrite application, reversing the direction of the
edges on an iterated path.

1 pattern IteratedPathReverse(prev:Node)

2 {

3 optional {

4 prev --> next:Node;

5 ipr:IteratedPathReverse(next);

6

7 replace {

8 prev <-- next;

9 ipr();

10 }

11 }

12

13 replace {

14 }

15 }

8.2 Subpattern Rewriting 91

EXAMPLE (43)

This is an example for rewrite parameters, connecting every node on an iterated path to
a common node (i.e. the local rewrite graph to the containing rewrite graph). It can’t be
simulated by subpattern parameters which get defined at matching time because the common
element is only created later on, at rewrite time.

1 pattern ChainFromToReverseToCommon(from:Node, to:Node) replace(common:Node)

2 {

3 alternative {

4 rec {

5 from --> intermediate:Node;

6 cftrtc:ChainFromToReverseToCommon(intermediate, to);

7

8 replace {

9 from <-- intermediate;

10 from --> common;

11 cftrtc(common);

12 }

13 }

14 base {

15 from --> to;

16

17 replace {

18 from <-- to;

19 from --> common;

20 to --> common;

21 }

22 }

23 }

24

25 replace {

26 from; to;

27 }

28 }

1 rule chainFromToReverseToCommon()

2 {

3 from:Node; to:Node;

4 cftrtc:ChainFromToReverseToCommon(from, to);

5

6 modify {

7 common:Node;

8 cftrtc(common);

9 }

10 }

8.2.1 Deletion and Preservation of Subpatterns

In addition to the fine-grain dependent rewrite, subpatterns may get deleted or kept as a
whole.

92 Subpatterns and Yielding

SubpatternOccurence

- Ident - ;
����

�- delete
�� �- (

���- Ident�
� ,

����
�

-)
���- ;

���
�

-

In modify mode, they are kept by default, but deleted if the name of the declared sub-
pattern entity is mentioned within a delete statement. In replace mode, they are deleted by
default, but kept if the name of the declared subpattern entity is mentioned (using occurrence,
same as with nodes or edges).

EXAMPLE (44)

1 rule R {

2 m1:Method; m2:Method;

3 tp1:TwoParameters(m1);

4 tp2:TwoParameters(m2);

5

6 replace {

7 tp1; // is kept

8 // tp2 not included here - will be deleted

9 // tp1(); or tp2(); -- would apply dependent replacement

10 m1; m2;

11 }

12 }

NOTE (31)

You may even give a SubpatternEntityDeclaration within a rewrite part which causes the
subpattern to be created; but this employment has several issues which can only be overcome
by introducing explicit creation-only subpatterns – so you better only use it if you think it
should obviously work (examples for the issues are alternatives – which case to instantiate?
– and abstract node or edge types – what concrete type to choose?).

1 pattern ForCreationOnly(mp:Method)

2 {

3 // some complex pattern you want to instantiate several times

4 // connecting it to the mp handed in

5 }

6 rule createSubpattern

7 {

8 m:Method;

9

10 modify {

11 :ForCreationOnly(m); // instantiate pattern ForCreationOnly

12 }

13 }

8.3 Local Variables, Ordered Evaluation, and Yielding Outwards 93

8.3 Local Variables, Ordered Evaluation, and Yielding Outwards

Local Variables and Ordered Evaluation

Sometimes attribute evaluation becomes easier with temporary variables; such local variables
can be introduced on a right hand side employing the known variable syntax var name:type,
prefixed with the def keyword. From then on they can be read and assigned to in eval
statements of the RHS, or used as variable parameters in subpattern rewrite calls. In addition,
on their introduction an initializing expression may be given.

EXAMPLE (45)

1 rule R {

2 n1:N; n2:N; n3:N; n4:N; n5:N;

3

4 modify {

5 def var mean:double = (n1.v + n2.v + n3.v + n4.v + n5.v)/5;

6 eval {

7 n1.variance = (n1.v - mean)*(n1.v - mean);

8 n2.variance = (n2.v - mean)*(n2.v - mean);

9 n3.variance = (n3.v - mean)*(n3.v - mean);

10 n4.variance = (n4.v - mean)*(n4.v - mean);

11 n5.variance = (n5.v - mean)*(n5.v - mean);

12 }

13 }

14 }

Normally the rewrite order is as given in table 8.1:

1. Extract elements needed from match

2. Create new nodes

3. Call rewrite code of used subpatterns and more...
4. Call rewrite code of nested iterateds

5. Call rewrite code of nested alternatives

6. Redirect edges

7. Retype (and merge) nodes

8. Create new edges

9. Retype edges

10. Create subpatterns

11. Attribute reevaluation

12. Remove edges

13. Remove nodes

14. Remove subpatterns

15. Emit / Exec

16. Return
and more... at 3. are evalhere, emithere, emitheredebug, alternative Name, iterated Name

Table 8.1: Execution order rewriting

So first the subpatterns rewrites, then the iterated rewrites, then the alternative rewrites
are executed, and finally the local eval statements (computations). This might be sufficient
in some cases, but in other cases when you want to compute an attributation over a tree/a
graph, you want to have local computations influenced by attributes in nested/called children
or its siblings, and attributes in nested/called children influenced by its parents or siblings. So

94 Subpatterns and Yielding

we need a language device which allows us to intermingle attribute computations in between
the rewrite part executions of nested patterns and subpattern rewrite calls. And a language
device which allows us to give the execution oder of the alternative and iterated statements
relative to the subpattern rewrite calls and attribute evaluations.

To achieve attribute evaluation in a defined order in between the subpattern rewrite
calls, we use ordered evaluation statements, introduced with the keyword evalhere; they get
executed in the order in which they are given syntactically (a further statement executed in
order is emithere, introduced in 11.2).

To achieve iterated/alternative execution in order, we allow names to be given to nested
patterns, and reuse this name in a nested pattern rewrite order specification. Naming nested
patterns is done with the following syntax, as the already introduced syntax remains valid, on
aggregate we extend the nested patterns with optional names to form named nested pattern.

NamedNestedPattern

- negative
�� ��

�- independent
�� �

�

- IdentDecl - {

���- · · · - }���-

- iterated
�� ��

�- multiple
�� ��- optional
�� �

�

- IdentDecl - · · · - }

���-

- alternative
�� �- IdentDecl - {

���- · · · - }���-

Alternatives and iterateds named this way can then be referenced in the rewrite part with
an alternative rewrite order specification or an iterated rewrite order specification.

CardinalityRewriteUsage

- iterated
�� ��

�- multiple
�� ��- optional
�� �

�

- Ident - ;

���-

AlternativeRewriteUsage

- alternative
�� �- Ident - ;

���-

What we’ve seen so far is applied in the following example. A yield prefix is needed
whenever a def variable is written to (as assignment target as well as a subpattern output
argument).

8.3 Local Variables, Ordered Evaluation, and Yielding Outwards 95

EXAMPLE (46)

1 rule R {

2 iterated foo { .; modify { ..read i.. } }

3 alternative bar { case { modify { ..read i.. } } }

4 sub1:Subpattern1();

5 sub2:Subpattern2();

6

7 modify {

8 def var i:int = 0; // initializes i to 0

9 evalhere { yield i = i + 1; } // afterwards i==1

10 sub1(i); // input 1 to subpattern rewrite

11 evalhere { yield i = i + 1; } // afterwards i==2

12 iterated foo; // nested iterated reads i==2

13 evalhere { yield i = i + 1; } // afterwards i==3

14 alternative bar; // nested alternative reads i==3

15 evalhere { yield i = i + 1; } // afterwards i==4

16 sub2(i); // input 4 to subpattern rewrite

17 evalhere { yield i = i + 1; } // afterwards i==5

18 eval { yield j = i + 1; } // assign 6 to j

19 }

20 }

NOTE (32)

For rewriting, the execution order of the parts can be defined, to allow programming at-
tribute evaluation orders of interest, defining when to descend into which part and defining
glueing/local computations in between. (A depth first run with a defined order in between
the siblings, comparable to an LAG/RAG run in compiler construction, but with an explic-
itly defined sequence of children visits, instead of a temporal succession implicitly induced
by the syntactical left-to-right ordering). In contrast to rewriting, the matching order of the
pattern parts can not be defined, to allow the compiler/the runtime to use the evaluation
order it estimates to be the best. So we can’t access attributes from sibling elements, we can
only compute attributes top down from local elements or elements handed in on matching,
and later on bottom up from local elements or elements bubbling up at match object tree
construction. Top down attribute evaluation operates on the already matched elements and
attribute values or the ones received as inputs, which are handed down implicitly into nested
patterns or explicitly via subpattern parameters into subpattern instances. (A depth first
run too, but without a defined order in between the siblings, comparable to an IAG run
in compiler construction for computing inherited attributes during matching while descend-
ing). Bottom up attribute evaluation operates on the matched elements and attribute values
locally available or the ones received into def elements yielded implicitly upwards from the
nested patterns or explicitly accumulating iterated results or with assigning out parameters
of subpatterns. (The same depth first run, but with attributes computed while ascending,
comparable to an SAG run in compiler construction for computing synthesized attributes.)

Yielding Outwards During Rewriting

Sometimes one needs to bring something matched within a nested or subpattern to an outer
pattern containing it (nested patterns) or calling it (subpatterns). So that one can do there
(in the using pattern) operations on it, e.g. attaching a further edge to an end node of a chain
matched with recursive patterns (thus modularizing the graph rewrite specification into chain

96 Subpatterns and Yielding

matching patterns and patterns using chains doing things on the chain ends), or summing
attributes matched in iterated pattern instances.

The first thing one needs to bring something outwards is a target in a nesting or calling
pattern. This is achieved by nodes, edges, and variables declared with the def keyword
in a rewrite part, marking them as output entities; variables were already introduced in
previous paragraphs, but in addition to them nodes and edges are allowed, too. Furthermore
subpattern rewrite parameters may be declared as def parameters, marking them as output
parameters. These elements are then yielded to from within eval or evalhere statements,
subpattern rewrite usages, and exec statements. While the latter will be covered in chapter
11, the former will be explained in the following.

Yielding is specified by prepending the yield keyword to the entity yielded to, in an
assignment to a variable or a method call on a variable, inside an eval or evalhere-statement,
or a change assignment; the target of the assignment may be a node or edge (if declared as
output variable). The yield must be prepended to the argument for a subpattern def rewrite
parameter, too.

EXAMPLE (47)

1 pattern Chain(begin:Node) modify(def end:Node)

2 {

3 alternative {

4 Further {

5 begin --> intermediate:Node;

6 c:Chain(intermediate);

7

8 modify {

9 c(yield end);

10 }

11 }

12 Done {

13 negative {

14 begin --> ;

15 }

16

17 modify {

18 eval {

19 yield end = begin;

20 }

21 }

22 }

23 }

24

25 modify { }

26 }

27

28 rule R(begin:Node) : (Node) {

29 c:Chain(begin);

30

31 modify {

32 def end:Node;

33 c(yield end); // end is filled with chain end

34 return(end);

35 }

36 }

First example for RHS yielding: returning the end node of a chain.

8.3 Local Variables, Ordered Evaluation, and Yielding Outwards 97

EXAMPLE (48)

1 rule outCount(head:Node) : (int)

2 {

3 iterated {

4 head --> .;

5 modify {

6 eval { yield cnt = cnt + 1; }

7 }

8 }

9

10 modify {

11 def var cnt:int = 0;

12 return (cnt);

13 }

14 }

Second example for RHS yielding: counting the number of edges matched with an iterated.

Yielding Outwards During Match Object Construction

Bubbling up the elements from nested patterns and called patterns during rewriting might
be too late or inconvenient. Luckily it can be done before, at the end pattern matching when
the match object tree gets constructed.

As for RHS yielding the targets of the yielding must be nodes, edges, or variables declared
with the def keyword prepended, marking them as output entities; but this time in the
pattern part. Furthermore subpattern parameters may be declared as def parameters in the
subpattern definition header, marking them as output parameters.

These elements can then be yielded to from within eval statements inside a yield block
(maybe with iterated accumulation) and subpattern usages. A yield block is a constrained
eval block which can be given in the pattern part; it does not allow to assign to or change non-
def variables, or carry out graph-changing commands. Yielding is specified by prepending
the yield keyword to the entity yielded to, in the assignment or method call. The yield

must be prepended to the argument for a subpattern def parameter, too.

NOTE (33)

A def entity from the pattern part can’t be yielded to from the rewrite part, they are constant
after matching.

Let’s have a look at two examples for yielding:

98 Subpatterns and Yielding

EXAMPLE (49)

1 pattern Chain(begin:Node, def end:Node)

2 {

3 alternative {

4 further {

5 begin --> next:Node;

6 :Chain(next, yield end);

7 }

8 done {

9 negative {

10 begin --> ;

11 }

12 yield {

13 yield end = begin;

14 }

15 }

16 }

17 }

18

19 pattern LinkChainTo(begin:Node) modify(n:Node)

20 {

21 alternative {

22 further {

23 begin --> next:Node;

24 o:LinkChainTo(next);

25

26 modify {

27 next --> n;

28 o(n);

29 }

30 }

31 done {

32 negative {

33 begin --> ;

34 }

35

36 modify {

37 }

38 }

39 }

40

41 modify { }

42 }

43

44 rule linkChainEndToStartIndependent(begin:Node) : (Node)

45 {

46 def end:Node;

47

48 independent {

49 c:Chain(begin, yield end);

50 }

51 o:LinkChainTo(begin);

52

53 modify {

54 o(end);

55 return(end);

56 }

57 }

8.3 Local Variables, Ordered Evaluation, and Yielding Outwards 99

The first example for LHS yielding follows within an independent a chain piece by piece
to some a priori unknown end node, and yields this end node chain piece by chain piece again
outwards to the chain start. There it is used as input to another chain (maybe the same
chain, maybe overlapping due to the independent), linking all the nodes of this chain to the
end node of the former.

When yielding from an iterated pattern there’s the problem that each yielding assignment
from an iterated instance would overwrite the one def variable from outside the iterated, while
one is interested most of the time in some accumulation of the values, e.g. summing integers
or concatenating strings. This can be achieved with a for loop iterating a def variable inside
an iterated for all the matches of the iterated pattern referenced by name, allowing to assign
to an outside def variable a value computed from the def variable and the value of the iterated
def variable.

This is shown in the second example for LHS yielding, summing the integer attribute a

of nodes of type N adjacent to a start node, matched with an iterated.

EXAMPLE (50)

1 test sumOfWeight(start:Node) : (int,int)

2 {

3 def var sum:int = 0;

4 def var v:int = 0;

5

6 iterated it {

7 def var i:int;

8

9 start --> n:N; // node class N { a:int; }

10

11 yield {

12 yield i = n.a;

13 yield v = 42; // v is assigned 42 multiple times

14 }

15 }

16

17 yield {

18 for(i in it)

19 {

20 yield sum = sum + i;

21 }

22 }

23

24 return (sum,v);

25 }

In case no accumulation is needed but a simple count of the iterated matches is sufficient,
one can employ the count operator on an iterated (that must have been named before), as
displayed in the following example (the count is only available in a yield or eval block).

100 Subpatterns and Yielding

EXAMPLE (51)

1 test countOfEdges(start:Node) : (int)

2 {

3 def var sum:int = 0;

4

5 iterated it {

6 start -->;

7 }

8

9 yield {

10 yield sum = count(it);

11 }

12

13 return (sum);

14 }

8.4 Flow Example, Regular Expression Syntax, and Locking

Pattern matching and rewriting occurs in two completely distinct passes, separated by the
matches tree of the sub- and nested patterns. During each pass, input and output parameters
may be computed and passed; with explicit passing for subpatterns, and implicit passing for
nested patterns (which can directly access the content of their contained pattern).

First the pattern is matched with recursive descent alongside pattern nesting and sub-
pattern calling, employing some helper stacks in addition to the call stack (the pushdown
machine is explained in more detail in 26.2). Matching occurs strictly top-down (or from the
outside to the nested inside patterns), first the graphlets of the current pattern are matched,
then control descends to the nested and subpatterns. During matching, input parameters
may be passed, esp. forwarding just matched elements or attributes from them; they allow
to influence the matching process.

When a complete match is found, while ascending again, unwinding the call stack, output
pattern-def parameters are passed bottom-up (or from the inside to the containing outside
patterns) with yield blocks and yield assignments within those blocks, or yield bindings
of def parameters in a subpattern call. During this ascent, the matches tree is assembled,
each match of a pattern contains the matches of its nested patterns and used subpatterns
when it is left.

In the rewrite step, the matches tree is visited recursively again, creating the new nodes
of the current pattern, then descending to the nested patterns and subpatterns, executing
their changes, and after they returned, executing all other changes of the pattern. During
this visit, rewrite input parameters may be passed, for forwarding just created elements (or
computed values).

On ascending again from a pattern, the rewrite-def elements are assigned from yield

assignments in the eval blocks, or yield bindings of def rewrite parameters in a subpattern
rewrite call. (Technically, nested patterns are handled like subpatterns, with parameter pass-
ing for accessed elements of the containing pattern automatically inserted by the compiler.)

Let’s take a look at an example, with Figure 8.1 depicting the input and output parameter
passing during the matching of Example 8.4, and Figure 8.2 depicting the input and output
parameter passing during the rewriting of Example 8.4 (which is an extended version of
Example 8.1).

8.4 Flow Example, Regular Expression Syntax, and Locking 101

EXAMPLE (52)

1 rule r(a:Node) : (Node, int)

2 {

3 a --> b:Node;

4

5 def var i:int;

6 optional o {

7 a --> . --> c:N;

8 yield { yield i = c.i; }

9

10 modify {

11 }

12 }

13

14 def d:Node;

15 p:P(b, yield d);

16

17 modify {

18 b --> u:Node;

19 return(d, i);

20 }

21 }

22

23 pattern P(n:Node, def rm:Node)

24 {

25 n --> . --> m:Node;

26 yield { yield rm = m; }

27 }

Figure 8.1: Parameter flow in matching

102 Subpatterns and Yielding

EXAMPLE (53)

1 rule r(a:Node) : (Node, int, Node, int) {

2 a --> b:Node;

3 def var i:int;

4 optional o {

5 a --> . --> c:N;

6 yield { yield i = c.i; }

7

8 modify {

9 eval { yield j = i + u.i; }

10 }

11 }

12 def d:Node;

13 p:P(b, yield d);

14

15 modify {

16 def e:Node; def var j:int;

17 b --> u:N;

18 p(u, yield e);

19 return(d, i, e, j);

20 }

21 }

22 pattern P(n:Node, def rm:Node) modify(k:Node, def x:Node) {

23 n --> . --> m:Node;

24 yield { yield rm = m; }

25

26 modify {

27 m --> k; m --> l:Node;

28 eval { yield x = l; }

29 }

30 }

Figure 8.2: Parameter flow in rewriting

8.4 Flow Example, Regular Expression Syntax, and Locking 103

In Example 8.4, a rule r is matched, which contains a nested optional pattern o and uses
a subpattern P. The rule matches from its input node a on a neighbouring node b and hands
it in to the subpattern p. In the optional pattern it matches a two-step neighbouring node c

from a on. The subpattern P matches from its input parameter n on a two-step neighbouring
node m.

A def variable i is declared in the pattern, and yield assigned from the optional o an
attribute of the c found there. Another def variable d is declared in the pattern, and assigned
from the subpattern call p with a yield parameter passing. The two pattern def variables
are then returned out of rule r. The subpattern P yields to its output def parameter rm

the m found in its body.

In the extended Example 8.4, the rewrite part of the rule r creates a node u, links it to b,
and hands it in to the subpattern rewrite employment of p. The rewrite part of subpattern
P creates a node l and links it to m. Additionally, an edge is inserted in between m and the
rewrite input parameter k.

A def variable j is declared in the rewrite part of r, and yield assigned from the eval

inside the rewrite part of the optional o. Another def variable e is declared in the rewrite
part, and assigned from the subpattern rewrite call p. The two rewrite-def variables are
then returned out of the rule, in addition to the two pattern-def variables. The subpattern
yields from its eval part to its output def rewrite parameter x the l just created.

Bottom line: you can flexibly combine patterns with nested and subpatterns, including in-
put and output parameters. You can pass parameters in during matching alongside matching
order. When matching completed, during match-tree building, you can yield elements found
in contained patterns out. When the rewrite is applied, you can pass parameters in along-
side the buildup of the patterns, and yield elements out once more. But not only are those
two passes strictly distinct, but also are the parameter passing directions strictly distinct,
first is all input parameter passing carried out during descent, then is all output parameter
synthesizing carried out during ascent.

Regular Expression Syntax

In addition to the already introduced syntax for the nested patterns with the keywords
negative, independent, alternative, iterated, multiple and optional, there is a more
lightweight syntax resembling regular expressions available; when used together with the
subpatterns it yields graph rewrite specifications which look like EBNF-grammars with em-
bedded actions. Besides reducing syntactical weight, they offer constructs for matching a
pattern a bounded number of times (same notation as the one for the bounded iteration in
the sequences).

iterated { P } (P)*

multiple { P } (P)+

optional { P } (P)?

alternative { l1 { P1 } .. lk { Pk } } (P1|..|Pk)

negative { P } ∼(P)
independent { P } &(P)

modify { R } {+ R }
replace { R } {- R }
- (P)[k] / (P)[k:l] / (P)[k:*]

Table 8.2: Map of nested patterns in keyword syntax to regular expression syntax

Understanding GrGen.NET-subpatterns may be easier given knowledge about EBNF-
grammars when we compare them to those. We find then that rules resemble grammar
axioms, subpatterns resemble nonterminals, and graphlets resemble terminal symbols; nested

104 Subpatterns and Yielding

patterns are similar to EBNF operators, and the rewrite part corresponds to the semantic
actions of syntax directed translation. Negative and independent patterns are used to ex-
plicitly check context constraints (every graphlet as such is already able to match pieces that
one would or could classify as context, graph rewriting allows for derivations that are highly
adaptable to the surrounding parts). See [Jak11] for more on this.

EXAMPLE (54)

1 test method

2 {

3 m:Method <-- n:Name; // signature of method consisting of name

4 (m <-- :Variable;)* // and 0-n parameters

5

6 :AssignmentList(m); // body consisting of a list of assignment statements

7 }

8

9 pattern AssignmentList(prev:Node)

10 {

11 (// nothing or a linked assignment and again a list

12 prev --> a:Assign; // assignment node

13 a -:target-> v:Variable; // which has a variable as target

14 :Expression(a); // and an expression which defines the left hand side

15 :AssignmentList(a); // next one, plz

16)?

17 }

18

19 pattern Expression(root:Expr)

20 {

21 (// expression may be a binary expression of an operator and two expresions

22 root <-- expr1:Expr;

23 :Expression(expr1);

24 root <-- expr2:Expr;

25 :Expression(expr2);

26 root <-- :Operator;

27 | // or a unary expression which is a variable (reading it)

28 root <-- v:Variable;

29)

30 }

Isomorphy Locking

When matching a program graph as in the introductory example 19 one might be satis-
fied with matching a tree structure. But on other occasions one wants to match backlinks
and especially the targets of the backlinks, too, from uses nested somewhere in the syntax
graph to definitions whose nodes were already matched earlier in the subpattern derivation
(subpatterns can be seen as an equivalent of grammar rules known from parser generators).
Unfortunately these elements are already matched and thus isormorphy locked following the
default semantics of isomorphic matching. And unfortunately these elements can’t be de-
clared homomorphic as they are unknown in the nested subpattern. Handing them in as
parameters and then declaring them homomorphic is only possible if they are of a statically
fixed number (as the number of parameters is fixed at compile time), which is normally not
the case for e.g. the attributes of a class in a syntax graph. In order to handle this case the
independent operator (cf. 5.3.1) was added to the rule language — when you declare the

8.4 Flow Example, Regular Expression Syntax, and Locking 105

backlink target node n as independent(n) it can be matched once again. Thus it is possible
to match e.g. a class attribute definition node which was already matched when collecting the
attributes of the class again later on in a subpattern when matching an expression containing
a usage of that attribute, allowing to e.g. add further edges to it.

Patternpath Locking

As stated in the sections on the negative and independent constructs (7.1, 7.2), they get
matched homomorphically to all already matched elements. By referencing an element from
outside you can isomorphy lock that element to prevent it to get matched again.

Maybe you want to lock all elements from the directly enclosing pattern, in this case you
can just insert pattern; in the position of a graphlet into the NAC or PAC.

Maybe you want to lock all elements from the patterns dynamically containing the NAC/-
PAC of interest, i.e. all subpattern usages and nesting patterns on the path leading to the
NAC/PAC of interest (but not their siblings). In this case you can insert patternpath; in
the position of a graphlet into the NAC or PAC. You might be interested in this construct
when matching a piecewise constructed pattern, e.g. a chain, which requires to check for an-
other chain (iterated path) which is not allowed to cross (include an element of) the original
one.

106 Subpatterns and Yielding

C H A P T E R 9

R U L E A P P L I C AT I O N C O N T R O L L A N G U AG E
(S E Q U E N C E S)

Graph rewrite sequences (GRS), better extended graph rewrite sequences XGRS, to distin-
guish them from the older graph rewrite sequences, are a domain specific GrGen.NET lan-
guage used for controlling the application of graph rewrite rules. They are available

• as an imperative enhancement to the rule set language.

• for controlled rule application within the GrShell.

• for controlled rule application on the API level out of user programs.

If they appear in rules, they get compiled, otherwise they get interpreted. Iff used within
GrShell, they are amenable to debugging.

Graph rewrite sequences are built from a pure rule control language, written down in
a syntax similar to boolean and regular expressions, with rule applications as atoms, and
a computations sublanguage, noted down as a sequence of assignments, function calls, or
procedure calls. A computation is given as an atom of the rule control language, nested in
curly braces.

The graph rewrite sequences are a means of composing complex graph transformations out
of single graph rewrite rules and further computations. The control flow in the rule control
language is determined by the evaluation order of the operands. Graph rewrite sequences
have a boolean return value; for a single rule, true means the rule was successfully applied
to the host graph. A false return value means that the pattern was not found in the host
graph.

In order to store and reuse return values of rewrite sequences and most importantly,
for passing return values of rules to other rules, variables can be defined. A variable is an
arbitrary identifier which can hold a graph element or a value of one of the attribute or value
types GrGen.NET knows. There are two kinds of variables available in GrGen.NET,
i) graph global variables and ii) sequence local variables. A variable is alive from its first
declaration on: graph global variables are implicitly declared upon first usage of their name,
sequence local variables are explicitly declared with a typed variable declaration of the form
name:type. Graph global variables must be prefixed with a double colon ::, local variables
are referenced just with their name. Graph global variables are untyped; their values are
typed, though, so type errors cause an exception at runtime. They belong to and are stored
in the graph processing environment – if you save the graph in GrShell then the variables
are saved, too, and restored next time you load the saved graph. Further on, they are nulled
if the graph element assigned to them gets deleted (even if this happens due to a transaction
rollback), thus saving one from debugging problems due to zombie elements (you may use
the def() operator to check during execution if this happened). Sequence local variables are
typed, so type errors are caught at compile time (parsing time for the interpreted sequences);
an assignment of an untyped variable to a typed variable is checked at runtime. They belong
to the sequence they appear in, their life ends when the sequence finishes execution (so there

107

108 Rule Application Control Language (Sequences)

is no persistence available for them as for the graph global variables; neither do they get
nulled on element deletion as the graph does not know about them).

If used in some rule, i.e. within an exec, named graph elements of the enclosing rule are
available as read-only variables.

Note that we have two kinds of return values in graph rewrite sequences. Every rewrite
sequence returns a boolean value, indicating whether the rewriting could be successfully
processed, i.e. denoting success or failure. Additionally rules may return graph elements.
These return values can be assigned to variables on the fly (see example 55).

EXAMPLE (55)

The graph rewrite sequences

1 (b,c)=R(x,y,z)=>a

2 a = ((b,c)=R(x,y,z))

assign the two returned graph elements from rule R to variables b and c and the information
whether R mached or not to variable a. The first version is recommended.

9.1 Rule Application

RewriteFactor

- RuleExecution�
�- SimpleVariableHandling

�- ExtendedControl

�- RewriteComputationUsage

�

-

Rewrite factors are the building blocks of graph rewrite sequences. They are split into
four major areas: rule (and sequence) application, simple variable handling, extended control,
and sequence computation usages. Here we start with the most import one, applying rules.
In section 9.3 we visit simple variable handling. In section 18.2 we have a look at advanced
control, and in section 17.1 at the sequence computations.

RuleExecution

�
�- (

���- Variable�
� ,

����
�

-)
���- =

���
�

�

�
�- RuleModifier - Rule�

��
�- RandomSelection

�

- [
���- RuleModifier - Rule -]

���
�- count

�� �- [
���- RuleModifier - Rule -]

���- =
���- >

���- Variable

�

-

9.1 Rule Application 109

RandomSelection

- $
����

�- %
���

�

�
�- Variable�

�- Variable - ,
���- Variable�

�- *
���

�

�

�

-

RuleModifier

�
�- %

���
�

�
�- ?

���
�

-

Rule

- RuleIdent �
�- (

���- Variable�
� ,

����
�

-)
���

�

�
�- FilterCalls

�

-

The RuleExecution clause applies a single rule or test. In case of a rule, the first found
pattern match will be rewritten. Application will fail in case no match was found and succeed
otherwise. Variables and named graph elements can be passed into the rule. The returned
graph elements can be assigned to variables again. The rule modifier ? switches the rule to a
test, i.e. the rule application does not perform the rewrite part of the rule but only tests if a
match exists. The rule modifier % is a multi-purpose flag. In the GrShell (see Chapter 20)
it dumps the matched graph elements to stdout; in debug-mode (see Chapter 21) it acts
as a break point (which is its main use in fact); you are also able to use this flag for your
own purposes, when using GrGen.NET via its API interface (see Section 2.2.3). The filter
calls (which allow e.g. to order the matches list and rewrite only the top ones, or to filter
symmetric matches) are explained in 15.

The RuleExecution clause can be applied to a defined sequence (cf. 18.1), or an external
sequence (cf. 25.5), too. Application will succeed or fail depending on the result of the body
of the sequence definition called. In case of success, the output variables of the sequence
definition are written to the destination variables of the assignment. In case of failure, no
assignment takes place, so sequence calls behave the same as rule calls. The break point %

can be applied to a sequence call, but neither the ? operator nor all braces ([]).

The square braces ([]) introduce a special kind of multiple rule execution: Every pattern
match produced by the rule will be rewritten; if at least one was found, rule execution will
succeed, otherwise it will fail. If Rule returns values, the value of each rule application will
be returned. This happens in the form of an array, or better one array per return parameter,
with type array<T> for return parameter type T. The return parameter arrays are filled with
as many values as there were succeeding rule applications.

The counted all bracketing count[r]=>c assigns the count of matches of rule r to the
variable c, and applies r on all the matches. With count[?r]=>c the matches are only
counted, no rewrites are carried out.

The random match selector $v searches for all matches and then randomly selects v of
them to be rewritten (but at most as much as are available), with $[r1] being equivalent
to anonymousTempVar=1 & $anonymousTempVar[r1]. Rule application will fail in case no
match was found and succeed otherwise (the return values are of array type, as with all-
bracketed rule calls, even in case only one match is requested). You may change the lower

110 Rule Application Control Language (Sequences)

bound for success by giving a variable containing the value to apply before the comma-
separated upper bound variable. In case a lower bound is given the upper bound may be set
to unlimited with the *. An % appended to the $ denotes a choice point allowing the user to
choose the match to be applied from the available ones in the debugger (see Chapter 21).

EXAMPLE (56)

The sequence (u,v)=r(x,y) applies the rule r with input from the variables x and y on
the host graph and assigns the return elements from the rule to the variables u and v (the
parenthesis around the out variables are always needed, even if there’s only one variable
assigned to). The sequence $[t] determines all matches of the parameterless rule t on the
host graph, then one of the matches is randomly chosen and executed. Rule r applied with all-
bracketing may look like (u:array<Node>,v:array<int>)=[r(x,y)], note the return value
arrays, compared to a single application with (u:Node,v:int)=r(x,y).

9.2 Logical and Sequential Connectives

RewriteSequence

- RewriteNegTerm �
� �

�- $
����

�- %
���

�

�

- &
����

�- ∧����- |
����- &&
�� ��- ||
�� ��- ;>
�� ��- <;
�� �

�

- RewriteNegTerm�

�

�

�

�

�- (
���- RewriteSequence -)

���

�

-

RewriteNegTerm

�
�- !

���
�

- RewriteTerm �

�- =
���- >

����
�- &

���- >
����- |

���- >
���

�

- Variable

�

-

A graph rewrite sequence consists of several rewrite terms linked by operators. Table
9.1 gives the priorities and semantics of the operators, priorities in ascending order. Forcing
execution order against the priorities can be achieved by parentheses. The modifier $ changes
the semantics of the following operator to randomly execute the left or the right operand first
(i.e. flags the operator to act commutative); usually operands are executed / evaluated from
left to right if not altered by bracketing. In contrast the sequences s, t, u in s $<op> t

9.3 Simple Variable Handling 111

$<op> u are executed / evaluated in arbitrary order. The modifier % appended to the $

overrides the random selection by a user selection (cf. see Chapter 21, choice points).
The assign-to operator => optionally available at the end of the RewriteNegTerm assigns

the (negated in case of !) result of the RewriteTerm execution to the given variable; the
and-to &> operator assigns the conjunction and the or-to |> operator assigns the disjunction
of the original value of the variable with the sequence result to the variable.

Operator Meaning

s1 <; s2 Then-Left, evaluates s1 then s2 and returns(/projects out) the result of s1
s1 ;> s2 Then-Right, evaluates s1 then s2 and returns(/projects out) the result of s2

s1 || s2 Lazy Or, the result is the logical disjunction, evaluates s1, only if s1 is false
s2 gets evaluated

s1 && s2 Lazy And, the result is the logical conjunction, evaluates s1, only if s1 is true
s2 gets evaluated

s1 | s2 Strict Or, evaluates s1 then s2, the result is the logical disjunction

s1 ^ s2 Strict Xor, evaluates s1 then s2, the result is the logical antivalence

s1 & s2 Strict And, evaluates s1 then s2, the result is the logical conjunction

!s Negation, evaluates s and returns its logical negation

Table 9.1: Semantics and priorities of rewrite sequence operators

9.3 Simple Variable Handling

SimpleVariableHandling

- SimpleAssignmentTarget - =
���- SimpleOrInteractiveExpression�

�- VariableDeclaration

�- Variable

�

-

SimpleAssignmentTarget

- Variable�
�- VariableDeclaration

�

-

VariableDeclaration

- Variable - :
���- Type -

SimpleOrInteractiveExpression

- Variable�
�- Literal

��
�- %

���
�

- BoolLit

�- $
����

�- %
���

�

- (
���- Number�

�- 1.0
�� �

�

-)
���

�- $
���- %

���- (
���- Type -)

���

�

-

112 Rule Application Control Language (Sequences)

Variable

- Word�
�- ::

�� �- Word

�

-

The simple variable handling in the sequences allows to assign a variable or a constant
to a variable, to interactively query for an element of a given type or a number and assign
it to a variable, or to declare a local variable; these constructs always result in true/success.
In addition, a boolean variable may be used as a predicate; using such a variable predicate
together with the sequence result assignment allows to directly transmit execution results
from one part of the sequence to another one. Furtheron, a boolean constant may be used as
a predicate. These sequence constants being one of the boolean literals true or false come
in handy if a sequence is to be evaluated but its result must be a predefined value; furtheron
a break point may be attached to them.

Variables can hold graph elements, or values of value/attribute types, including booleans.
The typed explicit declaration (which may be given at an assignment, rendering that assign-
ment into an initialization) introduces a sequence local variable, the name alone references
a sequence local variable. A global variable is accessed with the double colon prefix, it gets
implicitly declared if not existing yet (you can’t declare a graph global variable). The ran-
dom number assignment v=$(42) assigns an integer random number in between 0 and 41
(42 excluded) to the variable v. The random number assignment v=$(1.0) assigns a double
random number in between 0.0 and 1.0 exclusive to the variable v (here you can’t change
the upper bound as with the integer assignment). Appending a % changes random selection
to user selection (defining a choice point). The user input assignment v=$%(string) queries
the user for a string value – this only works in the GrShell. The user input assignment
v=$%(Node) queries the user for a node from the host graph – this only works in the GrShell
in debug mode. The non simple variable handling is given in 17.1, even further variable
handling constructs are given in 17.4.

EXAMPLE (57)

The sequence (x)=s || (x)=t ;> [r(x)] & !u(::k,::l) is executed in two halves, first
(x)=s || (x)=t, then [r(x)] & !u(::k,::l), as the then-right operator exercises the
weakest binding of the used operators. The evaluation result of the first part is thrown
away after it was computed, only the result of the second part defines the outcome of the
sequence. From the first part, first s is executed, writing x in case of success. If s matches,
execution of the left part is complete as the outcome of the lazy or is determined to be true,
and t not needed any more. If it does not match, t is executed, defining x (in case of success,
which we assume). Then the right part is executed, first applying r on all matches found for
the previously written x argument, then u on the values stored in the global variables used
as arguments. Here, u is executed due to the eager operator even if r was not found, thus
forcing the result to be false. The result of the entire sequence is true iff r was found at
least once, and u was not found (because of the negation). But to really give a valid sequence,
we need to first declare the local variable x specifying its type, in contrast to the dynamically
typed ::k and ::l global variables that we can use right away, so the complete sequence is
x:Node ;> (x)=s || (x)=t ;> [r(x)] & !u(::k,::l).

9.4 Decisions and Loops 113

9.4 Decisions and Loops

ExtendedControl

- if
�� �- {���- Condition - ;

���- TrueCase - ;
���- FalseCase - }

����
�- if

�� �- {���- Condition - ;
���- TrueCase - }

���
�

-

The conditional sequences, or condition execution (/decision) statement if executes the
condition sequence, and if it yielded true executes the true case sequence, otherwise the false
case sequence. The sequence if{Condition;TrueCase} is equivalent to if{Condition;TrueCase;true},
thus giving a lazy implication.

RewriteTerm

- RewriteFactor �
�- *

����
�- +

����- [
���- Number -]

����- [
���- Number - :

���- Number�
�- *

���
�

-]
���

�

�

-

A rewrite term consists of a rewrite factor which can be executed multiple times. The
star (*) executes a sequence repeatedly as long as its execution does not fail. Such a sequence
always returns true. A sequence s+ is equivalent to s && s*. The brackets ([m]) execute a
sequence repeatedly as long as its execution does not fail but m times at most; the min-max-
brackets ([n:m]) additionally fail if the minimum amount n of iterations was not reached.

EXAMPLE (58)

The sequence if{ (x:Node)=s; (::cnt)=r(x,::cnt)* ; count[q(x)]=>::cnt ;> true }

executes first s, writing the output value to the variable x that is declared on-the-fly. The
result of s is used to decide which part to execute, in case of true it’s (::cnt)=r(x,::cnt)*,
in case of false it’s count[q(x)]=>::cnt ;> true. The former executes the rule r as often
as it matches, incrementing a variable ::cnt used as counter each time (assuming that r

contains a return(incnt+1) for an input parameter incnt). Each match is sought in the
host graph at the state left behind by the execution of the rule in the previous iteration
step. The latter sequence part executes the rule q on all matches in the current host graph
at once, assigning the number of matches found (equalling the number of rewrites) to ::cnt.
The result of the overall sequence is always true, for one because the star operator used
in the true-case always succeeds, and for the other because the false-case explicitly fixes its
result to the constant true.

114 Rule Application Control Language (Sequences)

NOTE (34)

Consider all-bracketing introduced in the first section for rewriting all matches of a rule
instead of iteration if they are independent. Attention: The all bracketing is not equal to
Rule*. Instead this operator collects all the matches first before starting to rewrite. So if
one rewrite destroys other matches or creates new match opportunities the semantics differ;
in particular the semantics is unsafe, i.e. one needs to avoid deleting or retyping a graph
element that is bound by another match (will be deleted/retyped there). On the other hand
this version is more efficient and allows one to get along without marking already handled
situations (to prevent a rule matching again and again because the match situation is still
there after the rewrite; normally you would need some match preventing device like a negative
or visited flags to handle such a situation).

9.5 Quick reference table

Table 9.2 lists the basic operations of the graph rewrite sequences at a glance.

s ;> t Execute s then t. Success if t succeeded.
s <; t Execute s then t. Success if s succeeded.
s | t Execute s then t. Success if s or t succeeded.
s || t The same as s | t but with lazy evaluation, i.e. if s is successful,

t will not be executed.
s & t Execute s then t. Success if s and t succeeded.
s && t The same as s & t but with lazy evaluation, i.e. if s fails, t will not

be executed.
s ^ t Execute s then t. Success if s or t succeeded, but not both.
if{r;s;t} Execute r. If r succeeded, execute s and return the result of s.

Otherwise execute t and return the result of t.
if{r;s} Same as if{r;s;true}
!s Switch the result of s from successful to fail and vice versa.
$<op> Use random instead of left-associative execution order for <op>.
s* Execute s repeatedly as long as its execution does not fail.
s+ Same as s && s*.
s[n] Execute s repeatedly as long as its execution does not fail but n

times at most.
s[m:n] Same as s[n] but fails if executed less than m times.
s[m:*] Same as s* but fails if executed less than m times.
?Rule Switches Rule to a test.
%Rule This is the multi-purpose flag when accessed from libGr. Also used

for graph dumping and break points.
[Rule] Rewrite every pattern match produced by the action Rule.
(v:array<T>)=[r] Searches for all matches and rewrites them all, for r returning T.
count[a]=>v Rewrite every pattern match produced by the action a, and write

the count of the matches found to the variable v.
true A constant acting as a successful match.
false A constant acting as a failed match.
v A boolean variable acting as a predicate.

Let r, s, t be sequences, u, v, w variable identifiers, <op> ∈ {|, ^, &, ||, &&}

Table 9.2: Sequences at a glance

C H A P T E R 10

A DVA N C E D M AT C H I N G A N D R E W R I T I N G

The following rewrite rule mentioned in Geiß et al. [GBG+06] shows some of the advanced
constructs. In this chapter we explain the constructs of Example 59 that are exceeding
the basics already introduced in Chapter 5, and the nested negatives already described in
Chapter 7. Furthermore, we visit some additional advanced constructs.

EXAMPLE (59)

1 #using "SomeModel.gm"

2

3 rule SomeRule {

4 n1:NodeTypeA;

5 n2:NodeTypeA;

6 hom(n1, n2);

7 n1 --> n2;

8 n3:NodeTypeB;

9 negative {

10 n3 -e1:EdgeTypeA-> n1;

11 if {n3.a1 == 42*n2.a1;}

12 }

13 negative {

14 n4:Node\(NodeTypeB);

15 n3 -e1:EdgeTypeB-> n4;

16 if {typeof(e1) >= EdgeTypeA;}

17 }

18 replace {

19 n5:NodeTypeC<n1>;

20 n3 -e1:EdgeTypeB-> n5;

21 eval {n5.a3 = n3.a1*n1.a2;}

22 }

23 }

The advanced modifiers introduced in the following section allow to annotate patterns or
actions with keywords which restrict what graph patterns are accepted as matches (some of
them independent of the rewrite part, some of them depending on the rewrite specification).
But first the advanced matching constructs are introduced in this section, before they are
elaborated on in a later section: they allow to request more fine grain or more dynamically
what types to match, as well as allowing to specify a match from a storage. Followed by
the advanced rewrite constructs which are handled in the same way (introduction here, then
elaboration in a later section); they enable the specification of retyping (relabeling) and
copying, as well as node merging and edge redirection.

115

116 Advanced Matching and Rewriting

AdvancedNodeTypeConstructs

- NodeType - TypeConstraint�
�- StorageAccess

�- Retyping

�- Merging

�

�

�- CopyOperator

�

-

Specifies a node of type NodeType, constrained in type with a TypeConstraint (see Sec-
tion 10.2, TypeConstraint), or bound by a storage access (see 13.6, StorageAccess), or retyped
with a Reytping (see Section 10.4, Retyping), or merged with a Merging (see Section 10.6,
Merging). Alternatively it may define a node having the same type and bearing the same
attributes as another matched node (see Section 10.5, CopyOperator). Type constraints are
allowed in the pattern part only. The CopyOperator and the Merging clause are allowed in
the replace/modify part only. The Retyping clause is a chimera which restricts the type of
an already matched node when used on the LHS, and casts to the target type when used on
the RHS, which is its primary use.

AdvancedEdgeTypeConstructs

- EdgeType - TypeConstraint�
�- StorageAccess

�- Retyping

�

�

�- CopyOperator

�

-

The AdvancedEdgeTypeConstructs specify an edge of type EdgeType or a copy of an edge.
Type constraints are allowed in the pattern part only (see Section 10.2, TypeConstraint); the
same holds for the storage access (see 13.6, StorageAccess). The CopyOperator and the
Redirect clause are allowed in the replace/modify part only (see Section 10.5, CopyOperator,
see Section 10.7, Redirect). The Retyping clause is a chimera which restricts the type of an
already matched edge when used on the LHS, and casts to the target type when used on the
RHS (its primary use). Furthermore edges may be redirected, this is shown in Section 10.7,
Redirection.

10.1 Rule and Pattern Modifiers

TestModifier

�
�- exact

�� ��- induced
�� �

�

-

10.2 Static Type Constraint 117

RuleModifier

- TestModifier�
�- dpo

�� ��- dangling
�� ��- identification
�� �

�

-

By default GrGen.NET performs rewriting according to SPO semantics as explained
in Section 5.4.1. This behaviour can be changed with pattern modifiers and rule modifiers
(and the other advanced rewrite constructs introduced in the following sections which spoil
the theoretical foundation but are highly useful in practice). Such modifiers add certain
conditions to the applicability of a pattern. The idea is to match only parts of the host graph
that look more or less exactly like the pattern. The level of “exactness” depends on the
chosen modifier. A pattern modifier in front of the rule/test-keyword is equivalent to one
modifier-statement inside the pattern containing all the specified nodes (including anonymous
nodes). Table 10.1 lists the pattern modifiers with their semantics, table 10.2 lists the rule
only modifiers with their semantics. Example 60 explains the modifiers by small toy-graphs.

Modifier Meaning

exact Switches to the most restrictive mode. An exactly-matched node is matched,
if all its incident edges in the host graph are specified in the pattern.

induced Switches to the induced-mode, where nodes contained in the same induced

statement require their induced subgraph within the host graph to be spec-
ified, in order to be matched. In particular this means that in general
induced(a,b,c) differs from induced(a,b); induced(b,c).

Table 10.1: Semantics of pattern modifiers

NOTE (35)

Internally all the modifier-annotated rules are resolved into equivalent rules in standard SPO
semantics. The semantics of the modifiers is mostly implemented by NACs. In particular
you might want to use such modifiers in order to avoid writing a bunch of NACs yourself.
The number of internally created NACs is bounded by O(n) for exact and dpo and by O(n2)
for induced respectively, where n is the number of specified nodes.

10.2 Static Type Constraint

A static type constraint given at a node or edge declaration limits the types on which the
pattern element will match (by excluding forbidden types).

TypeConstraint

- \
���- (

���- TypeExpr�
� +

����
�

-)
����

�- TypeExpr

�

-

118 Advanced Matching and Rewriting

Modifier Meaning

dpo Switches to DPO semantics . This modifier affects only nodes that are
to be deleted during the rewrite. DPO says—roughly spoken—that
implicit deletions must not occur by all means. To ensure this the
dangling condition (see dangling below) and the identification condi-
tion (see identification below) get enforced (i.e. dpo = dangling

+ identification). In contrast to exact and induced this modi-
fier applies neither to a pattern as such (can’t be used with a test)
nor to a single statement but only to an entire rule. See Corradini et
al.[CMR+99] for a DPO reference.

dangling Ensures the dangling condition . This modifier affects only nodes that
are to be deleted during the rewrite. Nodes going to be deleted due
to the rewrite part have to be specified exactly (with all their incident
edges, exact semantics) in order to be matched. As with dpo, this
modifier applies only to rules.

identification Ensures the identification condition . This modifier affects only nodes
that are to be deleted during the rewrite. If you specify two pattern
graph elements to be homomorphically matched but only one of them
is subject to deletion during rewrite, those pattern graph elements will
never actually be matched to the same host graph element. As with
dpo, this modifier applies only to rules.

Table 10.2: Semantics of rule only modifiers

EXAMPLE (60)

Host Graph Pattern / Rule Effect

{ . --> .; } Produces no match for exact nor
induced

{ x:node --> y:node; } Produces three matches for
induced(x,y) but no match for
exact(x,y)

{ x:node; induced(x); } Produces no match

e { --> x:node --> ; }
modify{ delete(x); } Produces no match in DPO-mode be-

cause of edge e

10.3 Exact Dynamic Type 119

A type constraint is used to exclude parts of the type hierarchy. The operator + is used to
create a union of its operand types. So the following pattern statements are identical:

x:T \ (T1 + · · · + Tn);
x:T;

if {!(typeof (x) >= T1) && · · ·
&& !(typeof (x) >= Tn)}

EXAMPLE (61)

T

T1

T2

T4

T3

The type constraint T\(T2+T3) applied to the type hierarchy on the left
side yields only the types T and T1 as valid.

10.3 Exact Dynamic Type

In the following section we’ll have a look at a language construct which allows to require an
element to be typed the same as another element or to create an element with the same exact
dynamic type as another element.

Type

- TypeIdent�
�- typeof

�� �- (
���- NodeOrEdge -)

���
�

-

The type of a graph element may be given by a type identifier, or a typeof denoting the
exact dynamic type of a matched graph element. The element declaration el:typeof(x)

introduces a graph element of the type the host graph element x is actually bound to. It
may appear in the pattern or in the rewrite part. If it is given in the pattern, the element
to match must be of the same exact dynamic type as the element referenced in the typeof,
otherwise matching will fail. If is is given in the rewrite part, the element to create is created
with the same exact dynamic type as the element referenced in the typeof; have a look at
the next section for the big brother of this language construct, the copy operator, which is
only applicable in the rewrite part.

120 Advanced Matching and Rewriting

EXAMPLE (62)

The following rule will add a reverse edge to a one-way street.

1 rule oneway {

2 a:Node -x:street-> y:Node;

3 negative {

4 y -:typeof(x)-> a;

5 }

6 replace {

7 a -x-> y;

8 y -:typeof(x)-> a;

9 }

10 }

Remember that we have several subtypes of street. By the aid of the typeof operator, the
reverse edge will be automatically typed correctly (the same type as the one-way edge). This
behavior is not possible without the typeof operator.

10.4 Retyping

In addition to graph rewriting, GrGen.NET allows graph relabeling[LMS99], too; we prefer
to call it retyping. Nodes as well as edges may be retyped to a different type; attributes
common to the initial and final type are kept. The target type does not need to be a subtype or
supertype of the original type. Retyping is useful for rewriting a node but keeping its incident
edges; without it you’d need to remember and restore those. Syntactically it is specified by
giving the original node enclosed in left and right angles.

Retyping

- <
���- Ident - >

���-

Pattern (LHS) Rewrite (RHS) r : L −→ R Meaning

x:N1; y:N2<x>; r : lhs .x 7→ rhs .x Match x, then retype x from N1

to N2 and bind name y to re-
typed version of x.

e:E1; f:E2<e>; r : lhs .e 7→ rhs .e Match e, then retype e from E1

to E2 and bind name f to the
retyped version of e.

Table 10.3: Retyping of matched nodes and edges

Retyping enables us to keep all adjacent nodes and all attributes stemming from common
super types of a graph element while changing its type (table 10.3 shows how retyping can
be expressed both for nodes and edges). Retyping differs from a type cast: During rewriting
both of the graph elements are alive. Specifically both of them are available for evaluation,
a respective evaluation could, e.g., look like this:

eval {

y.b = (2*x.i == 42);

f.a = e.a;

}

Furthermore the source and destination types need not to be on a path in the directed type
hierarchy graph, rather their relation can be arbitrary. However, if source and destination

10.5 Copy 121

type have one ore more common super types, then the respective attribute values are adopted
by the retyped version of the respective node (or edge). The edge specification as well as
ReplaceNode supports retyping. In Example 59 node n5 is a retyped node stemming from
node n1. Note, that—conceptually—the retyping is performed after the SPO conforming
rewrite.

EXAMPLE (63)

The following rule will promote the matched city x from a City to a Metropolis keeping all
its incident edges/streets, with exception of the matched street y, which will get promoted
from Street to Highway, keeping all its adjacent nodes/cities.

1 rule oneway {

2 x:City -y:Street->;

3

4 replace {

5 x_rt:Metropolies<x> -y_rt:Highway<y>->;

6 }

7 }

The following rule will retype the matched city x to the exacty dynamic type of z (which
might be e.g. Metropolis).

1 rule retypeToTypeof {

2 x:City; z:City;

3

4 modify {

5 x_rt:typeof(z)<x>;

6 }

7 }

The retyping clause new:type<old> can be used on the LHS, too. When it appears on the
left hand side, the node(/edge) old is not changed in any way, instead a further node(/edge)
new is made available for querying, being identical to old regarding the object reference, but
additionally giving access to the attributes known to the type – if matching was successful.
The construct tries to cast old to new, if successful new allows to access old as type, otherwise
matching fails for this old (and binding another graph element to old is tried out). Please
have a look at example 30 for more on this.

10.5 Copy

The copy operator allows to create a node or edge of the type of another node/edge, bearing
the same attributes as that other node. It can be seen as an extended version of the typeof

construct not only copying the exact dynamic type but also the attributes of the matched
graph element. Together with the iterated construct it allows to simulate node replacement
grammars or to copy entire structures, see 19 and 19.5.

CopyOperator

- copy
�� �- <

���- Ident - >
���-

122 Advanced Matching and Rewriting

EXAMPLE (64)

The following rule will add a reverse edge to a one-way street, of the exact dynamic subtype
of street, bearing the same attribute values as the original street.

1 rule oneway {

2 a:Node -x:street-> y:Node;

3 negative {

4 y -:typeof(x)-> a;

5 }

6

7 replace {

8 a -x-> y;

9 y -:copy<x>-> a;

10 }

11 }

10.6 Node Merging

The retyping construct for nodes can be extended into a node merging construct, which
internally redirects edges.

Merging

- <
����

�- Ident�
� ,

����
�

�

- >
���-

Merging enables us to fuse several nodes into one node. Syntactically it is given by a
retyping clause which not only mentions the original node inside angle brackets, but several
original nodes. Semantically the first node in the clause is retyped, then all edges of the other
original nodes are redirected to the retyped node, and finally the other original nodes are
deleted. As the type of the merging clause can be set to typeof(first original node), a
pure merging without retyping can be achieved.

EXAMPLE (65)

The following rule will match two States and merge them. Every edge incident to b before and
every edge incident to w before will be incident to the merged successor state bw afterwards;
edges connecting the two States become reflexive edges.

1 rule merge {

2 b:State;

3 w:State;

4 if { b.name == "Baden" && w.name == "Wuerttemberg"; }

5

6 modify {

7 bw:typeof(b)<b,w>;

8 eval { bw.name = b.name + w.name; }

9 }

10 }

10.7 Edge Redirection 123

10.7 Edge Redirection

The redirect statement allows to exchange the source or the target node of a directed edge
(or both) with a different node; it can be seen as syntactic sugar for removing one edge and
creating a new one with the source/target node being replaced by a different node, with the
additional effect of keeping edge identity.

Redirect

�
�- !

���
�

- -
���- EdgeRefinement - ->

�� ��
�- !

���
�

�
��

�- !
���

�

- <-
�� �- EdgeRefinement - -

����
�- !

���
�

�

-

Redirection is specified with an exclamation mark at the end to be redirected as seen
from the edge center; the exclamation mark enforces the redirection which would normally
be rejected by the compiler ”This is different from what was matched, but that’s intentionally,
make it happen!”

EXAMPLE (66)

The following rule will reverse the one-way street in between a and y by rewriting the old
source to the new target and the old target to the new source.

1 rule oneway {

2 a:Node -x:street-> y:Node;

3

4 modify {

5 a !<-x-! y;

6 }

7 }

10.8 Attribute Initialization

At a node or edge declaration in the modify or replace part (causing creation of the element),
you can give an attribute initialization list, with the name of the element (the persistent
name of a named graph) seen as a special attribute.

AttributeInitializationList

- @ - (
���- AttributeInitialization�

� ,
����

�

-)
���-

AttributeInitialization

- AttributeName - =
���- Expression�

�- $
���- =

���- Expression

�

-

The initialization list is appended to the declaration with an at-Symbol, the dollar sign
stands for the name of the element, whereas the other attributes of the type are simply given

124 Advanced Matching and Rewriting

by their name. The expression must be of the type of the attribute (and string in case of
the name). The initialization list is more convenient than the otherwise needed eval block,
containing an assignment per line – in fact it is syntactic sugar that is dissolved to eval-like
assignments. Please take into account that the names must be unique if you intend to set
them from the rules.

EXAMPLE (67)

The following example rule creates a new node n of type N, initializing the name to "foo",
the attribute i to 42, and the attribute s to "Hallo Welt".

1 rule create {

2 modify {

3 n:N@($="foo", i=42, s="Hallo Welt");

4 }

5 }

C H A P T E R 11

E M B E D D E D S E Q U E N C E S A N D T E X T U A L O U T P U T

In this chapter we’ll have a look at language constructs which allow you to emit text from
rules, and which allow you to execute a graph rewrite sequence at the end of a rule invocation
(with direct access to the elements of the left and right patterns). Similar constructs are
available for nested and subpatterns.

EXAMPLE (68)

The example rule below works on a hypothetical network flow. We neither define all the rules
nor the graph meta model, we just want to introduce you to the usage of the exec and emit

statements, as well as their look and feel.

1 rule AddRedundancy

2 {

3 s: SourceNode;

4 t: DestinationNode;

5 modify {

6 emit ("Source node is ", s.name, ". Destination node is ", t.name, ".");

7 exec ((x:SourceNode) = DuplicateNode(s) & ConnectNeighbors(s, x)*);

8 exec ([DuplicateCriticalEdge]);

9 exec (MaxCapacityIncidentEdge(t)*);

10 emit ("Redundancy added");

11 }

12 }

11.1 Exec and Emit in Rules

The following syntax diagram gives an extensions to the syntax diagrams of the Rule Set
Language chapter 5:

ExecStatement

- emit
�� ��

�- emitdebug
�� �

�

- (
���- StringExpr�

� ,
����

�

-)
���- ;

����
�- exec

�� �- (
���- RewriteSequence -)

���- ;
���

�

-

The statements emit and emitdebug as well as exec enhance the declarative rewrite part
by imperative clauses. This means that these statements are executed in the same order as
they appear within the rule, but particularly that they operate on the modified host graph,
as they are executed after the rewrite part.

125

126 Embedded Sequences and Textual Output

The rewrite part contains the eval statements, i.e. the execution statements work on the
recalculated attributes. The rewrite part especially deletes pattern elements (explicitly in
modify mode, implicitly in replace mode) – those consequently cannot be accessed in the
execution statements anymore. Attribute values of deleted graph elements are still available
for reading, though – the compiler temporarily stores them as needed, for your convenience.

Sequence execution

The exec statement executes a graph rewrite sequence, which is a composition of graph
rewrite rules. See Chapter 9 for a description of graph rewrite sequences.

The potential input to the embedded sequence are the graph elements declared in the
LHS and RHS patterns (or their attributes), the actual input are the ones really referenced
by the sequence. The output from an embedded sequence is defined with yields to def

variables from the RHS pattern – to be used by following execution statements, or by the
return statement that is executed last.

The exec statement is one of the means available in GrGen.NET to build complex
rules and split work into several parts, see Chapter 19 for a discussion of this topic. The
noteworthy point is that this happens rule-internally, without having to pass parameters
out into an enclosing sequence and in again from the enclosing sequence to following rule
applications (as it is required by external composition).

EXAMPLE (69)

This is an example for returning elements yielded from an exec statement. The results of
the rule bar are written to the variables a and b; The yield is a prefix to an assignment
showing that the target is from the outside.

1 rule foo : (A,B)

2 {

3 modify {

4 def u:A; def v:B;

5 exec((a,b)=bar ;> yield u=a ;> yield v=b));

6 return(u,v);

7 }

8 }

Text output

The emit and the emitdebug statement prints a string or a comma-separated sequence of
strings to the currently associated output stream or always the console. See Chapter 6 for a
description of string expressions.

The argument(s) must be of string type, but any type is automatically casted into its string
representation as needed. Prefer comma separated arguments over string concatenation, they
are more efficient as no intermediate strings need to be computed, just to be garbage collected
thereafter.

The currently associated output stream is by default stdout, you use the emit then
typically to print debug or execution state information to the console. It may be a text file
(the one output was redirected to, see the redirect emit command in Chapter 20), you
use the emit then commonly to write a file format of your choice (maybe a simple extract,
maybe a full-blown graph export), building a model-to-text transformation. The emithere

statement always prints out to the console, even if output was redirected.

11.2 Deferred Exec and Emithere in Nested and Subpatterns 127

11.2 Deferred Exec and Emithere in Nested and Subpatterns

The following syntax diagram gives an extensions to the syntax diagrams of the Subpatterns
chapter 8:

SubpatternExecEmit

- emithere
�� ��

�- emitheredebug
�� �

�

- (
���- StringExpr�

� ,
����

�

-)
���- ;

����
�- emit

�� ��
�- emitdebug

�� �
�

- (
���- StringExpr�

� ,
����

�

-)
���- ;

���
�- exec

�� �- (
���- RewriteSequence -)

���- ;
���

�

-

The statements emit and emitdebug, emithere and emitheredebug, as well as exec

enhance the declarative rewrite part of nested and subpatterns by imperative clauses.

The emit and emithere statements (as well as emitdebug and emitheredebug) get ex-
ecuted during rewriting before the exec statements; the emithere-statements get executed
before the emit statements, in the order in between the subpattern rewrite applications they
are specified syntactically (see 8.3 for more on this). The debug-suffixed versions always print
to the console, the plain versions may get redirected to a file.

The deferred exec statements are executed in the order as they appear syntactically,
but particularly after the top-level rule which employed the pattern they are contained in
was executed. They are a variant of the rule-based embedded exec-statements from the
ExecStatement (mentioned in 5.4.3 and explained above in 11.1), only available in the rewrite
parts of subpatterns or nested alternatives/iterateds. They are executed after the original
rule employing them was executed (which may be syntactically separated by a deep nesting
of patterns or a deep chain of subpattern usages in between), so they can’t get extended by
yields, as the containing rule is not available anymore when they get executed (and in case
they appear inside a subpattern maybe not even known statically).

EXAMPLE (70)

The exec from Subpattern sub gets executed after the exec from rule caller was executed.

1 rule caller

2 {

3 n:Node;

4 sub:Subpattern();

5

6 modify {

7 sub();

8 exec(r(n));

9 }

10 }

11 pattern Subpattern

12 {

13 n:Node;

14 modify {

15 exec(s(n));

16 }

17 }

128 Embedded Sequences and Textual Output

EXAMPLE (71)

This is an example for emithere, showing how to linearize an expression tree in infix order.

1 pattern BinaryExpression(root:Expr)

2 {

3 root --> l:Expr; le:Expression(l);

4 root --> r:Expr; re:Expression(r);

5 root <-- binOp:Operator;

6

7 modify {

8 le(); // rewrites and emits the left expression

9 emithere(binOp.name); // emits the operator symbol in between the left tree and the

right tree

10 re(); // rewrites and emits the right expression

11 }

12 }

NOTE (36)

The embedded sequences are executed after the top-level rule which contains them (in a nested
pattern or in a used subpattern) was executed; they are not executed during subpattern
rewriting. They allow you to put work you can’t do while executing the rule proper (e.g.
because an element was already matched and is now locked due to the isomorphy constraint)
to a waiting queue which gets processed afterwards — with access to the elements of the rule
and contained parts which are available when the rule gets executed. Or to just split the
work into several parts, reusing already available functionality, see 19 for a discussion on this
topic.

NOTE (37)

And again — the embedded sequences are executed after the rule containing them; thus rule
execution is split into two parts, a declarative of parts a) and b), and an imperative. The
declarative is split into two subparts: First the rule including all its nested and subpatterns
is matched. Then the rule modifications are applied, including all nested and subpattern
modification.
After this declarative step, containing only the changes of the rule and its nested and used
subpatterns, the deferred execs which were spawned during the main rewriting are executed
in a second, imperative step; during this, a rule called from the sequence to execute may
do other nifty things, using further own sequences, even calling itself recursively with them.
First all sequences from a called rule are executed, before the current sequences is continued
or other sequences of its parent rule get executed (depth first).
Note: all changes from such dynamically nested sequences are rolled back if a transaction/a
backtrack enclosing a parent rule is to be rolled back (but no pending sequences of a parent
of this parent).

C H A P T E R 12

C O M P U TAT I O N S (AT T R I B U T E E VA L U AT I O N
S TAT E M E N T S)

In this chapter we’ll have a look at the statements of the computations available in the rule
language. The computations are the superordinate concept, they consist of side-effect free
expressions already introduced in 6, and side-effect causing statements. Their corresponding
abstractions are the functions free of externally visible side-effects, defining an expression
drop-in replacement, and the procedures that can only be employed from statement context,
defining a statement drop-in replacement; we’ll visit those abstractions at the end of this
chapter.

The most important statement is the attribute assignment, which is used for assigning new
values computed from expressions to graph element attributes. Besides this, further types
of assignments are available, and several control flow constructs as known from imperative
programming languages of the C-family. Furthermore, container methods may be called
(more on this in the following chapter 13), and global graph functions may be called (more
on this in the following chapter 14).

An example implementing depth-first search, breadth-first search, and iterative deepening
as computations of the rule language can be found in test/should pass, in /DfsBfsSearch.grg;
you may have a look at the /computations_*.grg files in that folder for further (but fabri-
cated) examples.

129

130 Computations (Attribute Evaluation Statements)

Statement

- Assignment�
�- CompoundAssignment

�- IndexedAssignment

�- VisitedAssignment

�- LocalVariableDecl

�- MethodCall

�- ProcedureCall

�- EmbeddedExec

�- Decision

�- Repetition

�- ForLoop

�- EarlyExit

�- ReturnStatement

�

-

12.1 Assignments

Assignment

- NodeOrEdge - .
���- Ident - =

���- Expression - ;
����

�- ::
�� �- GlobalVarIdent - .

���- Ident - =
���- Expression - ;

����- Variable - =
���- Expression - ;

����- ::
�� �- GlobalVarIdent - =

���- Expression - ;
���

�

-

Evaluation statements have imperative semantics. In particular, GrGen.NET does not
care about data dependencies (You must care for them! The assignments are just executed
one after the other.). Assignment is carried out using value semantics, even for entities of
container or string type. The only exception is the type object, there reference semantics
is used. You can find out about the available Expressions in chapter 6.

12.2 Local Variable Declarations 131

12.2 Local Variable Declarations

LocalVariableDecl

- def
�� �- Name - :

���- Type �
�- =

���- Expression

�

- ;
����

�- def
�� �- -

���- Name - :
���- Type - ->

�� ��
�- =

���- Expression

�

- ;
���

�- def
�� �- var

�� �- Name - :
���- Type �

�- =
���- Expression

�

- ;
���

�- def
�� �- ref

�� �- Name - :
���- Type �

�- =
���- Expression

�

- ;
���

�

-

Local variables can be defined with the syntax known for local def pattern variables,
as already introduced in 8.3, i.e. def var name:type for elementary variables, or def ref

name:type for container variables, or def name:type for nodes, or def -name:type-> for
edges. At their definition, an initializing expression may be given.

EXAMPLE (72)

The following rule eval part gives some example statements regarding data flow.

1 var ::v:int;

2

3 rule example

4 {

5 n:N; // we assume attributes a:int, arr:array<int>, narr:array<N>

6

7 modify {

8 eval {

9 def var sum:int = 0; // declares a local variable of type int and initializes it

10 n.a = 42; // assigns 42 to the attribute a of the node n of type N

11 ::v = n.a - 1; // assigns the global variable the value 41

12 def ref arr:array<int> = array<int>[sum,1,2,3];

13 arr[0] = arr[1] + n.arr[sum];

14 def ref narr:array<N> = array<N>[n];

15 //narr[0].a = 0xAFFE; -- currently not possible, you must work around it this way:

16 def tmp:N = narr[0];

17 tmp.a = 0xAFFE;

18 n.narr[0] = n; // this is possible in contrast

19 }

20 }

21 }

12.3 Control flow

Based on the value of a boolean expression different computations can be executed condi-
tionally with the if and else statements. Please not that the braces are mandatory. With
the switch and case statements, you can match constants against the value of an expression

132 Computations (Attribute Evaluation Statements)

computed once. Every case-branch is enclosed in an block, at block end also the execution
of the block ends, there is no implicit fall-through carried out, a fall-through is not even
available. Only one else branch is allowed, it is hit in case no other branch was executed.
The construct is only available for expressions with values of type byte, short, int, long,
string, boolean, and enum types.

Decision

- IfElse�
�- SwitchCase

�

-

IfElse

- IfPart �
�- ElseIfPart�

�
�

�

�
�- ElsePart

�

-

IfPart

- if
�� �- (

���- BoolExpr -)
���- {����

�- Statement�
�

�

�

- }
���-

ElseIfPart

- else
�� �- if

�� �- (
���- BoolExpr -)

���- {����
�- Statement�

�
�

�

- }
���-

ElsePart

- else
�� �- {����

�- Statement�
�

�

�

- }
���-

SwitchCase

- switch
�� �- (

���- Expr -)
���- {���- CaseStatement�

�
�

- }
���-

12.3 Control flow 133

CaseStatement

- case
�� �- ConstExpr - {

����
�- Statement�

�
�

�

- }
����

�- else
�� �- {����

�- Statement�
�

�

�

- }
���

�

-

Computations may be executed repeatedly by the while and do-while statements. Please
note that the braces are mandatory and that the do-while loop comes without a terminating
semicolon.

Repetition

- WhileLoop�
�- DoWhileLoop

�

-

WhileLoop

- while
�� �- (

���- BoolExpr -)
���- {����

�- Statement�
�

�

�

- }
���-

DoWhileLoop

- do
�� �- {����

�- Statement�
�

�

�

- }
���- while

�� �- (
���- BoolExpr -)

���-

The containers introduced in chapter 13 may be iterated over with a for loop, one assigning
the current value to a variable, the other assigning the current index and the current value
to a variable. Furthermore, a for loop is available for iterating a range of integers, with the
lower and the upper bounds specified. Moreover, a for loop is available for iterating the graph
elements stored in an index, with the lower and upper bounds specified, see 22.2.6 for more
on this and the ForIndexAccessHeader.

ForLoop

- ForHeader�
�- IndexedForHeader

�- ForRangeHeader

�- ForIndexAccessHeader

�

- {
����

�- Statement�
�

�

�

- }
���-

134 Computations (Attribute Evaluation Statements)

ForHeader

- for
�� �- (

���- Var - :
���- Type - in

�� �- ContainerVar -)
���-

IndexedForHeader

- for
�� �- (

���- IndexVar - :
���- Type - ->

�� �- Var - :
���- Type - in

�� �- ContainerVar -)
���-

ForRangeHeader

- for
�� �- (

���- Var - :
���- int

�� �- in
�� �- [

���- IntExpr - :
���- IntExpr -]

���-)
���-

Loop body execution may be exited early or continued with the next iteration with the
break and continue statements. Such a statement must not occur outside of a loop.

EarlyExit

- break
�� �- ;

����
�- continue

�� �- ;
���

�

-

EXAMPLE (73)

The following rule eval part gives some example statements regarding control flow.

1 rule example

2 {

3 n:N; // we (again) assume attributes a:int, arr:array<int>, narr:array<N>

4

5 modify {

6 eval {

7 if(n.a < 42) {

8 while(true) {

9 n.a = n.a + 1;

10 if(n.a == 42) {

11 break; // leaves the while loop, n.a==42 afterwards

12 }

13 }

14 } else {

15 def ref narr:array<N> = n.narr;

16 def var i:int = 0;

17 for(tn:N in narr) {

18 i = i + 1;

19 n.a = n.a + tn.a + n.arr[i];

20 }

21 }

22 }

23 }

24 }

12.4 Embedded Exec

As in the rules (cf. chapter 11), exec statements may be embedded. They are executing the
graph rewrite sequence (see chapter 9) contained, with access to the variables defined outside.
This means for one reading this variables, but for the other assigning to that variables with

12.5 Computation Definition and Call 135

yield. The embedded execs allow to apply rules from the computations, more exactly:
from the procedures (embedded execs are not available in functions), while the sequence
computations (cf. 17.1) may call defined computations (functions in expression context, and
procedures in statement context), mixing and merging declarative rule-based graph rewriting
(pattern matching and dependent modifications) with traditional graph programming. This
construct achieves a further step in the direction of blending rule-based with traditional
programming; the main step is the extension of the attribute assignments, the only statement
available in the original GrGen, into the full-fledged computations pictured in this and the
following chapters.

exec(.)

executes the graph rewrite sequence given.

12.5 Computation Definition and Call

Computations that are occurring frequently may be factored out into a computation def-
inition given in the header of a rule file. Such compound computations can be built and
abstracted into reusable entities in two different forms, functions usable(/callable) from ex-
pression context (and statement context), and procedures usable(/callable) from statement
context (only). Besides, several built-in functions and procedures are available, ready to be
called and reused with the same syntax. (Furthermore, external functions and procedures
may be declared, callable with the same syntax, too.)

12.5.1 Function Definition and Call

Functions return exactly one output value, and can thus be used from the expressions with
their compositional semantics. They are side-effect free, meaning they are not allowed to
change the graph while being executed — so you are not allowed to call procedures (self-
defined as well as built-in) from within a function definition. On the other hand do we
consider pure functional programming not a help but a burden, so you are free to declare
local variables and assign them as you like inside the function definitions; they only must
behave as functions at the outside.

FunctionDefinition

- function
�� �- Name - (

���- Parameters -)
���- :

���- ReturnType �
�

�- {���- Statement�
�

�

- }
���-

Parameters

�
�- Parameter�

� ,
����

�

�

-

136 Computations (Attribute Evaluation Statements)

Parameter

- IdentDecl - :
���- NodeType�

�- -
���- IdentDecl - :

���- EdgeType - ->
�� ��- var

�� ��
�- ref

�� �
�

- IdentDecl - :

���- VarType

�

-

The function definition must return a value with a return statement (so there must be
at least one return statement). The type of the one return value must be compatible to
the return type specified in the computation definition. (A return statement must not occur
outside of a computation definition.)

ReturnStatement

- return
�� �- (

���- Expression -)
���- ;

���-

FunctionCall

- Name - (
����

�- Expression�
� ,

����
�

�

-)
���-

EXAMPLE (74)

An example showing how functions are declared and used.

1 function fac(var x:int) : int

2 {

3 if(x>1) {

4 return(x * fac(x-1));

5 } else {

6 return(1);

7 }

8 }

9 function foo(m:N) : boolean

10 {

11 def var tmp:int = fac(m.a);

12 tmp = tmp - 1;

13 return(m.a < tmp);

14 }

15 test example : (int)

16 {

17 n:N;

18 if{foo(n);}

19 return (fac(n.a));

20 }

A such defined function may then be called as an expression atom from anywhere in the
rule language file where an expression is required; or even from the sequence computations
where an expression is required. Besides the built-in functions that are called with the same
syntax; table 12.1 and table 12.2 list the global built-in functions of the rule language at a
glance, table 12.3 lists the built-in functions contained in built-in packages at a glance.

12.5 Computation Definition and Call 137

nodes([NodeType]):set<Node>

edges([EdgeType]):set<Edge>

source(Edge):Node

target(Edge):Node

opposite(Edge,Node):Node

adjacent(Node[,EdgeType[,NodeType]]):set<Node>

adjacentIncoming(Node[,EdgeType[,NodeType]]):set<Node>

adjacentOutgoing(Node[,EdgeType[,NodeType]]):set<Node>

incident(Node[,EdgeType[,NodeType]]):set<Edge>

incoming(Node[,EdgeType[,NodeType]]):set<Edge>

outgoing(Node[,EdgeType[,NodeType]]):set<Edge>

reachable(Node[,EdgeType[,NodeType]]):set<Node>

reachableIncoming(Node[,EdgeType[,NodeType]]):set<Node>

reachableOutgoing(Node[,EdgeType[,NodeType]]):set<Node>

reachableEdges(Node[,EdgeType[,NodeType]]):set<Edge>

reachableEdgesIncoming(Node[,EdgeType[,NodeType]]):set<Edge>

reachableEdgesOutgoing(Node[,EdgeType[,NodeType]]):set<Edge>

boundedReachable(Node,int[,EdgeType[,NodeType]]):set<Node>

boundedReachableIncoming(Node,int[,EdgeType[,NodeType]]):set<Node>

boundedReachableOutgoing(Node,int[,EdgeType[,NodeType]]):set<Node>

boundedReachableEdges(Node,int[,EdgeType[,NodeType]]):set<Edge>

boundedReachableEdgesIncoming(Node,int[,EdgeType[,NodeType]]):set<Edge>

boundedReachableEdgesOutgoing(Node,int[,EdgeType[,NodeType]]):set<Edge>

boundedReachableWithRemainingDepth(Node,int):map<Node, int>

boundedReachableWithRemainingDepthIncoming(Node,int):map<Node, int>

boundedReachableWithRemainingDepthOutgoing(Node,int):map<Node, int>

The three functions above allow optional edge and node type constraints, too.

inducedSubgraph(set<Node>):graph

definedSubgraph(set<Edge>):graph

equalsAny(graph, set<graph>):boolean

equalsAnyStructurally(graph, set<graph>):boolean

copy(graph):graph

copy(container):container

copy(match<r>):match<r>

random():double

random(int):int

nameof(Node/Edge/graph):string

uniqueof(Node/Edge/graph):int

nodeByName(string[,NodeType]):Node

edgeByName(string[,EdgeType]):Edge

nodeByUnique(int[,NodeType]):Node

edgeByUnique(int[,EdgeType]):Edge

Table 12.1: Global functions at a glance, part I

138 Computations (Attribute Evaluation Statements)

countNodes([NodeType]):int

countEdges([EdgeType]):int

countAdjacent(Node[,EdgeType[,NodeType]]):int

countAdjacentIncoming(Node[,EdgeType[,NodeType]]):int

countAdjacentOutgoing(Node[,EdgeType[,NodeType]]):int

countIncident(Node[,EdgeType[,NodeType]]):int

countIncoming(Node[,EdgeType[,NodeType]]):int

countOutgoing(Node[,EdgeType[,NodeType]]):int

countReachable(Node[,EdgeType[,NodeType]]):int

countReachableIncoming(Node[,EdgeType[,NodeType]]):int

countReachableOutgoing(Node[,EdgeType[,NodeType]]):int

countReachableEdges(Node[,EdgeType[,NodeType]]):int

countReachableEdgesIncoming(Node[,EdgeType[,NodeType]]):int

countReachableEdgesOutgoing(Node[,EdgeType[,NodeType]]):int

countBoundedReachable(Node,int[,EdgeType[,NodeType]]):int

countBoundedReachableIncoming(Node,int[,EdgeType[,NodeType]]):int

countBoundedReachableOutgoing(Node,int[,EdgeType[,NodeType]]):int

countBoundedReachableEdges(Node,int[,EdgeType[,NodeType]]):int

countBoundedReachableEdgesIncoming(Node,int[,EdgeType[,NodeType]]):int

countBoundedReachableEdgesOutgoing(Node,int[,EdgeType[,NodeType]]):int

isAdjacent(Node,Node[,EdgeType[,NodeType]]):boolean

isAdjacentIncoming(Node,Node[,EdgeType[,NodeType]]):boolean

isAdjacentOutgoing(Node,Node[,EdgeType[,NodeType]]):boolean

isIncident(Node,Edge[,EdgeType[,NodeType]]):boolean

isIncoming(Node,Edge[,EdgeType[,NodeType]]):boolean

isOutgoing(Node,Edge[,EdgeType[,NodeType]]):boolean

isReachable(Node,Node[,EdgeType[,NodeType]]):boolean

isReachableIncoming(Node,Node[,EdgeType[,NodeType]]):boolean

isReachableOutgoing(Node,Node[,EdgeType[,NodeType]]):boolean

isReachableEdges(Node,Edge[,EdgeType[,NodeType]]):boolean

isReachableEdgesIncoming(Node,Edge[,EdgeType[,NodeType]]):boolean

isReachableEdgesOutgoing(Node,Edge[,EdgeType[,NodeType]]):boolean

isBoundedReachable(Node,Node,int[,EdgeType[,NodeType]]):boolean

isBoundedReachableIncoming(Node,Node,int[,EdgeType[,NodeType]]):boolean

isBoundedReachableOutgoing(Node,Node,int[,EdgeType[,NodeType]]):boolean

isBoundedReachableEdges(Node,Edge,int[,EdgeType[,NodeType]]):boolean

isBoundedReachableEdgesIncoming(Node,Edge,int[,EdgeType[,NodeType]]):boolean

isBoundedReachableEdgesOutgoing(Node,Edge,int[,EdgeType[,NodeType]]):boolean

Table 12.2: Global functions at a glance, part II

12.5 Computation Definition and Call 139

Math::min(Number,Number):Number

Math::max(Number,Number):Number

Math::abs(Number):Number

Math::ceil(double):double

Math::floor(double):double

Math::round(double):double

Math::truncate(double):double

Math::pow([double,]double):double

Math::log(double[,double]):double

Math::sgn(double):double

Math::sin(double):double

Math::cos(double):double

Math::tan(double):double

Math::arcsin(double):double

Math::arccos(double):double

Math::arctan(double):double

Math::pi():double

Math::e():double

Math::byteMin():byte

Math::byteMax():byte

Math::shortMin():short

Math::shortMax():short

Math::intMin():int

Math::intMax():int

Math::longMin():long

Math::longMax():long

Math::floatMin():float

Math::floatMax():float

Math::doubleMin():double

Math::doubleMax():double

File::import(string):graph

File::exists(string):boolean

Time::now():long

Table 12.3: Functions in packages at a glance

140 Computations (Attribute Evaluation Statements)

12.5.2 Procedure Definition And Call

Procedures may return between zero and k (arbitrary, but statically fixed) output values,
and are thus only callable as a statement, with (or without) a multiple-value assignment.
They are allowed to manipulate the graph as needed while being executed; so in a procedure
definition you are free to call other procedures (self-defined as well as built-in).

ProcedureDefinition

- procedure
�� �- Name - (

���- Parameters -)
���- ReturnTypes �

�
�- {���- Statement�

�
�

- }
���-

ReturnTypes

�
�- :

���- (
���- ReturnType�

� ,
����

�

-)
���

�

-

Please note the syntactic difference distinguishing the procedures from the functions (be-
sides the different keyword): the return types are enclosed in parenthesis (or omitted al-
together). The computation definition may return between zero and k values. It must be
always ended with a return statement; the type of the return values must be compatible to
the return types specified in the computation definition. (A return statement must not occur
outside of a computation definition.)

ReturnStatement

- return
�� ��

�- (
���- Expression�

� ,
����

�

-)
���

�

- ;
���-

ProcedureCall

�
�- OutputAssignment

�

- Name - (

����
�- Expression�

� ,
����

�

�

-)
���-

OutputAssignment

- (
���- AssignmentTarget�

� ,
����

�

-)
���- =

���-

12.5 Computation Definition and Call 141

EXAMPLE (75)

An example showing how procedures are declared and used.

1 procedure foo(n:N) : (N,int)

2 {

3 (def m:N) = add(N); // create new node of type N and add it to the graph

4 return(m, n.a);

5 }

6

7 procedure bar(m:N, var i:int)

8 {

9 def var fac:int = 1;

10 while(i>0) {

11 fac = fac * i;

12 i = i - 1;

13 }

14 m.a = m.a - fac;

15 return;

16 }

17

18 rule example : (int,int)

19 {

20 n:N;

21 modify {

22 def var i:int;

23 eval {

24 def m:N;

25 (m,yield i)=foo(n);

26 bar(m,i);

27 }

28 return(i,n.a);

29 }

30 }

A such defined procedure may then be called as a statement atom from anywhere in the
rule language file where an attribute evaluation (/computation) is required; or even from the
sequence computations where a statement is required. Besides the built-in procedures that
are called with the same syntax; table 12.4 lists the global built-in procedures of the rule
language at a glance, table 12.5 lists the built-in procedures contained in built-in packages
at a glance.

Please note that the OutputAssignment is optional, you may execute a procedure just for
its side effects; this kind of call is even the most common as many built-in procedures don’t
return values at all but are just executed for their state changes. The AssignmentTarget
may be any of the LHS expressions supported by the different AssignmentStatements (a def
variable, a def variable yielded to, a global variable, a graph element attribute, an indexed
target, or a visited flag of a graph element), and it may be def variable that gets just declared
(LocalVariableDecl), using the procedure output for initialization.

142 Computations (Attribute Evaluation Statements)

add(NodeType):(Node)

addCopy(Node):(Node)

add(EdgeType,Node,Node):(Edge)

addCopy(Edge,Node,Node):(Edge)

rem(Node)

rem(Edge)

retype(Node,NodeType):(Node)

retype(Edge,EdgeType):(Edge)

clear()

merge(Node,Node)

redirectSource(Edge,Node)

redirectTarget(Edge,Node)

redirectSourceAndTarget(Edge,Node,Node)

insert(graph)

insertCopy(graph,Node):(Node)

insertInduced(set<Node>,Node):(Node)

insertDefined(set<Edge>,Edge):(Edge)

valloc():(int)

vfree(int)

vreset(int)

vfreenonreset(int)

emit(string(,string)*)

emitdebug(string(,string)*)

record(string)

Table 12.4: Global procedures at a glance

File::export(string)

File::export(graph,string)

File::delete(string)

Transaction::start():(int)

Transaction::pause(int)

Transaction::resume(int)

Transaction::commit(int)

Transaction::rollback(int)

Debug::add(string(,object)*)

Debug::rem(string(,object)*)

Debug::emit(string(,object)*)

Debug::halt(string(,object)*)

Debug::highlight(string(,object,string)*)

Table 12.5: Procedures in packages at a glance

12.6 The Big Picture 143

12.6 The Big Picture

Figure 12.1 displays the different computation types of GrGen.NET, and how they may use
and call each other. On top the strategy language for rule control, to the left the declarative
rules and subpatterns, and to the right the imperative parts for attribute computations
or traditional graph programming. The statements include the expressions and non-graph
changing statements.

Rule / Test

LHS
pattern

RHS
pattern

LHS
pattern

RHS
pattern

Subpattern

Function

Procedure

Sequence

if

if eval

eval
exec

exec

exec

Sequence
Computations

Sequence
Expressions

Sequence

Expressions/
Non-Graph-
Changing
Statements

Statements

Sequences

Graphletsmay
call /
use

Figure 12.1: Computation Types and Possible Calls/Uses

The following tables give an overview over the rule and computation sublanguages of
GrGen.NET; separated into pattern and rewrite part, and into expressions and statements.

144 Computations (Attribute Evaluation Statements)

. Declaration of an anonymous node of type Node, to be matched.
--> Declaration of an anonymous edge of type Edge, to be matched.
<--> Declaration of an anonymous edge of type Edge that can get matched

in either direction.
-- Declaration of an anonymous undirected edge of type UEdge, to be

matched.
n:N Declaration of a node n of type N, to be matched.
-e:E-> Declaration of an edge e of type E, to be matched.
n Reference to node n within a graphlet.
-e-> Reference to edge e within a graphlet.
def var v:B Defines a def-variable v of basic type B, to be yielded to.
def ref c:C Defines a def-variable c of container type C, to be yielded to.

x:typeof(y) The element x to be matched must be of the same or a subtype as y.
x:T\S The element x must be of type T but not of subtype S.
x:T<y> The element y casted to T, accessible as x.

hom(x,y) The pattern elements x and y are allowed to match the same graph
element.

independent(x) The pattern element x may be matched homomorphically to all other
pattern elements.

exact(x,y) All edges incident to x and y in the host graph must have been spec-
ified in the pattern.

induced(x,y) Induced edges in between x and y in the host graph must have been
specified in the pattern.

if{exp;} An attribute condition constraining the pattern.
yield{stmt} A computation for yielding to def variables.

nested{pattern} A nested pattern, with nested being one of the pattern construction
modi listed in 8.2.

p:P() A usage/call p of a (user-defined) subpattern of type P.

Let exp be an expression, stmt be a statement, and pattern be a LHS pattern.

Table 12.6: Pattern (LHS) elements at a glance

12.6 The Big Picture 145

modify{pattern} An RHS pattern nested in an arbitrary LHS pattern, specifying
the changes.

replace{pattern} An RHS pattern nested in an arbitrary LHS pattern, specifying
the target pattern.

. Declaration of an anonymous node of type Node, to be created.
--> Declaration of an anonymous edge of type Edge, to be created.
n:N Declaration of a node n of type N, to be created.
-e:E-> Declaration of an edge e of type E, to be created.
n Reference to node n within a graphlet, ensures it is kept in

replace mode.
-e-> Reference to edge e within a graphlet, ensures it is kept in

replace mode.
def var v:B Defines a def-variable v of basic type B, to be yielded to.
def ref c:C Defines a def-variable c of container type C, to be yielded to.
delete(x) Deletes element x in modify mode.

x:typeof(y) The element x is created with the same type as y.
x:T<y> The element y is casted to type T, accessible as x afterwards.
x:copy<y> The element x is created as exact copy of y.
x:typeof(y)<y,z> The nodes y and z are merged and casted to the original type

of y, accessible as x afterwards.
x !-e->! y The edge e is redirected to source node x and target node y.

eval{stmt} A computation assigning to attributes or def variables.

exec(s ;> yield o=i) Executes the sequence s, and then yields the value of an inner
variable i to an outer variable o. Yielding from an exec is only
possible in the top-level exec of a rule, in nested patterns and
subpatterns the execution is deferred.

delete(p) Deletes the subpattern used as p.
:P() Creates a simple subpattern of type P.
:p() Uses or calls the rewrite part of a (user-defined) subpattern used

as p in the containing LHS pattern.

Let stmt be a statement.

Table 12.7: Rewrite elements (RHS pattern) at a glance

146 Computations (Attribute Evaluation Statements)

v Reads the variable v.
::v Reads the global variable v.
v.a Reads the attribute a of v.
v[i] Reads the value at position i of container v.
idx[n] Reads the incidence count of node n from incidence count index

idx.
x.a[i] Reads the value at position i of container attribute a of x.
x.visited[i] Reads the visited flag i of graph element x.

typeof(v) Returns the type of graph element v.
(T)v Casts v to type T.
nameof(v) Returns the name of graph element v.
random() Returns a random value in between 0.0 and 1.0.

cond ? exp1 : exp2 Returns exp1 if cond, otherwise exp2.
e op f For op being one of the binary operators listed in 6.9.
op f For op being one of the unary operators listed in 6.9.

f(...) Calls one of the functions listed in 12.1. Or calls a user defined
function f.

v.fm(...) Calls one of the function methods listed in 16.1. Or calls a user
defined function method fm.

Let cond, exp1, and exp2 be expressions.

Table 12.8: Expressions at a glance

12.6 The Big Picture 147

def n:N Defines a variable n of node type N.
def -e:E-> Defines a variable e of edge type E.
def var v:B Defines a variable v of basic type B.
def ref c:C Defines a variable c of container type C.

v = exp Assigns the value of exp to the variable v.
::v = exp Assigns the value of exp to the global variable v.
v.a = exp Assigns the value of exp to the attribute a of v.
v[i] = exp Assigns the value of exp to the position i of con-

tainer v.
x.a[i] = exp Assigns the value of exp to the position i of con-

tainer attribute a of x.
x.visited[i] = exp Assigns the value of exp to the visited flag i of

graph element x.

if(cond) {S1} else {S2} Executes S1 iff cond evaluates to true, or S2 oth-
erwise.

switch(exp) { cases } Evaluates exp, then dispatches to one of the cases,
see below.

case c-exp {S1} else {S2} If the constant exp matches the value switched
upon, S1 is executed, if none of the cases matches,
else is executed (if given).

while(cond) {S1} Executes S1 as long as cond evaluates to strue.
do {S1} while(cond) Executes S1 until cond evaluates to false.
for(v:T in c) {S1} Executes S1 for each value v contained in container

c.
for(i:T->v:S in c) {S1} Executes S1 for each key/position to value pair

(i,v) contained in container c.
for(i:int in [l:r]) {S1} Executes S1 for each integer i in the range from

l to r, in steps of 1, upwards if l<=r, otherwise
downwards.

for(n:N in {asc.(idx>7)}) {S1} Execute S1 for every n in the index idx, in ascend-
ing order, from 7 exclusive on. asc. abbreviates
ascending, is not valid syntax as such.

break Aborts execution of the containing loop.
continue Continues execution of the containing loop at its

condition.
return Returns from a containing function or procedure.
return(v) Returns from a containing function or procedure

with result value v.

exec(s ;> yield o=i) Executes the sequence s, and then yields the value
of an inner variable i to an outer variable o.

(...)=p(...) Calls one of the procedures listed in 12.4. Or calls
a user defined procedure p.

(...)=v.pm(...) Calls one of the procedure methods listed in 16.2.
Or calls a user defined procedure method pm.

exec(s) Executes the sequence s.

Let exp and cond be expressions, and S1 and S2 be statements

Table 12.9: Statements at a glance

148 Computations (Attribute Evaluation Statements)

C H A P T E R 13

C O N TA I N E R T Y P E S A N D C O M P U TAT I O N S

13.1 Built-In Types and Concept of Containers

Besides the types already introduced, GrGen.NET supports the built-in generic types in
Table 13.1. The exact type format is backend specific. The LGSPBackend maps the generic
types to generic C#-Dictionaries (i.e. hashmaps) or generic C#-Lists (misnamed dynamic
arrays) or a GrGen.NET supplied generic C#-Deque of their corresponding primitive types,
with de.unika.ipd.grGen.libGr.SetValueType as target type for sets, only used with the
value null.

set<T> A (mathematical) set of type T, where T may be an enumeration type or one
of the primitive types from 6.1; it may even be a node or edge or graph type,
then we speak of storages.

map<S,T> A (mathematical) map from type S to type T, where S and T may be enumer-
ation types or one of the primitive types from 6.1; it may even be a node or
edge or graph type, then we speak of storages.

array<T> An array of type T, where T may be an enumeration type or one of the primitive
types from 6.1; it may even be a node or edge or graph type, then we speak
of storages. Shares some similarities with map<int,T>.

deque<T> A deque of type T, where T may be an enumeration type or one of the primitive
types from 6.1; it may even be a node or edge or graph type, then we speak
of storages. Shares some similarities with array<T>.

Table 13.1: GrGen.NET built-in generic types

The four container types supported by GrGen share a lot of conceptual similarities and
can be accessed in a similar way. They support multiple methods to update them: add to
add an element to the container, rem to remove an element from the container, and clear

to remove all elements from the container. Furthermore, they support multiple methods to
query them: size to return the count of elements in the container, empty to return whether
the container is empty or not, and peek to return an element from the container.

In addition to those common methods there is special syntax support available. Left
associative binary expressions allow to compute a new container from two input containers,
or to compare two containers. The in operator allows to query for containment. Indexed
access returns an element at an index position, and indexed assignment overwrites an element
at a specified position with another one. Container typed variables as such may be assigned
a container (with value semantics if the target is a graph element attribute, in all other
cases with reference semantics). Compound assignments combine a binary expression with
an assignment.

Constructor literals may be used to create and initialize containers; a copy constructor
allows to get a new container, of duplicated content and potentially different type. And
finally iteration over the elements in the container is supported with a for loop.

149

150 Container Types and Computations

These operations are available in the rule language, as an extension of the expressions from
6 and the computation statements from 12; most of them are available in the sequence com-
putations language, too (17.4 will tell about the differences compared to the rule language).
In the if attribute evaluation clause only side-effect free container queries are allowed. In
the following the container operations will be explained in detail for one type after another.

13.2 Set Operations

Set expressions consist of the known mathematical set operations, plus some operations in
method call notation (on set<T>).

SetExpr

- PrimaryExpr �
�- MethodSelector

�

�
�- Expr - in

�� �- SetExpr

�- SetExpr - SetOperator - SetExpr

�

-

MethodCall

- SetEntity - MethodSelector -

Assignment

- SetEntity - =
���- SetExpr -

CompoundAssignment

- SetEntity - SetOperator - =
���- Expr �

�- ChangeAssignment

�

-

SetConstructor

- set
�� �- <

���- Type - >
����

�
�- {����

�- Expression�
� ,

����
�

�

- }
���-

SetCopyConstructor

- set
�� �- <

���- Type - >
���- (

���- SetExpr -)
���-

The query method calls on sets are:

.size()

returns the number of elements in the set, as int

.empty()

returns whether the set is empty, as boolean

13.2 Set Operations 151

.peek(num)

returns the element which comes at position num:int in the sequence of enumeration,
as T for set<T>; the higher the number, the longer retrieval takes

.asArray()

returns an array of the set content, as array<T> for set<T>, in enumeration order

The update method calls on sets are:

Set addition:
s.add(v) adds the value v to the set s.

Set removal:
s.rem(v) removes the value v from the set s.

Set clearing:
s.clear() removes all values from the set s.

The binary set operators are:

| Set union (contained in resulting set as soon as contained in one of the sets)

& Set intersection (contained in resulting set only if contained in both of the sets)

\ Set difference (contained in resulting set iff contained in left but not right set)

Table 13.2: Binary set operators, in ascending order of precedence

The binary set operators require the left and right operands to be of identical type set<T>.
The operator x in s denotes set membership x ∈ s, returning whether the set contains the
given element, as boolean. It is a O(1) operation for sets. Furthermore, the container may
be iterated over with a for loop, as introduced in 12.3. The set only allows for non-indexed
iteration.

The relational expressions (already introduced in 6.4) used to compare entities of different
kinds, mapping them to the type boolean, are extended to sets according to table 13.3: Some
set A is a subset of B iff all elements in A are contained in B, too.

A == B True, iff A and B are identical.
A != B True, iff A and B are not identical.
A < B True, iff A is a subset of B, but A and B are not identical.
A > B True, iff A is a superset of B, but A and B are not identical.
A <= B True, iff A is a subset of B or A and B are identical.
A >= B True, iff A is a superset of B or A and B are identical.

Table 13.3: Binary set operators for comparison

The assignments implement the computation constructs introduced in 12. The pure
assignment overwrites the target set with the source set, commonly with value semantics,
creating a copy of the source set. Only if a local variable (i.e. not an attribute) is assigned to
a local variable, is reference semantics used (i.e. both variables point afterwards to the same
set). Compound assignments are assignments which use the first source as target, too, only
adapting the target value instead of computing a new value and overwriting the target with
it. For scalars this is not supported, but for container valued entities it is offered due to the
potential for massive computational cost savings. The compound assignment statements on
sets are a set union |=, intersection &= and difference \= assignment.

152 Container Types and Computations

ChangeAssignment

- =
���- >

����
�- |

���- >
����- &

���- >
���

�

- NodeOrEdge - .

���- BoolAttribute�
�- BoolVariable

�- VisitedFlag

�

-

The compound assignments on sets and maps may be enhanced with a change assignment
declaration. The change value is true in case the target collection changes and false in case
the target collection is not altered. The assign-to operator => assigns the change value to
the specified target, the or-to operator |> assigns the boolean disjunction of the change value
target with the change value to the change value target, the and-to operator &> assigns the
boolean conjunction of the change value target with the change value to the change value
target. This addition allows for efficient data flow computations not needing to check for a
change by set comparison, see 19.6.

The SetConstructor extends the Literal from 6.8 (as a refinement of the ContainerCon-
structor there). It is constant if only primitive type literals, enum literals, or constant expres-
sions are used; this is required for container initializations in the model. It is non-constant if
it contains nodes/edges/or member accesses, which may be the case if used in the rules. The
elements given in the type constructor are casted to the specified member type if needed and
possible. The SetCopyConstructor creates a new set of the specified type, filling it with the
elements from the old set. In case of a node or edge type, the types of the original and the
constructed set are allowed to differ, only the elements from the old set that match the type
of the new set are taken over then (this is a remedy for set value type invariance).

EXAMPLE (76)

An example explaining some set operations.

1 function setExample(ref si:set<int>) : boolean

2 {

3 def ref s:set<int> = set<int>{};

4 s.add(1); // { 1 }

5 s.add(2); // { 1, 2 }

6 s.add(3); // { 1, 2, 3 }, s.size()==3

7 s.rem(2); // { 1, 3 }

8 for(v:int in s) {

9 si.add(v);

10 } // s == si == { 1, 3 }, assuming input was {}

11 def var i:int = s.size(); // i==2

12 if(!(i in s)) {

13 s.add(i);

14 } // { 1, 2, 3 }

15 s.add(3); // still { 1, 2, 3 }

16 return (2 in (s | set<int>{ 4,5 })); // true

17 }

13.3 Map Operations

Map expressions consist of the known mathematical set operations extended to maps, and
map value lookup, plus some operations in method call notation (on map<S,T>).

13.3 Map Operations 153

MapExpr

- PrimaryExpr �
�- MethodSelector

�

�
�- Expr - in

�� �- MapExpr

�- MapExpr - [
���- Expr -]

����- MapExpr - MapOperator - MapExpr

�

-

MethodCall

- MapEntity - MethodSelector -

Assignment

- MapEntity - =
���- MapExpr -

IndexedAssignment

- MapEntity - [
���- IndexExpr -]

���- =
���- Expr -

CompoundAssignment

- MapEntity - MapOperator - =
���- Expr �

�- ChangeAssignment

�

-

MapConstructor

- map
�� �- <

���- Type - ,
���- Type - >

����
�

�- {����
�- Expression - ->

�� �- Expression�
� ,

����
�

�

- }
���-

MapCopyConstructor

- map
�� �- <

���- Type - ,
���- Type - >

���- (
���- MapExpr -)

���-

The query method calls on maps are:

.size()

returns the number of elements in the map, as int

.empty()

returns whether the map is empty, as boolean

.peek(num)

returns the key of the element which comes at position num:int in the sequence of
enumeration, as S for map<S,T>; the higher the number, the longer retrieval takes

154 Container Types and Computations

.domain()

returns the set of elements in the domain of the map, as set<S> for map<S,T>

.range()

returns the set of elements in the range of the map, as set<T> for map<S,T>

.asArray()

returns an array of the map content, as array<T> for map<int,T> (only available for
domain type int); gaps are filled with the default value, up to the maximum index
available in the map

The update method calls on maps are:

Map addition:
m.add(k,v) adds the pair (k,v) to the map m, overwrites the old value if a pair
(k,unknown) was already existing.

Map removal:
m.rem(k) removes the pair (k,unknown) from the map m.

Map clearing:
m.clear() removes all values from the map m.

The binary map operators are:

|
Map union: returns new map with elements which are in at least one of the maps,
with the value of map2 taking precedence

&
Map intersection: returns new map with elements which are in both maps,
with the value of map1 taking precedence

\
Map difference: returns new map with elements from map1
without the elements with a key contained in map2

Table 13.4: Binary map operators, in ascending order of precedence

The binary map operators require the left and right operands to be of identical type
map<S,T>, with one exception for map difference, this operator accepts for a left operand
of type map<S,T> a right operand of type set<S>, too. The operator x in m denotes map
domain membership x ∈ dom(m), returning whether the domain of the map contains the
given element, as boolean. It is a O(1) operation for maps. The operator m[x] denotes map
lookup, i.e. it returns the value y which is stored in the map m for the value x (domain value
x is mapped by the mapping m to range value y). The value x must be in the map, i.e. x in

m must hold. Furthermore, the container may be iterated over with a for loop, as introduced
in 12.3. The map only allows for indexed iteration, with the key getting assigned to the index
variable and the corresponding value getting assigned to the value variable.

The relational expressions (already introduced in 6.4) used to compare entities of different
kinds, mapping them to the type boolean, are extended to sets according to table 13.5: A
map A is a submap of B iff all key-value pairs of A are contained in B, too. If they have a key
in common but map to a different value, they count as not identical.

The assignments implement the computation constructs introduced in 12. The pure
assignment overwrites the target map with the source map, commonly with value semantics,
creating a copy of the source map. Only if a local variable (i.e. not an attribute) is assigned to
a local variable, is reference semantics used (i.e. both variables point afterwards to the same
map). The indexed assignment m[i]=v overwrites the old value at index i in the map m with
the new value v. Compound assignments are assignments which use the first source as target,
too, only adapting the target value instead of computing a new value and overwriting the

13.4 Array Operations 155

A == B True, iff A and B are identical.
A != B True, iff A and B are not identical.
A < B True, iff A is a submap of B, but A and B are not identical.
A > B True, iff A is a supermap of B, but A and B are not identical.
A <= B True, iff A is a submap of B or A and B are identical.
A >= B True, iff A is a supermap of B or A and B are identical.

Table 13.5: Binary map operators for comparison

target with it. For scalars this is not supported, but for container valued entities it is offered
due to the potential for massive computational cost savings. The compound assignment
statements on maps are a map union |=, intersection &= and difference \= assignment.

The MapConstructor extends the Literal from 6.8 (as a refinement of the Container-
Constructor there). It is constant if only primitive type literals, enum literals, or constant
expressions are used; this is required for container initializations in the model. It is non-
constant if it contains nodes/edges/or member accesses, which may be the case if used in the
rules. The elements given in the type constructor are casted to the specified member types
if needed and possible. The MapCopyConstructor creates a new map of the specified types,
filling it with the elements from the old map. In case of a node or edge type, the types of the
original and the constructed map are allowed to differ, only the elements from the old map
that match the type of the new map are taken over then (this is a remedy for map key/value
type invariance).

EXAMPLE (77)

An example explaining some map operations.

1 function mapExample(ref mi:map<int,int>) : boolean

2 {

3 def ref m:map<int,int> = map<int,int>{};

4 m.add(1,1); // { 1->1 }

5 m.add(2,2); // { 1->1, 2->2 }

6 m.add(3,3); // { 1->1, 2->2, 3->3 }, m.size()==3

7 m.rem(2); // { 1->1, 3->3 }

8 for(k:int -> v:int in m) {

9 mi.add(k,v); // mi[k] == m[k]

10 } // m == mi == { 1->1, 3->3 }, assuming input was {->}

11 m[3] = m[1]; // m = { 1->1, 3->1 }

12 def var i:int = m.size(); // i==2

13 if(!(i in m)) {

14 m.add(i, 1);

15 } // { 1->1, 2->1, 3->1 }

16 m.add(3, 3); // { 1->1, 2->1, 3->3 }

17 return (2 in (m | map<int,int>{ 4->4, 5->m[0] })); // true

18 }

13.4 Array Operations

Array expressions consist of array membership checking, array value lookup, and array con-
catenation, plus some operations in method call notation (on array<T>).

156 Container Types and Computations

ArrayExpr

- PrimaryExpr �
�- MethodSelector

�

�
�- Expr - in

�� �- ArrayExpr

�- ArrayExpr - [
���- Expr -]

����- ArrayExpr - ArrayOperator - ArrayExpr

�

-

MethodCall

- ArrayEntity - MethodSelector -

Assignment

- ArrayEntity - =
���- ArrayExpr -

IndexedAssignment

- ArrayEntity - [
���- IndexExpr -]

���- =
���- Expr -

CompoundAssignment

- ArrayEntity - ArrayOperator - =
���- Expr �

�- ChangeAssignment

�

-

ArrayConstructor

- array
�� �- <

���- Type - >
����

�
�- [

����
�- Expression�

� ,
����

�

�

-]
���-

ArrayCopyConstructor

- array
�� �- <

���- Type - >
���- (

���- ArrayExpr -)
���-

The query method calls on arrays are:

.size()

returns the number of elements in the array, as int

.empty()

returns whether the array is empty, as boolean

.peek(num)

returns the value stored in the array at position num:int in the sequence of enumeration,
is equivalent to (and implemented by) a[num]); retrieval occurs in constant time.

13.4 Array Operations 157

.peek()

returns the last value stored in the array; retrieval occurs in constant time.

.indexOf(valueToSearchFor)

returns the first position valueToSearchFor:T appears at, as int, or -1 if not found

.indexOf(valueToSearchFor, startIndex)

returns the first position valueToSearchFor:T appears at (moving to the end), when
we start the search for it at array position startIndex:int, as int, or -1 if not found

.lastIndexOf(valueToSearchFor)

returns the last position valueToSearchFor:T appears at, as int, or -1 if not found

.lastIndexOf(valueToSearchFor, startIndex)

returns the last position valueToSearchFor:T appears at (moving to the begin), when
we start the search for it at array position startIndex:int, as int, or -1 if not found

.indexOfOrdered(valueToSearchFor)

returns a position where valueToSearchFor:T appears at, as int, or -1 if not found.
The array must be ordered, otherwise the results returned by the binary search employed
will be wrong; in case of multiple occurences, an arbitray one is returned

.orderAscending()

returns an array with the content of the input array ordered ascendingly, only available
for basic types

.reverse()

returns an array with the content of the input array reversed

.subarray(startIndex, length)

returns subarray of given length:int from startIndex:int on

.asDeque()

returns a deque of the array content, as deque<T> for array<T>, in same order

.asSet()

returns a set (without order) of the array content, as set<T> for array<T>

.asMap()

returns a map of the array content, as map<int,T> for array<T>, the values are mapped-
to by their index

.asString(separator)

returns the array imploded to a string with the separator:string inserted in between
the substrings from the array, only available for array<string> (a string contains an
asArray method for reversal)

Some query method calls are available only on arrays of node or edge types bearing attributes,
inspecting the value of an attribute of the graph elements stored in the array, with the
attribute defined with the operation, instead of the values contained in the array directly:

.indexOfBy<attr>(valueToSearchFor)

returns the first position valueToSearchFor:T appears at, as int, or -1 if not found

.indexOfBy<attr>(valueToSearchFor, startIndex)

returns the first position valueToSearchFor:T appears at (moving to the end), when
we start the search for it at array position startIndex:int, as int, or -1 if not found

158 Container Types and Computations

.lastIndexOfBy<attr>(valueToSearchFor)

returns the last position valueToSearchFor:T appears at, as int, or -1 if not found

.lastIndexOfBy<attr>(valueToSearchFor, startIndex)

returns the last position valueToSearchFor:T appears at (moving to the begin), when
we start the search for it at array position startIndex:int, as int, or -1 if not found

.indexOfOrderedBy<attr>(valueToSearchFor)

returns a position where valueToSearchFor:T appears at, as int, or -1 if not found.
The array must be ordered, otherwise the results returned by the binary search employed
will be wrong; in case of multiple occurences, an arbitray one is returned

.orderAscendingBy<attr>()

returns an array with the content of the input array ordered ascendingly; only available
for an attribute of basic type, contained in a node or edge type, with the array storing
graph elements of that type.

The update method calls on arrays are:

Array addition:
a.add(v) adds the value v to the end of array a.

Array addition:
a.add(v,i) inserts the value v at index i to array a.

Array removal:
a.rem() removes the value at then end of the array a.

Array removal:
a.rem(i) removes the value at index i from the array a.

Array clearing:
a.clear() removes all values from the array a.

The binary array operators are:

+
Array concatenation: returns new array with the right appended to the left array
the left and right operands must be of identical type array<T>

Table 13.6: Binary array operators, in ascending order of precedence

The operator x in a denotes array value membership, returning whether the array con-
tains the given element, as boolean. It is a O(n) operation for arrays. The operator a[x]

denotes array lookup, i.e. it returns the value y which is stored in the array a at the index x.
The index x must be a valid array index. Furthermore, the container may be iterated over
with a for loop, as introduced in 12.3. The array allows for non-indexed as well as indexed
iteration; if non-indexed iteration is used the array values are iterated over, if indexed itera-
tion is used the index is assigned to the index variable and the corrsponding value is assigned
to the value variable.

The relational expressions (already introduced in 6.4) used to compare entities of different
kinds, mapping them to the type boolean, are extended to sets according to table 13.7: An
array A is a subarray of B iff it is smaller or equal in size and the values at each common
index are identical (lexicographic order as for strings).

The assignments implement the computation constructs introduced in 12. The pure
assignment overwrites the target array with the source array, commonly with value semantics,
creating a copy of the source array. Only if a local variable (i.e. not an attribute) is assigned to

13.4 Array Operations 159

A == B True, iff A and B are identical.
A != B True, iff A and B are not identical.
A < B True, iff A is a subarray of B, but A and B are not identical.
A > B True, iff A is a superarray of B, but A and B are not identical.
A <= B True, iff A is a subarray of B or A and B are identical.
A >= B True, iff A is a superarray of B or A and B are identical.

Table 13.7: Binary array operators for comparison

a local variable, is reference semantics used (i.e. both variables point afterwards to the same
array). The indexed assignment a[i]=v overwrites the old value at index i in the array a with
the new value v. Compound assignments are assignments which use the first source as target,
too, only adapting the target value instead of computing a new value and overwriting the
target with it. For scalars this is not supported, but for container valued entities it is offered
due to the potential for massive computational cost savings. The compound assignment
statement on arrays is the concatenation assignment +=.

The ArrayConstructor extends the Literal from 6.8 (as a refinement of the Container-
Constructor there). It is constant if only primitive type literals, enum literals, or constant
expressions are used; this is required for container initializations in the model. It is non-
constant if it contains nodes/edges/or member accesses, which may be the case if used in the
rules. The elements given in the type constructor are casted to the specified member types if
needed and possible. The ArrayCopyConstructor creates a new array of the specified type,
filling it with the elements from the old array. In case of a node or edge type, the types of
the original and the constructed array are allowed to differ, only the elements from the old
array that match the type of the new array are taken over then (this is a remedy for array
value type invariance).

EXAMPLE (78)

An example explaining some array operations.

1 function arrayExample(ref ai:array<int>) : boolean

2 {

3 def ref a:array<int> = array<int>[];

4 a.add(1); // [1]

5 a.add(2); // [1, 2]

6 a.add(3); // [1, 2, 3], a.size()==3

7 def var tmp:int = a.peek(); // end of [1, 2, 3] is 3

8 a.rem(); // [1, 2] FIFO

9 for(k:int -> v:int in a) {

10 ai.add(v); // ai[k] == a[k]

11 } // a == ai == [1, 2], assuming input was []

12 def var i:int = a.indexOf(2);

13 if(i != -1) { // a[i]==2

14 a[i] = 3;

15 } // [1, 3]

16 a.add(2, 1); // [1, 2, 3]

17 return (2 in (a + array<int>[4, 5])); // true

18 }

160 Container Types and Computations

13.5 Deque Operations

Deque expressions consist of deque membership checking, deque value lookup, and deque
concatenation, plus some operations in method call notation (on deque<T>).

DequeExpr

- PrimaryExpr �
�- MethodSelector

�

�
�- Expr - in

�� �- DequeExpr

�- DequeExpr - [
���- Expr -]

����- DequeExpr - DequeOperator - DequeExpr

�

-

MethodCall

- DequeEntity - MethodSelector -

Assignment

- DequeEntity - =
���- DequeExpr -

IndexedAssignment

- DequeEntity - [
���- IndexExpr -]

���- =
���- Expr -

CompoundAssignment

- DequeEntity - DequeOperator - =
���- Expr �

�- ChangeAssignment

�

-

DequeConstructor

- deque
�� �- <

���- Type - >
����

�
�-]

����
�- Expression�

� ,
����

�

�

- [
���-

DequeCopyConstructor

- deque
�� �- <

���- Type - >
���- (

���- DequeExpr -)
���-

The query method calls on deques are:

.size()

returns the number of elements in the deque, as int

.empty()

returns whether the deque is empty, as boolean

13.5 Deque Operations 161

.peek(num)

returns the value stored in the deque at position num:int in the sequence of enumera-
tion, is equivalent to (and implemented by) a[num]); retrieval occurs in constant time.

.peek()

returns the first value stored in the deque; retrieval occurs in constant time.

.indexOf(valueToSearchFor)

returns first position valueToSearchFor:T appears at, as int, or -1 if not found

.indexOf(valueToSearchFor, startIndex)

returns the first position valueToSearchFor:T appears at, when we start the search
for it at deque position startIndex:int, as int, or -1 if not found

.lastIndexOf(valueToSearchFor)

returns last position valueToSearchFor:T appears at, as int, or -1 if not found

.subdeque(startIndex, length)

returns subdeque of given length:int from startIndex:int on

.asArray()

returns an array of the deque content, as array<T> for deque<T>, in same order

.asSet()

returns a set of the deque content, as set<T> for deque<T>

The update method calls on deques are:

Deque addition:
d.add(v) adds the value v to the end of deque d.

Deque addition:
d.add(v,i) inserts the value v at index i to deque d.

Deque removal:
d.rem() removes the value at then begin of the deque d.

Deque removal:
d.rem(i) removes the value at index i from the deque d.

Deque clearing:
d.clear() removes all values from the deque d.

The binary deque operators are:

+
Deque concatenation: returns new deque with the right appended to the left deque
the left and right operands must be of identical type deque<T>

Table 13.8: Binary deque operators, in ascending order of precedence

The operator x in d denotes deque value membership, returning whether the deque
contains the given element, as boolean. It is a O(n) operation for deques. The operator
d[x] denotes deque lookup, i.e. it returns the value y which is stored in the deque d at
the index x. The index x must be a valid deque index. Furthermore, the container may be
iterated over with a for loop, as introduced in 12.3. The deque allows for non-indexed as
well as indexed iteration; if non-indexed iteration is used the deque values are iterated over,
if indexed iteration is used the index is assigned to the index variable and the corresponding
value is assigned to the value variable.

162 Container Types and Computations

The relational expressions (already introduced in 6.4) used to compare enitites of different
kinds, mapping them to the type boolean, are extended to sets according to table 13.9: A
deque A is a subdeque of B iff it is smaller or equal in size and the values at each common
index are identical (lexicographic order as for strings).

A == B True, iff A and B are identical.
A != B True, iff A and B are not identical.
A < B True, iff A is a subdeque of B, but A and B are not identical.
A > B True, iff A is a superdeque of B, but A and B are not identical.
A <= B True, iff A is a subdeque of B or A and B are identical.
A >= B True, iff A is a superdeque of B or A and B are identical.

Table 13.9: Binary deque operators for comparison

The assignments implement the computation constructs introduced in 12. The pure as-
signment overwrites the target deque with the source deque, commonly with value semantics,
creating a copy of the source deque. Only if a local variable (i.e. not an attribute) is assigned
to a local variable, is reference semantics used (i.e. both variables point afterwards to the
same deque). The indexed assignment d[i]=v overwrites the old value at index i in the
deque d with the new value v. Compound assignments are assignments which use the first
source as target, too, only adapting the target value instead of computing a new value and
overwriting the target with it. For scalars this is not supported, but for container valued en-
tities it is offered due to the potential for massive computational cost savings. The compound
assignment statement on deques is the concatenation assignment +=.

The DequeConstructor extends the Literal from 6.8 (as a refinement of the Container-
Constructor there). It is constant if only primitive type literals, enum literals, or constant
expressions are used; this is required for container initializations in the model. It is non-
constant if it contains nodes/edges/or member accesses, which may be the case if used in the
rules. The elements given in the type constructor are casted to the specified member types if
needed and possible. The DequeCopyConstructor creates a new deque of the specified type,
filling it with the elements from the old deque. In case of a node or edge type, the types of
the original and the constructed deque are allowed to differ, only the elements from the old
deque that match the type of the new deque are taken over then (this is a remedy for deque
value type invariance).

NOTE (38)

The double ended queue allows for fast addition and removal both at the frond and at
the back, in contrast to arrays that only support this at the end. It is implemented by a
ringbuffer that is grown as needed, a lookup is slightly more expensive than an array lookup.
The primary usage of the deque is as a queue, as needed for breadth first search, accessed
FIFO (first-in first-out). This is in contrast to the array that is suited to be employed as a
stack, e.g. in a depth first search (unless that is programmed using the call stack), accessed
LIFO (last-in first-out).

13.6 Storage Access in the Rules 163

EXAMPLE (79)

An example explaining some deque operations.

1 function dequeExample(ref di:deque<int>) : boolean

2 {

3 def ref d:deque<int> = deque<int>][;

4 d.add(1); //] 1 [

5 d.add(2); //] 1, 2 [

6 d.add(3); //] 1, 2, 3 [, d.size()==3

7 def var tmp:int = d.peek(); // begin of] 1, 2, 3 [is 1

8 d.rem(); //] 2, 3 [LIFO

9 for(k:int -> v:int in d) {

10 di.add(v); // di[k] == d[k]

11 } // d == di ==] 2, 3 [, assuming input was][

12 def var i:int = d.indexOf(2);

13 if(i != -1) {

14 d[i] = 1;

15 } //] 1, 3 [

16 d.add(2, 1); //] 1, 2, 3 [

17 return (2 in (d + deque<int>] 4, 5 [)); // true

18 }

13.6 Storage Access in the Rules

Storages can be used in the rule application control language as introduced above 17.4, they
can get filled or emptied in the rules as defined here 5.4.3, a discussion about their usage and
examples are given here 19, here 19.5, and here 19.6. In the pattern part you may ask for an
element to get bound to an element from a storage or a storage attribute; this is syntactically
specified by giving the storage enclosed in left and right braces after the element declaration.
You may ask for an element to get bound to the value element queried from a storagemap
by a key graph element; this is syntactically specified by giving the storagemap indexed by
the key graph element enclosed in left and right braces (this is not possible for storage map
attributes due to internal limitations with the search planning). If the type of the element
retrieved from the storage is not compatible to the type of the pattern element specified, or
if the storage is empty, or if the key element is not contained in the storagemap, matching
fails.

The advantage of this storage querying inside the rule over handing in a value from a for
loop iterating the storage values outside the rule are: i) a more concise syntax, ii) the ability
to access a storage attribute of an element just matched or to access a storage map with an
element just matched in the same rule, which would require to break up the rule in two rules
in the other case, and iii), a restriction of the iteration to the matching phase, so that at
rewriting one can happily manipulate the storage without destroying the iterator/enumerator
used in the loop which would be the case when using an outside loop.

The following syntax diagram gives an extensions to the syntax diagrams of the Rule Set
Language chapter 5, pattern part:

StorageAccess

- {
���- StorageVariable - }

����
�- {���- NodeOrEdge - .

���- StorageAttribute - }
����- {���- StorageMap - [

���- Ident -]
���- }���

�

-

164 Container Types and Computations

EXAMPLE (80)

Queries the graph for the neighbouring cities to the cities contained in the storageset.

1 test neighbour(ref startCities:set<City>) : City

2 {

3 :City{startCities} -:Street-> n:City;

4 return(n);

5 }

EXAMPLE (81)

Queries for the neighbour of the neighbour of a city matched. With the first neighboring
relation queried from the storagemap assumed to contain the neighbouring relation of some
cities of interest, and the second neighbouring relation queried from the graph.

1 test neighbourneighbour(ref neighbours:map<City, City>) : City

2 {

3 someCity:City;

4 nc:City{neighbours[someCity]} -:Street-> nnc:City;

5 return(nnc);

6 }

13.7 Hints on container usage

A container iterated over must stay unchanged during the iteration. But sometimes we want
to change the iterated content, e.g. filter the container during iteration. As remedy the copy

function may be used to clone the container before the iteration, so that the clone can be
iterated over and the original container changed.

copy(set<T>):set<T>

returns a clone of the original set given as argument.

copy(map<S,T>):map<S,T>

returns a clone of the original map given as argument.

copy(array<T>):array<T>

returns a clone of the original array given as argument.

copy(deque<T>):deque<T>

returns a clone of the original deque given as argument.

The container copy constructors could be used instead, but they are syntactically a bit
less convenient as the type must be specified – which is important for their intended use, to
get a storage with a different node or edge type, containing only the elements matching that
type.

13.7 Hints on container usage 165

EXAMPLE (82)

The container state change methods add and rem allow to add graph elements to storages
or remove graph elements from storages, i.e. sets or maps or arrays or deques holding nodes
and edges used for rewrite in the calling sequence (cf. 17.4). This way you can write trans-
formations consisting of several passes with one pass operating on nodes/edges determined
in a previous pass, without the need to mark the element in the graph by helper edges or
visited flags.

1 rule foo(ref storage:set<Node>)

2 {

3 n:Node;

4 modify {

5 eval {

6 storage.add(n);

7 }

8 }

9 }

EXAMPLE (83)

The containers are passed as parameters by reference, so only a reference is copied, and
changes inside are visible outside. The containers are assigned between variables in compu-
tations by reference, so only a reference is copied, and changes of one variable are visible in
other variables referencing the same container. But when a container is assigned to a node or
edge attribute, it is copied by value. So this is an O(n) operation instead of an O(1) opera-
tion, yielding clearly worse performance – but the side effects of having references to a shared
container would be mind-wrecking here. If you want to change a node or edge attribute of
container type, you should use for performance reasons add, rem, and indexed assignments
(this esp. holds if you are using transactions).

1 rule foo(ref storage:set<Node>) // parameter passed by-reference

2 {

3 n:N; // assuming an attribute a:set<Node>

4

5 modify {

6 eval {

7 def ref s:set<Node> = storage; // by-reference

8 s.add(n); // now s and storage are changed

9 n.a = s; // by-value -- different containers

10 n.a.rem(n); // only n.a changed

11 }

12 }

13 }

166 Container Types and Computations

EXAMPLE (84)

Some examples of container literals:

1 set<string>{ "foo", "bar" } // a constant set<string> constructor

2 map<string,int>{ (n.strVal+m.strVal)->(m.intVal+n.intVal), intVal->strVal, "fool"->42 } // a

non-constant map constructor

3 array<int>[1,2,3] // a constant array<int> constructor

4 deque<int>] 1,2,3 [// a constant deque<int> constructor

EXAMPLE (85)

A container copy constructor creates a full copy for storages of a more general or the same
graph element type than the one stored in the original container. It creates a partial copy
with only the elements matching if the type specified is more specific than the one of the
original container.

1 procedure foo(ref storage:set<Node>)

2 {

3 def ref s:set<N> = set<N>(storage); // constructs new set containing the elements

4 // from storage that are of type N or a subtype

5 for(n:N in s) { // safe at runtime, only N contained

6 doSomething(n);

7 }

8 // for(n:N in storage) is allowed - implicitly casted - but could fail at runtime

9 return;

10 }

C H A P T E R 14

G R A P H T Y P E A N D C O M P U TAT I O N S

14.1 Built-In Types

Besides the types already introduced, GrGen.NET offers support for a graph type. If
used explicitly, it denotes a subgraph of the host graph, which can be used for storing and
comparing subgraphs of the current host graph. (Because of the ”there is only a single host
graph”-design of GrGen you must explicitly descend to the nested subgraph if you intend to
process it, see 16.3).

But more important are the large number of global functions (with call syntax as already
introduced in 6.8) and global procedures (with call syntax as already introduced in 12.5.2)
that implicitly operate on the single host graph (and thus on the graph type). There are
update functions available that allow to manipulate the graph available with add, rem and
retype. The host graph may be queried for all nodes or edges of a given type. An edge may
be queried for its source and target elements, while a node may be queried for its direct
neighbourhood with all incident edges, or all adjacent nodes. Or even for its transitive
neighbourhood with all reachable nodes or edges. In the form of functions returning sets
of nodes or edges, or in the form of iterations with for loops, or in the form of boolean
predicates to test the neighbourhood if two elements are given. The induced subgraph of a
set of nodes or edges may be computed, or directly inserted into the host graph.

Furthermore, visited flags may be used for marking already visited elements during
graph walks or for partitioning a graph. These operations are available in the rule language,
as function atoms of the expression sublanguage from 6, and as procedure atoms of the
statement sublanguage from 12; most of them are available in the sequence computations
language, too (17.1 will tell about the differences compared to the rule language).

The graph manipulation procedures, the transaction handling procedures, and the visited
flag management and assignment procedures are not available in the function abstraction;
they may only be called from the procedures.

14.2 Graph Functions And Procedures

14.2.1 Graph Updates / Basic Graph Manipulation

There are procedures to update the graph by adding or removing or retyping available, on
nodes and edges:

add(.)

adds a new node of the given node type to the host graph, returns the added node.

addCopy(.)

adds a clone of the original node to the host graph, returns the added node.

add(.,.,.)

adds a new edge of the given edge type to the host graph, in between the source node

167

168 Graph Type and Computations

specified as second argument and the target node specified as third argument, returns
the added edge.

addCopy(.,.,.)

adds a clone of the original edge to the host graph, in between the source node specified
as second argument and the target node specified as third argument, returns the added
edge.

rem(.)

removes the node or edge given from the host graph (no expression, does not return
anything).

retype(.,.)

retypes the node or edge given to the node type or edge type given as second argument,
returns the retyped entity.

clear()

clears the host graph.

Besidse those basic graph manipulation functions, some advanced rewriting operations are
available as procedures, too:

merge(.,.)

merges the source node given as second argument into the target node given as first
argument.

redirectSource(.,.)

redirects the edge given as first argument to the new source node given as second
argument.

redirectTarget(.,.)

redirects the edge given as first argument to the new target node given as second
argument.

redirectSourceAndTarget(.,.,.)

redirects the edge given as first argument to the new source node given as second
argument and the new target node given as third argument.

The versions introduced above are only available on named graphs, as they fetch the
debug display name from the old element. If you want to use them on unnamed graphs
you must supply an additional argument giving the name of the old element; in case of the
redirectSourceAndTarget you must supply two additional arguments, first the string to use
for the old source node name, then the string to use for the old target node name.

14.2.2 Graph Query by Types

There are functions to ask for all nodes or edges of a type available:

nodes(.)

returns all nodes in the graph compatible to the given node type, as set.

nodes()

returns all nodes in the graph, as set.

edges(.)

returns all edges in the graph compatible to the given edge type, as set.

14.2 Graph Functions And Procedures 169

edges()

returns all edges in the graph, as set.

The same functions can be used from for loops to iterate over the entities, omitting the
filling of a set:

for(n:NodyType in nodes(NodeType)) {Statements}
iterates over all nodes in the graph compatible to the given node type.

for(n:Node in nodes()) {Statements}
iterates over all nodes in the graph.

for(e:EdgeType in edges(EdgeType)) {Statements}
iterates over all edges in the graph compatible to the given edge type.

for(e:Edge in edges()) {Statements}
iterates over all edges in the graph.

14.2.3 Graph Query by Neighbourhood

Multiple functions are available to query the neighbourhood of nodes and edges.

Edge Neighbourhood

The nodes incident to a given edge may be queried by the following functions:

source(.)

returns the source node of the given edge.

target(.)

returns the target node of the given edge.

opposite(.,.)

returns the opposite node of the edge and the node (second argument) given.

Node Neighbourhood Common Concepts

The edges incident or the nodes adjacent to a given node may be queried.
The neighbourhood query functions allow to additionally constrain the direction of the

edges to incoming or outgoing edges, otherwise both directions are accepted.
The neighbourhood query functions furthermore allow to constrain the accepted situations

by optional arguments. The type the incident edges must have to be accounted for can be
specified. Or the type the incident edges must have to be accounted for and the type the
adjacent nodes must have to be accounted for (cf. 14.2.3).

NeighbourhoodFunctionCall

- FunctionName - (
���- StartNodeExpr -)

����
�- FunctionName - (

���- StartNodeExpr - ,
���- EdgeType -)

����- FunctionName - (
���- StartNodeExpr - ,

���- EdgeType - ,
���- NodeType -)

���

�

-

The neighbourhood query function can be used in four possible ways:

Set functions:
The neighbourhood function returns a set of neighbouring entities of the start node. It
builds a set that is likely thrown away thereafter, so esp. for large sets this functions is
less efficient than the other versions.

170 Graph Type and Computations

Expression

- FunctionName - (
���- StartNodeExpr -)

���-

Iteration loops:
The neighbourhood function is employed from a for loop that allows to iterate the
neighbouring entities of the start node. No set needs to be built here. But if the source
node has multiple edges to a target node, it might be iterated multiple times. And an
edge may be iterated twice in case of the undirected functions.

ForLoop

- for
�� �- (

���- Name - :
���- Type - in

�� �- FunctionName - (
���- StartNodeExpr -)

����
�

�- {���- Statements - }
���-

Counted functions:
The counted neighbourhood function returns the count of neighbouring entities of the
start node. This is at least as efficient as calling size() on the resulting set of the plain
neighbourhood function, often it is more efficient.

Expression

- CountedFunctionName - (
���- StartNodeExpr -)

���-

The CountedFunctionName is built from the FunctionName by prepending count and
switching the first charecter of FunctionName to upper case.

Boolean functions:
The neighbourhood function is employed in a boolean predicate version that allows the
check whether a second target entity is in the queried neighbourhood of the start node.
The computation has the smallest internal processing overhead of the three options and
stops as soon as a positive result is obtained.

Expression

- FunctionNamePredicate - (
���- StartNodeExpr - ,

���- TargetEntity -)
���-

The FunctionNamePredicate is built from the FunctionName by prepending is and
switching the first charecter of FunctionName to upper case.

Direct Node Neighbourhood

Available are queries for the neighbouring edges:

incident(.)

returns the set of the edges that are incident to the node given as argument value.

incoming(.)

same as the incident above, but restricted to incoming edges.

outgoing(.)

same as the incident above, but restricted to outgoing edges.

14.2 Graph Functions And Procedures 171

In the two argument version, only edges of the type given as second argument are con-
tained. The three argument version behaves as the two argument version, but additionally
only edges incident to an opposite node of the type given as third argument are contained.

EXAMPLE (86)

1 rule foo {

2 src:Node -e:Edge->;

3 if(!isIncoming(src, e));

4

5 modify {

6 eval {

7 if(incident(src, NiftyEdge, NiftyNode).size()>2)

8 {

9 for(ne:NiftyEdge in outgoing(src, NiftyEdge))

10 {

11 ne.attr = 42;

12 }

13 }

14 }

15 }

16 }

Some fabricated example showing how to use the incoming, outgoing, and incident func-
tions in their boolean predicate, set function, and for iteration versions, with and without
constraining the edge and node types.

Available are queries for the neighbouring nodes:

adjacent(.)

returns the set of the nodes that are adjacent to the node given as argument value.

adjacentIncoming(.)

same as the adjacent above, but restricted to nodes reachable via incoming edges.

adjacentOutgoing(.)

same as the adjacent above, but restricted to nodes reachable via outgoing edges.

In the two argument version, nodes incident to an edge of the type given as second
argument are contained. The three argument version behaves as the two argument version,
but additionally only nodes of the node type given as third argument are contained.

172 Graph Type and Computations

EXAMPLE (87)

An example showing how to program a rule by hand with the graph query operations for
matching and the graph update operations for rewriting. This is what GrGen does under the
covers, and as you can see from the volume and style of code very helpful – use the pattern
language, don’t fall back to the computations language unless really needed.

1 rule example

2 {

3 x:N -e:E-> y:N <--> z:M;

4 if { e.a == 42; }

5

6 modify {

7 delete(y);

8 xn:NN<x>;

9 xn --> yn:N --> z;

10 }

11 }

12 // this procedure behaves similarily to the rule above

13 procedure example

14 {

15 // match LHS pattern

16 def var leave:boolean = false;

17 for(x:N in nodes(N)) // lookup n of type N in the graph

18 {

19 x.visited = true; // (see 14.5 Visited Flags below)

20 for(e:E in outgoing(x, E)) // from x on find outgoing edge e of type E

21 {

22 if(!(e.a == 42)) { // with e.a == 42

23 continue;

24 }

25 def y:Node = target(e); // and target node y of type N

26 if(!(typeof(y)<=N)) {

27 continue;

28 }

29 if(y.visited) { // that is not the same as x

30 continue;

31 }

32 for(z:Node in adjacent(y, Edge, M)) // from y on find adjacent node z of type M

33 { // N and M are disjoint, can’t match each other, otherwise visited would be needed

34

35 // rewrite according to RHS pattern

36 rem(y);

37 (def xn:NN)=retype(x,NN);

38 (def yn:N)=add(N);

39 add(Edge, xn, yn);

40 add(Edge, yn, z);

41

42 leave = true; break;

43 }

44 if(leave) { break; }

45 }

46 x.visited = false;

47 if(leave) { break; }

48 }

49 return;

50 }

14.2 Graph Functions And Procedures 173

Transitive Node Neighbourhood

Besides direct neighbourhood, transitive neighbourhood can be queried with the reachability
functions.

Available are queries for the reachable edges:

reachableEdges(.)

returns the set of the edges that are reachable from the node given as argument value.

reachableEdgesIncoming(.)

same as the reachableEdges above, but restricted to incoming edges.

reachableEdgesOutgoing(.)

same as the reachableEdges above, but restricted to outgoing edges.

In the two argument version, only edges of the type given as second argument are con-
tained and followed. The three argument version behaves as the two argument version, but
additionally only edges incident to an opposite node of the type given as third argument are
contained and followed.

Available are queries for the reachable nodes:

reachable(.)

returns the set of the nodes that are reachable from the node given as argument value.

reachableIncoming(.)

same as any of the reachables above, but restricted to nodes reachable via incoming
edges.

reachableOutgoing(.)

same as any of the reachables above, but restricted to nodes reachable via outgoing
edges.

In the two argument version, nodes incident to an edge of the type given as second argu-
ment are contained and followed. The three argument version behaves as the two argument
version, but additionally only nodes of the node type given as third argument are contained
and followed.

174 Graph Type and Computations

EXAMPLE (88)

1 rule bar {

2 src:Node;

3 tgt:Node;

4 if(isReachableOutgoing(src, tgt, NiftyEdge));

5

6 modify {

7 eval {

8 if(!(reachableIncoming(src) & reachableOutgoing(src)).empty())

9 {

10 for(ne:NiftyEdge in reachable(src))

11 {

12 ne.attr = 42;

13 }

14 }

15 }

16 }

17 }

Some fabricated example showing how to use the isReachableOutgoing function to check for
an iterated path between the src and target nodes, how to check for loops by intersecting
the sets of nodes reachable by outgoing edges from a node and reachable by incoming edges
to a node, and how to iterate with one loop over all edges reachable in either way from a
node.
The isReachable functions give the most efficient and most convenient way to check for an
iterated path in GrGen, if you need more elaborate checking than constraining the edge type
to one type and the target node type to one type you need to program the iterated path with
subpattern recursion.
The reachable iteration is the most concise way to note down a depth first walk over a graph,
visiting all elements reachable from a source node on.

Bounded Transitive Node Neighbourhood

Transitive neighbourhood can be queried also with a path of bounded length, with the
bounded reachability functions (querying for a bounded iterated path).

Available are queries for the reachable-within-bounds edges:

boundedReachableEdges(.,.)

returns the set of the edges that are reachable from the node given as first argument
value, within at most as much steps as specified by the second argument.

boundedReachableEdgesIncoming(.,.)

same as the reachableEdges above, but restricted to incoming edges.

boundedReachableEdgesOutgoing(.,.)

same as the reachableEdges above, but restricted to outgoing edges.

In the three argument version, only edges of the type given as third argument are con-
tained and followed. The four argument version behaves as the three argument version, but
additionally only edges incident to an opposite node of the type given as fourth argument
are contained and followed.

Available are queries for the reachable-within-bounds nodes:

14.2 Graph Functions And Procedures 175

boundedReachable(.,.)

returns the set of the nodes that are reachable from the node given as first argument
value, within at most as much steps as specified by the second argument.

boundedReachableIncoming(.,.)

same as any of the reachables above, but restricted to nodes reachable via incoming
edges.

boundedReachableOutgoing(.,.)

same as any of the reachables above, but restricted to nodes reachable via outgoing
edges.

In the three argument version, nodes incident to an edge of the type given as third argu-
ment are contained and followed. The four argument version behaves as the three argument
version, but additionally only nodes of the node type given as fourth argument are contained
and followed.

EXAMPLE (89)

1 // iterative deepening is trivial due to boundedReachable (encapsulating a depth-bounded

depth first search)

2 procedure IterativeDeepening(root:Node, var maxdepth:int) : (boolean)

3 {

4 for(depth:int in [0:maxdepth])

5 {

6 for(n:Node in boundedReachableOutgoing(root, depth))

7 {

8 if(foundCondition()) {

9 return(true);

10 }

11 }

12 }

13 return(false);

14 }

An example showing how to use boundedReachable in implementing iterative deepening.
You find it and an example for depth-first search, as well as an example for breadth-first
search implemented with a deque in test/should pass, in /DfsBfsSearch.grg.

Available are queries for the reachable-within-bounds nodes that return the minimum
distance to the start node in addition:

boundedReachableWithRemainingDepth(.,.)

returns the map of the nodes that are reachable from the node given as first argu-
ment value, within at most as much steps as specified by the second argument, to the
remaining depth.

boundedReachableWithRemainingDepthIncoming(.,.)

same as any of the reachables above, but restricted to nodes reachable via incoming
edges, to the remaining depth.

boundedReachableWithRemainingDepthOutgoing(.,.)

same as any of the reachables above, but restricted to nodes reachable via outgoing
edges, to the remaining depth.

176 Graph Type and Computations

In the three argument version, nodes incident to an edge of the type given as third argu-
ment are contained and followed. The four argument version behaves as the three argument
version, but additionally only nodes of the node type given as fourth argument are contained
and followed. The depth value for the minimum distance of the node to the root node in the
result map is counted downwards from the depth requested originally, you must subtract it
from the depth requested to get the real distance.

14.2.4 Subtle Points in the Semantics

Loops versus Containers

A graph query with a for loop iterates the type and/or incidence ringlists which define the
graph. A graph query returning a set builds a set – employing the same iteration – and
returns that set. That yields two differences:

• If you iterate the set, this happens in the iteration order of the container that was built
– very likely you will visit the elements in an order that is different from the original
iteration order.

• Duplicates during graph iteration are removed – this holds for reflexive edges that are
visited twice during an incident-edges iteration, once in their role of incoming edge, and
once in their role of outgoing edge.

Types

Graph functions without specified type return a node of type Node or an edge of type AEdge.
If a type is specified, they return a node or edge of the specified type.

Graph queries which return a set type return for nodes a set<Node>, irrespective of a/the
specified node type. You won’t receive a set<N> with N being a node type from your model
that you requested in the query.

Graph queries which return a set type return for edges

• a set<Edge> in case the requested edge type is a directed edge.

• a set<UEdge> in case the requested edge type is an undirected edge.

• a set<AEdge> in case the requested edge type is an arbitrary directed edge,
or no edge type was specified.

You won’t receive a set<E> with E being an edge type from your model that you requested
in the query, but at least you get a set of the edge root type matching your requested type.
This way, you can evade the unspecific AEdge, a recommended practice if you always only
use directed edges.

If the behavior regarding set types is not what you want, you can employ a container
copy constructor (cf. Chapter 13) to obtain a container of your desired type (containing only
the elements that match the container element type), see the following two examples.

14.3 Subgraph Operations 177

EXAMPLE (90)

1 def ref snode:set<Node> = nodes(N); // nodes returns set<Node> as static type,

2 // even if only nodes of type N are returned at runtime

3 def ref sn:set<N> = set<N>(snode); // use a container copy constructor for getting

4 // a set of intended type (here more concrete type)

5 for(n:N in snode) { // this works because the for loop applies an implicit type cast

6 // this will fail at runtime if snode contains a node

7 // that is not of type N or one of its subtypes

8 }

9 for(n:N in sn) { // this will not fail as the container copy constructor

10 // filters out nodes of not matching type (without runtime failure)

11 }

EXAMPLE (91)

1 def ref sedge:set<Edge> = edges(E); // edges returns set<Edge> as static type

2 // (for E extends Edge), even if only edges

3 // of type E are returned at runtime

4 def ref saedge:set<AEdge> = set<AEdge>(sedge); // use a container copy constructor

5 // for getting a set of intended type

6 // (here more general type)

7 saedge.add(uedge); // works for uedge:UEdge,

8 // a set of AEdge can also contain undirected edges

9 sedge.add(uedge); // fails for the same operation, an undirected edge

10 // cannot be added to a set of directed edges

14.3 Subgraph Operations

Several functions and procedures returning and accepting subgraphs are available; they are
especially useful in state space enumeration, cf. 19.7, but also in graph-oriented programming
with the structuring and information hiding supported by hierarchically nested graphs, cf.
16.3.

In addition to those computations explained below, you can access the currently processed
graph via the this variable that is available in the expressions of the sequences and the rules.
By default it is bound to the host graph, but if processing was relocated in the sequences to
a subgraph, it is bound to the currently processed subgraph.

The global functions allow to compute (node-or-edge) induced subgraphs and clone sub-
graphs:

inducedSubgraph(.)

returns the induced subgraph (type: graph) of the host graph for the set of nodes given
as argument value.

definedSubgraph(.)

returns the defined (edge-induced) subgraph (type: graph) of the host graph for the
set of edges given as argument value.

copy(.)

returns a clone of the original subgraph given as argument.

You may furtheron check for subgraph equality against a set of subgraphs at once:

178 Graph Type and Computations

equalsAny(.,.)

returns whether the (sub)graph given as first argument (type: graph) equals any of the
(sub)graphs available in the set of subgraphs given with the second argument (type:
set<graph>).

equalsAnyStructurally(.,.)

returns whether the (sub)graph given as first argument (type: graph) is structurally
(neglecting attribute values) equal to any of the (sub)graphs available in the set of
subgraphs given with the second argument (type: set<graph>).

The first function employs == in a loop until a decision is reached, the second function
does so with ~~. They are a bit more convenient in usage compared to writing the loop by
hand, but above all are they amenable to parallelization. You must specify the (maximum)
number of worker threads to enable parallel execution, see section 22.4.

The global procedures allow to insert clones of subgraphs computed with the previously
introduced function, or to insert clones of induced subgraphs directly.

insert(.)

inserts a given subgraph to the current host graph (disjoint union of the nodes and
edges); the original graph is destroyed by this (move semantics).

insertCopy(.,.)

inserts a clone of the given subgraph to the current host graph (disjoint union of the
nodes and edges); the original subgraph stays untouched. Returns the copy of the node
given as second argument from the host graph.

insertInduced(.,.)

adds a clone of the subgraph induced by the set of nodes given as first argument to the
host graph, returns the clone of the anchor node given as second argument.

insertDefined(.,.)

adds a clone of the subgraph defined (edge-induced) by the set of edges given as first
argument to the host graph, returns the clone of the anchor edge given as second
argument.

14.4 File Operations

The functions from the built-in package File allow to import subgraphs and check for file
existance (for more on packages see 16.2.2).

File::import(.)

returns the (sub)graph stored in the .grs-file given by its path (the main graph is not
replaced, the graph must be compatible to the model of the current host graph).

File::exists(.)

returns whether the file given by its path exists.

The procedures from the built-in package File allow to export subgraphs and delete files.

File::export(.)

exports the current host graph to a file with the given path.

File::export(.,.)

exports the subgraph given as first argument to a file with the given path.

File::delete(.)

deletes the file with the given path.

14.5 Graph comparison 179

14.5 Graph comparison

Here we extend the relational expressions already introduced in 6.4 (and already extended in
13 to include container types) with the (sub)graph type.

A == B True, iff A is isomorphic to B.
A != B True, iff A is not isomorphic to B.
A ~~ B True, iff A is structurally the same as B but maybe different regarding the

attributes.

Table 14.1: Compare operators on graph expressions

The graph type support the ==, the !=, and the ~~ operators; on (sub)graph types they
tell whether the (sub)graphs are isomorphic to each other (isomorphy checking/graph iso-
morphy checking) or not, including the attributes, or whether the (sub)graphs are isomorphic
disregarding the attributes.

These operators consist just of two characters, but don’t underestimate their impact on
performance: they do graph isomorphy checking, which is expensive. They are implemented
in an early out style, i.e. the more different the graphs are, the earlier does the check return
with the result they are not isomorphic. But if the graphs you are checking are isomorphic
(which will happen easily if you use automorphic patterns), then you have to pay the full
price for isomorphy checking; if this occurs often, your solution may become prohibitively
costly (including an external graph canonization library or the canonize function may be of
interest in that case).

Some notes on the early out implementation: first the number of nodes and edges per type
are checked, if they are different the graphs can’t be isomorphic. The numbers are directly
supplied by the lgspBackend, refuting isomorphy based on them is extremely cheap. Then
the V-Structures (see 26.3) used in computing better matchers at runtime are first computed
and then compared; if they are different the graphs can’t be isomorphic. They are a good
deal less expensive to compute than trying to match the one graph in the other; on well typed
graphs the V-Structure counts are highly discriminating.

If these two pruning methods failed, a matcher is computed from one graph with search
planning based on the V-Structure information just computed, and then applied on the
other graph. The matchers are stored in the graphs from which they originated, so if you do
repeated comparisons of a subgraph which does not change, take care to extract that subgraph
only once, store it, e.g. as an attribute in the graph, and continue to compare against it. This
will save you from the cost of repeated search planning; in addition, often-used isomorphy
matchers get eventually compiled resulting in a further speed-up.

180 Graph Type and Computations

EXAMPLE (92)

An example showing how to save a graph exploded into its connected components, and how
to load it again from them.

1 procedure saveConnectedComponents()

2 {

3 def var i:int = 0;

4 while(!empty()) {

5 def var n:Node = fetchNode();

6 def ref connectedComponent:set<Node> = reachable(n) | set<Node>{n};

7 def var sub:graph = inducedSubgraph(connectedComponent);

8 File::export(sub, "cc"+i+".grs");

9 deleteSubgraph(connectedComponent);

10 i = i + 1;

11 }

12 return;

13 }

14

15 procedure loadConnectedComponents()

16 {

17 def var i:int = 0;

18 while(File::exists("cc"+i+".grs")) {

19 insert(File::import("cc"+i+".grs"));

20 i = i + 1;

21 }

22 return;

23 }

24

25 procedure removeSavedConnectedComponentsFiles()

26 {

27 def var i:int = 0;

28 while(File::exists("cc"+i+".grs")) {

29 File::delete("cc"+i+".grs");

30 i = i + 1;

31 }

32 return;

33 }

34

35 function fetchNode() : Node

36 {

37 for(n:Node in nodes()) {

38 return(n);

39 }

40 return(null);

41 }

42

43 procedure deleteSubgraph(ref sn:set<Node>)

44 {

45 for(n:Node in sn) {

46 rem(n);

47 }

48 return;

49 }

14.5 Graph comparison 181

EXAMPLE (93)

An example showing some subgraph extraction, comparison, and insertion operations.

1 rule init

2 {

3 modify { // creates the host graph our example rule and function are working on

4 start1:SN -:contains-> s1x:Node;

5 start1 -:contains-> s1y:Node;

6 s1x --> s1y;

7

8 start2:SN -:contains-> s2x:Node;

9 start2 -:contains-> s2y:Node;

10 start2 -:contains-> s2z:Node;

11 s2x --> s2y --> s2z --> s2x;

12 }

13 }

14

15 function unequalContainedSubgraphs(start1:SN, start2:SN) : boolean

16 {

17 def ref adj:set<Node> = adjacentOutgoing(start1, contains); //adj=={s1x,s2x}

18 def var sub1:graph = inducedSubgraph(adj); // sub1==graph(s1x’ -->’ s1y’) -- does not

contain s1x,s1y themselves!

19 def var sub2:graph = inducedSubgraph(adjacentOutgoing(start2, contains));

20 def var res:boolean = sub1 == sub2; // false as graph(s1x’ -->’ s1y’) != graph(s2x’ -->’

s2y’ -->’ s2z’ -->’ s2x’), answered quickly because number of elements different

21 def var sub3:graph = copy(sub1);

22 def var res2:boolean = sub1 == sub3; // true as graph(s1x’ -->’ s1y’) isomorphic

graph(s1x’’ -->’’ s1y’’), answered slowly because isomorphy matching

23 return(res); // remark: the original graph is untouched

24 }

25

26 rule example

27 {

28 start1:SN; start2:SN;

29 if{ unequalContainedSubgraphs(start1, start2); }

30

31 modify {

32 eval {

33 insert(inducedSubgraph(adjacentOutgoing(start2, contains) | set<Node>{start2}));

34 // 1. computes the union of the set of the nodes outgoing from start2 with the

set containing start2

35 // 2. creates a structurally equal clone of the induced graph of the node set

handed in (start2, s2x, s2y, s2z, and all edges in between)

36 // 3. inserts the clone into the original graph (disjoint union)

37 // the clone was destroyed by insert, can’t be accessed further

38 (def start2n:SN)=insertInduced(adjacentOutgoing(start2), start2);

39 // does the same, just a bit simpler and more efficient,

40 // with start2n you have a node that gives you access to the subgraph just

inserted (by computing adjacentOutgoing(start2n, contains)),

41 // so you can do further processing of that newly created piece,

42 // e.g. link it to other nodes in the original graph

43 }

44 }

45 }

182 Graph Type and Computations

14.6 Visited Flags

The boolean visited flags are available for/in each graph element; they may be used for
marking already visited graph elements during graph walks or for partitioning a graph. They
can be queried with a function of the expressions, can be set with an assignment of the
statements, and can be reset, allocated, and deallocated with procedures of the statements.
The visited flags are stored in some excess bits of the graph elements, if this pool is exceeded
they are stored in additional dictionaries, one per visited flag requested. This is why the flags
must get allocated/deallocated, and all flag related operations require an integer number – the
flag id – specifying the flag to operate on (with exception of the allocation operation returning
this flag id). If you try to access a not previously allocated visited flag, an exception is thrown.
The following syntax diagram gives an extensions to the Expression clause of chapter 6 and
an extension to the computation Statements of chapter 12:

Expression

- VisitedFlag -

VisitedAssignment

- VisitedFlag - =
���- BoolExpr - ;

���-

VisitedFlag

- NodeOrEdge - .
���- visited

�� ��
�- [

���- IntExpr -]
���

�

-

Flag reading:
By e.visited[f] – the function returns the boolean visited status of the flag given
by the flag id variable f of the graph element e (visited flags are normally read by if

conditions of the rule language). If no int flag number is given, the default number for
the first visited flag of 0 is used; it still must have been allocated before.

Flag assignment:
By e.visited[f] = b – sets the visited status of the flag given by the flag id variable
f of the graph element e to the given boolean value b as computed by an expression
(visited flags are normally written by eval parts of the rule language). If no int flag
number is given, the default number for the first visited flag of 0 is used; it still must
have been allocated before.

ProcedureName

- valloc
�� ��

�- vfree
�� ��- vreset
�� ��- vfreenonreset
�� �

�

-

The signatures of the procedures valloc, vfree, vreset, vfreenonreset for managing
the visited flags are defined in 12.4. Their semantics are:

14.6 Visited Flags 183

Flag allocation:
By valloc() – allocates space for a visited flag in the elements of the graph and returns
the id of the visited flag (integer number), starting at 0. Afterwards, the visited flag of
the id can be read and written by the visited-expression and the visited-assignment.
The first visited flags are stored in some excess bits of the graph elements and are thus
essentially for free, but if this implementation defined space is used up completely, the
information is stored in graph element external dictionaries.

Flag deallocation:
By vfree – frees the space previously allocated for the visited flag; afterwards you must
not access it anymore. The value passed in vfree(IntExpr) must be of integer type,
stemming from a previous allocation. This function internally calls a vreset to ensure
that no corresponding visited flag is set in the graph.

Flag resetting:
By vreset – resets the visitor flag given by the flag id variable in all graph elements.

Flag deallocation without reset:
With vfreenonreset the space previously allocated for the visited flag is freed, too,
but the implicit internal vreset(id) of vfree is not executed. It is your duty to ensure
the flag is false in all graph elements – otherwise after a following allocation elements
may start as being marked. This saves us an O(n) operation, but opens the door to
nasty bugs if you can’t design your algorithm in a way which renders unmarking trivial.

EXAMPLE (94)

An example showing how to compute the length of the longest path starting at some node.

1 procedure lengthOfLongestPath(start:Node, var lengthReached:int, var flag:int) : (int)

2 {

3 def var maxLength:int = lengthReached;

4 start.visited[flag] = true;

5 for(child:Node in adjacent(start)) {

6 if(!child.visited[flag]) {

7 def var lengthOfLongestPathStartingAtChild:int;

8 (lengthOfLongestPathStartingAtChild)=lengthOfLongestPath(child, lengthReached+1,

flag);

9 maxLength = Math::max(maxLength, lengthOfLongestPathStartingAtChild);

10 }

11 }

12 start.visited[flag] = false;

13 return (maxLength);

14 }

15

16 rule getLolp(start:Node) : (int)

17 {

18 modify {

19 def var lolp:int;

20 eval {

21 (def var flag:int) = valloc();

22 (yield lolp) = lengthOfLongestPath(start, 0, flag;)

23 vfree(flag);

24 }

25 return(lolp);

26 }

27 }

184 Graph Type and Computations

14.7 Graph Processing Environment Procedures

14.7.1 Transaction Handling

In addition to the procedures implemented directly in the graph, there are transaction man-
ager procedures available, implemented in the graph processing environment. While a trans-
action is underway, an undo log is filled with commands to undo the changes that occurred in
the graph in the meantime. Those transaction handling procedures from the built-in package
Transaction (for more on packages see 16.2.2) are:

Transaction::start()

starts a transaction and returns its transaction id (as number of type int).

Transaction::pause()

pauses transaction handling so changes are not recorded and can’t be undone.

Transaction::resume()

resumes paused transaction handling.

Transaction::commit(.)

keeps the changes of the transaction of the given id (of type int) in the graph, removing
undo information.

Transaction::rollback(.)

reverts the changes of the transaction of the given id (of type int) in the graph by
executing the undo log.

Please note that transactions may be nested; those functions are used in implementing
the transaction and backtracking constructs explained in 18.2.

14.7.2 Misc. Global Procedures

Besides there are procedures to emit text or record graph changes available:

emit(.(,.)*)

writes the argument value, or the comma separated list of argument values, to stdout, or
to a file if output was redirected. The argument(s) must be of string type, but any type is
automatically casted into its string representation as needed. Prefer comma separated
arguments over string concatenation, they are are more efficient as no intermediate
strings need to be computed, just to be garbage collected thereafter.

emitdebug(.(,.)*)

writes the argument value, or the comma separated list of argument values, always to
stdout, even if file output was redirected. Besides that, the other explanations for emit
apply.

record(.)

writes the argument value, typically a text string, to the graph change record.

A remark on the graph global variables: they are in fact global to the graph processing
environment. This difference becomes clear when you store graphs in attributes of graph
type of another graph, see 16.3 for a discussion of this style of programming.

C H A P T E R 15

F I LT E R I N G A N D S O R T I N G O F M AT C H E S

Filters are used to process the matches list of a rule all application (including the one-element
matches list of a single rule application) after all matches were found, but before they are
rewritten. They allow you to follow only the most promising matches during a search task.

You may implement filters in the form of filter functions on your own. Alternatively, you
may declare certain filters at their rules, they are then auto-generated for you. Some filters
are auto-supplied and may just be used. All filters are used by filter calls from the sequences
(normally together with a rule all application).

15.1 Filter Functions

Filter functions need to be defined, i.e. declared and implemented before they can be used.

FilterFunctionDefinition

- filter
�� �- FilterIdent - <

���- RuleIdent - >
���- Parameters�

�
�

�
�

�- {���- Statement�
�

�

- }
���-

A filter function definition is given in between the rules as a global construct. It specifies
the name of the filter and the parameters supported, furthermore it specifies which rule the
filter applies to, and it supplies a list of statements in the body.

The restrictions of a function body apply here, i.e. you are not allowed to manipulate the
graph. In contrast to the function body is a this variable predefined, which gives access to
the matches array to filter, of type array<match<r>>, where r denotes the name of the rule
the filter is defined for. All the operations known for variables of array type (cf. 13.4) are
available.

185

186 Filtering and Sorting of Matches

EXAMPLE (95)

The following filter ff for the rule foo clones the last match in the array of matches, and
adds it to the array. So the last match would be rewritten twice (which is fine for foo that
only creates a node, but take care when deleting or retyping nodes). But in the following
the first entry and the last entry are deleted (again); the first in an efficient in-place way by
assigning null.

1 rule foo

2 {

3 n:Node;

4 modify {

5 nn:Node;

6 }

7 }

8

9 filter ff<foo>

10 {

11 this.add(copy(this.peek())); // note the copy on match<foo>

12 this[0] = null; // removes first entry in matches array, efficiently

13 this.rem();

14 }

The match type match<r> itself provides member access in dot notation (reading and
writing), and a copy operation to get a clone (for insertion into the matches array).

EXAMPLE (96)

The following rule incidency yields for each node n matched the number of incident edges
to a def variable i and assigns it in the eval on to an attribute j. The filter filterMultiply
modifies the def variable i in the matches with the factor f handed in as filter parameter.

1 rule incidency

2 {

3 n:N;

4 def var i:int;

5 yield { yield i = incident(n).size(); }

6

7 modify {

8 eval { n.j = i; }

9 }

10 }

11

12 filter filterMultiply<incidency>(var f:int)

13 {

14 for(m:match<incidency> in this)

15 {

16 m.i = m.i * f;

17 }

18 }

The following call triples the count of incident edges that is finally written to the attribute j

for each node n matched by incidency:

1 exec [incidency \ filterMultiply(3)]

15.2 Auto-Generated Filters 187

You may declare external filters that you have to implement then in a C# accompanying
file, see 25.4 for more on that. With filter functions and external filter functions, you may
implement matches-list modifications exceeding the available pre-implemented functionality.

15.2 Auto-Generated Filters

Auto-generated filters need to be declared at their rule before they can be used, they are
implemented by GrGen.NET.

FiltersDecl

�
�- \

���- FilterDecl�
� ,

����
�

�

-

FilterDecl

- FilterIdent - <
���- VariableIdent�

� ,
����

�

- >
����

�- auto
�� �

�

-

The auto-generated filters must be declared at the end of a rule definition (cf. 5.2). With
exception of the auto filter for removal of automorphic matches they have to specify the name
of a def var variable contained in the pattern, of integer, floating point, or string type; you
yield a value computed from the elements and their attributes to it, per matched pattern.
They filter based on certain conditions regarding that variable; filtering may mean to reorder
a matches list alongside the chosen def variable.

orderAscendingBy<v>

orders the matches list ascendingly (from lowest ot highest value according to the <

operator), alongside the v contained in each match.

orderDescendingBy<v>

orders the matches list descendingly, alongside the v contained in each match.

keepSameAsFirst<v>

filters away all matches with v values that are not equal to the v value of the first
match. May be used to ensure all matches of an indeterministically chosen value are
rewritten, but typically you want to order the matches list before.

keepSameAsLast<v>

filters away all matches with v values that are not equal to the v value of the last match.

keepOneForEach<v>

filters away all matches with duplicate v values, i.e. only one (prototypical) match is
kept per v value. The list must have been grouped or ordered before, otherwise the
result is undefined.

The orderAscendingBy<.(,.)*> and orderDescendingBy<.(,.)*> allow to specify more
than one variable, whereas keepSameAsFirst<.>, keepSameAsLast<.> and keepOneForEach<.>

support only one variable. The order-by filters order the matches in order of the def variables,
e.g. orderAscendingBy<v,w> orders the matches primarily by v and secondarily by w, i.e in
case the values of the first def variable are equal, the values of the second one decide.

188 Filtering and Sorting of Matches

Besides those variable-based filters you may use the automorphic matches filter to purge
symmetric matches. In order to do so, specify the special filter named auto at the rule
declaration, and use it with the same name at an application of that action (with the known
backslash syntax). The filter is removing matches due to an automorphic pattern, matches
which are covering the same spot in the host graph with a permutation of the nodes, the edges,
or subpatterns of the same type at the same level. Other nested pattern constructs which
are structurally identical are not recognized to be identical when they appear as commuted
subparts; but they are so when they are factored into a subpattern which is instantiated
multiple times. It is highly recommended to use this symmetry reduction technique when
building state spaces including isomorphic state collapsing, as puring the matches which
lead to isomorphic states early saves expensive graph comparisons – and often it gives the
semantics you are interested in anyway.

15.3 Auto-Supplied Filters

A few filters (that do not need information from a specific match) are auto-supplied, they
can be used without implementation and even without declaration. They allow to keep or
remove a certain number of matches from the beginning or the end of the matches list.

The following auto-supplied filters may be used directly:

keepFirst(count)

keeps the first count matches from the begin of the matches list, count must be an
integer number.

keepLast(count)

keeps the first count matches from the end of the matches list, count must be an integer
number.

keepFirstFraction(fraction)

keeps the fraction of the matches from the begin of the matches list, fraction must
be a floating point number in between 0.0 and 1.0.

keepLastFraction(fraction)

keeps the fraction of the matches from the end of the matches list, fraction must be
a floating point number in between 0.0 and 1.0.

removeFirst(count)

removes the first count matches from the begin of the matches list, count must be an
integer number.

removeLast(count)

removes the first count matches from the end of the matches list, count must be an
integer number.

removeFirstFraction(fraction)

removes the fraction of the matches from the begin of the matches list, fraction

must be a floating point number in between 0.0 and 1.0.

removeLastFraction(fraction)

removes the fraction of the matches from the end of the matches list, fraction must
be a floating point number in between 0.0 and 1.0.

15.4 Filter calls 189

15.4 Filter calls

FilterCalls

�
�- \

���- FilterCall�
�

�

�

-

FilterCall

- FilterIdent - (
���- Arguments -)

����
�

�

�
�- FilterIdent - <

���- VariableIdent - >
����- auto

�� �

�

-

Filters are employed with r\f notation at rule calls from the sequences language. This
holds for user-implemented, auto-generated, and auto-supplied filters.

EXAMPLE (97)

The following rule deleteNode yields to a def variable the amount of outgoing edges of a
node, and deletes the node. Without filtering this behaviour would be pointless, but a filter
ordering based on the def variable is already declared for it.

1 rule deleteNode

2 {

3 def var i:int;

4

5 n:Node;

6

7 yield {

8 yield i = outgoing(n).size();

9 }

10

11 modify {

12 delete(n);

13 }

14 } \ orderAscendingBy<i>

The rule may then be applied with a sequence like the following:

1 exec [deleteNode \ orderAscendingBy<i> \ keepFirstFraction(0.5)]

This way, the 50% of the nodes with the smallest number of outgoing edges are deleted from
the host graph (because they don’t get filtered away), or rephrased: the 50% of the nodes
with the highest number of outgoing edges are kept (their matches at the end of the ordered
matches list are filtered away).

190 Filtering and Sorting of Matches

orderAscendingBy<def-Var (, def-Var)*>

orderDescendingBy<def-Var (, def-Var)*>

keepSameAsFirst<def-Var>

keepSameAsLast<def-Var>

keepOneForEach<def-Var>

auto

keepFirst(int-Number)

keepLast(int-Number)

keepFirstFraction(double-Number)

keepLastFraction(double-Number)

removeFirst(int-Number)

removeLast(int-Number)

removeFirstFraction(double-Number)

removeLastFraction(double-Number)
def-Var may be of type int or double or string

Table 15.1: Auto-generated and then auto-supplied filters at a glance

C H A P T E R 16

A DVA N C E D M O D E L L I N G (O B J E C T - O R I E N T E D A N D
G R A P H - O R I E N T E D P R O G R A M M I N G)

In addition to the key features of the graph models of GrGen.NET as already described in
Chapter 4, you may specify methods in the node or edge classes. Methods are functions or
procedures that are declared inside class scope. In contrast to attributes that do not support
overwriting – each attribute of a type is added to all subtypes, with multiple declarations
being forbidden – methods support overwriting. Independent of the statically known type of
the variable, the method gets executed that was defined nearest to the exact dynamic type
of the value, in case a method is called.

This dynamic dispatch is the defining feature of object-oriented programming. For graph-
oriented programming, the defining feature is pattern-matching. Graph-oriented program-
ming can be made scalable to large tasks with hierarchically nested graphs, allowed for by
attributes of graph type in the model, implemented with switch-to-subgraph and return-from-
subgraph operations.

AdvancedModelDeclarations

�
� FunctionMethodDefinition ��

�ProcedureMethodDefinition �

�ExternalClassDeclaration �

�ExternalFunctionDeclaration �

�EmitParseDeclaration �

�CopyCompareDeclaration �

�PackageDefinitionModel �

�EqualsAnyParallelization �

�

�

-

The ExternalClassDeclaration registers an external class with GrGen.NET– including
its subtype hierarchy, excluding any attributes – which can be used subsequently in attribute
computations in external functions. The EmitParseDeclaration declares that the user defines
emit and parse functions for external or object type values, whereas the CopyCompareDec-
laration declares that the user defines copy and compare functions for external or object
type values. You find more on them in 25, here we will take a closer look on the Function-
MethodDefinition and ProcedureMethodDefinition, followed by the PackageDefinitionModel.
The EqualsAnyParallelization is explained in 22.4.

191

192 Advanced Modelling (Object-Oriented and Graph-Oriented Programming)

16.1 Methods

Computations on attributes of node or edge types that are occurring frequently may be fac-
tored out into a method definition given inside a class definition of the model file. Such
compound computations can be built and abstracted into reusable entities in two different
forms, function methods usable(/callable) from expression context, and procedure methods
usable(/callable) from statement context. Besides, some built-in function methods and pro-
cedure methods on container types are available in rule language computations and sequence
computations, cf. 13; in addition to the methods defined in 6 that are only available in the
rule language.

16.1.1 Function Method Definition and Call

Function methods are defined in exactly the same way as a function is defined, just inside
the hosting class. They have the same requrirements, i.e. exactly one output value must be
returned, and they must be side-effect free, which especially means that they are not allowed
to change the attributes of their hosting type.

FunctionMethodDefinition

- FunctionDefinition -

FunctionMethodCall

- Variable�
�- Variable - .

���- Attribute

�

- .
���- Name - (

����
�- Expression�

� ,
����

�

�

-)
���-

A such defined function method may then be called as an expression atom from anywhere
in the rule language file where an expression is required; or even from the sequence computa-
tions where an expression is required. The built-in function methods listed in 16.1 are called
with the same syntax.

Inside the function methods, the special entity this is available. It allows to access the
attributes and methods of the type the method is contained in. In contrast to Java, C++,
or C# where this may be used optionally to denote member or method access, the usage of
this is mandatory in GrGen.NET in order to access the attributes of the type or call the
methods of the type.

16.1.2 Procedure Method Definition And Call

Procedure methods are defined in exactly the same way as a procedure is defined, just inside
the hosting class. They may return an arbitrary number of return values, and are thus only
callable as a statement. They are allowed to manipulate the graph and esp. the element they
are contained in as needed, while being executed; so you are free to call other procedures –
but in contrast to global procedures, you cannot include exec statements.

ProcedureMethodDefinition

- ProcedureDefinition -

16.1 Methods 193

string.length():int

string.startsWith():boolean

string.endsWith():boolean

string.indexOf(string[,int]):int

string.lastIndexOf(string[,int]):int

string.substring(int[,int]):string

string.replace(int, int, string):string

string.toLower():string

string.toUpper():string

string.asArray(string):array<string>

set<T>.size():int

set<T>.empty():boolean

set<T>.peek(int):T

set<T>.asArray():array<T>

map<S,T>.size():int

map<S,T>.empty():boolean

map<S,T>.peek(int):S

map<S,T>.domain():set<S>

map<S,T>.range():set<T>

map<int,T>.asArray():array<T>

array<T>.size():int

array<T>.empty():boolean

array<T>.peek([int]):T

array<T>.indexOf(T[,int]):int

array<T>.lastIndexOf(T[,int]):int

array<T>.indexOfOrdered(T):int

array<T>.orderAscending():array<T>

array<T>.reverse():array<T>

array<T>.subarray(int, int):array<T>

array<T>.asDeque():deque<T>

array<T>.asSet():set<T>

array<T>.asMap():map<int,T>

array<string>.asString(string):string

array<T>.indexOfBy<attr>(typeof(attr)[,int]):int

array<T>.lastIndexOfBy<attr>(typeof(attr)[,int]):int

array<T>.indexOfOrderedBy<attr>(typeof(attr)):int

array<T>.orderAscendingBy<attr>():array<T>

deque<T>.size():int

deque<T>.empty():boolean

deque<T>.peek([int]):T

deque<T>.indexOf(T[,int]):int

deque<T>.lastIndexOf(T):int

deque<T>.subdeque(int, int):deque<T>

deque<T>.asArray():array<T>

deque<T>.asSet():set<T>

Table 16.1: Function methods at a glance

194 Advanced Modelling (Object-Oriented and Graph-Oriented Programming)

ProcedureMethodCall

�
�- OutputAssignment

�

- Variable�
�- Variable - .

���- Attribute

�

�
�

�- .
���- Name - (

����
�- Expression�

� ,
����

�

�

-)
���-

A such defined procedure may then be called as a statement atom from anywhere in the
rule language file where an attribute evaluation (/computation) is required; or even from the
sequence computations where a statement is required. The built-in procedure methods listed
in 16.2 are called with the same syntax.

Inside the procedure method, the special entity this is available. It allows to access the
attributes and methods of the type the method is contained in. In contrast to Java, C++,
or C# where this may be used optionally to denote member or method access, the usage of
this is mandatory in GrGen.NET in order to access the attributes of the type or call the
methods of the type.

set<T>.add(T)

set<T>.rem(T)

set<T>.clear()

map<S,T>.add(S,T)

map<S,T>.rem(S)

map<S,T>.clear()

array<T>.add(T[,int])

array<T>.rem([int])

array<T>.clear()

deque<T>.add(T[,int])

deque<T>.rem([int])

deque<T>.clear()

Table 16.2: Procedure methods at a glance

16.1 Methods 195

EXAMPLE (98)

In the following listing, we declare function and a procedure methods inside a node class, and
use them from a rule. Please note the mandatory this in the methods to denote members
and call other methods.

1 node class N

2 {

3 i:int;

4

5 function get_i():int

6 {

7 return(this.i);

8 }

9 procedure set_i(var val:int)

10 {

11 this.i = val;

12 return;

13 }

14 procedure inc_i(var val:int) : (int)

15 {

16 this.set_i(this.get_i() + val);

17 return(this.i);

18 }

19 }

20

21 rule foo : (int)

22 {

23 n:N;

24 modify {

25 def var i:int;

26 eval {

27 n.set_i(41);

28 n.inc_i(1);

29 yield i = n.get_i();

30 }

31 return(i); // exeuting foo will return 42

32 }

33 }

196 Advanced Modelling (Object-Oriented and Graph-Oriented Programming)

EXAMPLE (99)

The following listing highlights the effect of dynamic dispatch (the heart and soul of object-
oriented programming): the method finally called depends not simply on the static type we
know for sure the object is an instance of, but on the real dynamic type of the object, that it
was created with. Please note that in reality you use this language device to achieve the same
behaviour at the outside for objects of different types, but implemented internally consistent
regarding the exact type, taking all of its members into account (including the ones unknown
to parent types).

1 node class N

2 {

3 function get():int

4 {

5 return(0);

6 }

7 }

8

9 node class NN extends N

10 {

11 function get():int

12 {

13 return(1);

14 }

15 }

16

17 rule foo : (int)

18 {

19 n:N; // statically declared N, may match dynamically to node of type NN

20 modify {

21 def var i:int;

22 eval {

23 yield i = n.get();

24 }

25 return(i); // exeuting foo will return 0 iff n was bound to node of type N, but 1 iff

n was bound to node of type NN

26 }

27 }

16.2 Packages

Packages allow you to separate a project into namespaces that shield their content from name
clashes when getting used (for models) or included (for actions) together. They incur some
non-negligible notational overhead as every usage of a name from a package outside of that
package must be prefixed with the package name (in the form packagename::name), so we
recommend to use them only when needed. This holds esp. as we expect that a typical
project will be limited to an algorithmic kernel written by a single programmer who has
everything under control and can thus easily prevent name clashes.

16.2 Packages 197

16.2.1 Package Definition in the Model

PackageDefinitionModel

- package
�� �- IdentDecl - {

��� - ClassDeclaration�
�- EnumDeclaration

�

�
�

�

- }
���-

A package definition in the model is similar to a model definition as such, just reduced in its
content. It consists of ClassDeclarations, defining node or edge types, or EnumDeclarations
defining enum types. The AdvancedModelDeclarations allowed in the root model are not
available inside a package, neither can other models be included inside a package with using.
Package definitions cannot be nested.

PackageUsageModel

- Ident - ::
�� �- Ident -

In every context where a node, edge, or enum type can be referenced, by noting down its
declared identifier, also a type from a package can be referenced, by noting down its package
as a prefix. The package prefix may be omitted inside the package for other entities from the
same package. But only for them, outside of that package you must always use the package
prefixed form for referencing identifiers from the package.

EXAMPLE (100)

Types from a model defined like this:

1 package Foo {

2 node class N {

3 attr : Lol;

4 }

5 enum Lol {

6 Bla,

7 Blub

8 }

9 }

10

11 package Bar {

12 node class N {

13 attr : Foo::Lol;

14 }

15 }

Can be used like this:

1 rule r(var inp : Foo::Lol) {

2 x : Foo::N --> y : Bar::N;

3 if{ x.attr==Foo::Lol::Bla; }

4

5 modify {

6 eval{ add(Foo::N); }

7 eval{ y.attr = Foo::Lol::Blub; }

8 }

9 }

198 Advanced Modelling (Object-Oriented and Graph-Oriented Programming)

16.2.2 Package Definition in the Actions

PackageDefinitionAction

- package
�� �- IdentDecl - {

��� - ActionDeclaration�
�- SubpatternDeclaration

�- RewriteSequenceDefinition

�- FunctionDefinition

�- ProcedureDefinition

�- FilterFunctionDefinition

�

�

�

�

- }
���-

A package definition in the actions is similar to a rule set definition as such, just reduced
in its content. It consists of ActionDeclarations, defining rules and tests, or SubpatternDec-
larations to be used from the actions, or FilterFunctionDefinitions, for filtering the matches
of the actions. It furthermore consists of FunctionDefinitions and ProcedureDefinitions, or
RewriteSequenceDefinitions. The file header constructs for using models, including other ac-
tions, or declaring global variables are not available inside a package. Neither can package
definitions be nested.

The packages Math, File, Time, Transaction, and Debug are built-in, their functions and
procedures can be used directly (see 6.8, 14.3, 14.7.1 and 21.5 for their content).

PackageUsageActions

- Ident - ::
�� �- Ident -

In every context where a rule, a test, a subpattern type, a filter function, a function, a
procedure, or a sequence can be referenced, by noting down its declared identifier, also an
entity from a package can be referenced, by noting down its package as a prefix. The package
prefix may be omitted inside the package for other entities from the same package. But only
for them, outside that package you must always use the package prefixed form for referencing
identifiers from the package.

The packages in the actions are declared with the same syntax as the packages in the
model, but are otherwise separate. You cannot extend a model package with an actions
package, or vice versa. A package with a given name can only be tied once, either in the
model or the actions.

16.2 Packages 199

EXAMPLE (101)

The example highlights how action packages can be used.

1 package Foo {

2 pattern P {

3 x:Node -e:Edge-> x;

4

5 modify {

6 delete(e);

7 }

8 }

9

10 rule r {

11 p:P();

12

13 modify {

14 p();

15 eval { Bar::proc(true); }

16 }

17 }

18

19 filter f<r> {

20 return;

21 }

22 }

23

24 package Bar {

25 rule r {

26 x:Node -e:Edge-> x;

27 if{ func(); }

28

29 modify {

30 delete(e);

31 exec(Foo::r\Foo::f);

32 }

33 } \ auto

34

35 function func : boolean {

36 return(true);

37 }

38

39 procedure proc(var b:boolean) {

40 return;

41 }

42 }

43

44 rule r2 {

45 if{ Bar::func(); }

46 p:Foo::P();

47

48 modify {

49 p();

50 }

51 }

52

53 sequence s2 {

54 Foo::r()\Foo::f ;> Bar::r\auto ;> { Bar::proc(Bar::func()); }

55 }

200 Advanced Modelling (Object-Oriented and Graph-Oriented Programming)

16.3 Graph Nesting

You can nest graphs by defining attributes of graph type (cf. 14) inside node or edge classes
(cf. 4) at modelling time, filling them at runtime with assignments of values of graph type,
created with the operations introduced in 14.3. Thus, in contrast to certain modellings
identifying nested graphs with nodes, a host graph contains further graphs in the attributes
of its nodes or edges.

Values of graph type are opaque and inaccessible to the computations that are available in
– and automatically apply to – the host graph; from the outside, they can only be compared,
i.e. isomorphy checked against other graphs (a feature needed for state space enumeration
(cf. 19.7), in this case only immutable subgraphs are stored).

ExtendedControl

- in
�� �- GraphVariable�

�- NodeOrEdge - .
���- Attribute

�

- {
���- RewriteSequence - }

���-

But they can be opened up by switching the location of processing with the in g { seq }

sequence. Inside the braces, the host graph is switched to g, the sequence seq is executed
in that new host graph, all queries and updates are carried out on it. After executing the
construct, the old graph that was previously used is made the current host graph again.

Switching the location of processing is a feature only available in the sequences, (re)defining
the execution context for the rules; it is not available on lower levels, it is esp. not possible
to access multiple graphs from within a single rule (a rule application is always carried out
on a single by-then current host graph).

Rule

- GraphVariable - .
���- RuleIdent �

�- (
���- Variable�

� ,
����

�

-)
���

�

-

A simplified and more lightweight version of the full switch just introduced is available for
single rule calls with syntax g.r; so a method call in the plain sequences (above the sequence
computations) denotes in fact a temporary subgraph switch. This is syntactic sugar for the
dedicated switch containing only a single rule application as sequence. The syntax of rule
application is extended by the grammar rule above to allow for this is.

The information hiding shown by the graph attributes is comparable to the information
hiding shown by the objects in object-oriented programming, there the attributes but espe-
cially the neighbouring elements are only known to the containing object and accessible to
the methods of the object. In graph-oriented programming are the attributes but especially
the neighboring elements known to the containing graph, the connecting topology is open
for pattern matching. This crucial difference also defines the main benefit compared to OO,
removing it would mean to revert back to OO. But this openness might not be needed always
for all parts. When building a large system, you typically only need a certain layer to be ac-
cessible at a time. You may use graph attributes and nested graph in this case, utilizing open
graph-oriented programming for the parts you need to work globally with pattern matching
at a time, and closed object-oriented programming for parts you only need to access locally,
decoupled by explicit move-to-subgraph and return-to-subgraph steps.

You may model containment with edges denoting a containment type pointing to the
contained parts instead of attributes of subgraph type when the pattern matcher needs overall
access to the graph, but there are still some containment or nesting relationships in place. You

16.3 Graph Nesting 201

can then still benefit from a hierarchical structure in debugging, utilizing the built-in nesting
for visualization capabilities of GrGen.NET(cf. 21.1, the graphs nested in attributes are
truly opaque and invisible, only when processing switches to them are they displayed instead
of their containing host graph).

202 Advanced Modelling (Object-Oriented and Graph-Oriented Programming)

C H A P T E R 17

S E Q U E N C E C O M P U TAT I O N S

In this chapter we take a look at sequence computations, which are not concerned with
directly controlling rules, but with computing values (sequence expressions) or causing side
effects (sequence statements), that are then used to control rules.

EXAMPLE (102)

Sequence computations are typically employed when storages have to be maintained:
now:set<Node>=set<Node>{};>next:set<Node>=set<Node>{};>initializeNow(now) ;>

(processNowFillNext(now, next) ;> { now.clear(); tmp:set<Node>=now; now=next;

next=tmp; {!now.empty()} })* — that example sequence is used to implement a wave-
front as rule control strategy.
A set now of current nodes is processed, filling a set of output nodes to be processed next,
which are then used in the following iteration step as input nodes, until all of parts of the
graph reachable from the initial nodes have been passed, yielding an empty set. The sequence
computation for switching in between the sets is given enclosed in braces in the sequence,
the sequence expression to determine whether the wavefront came to a halt is given at the
end of the computation, enclosed a level deeper in braces. As long as the set is still filled,
the final expression, thus the computation, returns true, continuing with the loop – when it
gets empty, the expression yields false, henceforth terminating the loop and the wavefront
algorithm.

Sequences are existing to control rules and not to carry out the bulk of the computational
work, so only a subset of the rule computations is available in the sequence computations.
The sequence computations are embedded directly in the controlling sequence on the other
hand, in contrast to the computations from the rule language that can only be used by calling
their named abstractions. In particular, the subset that is needed in order to draw decisions
(esp. comparison operators) and to assign variables (so for sequence variable initialization
you need to employ a sequence computation) is available.

17.1 Sequence Statements

RewriteComputationUsage

�
�- %

���
�

- {
���- CompoundComputation - }

���-

The non-computational sequence constructs introduced before in 9 are used for execut-
ing rules, to determine which rule to execute next depending on success and failure of the
previous rule applications, and where to apply it next by transmitting atomic variables of
node or edge type in between the rules. Sequence computations in contrast are used for

203

204 Sequence Computations

manipulating container variables, evaluating computational expressions, or for causing side
effects like output or element markings. A computation returns always true, with exception
of an expression used as a computation (explained below). A prepended % attaches a break
point to the computation.

CompoundComputation

- Computation �
�- ;

���- Computation�
�

�

�

-

A compound computation consists of a computation followed by an optional list of com-
putations separated by semicolons. The computations are executed from left to right; the
value of the compound computation is the value of the last computation. So you must give
an expression at that point in order to return a value, whereas it is pointless to specify an
expression before. (But typically, when you are interested in a return value in a certain
context, you only give a single computation, being an embraced sequence expression, which
is then automatically the last computation.)

Computation

- VariableDeclaration�
�- Assignment

�- ProcedureMethodCall

�- ProcedureCall

�- {���- SequenceExpression - }
���

�

-

Assignment

- AssignmentTarget - =
���- SequenceExpression�

�- Assignment

�

-

A variable declaration declares a local variable in the same way as in the sequences. An
assignment assigns the value of a sequence expression to an assignment target. It may be
chained; such an assignment chain is executed from right to left, assigning the rightmost
value to all the assignment targets given. The expression used as computation – denoted by
and enclosed in braces – will return a boolean value by comparing the return value of the
expression to the default value of the corresponding type (e.g. 0 for an integer), returning
false if equal, or true if not equal. So just using a boolean variable as expression returns the
value of the variable. The form of expressions and assignment targets will be specified below.

NOTE (39)

For returning an expression evaluation result value to a sequence you need two opening
braces! One for entering the sequence computations, and the other for entering the sequence
expressions.

17.1 Sequence Statements 205

EXAMPLE (103)

The example sequence b:boolean ;> {b=true} ;> {{b}} shows a sequence with a variable
declaration on sequence level, an assignment on sequence computation level (to initialize the
variable), and a sequence expression defining the return value of the sequence to be the value
of the variable.
The example sequence if{ {{::i<10}}; {::i=::i+1}; false }* increments the graph
global variable i until it becomes greater than 10.

ProcedureMethodCall

�
�- (

���- Variables -)
���- =

���
�

- Variable�
�- GraphElement - .

���- Attribute

�

�
�

�- .
���- MethodName - (

���- Arguments -)
���-

ProcedureCall

�
�- (

���- Variables -)
���- =

���
�

- ProcedureName - (

���- Arguments -)
���-

Arguments

�
�- SequenceExpression�

� ,
����

�

�

-

Varibales

- Variable�
� ,

����
�

-

A method call executes a method on a variable, passing further arguments. The method
may be one of the predefined container methods, or a user-defined method (cf. 16.1).

A procedure call executes a (built-in or user defined) procedure, passing further argu-
ments. In addition to the graph type based functions and procedures that will be explained
in more detail further below, emit, emitdebug, record, and export procedure calls can be
given here. The emit procedure writes a double quoted string or the value of a variable to the
emit target. The emit target is stdout as default, or a file specified with the shell command
redirect emit. In case of emitdebug, the target is always stdout. For both emit proce-
dures, a comma-separated sequence of arguments may be given, which is preferable to string
concatenation for performance reasons. The record procedure writes a double quoted string
or the value of a variable to the currently ongoing recordings (see 20.10). This feature allows
to mark states reached during the transformation process in order to replay only interesting
parts of a recording. It is recommended to write only comment label lines, i.e. "#", some
label, and "\n". The export procedure exports the current graph to the path specified if
called with one argument, or it exports the subgraph specified as first argument to the path
specified as second argument. It behaves like the export command from the GrShell, see

206 Sequence Computations

20.3. Having it available in the sequences allows for programmed exporting, and exporting
of parts of the graph, with the subgraph containment just computed.

Furthermore, a function canonize(g:graph):string is available, which is intended to
provide a canonical string representation for any graph, but currently does not work for all
graphs. The function currently uses the SMILES[Wei88] method of producing an equitable
partition of graph nodes, not a canonical order; while not offering full fledged graph canoniza-
tion this algorithm is sufficient for many purposes. It allows to reduce graph comparisons to
string comparisons, at the price of computing the Weininger algorithm for equitable partitions
of nodes.

Moreover, the procedures from the built-in package Debug as explained in detail in 21.5
may be called. Debug::add when entering and Debug::rem when leaving a subrule com-
putation of interest (always pairwise!), Debug::emit to recored some subrule computation
milestones, Debug::halt to halt the debugger, and Debug::highlight to highlight some
graph elements in the debugger (halting it).

Besides those predefined procedures (and functions), you may call user procedures (and
functions), defined in the rules file; cf. 12.5.

Finally, an expression (without side effects) can be evaluated, this allows to return a
(boolean) value from a computation.

AssignmentTarget

- Variable �
�- :

���- Type

�

�
�- yield

�� �- Variable

�- GraphElement - .
���- Attribute

�- Variable - [
���- SequenceExpression -]

����- GraphElement - .
���- Attribute - [

���- SequenceExpression -]
����- GraphElement - .

���- visited
�� �- [

���- SequenceExpression -]
���

�

-

Possible targets of assignments are the variables and def-variables to be yielded to, as in
the simple assignments of the sequences. A yield assignment writes the rhs variable value to
the lhs variable which must be declared as a def-to-be-yielded-to variable (def-prefix) in the
pattern containing the exec statement. Yielding is only possible from compiled sequences, it
always succeeds. Further on, the attributes of graph elements may be written to, the values
at given positions of array or deque or map variables may be written to, and the visited
status of graph elements may be changed.

17.2 Sequence Expression 207

EXAMPLE (104)

The sequence computation { x:int=42; y:N; (y)=proc(x); y.meth(x); y.a=x } shows
a variable declaration including an initialization (which falls out of scope at the closing brace),
a variable declaration of node type without initialization, a call of a procedure with one input
argument, assigning an output value, a call of a method of the node type, and the assignment
of a graph element attribute.
The example { x:array<int>=array<int>[]; x.add(42); x[0]=1; {x.size()>0} }

shows an array declaration and initialization, the adding of a value to the array, the indexed
assignment to an array, and a terminal sequence expressions that makes the sequence
computation succeed if the array is not empty (that’s the case here) and fail otherwise.
Sequence computations that don’t end with a sequence expression always succeed.

17.2 Sequence Expression

SequenceExpression

- ConditionalSequenceExpression�
�- BooleanSequenceExpression

�- RelationalSequenceExpression

�- ArithmeticSequenceExpression

�- PrimarySequenceExpression

�

-

Sequence expressions are a subset of the expressions introduced in 6.2, containing the
boolean and comparison operators, but only the basic arithmetic operators.

ConditionalSequenceExpression

- BooleanSequenceExpression - ?
���- SequenceExpression - :

���- SequenceExpression -

The conditional operator has lowest priority, if the condition evaluates to true the first
expression is evaluated and returned, otherwise the second.

BooleanSequenceExpression

- SequenceExpression - &
����

�- ∧����- |
����- &&
�� ��- ||
�� �

�

- SequenceExpression�

�- !
���- SequenceExpression

�

-

The boolean operators have the same semantics and same priority as in 6.2.

208 Sequence Computations

RelationalSequenceExpression

- SequenceExpression - ==
�� ��

�- !=
�� ��- <
����- <=
�� ��- >
����- >=
�� ��- in
�� ��- ∼∼

�

- SequenceExpression -

The equality operators work for every type and return whether the values to compare are
equal or unequal. The relational operators work as specified in 6.2 for numerical types, in 13
for container types, and 14 for graph type.

ArithmeticSequenceExpression

- SequenceExpression - +
����

�- -
����- *
����- /
����- %
���

�

- SequenceExpression -

The arithmetic operator plus is used to denote addition of numerical values or string con-
catenation, the arithmetic operator minus is used to denote subtraction of numerical values.
Furthermore, you can multiply and divide numbers, or compute the remainder of a division.
Neither the arithmetic functions of package Math, nor the string methods are available in
the sequence expressions. Use the entities from the rule language for real computational
work, you can reuse them easily, just call the functions from the sequence expressions, the
procedures from the sequence statements, and the rules/tests from the sequences.

PrimarySequenceExpression

- BasicSequenceExpression�
�- SpecialSequenceExpression

�

-

The atoms of the sequence expressions are the basic and the special sequence expressions.

17.2 Sequence Expression 209

BasicSequenceExpression

- def
�� �- (

���- Variable�
� ,

����
�

-)
����

�- @ - (
���- NameString -)

����- GraphElement - .
���- Attribute

�- Variable

�- Literal

�

-

The basic sequence expressions are the foundational value sources. A def term is suc-
cessful iff all the variables are defined (not null). The at operator allows to access a graph
element by its persistent name. The attribute access clause returns the attribute value of
the given graph element. The variable and literal basic expressions are the same as in the
SimpleOrInteractiveExpression, cf. 9.3; this means esp. that a Variable may denote a graph
global variable if prefixed with a double colon, here as well as in the AssignmentTarget.

SpecialSequenceExpression

- Variable - [
���- SequenceExpression -]

����
�- GraphElement - .

���- Attribute - [
���- SequenceExpression -]

����- GraphElement - .
���- visited

�� �- [
���- SequenceExpression -]

����- FunctionMethodCall

�- FunctionCall

�

-

The special sequence expressions are used for storage handling, for graph, subgraph and
visited flag handling, for random value queries, for typeof queries, and for index access.

The storage oriented ones are used to access a storage or to call a method on a storage
(note: here it is not possible to build method call chains). They were introduced in chapter
13, and are summarized below in 17.4.

The graph and subgraph handling expressions allow to query the graph for its elements,
the visited flags expressions allow to check whether a value is marked. They were introduced
in chapter 14, and are summarized below in 17.3.

The random value function random behaves like the random function from the expressions,
see 6.8; i.e. if noted down with an integer as argument it returns a random integer in between
0 and that upper bound, exclusive; if given without an argument it returns a random double
in between 0.0 and 1.0, exclusive.

The typeof function returns the type as string, for an arbitrary GrGen.NET-object fed
as input. There is no type type supporting type comparisons as in the rule language existing,
you are limited to string comparisons.

The index functions allow to fetch elements based on the name or the unique-id, or to
retrieve the name or the unique-id. Available are nameof to fetch the name of a node or
edge or graph and uniqueof to fetch the unique id of a node or edge or graph. The function
nodeByName allows to retrieve a node by its name, edgeByName does the same for an edge.
The function nodeByUnique allows to retrieve a node by its unique id, edgeByUnique does
the same for an edge. You find more on them in Chapter 22.

210 Sequence Computations

EXAMPLE (105)

The sequence expression {{ def(y) && y.meth(x)>=y.a || @("$1").a+1 != func(x) }}

checks whether the node typed variable y is defined, i.e. not null, and if so compares the
return value of a method of that type with an attribute value. If the comparison succeeds,
it defines the return value of the expression; in case the definedness check failed or the
comparison yields false, is a graph element fetched from the graph by its persistent name $1,
and its attribute a plus 1 compared against the result of a function call. Then the result of
this latter comparison defines the outcome of the expression.

17.3 Graph and Subgraph Based Queries and Updates

The graph and subgraph oriented parts of the sequence expressions are built from four groups,
the procedures for basic graph manipulation, the functions for querying the graph structure,
the functions and procedures of the subgraph operations, and the visited flag query, assign-
ment, and procedures.

The first group is built from basic graph manipulation operators, as defined in 12.4 and
described in 12.5.2. Elements may be added, removed, or retyped, and nodes may be merged
or edges redirected. Not available are numerical functions, they are only offered by the
computations of the rules.

EXAMPLE (106)

The sequence computation { (::x)=add(N); (::x)=retype(::x,M); rem(::x) } adds a
newly created node of type N to the graph (storing it in the global variable ::x), retypes it
to M, and finally removes it again from the graph.

The second group is built from the operators querying primarily the connectedness of
graph elements, as defined in 12.5.1. You may ask for one for the nodes or edges of a
type. You may query for the other for the source or target or opposite node of an edge.
Furthermore, you may query for adjacent nodes and incident edges, maybe even transitively
for the reachability. Furthermore you may ask with a predicate whether nodes or edges are
adjacent or incident to other nodes or edges, maybe even transitively for reachability.

EXAMPLE (107)

for{x:N in nodes(N); for{::y in outgoing(x); { ::z=target(::y); ::z.a = 42 } } }

is a sequences that sets the attribute a to 42 for all nodes that are adjacent as targets to a
source node x of type N. You will receive a runtime exception if the type of ::z does not
possess an attribute a.
A more realistic example is to check whether two nodes returned by some rule applications
are reachable from each other, carrying out a change only in this case:
(::x)=r() ;> (::y)=s() ;> if{ {{isReachable(::x,::y)}} ; doSomething(::x, ::y) }

The third group is defined by functions and procedures that operate on (sub-)graphs,
as defined in 12.5.1 and 12.5.2. They are especially useful in state space enumeration, cf.
19.7. To this end, parallelized graph isomorphy checking with the equalsAny function is
especially of interest. You may import, clone, or compute induced subgraphs. You may
export a subgraph or insert a subgraph into the hostgraph.

17.3 Graph and Subgraph Based Queries and Updates 211

EXAMPLE (108)

(doSomething() ;> { File::export("graph"+i+".grs") })* is a sequence scheme for
exporting a graph after each iteration step in a loop, gaining a series of snapshots on the hard
drive. In a later step, you may then conditionally add exported graphs to the host graph:
if{cond; { ::g=File::import("graph"+n.a+".grs"); insert(::g) } }

EXAMPLE (109)

When you model a state space with Graph representative nodes (not graph standing for a
real (sub)graph), which are pointing with contains edges to the nodes contained in their
state (i.e. subgraph), and store additionally a replica of the subgraph in a sub attribute of
the Graph node, so it is readily available for comparisons, then the step of a state space
enumeration with isomorphic state pruning is controlled with code like this:
<< modifyCurrent(gr) ;; {adj=adjacent(gr, contains); sub=inducedSubgraph(adj)}

Inside the backtracking double angles, a new state is computed as first step by modifying
the currently focused state received as input gr:Graph from the previous step. The modified
subgraph is extracted for comparison by computing the inducedSubgraph from the nodes
adjacent via contains-edges to the gr-node.
;> for{others:Graph in nodes(Graph); {{sub!=others.sub}} } &&

The extracted subgraph is compared with all already enumerated subgraphs that can be
accessed by their Graph representative node. Only if none is isomorphic to it, do we continue
with making the state persistent.
/ {(ngr)=insertInduced(adj, gr)} && link(gr,ngr) && {ngr.sub=sub} /

During a backtracking pause, the modified subgraph is cloned and inserted flatly into
the host graph again with insertInduced. A link is added from the old representative
to this new representative, to reflect ancestry. Then the subgraph attribute of the new
representative ngr is filled with the previously computed subgraph sub. Remark: the first
inducedSubgraph above does not contain the representative node and thus is missing all
containment edges, too. This insertInduced includes the representative node and thus the
containment edges. Syntactical remark: inducedSubgraph is used in an assignment with
a function call as RHS, whereas insertInduced is employed from a procedure call which
requires parenthesis around the output arguments.
&& stateStep(ngr, level+1) >>

Finally, we continue state space construction with the next step, modifying the just inserted
subgraph. After this step returns (with false as result), do the backtracking double angles
roll back the modification – keeping the changes written during the pause untouched – and
execute modifyCurrent on the next match available in gr.

The fourth group are the visited flags related operations, as described in chapter 14.6.
Available is an expression for reading a visited flag, an assignment for writing a visited flag,
and procedures for managing the visited flags as defined in 12.4.

EXAMPLE (110)

Because of the need to allocate and deallocate them, the visited flags are typically used with
code like this: flag:int ;> {(flag)=valloc()} ;> r(flag) ;> {vfree(flag)}

In addition, they may be read in the sequence expressions, and written in the sequence
computations: if{ {{!n.visited[flag]}} ; { n.visited[flag] = true } }

212 Sequence Computations

In the sequences only the sequence expressions are available to compute the parameters for
the functions and procedures, compared to the full-fledged expressions of the computations
language.

17.4 Storage Handling in the Sequences

Storages are variables of container (set/map/array/deque) type (cf. 14.1) storing nodes or
edges. They are primarily used in the sequences, from where they are handed in to the rules
via ref parameters (but additionally container attributes in graph elements may be used as
storages, esp. for doing data flow analyses, cf. 19.6). They allow to decouple processing
phases: the first run collects all graph elements relevant for the second run which consists of
a sequence executed for each graph element in the container. The splitting of transformations
into passes mediated by container valued global variables allows for subgraph copying without
model pollution, cf. 19.5; please have a look at 19, 19.5 and 19.6 regarding a discussion on
when to use which transformation combinators and for storage examples. They were already
defined and described in 13. Here we only give some refinements and explanations of the
semantics.

The methods add,rem,clear are available for all storages and allow to add elements to
the container, remove elements from the container, or clear the container. Their return value
is the changed container, thus they allow to chain method calls on the container.

The methods size,empty,peek in contrast return the size of the container, whether the
container is empty, or a certain element from the container and thus can’t be chained. The
indexed query v=m[k] is available on map and array and deque types and returns the element
at the specified index, the indexed assignment a[i]=v overwrites the element at the specified
index. Further available is the sequence expression operator in for membership query.

The infix operators, the methods specific to a certain container type (i.e. not available for
all container types), and the change assignments in contrast are not available in the sequence
computations, they are only supported by the computations in the rule language. The set
copy constructor is supported, the other copy constructors are not supported.

17.4 Storage Handling in the Sequences 213

You may iterate in the sequences with a for loop over the elements contained in a storage.

RewriteFactor

- for
�� �- {���- Var - in

�� �- SetVar�
�- Var - ->

�� �- Var - in
�� �- MapVar

�- Var - in
�� �- ArrayVar

�- Var - ->
�� �- Var - in

�� �- ArrayVar

�- Var - in
�� �- DequeVar

�- Var - ->
�� �- Var - in

�� �- DequeVar

�

- ;
���- RewriteSequence - }

���-

The for command iterates over all elements in the set or array or deque, or all key-value
pairs in the map or array or deque, and executes for each element / key-value pair the nested
graph rewrite sequence; it completes successfully iff all sequences were executed successfully
(an empty container causes immediate successful completion); the key in the key-value pair
iteration of an array or deque is the integer typed index. (See 18.3 for another version of the
for command.)

EXAMPLE (111)

The following XGRS is a typical storage usage. First an empty set x is created, which gets
populated by a rule t executed iteratedly, returning a node which is written to the set. Then
another rule is executed iterated for every member of the set doing the main work, and
finally the set gets cleared to prevent memory leaks or later mistakes. If the graph should
stay untouched during set filling you may need visited flags to prevent endless looping.
x=set<Node>{} ;> ((v)=t() && {x.add(v)})+ && for{v in x; r(v)} <; {x.clear()}

You could hand in the storage to the rule, and add there to the set, this would allow to
shorten the sequence to:
x=set<Node>{} ;> (t(x))+ && for{v in x; r(v)} <; {x.clear()}

The for loop could be replaced by employing the storage access in the rule construct, cf.
13.6; this would be especially beneficial if the rule r inside the for loop would have to change
the storage x, which would corrupt the iteration/enumeration variable.

NOTE (40)

The container over which the for loop iterates must stay untouched during iteration.
Use the copy(.:container):container function to clone the container before the iteration
if you need to iterate the container content and change its values.

214 Sequence Computations

17.5 Quick Reference Table

Table 17.1 lists most of the operations of the graph rewrite computations at a glance.

c;d Computes c then d; the value of the computation is d

{e} An unspecified sequence expression executed for its result, defining
the success of the computation.

t=e Simple assignment of an expression value to an assignment target

e ? f : g Returns f if e evaluates to true, otherwise g
e op f For op being one of the boolean operators ||,|,&,&&,^

e op f For op being one of comparison operators ==,!=,<,<=,>,>=,in

e op f For op being one of arithmetic operators +,-,*,/,%

e + f For string concatenation.

v Variable. Assignment target or expression.
v.name Attribute of graph element. Assignment target or expression.
@(name) Return graph element of given name.
def(Parameters) Check if all the variables are defined.
random(upperBound) Returns random number from [0;upper bound[, if upper bound is

missing from [0.0;1.0[.
typeof(v) Returns the name of the type of the entity handed in.

u=set<Node>{} Example for container constructor, creates storage set and assigns
to u.

u[e] Target value of e in u. Fails if !(e in u). Assignment target or
expression.

f(...) Calls one of the functions for graph querying defined in 12.1 and
explained in 14. Or calls a user defined function. The numerical
functions are not available.

(...)=p(...) Calls one of the procedures for graph manipulation defined in 12.4
and explained in 14. Or calls a user defined procedure.

v.fm(...) Calls one of the function methods size,empty,peek for container
querying defined in 16.1 and explained in 13. Or calls a user
defined function. The string function methods and other container
function methods as well as infix operators are not available.

(...)=v.pm(...) Calls one of the procedure methods add,rem,clear for container
manipulation defined in 16.2 and explained in 13. Or calls a user
defined procedure. The change assignments are not available.

Let c and d be computations, t be an assignment target, e, f, g be expressions, u, v, w be

variable identifiers

Table 17.1: Sequence computations at a glance

C H A P T E R 18

A DVA N C E D C O N T R O L W I T H B AC K T R AC K I N G

In this chapter we’ll have a look at advanced graph rewrite sequence constructs, with the
subsequences and the backtracking double angles as the central statements.

18.1 Sequence Definitions (Procedural Abstraction)

RewriteSequenceDefinition

- def
�� ��

�- sequence
�� �

�

- RewriteSequenceSignature - {

���- RewriteSequence - }
���-

RewriteSequenceSignature

- SequenceName �
�- (

����
�- InVariable - :

���- Type�
� ,

����
�

�

-)
���

�

�

�
��

�- :
���- (

����
�- OutVariable - :

���- Type�
� ,

����
�

�

-)
���

�

-

If you want to use a sequence or sequence part at several locations, just factor it out
into a sequence definition and reuse with its name as if it were a rule. A sequence definition
declares input and output variables; when the sequence gets called the input variables are
bound to the values it was called with. If and only if the sequences succeeds, the values
from the output variables get assigned to the assignment target of the sequence call. Thus a
sequence call behaves as a rule call, cf. 9.1.

A sequence definition may call itself recursively, as can be seen in example 112.
The compiled sequences must start with the sequence keyword in the rule file. The

interpreted sequences in the shell must start with the def keyword; a shell sequence can be
overwritten with another shell sequence in case the signature is identical. (Overwriting is
needed in the shell to define directly or mutually recursive sequences, as a sequence must be
defined before it can get used; apart from that it allows for a more rapid-prototyping like
style of development in the shell.)

215

216 Advanced Control with Backtracking

EXAMPLE (112)

1 def rec(depth:int) {\

2 if{ {{depth<::MAXDEPTH}}; foo() ;> rec(depth+1); bar() }\

3 }

This example shows a sequence defined in the shell which is executing itself recursively. The
host graph is transformed by applying MAXDEPTH times the rule foo, until finally the rule bar

is executed. The result of the sequence is the result of bar, returned back from recursion
step to recursion step while unwinding the sequence call stack.

18.2 Transactions, Backtracking, and Pause Insertions

The extended control constructs offer further rule application control in the form of transac-
tions, backtracking, and pause insertions.

ExtendedControl

- <
���- RewriteSequence - >

����
�- <<

�� �- RuleExecution - ;;
�� �- RewriteSequence - >>

�� ��- /
���- RewriteSequence - /

���

�

-

Graph rewrite sequences can be processed transactionally by using angle brackets (<>),
i.e. if the return value of the nested sequence is false, all the changes carried out on the
host graph will be rolled back. Nested transactions are supported, i.e. a transaction which
was committed is rolled back again if an enclosing transaction fails.

EXAMPLE (113)

We want to execute a sequence rs and if it fails a rule t – on the original graph. But rs is
composed of two rules, it denotes the sequence r&&s. So first r must succeed, and then s, too.
Unfortunately, it is possible that r succeeds and carries out its effects on the graph, and then
s fails. So we’d need an explicit undo-r to reverse the effect of r after s failed. Luckily, we can
omit writing such reversal code (which may require a horrendous amount of bookkeeping) by
utilizing transactions, to just try out and roll back on failure: if{!< r && s >; t}. After
r succeeded – with the graph in state post-r – s is executed. If s succeeds, the sequence as
such succeeds. But if s fails we just roll back the effects of r and execute t instead.

Transactions as such are only helpful in a limited number of cases, but they are a key in-
gredient for backtracking, which is syntactically specified by double angle brackets (<<r;;s>>.
The semantics of the construct are: First compute all matches for rule r, then start a trans-
action. For each match: execute the rewrite of the match, then execute s. If s failed then
rollback and continue with the loop. If s succeeded then commit and break from the loop.
On first sight this may not look very impressive, but this construct in combination with re-
cursive sequences is the key operation for crawling through search spaces or for the unfolding
of state spaces.

The backtracking double angles separate matching from rewriting: first all matches are
found, but then only one after the other is applied, without interference of the other matches.
The “without interference of other matches” statement is ensured by rolling back the changes
of the application of the previous match, and much more, of the entire sequence which followed
the rewriting of the previous match.

18.2 Transactions, Backtracking, and Pause Insertions 217

EXAMPLE (114)

The situation we find ourselves in now is to find an application of rule r that makes test
t succeed. Unfortunately, the test would be very complicated to write based on the state
before-r. So we want to execute r and try t afterwards. But remembering the other matches
of r we found in case the just chosen match makes t fail, so we can exhaustively enumerate
and try them all. Only in case none of them works do we accept failure. The sequence
<<r;;t>> allows us directly to do so, it fails iff none of the possible applications of r can
make a following t succeeds, it succeeds with the first application of r for which t succeeds.

If you are just interested in the first goal state stumbled upon which satisfies your re-
quirements during a search, then you only need to give a condition as last statement of the
sequence which returns true if the goal was reached; the iteration stops exactly in the target
state (see example above). But when you are interested in finding all states which satisfy
your requirements, or even in enumerating each and every state, just force backtracking by
noting down the constant false as last element of the sequence (see example below).

EXAMPLE (115)

The sequence << r ;; t ;> false >> allows us to visit all applications of r that make t

succeed. But everything is rolled back after sequence end. So this is only helpful if you
remember something about the states that saw r and t succeed. Either in some variables, or
in the graph itself, during a transaction pause.

The backtracking construct encodes a single decision point of a search, splitting into
breadth along the different choices available at that point, and further continuing the search
in the sequence. When this point of splitting into breadth is contained in a sequence, and
this sequence calls itself again recursively on each branch of the decision taken, you get a
recursion which is able to search into depth, continuing decision making on the resulting
graph of the previous decision.

EXAMPLE (116)

The example shows the scheme for a backtracking search.

1 sequence rec(level:int) {

2 if{ {{level < ::MAXDEPTH}};

3 << r ;; t && changes-to-be-remembered && rec(level+1) >>;

4 false } // end of recursion, will make all the rec return false, causing full rollback

to initial state, with exception of changes that occured during a pause or are

outside the graph and thus out of reach of transaction control

5 }

With each sequence call advancing one step into depth and each backtracking angle ad-
vancing into breadth, you receive a depth-first enumeration of an entire search space (as
sketched in 18.1). Each state is visited in temporal succession, with only the most recent
state being available in the graph. But maybe you want to keep each state visited, because
you are interested in viewing all results at once, or because you want to compare the different
states. As there is only one host graph in GrGen.NET, keeping each visited state requires
a partition of the host graph into separate subgraphs, each denoting a state.

218 Advanced Control with Backtracking

<< r ;; seq >>

[r]

seq
r1

r2

r3

Figure 18.1: Search space illustration, a bullet stands for a graph

After you changed the modeling from a host graph to a state space graph consisting of
multiple subgraphs, each representing one of the graphs you normally work with, you can
materialize the search space visited in temporal succession into a state space graph, by copying
the subgraphs (which are normally only existing at one point in time) during pause insertions
out into space. When subgraphs would be copied without pause insertions, they would be
rolled back during backtracking; but effects applied on the graph from / in between here

/ are bypassing the recording of the transaction undo log and thus stay in the graph, even if
the transaction fails and is rolled back.

When you have switched from a depth-first search over one single current graph to the
unfolding of a state space graph containing all the subgraphs reached, you may compare each
subgraph which gets enumerated with all the already available subgraphs, and if the new
subgraph already exists (i.e. is isomorph to another already generated subgraph), you may
refrain from inserting it. This symmetry reduction allows to save the space and time needed
for storing and computing equivalent branches otherwise generated from the equivalent states.
But please note that the == operator on graphs is optimized for returning early when the
graphs are different; when the graphs are isomorphic you have to pay the full price of graph
isomorphy checking. This will happen steadily with automorphic patterns and then degrade
performance. To counter this filter the matches which cover the same spot in different ways,
see 25.4 on how to do this. Merging states with already computed ones yields a DAG-formed
state space, instead of the always tree like search space. Have a look at the transformation
techniques chapter for more on state space enumeration 19.7 and copying 19.5. One caveat
of the transactions and backtracking must be mentioned: rollback might lead to an incorrect
graph visualization when employed from the debugger. This holds especially when using
grouping nodes to visualize subgraph containment (21.1). You must be aware that you can’t
rely on the online display as much as you can normally, and that you maybe need to fall back
to an offline display by opening a .vcg-dump of the graph written in a situation when the
online graph looked suspicious; a dump can be written easily in a situation of doubt from the

18.3 For Loops 219

debugger pressing the p key.

NOTE (41)

While a transaction or a backtrack is pending, all changes to the graph are recorded into
some kind of undo log, which is used to reverse the effects on the graph in the case of rollback
(and is thrown away when the nesting root gets committed). So these constructs are not
horribly inefficient, but they do have their price — if you need them, use them, but evaluate
first if you really do.

18.3 For Loops

ExtendedControl

- for
�� �- {���- Variable - :

���- Type �
�

�- in
�� �- Function - (

���- Parameters -)
���- ;

����
�- in

�� �- [
���- ?

���- r -]
���- ;

����- in
�� �- [

���- SequenceExpression - :
���- SequenceExpression -]

���- ;
����- in

�� �- IndexAccess - ;
���

�

�

�
�- RewriteSequence - }

���-

The for loop over the Functions nodes or edges are iterating over all the elements in the
current host graph which are compatible to the type given. The iteration variable is bound
to the currently enumerated graph element, then the sequence in the body is executed.

If you iterate a node type from a graph, you may be interested in iterating its incident
edges or its adjacent nodes. This can be achieved with a for neighbouring elements loop, which
binds the iteration variable to an edge in case the Function is one of incoming, outgoing,
or incident. Or which binds the iteration variable to a node in case the Function is one of
adjacentIncoming, adjacentOutgoing, or adjacent.

Moreover, you may iterate with reachableIncoming, reachableOutgoing, and reachable

the nodes reachable from a starting node, or with reachableEdgesIncoming, reachable-
EdgesOutgoing, and reachableEdges the edges reachable from a starting node. Or you
may use one of the bounded reachability functions boundedReachable, boundedReachable-
Incoming, boundedReachableOutgoing, boundedReachableEdges, boundedReachableEdges-
Incoming, boundedReachableEdgesOutgoing here.

The admissible Parameters for the Functions are the source node, or the source node
plus the incident edge type, or the source node plus the incident edge type, plus the adjacent
node type — that’s the same as for the sequence expression functions explained in 14.2/Con-
nectedness queries. In contrast to these set returning functions, this loop contained functions
enumerate nodes/edges multiple times in case of reflexive or multi edges.

The third for loop introduced here, the for matches loop, allows to iterate through the
matches found for an all-bracketed rule reduced to a test; i.e. the rule is not applied, we only
iterate its matches. The loop variable must be of a statically known match<r> type with r

being the name of the rule matched. The elements (esp. the nodes and edges) of the pattern

220 Advanced Control with Backtracking

of the matched rule can then be accessed by applying the .-operator on the loop variable,
giving the name of the element of interest after the dot. Note: the elements must be assigned
to a variable in order to access their attributes, a direct attribute access after the match
access is not possible. Note: the match object allows only to access the top level nodes,
edges, or variables. If you use subpatterns or nested patterns and want to access elements
found by them, you have to yield(8.3) them out to the top-level pattern.

The fourth for loop from the diagram above, the for integer range loop, allows to cycle
through an ascending or descending series of integers; the loop variable must be of type
int. First the left and right sequence expressions are evaluated, if the left is lower or equal
than the right the variable is incremented from left on in steps of one until right is reached
(inclusive), otherwise the variable is decremented from left on in steps of one until right is
reached (inclusive).

The fifth for loop listed above allows to iterate the contents of an index, see 22.2.6 for
more on this and the IndexAccess.

The most important for loop, the one iterating a container, for enumerating the elements
contained in storages, was already introduced here: 17.4. All for loops fail if one of the
sequence executions from the body failed (all are carried out, though, even after a failure),
and succeed otherwise.

18.4 Indeterministic Choice

A graph rewrite system shows two points of indeterminism, the rule to apply next, and the
place where to apply it.

The match found by GrGen for a rule application is indeterministic (the where). It is
not random, though, but implementation-specific – it esp. depends on the order of elements
in the ringlists (cf. Section 26.2), which is opaque to the outside. Note that the system is
implemented to be as deterministic as possible (that’s easier to develop with), so when you
are debugging the same unaltered project, you get the same results. You can switch to a
more random behavior with the random selection modifier that allows you to choose randomly
from the matches found for a rule (searching for all matches, then randomly choosing one,
compared to aborting search after the first one was found); it is denoted by a dollar prefix
for the all-matches-brackets, and was introduced in Section 9.1.

The rule to apply next is normally defined by the sequence it is called from, which is
executed deterministically by default, following the execution order programmed with the
logical and sequential connectives. The evaluation order of the operands is from left to right,
but it can be changed with the random execution order modifier (denoted by a dollar prefix
for the logical connective), which was introduced in Section 9.2.

Further evaluation order randomizations, e.g. for simulation purpose, are possible with
the indeterministic choice operators, which execute chosen elements from a set of rules or
sequences.

18.4 Indeterministic Choice 221

ExtendedControl

- $
����

�- %
���

�

- &
����

�- |
����- &&
�� ��- ||
�� �

�

- (
���- SequencesList -)

����

�- $
����

�- %
���

�

- .
���- (

���- WeightedSequencesList -)
���

��
�- $

����
�- %

���
�

�

- {
���- <

���- RuleExecution�
� ,

����
�

- >
���- }���

�

-

SequencesList

- RewriteSequence �
�- ,

���- RewriteSequence�
�

�

�

-

WeightedSequencesList

- WeightedSequence �
�- ,

���- WeightedSequence�
�

�

�

-

WeightedSequence

- FloatingNumber - RewriteSequence -

The random-all-of operators given in function call notation with the dollar sign plus
operator symbol as name have the following semantics: The strict operators | and & evaluate
all their subsequences in random order returning the disjunction resp. conjunction of their
truth values. The lazy operators || and && evaluate the subsequences in random order as
long as the outcome is not fixed or every subsequence was executed (which holds for the
disjunction as long as there was no succeeding rule and for the conjunction as long as there
was no failing rule). A choice point may be used to define the subsequence to be executed
next.

The some-of-set braces {<r,[s],$[t]>} matches all contained rules and then executes
the ones which matched. The one-of-set braces ${<r,[s],$[t]>} (some-of-set with random
choice applied) matches all contained rules and then executes at random one of the rules
which matched (i.e. the one match of a rule, all matches of an all bracketed rule, or one
randomly chosen match of an all bracketed rule with random choice). The one/some-of-set is
true if at least one rule matched and false if no contained rule matched. A choice point may
be used on the one-of-set; it allows you to inspect the matches available graphically before
deciding on the one to apply.

222 Advanced Control with Backtracking

The weighted one operator $.(w1 s1, ..., wn sn) is executed like this: the weights
w1-wn (numbers of type double) are added into a series of intervals, then a random number
(uniform distribution) is drawn in between 0.0 and w1+...+wn, the subsequence of the in-
terval the number falls into is executed, the result of the sequence is the result of the chosen
subsequence.

18.5 Quick Reference Table

Table 18.1 lists most of the operations of the advanced graph rewrite sequence constructs at
a glance, followed by the language constructs supporting graph nesting.

18.5 Quick Reference Table 223

<s> Execute s transactionally (rollback on failure).
<<r;;s>> Backtracking: try the matches of rule r until s suc-

ceeds.
/ s / Pause insertion: execute s outside of the enclosing

transactions and sequences, i.e. the changes of s are
not rolled back.

${<r1,[r2],$[r3]>} Tries to match all contained rules, then rewrites inde-
terministically one of the rules which matched. True
if at least one matched.

for{v in u; t} Execute t for every v in storage set u. One t failing
pins the execution result to failure.

for{v->w in u; t} Execute t for every pair (v,w in storage map u. One t

failing pins the execution result to failure.
for{v:match<r> in [?r]; t} Execute t for every match v from rule r. One t failing

pins the execution result to failure.
for{v in func(...); s} Execute s for every node/edge in func, which

may be nodes/edges, or incident/adjacent, or reach-
able/boundedReachable. One s failing pins the exe-
cution result to failure.

for{v:int in [l:r]; t} Execute t for every v in the integer range starting at
l and ending at r, upwards by one if l<=r, otherwise
downwards by one. One t failing pins the execution
result to failure.

for{v:N in {asc.(idx>7)}; t} Execute t for every v in the index idx, in ascending
order, from 7 exclusive on. One t failing pins the exe-
cution result to failure. asc. abbreviates ascending,
is not valid syntax as such.

{comp} An unspecified sequence computation (see table 17.1).

(w)=s(w) Calls a sequence s handing in w as input and writ-
ing its output to w; defined e.g. with sequence

s(u:Node):(v:Node) { v=u }.
[var] g:graph Declares a variable g of type graph, as attribute inside

a node or edge class, or as local variable or parameter.

in g {s} Executes s in the graph g.

(...)=g.r(...) Executes the rule r in the graph g

this Returns the current graph, can be used like a con-
stant variable in an expression, of the rule language,
or the sequence computations. Inside a method, this
denotes the object of the containing node or edge!

Let r, s, t be sequences, u, v, w be variable identifiers, g be a variable or attribute of graph

type, <op> be ∈ {|, ^, &, ||, &&}

Table 18.1: Advanced sequences and graph nesting support at a glance

224 Advanced Control with Backtracking

C H A P T E R 19

T R A N S FO R M AT I O N T E C H N I Q U E S

In this chapter we’ll have a look at transformation techniques to solve common graph rewriting
tasks utilizing the constructs introduces so far. They could be offered directly by some
dedicated operators, but these would need so much customization to be useful in the different
situations one needs them, that we decided against dedicated operators; instead it is on you
to program the version you need yourself by combining language constructs and rules.

The primary means to build transformations are top-level sequences, controlling rule
applications (on one or all matches). They may call other sequences, even so recursively. The
sequences allow for external composition of rules; a rule may be (re-)used multiple times.
They follow the imperative programming paradigm, one rule is applied after the other, on
the then-changed state (of the graph, changed after each step).

With embedded sequences are you able to call rules from within a rule application, after
the rule proper was executed (deferred execution), with direct access to the elements of that
rule. Seen from the outside, they allow to build a complex rule and thus allow for rule internal
composition, again in an imperative way. They allow to do work later on you can’t do while
executing the rule proper (e.g. because an element was already matched and is now locked
due to the isomorphy constraint), to follow a breadth-splitting structure, or simply to split
work into several parts, modularizing it, reusing already available functionality.

The other means for internal composition are the nested and subpatterns. They allow
to match and rewrite complex patterns built in a structured way piece by piece. With
different pieces connected together, pieces to decide in between, and pieces which appear
repeatedly. They follow the functional programming paradigm, a complex state change is
built compositionally without graph changes in between, only after applying the rule in a
big step is the graph changed (in fact after the rewriting half-step, following the matching
half-step). They shift processing below the rules-combined-by-sequences level.

The sequences typically use graph-element-valued variables to communicate a single spot
in the host graph that is currently getting processed in between the rules. This can be
generalized with storages (container variables) capable of holding multiple spots; they allow
to store elements collected in one run and reuse them as input in another run (this is esp.
useful if elements are reached on different paths). You can break up a transformation into
self-contained passes mediated by some intermediate state with those multi-valued variables.

Besides, you can employ elementary procedures directly manipulating the graph and
elementary functions directly querying the graph, combining them programmatically with
expressions and statements, abstracting them into own procedures and functions. Those
functions and procedures can then be used from the if and eval parts of the rules, and from
the sequences.

225

226 Transformation Techniques

NOTE (42)

Prefer declarative composition, it helps in keeping the code readable and easily adaptable.
Prefer internal embedding over external state passing, it is typically a good deal more concise.
But don’t go to extremes regarding this, use the mode of composition that is suited to the
task and feels best and most natural.
Avoid rules carrying out a tiny amount of work with a lot of input and output and heavy
external orchestration (graph-rewriting, assembler-level style), aim for a medium amount of
work per rule call (well, normally more is better, but when you press too hard you can get
over the top regarding understandability).

NOTE (43)

An alternative to storage containment are visited flags, they allow to mark interesting ele-
ments directly. The storage sets are more efficient compared to the visited flags in case the
count of elements of interest is a good deal smaller than the number elements in the graph;
they are looked up in the set, in contrast to the visited flags, which are used by enumerating
all available graph elements, filtering according to the visited state. The visited flags on the
other hand are extremely memory efficient (for free as long as you use only a few of them at
the same time).

NOTE (44)

Don’t forget the last resort if you must solve a task so complex that the above means of
composition (regarding control-flow or data-flow) are not sufficient: adding helper nodes,
edges, or attributes to the graph model and the graph itself, holding some intermediate state
of processing.

In the following we’ll employ those constructs to merge and split nodes, emulate node
replacement grammars, execute transformations in the narrow sense, aka mappings, copy
substructures, compute flow equations over the graph structure with sets in the nodes, and
enumerate state spaces. Further examples can be found in [BJ11c] employing two storagesets
switched in between for computing a wavefront running over a compiler graph and [JB11]
using the nested and subpatterns for elegantly extracting a state machine model from a
program graph.

19.1 Merge and Split Nodes

Merging a node m into a node n means transferring all edges from node m to node n, then
deleting node m. Splitting a node m off from a node n means creating a node m and transferring
some edges from node n to m.

In both cases there are a lot of different ways how to handle the operation exactly: Maybe
only incoming or only outgoing edges, or only edges of a certain type T or only edges not of
type T; maybe the node n is to be retyped, maybe the edges are to be retyped. But common
is the transferring of edges; this can be handled succinctly by an iterated statement and the
copy operator. In case the node opposite to an edge may be incident to several such edges,
one must use an exec instead (or the independent operator 5.3.1), as every iteration locks
the matched entities, so they can’t get matched twice. Not needing the opposite node one
could simply leave it unmentioned in the pattern, only referencing node n or m and the edge,
but unfortunately we need the opposite node so we can connect the edge copy to it.

19.1 Merge and Split Nodes 227

NOTE (45)

In case a simple node merging without edge retyping is sufficient the retype’n’merge clause
introduced in 10.6 offers a much simpler alternative for merging.

Now we’ll have a look at an example for node merging: T1-T2 analysis from compiler
construction is used to find out whether a control flow graph of a subroutine is reducible,
i.e. all loops are natural loops. All loops being natural loops is a very useful property for
many analyses and optimizations. The analysis is split into two steps, T1 removes reflexive
edges, T2 merges a control flow successor into its predecessor iff there is only one predecessor
available. These two steps are iterated until the entire graph is collapsed into one node which
means the control flow is reducible, or execution gets stuck before, in which case the control
flow graph is irreducible.

The analysis is defined on simple graphs, i.e. if two control flow edges between two basic
block nodes appear because of merging they are seen as one, i.e. they are automatically fused
into one. As GrGen.NET is built on multigraphs we have to explicitly do the edge fusion
in a further step T3.

First let us have a look at T1 and T3, which are rather boring ... ehm, straight forward:

EXAMPLE (117)

1 rule T1 {

2 n:BB -:cf-> n;

3

4 replace {

5 n; // delete relexive edges

6 }

7 }

8 rule T3 {

9 pred:BB -first:cf-> succ:BB;

10 pred -other:cf-> succ;

11

12 modify { // kill multiedges

13 delete(other);

14 }

15 }

The interesting part is T2, this is the first version using an iterated statement:

228 Transformation Techniques

EXAMPLE (118)

1 rule T2 {

2 pred:BB -e:cf-> succ:BB;

3 negative {

4 -e->;

5 -:cf-> succ; // if succ has only one predecessor

6 }

7 iterated {

8 succ -ee:cf-> n:BB;

9

10 modify { // then merge succ into this predecessor

11 pred -:copy<ee>-> n; // copying the succ edges to pred

12 }

13 }

14

15 modify { // then merge succ into this predecessor

16 delete(succ);

17 }

18 }

In case a control flow graph would be a multi-graph, with several control flow edges
between two nodes, one would have to use an exec with an all-bracketed rule instead of
the iterated, to be able to match a multi-cf-edge target of succ multiple times (which is
prevented in the iterated version by the isomorphy constraint locking the target after the
first match).

This is the second version using exec instead, capable of handling multi edges:

19.1 Merge and Split Nodes 229

EXAMPLE (119)

1 rule T2exec

2 {

3 pred:BB -e:cf-> succ:BB;

4 negative {

5 -e->;

6 -:cf-> succ; // if succ has only one predecessor

7 }

8

9 modify { // then merge succ into this predecessor

10 exec([copyToPred(pred, succ)] ;> delSucc(succ));

11 }

12 }

13

14 rule copyToPred(pred:BB, succ:BB)

15 {

16 succ -e:cf-> n:BB;

17

18 modify {

19 pred -:copy<e>-> n;

20 }

21 }

22

23 rule delSucc(succ:BB)

24 {

25 modify {

26 delete(succ);

27 }

28 }

Natural loops are so advantageous that one transforms irreducible graphs (which only
occur by using wild gotos) into reducible ones, instead of bothering with them in the analyses
and optimizations. An irreducible graph can be made reducible by node splitting, which
amounts to code duplication (in the program behind the control flow graph). In a stuck
situation after T1-T2 analysis, a BB node with multiple control flow predecessors is split into
as many nodes as there are control flow predecessors, every one having the same control flow
successors as the original node. (Choosing the cf edges and BB nodes which yield the smallest
amount of code duplication is another problem which we happily ignore here.)

230 Transformation Techniques

EXAMPLE (120)

We do the splitting by keeping the indeterministically chosen first cf edge, splitting off only
further cf edges, replicating their common target.

1 rule split(succ:BB)

2 {

3 pred:BB -first:cf-> succ;

4 multiple {

5 otherpred:BB -other:cf-> succ;

6

7 modify {

8 otherpred -newe:cf-> newsucc:copy<succ>;

9 delete(other);

10 exec(copyCfSuccFromTo(succ, newsucc));

11 }

12 }

13

14 modify {

15 }

16 }

17

18 rule copyCfSuccFromTo(pred:BB, newpred:BB)

19 {

20 iterated {

21 pred -e:cf-> succ:BB;

22

23 modify {

24 newpred -:copy<e>-> succ;

25 }

26 }

27

28 modify {

29 }

30 }

The examples given can be found in the tests/mergeSplit/ directory including the
control scripts and test graphs; you may add debug prefixes to the exec or xgrs statements in
the graph rewrite script files and call GrShell with e.g. mergeSplit/split.grs as argument
from the tests directory to watch execution.

19.2 Node Replacement Grammars

With node replacement grammars we mean edNCE grammars [ER97], which stands for edge
label directed node controlled embedding. In this context free graph grammar formalism,
every rule describes how a node with a nonterminal type is replaced by a subgraph containing
terminal and nonterminal nodes and terminal edges. The nodes in the instantiated graph
get connected to the nodes that were adjacent to the initial nonterminal node, by connection
instructions which tell which edges of what direction and what type are to be created for
which original edges of what direction and what type, going to a node of what type.

This kind of grammars can be encoded in GrGen.NET by rules with a left hand side
consisting of a node with a type denoting a nonterminal and iterateds matching the edges and
opposite nodes it is connected to of interest; ”of interest” amounts to the type and direction
of the edges and the type of the opposite node. The right hand side deletes the original
node (thus implicitly the incident edges), creates the replacement subgraph, and tells in the

19.2 Node Replacement Grammars 231

rewrite part of the iterateds what new edges of what directedness and type are to be created,
from the newly created nodes to the nodes adjacent to the original node. (Multiple edges
between two nodes are not allowed in the node replacement formalism, in case you want to
handle them you’ve to use exec as shown in the merge/split example above.)

The following example directly follows this encoding:

EXAMPLE (121)

This is an example rule replacing a nonterminal node n:NT by a 3-clique. For the outgoing
E1 edges of the original node, the new node x receives incoming E2 edges. And for incoming
E2 edges of the original node, the new nodes y and z receive edges of the same type, y with
reversed direction and z of the exact dynamic subtype bearing the same values as the original
edges.

1 rule example

2 {

3 n:NT;

4

5 iterated {

6 n -:E1-> m:T;

7

8 modify {

9 x <-:E2- m;

10 }

11 }

12

13 iterated {

14 n <-e2:E2- m:T;

15

16 modify {

17 y -:E2-> m;

18 z <-:copy<e2>- m;

19 }

20 }

21

22 modify {

23 delete(n);

24 x:T -- y:T -- z:T -- x;

25 }

26 }

As another example for node replacement grammars we encode the two rules needed for
the generation of the completely connected graphs (cliques) in two GrGen.NET rules. The
first replaces the nonterminal node by a new nonterminal node linked to a new terminal node,
connecting both new nodes to all the nodes the original nonterminal node was adjacent to.
The second replaces the nonterminal node by a terminal node, connecting the new terminal
node to all the nodes the original nonterminal node was adjacent to. This ”we want to
preserve the original edges” can be handled more succinctly and efficiently by retyping which
we gladly use instead of the iteration.

232 Transformation Techniques

EXAMPLE (122)

1 rule cliqueStep

2 {

3 nt:NT;

4

5 iterated {

6 nt -- neighbour:T;

7

8 modify {

9 t -- neighbour;

10 nnt -- neighbour;

11 }

12 }

13

14 modify {

15 delete(nt);

16 t:T -- nnt:NT;

17 }

18 }

19

20 rule cliqueTerminal

21 {

22 nt:NT;

23

24 modify {

25 :T<nt>;

26 }

27 }

The examples can be found in the tests/nodeReplacementGrammar directory.

19.3 Mapping in a Rewriting Tool

GrGen.NET is a rewrite tool, i.e. you modify one graph. This is in contrast to trans-
formation or better mapping tools, which are used for specifying mappings in between two
(or more) graphs. (Graphs are typically called models in this kind of tools. Don’t confuse
this with the notion of graph model in GrGen.NET as introduced in chapter 4. In model
transformation parlance our graph model denotes a meta model, with a model adhering to
a meta model, which in turn adheres to a meta meta model, climbing a ladder of bullshit
abstraction leading right into the land of the hot-air merchants, eh..., the truthfully real soft-
ware engineers. XML. Model. Meta. Meta-meta. Business-logic. Cloud. Bingo!)) The graph
model might be a union of multiple graph models, and the graph may consist of multiple
unconnected components, so you don’t loose anything regarding expressiveness here.

What you loose is the automatic construction of the traceability links which allow to
retrieve the source node from a mapped node or the mapped node from a source node, which
is normally carried out by a mapping tool in the background. And there are no built-in
annotations by which you specify the model in which to match the elements. But again
neither means a loss in expressiveness.

You can construct the traceability links on your own. Either by using simple edges
between the nodes (this is not possible in a transformation tool as edges can only exist within
a graph/model). Or by using maps of node type to node type (or from edge type to edge
type) which you must fill manually: when you map a source node to a target node (i.e. for
a matched source node you create a target node), you fill a global map from source to target

19.4 Comparing Structures 233

nodes with this pair, and/or a global map from target to source nodes. When you need this
information, you look it up easily with target=map[source] or source=map[target]. The
highlight command 21.1 of the debugger can visualize this storage map neatly by marking
the contained nodes and adding directed edges in between the source and domain elements.
In some situations you are even better off: if the retype operator is sufficient, you can easily
transform the graph in-place. A given, named graph element then denotes the source and
the target, just at different points in time.

The lack of built-in model annotations can be overcome by several ways of partitioning
the graph or its types. Often the types of the source and the target model are disjoint. This
is the most convenient case, as you save any extra notational effort, the types alone define
the source and target. If you experience name-clashes, because while being basically disjoint
they use same names, you may use packages, to force disjointness for type names. This comes
at the price of always having to specify the meta-model, similar to how you specify the model
in mapping tool.

In cases they are not disjoint but share certain parts/types, you can tell the elements
from different graphs apart by either using visited flags — then each “graph” is marked to
be visited with its own flag. Or you may use anchor nodes representing subgraphs, with an
edge from such an anchor node to all nodes contained in its subgraph. Thus all nodes of a
subgraph are adjacent to an anchor node, and the subgraph consists exactly of the induced
subgraph of these adjacent nodes (see 19.5.1 for more on this kind of modelling).

So while you can write mapping (out-of-place) transformations leaving the source un-
touched, do we recommend rewriting (in-place) transformations (unless you have a strong
real need for the former). This of course and esp. holds for tasks that don’t consist of
mapping an entire representation into another one, completely changing its structure, but
modifying an existing one (e.g. enriching it with additional information, or partial rewriting
of constructs amenable to some kind of normalization, while keeping the rest simply intact).
Here you can simply leave the unchanged parts out, saving you from specification effort,
and from execution time, because you don’t need to copy the elements untouched during
the transformation pass. For simple mapping tasks you can employ relabeling as its concise
rewriting alternative, for complex tasks that require a series of changes are you better off with
rewriting due to the argument above, as only parts of each step/pass require a full change in
structure.

Mapping tools and languages are typically input-driven, iterating the source model ele-
ments, to decide what target elements to produce from them (focusing one source element at
a time, checking context conditions, to create a target pattern). In rewrite tools you typically
use a control program that defines what is to be carried out, and commonly you work there
output-driven, calling rules that produce one target element, decided upon by querying the
source model for the patterns that produce it (calling rules that rewrite into a target pattern
from a complex source pattern matched). This commonly results in a better understandable
specification, showing an improved separation of concern. With explicit control by the con-
trol program, you are free to choose how to drive the computation, adapting it to whatever
suits the problem best.

19.4 Comparing Structures

Structures are compared in three steps, the first is to collect all nodes of interest in a storage
set, the second is to compute an induced subgraph from that set, and the third is to compare
the subgraphs with the built-in graph comparison operators.

The first step typically consists of covering the nodes of the structure one wants to compare
with iterated subpatterns, i.e. subpatterns which match from a root node on with iterateds
along the incident edges into breadth, employing a subpattern again on the node adjacent
to the root node to match into depth (see Fig. 19.1 for an illustration of how example

234 Transformation Techniques

123 matches the DAG reachable from the root node $1 on via outgoing edges). In case the
structure to compare consists of multiple connected components or is difficult to capture with
iterated and subpatterns, you can collect it step by step with a sequence of rule applications
building up the node set.

iterated
$1

iterated

iterated

:MatchSubgraph($2)

:MatchSubgraph($4)

:MatchSubgraph($7)

:MatchSubgraph($1)

:MatchSubgraph($6)

:MatchSubgraph($3)

:MatchSubgraph($5)

$2

$3

$4$1 $5

$6
$7

Figure 19.1: Matching a spanning tree in a graph

EXAMPLE (123)

1 pattern MatchSubgraph(root:Node, ref nodes:set<Node>)

2 {

3 iterated { // match spanning tree of graph from root on

4 root --> ch:Node;

5 ms:MatchSubgraph(ch, nodes);

6

7 modify {

8 ms();

9 }

10 }

11

12 modify {

13 eval { nodes.add(root); } // build node set inducing graph

14 }

15 }

The second step is to compute an induced subgraph from the node set collected, that can
be done easily with the inducedSubgraph subgraph operation introduced in 14.3:
exec sub:graph=inducedSubgraph(nodes).

The third step consists of comparing the subgraphs we filleted out of the common host

19.5 Copying Structures 235

graph with the graph comparison operators introduced in table 14.1:
exec if{sub1==sub2; doIso; doNonIso}.

In case each such subgraph needs to be compared more than once it is recommended to
add an attribute of type graph (see chapter 13) to the subgraph starting anchor nodes, to
assign the induced subgraph to this attribute, and to compare the subgraphs stored in these
attribute. This saves us the cost of computing the attributes and allows for further internal
optimizations which may result in huge speedups.

NOTE (46)

The subgraph is not adapted automatically when the host graph changes, if this happens you
must compute the stored subgraph anew manually.

The comparison is then typically done with an idiom as such:
exec if{ for{other:AnchorNodeType; {curSub!=other.sub}} ; doNonIso(curSub)} or
such:
exec if{ for{other:graph in setOfCandidates; {curSub!=other}} ; doNonIso(curSub)}.

Isomorphy comparison is an expensive operation, you can gain considerable speedups
by using the parallelizable equalsAny function (cf. 14.3) (and by specifying the number of
worker threads (cf. 22.4), otherwise only a single one is used, saving you only the effort of
manually coding the loop). In order to use this function you have to supply and maintain a
set of the known subgraphs to check against in addition.

19.5 Copying Structures

Structures are copied in two passes, the first consists of copying and collecting all nodes of
interest, the second of copying all edges of interest in between the nodes.

The first pass consists of covering the nodes of the structure one wants to copy with
iterated subpatterns, in the same way as already introduced in 19.4, i.e. subpatterns which
match from a root node on with iterateds along the incident edges into breadth, employing
a subpattern again on the node opposite to the root node to match into depth. In the
example we match the entire subgraph from a root node on, if one wants to copy a more
constrained subgraph one can simple constrain the types, directions, and structures in the
iterated subpattern covering the nodes. The nodes are copied with the copy operators and a
storagemap is filled, storing for every node copied its copy.

236 Transformation Techniques

EXAMPLE (124)

The example shows very generally how a subgraph reachable from a root node by incident
edges can get copied, collecting and copying the nodes along a spanning tree from the root
node on, then copying the edges in between the nodes in a second run afterwards. The
edges get connected to the correct node copies via a mapping from the old to the new nodes
remembered in a storage-map (traceability map).

1 pattern CopySubgraph(root:Node, ref oldToNew:map<Node, Node>)

2 {

3 iterated { // match spanning tree of graph from root on

4 root <--> ch:Node;

5 cs:CopySubgraph(ch, oldToNew);

6

7 modify {

8 cs();

9 }

10 }

11

12 modify {

13 newroot:copy<root>; // copy nodes

14 eval { oldToNew.add(root, newroot); }

15 exec([CopyOutgoingEdge(root, oldToNew)]); // deferred copy edges

16 }

17 }

18

19 rule CopyOutgoingEdge(n:Node, ref oldToNew:map<Node, Node>)

20 {

21 n -e:Edge-> m:Node;

22 hom(n,m); // reflexive edges

23 nn:Node{oldToNew[n]}; nm:Node{oldToNew[m]};

24 hom(nn,nm); // reflexive edges

25

26 modify {

27 nn -ee:copy<e>-> nm;

28 }

29 }

The second pass is started after the structure matching ended by executing the deferred
execs which were issued for every node handled. Each exec copies all outgoing edges (one
could process all incoming edges instead) of a node: for each edge leaving the original node
towards another original node a copy is created in between the copy of the original node
and the copy of the other node. The copies are looked up with the original nodes from the
storage map (which fails for target nodes outside of the subgraph of interest). Here too, one
could constrain the subgraph copied by filtering certain edges. In case of undirected edges
one would have to prevent that edges get copied twice (once for every incident node). This
would require a visited flag for marking the already copied edges or a storage receiving them,
queried in the edge copying pattern and set/filled in the edge copying rewrite part.

The example can be found in the tests/copyStructure directory. Without storagemaps
one would have to pollute the graph model with helper edges linking the original to the copied
nodes.

19.6 Data Flow Analysis for Computing Reachability 237

19.5.1 Built-In Graph Copying

In contrast to the just introduced general copying of an entire graph, you may choose a limited
form of copying subgraphs. This is enabled by the insertInduced and insertDefined

operations introduced in 14.3, which add a clone of the subgraph induced by the set of nodes
or set of edges given as first argument to the host graph. The clone of the second argument
node or edge which was inserted into the host graph is returned as anchor element for further
operations.

Before you can apply these operations you must collect the nodes or edges which are
used to compute the induced subgraph. Besides building the sets element-by-element with
add-methods you may use set returning functions, e.g. adjacent introduced in 14.2, which
returns the set of all the nodes adjacent to the node given as (first) argument.

Employing insertInduced(adjacent()) is a common idiom for copying a subgraph when
the host graph is partitioned into multiple subgraphs in the following way: a special node type
Graph and a special edge type contains are introduced into the graph model. Every subgraph
is represented by a Graph anchor node. From these anchor nodes on contains edges lead to
all the non-subgraph nodes contained in the corresponding subgraph. With this modelling, all
nodes in a subgraph are easily reachable from one anchor node via adjacent, and the entire
subgraph can be easily retrieved by using inducedSubgraph or copied by insertInduced.
Besides this simplified manipulation, the graph can be easily visualized as being partitioned
into multiple subgraphs with a dump add node Graph group by contains graph visualiza-
tion command (see 21.1 for more on this).

19.6 Data Flow Analysis for Computing Reachability

In compiler construction, given a program graph, one wants to compute non-local properties
in order to transform the program graph. This is normally handled within the framework of
data flow analysis, which employs flow equations telling how property values of a node are
influenced by property values of the predecessor or successor nodes in addition to the node’s
local share on the overall information, with the predecessor or successor nodes being again
influenced by their predecessor or successor nodes. Property values are modeled as sets; the
information is propagated around the graph until a fix point is reached (the operations must
be monotone in order for a fix point to exist on the finite domain of discourse). You might
be interested in the transparencies under http://www.imm.dtu.dk/~hrni/PPA/slides2.pdf
for some reading on this topic; especially as this is a general method to compute non-local
informations over graphs not limited to compiler construction.

We’ll apply a backward may analysis (with only gen but no kill information) to compute
for each node the nodes which can be reached from this node. Reachability is an interesting
property if you have to do a lot of iterated path checks: instead of computing the itererated
path with a recursive pattern each and every time you must check for it, compute it once
and just look it up from then on. If you need to check several paths which must be disjoint
you won’t get around employing recursive subpatterns with one locking the elements for the
other; but even in this case the precomputed information should be valuable (unless the graph
is heavily connected), constraining the search to source and target nodes between which a
path does exist, eliminating nodes which are not connected.

The reachability information will be stored in a storage set per node of the graph (indeed,
we trade memory space for execution speed):

http://www.imm.dtu.dk/~hrni/PPA/slides2.pdf

238 Transformation Techniques

EXAMPLE (125)

1 node class N

2 {

3 reachable:set<N>;

4 }

The analysis begins with initializing all the storage sets with the local information about
the direct successors by employing the following rule on all possible matches:

EXAMPLE (126)

1 rule directReachability

2 {

3 hom(n,m);

4 n:N --> m:N;

5

6 modify {

7 eval { n.reachable.add(m); }

8 }

9 }

The analysis works by keeping a global todo-set todo containing all the nodes which
need to be (re-)visited, because the information in one of their successors changed; this set
is initialized with all nodes available using the sequence [addAllNodesToWorkset(todo)]).

From then on in each iteration step a node n is removed with (n)=pickAndRemove(todo),
until the todo-set becomes empty, signaling the termination of the analysis; the node is
processed by determining its successors [successors(n, succs)], adding the reachability
information available in each successor to n controlled by the sequence
for{s in succs; (changed)=propagateBackwards(n,s,changed)}.
If the information in n changed due to this, the predecessors of the node are added to the
workset via if{changed;[addPredecessors(n,todo)]}.

EXAMPLE (127)

This is the core rule of the dataflow analysis: the reachability information from the successor
node s in its reachable storage attribute is added to the storage attribute of the node n of
interest; if the storage set changes this is written to the returned variable.

1 rule propagateBackwards(n:N, s:N, var changed:boolean) : (boolean)

2 {

3 modify {

4 eval { n.reachable |= s.reachable |> changed; }

5 return(changed);

6 }

7 }

The example can be found in the tests/dataFlowAnalysis directory, just add debug

before the exec (or xgrs) in dataFlowAnalysisForReachability.grs and watch it run. A
sample situation showing a propagation step is given in 19.2. The subgraph at the top-left is
already handled as you can see by the reachable set displayed in each node.

19.6 Data Flow Analysis for Computing Reachability 239

Figure 19.2: Situation from dataflow analysis

240 Transformation Techniques

Worklist Based Data Flow Analysis

The approach introduced above implements the basics but will not scale well to large graphs
– even medium sized graphs – due to the random order the nodes are visited. What is used
in practice instead is a version employing a worklist built in postorder, so that a node is only
visited after all its successor nodes have been processed. For graphs without backedges, i.e.
loops for program graphs, this gives an analysis which visits every node exactly once in the
propagation phase. For graphs with loops some nodes will be visited multiple times, but due
to the ordering the analysis still terminates very fast.

The worklist is implemented directly in the graph by additional edges of the special type
then between the nodes, and a special node for the list start; the todo set is kept, to allow
for a fast ”is the node already contained in the worklist”-check, used to save us from adding
nodes again which are already contained (thus will be visited in the future anyway); i.e. the
abstract worklist concept is implemented by the todo-set and the list added invasively to the
graph.

EXAMPLE (128)

1 edge class then; // for building worklist of nodes to be handled

The initial todo-set population of the simple approach is replaced by worklist constructing,
successively advancing the last node of the worklist given by the last variable; it starts with
all nodes having no successor:
(last)=addFinalNodesToWorklist(last, todo)*

Then iteratively all nodes which lead to them get added:
((last)=addFurther(pos, last, todo)* ;> (pos)=switchToNextWorklistPosition(pos))*

In case of loops without terminal nodes we pick an arbitrary node from them:
(last)=addNotYetVisitedNodeToWorklist(last, todo)

and add everything what leads to them, until every node was added to the worklist.

Now we can start the analysis, which works like the simple one does, utilizing the very
same propagation rule,but follows the worklist instead of randomly picking from a todo-set,
shrinking and growing the worklist along the way.

EXAMPLE (129)

An example rule for worklist handling, adding a not yet contained node to the worklist; please
note the quick check for containment via the set membership query.

1 rule addToWorklist(p:N, ref todo:set<N>, last:N) : (N)

2 {

3 if{ !(p in todo); }

4

5 modify {

6 last -:then-> p;

7 eval { todo.add(p); }

8 return(p);

9 }

10 }

19.6 Data Flow Analysis for Computing Reachability 241

EXAMPLE (130)

An exmaple rule for worklist handling, removing the by-then processed node pos from the
worklist.

1 rule nextWorklistPosition(pos:N, ref todo:set<N>) : (N)

2 {

3 pos -t:then-> next:N;

4

5 modify {

6 delete(t);

7 eval { todo.rem(pos); }

8 return(next);

9 }

10 }

The example can be found in the tests/dataFlowAnalysis directory, just add debug

before the exec (or xgrs) in dataFlowAnalysisForReachabilityWorklist.grs and watch
it run. A sample situation showing a worklist building step is given in 19.3. The subgraph
at the top-left is already handled as you can see by the reachable set displayed in each node.

Figure 19.3: Situation from worklist building

242 Transformation Techniques

19.7 State Space Enumeration

State space enumeration can be programmed in GrGen.NET utilizing the sequence constructs
introduced up so far. GrGen.NET always operates on one host graph, over one combined
model, applying actions from one combined rule set — so everything is always within reach.
That is by far the most simple approach to graph transformation, and for a tool which is not
specially geared towards enumerating state spaces what makes most sense. Thus state space
enumeration (or transformation between different graphs/models) must be realized within the
one host graph. This can be achieved by virtually partitioning the host graph into smaller
graphs or subgraphs, following a convention like this one: There are nodes of type Graph

which are representing a state of the statespace; each such representative is an anchor node
for a subgraph. The containment in the subgraph is denoted by a contains edge from a node
of type Graph to all the nodes contained in this (sub)graph. The edges between the Graph

nodes give the relationship between the subgraphs, i.e. successorship between the states of
the statespace. The edges between the non-Graph nodes are the ”normal” graph edges inside
the subgraphs.

The key ingredients for state space enumeration then are

• The aforementioned modelling with anchor nodes linking to the subgraphs, i.e. states

• Backtracking angles — they allow to recursively enumerate and apply the matches of
a rule found, exhaustively stepping through the state space, rolling back the effects on
the graph of the previous match tried before carrying out the next step (see section
18.2)

• Pause insertions — they allow to write the interesting subgraphs found during state
space search out into the host graph while effects recording of backtracking supervision
is paused, so that they are not rolled back during backtracking (see section 18.2)

• Recursive sequences — they allow to nest backtracking angles dynamically, so it be-
comes possible to enumerate an entire state space with a sequence just implementing
one backtracking step (see section 18.1)

• The capability to create a copy of a subgraph and insert it into the host graph (see
section 19.5, esp. subsection 19.5.1)

• The ability to compare subgraphs (see section 19.4). Implemented in an optimized way
with a subgraph attribute in the anchor nodes which contains a copy of the subgraph in
the host graph, ready to be compared to the current graph, in order to decide whether
that one should be inserted into the state space or purged for being an isomorphic copy
of an already available instance. Potentially even further improved with an additional
set of subgraphs, compared against with the parallelizable equalsAny function.

• Adjacency and induced functions to compute the subgraphs from the host graph follow-
ing the contains edges from the anchor nodes (see section 14.2, Connectedness Queries
and section 14.3, Subgraph Operations)

• The auto filters from 25.4 finally allow to optimize performance by filtering symmetric
matches stemming from automorphic patterns. This is a lot more efficient than creating
states which are for sure isomorphic and filtering them later on by comparison with all
the other states.

The modelling given above allows to employ the ability of GrGen.NET/yComp to visualize
nested graphs from a flat graph by interpreting node containment along edges of a special
type (cf. 21.1), ballooning the anchor node up to a subgraph.

19.7 State Space Enumeration 243

An example implementation of this approach with a variant utilizing isomorphy checking
and a variant without isomorphy checking can be found in the tests/statespace folder.
Feel free to drop in some debug prefixes before the exec (/xgrs) used to watch the as-
sembling of the state space graph. Another example implementation can be found in the
tests/statespaceChemistry folder. It shows how to enumerate all possible reaction results
derivable from a set of start molecules according to some reaction rules. The molecules are
just accumulated in the host graph, it is taken care by storage sets that each step only pro-
cesses the ones available at the start of the step. At the end, each resulting molecule (i.e.
connected component) is exported as a .grsi file.

244 Transformation Techniques

C H A P T E R 20

G R S H E L L L A N G U AG E

GrShell is a shell application built on top of libGr that offers an execution environment
for your generated graph transformations. It belongs to GrGen.NET’s standard equipment.
GrShell is capable of creating, manipulating, and dumping graphs as well as performing and
esp. debugging graph rewriting. The GrShell provides a line oriented scripting language.
GrShell scripts are structured by simple statements separated by line breaks.

The elements of a graph (nodes and edges) can be accessed both by their (graph global)
variable identifier and by their persistent name specified through a constructor (see Sec-
tion 20.2).

EXAMPLE (131)

We insert a node, anonymously and with a constructor (see also Section 20.2):

1 > new graph "../lib/lgsp-TuringModel.dll" G

2 New graph "G" of model "Turing" created.

3

4 # insert an anonymous node...

5 # it will get a persistent pseudo name

6 > new :State

7 New node "$0" of type "State" has been created.

8 > delete node @("$0")

9

10 # and now with constructor

11 > new v:State($=start)

12 new node "start" of type "State" has been created.

13 # Now we have a node named "start" (via $ assignment) and a variable v assigned to "start"

NOTE (47)

Persistent names will be saved (save graph..., see Section 20.3) and exported, and, if you
visualize a graph (dump graph..., see Section 20.3), graph elements will be labeled with their
persistent names. Persistent names have to be unique for a graph (the graph they belong to).

20.1 Common Commands

Here and in the following sections we describe the GrShell commands.

245

246 GrShell Language

Script

- Command - <line break>
�� ��

�- ;;
�� �

�

�
�

�

- <end of file>
�� �-

Commands are assembled from basic elements (see esp. Section 20.6). As stated before,
commands are terminated by line breaks. Alternatively commands can be terminated by
the ;; symbol. Like an operating system shell, the GrShell allows you to span a single
command over n lines by terminating the first n− 1 lines with a backslash.

- help
�� ��

�- Command

�

-

Displays an information message describing all the supported commands. A command
Command displayed with ... has further help available, which can be displayed with help

Command.

- quit
�� ��

�- exit
�� �

�

-

Quits GrShell. If GrShell is opened in debug mode, a currently active graph viewer (such
as yComp) will be closed as well.

- echo
�� �- Text -

Prints Text onto the GrShell command prompt.

20.2 Graph Creation

The command most shell scripts start with is graph creation.

- new
�� ��

�- new
�� �

�

- graph
�� �- Filename - Text -

Creates a new graph with the model specified in Filename. Its name is set to Text. The
model file can be either source code (e.g. turing machineModel.cs) or a .NET assembly (e.g.
lgsp-turing machineModel.dll). It’s also possible to specify a rule set file as Filename (this
is the most common usage). In this case the necessary assemblies will be created on the fly
(as needed). In case of a double new, the actions and model are created anew for sure, and
not as needed according to the file change dates. Use this if you are working with one of the
new set or new add commands from Section 20.14.

20.2 Graph Creation 247

NOTE (48)

You may run into unexpected results because some new set or new add options that you
apply and see in the shell file are not the ones actually compiled into the generated code.
This happens easily when you just edit those options, but the actions are not regenerated
because the sources did not change. Use new new in case you are working with the options
from below to ensure the actions are regenerated irrespective of the change dates of their
sources (at the cost of steady recompilations).

The following two commands create graph elements, initializing their attributes. On shell
level they are available and mainly used as elementary instructions in creating an initial
graph, in exporting and importing a graph, as well as in change recording and replaying.
These are the commands you may find in the GRS export/import files.

NOTE (49)

If you need to import data that comes in a format that is not directly supported by Gr-
Gen.NET, we recommend to serialize it into GRS format, as it can be written easily. It
consists of the few new commands and the attribute initialization lists explained here in 20.2.

- new
�� ��

�- Text

�

�
�- :

���- NodeType �
�- Constructor

�

�

-

Creates a new node within the current graph. Optionally, the new node is assigned to a
variable Text. If NodeType is supplied, the new node will be of type NodeType and attributes
can be initialized by a constructor. Otherwise the node will be of the base node class type
Node.

NOTE (50)

The GrShell can reassign variables. This is in contrast to the rule language (Chapter 5),
where we mainly use names (bound once – with exception of var and ref input variables and
def entities).

- new
�� �- Node - -

���- EdgeEntityConstructor - ->
�� ��

�- <-
�� �- EdgeEntityConstructor - -

����- -
���- EdgeEntityConstructor - -

���

�

- Node -

EdgeEntityConstructor

�
�- Text

�

�
�- :

���- EdgeType �
�- Constructor

�

�

-

248 GrShell Language

Creates a new edge within the current graph between the specified nodes, in direction of the
first to the second Node in case of -->, in direction of the second to the first Node in case of
<--, or undirected in case of --. Optionally, the new edge is assigned to a variable Text. If
EdgeType is supplied, the new edge will be of type EdgeType and attributes can be initialized
by a constructor. Otherwise the edge will be of the base edge class type Edge for --> or
UEdge for --.

Constructor

- (
����

�- $
���- =

���- Text �
�- ,

���- Attributes

�

�
�- Attributes

�

�

-)
���-

Attributes

- AttributeName - =
���- AttributeValue�

� ,
����

�

-

AttributeValue

- PrimitiveAttributeValue�
�- SetConstr

�- MapConstr

�- ArrayConstr

�- DequeConstr

�

-

PrimitiveAttributeValue

- EnumLit�
�- Number

�- FloatingNumber

�- QuotedText

�- BoolLit

�- NullLit

�

-

SetConstr

- set
�� �- <

���- Type - >
���- {����

�- Expression�
� ,

����
�

�

- }
���-

20.2 Graph Creation 249

MapConstr

- map
�� �- <

���- Type - ,
���- Type - >

����
�

�- {����
�- Expression - ->

�� �- Expression�
� ,

����
�

�

- }
���-

ArrayConstr

- array
�� �- <

���- Type - >
���- [

����
�- Expression�

� ,
����

�

�

-]
���-

DequeConstr

- deque
�� �- <

���- Type - >
���-]

����
�- Expression�

� ,
����

�

�

- [
���-

A constructor is used to initialize a new graph element (see new ... below). A comma
separated list of attribute declarations is supplied to the constructor. Available attribute
names are specified by the graph model of the current working graph. All the undeclared
attributes will be initialized with default values, depending on their type (int ← 0; long ←
0L; byte ← 0Y; short ← 0S; boolean ← false; float ← 0.0f; double ← 0.0; string ←
""; set<T> ← set<T>{}; map<S,T> ← map<S,T>{}; array<T> ← array<T>[]; deque<T> ←
deque<T>][; enum ← unspecified;).
The $ is a special attribute name: a unique identifier of the new graph element. This identifier
is also called persistent name (see Example 131). This name can be specified by a constructor
only.

- add
�� �- new

�� �- graph
�� �- Text -

Creates a new subgraph of the same model as the current graph. Its name is set to Text ; its
unique name as used in exporting or recording may be a variant of this name in case another
subgraph of the same name alreay exists. After execution this graph is the current subgraph.

- in
�� �- Text -

Switches graph processing to the given subgraph (denoted by its unique name). This com-
mand as well as the command above are supplied for importing grs files containing subgraph
attributes resulting from a grs export or recording. Using them directly is discouraged; you
would have to ensure unique names in order to use them, a task that is carried out by the
exporter remembering the subgraphs already seen.

250 GrShell Language

20.3 Graph Input and Output

- save
�� �- graph

�� �- Filename -

Dumps the current graph as GrShell script into Filename. The created script includes

• selecting the backend

• creating a new graph with all nodes and edges (including their persistent names)

• restoring the (graph global) variables

• restoring the visualisation styles

but not necessarily using the same commands you typed in during construction. Such a script
can be loaded and executed by the include command (see Section 20.11).

- export
�� �- Filename - .grs

�� ��
�- .grsi

�� �
�

�
�- .gz

�� �
�

�
�

��
�- nonewgraph

�� �
�

�
�- skip/type.attr

�� ��
�

�

�

-

Exports an instance graph in GRS (.grs/.grsi) format, which is a reduced GrShell script (it
can get imported and exported on API level without using the GrShell, see Section 24.4).
This is the recommended standard format (it is lightweight, human-readable and editable,
and supported by an optimized importer). The file contains a new graph command, followed
by new node commands, followed by new edge commands. If the .gz suffix is given the
graph is saved zipped. The export is only complete with the model of the graph given in the
.gm file. Exporting fails if the graph model contains attributes of object-type; you may add
support for storing them, too, see 25.6 for more on this.

When the optional parameter nonewgraph is given, the initial new graph command at
file begin is omitted. Such a file cannot be imported, but only included, as it is incomplete.
You have to ensure an empty graph of correct model exists before you can include a file
exported this way.

The skip parameters allow to exclude attributes from the node/edge attribute initializer
lists of the new node or new edge commands. The parameter skip/type.attr causes omis-
sion of attribute attr from graph element type type during graph serialization. This way
you can export an again importable graph if you intend to remove some attributes – other-
wise import would fail due to an unknown attribute getting initialized (in the file exported
adhering to the old graph model that is not existing in the new graph model).

The save command from above is for saving a GrShell session including graph global
variables and visualization commands, the goal of the export command is simply persistent
storing of graphs; esp. for applications that use GrGen.NET to get an algorithmic core,
but are not built on the GrShell.

- export
�� �- Filename - .gxl

�� ��
�- .gz

�� �
�

-

20.3 Graph Input and Output 251

Exports an instance graph and a graph model in GXL format [WKR02, HSESW05], which
is somewhat of a standard format for graphs of graph rewrite systems, but suffers from the
well-known XML problems – it is barely human-readable and editable, and bloated. It is
supported by GrGen.NET as exchange format for inter-tool operability. Exporting fails if
the graph model contains attributes of container or object-type. If the .gz suffix is given
the graph is saved zipped.

- export
�� �- Filename - .xmi

�� ��
�- .gz

�� �
�

-

Exports an instance graph in .XMI format. XMI files as written by the Eclipse Modeling
Framework (EMF) are a standard format in the model transformation community (together
with ecore files for the model). It suffers from the XML problems explained above, in addition
it can be even characterized as overly complex and baroque, and it requires some metamodel
mapping. It is supported by GrGen.NET as exchange format for inter-tool operability. The
metamodel is assumed to stem from a previous import of an ecore file, with its specific way of
mapping .ecore to .gm, i.e. with an underscore prefix, a node type prefix for the edge types,
and the [containment=true] annotation at the edges that express containment, which is
needed so that they are written with XML node containment. If the .gz suffix is given the
graph is saved zipped.

- export
�� �- Filename - .grg

�� ��
�- .gz

�� �
�

-

Exports an instance graph in GRG format, i.e. as one GrGen rule with an empty pattern
and a large modify part. There is no importer existing, this format is not for normal use as
storage format! If the .gz suffix is given the graph is saved zipped.

- import
�� �- Filename - .grs

�� ��
�- .grsi

�� �
�

�
�- .gz

�� �
�

�
�- ModelOverride

�

-

Imports the specified graph instance in GRS (.grs/.grsi) format (the reduced GrShell script,
a saved graph can only be imported by include due to commands not supported by the
importer (but an exported graph can be imported by include, too)). The graph model
referenced in the .grs/.grsi must be available as .gm-file. If a model override of the form
Filename.gm is specified, the given model will be used instead of the model referenced in
the GRS file. If a model override of the form Filename.grg is specified, the model(s) of the
given rule file will be used instead of the model in the GRS file. If the .gz suffix is given the
graph is expected to be zipped.

- import
�� �- Filename - .gxl

�� ��
�- .gz

�� �
�

�
�- ModelOverride

�

-

Imports the specified graph instance and model in GXL format. If a model override of the
form Filename.gm is specified, the given model will be used instead of the model in the GXL
file. If a model override of the form Filename.grg is specified(s), the model of the given rule
file will be used instead of the model in the GXL file. The .gxl-graph must be compatible
to the .gm-model/.grg-model. If the .gz suffix is given the graph is expected to be zipped.

252 GrShell Language

NOTE (51)

Normally you are not only interested in importing a GXL graph (and viewing it), but you
want to execute actions on it. The problem is that the actions are model dependent. So, in
order to apply actions, you must use a model override, which works this way:

1. new graph "YourName.grg"

This creates the model library lgsp-YourNameModel.dll and the actions library lgsp-
YourNameActions.dll (which depends on the model library generated from the "using

YourName;").

2. import InstanceGraphOnly.gxl YourName.gm

This imports the instance graph from the .gxl but uses the model specified in Your-
Name.gm (it must fit to the model in the .gxl in order to work).

3. select actions lgsp-YourNameActions.dll

This loads the actions from the actions library in addition to the already loaded model
and instance graph (cf. 20.4).

4. Now you are ready to use the actions.

As of version 3.0beta you can specify a .grg as model override; basically it does what the
given enumeration does.

- import
�� �- Filename - .ecore

�� ��
�

�

- Filename - .xmi

�� ��
�- Filename - .grg

�� �
�

-

Imports the specified graph instance in XMI format and the models in ecore format. They
can’t be imported directly, as GrGen.NET is not built on EMF. Instead, during the import
process an intermediate .gm is written which is equivalent to the .ecore given – you may
inspect it to see how the content gets mapped. (The importer maps packages to GrGen
packages, classes to GrGen node classes, their attributes to corresponding GrGen attributes,
and their references to GrGen edge classes. Inheritance is transferred one-to-one, and enu-
merations are mapped to GrGen enums. Edge type names are prefixed by the names of the
node types they originate from to prevent name clashes for references of same name, and
all types are prefixed by an underscore to prevent name clashes with keywords of the rule
language. Edge type declarations are annotated with a [containment=true] annotation
if they originate from a containment reference.) After this metamodel transformation the
instance graph XMI adhering to the Ecore model thus adhering to the just generated equiv-
alent GrGen graph model gets imported. Furthermore, you can specify a .grg containing
the rules to apply (including further rule and using further model files – this way you can
use additional custom graph models). Some examples stemming from old GraBaTs/TTC
challenges export XMI with emit statements (e.g. the Program-Comprehension example in
examples/ProgramComprehension-GraBaTs09), this is not needed anymore with the built-in
XMI export.

- import
�� �- add

�� �- FileSpec -

Imports the graph in the specified file and adds it to the current graph (instead of overwriting
the old graph with the new graph). The FileSpec is of the same format as the file specification
in the other import commands.

20.4 Sequence Execution and Profiles 253

20.4 Sequence Execution and Profiles

GraphRewriteSequence

- exec
�� ��

�- xgrs
�� �

�

- SimpleRewriteSequence -

This executes the graph rewrite sequence SimpleRewriteSequence. See Chapter 9 for graph
rewrite sequences.

Additionally to the variable assignment in rule-embedded graph rewrite sequences, you
are also able to assign persistent names to parameters via Variable = @(Text). Graph
elements returned by rules can be assigned to variables using (Parameters) = Action . The
desired variable identifiers have to be listed in Parameters. Graph elements required by
rules must be provided using Action(Parameters), where Parameters is a list of variable
identifiers. For undefined variables see Section 5.2, Parameters.

GraphRewriteSequence

- RewriteSequenceDefinition -

This command allows to define a named sequence at runtime, forRewriteSequenceDefinition
have a look here 18.1 in the rule application control language chapter. Especially it allows to
replace an old sequence definition, but only if the signature is identical. Compiled sequences
defined in rule files can’t be replaced. The defined sequence can then be used from following
graph rewrite sequences (or following sequence definitions) in the shell.

EXAMPLE (132)

1 # a sequence definition (of an interpreted sequence) is only available

2 # after it was registered the first time

3 # but it can get overwritten with a sequence of the same signature

4 # -> (self or mutually) recursive sequences must be constructed with empty body first

5 def chain(first:A):(last:A){ true }

6 def chain(first:A):(last:A){ if{(next:A)=chainPiece(first); (last)=chain(next); last=first} }

An action denotes a graph rewrite rule (or test).

- show
�� �- profile

�� ��
�- Action

�

-

Shows the profile for the action specified by its name, or for all rules and tests in the rule set.

20.5 Variables

- Variable - =
���- GraphElement�

�- Variable

�- Literal

�

-

254 GrShell Language

Assigns the variable or persistent name GraphElement or literal to Variable. If Variable has
not been defined yet, it will be defined implicitly. As usual for scripting languages, variables
have neither static types nor declarations. The variables known to GrShell are the graph
global variables (see Chapter 9 for the distinction between graph global and sequence local
variables).

- show
�� �- var

�� �- Variable -

Prints the content of the specified variable.

- askfor
�� �-

- Variable - =
���- askfor

�� �- Type -

The askfor command just waits until the user presses enter. The askfor assignment inter-
actively asks the user for a value of the specified type. The entered value is type checked
against the expected type, and assigned to the given variable in case it matches. If the type
is a value type, the user is prompted to enter a value literal with the keyboard. If the type
is a graph element type, the user is prompted to enter the graph element by double clicking
in yComp. Note that in this case the debug mode must have been enabled before. (The
command is equivalent to debug exec Variable=$%(Type).)

EXAMPLE (133)

x = askfor int

asks the user to enter an integer value; pressing 4 then 2 then enter will do fine.

x = askfor Node

asks the user to select a graph element in yComp; double clicking any node will do fine.

20.6 Building Blocks

GrShell is case sensitive. A line may be empty, may contain a shell command, or may
contain a comment. A comment starts with a # and is terminated by end-of-line or end-of-
file or §.

The following items are required for representing text, numbers, and rule parameters.

Text
May be one of the following:

• A non-empty character sequence consisting of letters, digits, and underscores. The first
character must not be a digit.

• Arbitrary text enclosed by double quotes ("").

• Arbitrary text enclosed by single quotes (’’).

Shell keywords are not allowed for type names, attribute values and other entities (even if
they are legal in the rule language, this is a constraint of the chosen parser generator). If
this hits you, you can enclose the identifier by single or double quotes, i.e. Text can be used
everywhere an identifier is required.

20.6 Building Blocks 255

Number
Is an int or float constant in decimal notation (see also Section 6.1).

Parameters

- Text�
� ,

����
�

-

SpacedParameters

- Text�
�

�

-

In order to describe the commands more precisely, the following (semantic) specializations
of Text are defined:

Filename
A fully qualified file name without spaces (e.g. /Users/Bob/amazing file.txt) or
a single quoted or double quoted fully qualified file name that may contain spaces
("/Users/Bob/amazing file.txt").

Variable
Identifier of a (graph global) variable that contains a graph element or a value. A
double colon prefix as required in the sequences may be given, but as the shell only
knows graph global variables, it is optional (in plain shell commands, not in sequences
or sequence expressions appearing within shell commands).

NodeType, EdgeType
Identifier of a node type resp. edge type defined in the model of the current graph.

AttributeName
Identifier of an attribute.

Graph
Identifies a graph by its name.

Action
Identifies a rule by its name.

GraphElement

- Text�
�- @

���- (
���- Text -)

���
�

-

Node, Edge
The specializations Node and Edge of GraphElement require the corresponding graph
element to be a node or an edge respectively.

256 GrShell Language

20.7 Attribute Assignment and Graph Manipulation

Graph manipulation commands alter existing graphs; they allow to retype and delete graph
elements and change attributes. Creating elements was already introduced in the previous
section. These are tasks which are or at least should be carried out by the rules of the rule
language in the first place. On shell level they are available and mainly used as elementary
instructions in creating an initial graph, in exporting and importing a graph, as well as in
change recording and replaying.

- GraphElement - .
���- AttributeName - =

���- AttributeValue -

Set the attribute AttributeName of the graph element GraphElement to the value Attribute-
Value (for the different possible attribute values see above).

- GraphElement - .
���- AttributeName - [

���- Index -]
���- =

���- AttributeValue -

Overwrite the value in the array or deque or map attribute AttributeName of the graph ele-
ment GraphElement at the integer position or key value Index with the value AttributeValue.

- GraphElement - .
���- AttributeName - .

���- add
�� �- (

����
�

�- PrimitiveAttributeValue �
�- ,

���- PrimitiveAttributeValue

�

-)
���-

Add the value PrimitiveAttributeValue (for the different possible primitive attribute values
see above) to the set valued attribute AttributeName of the graph element GraphElement
or add the key-value pair consisting of the two PrimitiveAttributeValues to the map valued
attribute AttributeName of the graph element GraphElement. Or add the value PrimitiveAt-
tributeValue to the end of the array/deque valued attribute AttributeName of the graph
element GraphElement in the one parameter case or insert the PrimitiveAttributeValue to
the of the array/deque valued attribute AttributeName of the graph element GraphElement
at the index given by the second parameter in the two parameter case.

- GraphElement - .
���- AttributeName - .

���- rem
�� �- (

����
�- PrimitiveAttributeValue

�

-)
���-

Remove the value PrimitiveAttributeValue from the set valued attribute AttributeName of
the graph element GraphElement or remove the key PrimitiveAttributeValue from the map
valued attribute AttributeName of the graph element GraphElement or remove the index
PrimitiveAttributeValue from the array valued attribute AttributeName of the graph element
GraphElement or remove the index PrimitiveAttributeValue from the deque valued attribute
AttributeName of the graph element GraphElement or remove the end element from the array
valued attribute AttributeName of the graph element GraphElement in the zero parameter
case or remove the first element from the deque valued attribute AttributeName of the graph
element GraphElement in the zero parameter case.

- retype
�� �- Node - <

���- Type - >
���-

20.8 Model and Graph Queries 257

Retypes the node Node from its current type to the new type Type. Attributes common to
initial and final type are kept. Incident edges are kept as well.

- retype
�� �- -

���- Edge - <
���- Type - >

���- ->
�� ��

�- -
���- Edge - <

���- Type - >
���- -

���
�

-

Retypes the edge Edge from its current type to the new type Type. Attributes common to
initial and final type are kept. Incident nodes are kept as well.

- redirect
�� �- Edge - source

�� ��
�- target

�� �
�

- Node -

Redirects the edge Edge from the old source or target node to the new source or target Node
given.

- delete
�� �- node

�� �- Node -

Deletes the node Node from the current graph. Incident edges will be deleted as well.

- delete
�� �- edge

�� �- Edge -

Deletes the edge Edge from the current graph.

- clear
�� �- graph

�� ��
�- Graph

�

-

Deletes all graph elements of the current working graph resp. the graph Graph.

20.8 Model and Graph Queries

- show
�� ��

�- num
�� �

�

- nodes
�� ��

��
�- only

�� �
�

- NodeType

�

�

�- edges
�� ��

��
�- only

�� �
�

- EdgeType

�

�

-

Gets the persistent names and the types of all the nodes/edges of the current graph. If a
node type or edge type is supplied, only elements compatible to this type are considered. The
only keyword excludes subtypes. Nodes/edges without persistent names are shown with a
pseudo-name. If the command is specified with num, only the number of nodes/edges will be
displayed.

258 GrShell Language

- show
�� �- node

�� ��
�- edge

�� �
�

- types
�� �-

Gets the node/edge types of the current graph model.

- show
�� �- node

�� �- super
�� ��

�- sub
�� �

�

- types
�� �- NodeType�

�- edge
�� �- super

�� ��
�- sub

�� �
�

- types
�� �- EdgeType

�

-

Gets the inherited/descendant types of NodeType/EdgeType.

- show
�� �- node

�� �- attributes
�� ��

��
�- only

�� �
�

- NodeType

�

�

�- edge
�� �- attributes

�� ��
��

�- only
�� �

�

- EdgeType

�

�

-

Gets the available node/edge attribute types. If NodeType/EdgeType is supplied, only at-
tributes defined in NodeType/EdgeType are diplayed. The only keyword excludes inherited
attributes.

NOTE (52)

The show nodes/edges attributes... command covers types and inherited types. This
is in contrast to the other show... commands where types and subtypes are specified or the
direction in the type hierarchy is specified explicitly, respectively.

- show
�� �- node

�� �- Node�
�- edge

�� �- Edge

�

-

Gets the attribute types and values of a specific graph element.

- show
�� �- GraphElement - .

���- AttributeName -

Displays the value of the specified attribute.

- node
�� �- type

�� �- Node - is
�� �- Node�

�- edge
�� �- type

�� �- Edge - is
�� �- Edge

�

-

Gets the information whether the first element is type-compatible to the second element.

20.9 Validation Commands 259

20.9 Validation Commands

GrGen.NET offers two different graph validation mechanisms, the first checks against the
connection assertions specified in the model, the second checks against an arbitrary graph
rewrite sequence containing arbitrary tests and rules.

- validate
�� ��

�- exitonfailure
�� �

�

�
�- strict

�� ��
�- only

�� �- specified
�� �

�

�

-

Validates if the current working graph fulfills the connection assertions specified in the cor-
responding graph model (cf. 4.2.1). Validate without the strict modifier checks the multi-
plicities of the connections it finds in the host graph, it ignores node-edge-node connections
which are available in the host graph but have not been specified in the model. The strict
mode additionally requires that all the edges available in the host graph must have been
specified in the model. This requirement is too harsh for models where only certain parts are
considered critical enough to be checked or might be a too big step in tightening the level
of structural checking in an already existing large model. So some form of selective strict
checking is supported: The strict only specified mode requires strict matching (i.e. that all
edges are covered) only of the edges for which connection assertions have been specified in
the model.

- validate
�� ��

�- exitonfailure
�� �

�

- exec
�� ��

�- xgrs
�� �

�

- GRS -

Validates if the current working graph satisfies the graph rewrite sequence given. Before the
graph rewrite sequence is executed, the instance graph gets cloned; the sequence operates on
the clone, allowing you to change the graph as you want to, without influence on the host
graph. Validation fails iff the sequence fails. This gives a rather costly but extremely flexible
and powerful mechanism to specify graph constraints. The GrShell is exited with an error
code if exitonfailure is specified and the validation fails.

260 GrShell Language

EXAMPLE (134)

We reuse a simplified version of the road map model from Chapter 4:

1 model Map;

2

3 node class city;

4 node class metropolis;

5

6 edge class street;

7 edge class highway

8 connect metropolis [+] --> metropolis [+];

The node constraint on highway requires all the metropolises to be connected by highways.
Now have a look at the following graph:

This graph is valid but not strict valid.

1 > validate

2 The graph is valid.

3 > validate strict only specified

4 The graph is NOT valid:

5 CAE: city "Eppstein" -- highway "A3" --> metropolis "Frankfurt" not specified

6 > validate strict

7 The graph is NOT valid:

8 CAE: city "Eppstein" -- highway "A3" --> metropolis "Frankfurt" not specified

9 CAE: metropolis "Karlsruhe" -- street "trail" --> metropolis "Frankfurt" not specified

10 >

20.10 Graph Change Recording and Replaying

Graph change recording and replaying is available

• for one for post-problem debugging, you can execute your transformation, and after a
problem occured inspect the changes that were leading to it

• for the other for ensuring persistence of changes as they happen, in case you are using
GrGen.NET as an application-embedded in-memory graph-datebase

20.11 Inclusion and Conditional Execution 261

- record
�� �- Filename �

�- .gz
�� �

�

�
�- start

�� ��
�- stop

�� �
�

�

-

The record command starts or stops recording of graph changes to the specified file. If neither
start nor stop are given, recording to the specified file is toggled (i.e. started if no recording
to the file is underway or stopped if the file is already recorded to). Recording starts with an
export (cf. 20.3) of the instance graph in GRS (.grs/.grsi) format, afterwards the command
returns but all changes to the instance graph are recorded to the file until the recording stop
command is issued. Furthermore the values given in the record statements (cf. 17.1) from
the sequences are written to the recording (this allows you to mark states). If the .gz suffix
is given the recording is saved zipped. You may start and stop recordings to different files at
different times, every file receives the graph changes and records statements occurring during
the time of the recording. Note: As a debugging help a recording does not only contain
graph manipulation commands (cf. 20.7) but also comments telling about the rewrites and
transaction events which occurred (whose effects were recorded).

- recordflush
�� �-

Flushes the buffers of the recordings to disk. To be called to guarantee persistence if you use
GrGen.NET as a kind of online database, recording the graph changes while running to a
redo log.

- replay
�� �- Filename �

�- .gz
�� �

�

�
�- from

�� �- Text

�

�
�- to

�� �- Text

�

-

The replay command plays a recording back: the graph at the time the recording was started
is recreated, then the changes which occurred are carried out again, so you end up with the
graph at the time the recording was stopped. Instead of replaying the entire GRS file you
may restrict replaying to parts of the file by giving the line to start at and/or the line to stop
at. Lines are specified by their textual content which is searched in the file. If a from line is
given, all lines from file begin on including this line are skipped, then replay starts. If a to
line is given, only the lines from the starting point on, until-excluding this one are executed
(i.e. all lines from-including this one until file end are skipped). Normally you reference with
from and to comment lines you write with the record statement (cf. 17.1) in the sequences,
marking relevant states during a transformation process. An example for record and replay
is given in tests/recordreplay.

20.11 Inclusion and Conditional Execution

You may include further shell scripts, or execute parts of a shell script conditionally.

- include
�� �- Filename �

�- .gz
�� �

�

-

Executes the GrShell script Filename (which might be zipped). A GrShell script is just
a plain text file containing GrShell commands. They are treated as they would be entered
interactively, except for parser errors. If a parser error occurs, execution of the script will
stop immediately.

262 GrShell Language

- if
�� �- SequenceExpression - Commands �

�- else
�� �- Commands

�

- endif
�� �-

If the sequence expression evaluates to true, the following command lines are executed, until
the corresponding else or endif is reached. If the sequence expression evaluates to false,
the following command lines are skipped, until the corresponding else or endif is reached.
In case an else is given, the command lines following the else until the endif are executed in
the first case, or skipped in the second case. The nature of shell execution is command-line
based, without syntactic nesting. The if command is an exception, a corresponding amount
of endif commands is required, and applies to its syntactically preceeding if command, as
does the else command.

20.12 File System Commands and External Shell Execution

Here we describe commands for inspecting and changing the working directory, and for exe-
cuting an arbitrary command line in the shell of the hosting OS.

- pwd
�� �-

Prints the path to the current working directory.

- ls
�� �-

Lists the directories and files in the current working directory, files relevant to GrGen are
printed highlighted.

- cd
�� �- Path -

Changes the current working directory to the path given.

- !
���- CommandLine -

CommandLine is an arbitrary text, the operating system attempts to execute.

EXAMPLE (135)

On a Linux machine you might execute

1 !sh -c "ls | grep stuff"

20.13 Shell and Environment Configuration

- silence
�� �- on

�� ��
�- off

�� �
�

-

20.14 Compilation Configuration 263

Switches the new node/edge created/deleted messages on(default) or off. Switching them off
allows for much faster execution of scripts containing a lot of creation commands.

- silence
�� �- exec

�� �- on
�� ��

�- off
�� �

�

-

During non-debug sequence execution every second match statistics are printed to the console;
they allow to assess the progress of long-running transformations. With this command they
can be disabled (or enabled again). Switching them off may be of interest if own debug
messages printed via emit from the sequences (or rules) should not be disturbed.

- randomseed
�� �- Number�

�- time
�� �

�

-

Sets the random seed to the given number for reproducible results when using the $-operator-
prefix or the random-match-selector, whereas time sets the random seed to the current time
in ms.

- redirect
�� �- emit

�� �- Filename -

Redirects the output of the emit-statements (but not the emitdebug-statements) in the rules
from stdout to the given file.

- redirect
�� �- emit

�� �- -
���-

Redirects the output of the emit-statements in the rules to stdout (again).

20.14 Compilation Configuration

- new
�� �- add

�� �- reference
�� �- Filename -

Configures a reference to an external assembly Filename to be linked into the generated
assemblies, maps to the -r option of grgen.exe (cf. 2.2.1).

- new
�� �- set

�� �- keepdebug
�� ��

�- lazynic
�� ��- noinline
�� ��- profile
�� �

�

- on
�� ��

�- off
�� �

�

-

Configures the compilation of the generated assemblies to keep the generated files and to
add debug symbols (includes emitting of some validity checking code), or configures the
generation of the matchers. The latter in order to either execute negatives, independents,
and conditions only lazily at the end of matching (normally as soon as possible), or to never
inline subpatterns, or to include profiling information. Those flags are mapped to the -keep

264 GrShell Language

and the -debug options, or to the -lazynic, -noinline, or -profile options of grgen.exe
(cf. 2.2.1).

When profiling is turned on, the number of search steps carried out is printed to the
console after each sequence execution. A search step is a binding of a graph element to
a pattern entity in case there are at least potentially several choices available. Fetching an
element by type chooses from all elements of that type in the graph, following an incident edge
chooses from all incident edges of the corresponding node, and matching by storage access
chooses from all elements in that storage, whereas getting the source or target node from an
edge or mapping with a storage map just grabs the target element from the source element.
(Each binding from a choice counts as one step, the non-choice-bindings are not counted.)
Profiling the search steps allows you to assess the work needed for a transformation, to find
the hot spots worth optimizing. The less search steps are needed to find a match the better
(you typically want to efficiently find patterns and minimize the amount of search needed in
order to do so).

The flags are applied when the actions are generated anew because the model or rule files
changed. They are not when you just switch them in the shell script. It’s your responsibility
to delete the old generated dlls when you change those options (by switching them, or by
introducing them differently from the compiler options used to generate the dlls)!

- new
�� �- set

�� �- statistics
�� �- Filename -

Configures the compilation of the generated assemblies to use the statistics file specified,
yielding pattern matchers adapted to the class of graphs described in that file. Maps to the
-statistics option of grgen.exe (cf. 2.2.1, and see 20.16 on how to get such statistics).

20.15 Backend, Graph, and Actions Selection

Backend

GrGen.NET is built to support multiple backends implementing the model and action
interfaces of libGr. This is roughly comparable to the different storage engines MySQL
offers. Currently only one backend is available, the libGr search plan backend, or short
LGSPBackend.

- show
�� �- backend

�� �-

List all the parameters supported by the currently selected backend. The parameters can be
provided to the select backend command.

- select
�� �- backend

�� �- Filename �
�- :

���- Parameters

�

-

Selects a backend that handles graph and rule representation. Filename has to be a .NET
assembly (e.g. lgspBackend.dll). Comma-separated parameters can be supplied optionally;
if so, the backend must support these parameters. By default the LGSPBackend is used.

Graph

- select
�� �- graph

�� �- Graph -

20.16 LGSPBackend Custom Commands 265

Selects the current working graph. This graph acts as host graph for graph rewrite sequences
(see also Sections 1.5 and 20.4). Though you can define multiple graphs, only one graph can
be the active “working graph”.

- show
�� �- graphs

�� �-

Displays a list of currently available graphs.

- delete
�� �- graph

�� �- Graph -

Deletes the graph Graph from the backend storage.

- custom
�� �- graph

�� ��
�- SpacedParameters

�

-

Executes a command specific to the current backend. If SpacedParameters is omitted, a list
of available commands will be displayed (for the LGSP backend see Sections 20.16).

Actions

- select
�� �- actions

�� �- Filename -

Selects a rule set. Filename can either be a .NET assembly (e.g. “rules.dll”) or a source file
(“rules.cs”). Only one rule set can be loaded simultaneously.

- show
�� �- actions

�� �-

Lists all the rules of the loaded rule set, their parameters, and their return values. Rules can
return a set of graph elements.

- custom
�� �- actions

�� ��
�- SpacedParameters

�

-

Executes an action specific to the current backend. If SpacedParameters is omitted, a list of
available commands will be displayed (for the LGSPBackend see Section 20.16).

20.16 LGSPBackend Custom Commands

Don’t be shy to use custom commands just because they are custom. The search plan
generation and explanation offered by them are of outstanding importance for achieving
high performance solutions. Leading directly to high-performance solutions by adapting the
pattern matchers to the specifics of the host graph. Or indirectly by explaining the chosen
search plan so you can inspect it for the spots where the planner was not able to circumvent
massively splitting passages; you may have to rethink your solutions regarding those, with
maybe a change in the modelling, a change in the pattern, or even imperative code with hash
set intersections/joins.

The LGSPBackend supports the following custom commands, separated into the realms
of the graph and the actions.

266 GrShell Language

Graph related custom commands

- custom
�� �- graph

�� �- analyze
�� �-

Analyzes the current working graph. The analysis data provides vital information for efficient
search plans. Analysis data is available as long as GrShell is running, i.e. when the host
graph is manipulated, the analysis data is still available but outdated (which does not pose
an issue unless the graph was changed massively regarding the relative number of elements
per type or the connectedness-by-type relation).

- custom
�� �- graph

�� �- statistics
�� �- save

�� �- Filename -

Write the statistics of the last analyze to the specified statistics file (the graph must have
been analyzed before this command is called). This way you can save the statistics of a
characteristic graph of your domain and compile pattern matchers well adapted to those class
of graphs straight from the beginning, saving you the costs of online analysis and matcher
compilation. See 2.2.1 or 20.14 for explanations on how to do this.

- custom
�� �- graph

�� �- optimizereuse
�� �- BoolLit -

If set to false it prevents deleted elements from getting reused in a rewrite (i.e. it disables a
performance optimization). If set to true (default), new elements may not be discriminable
anymore from already deleted elements using object equality, hash maps, etc.

Action related custom commands

- custom
�� �- actions

�� �- gen searchplan
�� ��

�- Action�
�

�

�

-

Creates a search plan (and executable code from it) for each rewrite rule Action using the
data from analyzing the graph (custom graph analyze). Otherwise a default search plan
is used. If no rewrite rule is specified, all rewrite rules are compiled anew. Analyzing and
search plan/code generation themselves take some time, but they can lead to (massively)
faster pattern matching, thus overall reduced execution times; the less uniform the type
distribution and edge wiring between the nodes, the higher the improvements. During the
analysis phase the host graph must be in a shape “similar” to its shape when the main
amount of work is done (there may be some trial-and-error steps at different time points
needed to get the overall most efficient search plan.) A search plan is available as long as the
current rule set remains loaded. Specify multiple rewrite rules with one command instead
of using multiple commands, one for each rule, in order to improve search plan generation
performance (this avoids superfluous compilation runs).

- custom
�� �- actions

�� �- explain
�� �- Action -

Shows the search plan currently in use for the Action, plus the subpatterns called by it.
The search plan highlights how the pattern gets matched, and thus allows to understand the
performance characteristics of executing the action. It is a list of search commands (with

20.16 LGSPBackend Custom Commands 267

commands not doing real matching work shown in parenthesis), which is executed from top
to bottom; for more on the search commands have a look at section 26.3. The search plan
helps in optimizing for performance, as it shows the effects of pattern changes, e.g. the
introduction of parameters, or the annotation of pattern elements with priorities (cf. 25.10)),
and of changes of the statistical data (stemming from a re-analyzation of a modified graph,
or loading of analysis data). This is an inspection tool comparable to the explain command
offered by SQL-databases, which shows the search plan for a query.

- custom
�� �- actions

�� �- dump sourcecode
�� �- BoolLit -

If set to true, C# files will be dumped for the newly generated searchplans (similar to the
-keep option of the generator; defaults to false).

- custom
�� �- actions

�� �- set max matches
�� �- Number -

Sets the maximum amount of possible pattern matches to Number. This command affects
the expression [Rule]. If Number is less or equal to zero, the constraint is reset.

- custom
�� �- actions

�� �- adaptvariables
�� �- BoolLit -

If set to true (default), variables are cleared (nulled) if they contain graph elements which are
removed from the graph, and rewritten to the new element on retypings (only graph-global
variables, not sequence variables). This saves us from outdated and dangling variables at
the cost of listening to node and edge removals and retypings. Setting it to false improves
performance, but can lead to zombie elements hanging out in the graph-global variables (and
a lot of confusion in case they are reused, as it is possible when optimizereuse is not set to
false, see graph custom commands above).

268 GrShell Language

C H A P T E R 21

V I S U A L I Z AT I O N A N D D E B U G G I N G

This chapter gives an introduction into the visualization capabilities of yComp and into
the graphical debugger of GrGen.NET, which is offered by GrShell in combination with
yComp (the following commands are GrShell-commands).

21.1 Graph Visualization Commands (Nested Layout)

- show
�� �- graph

�� �- ExecutableName �
�- keep

�� �
�

�
�- Text

�

-

Dumps the current graph in VCG or DOT format into a temporary file. The temporary file
will be passed to the program ExecutableName as first parameter; further parameters, such
as program options, can be specified by Text.

If you use yComp1 as executable (show graph ycomp), this may look like

1See Section 2.2.5.

269

270 Visualization and Debugging

If you use one of the programs of the graphviz package, e.g. dot (show graph dot), this
may look like

Available programs are dot, neato, fdp, sfdp, twopi, circo. They are used to transform
the graph dumped into a dot-file to a png-file that is then opened with the image viewer of
the system. The executables must be available in the search path of the system (so you have
to install graphviz and have to add the bin folder to the path for this to work).

The temporary file(s) will be deleted when the application Filename is terminated, in
case GrShell is still running at this time. If the keep parameter was specified, the file(s)
will be kept instead.

- dump
�� �- graph

�� �- Filename -

Dumps the current graph in VCG format into the file Filename.

21.1 Graph Visualization Commands (Nested Layout) 271

The following commands control the style of the VCG output. This affects dump graph,
show graph, and enable debug.

- dump
�� �- set

�� �- node
�� ��

�- only
�� �

�

- NodeType - DumpNodeContinuation -

DumpNodeContinuation

- color
�� ��

�- textcolor
�� ��- bordercolor
�� �

�

- Color�

�- shape
�� �- Text

�- labels
�� �- on

�� ��
�- off

�� ��- Text

�

�

-

Sets the color, text color, border color, the shape or the label of the nodes of type NodeType
and all of its subtypes. The keyword only excludes the subtypes. The following shapes
are supported: box, triangle, circle, ellipse, rhomb, hexagon, trapeze, uptrapeze,
lparallelogram, rparallelogram. Those are shape names of yComp (for a VCG definition
see [San95]). The following colors are supported: Black, Blue, Green, Cyan, Red, Purple,
Brown, Grey, LightGrey, LightBlue, LightGreen, LightCyan, LightRed, LightPurple,
Yellow (default), White, DarkBlue, DarkRed, DarkGreen, DarkYellow, DarkMagenta, DarkCyan,
Gold, Lilac, Turquoise, Aquamarine, Khaki, Pink, Orange, Orchid, LightYellow, YellowGreen.
These are the same color identifiers as in VCG/yComp files (for a VCG definition see [San95]).

The default labeling is set to on with Name:Type, it can be overwritten by a specified
label string (e.g. a source code line originating a node in a program graph) or switched off.

- dump
�� �- set

�� �- edge
�� ��

�- only
�� �

�

- EdgeType - DumpEdgeContinuation -

DumpEdgeContinuation

- color
�� ��

�- textcolor
�� �

�

- Color�

�- linestyle
�� �- Text

�- thickness
�� �- Number

�- labels
�� �- on

�� ��
�- off

�� ��- Text

�

�

-

272 Visualization and Debugging

Sets the color, text color, the linestyle, the thickness of the line, or the label of the edges
of type EdgeType and all of its subtypes. The keyword only excludes the subtypes. The
available colors are given above with the dump set node specification. The default labeling
is set to on with Name:Type, it can be overwritten by a specified label string or switched off.
The following linestyles are supported: continuous (default), dotted, dashed. The following
thicknesses are supported: 1 (default), 2, 3, 4, 5.

- dump
�� �- add

�� �- node
�� ��

�- only
�� �

�

- NodeType�

�- edge
�� ��

�- only
�� �

�

- EdgeType

�

- exclude
�� �-

Excludes nodes/edges of type NodeType/EdgeType and all of its subtypes from output, for
a node it also excludes its incident edges. The keyword only excludes the subtypes from
exlusion, i.e. subtypes of NodeType/EdgeType are dumped.

- dump
�� �- add

�� �- node
�� ��

�- only
�� �

�

- NodeType - group

�� ��
�- GroupConstraints

�

-

GroupConstraints

- by
�� ��

�- hidden
�� �

�

- GroupMode �

�- IncAdjTypeConstraints

�

-

IncAdjTypeConstraints

�
�- only

�� �
�

- EdgeType �

�- with
�� ��

�- only
�� �

�

- NodeType

�

-

Declares NodeType and subtypes of NodeType as group node type. All the differently typed
nodes that point to a node of type NodeType (i.e. there is a directed edge between such
nodes) will be grouped and visibly enclosed by the NodeType-node (leading to the rendering
of a nested graph). GroupMode is one of no,incoming,outgoing,any; hidden causes hiding of
the edges by which grouping happens. The EdgeType constrains the type of the edges which
cause grouping, the with clause additionally constrains the type of the adjacent node; only
excludes subtypes.

21.1 Graph Visualization Commands (Nested Layout) 273

NOTE (53)

Only apply group commands on a graph if they indeed lead to a containment tree of groups.
If the group commands would lead to a directed acyclic or even cyclic containment graph,
the results are undefined. You may get duplicate edges (and nodes); the implementation is
free to choose indeterministically between the possible nestings – it may even grow an arm
and stab you in your back. (A conflict resolution heuristic used is to give the earlier executed
add group command priority. But this mechanism is incomplete – you’d better refine your
groups or change the model in that case. Using a model separating edges denoting direct
containment from cross-linking edges by type is normally the better design, even disregarding
visual node nesting.)

The following example shows metropolis ungrouped and grouped:

right side: dumped with dump add node metropolis group

- dump
�� �- add

�� ��
�- only

�� �
�

- node
�� �- NodeType�

�- edge
�� �- EdgeType

�

�
�

�- infotag
�� ��

�- shortinfotag
�� �

�

- AttributeName -

Declares the attribute AttributeName to be an “info tag” or “short info tag”. Info tags are
displayed like additional node/edge labels, in format Name=Value, or Value only for short
info tags. The keyword only excludes the subtypes of NodeType resp. EdgeType.

274 Visualization and Debugging

In the following example river and jam are info tags:

- dump
�� �- add

�� �- graph
�� �- exclude

�� �-

- dump
�� �- set

�� �- graph
�� �- exclude

�� �- option
�� �- ContextDepth -

The dump graph exclude commands allow to suppress the display of the graph during debug-
ging. Instead, only the match of the current rule is shown, plus some context up to a certain
depth, plus the parent nodes according to the nesting commands. The default depth is 1, i.e.
the match plus its direct neighbours are displayed (plus the nesting nodes); you may set it
to 0 or a higher value. These commands allow you to still use the debugger if the graph as
such is too large to be layed out (or laying it out takes too long to be convenient).

- dump
�� �- reset

�� �-

Resets all style options (dump set. . .) and (dump add. . .) to their default values.

NOTE (54)

Small graphs allow for fast visual understanding, but with an increasing number of nodes
and edges they quickly loose this property. The group commands are of outstanding impor-
tance to maintain readability with increasing graph sizes (e.g. for program graphs it allows
to lump together expressions of a method inside the method node and attributes of a class
inside the class node). Additional helpers in keeping the graph readable are: the capability
to exclude elements from dumping (the less hay in the stack the easier to find the needle), the
different colors and shapes to quickly find the elements of interest, as well as the labels/in-
fotags/shortinfotags to display the most important information directly. Choose the layout
algorithm and the options delivering the best results for your needs, organic and hierarchic or
compiler graph (an extension of hierarchic with automatic edge cutting – marking cut edges
by fat dots, showing the edge only on mouse over and allowing to jump to the other end on
a mouse click) should be tried first.

21.1 Graph Visualization Commands (Nested Layout) 275

The following example consisting of Figures 21.1 and 21.2 shows several of the layout
options employed to considerably increase the readability of a program graph (as given in
examples/JavaProgramGraphs-GraBaTs08), with:

• nesting to show containment

• color coding to distinguish different classes of elements (yellow for classes, magenta for
methods, cyan for variables, and green for expressions and statements)

• the typical rendering of the Hierarchic layout (it’s advanced version Compilergraph

to be more exact)

Figure 21.1: Overview of the initial program graph

276 Visualization and Debugging

Figure 21.2: Some details of the “Node” class of the initial program graph

21.1 Graph Visualization Commands (Nested Layout) 277

You see the exclude option applied in Figures 21.3 and 21.4, stemming from the Gr-
Gen.NET solution [Jak14] of the TTC14 Movie Database case [HKT14] (you find it under
examples/MovieDatabase-TTC2014) . There, a rule couplesWithRating (whose pattern
consists of a c:Couple referencing its actors pn1:Person and pn2:Person) is used in order
to fetch the couples of actors who performed together in a movie, for one the couples whose
common movies have the highest rating, and for the other the couples with the highest num-
ber of common movies. The match with the highest rating or highest number is obtained by
ordering with an auto-generated filter (cf. 15) alongside an appropriately filled def variable,
and throwing away the results below with an auto-supplied filter.

Figure 21.3: couplesWithRating, order by avgRating, 10,000 movies file

The first screenshot depicted in Figure 21.3 was taken on Windows 10 during processing
of the 10,000 movies file from IMDB (98,388 nodes, 124,638 edges). It is displayed with
layout Circular and shows the match of the couple with the highest rating.

The second screenshot depicted in Figure 21.4 was taken on openSUSE LINUX 13.2
during processing of the generated N=50,000 example (1,000,000 nodes, 1,600,000 edges). It
is displayed with layout Organic and shows the match of the couple with the highest number
of common movies.

The graphs as such are beyond the capabilities of the graph viewer (several thousand
graph elements work well, up to a few ten thousand ones), without the exclude we’d be
blind, this way we’re endowed with partial sight (on the important part, the match plus its
context). Notice the infotags on the rating and avgRating attributes.

278 Visualization and Debugging

Figure 21.4: couplesWithRating, order by numMovies, generated with N=50,000

21.2 yComp Usage 279

21.2 yComp Usage

yComp [KBG+07] is the default graph viewer of GrGen, and – when started as a server
process – can be controlled by the debugger of GrShell via a TCP/IP connection. Besides
the things already mentioned in 2.2.5, we want to give the following hints:

• when started on a dump, you must press the rightmost play button to start layout

• play with the layout options offered in the Layout menu until you find a good visual-
ization, configure it then in the GrShell; don’t forget to press the play button to apply
the changes

• you can pane by pressing and holding the middle mouse button while moving the mouse

• you can zoom with the mouse wheel at the position of the cursor

• hovering over graph elements displays the attributes

• you can select graph elements with the left mouse button and delete them with del to
gain a better overview

• by activating edit mode with the 3rd rightmost button in the toolbar you can move
nodes around, which allows you to fix a bad layout (rather seldomly needed)

• the context menu opened by pressing the right mouse button over a graph element
allows you to explore the adjacent nodes in non-edit-mode, or delete the element in edit
mode

• you can search with Ctrl-f or / for the persistent name or an attribute value (or by
clicking into the left search field), the matching elements get highlighted

21.3 Debugging Related Commands

- debug
�� �- enable

�� ��
�- disable

�� �
�

-

Enables and disables the debug mode. The debug mode shows the current working graph in
a yComp window. All changes to the working graph are tracked by yComp immediately.

- debug
�� �- set

�� �- layout
�� ��

�- Text

�- option
�� �- Name - String

�

-

Sets the default graph layout algorithm to Text. If Text is omitted, a list of the available
layout algorithms is displayed. The following layout algorithms are supported: Random,
Hierarchic, Organic, Orthogonal, Circular, Tree, Diagonal, Incremental Hierarchic,
Compilergraph. For technical graphs Hierarchic works normally best; Compilergraph is
a version of Hierarchic cutting some edges, it may be of interest if Hierarchic contains
too many crossing edges. Organic is the other general purpose layout algorithm available to
be tried out early; the other layout algorithms are rather special, but this should not deter
you from using them if they fit to your task ;). The option version allows to specify layout
options by name value pairs. The available layout options can be listed by the following
command.

280 Visualization and Debugging

- debug
�� �- get

�� �- layout
�� �- options

�� �-

Prints a list of the available layout options of the currently active layout algorithm.

- debug
�� �- layout

�� �-

Forces re-layout of the graph shown in yComp (same as pressing the play button within
yComp).

- debug
�� �- set

�� �- node
�� �- mode

�� �- Text - DumpNodeContinuation -

- debug
�� �- set

�� �- edge
�� �- mode

�� �- Text - DumpEdgeContinuation -

Configures the display of the visual debug states for the nodes/edges. The following modes are
supported: matched, created, deleted, retyped. Change this if you e.g. want the matched
elements to be marked more visibly, or added/deleted elements to be colored green/red
(instead of red/grey).

GraphRewriteSequence

- debug
�� �- exec

�� ��
�- xgrs

�� �
�

- SimpleRewriteSequence -

This executes the graph rewrite sequence SimpleRewriteSequence in the debugger. The se-
mantics is the same as for exec SimpleRewriteSequence already introduced in Chapter 20,
but you can trace the execution step-by-step.

21.4 Using the Debugger

Put abstractly, a graph rewrite sequence is executed step-by-step, one rule application after
the other, yielding a series of execution states. Each step has a current point of execution
in the sequence, referencing the rule that is to be or gets applied. The debugging process
can be described as a reduced view on such a series of execution states, consisting of a series
of debugging situations, which are a subset of your choice of the execution states reached in
time. In each debugging situation or step, the execution state or a a subset of it is rendered.

This means concretely, that the debugger – which is a part of the GrShell – prints
the debugged sequence with the currently focused/active rule highlighted yellow. What will
be shown from executing this rule depends on the chosen debug command, and on the fact
whether the focused rule matches or not. An active rule which is already known to match is
highlighted green. The rules that matched the last time during sequence execution are shown
on dark green background, the rules that failed the last time during sequence execution are
shown on dark red background; at the begin of a new loop iteration the highlighting state of
the rules contained in the loop is reset.

During execution, yComp2 displays the current graph at each single step, and on request
highlights a rule application, marking the matches in the graph, and showing the changes to
the graph stemming from that rule application.

2Make sure, that the path to your yComp.jar package is set correctly in the ycomp shell script within
GrGen.NET’s /bin directory.

21.4 Using the Debugger 281

Besides deciding on what is shown from the application of the current rule, you also
determine with the debug commands where to continue debugging, i.e. the rule focused next;
but of course this depends strongly on the following flow of execution, esp. the fact whether
the execution of the currently active rule succeeds/fails, and the execution state in general.

With the s debug command (step) you execute the current rewrite rule (trying to match
it, applying the rewrite on success) and then continue with the next rule in the sequence.
With the n debug command (next) you fast-forward to the next rule that matches, and
apply it when pressed again. With the r debug command (run) you continue execution until
sequence termination or until a breakpoint is hit. With the d debug command (detailed step)
you execute the current rewrite rule, if it matches highlighting its match and the changes in
the graph, and then continue with the next rule in the sequence.

All the available debug commands are given in Table 21.1. An example debugging run is
shown in the following example 136.

In addition to the commands for actively stepping or skipping through the sequence execu-
tion, there are breakpoints and choicepoints available (toggled with the b and c commands),
which become active if execution reaches them, even if a user command would skip over them
in the debugging process. The break points halt execution, focus the reached sequence, and
cause the debugger to wait for further commands (e.g. d to inspect the rule execution en
detail versus s for just applying it). The choice points halt execution, focus the reached
sequence in magenta, and ask for some user input; after the input was received, execution
continues according to the command previously issued.

Both break points and choice points are denoted by the % modifier. The % modifier acts
as a break point if it is given before: a rule, an all bracketed rule, a variable predicate, or
the constants true/false. The % modifier acts as a choice point if it is appended to the $

randomize modifier, switching a random decision into a user decision. The dollar randomize
modifier can be applied to the binary operators, the random match selector of all bracketed
rules, the random-all-of operators and the one-of-set braces. The idea behind this is: you
need some randomization for simulation purpose — then use the randomize modifier $. You
want to force a certain decision, overriding the random decision, in order to try out another
execution path while debugging the simulation — then modify the randomize modifier with
the user (choice) modifier %.

The initial breakpoint and choicepoint assignment is given with the % characters in the
sequences after the debug exec commands in the .grs file. The breakpoint and choicepoint
commands of the debugger allow to toggle them at runtime, overriding the initial assignment
(notationally yielding a sequence with added or removed % characters). The user input
commands $%(type) define choice points which cannot be switched off.

Moreover, there are commands available that allow to print the variables at a given sit-
uation, or the sequence call stack, or a full state dump of the call stack and the variables.
Further commands allow to dump the current graph, or highlight elements in the graph, de-
fined by being contained in a (possibly container valued) variable, or being marked according
to a visited flag.

282 Visualization and Debugging

s(tep) Execute the current rewrite rule (matching it, and rewriting in
case it matched; the resulting graph is shown).

d(etailed step) Execute the current rewrite rule in a three-step procedure:
matching - highlighting the found match, rewriting - highlighting
the changing elements, and completion - carrying out the rewrite,
showing the resulting graph, then executing subrules from em-
bedded sequences (exec), step by step.

(step) o(ut) Continue execution until the end of the current loop. If execution
is not in a loop at this moment, but in a sequence called, the
called sequence will be executed until its end. If neither is the
case, the complete sequence will be executed.

(step) u(p) Ascend one level up within the Kantorowitsch tree of the current
rewrite sequence (i.e. rule; see Example 136; at the moment the
command is pretty useless because only the serialized form is
displayed).

r(un) Continue execution (until the end or a breakpoint).
a(bort) Cancel execution immediately.
n(ext) Go to the next rewrite rule that matches, make it current.

(toggle) b(reakpoint) Toggle a breakpoint at one of the breakpointable locations.
(toggle) c(choicepoint) Toggle a choicepoint at one of the choicepointable locations.
(edit) w(atchpoints) Allows to edit data breakpoints or the behaviour of programmed

debug messages.

v(ariables) Prints the global variables and the local variables of the sequence
currently executed, which is the topmost sequence of the sequence
call stack. Plus the allocated visited flags. To be more precise
regarding local variables: all variables which were defined (and
have not fallen out of scope again) up to the sequence position
focussed.

t(race) Prints the stack trace of the current sequence call stack. The
stack trace includes the body of each sequence called at its exe-
cution state.

f(ull dump) Prints the stack trace including the local variables of each stack
frame plus the global variables.

(dum)p (graph) Dumps the current graph as a .vcg file and shows it in yComp.
This can be used as a workaround to check the real state in case
transaction/backtracking rollback is used on a graph with node
nesting, which may lead to a buggy display. In addition, an
undo.log is written with the undo commands of the open trans-
actions for change reversal, which would be applied on rollback.

(as)-g(raph) Asks for the value of the externally defined type that is to be
shown in the debugger in graph form (you must implement an
extension handler able to return an INamedGraph on request for
this to work, see 24.4). Alternatively, you may specify a graph
value, which is then displayed directly.

h(ighlight) Highlights the elements in the graph that are marked with the vis-
ited flag given, or are contained in the variable given (which might
be a simple scalar variable containing one graph element, or a
container variable potentially containing multiple ones). Multi-
ple variables or visited flags may be given separated by commas.

Table 21.1: GrShell debug commands

21.4 Using the Debugger 283

EXAMPLE (136)

We demonstrate the debug commands by executing a slightly adjusted script for generating
the Koch snowflake from GrGen.NET’s examples (see also Section 23.1). The graph rewrite
sequence is

1 debug exec (makeFlake1* & (beautify & doNothing)* & makeFlake2* & beautify*)[1]

yComp will be opened with an initial graph:

We type d(etailed step) to apply makeFlake1 in detail mode with a matching, rewriting, and
completion substep, resulting in the following graphs:

The following table shows the active rule reached after having entered the preceeding debug
command, for a series of debug commands:

Command Active rule

s makeFlake1

o beautify

s doNothing

s beautify

u beautify

o makeFlake2

r —

284 Visualization and Debugging

21.5 Subrule Debugging and Programmed Halts

The basic granularity of debugging in GrGen.NET is the single rule (with its pattern
matched and its rewrite carried out) executed from an interpreted sequence. But with em-
bedded execs there are further sequences and actions available outside direct control of and
visibility in the debugger. At least some debugging aide is available for them, at least the
actions called from the embedded sequences are shown in the debugger – in case detailed
mode is used. But the local execution state of imperative code which may be used for tasks
where pattern matching is not beneficial is completely invisible to the debugger. Only the
effects on the graph become visible.

There is a remedy available for this situation in the form of code-embedded debugging
commands, realized by calls to procedures from the built-in package Debug. With them you
can punch holes into the covering blanket that allow you to peek at what’s going on under
the covers. The debugging commands are used for one to directly display information, but
for the other for handling a stack of debug messages, intended for representing the current
state of the call nesting of the executing code.

The available commands are:

Debug::add(message(,object)*)

to be called when a subrule computation or an interesting piece of code is entered. The
message is added to the debug messages stack of the debugger. Besides the mandatory
message:string, an arbitrary number of other parameters may be given (of arbitrary
type).

Debug::rem(message(,object)*)

to be called when a subrule computation or an interesting piece of code is exited. The
topmost entry message on the messages stack is removed. It is checked that the message
of the topmost added entry is identical to the message of current removal – you must
always call add and rem in pairs! The emit messages on the way to the topmost add

are removed. Besides the mandatory message:string, an arbitrary number of other
parameters may be given (of arbitrary type).

Debug::emit(message(,object)*)

to be called when some interesting points in the code are passed. The message is added
to the debug messages stack of the debugger. Besides the mandatory message:string,
an arbitrary number of other parameters may be given (of arbitrary type).

Debug::halt(message(,object)*)

to be called when some point in the code is reached that is so interesting that you
want the execution to break in the debugger. If called, the debugger halts execution,
displays the messages stack in its current state, and prints out the halt message with
its parameters. Besides the mandatory message:string, an arbitrary number of other
parameters may be given (of arbitrary type).

Debug::highlight(message(,object,string)*)

to be called when some point in the code is reached that is so interesting that you
want the execution to break in the debugger, in order to highlight some nodes or edges
graphically in the debugger, in the same way they are highlighted when an action is
matched. If called, the debugger halts execution, displays the messages stack in its
current state, and displays the nodes and edges passed with the additional parameters
highlighted in the graph. The additional parameters must be given in pairs, first the
entity to display, then the string that entry will be annotated with in the debugger.
The entity to display may be a node or edge, which is then directly highlighted, or a
storage containing nodes or edges, all contained nodes/edges will then be highlighted,
or a visited flag (integer number), all graph elements that are visited according to that

21.6 Watchpoint configuration 285

flag are then highlighted. Besides, as first mandatory parameter, the message:string

must be given.

Some add and rem are automatically inserted by GrGen.NET for you. For one for
embedded execs, a debug message is sent when an embedded exec is entered or exited, with
a message starting with the name of the containing rule. For the other for procedures and
compiled sequence definitions, a debug message is sent when a procedure or defined sequence
is entered or exited, with a message being equal to the name of the procedure or defined
sequence.

21.6 Watchpoint configuration

The behaviour of the debugger upon receiving certain events can be defined with configuration
rules aka watchpoints. They are contained in a list, ordered by time of insertion. When a
subrule debugging event (a debug message as introduced in the previous section), or a graph
change event, or an action match event occurs, the list of watchpoints is visited one entry
after the other, and one configuration rule checked for a match after the other. When a
configuration rule or watchpoint matches, its decision is applied. The decision may be to
break execution and display the current execution state, or to continue execution, which is
of interest for events that normally break execution but should be better ignored.

Besides defining the configuration rules of the watchpoints beforehand with shell com-
mands, you can edit them interactively with the edit watchpoint command inside the debug-
ger.

Subrule messages

- debug
�� �- on

�� �- add
�� ��

�- rem
�� ��- emit
�� �

�

- MessageFilter - break

�� �-

- debug
�� �- on

�� �- halt
�� ��

�- highlight
�� �

�

- MessageFilter - continue

�� �-

MessageFilter

- equals
�� ��

�- startsWith
�� ��- endsWith
�� ��- contains
�� �

�

- (
���- StringConstant -)

���-

When the string specified matches the message of the debug event according to the
message filter given, execution is interrupted by the debugger in case of a Debug::add, or
Debug::rem, or Debug::emit, and the execution state of the code (esp. specified by those
commands) is presented in the debugger. Normally, those events are handled silently. When
a match happens for a Debug::halt or Debug::highlight, execution is continued without
interruption, while normally those messages break execution in the debugger.

286 Visualization and Debugging

Action match event

- debug
�� �- on

�� �- match
�� �- RuleName - break

�� ��
�- continue

�� �
�

�
�- if

�� �- SequenceExpression

�

-

When the action specified was matched, execution is halted in the debugger in case of a
break. This is of interest for rules executed from execs, as normal breakpoints don’t apply to
them, this way we can set a breakpoint on a rule irrespective from where it is called (allowing
us to just run a sequence until an action match of interest happens). In case of a continue,
execution is forced to continue. This is of interest for detail mode debugging that normally
breaks on each matched rule. It allows us to skip over uninteresting rules in execs without
the need to acknowledge them.

The sequence expression finally allows us to decide conditionally. It is evaluated when
its corresponding configuration rule is evaluated because its match event occurred, if it re-
turns true the configuration rule matches, otherwise it does not match. The this entity is
overloaded in the sequence expression (normally it denotes the graph). It gives access to the
match found, you can access the entities of the match in dot-Notation (e.g. this.node1).
The configuration rule is evaluated for all matches in case of an all-bracketed match, if one
returns true, the decision is carried out.

Graph change events

- debug
�� �- on

�� �- new
�� ��

�- delete
�� ��- retype
�� ��- set
�� �- attributes

�� �

�

- TypeNameSpec - break
�� ��

�
��

�- if
�� �- SequenceExpression

�

-

TypeNameSpec

�
�- only

�� �
�

- Type�

�- @ - (
���- Name -)

���

�

-

When the graph change specified occurred (its corresponding event was fired), execution
is halted in the debugger. The supported graph changes are graph element creation, deletion,
retyping, and attribute assignment. The TypeNameSpec constrains this by type or by name.
The first form matches only when the element is of the specified type, in case of only only
if it is of exactly that type and not a subtype. The second form matches only when the
element is of the specified name, given as string constant (rules of that kind are typically
created interactively, but due to the persistence of persistent names and the execution of
GrGen being as deterministic as possible in between single runs, even static rules make sense
– even more so if you assign the names on your own).

21.7 Debugging related functionality 287

The sequence expression finally allows us to decide conditionally. It is evaluated when its
corresponding configuration rule is evaluated because its graph change event occurred, if it
returns true the configuration rule matches, otherwise it does not match. The this entity
is overloaded in the sequence expression (normally it denotes the graph). It gives access to
the node or edge that was just created, or is getting deleted, or is getting retyped, or was
assigned to. So here we find support for conditional data breakpoints.

21.7 Debugging related functionality

Other commands that are of use for debugging were already introduced in the shell chapter:
show var <Variable> to print the content of a variable and
show <GraphElement>.<AttributeName> to print the content of an attribute.
But pressing the v key in the shell debugger is more convenient in the former case, as is
searching with Ctrl-f or / in yComp for the persistent name or an attribute value, hovering
over the then highlighted graph element, in the latter case.

The commands record and replay are of interest when you want to follow different paths
during a transformation, they allow you to save the graph states before choosing in between
the different paths, and to restore them later on (and to inspect the sequence of changes
leading to a graph state).

Another development aide comes in the form of validity checking code that gets emitted
when the -debug option is supplied to grgen.exe (cf. 2.2.1), the usage of that option can
be also configured in the shell (cf. 20.14). The validity checking code detects with runtime
checks situations in which:

1. a rule is called with a null argument (unless it was specified that null parameters are
allowed, in that case the missing element is searched for in the graph)

2. a rule is called with a graph element as parameter that is not contained in the graph
anymore

3. a match is about to be rewritten with a matched graph element that is not contained
in the graph anymore

The first case typically happens when an initialization of a variable is missing, or when a
graph global variable gets auto-nulled, because the graph element was deleted.

The second case typically happens when a node or edge was removed from the graph but
is still held in a local variable or a storage.

The third case typically happens during an all-bracketed rule application that matched
a graph element multiple times, and now wants to retype the graph element, after having
executed a previous rewrite, that deleted that particular graph element (an all-bracketed rule
application rewrites one match after the other). The situation may be rather obvious, when
the graph element was bound to the same pattern element in different matches, it may be also
quite difficult to grasp, because the graph element was bound to different pattern elements
in different matches. The check may fail without uncovering a real issue, because the already
deleted element is not to be modified with the rewrite of the current match (or only to be
deleted again, deletion after deletion is not causing a crash).

Regarding the third case, note that an edge not contained in the graph anymore is not
reported as invalid in case its source or target nodes are not contained in the graph anymore
(this safes you from spurious error reports, at the price of potentially missing a situation
where this is not anticipated). By annotating a node/edge with a validityCheck=false,
cf. Section 25.10, you can disable the contained-in-graph check for that graph element. By
using the same annotation on a rule (cf. Table 25.1), you can disable this validity check for
all graph elements that were matched during the execution of the rule.

288 Visualization and Debugging

C H A P T E R 22

I N D I C E S A N D P E R FO R M A N C E O P T I M I Z AT I O N

The most important point to understand when optimizing for speed is that the expensive
task is the search carried out during pattern matching. The effort for rewriting (the dominant
theme in graph rewriting literature) is negligible.

Searching is carried out with a backtracking algorithm following a search plan in a fixed
order, binding one pattern element after another to a graph element, checking if it fits to the
already bound parts. If it does fit search continues trying to bind the next pattern element (or
succeeds building the match object from all the elements bound if the last check succeeds), if
it does not fit search continues with the next graph element; if all graph element candidates
for the currently focused pattern element are exhausted, search backtracks to the previous
decision point and continues there with the next element.

Typically, first a graph element is determined with a lookup operation reaching into the
graph, binding the element to a graph element of the required type (the less elements of
that type exists, the better) – then neighbouring elements are traversed following the graph
structure (the less neighbouring elements exists, the better), until a match of the entire
pattern is found.

22.1 Search Plans

A search plan for the pattern in figure 22.1 is:
lkp(v1:A); out(v1,e1:a); tgt(e1,v2:B); out(v2,e3:b); tgt(e3,v3:C); out(v3,e2:a)

The search operation lkp denotes a node (or edge) lookup in the graph, out follows the out-
going edges of the given source node and in follows the incoming edges of the given target
node, while src fetches the source from the given edge and tgt fetches the target from the
given edge.

For some graphs the search plan might work well, but for the graph given in figure 22.2
it is a bad search plan. Why so can be seen in the search order sketched in figure 22.3. Due
to the multiple outgoing edges of v1 of which only one leads to a match it has to backtrack
several times.

This schedule in contrast is a a good one:
lkp(v3:C); out(v3,e2:a); tgt(e2,v2:B); out(v2,e3:b); in(v2,e1:a); src(e1,v1:A)

corresponding to the search order depicted in figure 22.4.

It is crucial for achieving high performance to prevent following graph structures splitting
into breadth as given in this example, and especially to avoid lookups on elements which are
available in high quantities.

289

290 Indices and Performance Optimization

Figure 22.1: Pattern to search

Figure 22.2: Host graph to search in

22.2 Find, Don’t Search 291

22.2 Find, Don’t Search

It is better to find elements with certain characteristics straight ahead without search, utiliz-
ing a data structure that allows to tell the elements that follow the characteristic apart from
the ones that do not, than to search for them, traversing each and every node or edge in the
graph, subjecting it to a test for the characteristic.

Welcome to indices as known from database parlance. In GrGen.NET the following
types of indices are supported:

1. Type indices

2. Neighbourhood indices

3. Attribute indices

4. Incidence count indices

5. Name index

6. Uniqueness index

22.2.1 Type Indices

All the nodes or edges in GrGen.NET of a certain type are contained in a list that can be
accessed in O(1) and iterated in O(k) with k being the number of elements in that list (the
nodes or edges of same type), in contrast to n, being the number of nodes or edges in the
graph. The first node or edge in a pattern is typically bound by iterating such a type list.
In case the pattern is disconnected, a lookup is needed per connected component. In case
multiple types have very few members, the search planner may decide to use several lookups
even in case of a connected pattern. (This can be especially the case for reflexive marker
edges pointing to the current point of processing/focus of attention in the graph.)

22.2.2 Neighbourhood Indices

All the edges outgoing from a node are contained in a list that can be accessed in O(1) and
iterated in O(k) with k being the number of elements in that list (the outgoing edges), in
contrast to n, being the number of edges in the graph. All the edges incoming to a node are
contained in a list that can be accessed in O(1) and iterated in O(k) with k being the number
of elements in that list (the incoming edges). So following neighbouring elements, crawling
alongside the structure is very cheap in GrGen.NET – and possible in both directions,
following the edges as well as in their opposite direction.

It is cheap in graph databases, too, but absolutely not in relational databases. To follow
a relation, there you have to join two complete tables, building the cartesian product of two
tables (materializing only the rows where they agree) – you must inspect all edges in the
graph to find the neighbours. Typically you optimize this with a database index that allows
to find the elements of the second table matching your focused element of the first table in
O(log(n)) – but for large n or for complex queries this global product is way less efficient
than direct local access to exactly the neighbouring elements. (Furthermore, a table join is
conceptually and notationally much heavier than an edge in a graph pattern).

In case of undirected edges, or arbitrary directed edges in the pattern, both directions are
searched, both lists – the outgoing list as well as the incoming list – are crawled.

292 Indices and Performance Optimization

Figure 22.3: Bad search order

Figure 22.4: Good search order

22.2 Find, Don’t Search 293

22.2.3 The Costs

The type and neighbourhood indices are built into each and every GrGen.NET graph,
wired into a system of ringlists (cf. 26.2). They are implicitly used by GrGen.NET, pattern
matching is carried out alongside them, in an order decided upon by the search planner.

You always benefit from them during matching (most if you are using statistics-based
search planning), but you must always pay their price: The memory consumption of a Gr-
Gen.NET node without attributes is 36 bytes using a 32bit CLR (5 pointers a 4 bytes, a
4 bytes flags field/bitvector, a 4 bytes unique id field, plus 8 bytes .NET object overhead),
it is 64 bytes for a 64bit CLR (5 pointers a 8 bytes, a 4bytes flags field, a 4 bytes unique
id field, plus 16 bytes .NET object overhead). The memory consumption of a GrGen.NET
edge without attributes is 52 bytes using a 32bit CLR (9 pointers a 4 bytes, a 4 bytes flags
field/bitvector, a 4 bytes unique id field, plus 8 bytes .NET object overhead), it is 96 bytes
for a 64bit CLR (9 pointers a 8 bytes, a 4 bytes flags field, a 4 bytes unique id field, plus
16 bytes .NET object overhead). Attributes are cheap, they only increase this by the .NET-
memory-footprint of their underlying objects.

The runtime price of maintaining those indices during graph manipulation is low, adding
a graph element is done in O(1), removing a graph element is done in O(1), too. Furthermore,
those indices allow to optimize loops by letting the pattern matching of the next iteration
start where the previous iteration left of (search state space stepping – a further built-in
contribution to the motto ”Find, Don’t Search”)).

We consider this the best you can get for the task of efficient pattern matching and
rewriting on typed, attributed multigraphs, with multiple inheritance and attributes on nodes
as well as edge types – those indices are simply worth their price in the general case. You
can only improve on this by exploiting the specifics of a less general graph model, a less
general processing strategy supporting less change operations optimally out-of-the box, or
by restricting yourself to less general and non-automatic pattern matching. E.g. by using
only single-linked ringlists for the types and incident elements, we could reduce memory
consumption considerably and thus increase query performance, but deletion and retyping
would require to iterate the full list to get to the predecessor to link it to the new successor,
so rewriting would not be O(1) anymore. Or by always entering the graph at some elsewhere
stored root nodes we could save the type ringlists (that give us the modularity of the rules).
Or by using less general edges/edges that appear only with a statically fixed association
cardinality, we could reduce them to mere pointers stored in the nodes (not supporting
attributes, not allowing to wire nodes at runtime flexibly with an arbitrary number of edges).

GrGen.NET was built for general-purpose graph pattern matching and rewriting on a
general model, to perform well on any task, with minimum programming effort for the user;
regarding this it is implemented in a way we consider optimal and not improvable. If you
are willing to invest extra programming and understanding effort to exploit the specifics of
your task at hand, you can manually code a higher-performance solution, by stripping away
features from the model you don’t need. Saving on the memory needed for the generality and
programming productivity is what gives our competitor FUJABA a lead performance-wise
for tasks where a simpler graph model is sufficient and the user is willing to invest more
development time into (and no iterative search-replace-operations are carried out, search
state space stepping wins then).

294 Indices and Performance Optimization

22.2.4 Consequences For Optimization

Use types!

Fine grain types cause a fast lookup of the first pattern element(s), or more exactly: they
cause a small list of candidate elements for the first pattern element to be tried. And they
cause quicker pruning of search branches because of early failing type checks. Using fine-
grain types is easy in GrGen, as multiple inheritance on node and edge types (cf. 4.2.1)
is supported. Besides, the more fine grain the graph is typed, the better are the statistics,
allowing GrGen.NET to find better search plans (see more for this below).

Prune early

Attribute conditions are evaluated as soon as all needed graph elements are matched (saving
us from enumerating futile match extensions). But the unit of scheduling are the full attribute
condition expressions. If an expression can be separated into different parts that depend on
less pattern elements than the entire expression (such a separation is trivial for boolean
expressions joined by logical conjunctions), split it into those parts. The parts are then
checked earlier in the search process. You could even introduce checks that are logically not
needed because a later check removes all incorrect matches anyway, just to achieve better
performance, which is the case if the checks allow to prune some branches from the search
space earlier. This holds as long as the checks are cheap, if they are expensive you could do
the opposite and introduce artificial dependencies to all pattern elements instead, to ensure
the attribute condition is evaluated as late as possible.

Prefer directed edges

Non-directed edges in the pattern are searched in both directions, considerably increasing
the search space. Use non-directed edges only if they you really needed them. For some
problems this is the case, you then simply have to pay the price of the increased effort for
the symmetry. But some problems where undirected edges are more natural can be easily
encoded with directed ones – in case of performance problems, refactor and optimize them to
employ only directed edges, imposing an arbitrary but deterministic direction on the edges.
Besides, the vstructure statistics are more discriminating in case of directed edges, leading to
better search planning results; in case of undirected ones the information from both directions
is coalesced.

Beware of Disconnected Patterns

Disconnected patterns cause a combinatorial explosion of the matches, because the overall
number of matches equals the cartesian product of the partial matches of the disconnected
parts.

This is inevitable and a price that must be simply paid if this is really needed. But it is
normally not needed, and, most importantly, is not specified accidentally, as a disconnected
pattern in a single flat pattern is typically immediately visible. But take care of nested pat-
terns or subpatterns. You might overlook that nested patterns and subpatterns are matched
strictly one after the other and especially after their containing pattern. You cannot ignore
block borders and subpattern calls, they disconnect otherwise connected components. Esp.
take care of not disconnecting patterns when factoring out a common part into a subpattern
to improve the code. But due to inlining, things look better than what was said until now.

22.2 Find, Don’t Search 295

EXAMPLE (137)

Take a look at pattern nesting, when the pattern is disconnected, you run into issues due to
combinatorial explosion. This holds for sure for alternative and iterated patterns.
So you must take care of pattern cardinality ...

1 test bad {

2 n1:Node; n2:Node; // builds cartesian product of all nodes in the graph (O(n*n))

3 multiple {

4 n1 --> n2; // then filters it down to the connected nodes

5 }

6 }

... and alternatives ...

1 test bad {

2 n1:Node; n2:Node; // builds cartesian product of all nodes in the graph (O(n*n))

3 alternative {

4 single {

5 n1 --> n2; // then filters it down to the connected nodes

6 }

7 }

8 }

EXAMPLE (138)

Take a look at pattern nesting, when the pattern is disconnected, you run into issues due to
combinatorial explosion. This may hold for independent and subpatterns – but inlining is of
help here.
The edge from the independent in the example is typically inlined into the pattern removing
the issue...

1 test bad {

2 n1:Node; n2:Node; // builds cartesian product of all nodes in the graph (O(n*n))

3 independent {

4 n1 --> n2; // then filters it down to the connected nodes

5 }

6 }

... as is the subpattern body inlined into the pattern, removing the performance issue.

1 test bad {

2 n1:Node; n2:Node; // builds cartesian product of all nodes in the graph (O(n*n))

3 :P(n1,n2);

4 }

5 pattern P(n1:Node, n2:Node) {

6 n1 --> n2; // then filters it down to the connected nodes

7 }

Take a look at the output of the explain command to check whether inlining occurred.

The need to take nested pattern borders and subpattern calls into account is due to the
recursive descent matching with a multi-pushdown machine as described in Section 8.4 and
Section 26.2.

Subpatterns are matched top-down, from the input parameters on. If the input arguments
are disconnected in the pattern containing the subpattern, the containing pattern enumerates

296 Indices and Performance Optimization

the cross product of the matches of the disconnected parts, which is only later on filtered for
the ones which are connected. This will likely wreak havoc on search performance. Even if
you don’t search for all matches, if you only compute a single overall match — the calling
pattern must enumerate a lot of combinations of its parts (worsened by the fact that those
are typically found often because of their simplicity), until the nested pattern finally is able
to connect one of the disconnected pairs fed into it. It might be more efficient to just search
from a start parameter towards a connected end location, and yield the found one out (cf.
8.3); or to search from a start parameter on all connected end locations, collecting the found
ones in a result set – and then to check the ones found alongside connectedness in a second
step.

Nested patterns are also matched top-down, from the input parameters on. But parameter
passing is implicit here, the elements from the containing pattern that are referenced in
the nested pattern are passed in automatically as arguments. This holds especially for the
alternative and iterated constructs, which are matched with the pushdown machine (cf.
26.2), too, but also for the negative and independent constructs, which are matched with
nested local code embedded into the matcher code of their containing pattern.

But don’t shy away from using subpatterns or independents too early, inlining is of help
here!

The elements from an independent that are linking a disconnected pattern are typically
inlined into their using pattern. The elements from a subpattern are often inlined into their
using pattern, causing the pattern to get connected (again), but also removing the pushdown
machine overhead. But you must take into account that the inlining implemented in GrGen
is limited to depth one. If a pattern is disconnected over two or more levels of subpattern
usage (which might happen statically with one subpattern using another subpattern, and
will for sure dynamically on a subpattern recursion path), it will hit performance. You may
have a look at the output of the explain command (cf. 20.16) to see if the subpatterns are
disconnected. This is typically indicated by multiple lookups in the containing pattern, for
fetching the disconnected starting points, which are then handed down with preset parameters
to the nested or subpatterns, and only get connected there, with search commands following
their outgoing or incoming edges.

22.2.5 Search Planning On Request

Search planning at runtime is only carried out on request! You must analyze the graph and
then re-generate the matchers manually, with custom graph analyze and custom actions

gen searchplans issued on the command line, or with calls of the Custom methods of the
IGraph and the IActions objects. Unless you do so, the static search plan is kept in place.

You can display the search plan currently employed with the custom actions explain

<actionname> command, in order to inspect how the pattern elements are matched. Issue
it before search planning to show the statically generated search plan, issue it afterwards to
show the dynamically re-generated search plan. See subsection 20.16 for more on this.

The initial static search plan typically starts with a lookup of an arbitrary edge, and then
arbitrarily follows the pattern graph structure. Interestingly, in many cases this still works
quite well because of the quick pruning by the type checks in a well-typed graph. In addition,
often the rules match from some parameter nodes onwards, which are typically well-suited
starting points for searching.

Beware: the analyze command is costly. It helps in improving the matching performance,
but requires execution time on its own. Don’t use it freely.

It is costly because it has to visit all the nodes and edges in the graph, in order to gather
statistical data about the amount of breadth-splitting per node and edge-types. For each
(NodeType,EdgeType,NodeType∗)-triple (for all node and edge types), it counts for each
start node of NodeType the number of edges of EdgeType, which are leading to an end node
of NodeType∗. Given that information, search planning is able compute a search plan that

22.2 Find, Don’t Search 297

avoids to follow structures splitting into breadth (V-structures) that occur often in the host
graph. Given the information about the element counts per type (which is directly available
from the host graph), search planning is able to compute a search plan that avoids lookups
on populated types.

Such a dynamically generated search plan typically leads to minimum matching durations,
but not always – sometimes you may fare better by manually assigning priorities to the pattern
elements, thus influencing the search order in the initial static search plan (high-prio elements
are matched first).

Again: Use types! The more fine grain a graph is typed, the better are the statistics
regarding the breadth-splitting and the number of elements of a certain type, and the better
are then in consequence the search plans in their ability of evading breadth-splitting structures
and avoiding lookups of often occurring types.

22.2.6 Attribute Indices

In addition to the built-in type and neighbourhood indices, you may declare attribute indices.
An attribute index allows to do a lookup based on an attribute value, or a range of attribute
values. This stands in contrast to the default behaviour of carrying out a lookup on a type,
visiting all n elements of the type, filtering them down to the elements of interest (within
range) with an attribute condition. If this means you have to inspect a lot of values while
searching only for a few ones, you should use an attribute index and benefit from its massively
improved selectivity for the lookup. It requires only O(log(n)) to search for the first element,
and O(k) for the k elements within the bounds specified. It is implemented with a balanced
binary search tree (an AA-tree[And93] to be exact) that requires three pointers plus one 4
byte integer per element contained in the index (two pointers to the left and right tree nodes,
and one to the graph element as value), which is really cheap. But it must be maintained on
graph changes, which is less cheap. On each and every graph element insertion and removal,
but esp. attribute assignment, the index has to be updated, which is an O(log(n)) operation.
That’s only logarithmic, but clearly worse than the default O(1) behaviour of GrGen.NET,
so if you do a lot of graph manipulations and only few lookups based on it, an index may in
fact degrade performance.

Declaration in the model

In contrast to type and neighbourhood indices that are always available (they define the core
of a GrGen.NET-graph) and implicitly used (when matching a specified pattern), all other
indices have to be worked with explicitly.

An attribute index must be declared in the model.

AttributeIndexDecl

- index
�� �- IndexName - {

���- Type - .
���- AttributeName - }

���-

Following the index keyword, a name for the index is specified; in the body of the index,
the type and name of the attribute to be indexed are given.

Usage in the rules

In the pattern part you may ask for an element to get bound to an element from an index;
this is syntactically specified by giving the index access enclosed in left and right braces after
the element declaration. If the type of the element retrieved from the index is not compatible
to the type of the pattern element specified, or if the index is empty, matching fails. The
elements from the index are successively bound to the pattern element, then the rest of the
pattern is bound and checked, until the requested number of matches is found.

298 Indices and Performance Optimization

IndexAccess

- {
���- IndexName - ==

�� �- Expression - }
����

�- {���- ascending
�� ��

�- descending
�� �

�

- (
����

�- IndexBound �
�- ,

���- IndexBound

�

�

-)
���- }���

�

-

IndexBound

- IndexName - <
����

�- <=
�� ��- >
����- >=
�� �

�

- Expression -

The pattern element may be bound to the elements from the index with an attribute value
equal to a specified value, or to the elements from the index in ascending or descending order.
In case of ordered access, you may specify no bound, this is typically only of interest when a
single match is requested, the one with the highest or lowest attribute value (satisfying the
other constraints of the pattern), or you may specify a lower bound, or an upper bound, or
a lower and an upper bound.

IndexAccessLoopStatement

- ForIndexAccessHeader - {
����

�- Statement�
�

�

�

- }
���-

ForIndexAccessHeader

- for
�� �- (

���- Var - :
���- GraphElementType - in

�� �- IndexAccess -)
���-

IndexAccessLoopSequence

- for
�� �- {���- Var - :

���- GraphElementType - in
�� �- IndexAccess - ;

���- RewriteSequence - }
���-

The index can be accessed furtheron from the statements of the rule language in the form
of a loop. The IndexAccess in the loop header follows the format used in the index access in
the pattern. The iteration variable is bound to the graph element retrieved from the index,
and then, for each such element, the body is executed.

Moreover, the index can be iterated over in the sequences.

22.2 Find, Don’t Search 299

EXAMPLE (139)

The following index foo allows to quickly fetch nodes of type N (or a subtype) based on the
value of its attribute i.

1 node class N {

2 i : int;

3 }

4 index foo { N.i }

Fetching typically occurs in the rules, binding a pattern element based on the constraints
specified with the lookup. The test t only matches if a node is found whose attribute i

matches the parameter j. The rule r ascendingly binds the nodes whose attribute i is
greater than or equal 5 and lower than 13. The ascendingly means that the node n with
smallest attribute i is matched that satisfies the other constraints of the pattern (if there are
no further constraints like in this example, it is the node with smallest attribute satisfying
the limits of the index access).

1 test t(var j:int) {

2 n:N{foo==j};

3 }

4

5 rule r {

6 n:N{ascending(foo>=5, foo<13)};

7

8 modify {

9 emit("The value of attribute i is ", n.i, "\n");

10 }

11 }

An index may also be queried with a for loop from the statements, accepting the same
bounds; or with a for loop from the sequences.

1 rule rd {

2 modify {

3 eval {

4 for(n:N in {descending(foo<=13)}) {

5 emit("The value of attribute i is ", n.i, "\n");

6 }

7 }

8 exec (

9 for{n:N in {descending(foo<=13)}; {emit("The value of attribute i is ", n.i, "\n")} }

10);

11 }

12 }

22.2.7 Incidence Count Indices

Attribute indices can be seen as a general-purpose device, that extends the built-in ability
of quick lookup by-type and of quick lookup by-neighbourhood with a quick lookup by-
attribute, thus giving complete quick-lookup coverage for all foundational elements of the
graph model. Incidence count indices in contrast are more of a special-purpose device for a
certain abstraction that can be applied to a graph – the count of incident edges – and are
beneficial only if that abstraction is of importance. They allow you to quickly look up nodes
based on their number of incident edges. This is especially beneficial for algorithms that work
best when they traverse the nodes from the ones with the highest number of incident edges

300 Indices and Performance Optimization

to the ones with the lowest number of incident edges (or the other way round).

The index furtheron allows to fetch the incidence count for a node quickly with just an
index lookup, but typically no gain can be made from this, as counting the incident edges of
a node is commonly cheap (an O(log(n) index lookup versus an O(k) counting enumeration,
with k being the number of edges incident to the focused node).

Declaration in the model

An incidence count index must be declared in the model.

IncidenceCountIndexDecl

- index
�� �- IndexName - {

���- IncidenceFunction - }
���-

CountIncidenceFunction

- CountIncidenceFunctionName - (
���- NodeType -)

����
�- CountIncidenceFunctionName - (

���- NodeType - ,
���- EdgeType -)

����- CountIncidenceFunctionName - (
���- NodeType - ,

���- EdgeType - ,
���- NodeType -)

���

�

-

Following the index keyword, a name for the index is specified; in the body of the index,
the incidence function and its types are given. The admissible count incidence functions are
countIncident, countIncoming, and countOutgoing, with semantics as already introduced
in 14.2.3. (The count of the edges complying to the specified incidence function is stored
in an index, for all nodes in the graph of the type of the first node in the count incidence
function.)

Usage in the rules

An incidence count index can be used in the pattern in exactly the same way as an attribute
index, see above 22.2.6.

In addition to the index lookup in the pattern, the count may be queried from the rule
language expressions (the attributes can be accessed directly for a pattern element, the in-
cidence count would have to be counted in contrast, but this only saves time for heavily
connected nodes).

IncidenceCountIndexAccessExpr

- IndexName - [
���- Expression -]

���-

The index access specified in indexer notation expects a node (of the type as specified with
the first node type in the incidence function) as input argument, and returns the incidence
count for that node as stored in the index as int.

22.2 Find, Don’t Search 301

EXAMPLE (140)

The following index bar allows to quickly fetch nodes based on the number of outgoing

edges, qux allows to quickly fetch nodes of type N based on the number of incoming edges
of type E, stemming from a source node of type N.

1 node class N {

2 i:int = 0;

3 }

4 edge class E;

5 index bar { countOutgoing(Node) }

6 index qux { countIncoming(N, E, N) }

Fetching typically occurs in the rules, binding a pattern element based on the constraints
specified with the lookup. The test t returns the node n in the graph with the maximum
number of outgoing edges. The rule r ascendingly binds the nodes whose number of incoming
edges of type E from a node of type N is greater than or equal the value of attribute i of node
l matched before (constrained to values below 42 by the if); it emits the count of outgoing
edges of n, queried from the index bar with array access notation.

1 test t() {

2 n:Node{descending(bar)};

3 }

4

5 rule r() {

6 l:N; if{ l.i<42;}

7 n:N{ascending(qux>=l.i)};

8

9 modify {

10 emit("count outgoing(Node): ", bar[n], "\n");

11 }

12 }

22.2.8 Name Index

A named graph is a graph where each element bears a unique name and can be looked up
quickly by that name. So basically it works as a graph with an integrated key-value store
from a string to a graph element, and one from a graph element to a string. It is implemented
with two hash maps, one from the names to the elements, and the other from the elements
to the names. Lookup is carried out in O(1) (either way). Maintaining the index on graph
insertions and removals is carried out in O(1), too. So in contrast to the attribute index
and the incidence count index, a name index does not allow multiple elements per indexed
property (which is here the name).

No declaration needed

The name index does not need to be declared, it is implemented with the named graph,
which is always generated together with its sibling, the non-named graph. If you are working
with the GrShell, this is the only kind of graph you’ll be working with, as the shell always
instantiates the named graph (it delivers the persistent names you see in the debugger).
At API level you may opt for the non-named graph that is considerably cheaper regarding
memory usage – a named graph requires not much less than about twice the amount of
memory of a plain graph (unless heavily attributed).

But please note in that case that the export and import capabilities require uniquely

302 Indices and Performance Optimization

named elements and thus only work with named graphs. If given a plain graph, the exporters
just create a named graph. A graph is always created as a named graph by the importers.
So non-named graphs are typically only of interest if you don’t need to persist them into a
serialization format.

Usage in the rules

The name index can be used in the pattern to look up graph elements by their name, with
the same syntax as used in the GrShell for accessing elements by their (persistent) name.

???
�� �

There is at most one element existing with the name asked for; if no graph element with
that name exists, matching fails and backtracks, if an element exists, the pattern element is
bound to it, and matching continues. Please note that the (string-)expression used to compute
the name is only allowed to reference at most one other pattern element (not handed in as
parameter).

The name index may be further queried from the rule language expressions with 3 func-
tions:

nameof(.)

returns the name (type string) of the given node or edge (or (sub)graph, a missing
argument amounts to the host graph).

nodeByName(.)

returns the node of the given name, or null if no node of that name exists. Optionally,
a target node type may be given as second argument, then you receive a node of that
type as result, or null if no node of that name and type exists.

edgeByName(.)

returns the edge of the given name, or null if no edge of that name exists. Optionally,
a target edge type may be given as second argument, then you receive an edge of that
type as result, or null if no edge of that name and type exists.

The names are normally automatically assigned (computed from a global counter in-
creased with each element, prepended by the dollar symbol – unless you specify a name with
an attribute initialization list, cf.10.8), but you may assign a different name to an attribute
element. This can be only done in an eval-block, or a procedure, with a nameof-assignment.

NameofAssignment

- nameof - (
���- Element -)

���- =
���- Expression -

When you do so, it is your responsibility to ensure that the name does not already exist,
otherwise the assignment will cause a runtime exception. The same syntax may be used to
assign the name of a (sub)graph, a missing element amounts to the host graph.

22.2 Find, Don’t Search 303

EXAMPLE (141)

The test t succeeds if there is a node of name ”foo” existing in the graph, with a reflexive
edge of the name defined by input parameter s, and there is a further node of name ”bar”
existing the graph.

1 test t(var s:string) {

2 n:Node{@("foo")} -e:Edge{@(s)}-> n;

3 if{ nodeByName("bar") != null; }

4 }

The rule r yields the name of the node matched to n out to oldname, and changes the name
of the node in the modify part by prepending the name of the host graph. Furthermore, it
prints the name of the edge bound to e.

1 rule r() {

2 n:Node -e:Edge->;

3

4 def var oldname:string;

5 yield { yield oldname = nameof(n); }

6

7 modify {

8 eval {

9 nameof(n) = nameof() + "_" + oldname;

10 }

11 emit("The name of the graph element bound to e is ", nameof(e), "\n");

12 }

13 }

22.2.9 Uniqueness Index

Uniqueness can be applied in two parts, the i) uniqueness constraint, and ii) the uniqueness
index.

The uniqueness constraint ensures that each element in the graph has a unique id. It
allows in addition to fetch the unique id from a graph element. You may see it as a key-value
store from graph elements to their ids – it is a very efficient one, as the unique-id is stored
in the graph elements.

The uniqueness index allows in addition to fetch a graph element by its unique id, extend-
ing the uniqueness property to an index allowing for quick graph element lookup. You may
see it as a key-value store from the unique ids to their graph elements. This one is realized
with an array of unique ids to graph elements.

So lookup is carried out efficiently in O(1) either way. Maintaining the uniqueness infor-
mation is in O(log(n)), but much less on average, as the ids of deleted elements have to be
stored in a heap (the data structure, not the memory model) for quick reuse of the lowest
one upon graph element addition (this way we ensure a maximally packed id range, which
keeps the index array and the is-matched-bit-arrays of the parallelized matchers small and
packed).

A uniqueness index does not allow multiple elements per indexed property (which is here
the unique id), like the name index, and in contrast to the attribute and incidence count
indices.

304 Indices and Performance Optimization

Declaration in the model

The space for the unique id is always reserved in the graph elements, but unique ids are
only assigned if you declare an uniqueness constraint. Or if you declare another index in
the model, as indices depend on the unique ids, or if you use parallelize annotations, as the
parallelized matchers depend on the unique ids, too. If you need to fetch graph elements by
their unique ids, you must declare an unique index (in addition or instead).

UniqueConstraintDecl

- node
�� �- edge

�� �- unique
�� �- ;

���-

UniqueIndexDecl

- index
�� �- unique

�� �- ;
���-

Usage in the rules

The unique index can be used in the pattern to lookup graph elements by their unique id.

UniqueIndexAccessExpr

- {
���- unique

�� �- [
���- Expression -]

���- }���-

There is at most one element existing with the unique id asked for; if no graph element
with that unique id exists, matching fails and backtracks, if an element exists, the pattern
element is bound to it, and matching continues. Please note that the expression used to
compute the unique id is only allowed to reference at most one pattern element (not handed
in as parameter).

The unique constraint may be further queried from the rule language expressions with the
uniqueof function, the unique index with the nodeByUnique and edgeByUnique functions:

uniqueof(.)

returns the unique id (type int) of the given node or edge (or (sub)graph, a missing
argument amounts to the host graph).

nodeByUnique(.)

returns the node of the given unique id, or null if no node of that unique id exists.
Optionally, a target node type may be given as second argument, then you receive a
node of that type as result, or null if no node of that unique id and type exists.

edgeByUnique(.)

returns the edge of the given unique id, or null if no edge of that unique id exists.
Optionally, a target edge type may be given as second argument, then you receive a
edge of that type as result, or null if no edge of that name and type exists.

The unique ids are automatically assigned (utilizing an id pool that is enlarged with newly
allocated ids when an element is added to the graph but the pool is empty, or reusing an
already existing id; when an element is removed from the graph, its id returns to the id pool).
In contrast to the names, you cannot change the id assignment.

22.3 Location Passing and Memorization 305

EXAMPLE (142)

The following model declares a node class N, specifies the uniqueness constraint, and requests
the uniqueness index.

1 node class N;

2 node edge unique;

3 index unique;

The test t succeeds if there is a node of unique id 0 existing in the graph, with a reflexive
edge of the unique id defined by input parameter i, and there is a further node of unique id
42 existing the graph. It is unlikely you will really use code like that as you cannot assign a
unique id.

1 test t(var i:int) {

2 n:N{unique[0]} -e:Edge{unique[i]}-> n;

3 if{ nodeByUnique(42) != null; }

4 }

The rule r allows to match n and m to the same graph element homomorphically, just to
forbid it then with the condition requesting that their unique-ids must be different. The
point here is that the hom allows the engine to omit the isomorphy check, yielding slightly
better performance. By using < instead of != we ensure that we get only one match for
the automorphic pattern in case of an application with all-bracketing – the one in which the
element with the smaller id is bound to n. Furthermore, the rule prints the unique id of the
node bound to n.

1 rule r() {

2 n:N -- m:N;

3 hom(n,m);

4 if{ uniqueof(n) < uniqueof(m); }

5

6 modify {

7 emit("The unique id of the graph element bound to n is ", uniqueof(n), "\n");

8 }

9 }

22.3 Location Passing and Memorization

Often in a transformation, you know the location that needs processing from a previous step.
In this case, return these locations out from the rules, store them in variables of node (or edge)
type, and hand them in again via rule arguments to the follow-up rules. Or call embedded
rules, directly handing in elements from the containing rule, saving you the intermediate
assignments.

Commonly, this is just the right way of handling this situation, as you must continue
processing the very spot you just processed with the previous rule(s) to achieve a valid
result. Sometimes you don’t need to, but gain higher performance when you do so. Optimize
this way then, use rooted pattern matching, with roots defined by previous rules, it’s cheaper
as it saves you the lookup in the graph.

A different way of parameter passing is adding reflexive edges to the graph to mark the
spot of processing. This is normally working well, too, but the parameter passing is typically
easier and does not ”pollute” the graph with processing information.

In case of a statically not known number of locations as they appear e.g. in a wavefront
algorithm, you may store the locations in storages (cf. chapter 13), i.e. collection valued

306 Indices and Performance Optimization

variables (which are iterated over in the sequences or passed to the rules as ref parameters).
Search will then start at these parameters, instead of looking up a value in the graph by
type (unless search planning taking the statistics about the graph into account comes to the
conclusion that a lookup on a super-seldom type is still the better approach).

A sophisticated way of remembering facts about non-local properties is to compute them
with data flow analyses (see section 19.6) and store them as attributes in the graph elements.
This allows to replace searching for distant values, or global properties like reachability, by
checking a local property, at the price of re-running an analysis every time the graph changes
in an important way.

Variables and storages can be seen as indices into the graph, indices that are typically
more selective than the automatically supplied indices; but in contrast to the automatically
supplied ones, you must maintain them by hand. Beware of elements already deleted from
the graph still hanging out in your storage because you forgot to remove them.

The approach of remembering state instead of searching when needed has a clear caveat:
the code becomes susceptible to ordering effects (more brittle) and less readable. As in normal
programming, you must balance performance optimizations against maintainability.

NOTE (55)

If a simple specification is fast enough, keep it simple. If the program executes fast enough,
let it carry out unneeded work. You must weight programming time esp. including the long
term costs of maintenance against execution time.

22.4 Profile and Parallelize

A basic and often sufficient means of profiling is built into GrShell: After each sequence
execution, the time required to carry it out is printed.

Sometimes you need further information about what’s going on. Use the built-in pro-
filing1 then, by specifying the profile compiler option (cf. 2.2.1) to request search code
instrumentation, or better the set profile on shell command (cf. 20.14). You receive two
kinds of results when executing matchers instrumented this way.

1. After each sequence execution, the shell prints out the number of search steps that were
carried out, in addition to the time. A search step consists of binding a graph element
to a pattern element.

2. You can request a detailed per-action profile with the show profile shell command
(cf. 20.4).

The detailed per-action profile contains a value that gives you a hint regarding the ex-
pected use of matcher parallelization, the higher the number the better is the rule suited.

Parallelize

A rule or test annotated with [parallelize=k] will be matched with k worker threads from
a thread pool. More exactly: at most k worker threads, the number is clipped by the number
of really available processors, on a single core the normal sequential matcher will be used.
(The current implementation defined maximum is 64.)

Parallelization distributes work alongside the first loop that is binding a pattern element
to candidate graph elements. If that loops only once nothing is gained. If each loop iteration

1You may of course apply a profiler on the generated code, but then you descend to the level of implemen-
tation of GrGen.NET

22.5 Compilation and Static Knowledge 307

only executes very few search work following candidate assignment, things become slower
because of threading and locking overhead. Don’t just append the parallelize annotation to
each and every rule in the hope things will become faster! Only search-intensive tasks benefit,
only for them does the overhead of parallelization pay off. But for those search-intensive tasks,
you can achieve high speedups, reaping benefits from our-days multicore machines.

Remark: Only the pattern matcher of an action is parallelized, so only the search process
is parallelized. This offers the biggest bang for the bucks invested, as search is the expensive
task, and it allows you to stick to the much simpler sequential programming model. A
parallelization of the kind presented in [Sch08] offers potentially even higher speedups, but at
the price of dealing with a parallel programming model, and at the price of graph partitioning
that is very hard to get right in a general-purpose tool.

There’s a second part that can be parallelized, the equalsAny function checking for graph
isomorphy of a new candidate graph against a set of known graphs. The EqualsAnyParal-
lelization clause in the model must specify the number of worker threads used in parallel.
A for equalsAny[parallelize=8]; requests 8 worker threads for checking whether there’s
already a graph existing that is isomorphic to the candidate. Graph isomorphy checking is
expensive, you may gain considerable speed-ups in state space enumeration (at the price of
having to maintain a set of already known graphs).

22.5 Compilation and Static Knowledge

Use saved graph analysis data

The different instance graphs for a certain graph-based problem you work with often show
similar characteristics regarding the types and their connectedness. You can analyze such a
characteristic graph, once, and save the results, with the custom graph statistics save

command, cf. 20.16. And build the static matchers based on it, at each following static action
generation, by loading that statistics file. This is possible with the statistics compiler
option, cf. 2.2.1, and with the shell new set statistics command, cf. 20.14. It is seldom
that up-to-the-point dynamic information about the host graph makes a real difference, while
graph analysis and matcher re-generation at runtime are costly – push this effort from runtime
to compilation time.

Use Compiled Sequences

The compiled sequences from the rules file are executed a good deal faster than the interpreted
sequences from the shell. So if you have to optimize for performance, replace interpreted
sequences by compiled ones. The price you pay is a loss of debuggability, a compiled sequence
can only be executed as one big step (the introduction of subrule debugging – see 21.5
– improved on this, but the differences regarding state introspection and control are still
considerable).

Use Pre-Compiled Code

For shortly-running tasks the JIT-compiling overhead dominates the execution runtimes. The
times in the range of a few dozen milliseconds printed out for most of our tests are the times
needed for just-in-time compilation of the .NET bytecode of the matchers into machine code
— the matching itself is typically several orders of magnitude faster, it is in the range of
microseconds or below (for the small example graphs and simple patterns used). This effect
can be seen when a sequence takes some hundred milliseconds to execute when executed
for the first time, but afterwards completes immediately (for a task of the same size). You
may cut down on this overhead by utilizing the ngen tool of .NET for pre-compiling the
GrGen.NET-dlls (the supplied as well as the generated ones, cf. 2.1), or the --aot option
of mono, for ahead-of-time compilation.

308 Indices and Performance Optimization

22.6 Miscellaneous Things

Visited Flags versus Storages versus Reflexive Edges

Visited flags are the most efficient way of marking elements, in case a large number of elements
has to be marked, or if all elements – irrespective whether marked or not – need to be iterated.
(This holds because they are stored in a flags variable of the graph elements themselves (the
first k flags, afterwards they need to be stored outside of the graph)).

Otherwise they are inefficient because they do not allow to access(/lookup) the marked
elements based on the marking information — a lot of elements need to be iterated for a
lookup, just to filter the visited ones out. Storages that allow you to access their contained
elements quickly are better then.

An alternative are reflexive marker edges of a special type in the graph, search planning
favors them (assuming they appear in much smaller quantities than normal edges), so search
starts at those elements. Besides they can be visualized directly in the graph (emulating a
kind of ”cursor”).

Loops versus All-Bracketing versus Iterated

Regarding performance, you should prefer all-bracketing (cf. 9.1) to sequence loops and those
to iterated patterns. Applying a rule on all matches is the most efficient way of processing
multiple spots in a graph. This holds for normal matchers, but even more so for parallelized
matchers. For a normal rule call, typically a part of the concurrent search effort is wasted
because some workers already passed the point where the match was found; when all matches
are sought, no effort is wasted – and typically the entire search takes longer in that case, which
lowers the break-even point regarding the overhead incurred by the parallel matcher.

Loops are not much slower due to the search state space stepping, continuing where the
last iteration left of. But they are semantically considerably different: each step of the loop
operates on the then-changed graph, in contrast to applying a rule on all matches available
at a certain point in time. If you have to explore new match possibilities created by applying
the rule you need a loop, but even then you’ll likely benefit from applying an all-bracketed
rule in the loop. On the other hand you have to use a loop in case the parts of the matches
which are to be modified, e.g. retyped, are not disjoint (an element can only be changed
once).

Iterated patterns are similar to all-bracketed rules insofar that they match all spots in
the graph existing at a certain point in time. They can be embedded directly in a rule (this
is considerably less heavyweight than declaring a rule and passing the attachment points as
parameters), and they allow for easy yielding of elements to the pattern (typically with an
accumulating yield; this is also less heavyweight than returning elements back to a calling
rule). But the overhead of the three pushdown machine must be payed for them, and they
can’t be matched in parallel. Using an iterated as the outermost block of a rule is wasteful,
all-bracketing is to be preferred in this case. But don’t replace iterateds unless really needed,
they are simply much more convenient.

Reachable versus Subpattern Recursion

Prefer the reachable predicate over subpattern recursion. The reachable predicate has a
tight implementation, while subpattern recursion must pay for graph parsing with the three
pushdown machine (whose execution overhead is not horrible but can be clearly felt). Note
the semantic difference: elements already matched in the pattern cannot be matched again in
case of subpattern recursion due to the isomorphy constraint. The reachable predicate does
not know about the pattern it is called from, so elements already matched in the pattern
can get matched again. This is often what is wanted anyway, and leads together with the
increased convenience of having only to call a pre-implemented functionality instead of having

22.6 Miscellaneous Things 309

to program an iterated path to the clear advice to favor the reachable predicate. You have to
use subpattern recursion, though, if you want to impose a certain pattern of type alternation
on the iterated path, or if you want to match more than chains of single nodes linked by single
edges (esp. attached tree-like structures), or if you want to somehow change the elements on
the path – not searching merely for existence.

Helper Programs versus Patterns

GrGen.NET search planning can be compared to searching straw stars on a freshly harvested
field, looking at the places where the ground is only slightly covered, only reaching into
the haystacks when they can’t be circumvented at all, and only for peripheral parts. A
pattern matcher is generated based on the assumption that search planning worked well in
circumventing those haystacks. It is based on nested loops for binding the pattern elements
to the graph elements; and for a pattern node that is reached via multiple pattern edges on
comparison code to check whether the node bound to the pattern node with the first loop is
the same as the node that is reached later on from the other parts.

That approach works very well for sparse graphs with low incidence counts. But for
graphs with massively linked parts that need to be reached on different paths you may need
to overwrite this behaviour with hashset based connectedness checks.

The comparison code as such is a simple object identity comparison, so it is very cheap,
but what weights in here are the cycles needed to iterate through the many different edge
candidates until one is found that indeed is incident to the current node candidate. Hashset
based connectedness checks are a good deal more expensive than iteration and reference
comparison (esp. due to hashset building and filling), but they can be done in O(1) in
contrast. For a handful of elements, they straight loose against the default code emitted by
GrGen.NET, but when we speak of hundreds or thousands of elements, they win.

So when you have to find all nodes that are adjacent to two different nodes at the same
time, and both of those have a considerable amount of adjacent nodes in addition, you should
switch to the following approach: store the adjacent nodes of one node in a hash set, and
query it with the adjacent nodes from the other node. This is only O(n) instead of O(n∗n) due
to the O(1) hash set lookup (applied as query, or implicitly used in a hash set intersection).

This especially holds when you are only interested in the fact whether a certain minimum
number is reached – in that case you may write a helper function that returns as soon as
this amount is reached; see [Jak14] for an example of this. Using a helper function is also
commonly more lightweight than using a helper rule (in case the helper function does not
get large, which is the case when a pattern containing more than a handful of elements is
needed).

Helper Programs versus Patterns on an Example

In the example [Jak14] mentioned above which is solving the TTC14 Movie Database Case
[HKT14], we started optimizing the rule shown in Fig. 22.6 with the search plan printed by
the explain command (cf. 20.16) in Figure 22.5.

The graph is entered with a lookup of a personToMovie edge, then the candidates for
the source node pn1 and the target node m1 are extracted from it. Afterwards, the other
personToMovie edge is matched in reverse from the movie to pn2. Several elements in
the independent are handed in as already matched presets from the outer pattern, then
the personToMovie edges are taken from pn1 to the movies m2 and m3, and finally the
personToMovie edges from pn2 are matched, with an implicit check that the target movie is
the same as the one already matched.

We see here an automatically applied optimization, the movie m1 was inlined from the
independent pattern to its containing pattern. Without this optimization, pn1 and pn2

would have to be enumerated in the main pattern unconnected, resulting in the unfolding

310 Indices and Performance Optimization

findCouples:

lookup -_edge0_inlined_idpt_0:personToMovie-> in graph

from <-_edge0_inlined_idpt_0- get source pn1:Person

from -_edge0_inlined_idpt_0-> get target m1_inlined_idpt_0:Movie

from m1_inlined_idpt_0 incoming <-_edge1_inlined_idpt_0:personToMovie-

from <-_edge1_inlined_idpt_0- get source pn2:Person

independent {

(preset: pn1)

(preset: m1 after independent inlining)

(preset: pn2)

(preset: _edge0 after independent inlining)

(preset: _edge1 after independent inlining)

from pn1 outgoing -_edge2:personToMovie->

from -_edge2-> get target m2:Movie

from pn1 outgoing -_edge4:personToMovie->

from -_edge4-> get target m3:Movie

from pn2 outgoing -_edge3:personToMovie-> check m2 connected to _edge3

from pn2 outgoing -_edge5:personToMovie-> check m3 connected to _edge5

}

Figure 22.5: Initial search plan

rule f indCouples
{

pn1 : Person ; pn2 : Person ;
independent {

pn1 −:personToMovie−> m1: Movie <−:personToMovie− pn2 ;
pn1 −:personToMovie−> m2: Movie <−:personToMovie− pn2 ;
pn1 −:personToMovie−> m3: Movie <−:personToMovie− pn2 ;

}

modify {
c : Couple ;
c −:p1−> pn1 ;
c −:p2−> pn2 ;

exec (addCommonMoviesAndComputeAverageRanking (c , pn1 , pn2)) ;
}

} \ auto

Figure 22.6: findCouples rule

22.6 Miscellaneous Things 311

of the cartesian product of all Person nodes — before handing it in to the matcher of the
nested independent pattern in order to purge the actors without a connecting movie.

Note that connectedness checks for nodes that are reached via multiple edges are carried
out as early as possible. In the example search plan, take a look at the two latest lines:
from pn2 outgoing -_edge3:personToMovie-> check m2 connected to _edge3

from pn2 outgoing -_edge5:personToMovie-> check m3 connected to _edge5

For those two lines, after the edges were matched, there are no get target operations to fetch
m2 and m3 existing, because the targets m2 and m3 were already matched from other edges
on. Instead, the connectedness check is carried out here: it is checked that the target node of
_edge3 is equal to the target node already bound to m2, and that the target node of _edge5
is equal to the target node already bound to m3.

Helper Programs versus Patterns on an Example, Optimized

In the example case [Jak14] we applied a succession of optimization steps. The final optimized
rule is shown in Figure 22.8, and its helper functions in Figure 22.9 and Figure 22.10. Its
search plan is listed in Figure 22.7 below.

findCouplesOpt:

parallelized lookup pn1:Person in graph

if { depending on findCouplesOpt_node_pn1 }

from pn1 outgoing -p2m1_inlined_idpt_0:personToMovie->

from -p2m1_inlined_idpt_0-> get target m1_inlined_idpt_0:Movie

from m1_inlined_idpt_0 incoming <-p2m2_inlined_idpt_0:personToMovie-

from <-p2m2_inlined_idpt_0- get source pn2:Person

if { depending on findCouplesOpt_node_pn2 }

if { depending on findCouplesOpt_node_pn1,findCouplesOpt_node_pn2 }

independent {

(preset: pn1)

(preset: m1 after independent inlining)

(preset: pn2)

if { depending on findCouplesOpt_node_pn1,findCouplesOpt_node_pn2 }

(preset: p2m1 after independent inlining)

(preset: p2m2 after independent inlining)

}

Figure 22.7: Final search plan

Note the parallelized first lookup that is spreading matching work over multiple threads.
In addition, the computation of the common movies is executed in parallel, materializing the
results to a common movies set, per match. Only a part of the original pattern is used here,
because the connectedness check was moved to a helper function, called from an attribute
condition.

312 Indices and Performance Optimization

rule f indCouplesOpt [p a r a l l e l i z e =16]
{

pn1 : Person ; pn2 : Person ;
hom(pn1 , pn2) ;
independent {

pn1 −p2m1 : personToMovie−> m1: Movie <−p2m2 : personToMovie−
pn2 ;

hom(pn1 , pn2) ; hom(p2m1 , p2m2) ;
i f { atLeastThreeCommonMovies (pn1 , pn2) ; }

}
i f { uniqueo f (pn1) < uniqueo f (pn2) ; }
i f { countPersonToMovie [pn1] >= 3 ; }
i f { countPersonToMovie [pn2] >= 3 ; }

def r e f common : set<Node>;
yield {

yield common = getCommonMovies (pn1 , pn2) ;
}

modify {
c : Couple ;
c −:p1−> pn1 ;
c −:p2−> pn2 ;

eval {
for (movie : Node in common) {

add (commonMovies , c , movie) ;
}

}
}

}

Figure 22.8: findCouplesOpt rule

22.6 Miscellaneous Things 313

function atLeastThreeCommonMovies (pn1 : Person , pn2 : Person) : boolean
{

i f (countPersonToMovie [pn1] <= countPersonToMovie [pn2]) {
def var common : i n t = 0 ;
def r e f movies : set<Node> = adjacentOutgoing (pn1 ,

personToMovie) ;
for (movie : Node in adjacentOutgoing (pn2 , personToMovie)) {

i f (movie in movies) {
common = common + 1 ;
i f (common >= 3) {

return (true) ;
}

}
}

} else {
def var common : i n t = 0 ;
def r e f movies : set<Node> = adjacentOutgoing (pn2 ,

personToMovie) ;
for (movie : Node in adjacentOutgoing (pn1 , personToMovie)) {

i f (movie in movies) {
common = common + 1 ;
i f (common >= 3) {

return (true) ;
}

}
}

}
return (fa l se) ;

}

Figure 22.9: atLeastThreeCommonMovies rule

314 Indices and Performance Optimization

function getCommonMovies (pn1 : Person , pn2 : Person) : set<Node>
{

def r e f common : set<Node> = set<Node>{};
i f (countPersonToMovie [pn1] >= countPersonToMovie [pn2]) {

def r e f movies : set<Node> = adjacentOutgoing (pn2 ,
personToMovie) ;

for (movie : Node in adjacentOutgoing (pn1 , personToMovie)) {
i f (movie in movies) {

common . add (movie) ;
}

}
} else {

def r e f movies : set<Node> = adjacentOutgoing (pn1 ,
personToMovie) ;

for (movie : Node in adjacentOutgoing (pn2 , personToMovie)) {
i f (movie in movies) {

common . add (movie) ;
}

}
}
return (common) ;

}

Figure 22.10: getCommonMovies rule

Helper Programs versus Patterns on an Example, Profiling

When you enable profiling for the imdb-0005000-50176.movies.xmi example, cf. 22.4, you
see a drastic reduction in search operations for the optimized version compared to the non-
optimized version (and a corresponding reduction in runtime), compare 22.11 to 22.12.

Execution was carried out on a double core. The number of matches differs because
automorphic matches filtering was executed during matching in one case, and after matching
in the other case. Also, in the optimized version there are no matches occurring from an
embedded exec, as all search work was shifted to the parallelized matcher.

22.6 Miscellaneous Things 315

Executing Graph Rewrite Sequence done after 23174.7 ms with result True:

- 138718180 search steps executed

- 34958 matches found

- 34958 rewrites performed

> show profile findCouples

profile for action findCouples:

calls total: 1

steps of first loop of pattern matcher total: 5000

search steps total (in pattern matching, if checking, yielding): 136430986

search steps total during eval computation): 0

search steps total during exec-ution (incl. actions called): 2287194

search steps until one match: 0.00

loop steps until one match: 0.00

search steps per loop step (until one match): 0.00

search steps until more than one match: 136430986.00

loop steps until more than one match: 5000.00

search steps per loop step (until more than one match): 4441.29

parallelization potential: 474.49

Figure 22.11: Profile of findCouples

316 Indices and Performance Optimization

Executing Graph Rewrite Sequence done after 1764.0 ms with result True:

- 2962438 search steps executed

- 17479 matches found

- 17479 rewrites performed

> show profile findCouplesOpt

profile for action findCouplesOpt:

calls total: 1

steps of first loop of pattern matcher total: 5000

search steps total (in pattern matching, if checking, yielding): 2962438

search steps total during eval computation): 0

search steps total during exec-ution (incl. actions called): 0

for thread 0:

search steps total: 373345

loop steps total: 2193

search steps until one match: 0.00

loop steps until one match: 0.00

search steps per loop step (until one match): 0.00

search steps until more than one match: 373345.00

loop steps until more than one match: 2193.00

search steps per loop step (until more than one match): 33.64

for thread 1:

search steps total: 374142

loop steps total: 2807

search steps until one match: 0.00

loop steps until one match: 0.00

search steps per loop step (until one match): 0.00

search steps until more than one match: 374142.00

loop steps until more than one match: 2807.00

search steps per loop step (until more than one match): 15.91

Figure 22.12: Profile of findCouplesOpt

C H A P T E R 23

E X A M P L E S

23.1 Fractals

The GrGen.NET package ships with samples for fractal generation. We will construct the
Sierpinski triangle and the Koch snowflake. They are created by consecutive rule applications,
starting at initial host graphs.

First of all, we have to compile the model and rule set files. So execute in GrGen.NET’s
examples directory

GrGen.exe Sierpinski\Sierpinski.grg

GrGen.exe Snowflake\Snowflake.grg

or

mono GrGen.exe Sierpinski/Sierpinski.grg

mono GrGen.exe Snowflake/Snowflake.grg

respectively (assuming grgen is contained in your search path, otherwise you have to execute
it from the bin directory, adapting the paths to the specification files). We can increase the
number of iterations to get even more beautiful graphs by editing the file Sierpinski.grs

or Snowflake.grs, respectively. Just follow the comments. But be careful: the running time
increases exponentially with the number of iterations, also yComp’s layout algorithm might
need some time and attempts to lay it out nicely.

We execute the Sierpinski script by

GrShell.exe Sierpinski\Sierpinski.grs

or

mono GrShell.exe Sierpinski/Sierpinski.grs

respectively.
Because both of the scripts are using the debug mode, we complete execution by typ-

ing r(un). See Section 20.4 for further information. The resulting graphs should look like
Figures 23.1 and 23.2.

317

318 Examples

Figure 23.1: Sierpinski triangle

Figure 23.2: Koch snowflake

23.2 Busy Beaver 319

23.2 Busy Beaver

We want GrGen.NET to work as hard as a busy beaver [Kro07, Dew84]. A busy beaver is
a Turing machine, in our case with five states plus a “halt”-state; it writes 1,471 bars onto
the tape and terminates [MB00]. We use the graph model and the rewrite rules to define a
general Turing machine. Our approach is basically to draw the machine as a graph. The busy
beaver logic is implemented by rule applications in GrShell. Besides giving an example,
this shows that GrGen.NET is Turing complete.

23.2.1 Graph Model

So first of all, we design a Turing machine as graph model. The tape will be a chain of
TapePosition nodes connected by right edges. A cell value is modeled by a reflexive value

edge, attached to a TapePosition node. The leftmost and the rightmost cells (TapePosition)
do not have an incoming and outgoing edge, respectively. Therefore, we have the node
constraint [0 : 1].

21 node class TapePosition;

22 edge class right

23 connect TapePosition[0:1] --> TapePosition[0:1];

24

25 edge class value

26 connect TapePosition[1] --> TapePosition[1];

27 edge class zero extends value;

28 edge class one extends value;

29 edge class empty extends value;

Furthermore, we need states and transitions. The machine’s current configuration is
modeled with a RWHead edge pointing to a TapePosition node. State nodes are connected
with WriteValue nodes via value edges, a moveLeft/moveRight/dontMove edge leads from
a WriteValue node to the next state (cf. the picture on page 323).

30 node class State;

31

32 edge class RWHead;

33

34 node class WriteValue;

35 node class WriteZero extends WriteValue;

36 node class WriteOne extends WriteValue;

37 node class WriteEmpty extends WriteValue;

38

39 edge class moveLeft;

40 edge class moveRight;

41 edge class dontMove;

23.2.2 Rule Set

Now the rule set: We begin the rule set file Turing.grg with

1 #using "TuringModel.gm"

We need rewrite rules for the following steps of the Turing machine:

1. Read the value of the current tape cell and select an outgoing edge of the current state.

2. Write a new value into the current cell, according to the sub type of the WriteValue

node.

3. Move the read-write-head along the tape and select a new state as current state.

320 Examples

As you can see a transition of the Turing machine is split into two graph rewrite steps:
Writing the new value onto the tape, and performing the state transition. We need eleven
rules: Three rules for each step (for “zero”, “one”, and “empty”) and two rules for extending
the tape to the left and the right, respectively.

3 rule readZeroRule {

4 s:State -h:RWHead-> tp:TapePosition -:zero-> tp;

5 s -:zero-> wv:WriteValue;

6 modify {

7 delete(h);

8 wv -:RWHead-> tp;

9 }

10 }

We take the current state s and the current cell tp which is implicitly given by the unique
RWHead edge and check whether the cell value is zero. Furthermore, we check if the state has
a transition for zero. The replacement part deletes the RWHead edge between s and tp and
adds it between wv and tp. The remaining rules are analogous:

11 rule readOneRule {

12 s:State -h:RWHead-> tp:TapePosition -:one-> tp;

13 s -:one-> wv:WriteValue;

14 modify {

15 delete(h);

16 wv -:RWHead-> tp;

17 }

18 }

19

20 rule readEmptyRule {

21 s:State -h:RWHead-> tp:TapePosition -:empty-> tp;

22 s -:empty-> wv:WriteValue;

23 modify {

24 delete(h);

25 wv -:RWHead-> tp;

26 }

27 }

28

29 rule writeZeroRule {

30 wv:WriteZero -rw:RWHead-> tp:TapePosition -:value-> tp;

31 replace {

32 wv -rw-> tp -:zero-> tp;

33 }

34 }

35

36 rule writeOneRule {

37 wv:WriteOne -rw:RWHead-> tp:TapePosition -:value-> tp;

38 replace {

39 wv -rw-> tp -:one-> tp;

40 }

41 }

42

43 rule writeEmptyRule {

44 wv:WriteEmpty -rw:RWHead-> tp:TapePosition -:value-> tp;

45 replace {

46 wv -rw-> tp -:empty-> tp;

47 }

48 }

49

23.2 Busy Beaver 321

50 rule moveLeftRule {

51 wv:WriteValue -:moveLeft-> s:State;

52 wv -h:RWHead-> tp:TapePosition <-r:right- ltp:TapePosition;

53 modify {

54 delete(h);

55 s -:RWHead-> ltp;

56 }

57 }

58

59 rule moveRightRule {

60 wv:WriteValue -:moveRight-> s:State;

61 wv -h:RWHead-> tp:TapePosition -r:right-> rtp:TapePosition;

62 modify {

63 delete(h);

64 s -:RWHead-> rtp;

65 }

66 }

67

68 rule dontMoveRule {

69 wv:WriteValue -:dontMove-> s:State;

70 wv -h:RWHead-> tp:TapePosition;

71 modify {

72 delete(h);

73 s -:RWHead-> tp;

74 }

75 }

76

77 rule ensureMoveLeftValidRule {

78 wv:WriteValue -:moveLeft-> :State;

79 wv -:RWHead-> tp:TapePosition;

80 negative {

81 tp <-:right-;

82 }

83 modify {

84 tp <-:right- ltp:TapePosition -:empty-> ltp;

85 }

86 }

87

88 rule ensureMoveRightValidRule {

89 wv:WriteValue -:moveRight-> :State;

90 wv -:RWHead-> tp:TapePosition;

91 negative {

92 tp -:right->;

93 }

94 modify {

95 tp -:right-> rtp:TapePosition -:empty-> rtp;

96 }

97 }

Have a look at the negative conditions within the ensureMove... rules. They ensure
that the current cell is indeed at the end of the tape: An edge to a right/left neighboring cell
must not exist. Now don’t forget to compile your model and the rule set with GrGen.exe

(see Section 23.1).

23.2.3 Rule Execution with GrShell

Finally we construct the busy beaver and let it work with GrShell. The following script
starts with building the Turing machine that is modeling the six states with their transitions
in our Turing machine model:

322 Examples

1 select backend "../bin/lgspBackend.dll"

2 new graph "../lib/lgsp-TuringModel.dll" "Busy Beaver"

3 select actions "../lib/lgsp-TuringActions.dll"

4

5 # Initialize tape

6 new tp:TapePosition($="Startposition")

7 new tp -:empty-> tp

8

9 # States

10 new sA:State($="A")

11 new sB:State($="B")

12 new sC:State($="C")

13 new sD:State($="D")

14 new sE:State($="E")

15 new sH:State($ = "Halt")

16

17 new sA -:RWHead-> tp

18

19 # Transitions: three lines per state and input symbol for

20 # - updating cell value

21 # - moving read-write-head

22 # respectively

23

24 new sA_0: WriteOne

25 new sA -:empty-> sA_0

26 new sA_0 -:moveLeft-> sB

27

28 new sA_1: WriteOne

29 new sA -:one-> sA_1

30 new sA_1 -:moveLeft-> sD

31

32 new sB_0: WriteOne

33 new sB -:empty-> sB_0

34 new sB_0 -:moveRight-> sC

35

36 new sB_1: WriteEmpty

37 new sB -:one-> sB_1

38 new sB_1 -:moveRight-> sE

39

40 new sC_0: WriteEmpty

41 new sC -:empty-> sC_0

42 new sC_0 -:moveLeft-> sA

43

44 new sC_1: WriteEmpty

45 new sC -:one-> sC_1

46 new sC_1 -:moveRight-> sB

47

48 new sD_0: WriteOne

49 new sD -:empty-> sD_0

50 new sD_0 -:moveLeft->sE

51

52 new sD_1: WriteOne

53 new sD -:one-> sD_1

54 new sD_1 -:moveLeft-> sH

55

56 new sE_0: WriteOne

57 new sE -:empty-> sE_0

58 new sE_0 -:moveRight-> sC

59

23.2 Busy Beaver 323

60 new sE_1: WriteOne

61 new sE -:one-> sE_1

62 new sE_1 -:moveLeft-> sC

Our busy beaver looks like this:

We have an initial host graph now. The graph rewrite sequence is quite straight forward
and generic to the Turing graph model. Note that for each state the “...Empty... —
...One...” selection is unambiguous.

63 exec ((readOneRule | readEmptyRule) & (writeOneRule | writeEmptyRule) &

(ensureMoveLeftValidRule | ensureMoveRightValidRule) & (moveLeftRule |

moveRightRule))[32]

We interrupt the machine after 32 iterations and look at the result so far:

In order to improve the performance we generate better search plans. This is a crucial step
for execution time: With the initial search plans the beaver runs for 1 minute and 30 seconds.
With improved search plans after the first 32 steps it takes about 8.5 seconds1.

1On a Pentium 4, 3.2Ghz, with 2GiB RAM.

324 Examples

64 custom graph analyze

65 custom actions gen_searchplan readOneRule readEmptyRule writeOneRule writeEmptyRule

ensureMoveLeftValidRule ensureMoveRightValidRule moveLeftRule moveRightRule

Let the beaver run:

66 exec ((readOneRule | readEmptyRule) & (writeOneRule | writeEmptyRule) &

(ensureMoveLeftValidRule | ensureMoveRightValidRule) & (moveLeftRule |

moveRightRule))*

You can see the difference in between the search plans causing that improvement in
execution time by utilizing the explain command.

1 custom actions explain moveRightRule

We’ll take a look at the search plan of the moveRightRule, first the initial version:

static search plans

moveRightRule:

lookup -r:right-> in graph

from <-r- get source tp:TapePosition

from -r-> get target rtp:TapePosition

from tp incoming <-h:rwHead-

from <-h- get source wv:WriteValue

from wv outgoing -_edge0:moveRight->

from -_edge0-> get target s:State

After graph analysis and search plan regeneration it looks like this:

moveRightRule:

lookup -h:rwHead-> in graph

from <-h- get source wv:WriteValue

from -h-> get target tp:TapePosition

from wv outgoing -_edge0:moveRight->

from -_edge0-> get target s:State

from tp outgoing -r:right->

from -r-> get target rtp:TapePosition

The crucial difference is the changed lookup, the rule begins matching at the single rmHead
edge instead of one of the many right edges on the tape.

C H A P T E R 24

A P P L I C AT I O N P R O G R A M M I N G I N T E R FAC E

This chapter describes the Application Programming Interface of GrGen.NET, i.e. of the
system runtime - the LibGr - and of the assemblies generated from the model and rule
specification files. We’ll have a look at

• the interface to the graph and model

• the interface to the rules and matches

• the interface of the graph processing environment (esp. for executing sequences)

• the porter module for importing and exporting of graphs and miscellaneous stuff

• implementing external class and function declarations

• implementing external match filter and external sequence declarations

• events fired when the graph is changed

• events fired during action execution

The compiler grgen.exe generates from the input file Foo.grg the output files FooModel.cs
for the model and FooActions.cs for the actions,

• defining the exact interface,

• implementing the exact interface with generated code and code from the lgsp backend,
i.e. entities from de.unika.ipd.grGen.lgsp available from lgspBackend.dll,

• and implementing the generic interface from de.unika.ipd.grGen.libGr using the
entities mentioned in both points above.

This generative approach bears a great deal of the responsibility for the high execution speed
of GrGen.NET, but it comes at the price of flexibility: you can’t extend the existing rule set
at runtime with new rules. What you can do at runtime on the other hand is to generate a
new rule set file, apply the compiler, and dynamically link the resulting assemblies/dlls.

When working with the API, you could reference the generated binary dlls in your project,
in the same way as you have to reference the libGr.dll and lgspBackend.dll. For easier de-
bugging though, especially when you are integrating the generated code with own extensions
(as described in chapter 25), it is recommended to directly include the source code generated
(which is thrown away normally after it was compiled into the assemblies lgsp-FooModel.dll
and lgsp-FooActions.dll). For this, use the -keep option when you call grgen.exe, and in-
clude the model and the actions file (excluding the intermediate actions file) directly as C#
source code files.

The matcher code generated contains the initial, static search plans. When you analyze
the graph at runtime and generate new matchers, see section 20.16 for more on this, you can
request the dumping of the source code of the improved matchers. The custom commands

325

326 Application Programming Interface

are available at API level via the Custom operation of the IGraph interface for the graph
commands and via the Custom operation of the BaseActions class for the actions commands,
just handing in the same parameters as otherwise specified on the command line. If the
intended workflow of “i) loading a typical graph or doing a warm-up run creating a typical
graph, ii) analyzing that graph, iii) compiling new matchers that are better suited to the
graph” is not easily achievable, or you want to start with the optimized matchers straight
from the beginning, you may copy and paste the dumped dynamic matchers of an example
run to the existing static code. But this is only a last resort, as the price is that your manual
editing is overwritten again with the static search plans at the next time you call grgen.

24.1 Interface to the Host Graph

The generated file FooModel.cs opens the namespace de.unika.ipd.grGen.Model Foo con-
taining all the generated entities. It contains for every node or edge class Bar an interface
IBar, which offers C# properties giving access to the attributes, and is inheriting in the
same way as specified in the model file. This builds the exact interface of the model, it is
implemented by a sealed class Bar with generated code and with code from the lgsp back-
end. Furthermore, the namespace contains a model class FooGraphModel implementing the
interface de.unika.ipd.grGen.libGr.IGraphModel, which supports iteration over the enti-
ties defined in the model, using further generic(i.e. inexact) interfaces from libGr. Finally,
the namespace contains a class FooGraph defining an LGSPGraph of a model equivalent to
FooGraphModel; it contains convenience functions to easily create nodes and edges of exact
type in the graph.

In addition, a class FooNamedGraph is available, which defines an LGSPNamedGraph of a
model equivalent to FooGraphModel. The named graph offers persistent names 131 for all of
its graph elements, but besides that, it is identical to an LGSPGraph. The named graph is the
one utilized by GrShell, and the one recommended to be used for its ability to uniquely
denote graph elements, but be aware that the storage of the names requires about the same
amount of memory as an unnamed graph as such.

NOTE (56)

If you want to use the type-safe interface, your entry points are the CreateNodeBar-methods
of the graph class FooGraph or the CreateNode-method of node class Bar, returning a node of
the type IBar. If you want to use the generic interface, your entry point is the IGraphModel,
with a call INodeModel.GetType("Bar") returning a NodeType, which is then used in a call
IGraph.AddNode(NodeType), returning a node of the type INode.

The interface types for the node and edge root types are supplied already in libGr and
are thus common to all graph rewrite systems (this allows for the generic handling); they are
available as the INode interface for the Node root node type, as the IEdge interface for the
AEdge root edge type, as well as the IDEdge interface for the directed Edge root edge type
and the IUEdge interface for the undirected UEdge root edge type (in signatures where IEdge

is used, the more concrete interface types allow to obtain directedness information directly
from the .NET type).

The interfaces of the types you specified in the model are generated, as well as the backing
implementation types of all those interface types.

24.2 Interface to the Rules 327

24.2 Interface to the Rules

The generated file FooActions.cs opens the namespace de.unika.ipd.grGen.Action Foo

containing all the generated entities. It contains for every rule or test bar

• a class Rule bar inheriting from de.unika.ipd.grGen.lgsp.LGSPRulePattern, which
contains the exact match interface IMatch bar, which in turn defines how a match of the
rule looks like, extending the generic rule-unspecific IMatch interface. Have a look at
section 25.4 for an extended introduction to the matches interfaces. Furtheron available
are (but meant only for internal use): a match class Match bar implementing the exact
and inexact interface, a description of the pattern to match, and the modify methods
doing the rewriting.

• an exact action interface IAction bar, which contains the methods:

– Match, to match the pattern in the host graph, with in-parameters corresponding
to the in-parameters of the rule (name and type), returning matches of the exact
type Rule bar.IMatch bar.

– Modify, to modify a given match according to the rewrite specification, with out-
parameters corresponding to the out-parameters of the rule.

– Apply, to match and modify the found match, with in-parameters corresponding
to the in-parameters of the rule, and with ref-parameters corresponding to the
out-parameters of the rule.

Furtheron available is (but meant only for internal use) the class Action bar, imple-
menting the exact action interface as well as the generic IAction interface from libGr;
it contains the generated matcher code searching for the patterns.

Moreover, the namespace contains an action class FooActions implementing the ab-
stract class BaseActions from textttde.unika.ipd.grGen.libGr (in fact LGSPActions from
de.unika.ipd.grGen.lgsp), which supports iteration over the entities defined in the ac-
tions using further, generic(i.e. inexact) interfaces from libGr. Additionally, it contains the
instances of the actions singletons, as member bar of the exact type IAction bar.

NOTE (57)

If you want to use the type-safe interface, your entry point is the member bar of type
IAction bar from FooActions (or Action bar.Instance). Actions are used with named
parameters of exact types. If you want to use the generic interface, your entry point is
the method GetAction("bar") of the interface BaseActions implemented by FooActions

returning an IAction. Actions are used with object-arrays for parameter passing.

NOTE (58)

The old generic interface of names specified within strings and entities of node-, edge-, and
object-type is implemented with the new interface of named and exactly typed entities. Thus
you will receive runtime exceptions from the generic interface when you carry out operations
that are not type-safe, in contrast to GrGen.NET < v2.5. If you need the flexibility of the
old input parameter semantics of a silently failing rule application upon receipt of a wrong
type, you must declare it explicitly with the syntax r(x:ExactType<InexactType>); then
the rule parameter in the exact interface will be of type InexactType.

328 Application Programming Interface

EXAMPLE (143)

Normally you want to use the type-safe interface of the generated code as it is much more
convenient. Only if your application has to get along with models and actions that are
unknown before it is compiled, do you have to fall back to the generic interface. An extensive
example showing how to cope with the latter is shipped with GrGen.NET in form of the
GrShell. Here we’ll show a short example on how to use GrGen.NET with the type-safe
API. Further examples are given in the examples-api folder of the GrGen.NET-distribution.
We start by including the namespaces of the libGr and the lgsp backend shipped with Gr-
Gen.NET plus the namespaces of our actions and models, generated from Foo.grg.

using de.unika.ipd.grGen.libGr;

using de.unika.ipd.grGen.lgsp;

using de.unika.ipd.grGen.Action_Foo;

using de.unika.ipd.grGen.Model_Foo;

Then we create a graph with a model bound at generation time, followed by the actions to
operate on this graph. Afterwards, we create a single node of type Bar in the graph and save
it to the variable b. Finally, we apply the action bar(Bar x) : (Bar) on the graph, with
b as input, also receiving the output. The rule is taken from the actions via the member
named as the action.

FooGraph graph = new FooGraph();

FooActions actions = new FooActions(graph);

Bar b = graph.CreateNodeBar();

actions.bar.Apply(graph, b, ref b); // input of type Bar, output of type Bar

We could create a named graph instead, offering to access graph elements by persistent names:

FooNamedGraph graph = new FooNamedGraph();

24.3 Interface of the Graph Processing Environment 329

EXAMPLE (144)

This is an example showing how to do mostly the same what was done in the previous example
143, in a slightly more complicated way, but allowing for more control. Here, we create the
model separately from the graph, then the graph as instance of the generic LGSPGraph, which
has the model not bound at generation time, but gets it handed in. We create the actions
to apply on the graph, and a single node of type Bar in the graph, which we assign again
to a variable b. Then we get the action from the actions and save it to an action variable
bar. Afterwards, we use the action for finding all available matches of bar with input b,
and remember the found matches in the exactly typed matches variable. Finally, we take
the first match from the matches and execute the rewrite on it. We could have inspected the
nodes and edges of the match or their attributes before (using element names prefixed with
node /edge or attribute names to get exactly typed entities).

IGraphModel model = new FooGraphModel();

LGSPGraph graph = new LGSPGraph(model);

FooActions actions = new FooActions(graph);

Bar b = Bar.CreateNode(graph);

IAction_bar bar = Action_bar.Instance;

IMatchesExact<Rule_bar.IMatch_bar> matches = bar.Match(graph, 0, b);

bar.Modify(graph, matches.First);

We could create a named graph instead offering persistent names for its graph elements:

LGSPGraph graph = new LGSPNamedGraph(model);

24.3 Interface of the Graph Processing Environment

The graph processing environment – which is used for all but the simplest transformations –
offers all the additional functionality of GrGen.NET exceeding what is offered by the graph
and the actions. It is made available by the interface IGraphProcessingEnvironment, which
is implemented in the LGSPGraphProcessingEnvironment class.

EXAMPLE (145)

The graph processing environment procEnv is constructed on top of the the graph and the
actions, both of which are handed in. It allows to carry out transformations by executing
sequences, combining actions with operators (for control-flow) and variables (for data-flow).

IGraphProcessingEnvironment procEnv =

new LGSPGraphProcessingEnvironment(graph, actions);

procEnv.ApplyGraphRewriteSequence("<(::x)=foo && (::y)=bar(::x) | bla(::y)>");

In addition to sequence execution and variable handling, the graph processing environment
offers driver or helper objects for transaction management, deferred sequence execution, graph
change recording, and output emitting. The most important of these is the transaction
manager which is utilized when GrGen.NET is used for crawling through a search space
or for enumerating a state space, see section 18.2. The operations mentioned there are
implemented by calling the functions given in example 146.

330 Application Programming Interface

EXAMPLE (146)

LGSPGraphProcessingEnvironment procEnv = ...;

ITransactionManager tm = procEnv.TransactionManager;

public interface ITransactionManager

{

int Start();

void Pause();

void Resume();

void Commit(int transactionID);

void Rollback(int transactionID);

void ExternalTypeChanged(IUndoItem item);

}

The Start starts a transaction and returns its id; it may be called multiple times returning
different ids for the transactions (i.e. nested transactions are supported, a failing outer one
rolls back the changes of an inner transaction which succeeded). Changes to the graph are
recorded thereafter into an undo log, unless a Pause was called not yet followed by a Resume.
When the changes of interest were carried out, the transaction identified by its id is either
Commited, which causes the changes recorded since the corresponding Start to stay in the
graph, or rolled back by calling Rollback, in that case all the changes recorded since the
corresponding Start are undone. The ExternalTypeChanged allows you to include external
attribute types in transaction handling, you must supply an undo item capable of rolling
back the changes to the transaction manager, for each type a change is to be carried out.

24.4 Import/Export and Miscellaneous Stuff

GrGen natively supports the following formats:

GRS/GRSI
Graph Rewrite Script files, which are a reduced version of the GrShell script files
(also ending with .grs), limited to graph creation commands. They expect a model in
a .gm file. This is the recommended standard format.

GXL
Graph eXchange Language files, ending with .gxl, see http://www.gupro.de/GXL/.

ECORE/XMI
Ecore(.ecore) model files and XMI(.xmi) graph files, which are formats defined and
used by the Eclipse Modelling Framework. In an intermediate step, a .gm file is gener-
ated for the model.

GRG
A GrGen rule file containing one rule with an empty pattern and a large rewrite part.
Export only 1, not for normal use.

While both GRS and GXL importers expect one file (the GXL importer allows to specify
a model override, see GrShell import, Note 51), the EMF/ECORE importer expects first
one or more .ecore files, and following optionally an .xmi file and/or a .grg file (see Note
20.3 for more on this).

To import a graph model and/or a graph instance, you can use Porter.Import() from
the libGr API (the GrShell command import is mapped to it). The file format is determined

1Original German Pisswasser, for export only :)

http://www.gupro.de/GXL/

24.4 Import/Export and Miscellaneous Stuff 331

by the file extensions. To export a graph instance you can use Porter.Export() from the
libGr API (the GrShell command export is mapped to it). For an example of how to use
the importer/exporter on API level see examples-api/JavaProgramGraphsExample/Java-

ProgramGraphsExample.cs

The GRS(I) importer (the .grsi ending stands for graph rewrite script include) returns
an INamedGraph; if you don’t need the persistent names, get rid of them by casting to the
LGSPNamedGraph implementing the interface, (copy-)constructing a LGSPGraph from it, and
removing any references to the named graph. You may do so because naming is rather
expensive (even though worthwhile in the general case): a LGSPNamedGraph supplying the
name to element and element to name mappings normally uses up about twice the amount
of memory of the LGSPGraph defining the graph alone.

External Emitting and Parsing

If external emit class; or external emit graph class; (see 25.6) are specified in the
model file Foo, GrGen.NET generates a file FooModelExternalFunctions.cs located be-
side the model and rule files, containing the following functions.

/// <summary>

/// Called during .grs import, at exactly the position in the text reader where the

attribute begins.

/// For attribute type object or a user defined type, which is treated as object.

/// The implementation must parse from there on the attribute type requested.

/// It must not parse beyond the serialized representation of the attribute,

/// i.e. Peek() must return the first character not belonging to the attribute type

any more.

/// Returns the parsed object.

/// </summary>

object Parse(TextReader reader, AttributeType attrType, IGraph graph);

/// <summary>

/// Called during .grs export, the implementation must return a string

representation for the attribute.

/// For attribute type object or a user defined type, which is treated as object.

/// The serialized string must be parseable by Parse.

/// </summary>

string Serialize(object attribute, AttributeType attrType, IGraph graph);

/// <summary>

/// Called during debugging or emit writing, the implementation must return a string

representation for the attribute.

/// For attribute type object or a user defined type, which is treated as object.

/// The attribute type may be null.

/// The string is meant for consumption by humans, it does not need to be parseable.

/// </summary>

string Emit(object attribute, AttributeType attrType, IGraph graph);

332 Application Programming Interface

The Parse function is called when an attribute of an external or object type is to be
imported from a grs file.

The Serialize function is called when an attribute of an external or object type is to be
exported to a grs file.

The Emit function is called when a value of external or object type is to be emitted, or
displayed in the debugger (including yComp).

The functions forward the calls to ParseImpl, SerializeImpl, and EmitImpl functions,
respectively, which have to be implemented in a file named FooModelExternalFunctions-

Impl.cs, located in the folder of the FooModelExternalFunctions.cs file. Implementing
them is your task, in exchange you get a tight integration of your own datatypes into Gr-
Gen.NET. For an example, you may have a look at ExternalAttributeEvaluation in the
tests folder or ExternalAttributeEvaluationExample in the examples-api folder.

The functions are called from GrShell, too, insofar as possible – the shell parses a single
or double quoted text or a word or a number at an attribute position and hands that over
then to the user defined parser.

/// <summary>

/// Called when the grs importer or the shell hits a line starting with "external".

/// The content of that line is handed in.

/// This is typically used while replaying changes containing a method call of an

external type

/// -- after such a line was recorded, by the method called, by writing to the

recorder.

/// This is meant to replay fine-grain changes of graph attributes of external type,

/// in contrast to full assignments handled by Parse and Serialize.

/// </summary>

void External(string line, IGraph graph);

The External function is called when a line starting with external is seen by the shell
or the grs importer, in this case the content up to the end of the line is munched and
handed in to this function. These lines are typically recorded by calls of the public void

External(string value) function supplied in the IRecorder interface, from external at-
tribute method calls (cf. 25.1), for persisting changes of the external method calls. For
assignments of complete attribute values, you must implement Parse and Serialize. The
External function is existing to support fine-grain changes of external attribute types.

/// <summary>

/// Called during debugging on user request, the implementation must return a named

graph representation for the attribute.

/// For attribute type object or a user defined type, which is treated as object.

/// The attribute type may be null. The return graph must be of the same model as

the graph handed in.

/// The named graph is meant for display in the debugger, to visualize the internal

structure of some attribute type.

/// This way you can graphically inspect your own data types which are opaque to

GrGen with its debugger.

/// </summary>

INamedGraph AsGraph(object attribute, AttributeType attrType, IGraph graph);

The AsGraph function is called from the debugger on user request, to visually inspect
an external attribute type, rendered as graph. It will be called when external emit graph

class; was specified. It forwards the call to AsGraphImpl, which needs to be implemented
by you, in the same way as specified above for the the functions called when external emit

class; is given.

24.4 Import/Export and Miscellaneous Stuff 333

External Copying and Comparing

If external copy class; or external == class; or external < class; (see 25.7) are
specified in the model file Foo, GrGen.NET generates a file FooModelExternalFunctions.cs
located beside the model and rule files, containing a partial class AttributeTypeObject-

CopierComparer. You have to implement the Copy or the IsEqual or the IsLower functions
in the same partial class in FooModelExternalFunctionsImpl.cs. For every external type
defined, another function showing that type in the input parameters is expected.

// Called when a graph element is cloned/copied.

// For attribute type object.

// If "copy class" is not specified, objects are copied by copying the reference,

i.e. they are identical afterwards.

// All other attribute types are copied by-value (so changing one later on has no

effect on the other).

public static object Copy(object);

// Called during comparison of graph elements from graph isomorphy comparison, or

attribute comparison.

// For attribute type object.

// If "== class" is not specified, objects are equal if they are identical,

// i.e. by-reference-equality (same pointer); all other attribute types are compared

by-value.

public static bool IsEqual(object, object);

// Called during attribute comparison.

// For attribute type object.

// If "< class" is not specified, objects can’t be compared for ordering, only for

equality.

public static bool IsLower(object, object);

The Copy function is called when one of the copy operations offered in the rule language
or the computation statements is executed, on a node or edge that bears attributes of object
or a user-defined external type.

The IsEqual function is called when values (attributes) of object or a user-defined external
type are compared with one of the equality operators, or when two graphs are compared for
isomorphy and the graph elements contain attributes of object or a user-defined external type.
The IsLower function is called when values (attributes) of object or a user-defined external
type are compared with one of the relational operators. A comparison for u<=v is mapped
to an expression IsLower(u,v) || IsEqual(u,v), for this reason a < class; specification
requires a preceding == class; specification.

Implementing these functions is your task, in exchange you get a tight integration of your
own datatypes into GrGen.NET. You may have a look at tests/ExternalAttribute-

Evaluation or examplesapi/ExternalAttributeEvaluationExample for an example.

Further Examples

There are further examples available in the examples-api folder of the GrGen.NET-
distribution:

• How to use the terse graph rewrite sequences on API level is shown in (cf. also 24.3)
examples-api/BusyBeaverExample/BusyBeaverExample.cs.
Alternatively, you could directly use your favourite .NET programming language for
combining single rule applications, employing the type-safe interface.

334 Application Programming Interface

• How to use the old and new interface for accessing a match on API level is shown in
examples-api/ProgramGraphsExample/ProgramGraphsExample.cs.

• How to use the visited flags on API level is shown in
examples-api/VisitedExample/VisitedExample.cs.

• How to analyze the graph and generate matchers based on this information – which are
(hopefully) performing better – is shown in
examples-api/BusyBeaverExample/BusyBeaverExample.cs.

• How to compile a .grg-specification at runtime and dump a graph for visualization in
.vcg format on API level is shown in
examples-api/HelloMutex/HelloMutex.cs.

• How to access the annotations at API level is shown in
examples-api/MutexDirectExample/MutexDirectExample.cs.

• How to communicate with yComp on API level (from your own code) is shown in
examples-api/YCompExample/YCompExample.cs (it may be outdated, you better take
a look at GrShell/YCompClient.cs for the real version).

NOTE (59)

While C# allows input argument values to be of a subtype of the declared interface parameter
type (OO), it requires the argument variables for the out parameters to be of exactly the
type declared (non-OO). Although a variable of a supertype would be fully sufficient – the
variable is only assigned. So for node class Bla extends Bar; and action bar(Bar x) :

(Bla) from the rules file Foo.grg we cannot use a desired target variable of type Bar as
out-argument, but are forced to introduce a temporary variable of type Bla and assign this
variable to the desired target variable after the call.

using de.unika.ipd.grGen.libGr;

using de.unika.ipd.grGen.lgsp;

using de.unika.ipd.grGen.Action_Foo;

using de.unika.ipd.grGen.Model_Foo;

FooGraph graph = new FooGraph();

FooActions actions = new FooActions(graph);

Bar b = graph.CreateNodeBar();

IMatchesExact<Rule_bar.IMatch_bar> matches = actions.bar.Match(graph, 1, b);

//actions.bar.Modify(graph, matches.First, out b); // wont work, needed:

Bla bla = null;

actions.bar.Modify(graph, matches.First, out bla);

b = bla;

24.5 External Class, Function and Procedure Implementation 335

24.5 External Class, Function and Procedure Implementation

For a model file Foo that contains

• external classes (cf. 25.1), or

• external functions (cf. 25.2), or

• external procedures (cf. 25.3),

GrGen.NET generates a file FooModelExternalFunctions.cs located beside the model
and rule files, which contains

• within the model namespace public partial classes named as given in the external class
declaration, inheriting from each other as stated in the external class declarations.

• within the de.unika.ipd.grGen.expression namespace a public partial class named
ExternalFunctions with a body of comments giving the expected function prototypes.

• within the de.unika.ipd.grGen.expression namespace a public partial class named
ExternalProcedures with a body of comments giving the expected procedure proto-
types.

The generated partial classes come without implementation, you must implement them in
a file named FooModelExternalFunctionsImpl.cs, located in the folder of the FooModel-

ExternalFunctions.cs file, by replicating them, and fleshing them out:

• the partial classes skeletons with attributes containing data of interest and maybe helper
methods

• the ExternalFunctions partial class skeleton with the functions you declared in the
external function declarations, obeying the function signatures as specified; here you
can access the attributes or methods of the external classes (which are known at this
point in the code, they are not known in the specification language), or carry out
complicated custom computations or graph queries, based on the values you receive
with the function call.

• the ExternalProcedures partial class skeleton with the procedures you declared in
the external procedure declarations, obeying the procedure signatures as specified; here
you can access the attributes or methods of the external classes (which are known at
this point in the code, they are not known in the specification language), or carry out
complicated custom computations or graph manipulations, based on the values you
receive with the procedure call.

Don’t forget that the source code file FooModelExternalFunctionsImpl.cs is an integral
part of your GrGen.NET graph transformation project, in contrast to the other C# files
that are generated (and get overwritten). You find a fabricated example showing how to use
the external classes and functions in examples/ExternalAttributeEvaluationExample and
examples-api/ExternalAttributeEvaluationExample.

When you use third-party assemblies in your source code, you must inform GrGen.NET
about them, so references to them are included into the assembly generated; this can be
done with the -r parameter when calling grgen.exe directly (cf. 2.2.1) or with the new add

reference command of GrShell(̃cf. 20.14). Using the keepdebug configuration option of
the new command is recommended as it allows for easier debugging.

336 Application Programming Interface

24.6 External Filter and Sequence Implementation

For an actions file Bar that contains

• external match filter declarations (cf. 25.4), or

• external sequence declarations (25.5),

GrGen.NET generates a file BarActionsExternalFunctions.cs located beside the model
and rule files, which contains within the action namespace

• a public partial class named MatchFilters with a body of comments giving the ex-
pected function prototypes, and for the auto filter even the implementation.

• public partial classes, named Sequence foo for a sequence foo, with a body contain-
ing a comment specifying the expected function prototype of the sequence application
function.

The partial classes come without implementation, you must implement them in a file named
BarActionsExternalFunctionsImpl.cs, located in the folder of the BarActionsExternal-

Functions.cs file, by replicating them, and fleshing them out:

• the MatchFilters partial class skeleton with the match filter functions you declared,
obeying the function signatures as specified; you might want to convert the received
matches object to an IList in case you want to reorder the list and reinject it into the
matches object afterwards.

• the partial class skeletons of the external sequences with the required ApplyXGRS foo

functions, obeying the signature of the sequence application function as specified.

Don’t forget that the source code file BarActionsExternalFunctionsImpl.cs is an integral
part of your GrGen.NET graph transformation project, in contrast to the other C# files
that are generated (and get overwritten). You find a fabricated example showing how to use
the external classes and functions in examples/ExternalFiltersAndSequencesExample and
examples-api/ExternalFiltersAndSequencesExample.

When you use third-party assemblies in your source code, you must inform GrGen.NET
about them, so references to them are included into the assembly generated; this can be
done with the -r parameter when calling grgen.exe directly (cf. 2.2.1) or with the new add

reference command of GrShell(̃cf. 20.14). Using the keepdebug configuration option of
the new command is recommended as it allows for easier debugging.

24.7 Graph Events 337

NOTE (60)

libGr allows to split a rule application into two steps: Firstly, searching for the subgraphs
of the host graph that match the pattern, and secondly rewriting of some of these matches.
This occurs by employing the following methods of the IAction interface:

IMatches Match(IGraph graph, int maxMatches, object[] parameters);

object[] Modify(IGraph graph, IMatch match);

In C#, this might look like:

IMatches myMatches = myAction.Match(myGraph, -1, null); /* -1: get all the matches */

for(int i=0; i<myMatches.NumMatches; ++i)

{

if(inspectCarefully(myMatches.GetMatch(i))

{

myAction.Modify(myGraph, myMatches.GetMatch(i));

break;

}

}

The external match filters are executed in place of the inspectCarefully, in between the
calls to the Match and the Modify functions. They allow you to write a complex inspection
routine in a .NET language, that can then still be used from GrGen.NETĩnternal sequences.
An interesting filter can be even generated automatically for you, the auto filter for filtering
symmetric matches of automorphic patterns, see 25.4 and 15 for more on this.

24.7 Graph Events

Before or after the host graph is changed, events are fired, notifying listeners about the
changes. The GrShell-debugger, the transaction handler, and the graph change recorder
implement their functionality by listening and reacting to these events. You may add own
event handlers to insert custom-made, event-based functionality; or may even implement an
event-driven rule execution engine on top of it.

The events are fired automatically by the methods of the graph class on modifications
(excluding attribute changes), and by the actions which get applied. If you operate with
external code, it’s your responsibility to fire the events for attribute changes before changing
an attribute. Otherwise the changes won’t be visible in the debugger, they won’t be rolled
back at the end of a transactions or during backtracking, and they won’t be recorded in case
of change recording.

The events available that are fired automatically on graph changes (excluding attribute
value changes) are:

// Fired after a node has been added

event NodeAddedHandler OnNodeAdded;

// Fired after an edge has been added

event EdgeAddedHandler OnEdgeAdded;

// Fired before a node is deleted

event RemovingNodeHandler OnRemovingNode;

// Fired before an edge is deleted

event RemovingEdgeHandler OnRemovingEdge;

338 Application Programming Interface

// Fired before all edges of a node are deleted

event RemovingEdgesHandler OnRemovingEdges;

// Fired before the whole graph is cleared

event ClearingGraphHandler OnClearingGraph;

// Fired before the type of a node is changed.

event RetypingNodeHandler OnRetypingNode;

// Fired before the type of an edge is changed.

event RetypingEdgeHandler OnRetypingEdge;

// Fired before an edge is redirected (causing removal then adding again).

event RedirectingEdgeHandler OnRedirectingEdge;

The events available that are fired automatically on attribute value changes of graph
elements by the code generated to implement the actions, but not by the graph, and thus
need to be fired by you if you change attribute values on API level, are:

// Fired before an attribute of a node is changed.

event ChangingNodeAttributeHandler OnChangingNodeAttribute;

// Fired before an attribute of an edge is changed.

event ChangingEdgeAttributeHandler OnChangingEdgeAttribute;

// Fired before each rewrite step (also rewrite steps of subpatterns) to indicate

// the names of the nodes added in this rewrite step in order of addition.

event SettingAddedElementNamesHandler OnSettingAddedNodeNames;

// Fired before each rewrite step (also rewrite steps of subpatterns) to indicate

// the names of the edges added in this rewrite step in order of addition.

event SettingAddedElementNamesHandler OnSettingAddedEdgeNames;

If you listen to or fire the action application events (cf. 24.8), you may be interested in
the added names event from the list above, too, which tells about the names of the elements
which will get added immediately thereafter (this is used in the debugger to display the names
of the elements as defined in the rule modify part).

For a container type this means single element additions or removals, that’s the reason
why the interface for attribute changes is more complex than what you’d expect intuitively:
void ChangingNodeAttribute(INode node, AttributeType attrType,

AttributeChangeType changeType, Object newValue, Object keyValue)

The changing attribute events from above are fired before the attributes are assigned, with
the single element change that will occur. They are used e.g. by the transaction manager
to record the changes (note that rollback of changes of attributes of container type requires
single element notifications, complete container copies would be prohibitively costly).

The conditional watchpoints that may be configured in the debugger in contrast hook
into the changed attribute events that are fired after an attribute was assigned. These are:

// Fired after an attribute of a node is changed; for debugging purpose.

event ChangedNodeAttributeHandler OnChangedNodeAttribute;

// Fired after an attribute of an edge is changed; for debugging purpose.

event ChangedEdgeAttributeHandler OnChangedEdgeAttribute;

The events available that are fired automatically on visited flag changes are:

24.8 Action Events 339

/// Fired after a visited flag was allocated.

event VisitedAllocHandler OnVisitedAlloc;

/// Fired after a visited flag was freed.

event VisitedFreeHandler OnVisitedFree;

/// Fired before a visited flag is set.

event SettingVisitedHandler OnSettingVisited;

24.8 Action Events

When actions (esp. rules) are executed, events are fired, notifying listeners about the changes.
The GrShell-debugger implements its functionality by listening and reacting to these events.
You may add own event handlers to insert custom-made, event-based functionality.

The events are fired automatically by the code generated by GrGen for the actions or
sequences. If you operate with external code, it’s your responsibility to fire the events – in
case you want to simulate rules or sequences. Otherwise the changes won’t be visible in the
debugger.

The action based events that are declared by the IActionExecutionEnvironment are:

// Fired after all requested matches of a rule have been matched.

event AfterMatchHandler OnMatched;

// Fired before the rewrite step of a rule, when at least one match has been found.

event BeforeFinishHandler OnFinishing;

// Fired before the next match is rewritten. It is not fired before rewriting the

first match.

event RewriteNextMatchHandler OnRewritingNextMatch;

// Fired after the rewrite step of a rule.

// Note, that the given matches object may contain invalid entries,

// as parts of the match may have been deleted!

event AfterFinishHandler OnFinished;

The subrule based events that are declared by the ISubactionAndOutputAddition-

Environment extending the IActionExecutionEnvironment are:

// Fired when a debug entity is entered.

event DebugEnterHandler OnDebugEnter;

// Fired when a debug entity is left.

event DebugExitHandler OnDebugExit;

// Fired when a debug emit is executed.

event DebugEmitHandler OnDebugEmit;

// Fired when a debug halt is executed.

event DebugHaltHandler OnDebugHalt;

// Fired when a debug highlight is executed.

event DebugHighlightHandler OnDebugHighlight;

340 Application Programming Interface

A special kind of sequence based events are the graph change events that are fired when
processing enters a subgraph or leaves a subgraph (fired when the subgraph usage stack is
altered):

// Fired when graph processing (rule and sequence execution) is switched to a

(sub)graph.

// (Not fired when the main graph is replaced by another main graph, or initialized.)

event SwitchToSubgraphHandler OnSwitchingToSubgraph;

// Fired when graph processing is returning back after a switch.

// (To the main graph, or a subgraph previously switched to.)

event ReturnFromSubgraphHandler OnReturnedFromSubgraph;

The sequence based events that are declared by the IGraphProcessingEnvironment ex-
tending the ISubactionAndOutputAdditionEnvironment are:

// Fired when a sequence is entered.

event EnterSequenceHandler OnEntereringSequence;

// Fired when a sequence is left.

event ExitSequenceHandler OnExitingSequence;

// Fired when a sequence iteration is ended.

event EndOfIterationHandler OnEndOfIteration;

C H A P T E R 25

E X T E N S I O N S

This chapter explains how to customize GrGen.NET with external code, or how to tightly
integrate GrGen.NET with external code. It lists the ways how you can interact with the
external world outside of GrGen.NET. The primary means available are: external attribute
types and their methods, external functions and procedures, external match filters, and ex-
ternal sequences; the secondary helpers available are annotations, command line parameters,
and external shell commands.

You typically want to use them for integrating functionality outside of graph represen-
tation processing, i.e. subtasks GrGen.NET was not built for. You maybe want to use
them for performance reasons, to implement linked lists or trees more efficiently than with
the nodes and edges supplied by GrGen.NET.

The languages of GrGen.NET shield you from the details of the runtime and the frame-
work below it; you can combine their constructs freely. But when you plug into the existing
framework with your code, you must obey the expectations of that framework. When you
extend GrGen.NET, you must play according to the rules of the GrGen.NET-components.
That said, there are plenty of possibilities to extend the framework with your own function-
ality.

25.1 External Attribute Types

ExternalClassDeclaration

- external
�� �- class

�� �- IdentDecl �
�- extends

�� �- ExternalClassType�
� ,

����
�

�

�

�
�- ;

����
�- {����

� - ExternalFunctionDeclaration�
�- ExternalProcedureDeclaration

�

�
�

�

�

- }
���

�

-

Registers a new attribute type with GrGen.NET. You may declare the base types of the
type, and you may specify external function methods or procedure methods. Attributes
cannot be specified. The attribute type (and the declared methods) must be implemented
externally, see 24.5. For GrGen.NET the type is opaque, only the function/procedure
methods or external functions/procedures can carry out computations on it.

341

342 Extensions

You may extend GrGen.NET with external attribute types if the built-in attribute types
(cf. 6.1) are insufficient for your needs (because you need functionality not related to graph-
rewriting, or because you want to implement lists or trees more efficiently than with the
implementation of the node and edge types built for general-purpose graph rewriting). The
external types can be explicitly casted to object but are not implicitly casted. (The methods
may register own undo items with the transaction manager to realize rollback behaviour for
external attributes (cf. 146)).

25.2 External Function Types

ExternalFunctionDeclaration

- external
�� �- function

�� �- IdentDecl - (
����

�- Type�
� ,

����
�

�

-)
���- :

���- Type - ;
���-

Registers an external function with GrGen.NET to be used in attribute computations. An
external function declaration specifies the expected input types and the delivered output type.
The function must be implemented externally, see 24.5. An external function call (cf. 6.8) may
receive and return values of the built-in (attribute) types, as well as of the external attribute
types. The real arguments on the call sites are type-checked against the declared signature
following the subtyping hierarchy of the built-in – as well as of the external – attribute types.
You may extend GrGen.NET with external functions if the built-in attribute computation
capabilities (cf. 6.2) or graph querying capabilities are insufficient for your needs.

25.3 External Procedure Types

ExternalProcedureDeclaration

- external
�� �- procedure

�� �- IdentDecl - (
����

�- Type�
� ,

����
�

�

-)
����

�
��

�- :
���- (

���- Type�
� ,

����
�

-)
���

�

- ;
���-

Registers an external procedure with GrGen.NET to be used in attribute computations. An
external procedure declaration specifies the expected input types and the delivered output
types. The procedure must be implemented externally, see 24.5. An external procedure
call (cf. 6.8) may receive and return values of the built-in (attribute) types as well as of
the external attribute types. The real arguments on the call sites are type-checked against
the declared signature following the subtyping hierarchy of the built-in – as well as of the
external – attribute types. You may extend GrGen.NET with external procedures if the
built-in attribute computation capabilities (cf. 6.2) or graph manipulation capabilities are
insufficient for your needs.

25.4 External Filter Functions 343

25.4 External Filter Functions

FilterFunctionDefinition

- external
�� �- filter

�� �- FilterIdent - <
���- RuleIdent - >

���- Parameters�
�

�

- ;
���-

The FilterFunctionDefinition prepended with an external and deprived of its body (cf.
15 for more on filters) registers an external filter function with GrGen.NET, for the rule (or
test) specified in angles. It can then be used from applications of that rule (cf. FilterCalls
in 9.1). A filter function name – irrespective whether external or internal – must be globally
unique (in contrast to the predefined filters — each rule may offer one with the same name).
The match filter function must be implemented externally, see 24.6. You may extend Gr-
Gen.NET with match filters if you need to inspect the matches found for a rule, in order to
decide which one to apply (see note 60), or if you just need a post-match hook which informs
you about the found matches.

Match object

For a rule or subpattern r, a match interface IMatch r is generated, extending the generic
IMatch interface from libGr. The basic constituents, i.e. nodes, edges and variables are
mapped directly to members of their name and type, containing the graph element matched
or the value computed.

For alternatives nested inside the pattern, a common base interface IMatch r altName is
generated, plus for each alternative case an interface IMatch r altName altCaseName. When
you walk the matches tree using the type exact interface (which is recommended), you must
type switch on the match object in the alternative variable, to determine the case which was
finally matched, and cast to its match type.

For iterated patterns nested inside the pattern, an iterated variable of type IMatchesExact
<IMatch r iteratedName> is created in the pattern match object; the IMatchesExact allows
you to iterate over the patterns finally found.

A subpattern usage is mapped directly to a variable in the match object typed with the
match interface of the subpattern.

An independent pattern is mapped directly to a variable in the match object typed with
the match interface of the independent pattern.

Negative patterns do not appear in the match objects, for they prevent the matching and
thus the building of a match object in the first place.

25.5 External Sequences

ExternalSequenceDeclaration

- external
�� �- sequence

�� �- RewriteSequenceSignature - ;
���-

Registers an external sequence similar to a defined sequence (cf. 18.1), but in contrast to that
one, it must or can be implemented outside in C# code. An external sequence declaration
specifies the expected input types and the delivered output types. The sequence must be
implemented externally, see 24.6. You may extend GrGen.NET with external sequences if
you want to call into external code, in order to interface with libraries outside of the domain
of graph rewriting, or if the GrGen.NET-languages are not well suited for parts of the task
at hand.

344 Extensions

25.6 External Emitting and Parsing

EmitParseDeclaration

- external
�� �- emit

�� ��
�- graph

�� �
�

- class
�� �- ;

���-

Tells GrGen.NET that GRS importing and exporting is to be extended, as well as emitting
and debugger display, so that these can handle external types, or the type object. This
allows for a tight integration of external types with the built-in functionality. It allows to
inspect types not defined in GrGen.NET in the debugger (incl. yComp), and it allows to se-
rialize/deserialize graphs with types not defined in GrGen.NET. See 24.4 for an explanation
on what needs to be implemented in this case.

25.7 External Cloning and Comparison

CopyCompareDeclaration

- external
�� �- copy

�� ��
�- =

���- =
����- <

���

�

- class
�� �- ;

���-

Tells GrGen.NET that graph element copying or attribute type comparisons (with equality
esp. being used for graph isomorphy comparison) are to be extended, so that they can handle
external types, or the type object. This allows for a tight integration of external types with
the built-in functionality, and esp. allows to implement value semantics (objects are normally
compared by checking reference identity and cloned by copying the reference). See 24.4 for
an explanation on what needs to be implemented in this case.

25.8 Shell Commands

- !
���- CommandLine -

CommandLine is executed as-is by the shell of the operating system.

- external
�� �- CommandLine -

A method in an extension file is called with the CommandLine as string parameter. This
is only possible after external emit class was specified, see 25.6 above. See 24.4 for an
explanation of the method named External that needs to be implemented in this case.

25.9 Shell and Compiler Parameters 345

25.9 Shell and Compiler Parameters

When you want to include external code, you likely have to reference external assemblies.
You can do so by compiler parameters, that are also available as configuration options in the
shell. Debug symbols and source code availability are also of increased importance in this
case.

When executing the compiler GrGen.exe, amongst others, the following parameters are
admissible:

[mono] GrGen.exe [-keep [<dest-dir>]] [-debug] [-r <assembly-path>]

The assembly assembly-path is linked as reference to the compilation result with the -r

parameter. The -keep parameter causes the generated C# source files to be kept. If dest-dir
is omitted, a subdirectory tmpgrgenn1 within the current directory will be created. When
-debug is supplied, the assemblies are compiled with debug information (also some validity
checking code is added).

These compiler parameters can be configured in the GrShell, too:

- new
�� �- add

�� �- reference
�� �- Filename -

Configures a reference to an external assembly Filename to be linked into the generated
assemblies, maps to the -r option of grgen.exe (cf. 2.2.1).

- new
�� �- set

�� �- keepdebug
�� �- on

�� ��
�- off

�� �
�

-

Configures the compilation of the generated assemblies to keep the generated files and to add
debug symbols. Maps to the -keep and the -debug options of grgen.exe.

25.10 Annotations

Identifier definitions can be annotated by pragmas. Annotations are key-value pairs.

IdentDecl

- Ident �
�- [

���- Ident - =
���- Constant�

� ,
����

�

-]
���

�

-

You can use any key-value pairs between the brackets. For GrGen.NET only the identifiers
prio, maybeDeleted, containment, parallelize, and validityCheck have an effect, cf. Table
25.1. But you may use the annotations to transmit information from the specification files
to API level where they can be queried.

1n is an increasing number.

346 Extensions

Key Value Type Applies to Meaning

prio int node, edge Changes the ranking of a graph ele-
ment for search plans. The default is
prio=1000. Graph elements with high
values are likely to appear prior to graph
elements with low values in search plans.

maybeDeleted boolean node, edge Prevents a compiler error when a graph el-
ement gets accessed that may be matched
homomorphically with a graph element
that gets deleted.

containment boolean edge type Used for XMI export; typically defined
by the ecore(/XMI) import. Declares an
edge type to be an edge type defining a
containment relation, which causes XML
element containment in the exported
XMI. Default is containment=false.

parallelize int rule, test Causes parallelization of the pattern
matcher of the action; the value specifies
the number of threads to use.

validityCheck boolean node, edge In case of false, skips the contained-in-
graph checks for that node/edge, which
are executed in case the debug compiler
flag (or shell option) is supplied, before
a match is rewritten, esp. in between
matches of an all-bracketed rule execu-
tion.

rule In case of false, skips the contained-in-
graph checks for all nodes/edges in the
pattern(s) of the rule.

Table 25.1: Annotations

EXAMPLE (147)

We search the pattern v:NodeTypeA -e:EdgeType-> w:NodeTypeB. We have a host graph
with about 100 nodes of NodeTypeA, 1,000 nodes of NodeTypeB and 10,000 edges of
EdgeType. Furthermore, we know that between each pair of NodeTypeA and NodeTypeB

there exists at most one edge of EdgeType. GrGen.NET can use this information to
improve the initial search plan if we adjust the pattern with v[prio=10000]:NodeTypeA

-e[prio=5000]:EdgeType-> w:NodeTypeB.

C H A P T E R 26

U N D E R S TA N D I N G A N D E X T E N D I N G G R G E N . N E T

This chapter describes the inner workings of GrGen.NET to allow you

• to understand how GrGen.NET works

• esp. in order to extend it with new features 1

It starts with a section that describes how to build GrGen.NET, followed by an introduction
into the generated code, then an introduction into the mechanism of search planning, and ends
with a section giving some details of the structure of, and the data flow in the GrGen.NET-
code generator. Here we repeat some content from chapter 22, refining it with more details.

26.1 How to Build

In case you want to build GrGen.NET on your own, you should recall the system layout
2.1. The graph rewrite generator consists of a frontend written in Java and a backend written
in C#. The frontend was extended and changed since its first version, but not replaced. In
contrast to the backend, which has seen multiple engines and versions: a MySQL database
based version, a PSQL database based version, a C version executing a search plan with a
virtual machine, a C# engine executing code generated from a search plan and finally the
current C# engine version 2 being capable of matching nested and subpatterns.

The frontend is available in the frontend subdirectory of the public mercurial repository
at https://bitbucket.org/eja/grgen. It can be built with the included Makefile on Linux
or the Makefile Cygwin on Windows with the cygwin environment, yielding a grgen.jar.
Alternatively, you may add the de subfolder and the jars in the jars subfolder to your
favourite IDE, but then you must take care of the ANTLR parser generation pre-build-step
on your own.

The backend is available in the engine-net-2 subdirectory. It contains a VisualStu-
dio 2015 solution file containing projects for the libGr, the lgspBackend (libGr-Search-
Plan-Backend), and the GrShell. Before you can build the solution, you have to exe-
cute ./src/libGr/genparser.bat and ./src/GrShell/genparser.bat in order to get the
CSharpCC parsers for the rewrite sequences and the shell generated. Under LINUX you may
use make linux.sh to get a complete build. To get the API examples generated you must
execute ./genlibs.bat.

The doc subdirectory contains the sources of the user manual, for building on Win-
dows enter ./build cygwin.sh grgen in cygwin-bash or on Linux ./build grgen in bash.
The syntaxhighlighting subdirectory contains syntax highlighting specifications for the
.gm,.grg, and .grs-files for Notepad++, vim, and Emacs.

You can check the result of your build with the test suite we use to check against re-
gressions. It is split into syntactic tests and semantic tests. The syntactic tests reside in
frontend/test, they are checking that example model and rule files can get compiled by
grgen (or not compiled, or only compiled emitting warnings) and that the resulting code can

1which may be special extensions for a dedicated task, but also may be of general interest to other users

347

348 Understanding and Extending GrGen.NET

get compiled by csc. The tests get executed by calling ./test.sh or ./testpar.sh from
bash or cygwin-bash (testpar.sh executes them in parallel speeding up execution on multi
core systems considerably, at the price of potential false positive reports); deviations from a
gold standard are reported.

The semantic tests reside in engine-net-2/tests, they are checking that executing exam-
ple shell scripts on example models and rules yields the expected results. They get executed
by calling ./test.sh.

26.2 The Generated Code

In this section we’ll have a look at what is generated by GrGen.NET out of your specifi-
cations: firstly the implementation of the model, secondly the implementation of the rules,
better their pattern matchers, ending thirdly with an explanation of the matching of nested
and subpatterns.

Internal Graph Representation

The graph structure is maintained in an LGSPGraph built of LGSPNode and LGSPEdge objects,
basically without type and attribute information. The types defined in the model are realized
by generated node and edge interfaces and generated node and edge classes. The interfaces
define the user visible types and attributes, the classes inherit from and work like LGSPNodes
and LGSPEdges in the graph, additionally they implement the type and attribute bearing
interfaces. The nodes and edges are contained in a system of ringlists.

Top level do you find type ringlists, every node or edge is contained in a linked list of its
specific type. Each list contains a dummy head node or head edge that serves as entry point,
these are accessible from an array in the graph, storing as many heads as there are types.
Every node or edge contains a field typeNext giving the next element of the type. These
lists allow to quickly look up all elements from the graph bearing a certain type. Figure 26.1
gives an example for a graph with 3 node types, one having no instance nodes, one having
only one instance node, and one having 5 instance nodes; the same holds for the edge types.

T1 T2 T3

Head

T1 T2 T3

Head

Nodes Edges

Head Head Head Head

typeNexttypeNext typeNexttypeNext

typeNext typeNext

typeNext

typeNext typeNext typeNext

typeNext typeNext

typeNext

typeNext typeNext

typeNext typeNext

typeNext typeNext

typeNext typeNext

typeNext

Figure 26.1: Example for type ringlists

The connectedness information is also stored in ringlists, two ringlists per node object,

26.2 The Generated Code 349

one containing the incoming edges and one containing the outgoing edges. The node object
contains a field inHead referencing an arbitrary edge object of the incoming edges (or null of
there is none) and a field outHead referencing an arbitrary edge object of the outgoing edges
(or null if there is none). These lists allow to quickly retrieve all incoming or all outgoing
edges of a node.

The edge objects contain fields source and target referencing the source and the target
node. They give instant access to the source and target nodes of an edge. Furthermore, edges
contain a field inNext referencing the next edge in the incoming ringlist they are contained
in, and a field outNext referencing the next edge in the outgoing ringlist they are contained
in.

All the 3 ringlists (type, in, out) are doubly linked to allow for fast insertion and deletion.
For every next field there is also a prev field available that references the previous element in
the ringlist (typePrev, inPrev, outPrev). The figure 26.3 gives the ringlist implementation
of the example graph depicted in figure 26.2.

Figure 26.2: Incidence example situation

outHead

outNext

outNext inHead

outHead

outNext

inNext

inNext

inNext

source

source

targetsource

target

target

Figure 26.3: Ringlist implementation of incidence example

350 Understanding and Extending GrGen.NET

In case attribute indices were declared, a balanced search tree (an AA-tree) is created for
each of them. The tree is maintained by event handlers that listen to graph element creation
and deletion, but esp. for attribute assignment.

Pattern Matching and Search Programs

The pattern of an action (rule or test) is matched with a backtracking algorithm that is
binding one pattern element after another to a graph element, while checking if it fits to the
already bound parts. If it does fit, search continues trying to bind the next pattern element,
or succeeds in case the last check succeeded, building the match object from all the elements
bound. If it does not fit, search continues with the next graph element candidate for the
pattern element. If all graph element candidates for this pattern element are exhausted,
search backtracks to the previous decision point and continues there with the next graph
element candidate, or fails in case the first check failed.

For every pattern that is to be matched, a search program implementing this algorithm is
generated, basically consisting of nested loops iterating the available graph element candidates
for each pattern element, and condition checking code that continues search with the next
graph element candidate in case of a failing check. Figure 26.4 shows a pattern and a search
program generated for it.

Figure 26.4: Pattern to search

1 foreach(v1:A in graph) {

2 foreach(e1 in outgoing(v1)) {

3 if(type(e1)!=a) continue;

4 v2 = e1.tgt;

5 if(type(v2)!=B) continue;

6 foreach(e3 in outgoing(v2)) {

7 if(type(e3)!=b) continue;

8 v3 = e3.tgt;

9 if(type(v3)!=C) continue;

10 foreach(e2 in outgoing(v3)) {

11 if(type(e2)!=a) continue;

12 if(e2.tgt!=v2) continue;

13 // v1,e1,v2,e3,v3,v2 constitute a match

14 }

15 }

16 }

17 }

26.2 The Generated Code 351

Search Programs Refined And Rewriting

If a non-leaf-type (regarding the inheritance hierarchy) is to be matched with a graph lookup
(the outermost loop in the example, defining the root element for pattern matching), then an
additional loop is used that is iterating all the subtypes of the type of the pattern element.
After an initial lookup, search normally follows the pattern structure (matching it against
graph structure), by iterating the incoming or outgoing edges of a node, or determining
the source or target node of an edge. If a pattern is given one or more parameters, search
normally continues from the parameters on, picking those as roots, instead of looking up by
type in the graph. If a pattern consists of several unconnected components, several lookups
are needed.

Undirected or arbitrarily directed pattern edges are searched in both ringlists, the ringlist
of the incoming and the ringlist of the outgoing edges (undirected edge types are otherwise
implemented like directed edge types). Other matching operations besides graph lookup and
incoming/outgoing or source/target following are storage access, storage attribute access and
storage mapping. The condition checking code may be targeted at different constraints: a
graph element candidate may get rejected because of its type, missing structural connections
to already bound elements, or because the graph element is already matched to another
pattern element (isomorphy checking). Furthermore, attribute conditions may have to be
checked, negative patterns for non-matches, and independent patterns for matches (these
conditions are normally depending on multiple elements).

Compared with pattern matching, a search task that may need a long time, pattern
rewriting is a simple task that executes quickly. It consists of a sequence of operations,
most notably: i) new nodes creation, then new edge creation, ii) attribute evaluation and
assignment, iii) edge deletion, then node deletion, iv) embedded sequences execution (see
table 8.1 for more on this).

A notable performance optimization allowed by the graph model is search state space
stepping: after a pattern was matched, the list heads of the type ringlists, the incoming
ringlists and the outgoing ringlists are moved to the position of the matched entries with
MoveHeadAfter, MoveInHeadAfter and MoveOutHeadAfter. With this optimization, the
pattern matching during an iteration r* will start where the previous iteration step left,
saving the cost of iterating again through all the elements that failed in the previous iteration.

Pushdown Machine for Nested and Subpatterns

Every subpattern (as introduced in chapter 8) is matched with a search program that is
generated from its pattern, in the way introduced in the previous section. The interesting
part is how the subpatterns get combined, this is carried out with a 2+n pushdown machine.

It consists of a call stack, containing the subpattern instances found, an open tasks stack
containing the subpatterns to match, and n result stacks containing the (partial) match object
trees. The subpattern instances on the call stack consist of the currently bound elements in
the local variables of the stack frame of the search program. A task denotes the pattern to
match, and the parameters where to start; when a subpattern was matched, its contained
subpatterns are pushed to the open tasks stack, then the top of the stack gets processed.
For a normal rule application holds n = 1, while the number of matches is unbound for an
all-bracketed rule. A simulation of this machine, i.e. the matching process of a pattern using
subpatterns is shown on the following pages.

Alternatives are handled like a subpattern with several possible patterns that are tried
out, the first pattern that is matching is accepted. Iterateds are handled like subpatterns
whose tasks are not removed from the open tasks stack when they get matched, but only if
matching failed or the maximum amount of matches was reached. In case of a failure the
minimum required amount of matches is inspected, if the amount of found matches is larger
or equal then matching partially succeeds and continues with the next open task (or plain

352 Understanding and Extending GrGen.NET

succeeds if there are no open tasks left), otherwise matching of the given partial match fails,
causing matching to backtrack (to the previous decision point).

The advantages of this design linearizing the pattern tree on the call stack are the rather
low usage of heap memory, the ability to reuse the matcher programs for the patterns as
introduced in the previous section, and the ability to find all matches (the n in 2+n pushdown
machine stands for the number of matches found).

Rewriting is carried out by a depth-first traversal of the match object tree, creating new
elements before descending, evaluating attributes and deleting old elements before ascending.
For each pattern piece matched, the modification specified in the rewrite part is carried out,
i.e. the overall rewrite gets combined from the rewrites of the pattern pieces (cf. table 8.1
for the order of rewriting).

The subpattern usage parameters are computed during matching from matched elements
and call expressions (inherited attribution), LHS yielding is carried out after the match was
found during match object building with the yield statements (synthesized attribution), RHS
yielding is carried out during match object tree rewriting with the eval statements (left
attribution, with a user defined left-relation).

In the following, an example run of the 2 + n pushdown machine is given:

26.2 The Generated Code 353

:A

:D1

Open tasks stack

Call stack holding partial match

State of matching

:B :C

:D2

:B :C

:D

Result building stack(s)

Pattern

Match storage

Search state

Figure 26.5: 1. Start state

:A

:D1

:B :C

:D2

:B :C

:D

:A

Pattern
State of matching Open tasks stack

Call stack holding partial match

Result building stack(s)

Search state

Match storage

Figure 26.6: 2. The terminal part of pattern A was matched

354 Understanding and Extending GrGen.NET

:A

:D1

:B :C

:D2

:B :C

:D

:C

:B

:A

Pattern
State of matching Open tasks stack

Call stack holding partial match

Result building stack(s)

Search state

Match storage

Figure 26.7: 3. The tasks for subpatterns B and C are pushed

:A

:D1

:B :C

:D2

:B :C

:D

:A

:C

:B

Pattern
State of matching Open tasks stack

Call stack holding partial match

Result building stack(s)

Search state

Match storage

Figure 26.8: 4. The task for B gets executed, the terminal part of B was matched

26.2 The Generated Code 355

:A

:D1

:B :C

:D2

:B :C

:D

:A :B

:C

:D

Pattern
State of matching Open tasks stack

Call stack holding partial match

Result building stack(s)

Search state

Match storage

Figure 26.9: 5. The task for alternative D is pushed

:A

:D1

:B :C

:D2

:B :C

:D

:A :B

:C

:D1

Pattern
State of matching Open tasks stack

Call stack holding partial match

Result building stack(s)

Search state

Match storage

Figure 26.10: 6. The task for D gets executed, D1 is tried, but matching fails

356 Understanding and Extending GrGen.NET

:A

:D1

:B :C

:D2

:B :C

:D

:A :B

:C

:D2

Pattern
State of matching Open tasks stack

Call stack holding partial match

Result building stack(s)

Search state

Match storage

Figure 26.11: 7. The task for D gets executed, D2 was matched

:A

:D1

:B :C

:D2

:B :C

:D

:A :B :D2 :C

Pattern
State of matching Open tasks stack

Call stack holding partial match

Result building stack(s)

Search state

Match storage

Figure 26.12: 8. The task for C gets executed, C was matched, a match for the overall pattern
was found, but is contained only on the call stack

26.2 The Generated Code 357

:A

:D1

:B :C

:D2

:B :C

:D

:A :B :D2

:C

:C

Pattern
State of matching Open tasks stack

Call stack holding partial match

Result building stack(s)

Search state

Match storage

Figure 26.13: 9. The match of C is popped from the call stack and pushed to the result stack

:A

:D1

:B :C

:D2

:B :C

:D

:A :B

:C

:C

:D2

:D

Pattern
State of matching Open tasks stack

Call stack holding partial match

Result building stack(s)

Search state

Match storage

Figure 26.14: 10. The match of D2 is popped from the call stack and pushed to the result
stack

358 Understanding and Extending GrGen.NET

:A

:D1

:B :C

:D2

:B :C

:D

:A

:C

:C

:B

:B

:D2

Pattern
State of matching Open tasks stack

Call stack holding partial match

Result building stack(s)

Search state

Match storage

Figure 26.15: 11. The match of B is popped from the call stack, D2 from the result stack is
added, the combined match is pushed to the result stack

:A

:D1

:B :C

:D2

:B :C

:D

:A
:B :C
:D1

Pattern
State of matching Open tasks stack

Call stack holding partial match

Result building stack(s)

Search state

Match storage

Figure 26.16: 12. The match of A is popped from the call stack, B and C from the result
stack are added, now we got the combined match of the overall pattern

26.2 The Generated Code 359

Figure 26.17: Pattern to search

Figure 26.18: Host graph to search in

360 Understanding and Extending GrGen.NET

26.3 Search Planning in Code Generation

In the previous section, a search program for the pattern repeated in figure 26.17 was given.
It follows the schedule
lkp(v1:A); out(v1,e1:a); tgt(e1,v2:B); out(v2,e3:b); tgt(e3,v3:C); out(v3,e2:a)

A schedule is a more abstract version of a search program, consisting of a list of search
operations. Available are the search operations lkp, denoting node (or edge) lookup in the
graph by iterating the type list, out iterating the outgoing edges of the given source node and
in iterating the incoming edges of the given target node, as well as src fetching the source
node from the given edge and tgt fetching the target node from the given edge.

The schedule might work well for some graphs, but for the graph given in figure 26.18 it
is a bad schedule. Why so can be seen on inspecting the search order illustration in figure
26.19. Because only one of the multiple outgoing edges of v1 leads to a match for e1, it has
to backtrack several times. A better search order would be one matching edge e1 from v2

on in reverse direction (this is possible in GrGen.NETb̃ecause the graph model contains a
list of outgoing as well as a list of incoming edges, so each edge can be traversed in either
direction).

And indeed, the search planning component of GrGen.NET chooses such a schedule:
lkp(v3:C); out(v3,e2:a); tgt(e2,v2:B); out(v2,e3:b); in(v2,e1:a); src(e1,v1:A)

It leads to the search order depicted in figure 26.20, and the search program:

1 foreach(v3:C in graph) {

2 foreach(e2 in outgoing(v3)) {

3 if(type(e2)!=a) continue;

4 v2 = e2.tgt;

5 if(type(v2)!=B) continue;

6 foreach(e3 in outgoing(v2)) {

7 if(type(e3)!=b) continue;

8 if(e3.tgt!=v3) continue;

9 foreach(e1 in incoming(v2)) {

10 if(type(e1)!=a) continue;

11 v1 = e1.src;

12 if(type(v1)!=A) continue;

13 buildMatchObjectOfPatternWith(v3,e2,v2,e3,e1,v1);

14 }

15 }

16 }

17 }

26.3 Search Planning in Code Generation 361

Figure 26.19: Bad search order

Figure 26.20: Good search order

For every pattern, there are normally multiple potential search programs existing, each
capable of finding all the matches, but with vastly different performance characteristics. In
order to improve performance, GrGen.NET executes a search planning phase. With the
goal of finding a good schedule, it tries to prevent

• following graph structures splitting into breadth as given in this example, or

• lookups on types that are available in high quantities.

In more detail, the mechanism of search planning works by constructing a search plan
graph from the pattern graph. A search plan graph is an edge-weighted graph, with nodes
corresponding to the pattern elements – both nodes and edges – and edges representing
operations to match them, with weight attributes giving an estimated cost of the operation.

362 Understanding and Extending GrGen.NET

A search plan graph contains an additional root node, with an outgoing edge to each other
node defining a lookup operation. From plan nodes created for nodes, edges are leading
to plan nodes created for edges, denoting outgoing and incoming operations. From plan
nodes created for edges, edges are leading to plan nodes created for nodes, denoting source

and target operations. The cost of the operations is determined by analyzing the amount
of splitting between adjacent nodes for every triple of (nodetype, edgetype, nodetype) in the
graph – called a V-Structure – and by counting the number of elements of every node type
or edge type.

Then, a spanning arborescence2 of minimum overall cost is selected from the search plan
graph. The spanning arborescence is further linearized into a schedule, a list of the selected
search operations (as already introduced with the good and the bad schedules).

The details of search planning and some evaluation how well it works are given in [Bat06]
and in [BKG08].

root

v1 : A e1 : a v2 : B

e2 : a

e3 : b

v3 : C

lkp/2
lkp/7

lk
p
/4

lk
p/

7

lkp/2
lkp/1

out/2.83

src/1 tgt/1

in/1

out/1

src/1
out/1

src/1

tgt/1

in/1

tgt/1

in/2

Figure 26.21: The search plan graph for the pattern graph of Figure 26.17 with estimated
backtracking costs induced by the host graph of Figure 26.18. The found minimum directed
spanning tree is denoted by thick edges.

Afterwards, a search program is constructed from the schedule. It is situated at a level
of abstraction in between the schedule and the code finally emitted. Structurally, it is a
tree resembling the syntax tree of the code to generate, as sketched in figure 26.22 (with list
entries maybe containing further lists).

It contains explicit instructions for isomorphy checking and connectedness checking (whose
are depending on the exact schedule). Furthermore, it contains exact locations where to
continue at; these target search operations may be different from the directly preceding
search operation (because that one does not define a choice point of influence).

Connectedness checking can be seen in the search program of the good example in the
check that the target of e3 is indeed v3; a target matching operation tgt(e3,v3:C) is not
used because v3 was already matched by the lookup operation, and is already contained in
the spanning tree.

A remark on isomorphy checking that ensures that two pattern elements are not bound
to the same graph element: as a consequence of the simple loop-after-loop based assignment
of graph elements to pattern elements, the pattern elements would get matched homomor-
phically to each other by default, if an explicit check against would not be inserted (because
assignment starts with the same graph elements, the homomorphic matches often are the first

2directed tree

26.4 The Code Generator 363

SPL = SearchProgramList
SO = SearchOperation

SP = SearchProgram
:SP

:SPL :SONext

Prev
:SONext

Prev
:SONext

Prev

:SPL :SONext

Prev
:SONext

Prev

Prev

Prev

Figure 26.22: A simple Search Program

ones found). Isomorphy checking is implemented by flags that are contained in the graph
elements, and are set when a graph element is bound to a pattern variable, and reset when
the binding is given up again (one flag for each negative/independent nesting level, until the
implementation defined limit of flags available in the graph elements is reached, then a list of
dictionaries is used). The flags are then checked in the following, nested matching operations.
An iso-check scheduling pass ensures that checks are only inserted if the elements must be
isomorphic and their types do not already ensure that they cannot get matched to the same
elements.

26.4 The Code Generator

26.4.1 Frontend

IR
.gm

AST u. AST r.
.grg

RulePattern

PatternGraph

Parsing actions

getIR

Symbol
Table,
Scope

resolve

check

Lexer
Parser

ActionsGen

ModelGen

NegPatternGraph

Alternative

AltPatternGraph

Subpattern

Graph
Representation

Replacement
Code

MatchingPattern

PatternGraph

NegPatternGraph

Alternative

AltPatternGraph

IterPatternGraph

Replacement,
Create, Delete

Code

ModifyGen

points to

IdptPatternGraph

IterPatternGraph

IdptPatternGraph

Subpattern

Figure 26.23: Frontend Code Generation

364 Understanding and Extending GrGen.NET

The frontend is spread over the directories parser, ast, ir, be and util, with their code
being used from Main.java.

Syntax and Static Semantics

The directory parser contains parser helpers like the symbol table and scopes and within
the antlr subdirectory the ANTLR parser grammar of GrGen.NET in the file Grgen.g.
The semantic actions of the parser build an abstract syntax tree consisting of instances of the
classes given in the directory ast, with the base class BaseNode. The AST is operated upon in
three passes, first resolving by resolve and resolveLocal, mainly replacing identifier nodes
by their declaration nodes during a (largely) preorder walk. Afterwards, the AST is checked
by check and checkLocal during a (largely) postorder walk for type and other semantic
constraints. Finally, an intermediate representation is built from the abstract syntax tree by
the getIR and constructIR methods.

Intermediate Representation

The IR classes given in the ir folder can be seen as more lightweight AST classes; their name
is often the same as for their corresponding AST classes, but without the Node-suffix which is
appended to all AST classes. The most interesting classes are Rule used for rules, alternative
cases and iterateds, as well as PatternGraph used for all pattern graphs including negatives
and independents; several data flow analyses are contained in PatternGraph, some covering
the nesting of patterns, some being even global.

A particularly interesting one is ensureDirectlyNestingPatternContainsAllNonLocal-
ElementsOfNestedPattern, it ensures that, from a pattern which contains a certain entity
the first time, up to every pattern that references this entity, all intermediate patterns con-
tain that entity, too. It is implemented with a recursive walk over the nested patterns in the
IR-structure. Each pattern receives the set of already known elements as parameter. Before
descending, the elements available in the current pattern are added to the set of already
known elements, then recursive descent into the directly nested patterns follows, handing
down the already known elements. On ascending, elements are added to the current pattern
if they are contained in a directly nested pattern, but not in the current pattern, although
they are known in the current pattern. This function allows keep the backends simple.

The IR classes are the input to the two backends of the JAVA frontend. They can be
found in the folders be/C and be/Csharp.

Backends

The directory be/C contains the code generator for the C based backend, which is integrated
into the IPD C compiler. (The compiler transforms a C program into a graph and SSA
based compiler intermediate representation named FIRM using libFirm (see libfirm.org,
[TLB99], [Lin02]) and further on to x86 machine code.)

The directory be/Csharp contains the code generator for the C# based backend of Gr-
Gen.NET. It generates the source code for the model with the node and edge classes, in
FooModel.cs for a rule file named Foo.grg, and the intermediate source code for the rules,
consisting of a specification of the patterns to match, a listing of the embedded graph rewrite
sequences, and the rewriting code, in FooActions intermediate.cs. This is done in several
recursive passes over the nesting structure of the patterns in the IR.

The backend of the frontend does not generate the complete source code for the rules
including the matcher code or the code for the embedded rewrite sequences — this is done
by grgen.exe, which calls the grgen.jar of the frontend. You may call the Java archive
on your own in order to get a visualization of the model and rewrite rules, in the form of a
.vcg-dump of the IR, cf. Note3.

libfirm.org

26.4 The Code Generator 365

Model Generation

The model generation code in ModelGen is rather straight forward:

1. first, code for the user defined enums is generated,

2. then the node classes are generated,

3. followed by the node model,

4. then the edge classes are generated,

5. followed by the edge model,

6. and finally, the graph model is generated.

For the nodes as well as for the edges, three classes are generated:

1. the first is the interface visible to the user, giving access to the attributes,

2. the second is the implementation of the interface, also inheriting from LGSPNode or
LGSPEdge,

3. and the third is a type representation class, which is inheriting from NodeType or
EdgeType, that is giving information about the type and its attributes, and is used in
the node/edge model and thus the graph model.

Rule Representation Pass

The code – better representation – generation of the actions is implemented in ActionsGen,
in the code called from genSubpattern for the subpatterns and genAction for the rules and
tests.

In a prerun from genRuleOrSubpatternClassEntities on, some needed entities are gen-
erated, e.g. type arrays for the allowed types of the pattern elements (the arrays are only
filled if the base type was constrained), or indexing enums, which map the pattern element
names to their index in the arrays of the matched host graph elements in the match objects
of the generic match interface.

In the rule representation pass, from genRuleOrSubpatternInit on, the subpattern- and
rule representations of type MatchingPattern and RulePattern are generated, including
the contained PatternGraph-objects for the (nested) pattern graph(s), by mutually recursive
calls of genPatternGraph and genElementsRequiredByPatternGraph.

The method genElementsRequiredByPatternGraph generates for a pattern graph its
contained elements, the pattern nodes, the pattern edges, the used subpatterns as Pattern-
GraphEmbedding members, the contained alternatives, and the iterateds; the representations
of contained negative subpatterns and alternative cases are generated by genPatternGraph

before the containing pattern.
A graph element contained in a pattern, but defined in a nesting pattern, is saved in the

pattern as a reference to the element in the nesting pattern. The PatternGraph in which
it was used first is remembered in a PointOfDefinition member variable. The source and
target nodes of edges are saved in the PatternGraph in hash tables (so that an edge with an
undefined source or target can be refined in a nested pattern); source and target nodes are
determined by ascending alongside the pattern nesting until a definition is found.

As all graph elements, including the ones of the nested patterns, are created flatly in
the initialize-method of the MatchingPattern, name prefixes are needed to prevent name
clashes; this is ensured by the parameter pathPrefix. Correct naming of already declared el-
ements is ensured with a alreadyDefinedEntityToName-hash-table. The split into construc-
tor and initialize method is needed because a recursive MatchingPattern must reference
itself at construction.

366 Understanding and Extending GrGen.NET

Furthermore, expression trees for the attribute checks are generated, as well as local and
global homomorphy tables for the nodes and the edges, defining which pattern elements are
allowed to match the same host graph element (the global tables specify the homomorphy
in between elements from the PatternGraph of an alternative case or an iterated, and an
enclosing PatternGraph).

Rewrite Code Pass

In the rewrite pass, the rewrite code gets generated, via genModify of ModifyGen. The
nesting of negative or independent patterns does not need to be taken care of here, as they
come without rewrite parts.

For every pattern piece and its rewrite role (dependent rewriting, creation, deletion) are
local rewrite methods generated, carrying out the complete rewriting by calling each other
at runtime. ModifyGenerationState holds the state during generation, while the Modify-

GenerationTasks allow to give a left and right graph independent of the rewriting specified
with the rule (so the creation and deletion code can be generated in addition to the dependent
rewrite). The code for subpattern creation is generated by using an empty graph as left graph
and the pattern graph as right graph. The code for subpattern deletion is generated by using
the pattern graph as left graph and an empty graph as right graph. The code for dependent
rewriting is generated by simply referencing the graphs from IR::Rule. For a test, the pattern
graph is used as left and right graph. For alternatives and iterateds, dispatching methods
are generated, calling the rewrite methods of the instances of the patterns matched. Rewrite
parameters are mapped to local parameters of the rewrite methods.

The core method of rewrite code generation named genModifyRuleOr-Subrule generates
the rewriting of the given pattern and the calls to the rewrite methods of the nested patterns.
The rewrite methods of the nested patterns are prefixed with their nesting path, in order to
avoid name conflicts, which may occur as they are placed flatly in their MatchingPattern

or RulePattern. Their role is distinguished by one of the name postfixes Modify, Create or
Delete; for keeping a pattern unmodified obviously no methods are needed.

For embedded sequences, LGSPEmbeddedSequenceInfo objects are generated, which con-
tain the sequence as string, plus additional parameter information; the real sequence code is
generated in the backend. For sequences embedded in alternatives, iterateds, or subpatterns,
additionally closure classes inheriting from LGSPEmbeddedSequenceClosure are generated.
They store the graph elements the pattern elements from the pattern containing the exec
were bound to; the sequence execution function is then called on this closure, which is stored
in a queue, and executed from the top level rule.

Finally match classes are generated, for every pattern besides negative patterns an inter-
face and a class implementing this interface. The match classes are instantiated after a match
of the corresponding pattern was found, giving a highly convenient and type safe interface to
the matched entities at API level.

26.4.2 Backend

The real matcher code is generated by the backend given in engine-net-2, in the src/lgsp-
Backend subdirectory. The generation is carried out in several passes in lgspMatcher-

Generator.cs. The base data structure is the PatternGraph, resp. the nesting of the
PatternGraph-objects, contained in the RulePattern-objects of the rules/tests or the Matching-
Pattern-objects of the subpatterns.

26.4 The Code Generator 367

1. Step

SearchPlanGraph

Graph-
analysis
data

GeneratePlanGraph MarkMinimumSpanningArborescence

GenerateSearchPlanGraph

ScheduleSearchPlan

AppendHomomorphyInformation

PatternGraph

. . .

PatternGraph

. . .

SchedulePlanGraph Scheduled
SearchPlan

InlineSubpatternUsages

Figure 26.24: Backend Code Generation, step 1

First, the subpattern usages are inlined when inlining is assumed to be beneficial. (This
allows you to extract common patterns into subpatterns increasing readability and modu-
larity without loosing performance (but as of now only one level of inlining is supported,
so beware of too much subpattern extraction, especially if the containing pattern would get
disconnected by this)). After (and partly before) this kind of pattern rewriting, the patterns
and their relations are analyzed by the PatternGraphAnalyzer – the analyzation results
are used for emitting better code later on (choosing more efficient but more limited imple-
mentations of language features, which are not sufficient in the general case but are so for
the specification at hand). Then a PlanGraph is created from the PatternGraph and data
from analyzing the host graph (for generating the initial matcher some default data from
the frontend is used). A minimum spanning arborescence is computed defining a hopefully
optimal set of operations for matching the pattern (the hopes are founded, see [BKG08]). A
SearchPlanGraph is built from the arborescence marked in the PlanGraph and used thereafter
for scheduling the operations into a ScheduledSearchPlan, which gets completed by Append-

HomomorphyInformation with isomorphy checking information. The ScheduledSearchPlan

is then stored in the PatternGraph it was computed from.

2. Step

PatternGraph

. . .

Schedule

NegPatternGraph

Schedule

PatternGraph

. . .

Schedule
InclNegIdpt

MergeNegativeAndIndependentSchedules
IntoEnclosingSchedules

IdptPatternGraph

Schedule

Figure 26.25: Backend Code Generation, step 2

In a second step, the Schedules of the negative or independent PatternGraphs are inte-
grated into the Schedule of the enclosing PatternGraph, by MergeNegativeAndIndependent-

SchedulesIntoEnclosingSchedules, in a recursive run over the nesting structure of the
PatternGraphs in the MatchingPatterns or RulePatterns. Due to nested negative or in-
dependent graphs, this may happen spanning several nesting levels; the result is saved in
the ScheduleIncludingNegativesAndIndependents field of the non-negative/independent
PatternGraphs.

368 Understanding and Extending GrGen.NET

3. Step

C#-Code
Action

Matcher
Assembly

SearchProgramBuilder
(Rule)

Emit

Rule Pattern

PatternGraph

Alternative

AltPatternGraph

Subpattern

. . .

SPr u. SPr c.

MatchingPattern

PatternGraph

. . .

. . .

points to

SearchProgramCompleter

SPr u. SPr c.

SearchProgramCompleter

(Alternative)
SearchProgramBuilder

SearchProgramBuilder
(Subpattern)

SPr u. SPr c.

SearchProgramCompleter

C#-Code
AlternativeAction

C#-Code
PatternAction

Emit

Emit

C#-Compiler

C#-Compiler

C#-Compiler

Schedule
InclNegIdpt

Schedule
InclNegIdpt

Schedule
InclNegIdpt

IterPatternGraph

Schedule
InclNegIdpt

Emit

SPr u. SPr c.

SearchProgramCompleter

(Iterated)
SearchProgramBuilder

C#-Code
IteratedAction

C#-Compiler

Figure 26.26: Backend Code Generation, step 3

Finally, in a third step, code is generated by GenerateMatcherSourceCode, again in a re-
cursive run over the nesting structure of the PatternGraphs, using the ScheduleIncluding-

NegativesAndIndependents stored in them.

For each RulePattern, an Action-class is generated, and for each MatchingPattern, a
SubpatternAction-class is generated. Additionally, for each alternative an Alternative-

Action-class is generated, the alternative matcher will contain code for all alternative cases.
For each iterated, an IteratedAction-class is generated. The real matching code is then
generated into these classes.

The SearchProgramBuilder builds a SearchProgram tree data structure resembling the
syntax tree of the code to generate out of the ScheduleIncludingNegativesAndIndependents
in the PatternGraphs. To be more precise: the SearchProgramBuilder builds the Search-

Program matcher routine heads and then employs a SearchProgramBodyBuilder to build
the bodies of the matcher routines – consisting of diverse SearchProgramOperations – in a
run over the schedule with BuildScheduledSearchPlanOperationIntoSearchProgram, one
input SearchOperation after the other. In a further pass, the SearchProgram is completed
by the SearchProgramCompleter, determining the locations to continue at when a check
fails, writing undo code for the effects which were applied from that point on to the current
one. Finally, the C# code gets generated by calling the Emit methods of the SearchProgram.
If you want to extend this code, you may be interested in the Dump methods which dump the
SearchProgram in an easier readable form into text files.

The SubpatternAction-classes do not only contain the matcher code, but are at the
same time the tasks of the 2 + n pushdown machine, which are pushed on the open tasks
stack; they contain the subpattern parameters as member variables. The same holds for

26.4 The Code Generator 369

the AlternativeAction- and IteratedAction-classes, which do not hold parameters but
entities from the nesting pattern they reference.

Nested and Subpattern Matching

The higher levels of code generation are in large parts independent of nested and subpattern
matching and control of the 2 + n pushdown machine. Only on the level of search programs
does it become visible, with an InitializeSubpatternMatching-search program operation
at the begin of a search program and a FinalizeSubpatternMatching-search program oper-
ation at the end of a search program; but mainly with a call to buildMatchComplete when
the end of the schedule is reached during search program building. This corresponds to the
innermost location in the search program, the location at which the local pattern was just
found (during execution); now the control code is inserted by insertPushSubpatternTasks,
pushing the tasks for the subpatterns used from this pattern, as well as alternatives and
iterateds nested in this pattern. To execute the open tasks a MatchSubpatterns operation
is inserted into the search program. Afterwards, insertPopSubpatternTasks inserts the
operations for cleaning the task stack, insertCheckForSubpatternsFound the operations to
handle success and failure, and insertMatchObjectBuilding the code for maintaining the
result stack.

Further Functionality

The src/GrGen subdirectory contains the driver procedure of the grgen.exe compiler. The
src/libGr subdirectory contains the libGr, offering the base interfaces you see on the API
level for the model, the actions, the pattern graphs and the host graph. The interfaces are
implemented by code from the libGr search plan (lgsp) backend and by the generated code.
The generated code defines a type-safe interface of named and typed entities, which is more
convenient to use at API level, but bound to a specification. The libGr in contrast offers a
generic, name string and object or root type based interface. Also, the libGr offers several
importers and exporters in the src/libGr/IO subfolder.

In addition, it offers the graph rewrite sequence parser, which gets generated from Sequence-

Parser.csc, and is building a graph rewrite sequence AST out of a sequence string, from
the classes in Sequence.cs, further utilizing SymbolTable.cs. The graph rewrite sequence
classes contain a method ApplyImpl(IGraph graph), which is called at runtime for exe-
cuting the sequence. The compiled graph rewrite sequences are also parsed by the regular
sequence parser from libGr. But instead of getting interpreted at runtime of the transfor-
mation, they are type checked by the lgspSequenceChecker, and emitted as source code by
the lgspSequenceGenerator. The lgspSequenceGenerator works as driver, employing esp.
the SequenceGenerator for generating the rule controlling sequences, which in turn employs
esp. the SequenceComputationGenerator for generating the sequence computations, and
the SequenceExpressionGenerator for generating the sequence expressions.

When GrGen rules are matched, as well as when the graph is changed, events are fired.
They allow to display the matches and graph changes in the debugger, to record changes
to a file for later playback, or record changes to a transaction undo log for later rollback.
You can register event handlers to them, in order to execute your own code (allowing you to
build an event based graph rewriting mechanism on API level). The graph delegates fired
are given in IGraph.cs. Graph events recording is implemented in Recorder.cs, replay-
ing amounts to a normal .grs execution. Graph transaction handling is implemented in
lgspTransactionManager.cs, with a list of undo items, which know how to undo the effect
that created them. They are purged on commit or executed on rollback. Backtracking is
implemented with nested transactions. If you are changing the graph programmatically at
API level (not using GrGen rules), you have to fire some of the events (esp. the ones for
attribute assignment) on your own in case you want to use any of the mechanisms (graphi-

370 Understanding and Extending GrGen.NET

cal debugging, record and replay, transactions and backtracking, event based programming)
above.

The src/GrShell subdirectory contains the GrShell application, which builds upon the
sequence interpretation facilities offered by libGr, and the generic interface of libGr, because
it has to be capable of coping with arbitrary used defined models and actions at runtime. The
command line parser of GrShell gets generated out of GrShell.csc, the shell implementation
is given in GrShellImpl.cs. Graphical debugging is offered by the Debugger.cs, together
with the YCompClient.cs, which implements the protocol available for controlling yComp,
communicating with yComp over a tcp connection to localhost.

The examples subdirectory of engine-net-2 contains a bunch of examples for using
GrGen.NET with GrShell. The examples-api subdirectory contains several examples of
how to use GrGen.NET from the API.

In case you want to contribute and got further questions don’t hesitate to contact us (via
email to grgen at the host given by ipd.info.uni-karlsruhe.de).

C H A P T E R 27

D E V E L O P M E N T G OA L S A N D D E S I G N D E C I S I O N S

GrGen.NET is the successor of the GrGen tool presented at ICGT 2006 [GBG+06]. The
“.NET” postfix of the new name indicates that GrGen has been reimplemented in C# for
the Microsoft .NET or Mono environment [Mic07, Tea07]; it is open source licensed under
LGPL3(www.gnu.org/licenses/lgpl.html) and available for download at www.grgen.net.

Over the course of time, it moved from high-performance fixed-shaped patterns and lim-
ited sequences for control to flexibly-shaped patterns (with nested and subpatterns) and
very high programmability (for one with the sequences and for the other with an integrated
imperative programming language), while retaining its performance.

GrGen.NET offers development at the abstraction level of graph representations. It of-
fers the convenience of linguistic abstraction, with dedicated syntax for graph processing, and
static type checking. In contrast to limited libraries or the very leaky abstractions often of-
fered by common programming frameworks. The abstraction is not halting at the languages,
but carried through to development support. With a debugger showing the data and the
processing effects on that very level, removing a major shortcoming of many domain-specific
languages that are linguistically better but are undebuggable at their level. And with per-
formance optimization helpers operating at this level, in the form of search plan explanation
of the pattern matchers, as well as profiling instrumentation and statistics printing for the
search steps.

The main characteristics and development goals of GrGen.NET have been:

• productivity through declarative pattern-based rules of very high expressiveness

• high-performance pattern matching and graph rewriting, based on a model implemen-
tation tailored for it, and an optimizing compiler

• general-purpose graph-representation processing enabled by its very high programma-
bility, and customizability

• debugability: the processing state and esp. the graph can be inspected, esp. visually

Whenever a new feature was found to be needed, we asked ourselves: can this be made
more general, still keeping it understandable and efficiently implementable.

In the following, we’ll take a deeper look at the development goals of GrGen.NET
(comparing it to competitor tools on the way).

27.1 Expressiveness

is achieved by declarative specification languages for pattern matching and rewriting that are
bursting with features, building upon a rich graph model language.

In addition to the unmatched expressiveness of the single-element operations offered by
the pattern and the rewrite parts, are nested and subpatterns available for combining them
flexibly. They allow to process substructures of arbitrary depth and breadth with a single rule
application. This surpasses the capabilities of the VIATRA2[VB07, VHV08] and GROOVE

371

www.gnu.org/licenses/lgpl.html
www.grgen.net

372 Development Goals and Design Decisions

[Ren04] tools, our strongest competitors regarding rule expressiveness. You may have a
look at the GrGen.NET solution of the program understanding case [JB11] of the TTC
2011 highlighting how concise and elegant solutions become due to the expressiveness of the
language constructs.

While the patterns can be combined in a functional way with nested and subpatterns
to build complex rules, can the rules be combined in an imperative way with graph rewrite
sequences, executing a graph state change after the other.

The sequences used for orchestrating the rules are at the time of writing the most ad-
vanced strategy language offered by any graph rewriting tool, featuring variables of elemen-
tary as well as container types (called storages when containing nodes, as pioneered by the
VMTS[LLMC05] tool), and sequential, logical, conditional, and iterative control flow as the
base operations, plus sequence definitions and calls. Small graph-changes and computations
can be executed with sequence computations without the need to enter and exit again the
rule layer. The most notable feature of the sequences are their transactional and backtrack-
ing constructs, which support search space crawling and state space enumeration with their
ability to roll changes to the graph back to an initial state, saving you a considerable amount
of change reversal and bookkeeping code you’d need for implementing this on your own.

Expressiveness is achieved by language elements that were designed to be general and
orthogonal. GrGen.NET offers the more general iterated patterns subsuming the multinodes
as they are common for graph rewriting tools. GrGen.NET offers the more general recursive
patterns subsuming the regular path expressions which are the more common choice. You
get means to combine patterns, instead of dedicated solutions for single nodes or edges.
GrGen.NET offers generic container types, and not only storages, as is more common (non-
container-variables are even more common), and it offers them as graph element attributes,
too and not only for processing variables. GrGen.NET offers not only node and edge types,
but also a graph type allowing to store subgraphs; and especially does it allow that graph
element attributes are typed with it. You can work with a type system as you know it from
object-oriented-languages (where types can be used freely in defining other types).

Expressiveness is not for free, its price is increased learning effort. GrGen.NET offers
the biggest toolbox for graph rewriting that you can find, with many tools and high-powered
tools. For nearly any graph-representation-based task do you find a collection of tools that
allow you to handle it in an adequate way, leading to a concise solution and short development
and maintenance durations and thus costs. But you have to learn these tools and how to use
them beforehand. For small tasks that effort is likely higher than the net gains in the end.

For subtasks for which the declarative pattern-based rules do not work well (this happens
occasionally), are you free to revert to imperative and object-oriented programming as known
from the C++, Java, C# language family, utilizing the imperative parts of the GrGen.NET-
languages. You loose a good amount of the benefits of employing the tool then (we consider
model transformation tools offering own – but only imperative – languages pointless (and
OCL-expressions are only a small improvement in this regard)), but neither are you stuck,
nor are you forced to convoluted workarounds, as it may happen with tools that offer only
pattern-based rules, e.g. Henshin[ABJ+10] or AGG[ERT99]. The multi-paradigm languages
of GrGen.NET offer you all the constructs you need for transforming graph-representations.

27.2 General-Purpose Graph Rewriting

in contrast to special-purpose graph rewriting requires high programmability, genericity and
customizability.

Some graph based tools are geared towards special application domains, e.g. biology (XL
[KK07] or verification (GROOVE [Ren04]). This means that design decisions were taken
that ease uses in these application areas, at the cost of rendering uses in other domains more
difficult. And that features were added in a way that just satisfies the needs of the domain at

27.3 Performance 373

hand and its tasks, instead of striving for a more general solution (which would have caused
higher costs at designing and implementing this features).

This can be seen well in the approach towards state space enumeration. Instead of of-
fering a built-in fixed-function state space enumerator like GROOVE and Henshin do, are
you given the language devices needed to program one with a few lines of code, with the
backtracking abilities of the sequences, and subgraph extraction, comparison, and storing in
variables/graph element attributes. This highlights the costs of being general-purpose: you
must program what you need. But it also highlights the benefits: you can program exactly
what is needed, being very flexible in how state-space enumeration is carried out. The former
tools expect a rule set which they apply exhaustively to create a state space, one state per
rule application. But state space enumeration requires a lot of memory due to the state
explosion phenomenon – for practical applications you need control over which changes are
to be seen as states and which not, and single rules often are too low-level regarding this
classification, materializing many superfluous states. GrGen.NET gives you that kind of
control (backtracking rule application and state materialization are separate things), allowing
you to unfold deeper given the same amount of memory. When it comes to non-toy-examples,
programmability wins over coarse-grain fixed-function units. But of course only as long as
you don’t need to reinvent the wheel, when you can program based on a suitable level of
abstraction.

The backtracking constructs are useful in crawling a search space, too, where the reached
states don’t need to be materialized into the graph, and doing so would be inadequate.
When it comes to usability in many contexts, for many tasks, again programmability wins
over coarse-grain fixed-function units. This should not hinder you to choose the latter when
your task does not require more, they are easier to use, but beware of the day when the
requirements change and you hit a wall. The approach of GrGen.NET is to offer you
languages to achieve your goals, not pre-coded solutions that may or may not fit to your
task at hand. This holds not only for the languages used to describe the data or to specify
the computations, but also for the visualization and the debugger. They can be customized
easily to the characteristics of your graph representation.

Programmability always must come with means to abstract and encapsulate the programs
into own units and parametrize them, so you are not exposed to details where you don’t need
them (but can access them when you need to do so, in contrast to opaque fixed-function
units). They are available with the rules and tests, the subpatterns, the procedures and func-
tions including method procedures and method functions, the filter functions, and sequence
definitions; and the input and output parameters available for them.

While the old GrGen started as a special-purpose compiler construction tool for inter-
nal use with fixed-shape patterns (optimizations on the graph based compiler intermediate
representation FIRM – see www.libfirm.org), was the new GrGen.NET built from the
beginning as a general-purpose graph transformation tool for external use – to be employed
in areas as diverse as computer linguistics, engineering, computational biology or software
engineering – for reasoning with semantic nets, transformation of natural language to UML
models, model transformation, processing of program graphs, genome simulation, or pattern
matching in social nets or RDF graphs. Have a look at [BG09] or [GDG08] or [SGS09] for
some of the results. Or at the results of GrGen.NET for the diverse tasks posed in the
transformation tool contests. It was always amongst the best rated tools, a record that is
only achievable for a general-purpose tool with expressive and universally usable languages.

27.3 Performance

i.e. high speed at modest memory consumption, is needed to tackle real world problems. It
is achieved by an optimized model implementation that is tailored for efficient and scalable
pattern matching and rewriting, while not growing memory needs out of proportion – as it

www.libfirm.org

374 Development Goals and Design Decisions

happens for incremental match engines storing and maintaining the matches of all rules at
any time (as offered by VIATRA2[VB07]). The nodes and edges are organized in a system of
ringlists, giving immediate access to the elements of a type, and to the incident elements of
an element. When needed, attribute indices or incidence count indices can be applied, giving
fast access to graph elements based on attribute values, or incidence counts.

The generative approach and its compilation of the rules into executable code is helping
tremendously regarding performance, employing nested loops for matching the pattern ele-
ments (and a recursive descent based pushdown machine for combining the patterns). But
it comes at a cost: the test-debug-cycle is slowed down compared to an interpreter, and you
are less flexible regarding runtime changes.

A further help regarding performance are the types, which are speeding up the pattern
matcher – besides being a help in modeling the domain, and besides easening your life by
eliminating large classes of errors at compile time.

Performance is further fostered by explicit control with sequences, and rule applications
from preset parameters on, defining where to match the rules (giving rooted pattern match-
ing), and which rule to match when (getting faster to a rule that matches, based on domain
knowledge), in contrast to approaches based on implicit control, most notably the graph-
grammar approach with its parameterless rules (only controlled by an optional layering).

Performance is gained by the host graph sensitive search plans. In order to accelerate the
matching step, we internally introduce search plans to represent different matching strategies
and equip these search plans with a cost model, taking the present host graph into account.
The task of selecting a good search plan is then considered an optimization problem [BKG08,
Bat06]. In contrast to systems like Fujaba[Fuj07, NNZ00], our strongest competitor regarding
performance, is our pattern matching algorithm fully automatic and neither needs to be tuned
nor partly be implemented by hand.

Furthermore, several strength reduction and inlining optimizations are employed by the
compiler to eliminate the overhead of the higher level of abstraction where it is not needed.
In addition, there is the search state space stepping optimization available, which boosts rule
applications executed from inside a loop (under normal circumstances), by starting matching
of the next iteration where the previous iteration stopped. It plays an important role in being
at least one order of magnitude faster than any other tool known to us according to Varró’s
benchmark[VSV05]. Finally, search intensive tasks can be parallelized, reaping benefits from
our-days multicore machines; have a look at our solution for the Movie Database case of the
TTC14[Jak14] to see what can be achieved this way.

27.4 Understandability and Learnability

was taken care by evaluating for each language construct several options, preferring constructs
already known from imperative and object-oriented programming languages as well as parser
generators — the ones which seemed most clean and intuitive while satisfying the other
constraints were chosen. This can be noted in comparison with the languages of the GReTL
[HE11] tool, esp. with its powerful graph query language GReQL, which may be pleasing
to someone from the realm of formal specification, but which are not to the mind of a
programmer. This can be noted in comparison with functional programming languages, which
throw out the baby with the bath in their attempt to control modifyability (the concept of
state is more adequate to describe the world we live in, makes things better understandable
for our brains, and performs better on our machines), and hamper learnability with their
(over-)use of higher order programming. You may have a look at the GrGen.NET solution
of the Hello World! case [BJ11b] to judge on your own. As we know that even the best
designed language is not self explaining we put an emphasize on the user manual currently
read by you. Especially since the consequences of the development goals expressiveness and
programmability are inevitably increasing the learning effort.

27.5 Development Convenience 375

GrGen.NET is a pretty heavyweight beast — you need to learn some languages in
order to use and control it (but easily learnable ones, as explained above). But thereafter,
you are able to develop at the abstraction level of graph representations, and at a speed
outpacing by far any developer working with a traditional programming language (for a graph-
representation processing task). A specification change carried out in a day in GrGen.NET
easily amounts to a man-week or even man-month(!) change in a traditional programming
language.

27.5 Development Convenience

is gained especially by the offered interactive and graphical debugging of rule applications.
The debugger visualizes the matched pattern and the changes carried out by rewriting in the
graph where they apply, for the currently active rule in the sequence (which is highlighted).

While rewrite rule application is indeterministic per se, GrGen.NET is implemented so
that its behaviour is as deterministic as possible, so that you can attack issues multiple times
until they can be solved.

A further point easening development is the application programming interface of the
generated code, which offers access to named, statically typed entities, catching most errors
before runtime and allowing the code completion mechanisms of modern IDEs to excel. In
addition, a generic interface operating on name strings and .NET objects is available for
applications where the rules may change at runtime (as e.g. the GrShell).

The API allows you to lookup graph elements by type, and to fetch all incident elements of
an element, even in reverse direction, laying the foundation for graph-oriented programming.
In contrast to traditional programming that operates in passes over graph-representations
from some root objects on, without direct access to elements inside the data structure. And
with only the ability to follow an outgoing edge from its source node on, which means to
dereference a pointer that points to the target. Every node supports an unbounded number of
incident edges, increasing flexibility and regularity compared to some statically fixed pointer
fields as utilized normally.

There’s one convenience not offered you might expect: a visual rule language and an
editor. We’re following a first things first policy here, and graphical debugging is a must-
have, while a graphical rule editor is only nice-to-have (we consider tools offering the other
way round mere toys, created by people without own experience in graph-representation pro-
cessing).Besides, textual languages bring some benefits on their own: graph transformation
specifications to be processed by GrGen.NET can be easily generated, stored in a source
code management system, and textually diff’ed. A graphical editor can be implemented on
top of the GrGen.NET languages, reading and writing their textual serialization format —
volunteers are welcome. Textual languages are also a good deal cheaper to implement. Given
the limited resources of an university or open-source project this is an important point, as can
be seen with the AGG[ERT99] tool, offering a graphical editor but delivering performance
only up to simple toy examples — unfortunately causing the wrong impression that graph
rewriting is notoriously inefficient.

27.6 Well Founded Semantics

to ease formal, but especially human reasoning. The semantics of GrGen.NET, or better
a subset of the current GrGen.NET are specified formally in [Gei08], based upon graph
homomorphisms, denotational evaluation functions and category theory. The GrGen.NET-
rewrite step is based on the single-pushout approach (SPO, for explanation see [EHK+99]).
The semantics of the recursive rules introduced in version 2.0 are sketched in [Jak08], utilizing
pair star graph grammars on the meta level to assemble the rules of the object level. The
formal semantics were outpaced by development, though, if you want to reason formally you

376 Development Goals and Design Decisions

have to restrain yourself to a subset of the current GrGen.NET.

But you may just prefer the simple graph programming language GP[Plu09] in this case,
which was developed with formal reasoning in mind. For us, the convenience at using the
language had priority over the convenience at reasoning formally about the language. In order
to achieve simple reasoning, you need to (over-)simplify the languages to a level that makes
using them much harder, as solutions need to be expressed with more, and more convoluted
code. You see this struggle in the programming languages community in theory people asking
for the ban of the break and continue control flow constructs, although code using them is
clearer and better readable. They do so because the constructs make proving propositions
about the code much harder. You see this struggle in the graph rewriting community in
the preference of the double-pushout approach (DPO, for explanation see [CMR+99]) by
the theory people, although rules using them require convoluted coding for a simple node
deletion. We optimized our languages for people that need to get real work done in them,
not for people who want to prove that the program is up to a specification coded in predicate
or some other kind of logic.

27.7 Platform Independence

is achieved by using languages compiled to byte code for virtual machines backed by large,
standardized libraries, specifically: Java and C#. This should prevent the fate of the grand-
father of all graph rewrite systems, PROGRES[SWZ99], which achieved a high level of so-
phistication, but is difficult to run by now, or simply: outdated.

Java is only needed for development, the generated code and its supporting libraries are
entirely .NET based. The .NET framework allows to use native code, so if you really need
to, you can integrate via .NET - native interop a graph rewrite system into some native
application.

There’s another trait to platform independence: GrGen.NET is built on its own model
layer, in contrast to the Java model transformation world, where EMF has emerged as a quasi-
standard. Don’t expect this to change, the performance of declarative pattern matching and
rewriting is our top concern, and that can be best achieved with a model optimized for this
task (the current type and neighbourhood ringlist implementation is efficient and scalable,
and supports the search space stepping optimization; directed edges are always navigable in
both directions, giving the planner more room for choosing a good search plan; and some
fields are included that render isomorphy checking cheap and supply some cost-free visited
flags).

EMF is not that important for us for another reason: we consider the MDA vision an
illusion. The costs of developing a domain-specific language, a model as a high-level repre-
sentation of a domain, and a code generator emitting executable code from it (maybe with
an intermediate platform dependent model in the chain) are considerable and can only be
amortized over many use cases or for large program families, with a high degree of common-
alities (otherwise there’s nothing domain-specific to exploit) and a high degree of variation
(otherwise there would be no real benefit compared to direct coding). Model-based devel-
opment of single applications is economical nonsense, no matter what the claimed benefits
are, the costs will never pay off. So only large program families are left, which are few,
or languages for certain infrastructure tasks that are common among multiple applications,
which requires a general-purpose language for that specific domain so it can be adapted to the
exact context, leading to further increased costs (as can be seen in the feature development
of the GrGen language, a domain-specific language for graph-representation processing...).
We assume there are a good deal more use cases existing for graph representation processing
than for model-based development.

27.8 General-Purpose Graph Transformation 377

27.8 General-Purpose Graph Transformation

in contrast to model transformation. Several model transformation tools offer graph pattern
matching as a means of transformation and graph-based tools have been successfully used to
model many domains; a clear separation is not possible then [JBW+14]. But pattern matching
is typically limited in dedicated model transformation tools, as is their performance regarding
it, esp. their ability for achieving automatically high-performance solutions — the EMF poses
an obstacle to efficient automatic-declarative pattern matching. Often, model transformation
tools offer just mapping single elements of a source model (inspecting some local context via
OCL-expressions) to some target elements, which is only sufficient for simple tasks. Those
tools – e.g. ATL[JABK08], to a lesser degree Epsilon[PKR+09] – typically offer only batch-
wise offline mapping of one graph-like representation to another one. GrGen.NET works
well for model transformation task, esp. due to its compiler construction roots; so feel free to
use it if you are one of the few that indeed benefit directly from the model driven architecture
approach or are interested in supplying corresponding models and languages to the benefit
of others.

Furthermore, graph transformation in contrast to graph databases. The focus is on effi-
cient pattern-based matching, and rewritings that are strongly coupled to the query results, ca-
pable of executing fine-grain spot-wise changes (with transaction support for crawling search
spaces). Executed on an in-memory graph-structure, by a single user at a time. In contrast
to e.g. the graph database Neo4J[The17], that offers non-pattern queries that are feeding
loosely coupled simple updates via a query-result container in between, which is accumulat-
ing the matches but renders fine-grain changes based on the exact matches/spots difficult.
Executed on a backing-store, by multiple users that are working concurrently at the same
time, isolated by transactions.

So GrGen.NET is not suited for scenarios where many users need to access data at the
same time. It is very fast, so you can handle multiple-user scenarios simply by serializing the
accesses — this could be well sufficient for your tasks, but won’t scale towards really large
numbers of users. You may use it as an application-embedded database, as GrGen.NET
does offer online modification of graph-structures, but persistence of online modifications is
only offered via recording to a change log that needs to be replayed at next program start
(besides writing a full dump from memory at session end, as it is common to batch-wise
offline processing).

GrGen.NET is not suited for scenarios where the limits of main memory are exceeded. A
well equipped single sever with 128GB of main memory is capable of storing somewhat under
about 500 Million nodes plus 1 Billion edges (naked, without attributes and without names),
see Chapter 22 for the maths. This should be sufficient for many tasks, but still there are
task that grow beyond it. Besides, other things come into play at that sizes: importing such
a graph will take some time, maybe longer than you’re willing to wait – the GRS importer
is munching at some ten thousand elements per second. Databases that work on a backing
store and only shuffle data visited in are at an advantage here (amortizing import cost over
the course of processing). GrGen.NET scales very well (much better than the tools of the
authors from the model transformation community that write papers about scalability) and
can easily handle millions of elements, matching a pattern in such a graph within the blink
of an eye, but it does not contain dedicated optimizations for very huge datasets.

GrGen.NET is a tool that was built for achieving goals in practice in mind. Despite a
shared pair graph grammar inspiration is it unrelated to triple graph grammars and their im-
plicit but unrealistic assumption that typically one graph representation is to be transformed
to another, basically equivalent, just somehow a bit differently formulated graph representa-
tion, without information loss or enrichment in either direction (bidirectional transformation
tasks are very seldom). GrGen.NET can be used for meta-programming (esp. due to its
compiler construction roots), but otherwise do you work with it at the object and class level,
not at the meta, meta-meta, or meta-meta-meta tralala-ding-ding-dong level (the abstraction

378 Development Goals and Design Decisions

levels of the true model-based software engineers). When you don’t care about expressive-
ness and performance for real world tasks, but are just interested in pimping your thesis, pick
AGG and do some critical pair analysis. GrGen.NET is the most sophisticated implemen-
tation of algebraic graph transformation, but it was not created in order to showcase that
the theory can be made executable. Neither was it created to prove a visual programming
point. GrGen.NET was created because we know from our own experience that a great
graph processing language and a supporting environment with visual debugging are of real
help for graph-representation-based tasks.

B I B L I O G R A P H Y

[ABJ+10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and
Gabriele Taentzer. Henshin: Advanced concepts and tools for in-place emf model
transformations. In DorinaC. Petriu, Nicolas Rouquette, and Øystein Haugen,
editors, Model Driven Engineering Languages and Systems, volume 6394 of Lec-
ture Notes in Computer Science, pages 121–135. Springer Berlin Heidelberg,
2010.

[And93] Arne Andersson. Balanced search trees made simple. In In Proc. 3rd Workshop
on Algorithms and Data Structures, pages 60–71. Springer, 1993.

[Ass00] Uwe Assmann. Graph rewrite systems for program optimization. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 22(4):583–637, 2000.

[Bat05a] Gernot Veit Batz. Graphersetzung für eine Zwischendarstellung im Überset-
zerbau. Master’s thesis, Universität Karlsruhe, 2005. http://www.info.

uni-karlsruhe.de/papers/da_batz.pdf.

[Bat05b] Veit Batz. Generierung von Graphersetzungen mit programmierbarem Suchalgo-
rithmus. Studienarbeit, 2005. http://www.info.uni-karlsruhe.de/papers/

sa_batz.pdf.

[Bat06] Gernot Veit Batz. An Optimization Technique for Subgraph Matching Strate-
gies. Technical Report 2006-7, Universität Karlsruhe, Fakultät für Informatik,
April 2006. http://www.info.uni-karlsruhe.de/papers/TR_2006_7.pdf.

[BBH+13] Matthias Braun, Sebastian Buchwald, Sebastian Hack, Roland Leißa, Christoph
Mallon, and Andreas Zwinkau. Simple and efficient construction of static single
assignment form. In Ranjit Jhala and Koen Bosschere, editors, Compiler Con-
struction, volume 7791 of Lecture Notes in Computer Science, pages 102–122.
Springer Berlin Heidelberg, 2013.

[BG09] Paul Bédaride and Claire Gardent. Semantic Normalisation: a Framework and
an Experiment. In Eighth International Conference on Computational Seman-
tics, 2009.

[BJ11a] Sebastian Buchwald and Edgar Jakumeit. Compiler Optimization: A Case for
the Transformation Tool contest. In Gorp et al. [GMR11], pages 6–16. https:

//arxiv.org/pdf/1111.4737v1.pdf.

[BJ11b] Sebastian Buchwald and Edgar Jakumeit. Saying Hello World with GrGen.NET
- A Solution to the TTC 2011 Instructive Case. In Gorp et al. [GMR11], pages
281–294. https://arxiv.org/pdf/1111.4757.pdf.

[BJ11c] Sebastian Buchwald and Edgar Jakumeit. Solving the TTC 2011 Compiler
Optimization Case with GrGen.NET. In Gorp et al. [GMR11], pages 42–53.
https://arxiv.org/pdf/1111.4742.pdf.

379

http://www.info.uni-karlsruhe.de/papers/da_batz.pdf
http://www.info.uni-karlsruhe.de/papers/da_batz.pdf
http://www.info.uni-karlsruhe.de/papers/sa_batz.pdf
http://www.info.uni-karlsruhe.de/papers/sa_batz.pdf
http://www.info.uni-karlsruhe.de/papers/TR_2006_7.pdf
https://arxiv.org/pdf/1111.4737v1.pdf
https://arxiv.org/pdf/1111.4737v1.pdf
https://arxiv.org/pdf/1111.4757.pdf
https://arxiv.org/pdf/1111.4742.pdf

380 Development Goals and Design Decisions

[BKG08] Gernot Veit Batz, Moritz Kroll, and Rubino Geiß. A First Experimen-
tal Evaluation of Search Plan Driven Graph Pattern Matching. In Applica-
tions of Graph Transformation with Industrial Relevance (AGTIVE ’07) Pro-
ceedings, 2008. http://www.info.uni-karlsruhe.de/papers/agtive_2007_

search_plan.pdf.

[Buc08] Sebastian Buchwald. Erweiterung von GrGen.NET um DPO-Semantik
und ungerichtete Kanten. http://www.info.uni-karlsruhe.de/papers/sa_

buchwald.pdf, 6 2008. Studienarbeit.

[CMR+99] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Alge-
braic Approaches to Graph Transformation - Part I: Basic concepts and double
pushout approach. In Grzegorz Rozenberg, editor, [Roz99], volume 1, pages
163–245. World Scientific Publishing Co., Inc., 1999.

[Dew84] A. K. Dewdney. A computer trap for the busy beaver, the hardest-working
turing machine. Scientic American, 251(2):10–12, 16, 17, 8 1984.

[Dia] DiaGen Developer Team. The Diagram Editor Generator. http://www.unibw.
de/inf2/DiaGen/.

[Dör95] Heiko Dörr. Efficient Graph Rewriting and its Implementation, volume 922 of
LNCS. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1995.

[EHK+99] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corra-
dini. Algebraic Approaches to Graph Transformation - Part II: Single Pushout
A. and Comparison with Double Pushout A. In Grzegorz Rozenberg, editor,
[Roz99], volume 1, pages 247–312. World Scientific Publishing Co., Inc., 1999.

[ER97] Engelfriet and Rozenberg. Node Replacement Graph Grammars. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 1, 1997.

[ERT99] C. Ermel, M. Rudolf, and G. Taentzer. The AGG Approach: Language and
Environment. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,
[Roz99], volume 2, pages 551–603. World Scientific Publishing Co., Inc., 1999.

[FNTZ00] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. Story dia-
grams: A new graph grammar language based on the unified modelling language
and java. In Theory and Application of Graph Transformations, pages 157–167,
2000.

[Fuj07] Fujaba Developer Team. Fujaba-Homepage. http://www.fujaba.de/, 2007.

[GBG+06] Rubino Geiß, Gernot Veit Batz, Daniel Grund, Sebastian Hack, and Adam Sza-
lkowski. GrGen: A Fast SPO-Based Graph Rewriting Tool. In Andrea Corra-
dini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, and Grzegorz Rozenberg,
editors, ICGT, volume 4178 of Lecture Notes in Computer Science, pages 383–
397. Springer, 2006.

[GDG08] Tom Gelhausen, Bugra Derre, and Rubino Geiß. Customizing GrGen.NET for
Model Transformation. In GraMoT, pages 17–24, 2008.

[Gei08] Rubino Geiß. Graphersetzung mit anwendungen im übersetzerbau.
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000009876, Nov 2008. Disserta-
tion.

http://www.info.uni-karlsruhe.de/papers/agtive_2007_search_plan.pdf
http://www.info.uni-karlsruhe.de/papers/agtive_2007_search_plan.pdf
http://www.info.uni-karlsruhe.de/papers/sa_buchwald.pdf
http://www.info.uni-karlsruhe.de/papers/sa_buchwald.pdf
http://www.unibw.de/inf2/DiaGen/
http://www.unibw.de/inf2/DiaGen/
http://www.fujaba.de/

27.8 General-Purpose Graph Transformation 381

[GMR11] Pieter Van Gorp, Steffen Mazanek, and Louis M. Rose, editors. Proceedings Fifth
Transformation Tool Contest, volume 74 of EPTCS, 2011. https://arxiv.org/
abs/1111.4407.

[Hac03] Sebastian Hack. Graphersetzung für Optimierungen in der Codeerzeugung.
http://www.info.uni-karlsruhe.de/papers/da_hack.pdf, 12 2003. Diplo-
marbeit.

[HE11] Tassilo Horn and Jürgen Ebert. The GReTL Transformation Language. In
ICMT 2011, volume 6707 of LNCS, pages 183–198, 2011.

[HJG08] Berthold Hoffmann, Edgar Jakumeit, and Rubino Geiß. Graph Rewrite Rules
with Structural Recursion. 2nd Intl. Workshop on Graph Computational Models
(GCM 2008), 2008. http://www.info.uni-karlsruhe.de/papers/GCM2008.

pdf.

[HKT14] Tassilo Horn, Christian Krause, and Matthias Tichy. The TTC 2014 Movie
Database Case. http://ceur-ws.org/Vol-1305/paper2.pdf, 2014.

[HSESW05] Richard C. Holt, Andy Schürr, Susan Elliott Sim, and Andreas Winter. GXL: A
graph-based standard exchange format for reengineering. Science of Computer
Programming, 2005.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl: A model
transformation tool. Science of Computer Programming, 72(1-2):31–39, 2008.
Special Issue on Second issue of experimental software and toolkits (EST).

[Jak08] Edgar Jakumeit. Mit GrGen.NET zu den Sternen – Erweiterung der
Regelsprache eines Graphersetzungswerkzeugs um rekursive Regeln mittels
Sterngraphgrammatiken und Paargraphgrammatiken. http://www.info.

uni-karlsruhe.de/papers/da_jakumeit.pdf, jul 2008. Diplomarbeit.

[Jak11] Edgar Jakumeit. EBNF and SDT for GrGen.NET. http://www.info.

uni-karlsruhe.de/software/grgen/EBNFandSDT.pdf, 2011. Presented at
AGTIVE 2011.

[Jak14] Edgar Jakumeit. Solving the TTC 2014 Movie Database Case with GrGen.NET.
http://ceur-ws.org/Vol-1305/paper17.pdf, 2014.

[JB11] Edgar Jakumeit and Sebastian Buchwald. Solving the TTC 2011 Reengineering
Case with GrGen.NET. In Gorp et al. [GMR11], pages 168–180. https://

arxiv.org/pdf/1111.4751.pdf.

[JBK10] Edgar Jakumeit, Sebastian Buchwald, and Moritz Kroll. GrGen.NET – The
expressive, convenient and fast graph rewrite system. International Journal
on Software Tools for Technology Transfer (STTT), 12:263–271, 2010. http:

//dx.doi.org/10.1007/s10009-010-0148-8.

[JBW+14] Edgar Jakumeit, Sebastian Buchwald, Dennis Wagelaar, Li Dan, Ábel Hegedüs,
Markus Herrmannsdörfer, Tassilo Horn, Elina Kalnina, Christian Krause,
Kevin Lano, Markus Lepper, Arend Rensink, Louis Rose, Sebastian Wätzoldt,
and Steffen Mazanek. A survey and comparison of transformation tools
based on the transformation tool contest. Science of Computer Programming,
85:41 – 99, 2014. http://www.sciencedirect.com/science/article/pii/

S0167642313002803.

[KBG+07] Moritz Kroll, Michael Beck, Rubino Geiß, Sebastian Hack, and Philipp Leiß.
yComp. http://www.info.uni-karlsruhe.de/software/ycomp, 2007.

https://arxiv.org/abs/1111.4407
https://arxiv.org/abs/1111.4407
http://www.info.uni-karlsruhe.de/papers/da_hack.pdf
http://www.info.uni-karlsruhe.de/papers/GCM2008.pdf
http://www.info.uni-karlsruhe.de/papers/GCM2008.pdf
http://ceur-ws.org/Vol-1305/paper2.pdf
http://www.info.uni-karlsruhe.de/papers/da_jakumeit.pdf
http://www.info.uni-karlsruhe.de/papers/da_jakumeit.pdf
http://www.info.uni-karlsruhe.de/software/grgen/EBNFandSDT.pdf
http://www.info.uni-karlsruhe.de/software/grgen/EBNFandSDT.pdf
http://ceur-ws.org/Vol-1305/paper17.pdf
https://arxiv.org/pdf/1111.4751.pdf
https://arxiv.org/pdf/1111.4751.pdf
http://dx.doi.org/10.1007/s10009-010-0148-8
http://dx.doi.org/10.1007/s10009-010-0148-8
http://www.sciencedirect.com/science/article/pii/S0167642313002803
http://www.sciencedirect.com/science/article/pii/S0167642313002803
http://www.info.uni-karlsruhe.de/software/ycomp

382 Development Goals and Design Decisions

[KG07] Moritz Kroll and Rubino Geiß. Developing Graph Transformations with
GrGen.NET. http://www.info.uni-karlsruhe.de/papers/agtive_2007_

grgennet.pdf, 2007. preliminary version, submitted to AGTIVE 2007.

[KK07] Ole Kniemeyer and Winfried Kurth. The Modelling Platform GroIMP and
the Programming Language XL. Applications of Graph Transformation with
Industrial Relevance (AGTIVE ’07) Proceedings, 2007.

[Kro07] Moritz Kroll. GrGen.NET: Portierung und Erweiterung des Grapher-
setzungssystems GrGen. http://www.info.uni-karlsruhe.de/papers/sa_

kroll.pdf, 5 2007. Studienarbeit, Universität Karlsruhe.

[Lin02] Götz Lindenmaier. libFIRM – A Library for Compiler Optimization Research
Implementing FIRM. Technical Report 2002-5, Universität Karlsruhe, Fakultät
für Informatik, Sep 2002.

[LLMC05] Tihamér Levendovszky, László Lengyel, Gergely Mezei, and Hassan Charaf. A
Systematic Approach to Metamodeling Environments and Model Transforma-
tion Systems in VMTS. In Electronic Notes in Theoretical Computer Science,
pages 65–75, 2005.

[LMS99] Litovsky, Métivier, and Sopena. Graph Relabelling Systems and Distributed
Algorithms. Handbook of Graph Grammars and Computing by Graph Trans-
formation, Volume 3, 1999.

[MB00] H. Marxen and J. Buntrock. Old list of record TMs. http://www.drb.insel.

de/~heiner/BB/index.html, 8 2000.

[Mic07] Microsoft. .NET. http://msdn2.microsoft.com/de-de/netframework/

aa497336.aspx, 2007.

[MMJW91] Andrew B. Mickel, James F. Miner, Kathleen Jensen, and Niklaus Wirth. Pascal
user manual and report (4th ed.): ISO Pascal standard. Springer-Verlag New
York, Inc., New York, NY, USA, 1991.

[NNZ00] Ulrich Nickel, Jörg Niere, and Albert Zündorf. The FUJABA environment. In
ICSE ’00 Proceedings of the 22nd international conference on Software engineer-
ing, pages 742–745, 2000.

[PKR+09] Richard F. Paige, Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos, and
Fiona A. C. Polack. The design of a conceptual framework and technical in-
frastructure for model management language engineering. In Proceedings of the
2009 14th IEEE International Conference on Engineering of Complex Computer
Systems, ICECCS ’09, pages 162–171, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[Plu09] Detlef Plump. The Graph Programming Language GP. In Proc. Algebraic
Informatics (CAI 2009), pages 99–122, 2009.

[Ren04] Arend Rensink. The GROOVE Simulator: A Tool for State Space Generation.
Applications of Graph Transformation with Industrial Relevance (AGTIVE ’03)
Proceedings, 2004.

[Roz99] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation. World Scientific, 1999.

[RVG08] Arend Rensink and Pieter Van Gorp. Graph-based tools: The contest. Proceed-
ings 4th Int. Conf. on Graph Transformation (ICGT ’08), 2008.

http://www.info.uni-karlsruhe.de/papers/agtive_2007_grgennet.pdf
http://www.info.uni-karlsruhe.de/papers/agtive_2007_grgennet.pdf
http://www.info.uni-karlsruhe.de/papers/sa_kroll.pdf
http://www.info.uni-karlsruhe.de/papers/sa_kroll.pdf
http://www.drb.insel.de/~heiner/BB/index.html
http://www.drb.insel.de/~heiner/BB/index.html
http://msdn2.microsoft.com/de-de/netframework/aa497336.aspx
http://msdn2.microsoft.com/de-de/netframework/aa497336.aspx

27.8 General-Purpose Graph Transformation 383

[SAI+90] Herbert Schildt, American National Standards Institute, International Orga-
nization for Standardization, International Electrotechnical Commission, and
ISO/IEC JTC 1. The annotated ANSI C standard: American National Stan-
dard for Programming Languages C: ANSI/ISO 9899-1990. McGraw-Hill, Inc.,
1990.

[San95] Georg Sander. VCG Visualization of Compiler Graphs—User Documentation
v.1.30. Technical report, Universität des Saarlandes, 1995.

[Sch08] Jochen Schimmel. Parallelisierung von Graphersetzungssystemen. https://ps.
ipd.kit.edu/downloads/da_2008_jochen_schimmel.pdf, November 2008.
Diplomarbeit.

[SGS09] Jochen Schimmel, Tom Gelhausen, and Christoph A. Schaefer. Gene Expression
with General Purpose Graph Rewriting Systems. In Proceedings of the 8th GT-
VMT Workshop, 2009.

[SWZ99] A. Schürr, A. Winter, and A. Zündorf. Progres: Language and environment.
In G. Rozenberg, editor, Handbook on Graph Grammars, volume Applications,
Vol. 2, pages 487–550. World Scientific, 1999.

[Sza05] Adam M. Szalkowski. Negative Anwendungsbedingungen für das suchpro-
grammbasierte Backend von GrGen. http://www.info.uni-karlsruhe.de/

papers/sa_szalkowski.pdf, 2005. Studienarbeit, Universität Karlsruhe.

[Tea07] The Mono Team. Mono. http://www.mono-project.com/, 2007.

[The17] The Neo4j Team. The neo4j manual. http://www.neo4j.org/, 2017.

[TLB99] Martin Trapp, Götz Lindenmaier, and Boris Boesler. Documentation of the
intermediate representation firm. Technical Report 1999-14, Universität Karl-
sruhe, Fakultät für Informatik, Dec 1999.

[VB07] Dániel Varró and András Balogh. The Model Transformation Language of the
VIATRA2 Framework. Science of Computer Programming, 68(3):214–234, 2007.

[VHV08] Gergely Varró, Ákos Horváth, and Dániel Varró. Recursive Graph Pattern
Matching. In Andy Schürr, Manfred Nagl, and Albert Zündorf, editors, Ap-
plications of Graph Transformations with Industrial Relevance, pages 456–470.
Springer Berlin Heidelberg, 2008.

[VSV05] G. Varró, A. Schürr, and D. Varró. Benchmarking for Graph Transformation.
Technical report, Department of Computer Science and Information Theory,
Budapest University of Technology and Economics, March 2005.

[VVF06] Gergely Varró, Dániel Varró, and Katalin Friedl. Adaptive Graph Pattern
Matching for Model Transformations using Model-sensitive Search Plans. In
G. Karsai and G. Taentzer, editors, GraMot 2005, International Workshop on
Graph and Model Transformations, volume 152 of ENTCS, pages 191–205. El-
sevier, 2006.

[Wei88] David Weininger. Smiles, a chemical language and information system. Journal
of Chemical Information and Computer Sciences, 28(1):31–36, 1988.

[WKR02] Winter, Kullbach, and Riediger. An Overview of the GXL Graph Exchange
Language. Software Visualization - International Seminar Dagstuhl Castle, 2002.

[yWo07] yWorks. yFiles. http://www.yworks.com, 2007.

https://ps.ipd.kit.edu/downloads/da_2008_jochen_schimmel.pdf
https://ps.ipd.kit.edu/downloads/da_2008_jochen_schimmel.pdf
http://www.info.uni-karlsruhe.de/papers/sa_szalkowski.pdf
http://www.info.uni-karlsruhe.de/papers/sa_szalkowski.pdf
http://www.mono-project.com/
http://www.neo4j.org/
http://www.yworks.com

I N D E X

Keywords

SubpatternOccurence, 92

abstract, 30

actions, 265–267

adaptvariables, 267

add, 249, 252, 263, 272–274, 285, 345

alternative, 77

analyze, 266

arbitrary, 30

askfor, 254

attributes, 258, 286

auto, 187, 189

backend, 264

bordercolor, 271

break, 134, 285, 286

by, 272

case, 133

cd, 262

class, 31, 341, 344

clear, 257

color, 271

connect, 32

const, 30, 34

contains, 285

continue, 134, 285, 286

copy, 32, 344

custom, 265–267

dangling, 45, 117

debug, 279, 280, 285, 286

def, 209, 253

delete, 53, 92, 257, 265, 286

directed, 30

disable, 279

do, 133

dpo, 45, 117

dump, 270–274

dumpsourcecode, 267

echo, 246

edge, 31, 257, 258, 271–273

edges, 257

else, 133, 262

emit, 125, 263, 285, 344

emitdebug, 125

emithere, 127

emitheredebug, 127

enable, 279

endif, 262

endsWith, 285

enum, 35

equals, 285

eval, 53

exact, 45, 49, 117

exclude, 272, 274

exec, 125, 253, 259, 263, 280

exit, 246

exitonfailure, 259

explain, 266

export, 250, 251

extends, 31, 32, 341

external, 341–344

filter, 185, 343

for, 134, 213, 219

from, 261

function, 136, 342

gensearchplan, 266

get, 280

graph, 246, 249, 250, 257, 265, 266, 269, 270,
274

group, 272

halt, 285

help, 246

hidden, 272

highlight, 285

hom, 49, 50

identification, 45, 117

if, 49, 113, 133, 262, 286

import, 251, 252

in, 134, 150, 153, 156, 160, 200, 213, 249

include, 45, 261

independent, 50, 74

induced, 45, 49, 117

infotag, 273

is, 258

iterated, 75

keepdebug, 263, 345

384

27.8 General-Purpose Graph Transformation 385

labels, 271

layout, 279, 280

lazynic, 263

linestyle, 271

ls, 262

match, 286

mode, 280

modify, 53, 80, 83, 89

multiple, 75

nameof, 65

negative, 72

new, 246–249, 263, 264, 286, 345

node, 31, 257, 258, 271–273

nodes, 257

noinline, 263

null, 47

num, 257

off, 263, 271, 345

on, 263, 271, 285, 286, 345

only, 257–259, 271–273, 286

optimizereuse, 266

option, 274, 279

optional, 75

options, 280

pattern, 83

procedure, 140, 342

profile, 253, 263

pwd, 262

quit, 246

randomseed, 263

record, 261

recordflush, 261

redirect, 257, 263

ref, 47, 136, 140

reference, 263, 345

rem, 285

replace, 53, 80, 83, 89

replay, 261

reset, 274

return, 50, 136, 140

retype, 257, 286

rule, 45

save, 250, 266

select, 264, 265

set, 263, 264, 271, 279, 280, 286, 345

setmaxmatches, 267

shape, 271

shortinfotag, 273

show, 253, 254, 257, 258, 264, 265, 269

silence, 263

specified, 259

start, 261

startsWith, 285

statistics, 264, 266

stop, 261

strict, 259

sub, 258

super, 258

switch, 133

test, 45

textcolor, 271

thickness, 271

this, 177

time, 263

to, 261

type, 258

typeof, 64, 119

types, 258

undirected, 30

using, 45

validate, 33, 259

valloc, 182

var, 47, 136, 140, 254

vfree, 182

vfreenonreset, 182

visited, 182, 206, 209

vreset, 182

while, 133

with, 272

xgrs, 253, 259, 280

yield, 206

Non-Terminals

ActionDeclaration, 45

ActionSignature, 46

AdvancedEdgeTypeConstructs, 116

AdvancedModelDeclarations, 191

AdvancedNodeTypeConstructs, 116

AlternativePattern, 77

ArithmeticSequenceExpression, 208

ArrayConstr, 249

ArrayConstructor, 156

ArrayCopyConstructor, 156

ArrayExpr, 156

ArrayOperator, 156

Assignment, 130

AssignmentTarget, 140, 206

AttributeDeclaration, 34

AttributeIndexDecl, 297

AttributeInitialization, 123

AttributeInitializationList, 123

AttributeOverwrite, 34

AttributeType, 34

AttributeValue, 249

386 Development Goals and Design Decisions

Attributes, 249

BasicSequenceExpression, 209

BoolExpr, 59

BooleanSequenceExpression, 207

CastExpr, 66

ChangeAssignment, 152

ClassDeclaration, 30

Command, 245

CompoundAssignment, 150, 153, 156, 160

Computation, 204

ConditionalSequenceExpression, 207

ConnectionAssertion, 32

Constant, 68

Constructor, 249

Continuation, 40

CopyCompareDeclaration, 344

CopyOperator, 121

Decision, 133

DequeConstr, 249

DequeConstructor, 160

DequeCopyConstructor, 160

DequeExpr, 160

DequeOperator, 160

DoWhileLoop, 133

DumpEdgeContinuation, 271

DumpNodeContinuation, 271

EarlyExit, 134

EdgeClass, 31

EdgeRefinement, 42

EmitParseDeclaration, 344

EnumDeclaration, 35

ExecStatement, 125

Expression, 58

ExtendedControl, 113

ExternalClassDeclaration, 341

ExternalFunctionDeclaration, 342

ExternalProcedureDeclaration, 342

ExternalSequenceDeclaration, 343

FileHeader, 43

FilterCall, 189

FilterCalls, 189

FilterDecl, 187

FilterFunctionDefinition, 185, 343

FiltersDecl, 187

FloatExpr, 62

ForLoop, 134

FunctionCall, 66, 136

FunctionDefinition, 136

FunctionMethodCall, 192

FunctionMethodDefinition, 192

GlobalVarDecl, 45

GraphElement, 255

GraphModel, 30

GraphRewriteSequence, 253, 280

Graphlet, 40

GraphletEdge, 42

GraphletNode, 41

GroupConstraints, 272

HomomorphySpecification, 50

IdentDecl, 345

IfElse, 133

IncAdjTypeConstraints, 272

IncidenceCountIndexAccessExpr, 300

IndexAccess, 298

IndexAccessLoopSequence, 298

IndexAccessLoopStatement, 298

IndexedAssignemt, 153, 156, 160

InputTypeSpecification, 47

IntExpr, 61

Literal, 68

LocalVariableDecl, 131

MapConstr, 249

MapConstructor, 153

MapCopyConstructor, 153

MapExpr, 153

MapOperator, 153

MemberAccess, 66

Merging, 122

MessageFilter, 285

MethodCall, 150, 153, 156, 160

MethodSelector, 63

ModelUsage, 45

MultiplicityConstraint, 32

NamedIndexAccessExpr, 302

NameofAssignment, 302

NegativeApplicationCondition, 72

NestedPattern, 72

NestedPatternWithCardinality, 75

NestedRewriting, 80

NodeClass, 31

NodeConstraint, 32

OutputAssignment, 140

PackageDefinitionAction, 198

PackageDefinitionModel, 197

PackageUsageActions, 198

PackageUsageModel, 197

Parameter, 47, 136, 140

Parameters, 255

Pattern, 48

PatternStatement, 49

PositiveApplicationCondition, 74

PrimaryExpr, 65

PrimarySequenceExpression, 208

PrimitiveAttributeValue, 249

27.8 General-Purpose Graph Transformation 387

ProcedureCall, 140

ProcedureDefinition, 140

ProcedureMethodCall, 194

ProcedureMethodDefinition, 192

RandomSelection, 109

RangeConstraint, 32

Redirect, 123

RelationalExpr, 59

RelationalSequenceExpression, 208

Repetition, 133

ReturnStatement, 50, 136, 140

ReturnTypes, 48

Retyping, 120

Rewrite, 53

RewriteFactor, 108, 203, 213

RewriteNegTerm, 110

RewriteSequence, 110

RewriteSequenceDefinition, 215

RewriteSequenceSignature, 215

RewriteStatement, 53

RewriteTerm, 113

Rule, 109, 200

RuleDeclaration, 45

RuleExecution, 109

RuleModifier, 109

RuleSet, 43

RulesInclusion, 45

Script, 246

SequenceExpression, 207

SequencesList, 221

SetConstr, 249

SetConstructor, 150

SetCopyConstructor, 150

SetExpr, 150

SetOperator, 150

SimpleVariableHandling, 112

SpacedParameters, 255

SpecialSequenceExpression, 209

Statement, 130

StorageAccess, 164

StringExpr, 63

SubpatternBody, 83

SubpatternDeclaration, 83

SubpatternEntityDeclaration, 84

SubpatternExecEmit, 127

SubpatternRewriteApplication, 89

SubpatternRewriting, 89

SwitchCase, 133

TestDeclaration, 45

Type, 119

TypeConstraint, 119

TypeExpr, 64

TypeNameSpec, 286

UniqueConstraintDecl, 304

UniqueIndexAccessExpr, 304

UniqueIndexDecl, 304

VisitedAssignment, 182

VisitedFlag, 182

WhileLoop, 133

General Index

.grg, 11

.grs, 12

!, 114, 262, 344

*, 114

+, 114

;;, 246

;>, 114

<;, 114

<<;>>, 223

<>, 223

@, 255

[], 114

#§, 13

#, 254

$<number>, 40

$<op>, 114

$, 249

&&, 114

&, 114

^, 114

copy, 186

||, 114

|, 114

action, see graph rewrite sequence

action command, 264

adjacent, 47

advanced control, 215

advanced matching and rewriting, 115

AEdge, 29

all bracketing, 114

alternative patterns, 77

analyzing graph, 266

annotation, 28, 40, 345

anonymous, 40, 52, 245

API, 10, 13, 325

application, 4, 49

application programming interface, see API

arbitrary, 29, 42

arborescence, 360

array, 149

assignments, 130

attribute, 34, 249, 256, 258, 273

388 Development Goals and Design Decisions

attribute condition, 49

attribute evaluation, see computation, 129,
130

attribute initialization, 123

auto-generated filters, 187

automorphic, 188

automorphic pattern, 218

backend, 57, 149, 264, 265

backslash, 246

backtracking, 216

binding of names, 40

boolean, 57

bounded iterated path, 85, 174

breadth-first search, 129, 175

break, 76

break point, 109, 112, 204, 281

building GrGen, 347

built-in generic types, see generic types

built-in types, see primitive types

busy beaver, 319

by-reference, 47

by-value, 47

byte, short, int, long, 57

cardinality, see pattern cardinality

case sensitive, 28, 40, 254

choice point, 110–112, 221, 281

code generator, 363

color, 271

command line, 262

comment, 254

compare structure, see subgraph comparison

compatible types, see type-compatible

compiler graph, see layout algorithm

computation, 54

computation definition, 135

computations, 129

conditional sequence, 113

connection assertion, 31, 32, 259

constructor, 245, 249

containment, 345

continuation, see graphlet

controlflow, 131

copy, 121, 186

copy structure, see subgraph copying

count, 99, 109

dangling condition, 118

data flow analysis, 237

debug mode, 279

Debugger, 269

debugger, 280

declaration, 28, 30, 48
def, 93
default graph model, 39
default search plan, 266
default value, 249
definition, 28, 345
deletion, 52, 54
depth-first search, 129, 175
deque, 149
determinism, see non-determinism
Developing GrGen.NET, 347
directed, 42
DOT, 269, 270
double, 57
double-pushout, 376
DPO, see double-pushout approach
dumping graph, 250
dynamic type, 119

EBNF, see rail diagram, see regular expres-
sion syntax

Edge, 29, 31
edge (graphlet), 42
edge type, 31
edNCE, see node replacement grammar
emit, 205
emitdebug, 205
empty pattern, 5, 48
enum item, 35, 58
enum type, 35, 57
evalhere, see ordered evaluation
evaluation, see attribute evaluation
exact dynamic type, see dynamic type
example, 5, 19, 317, 319
export, 250, 251, 330
expression, 58
expression variable, 65, see name, 247
extensions, 341
external, 344
external class, 191
external class implementation, 335
external filter function, 343
external function, 191, 342
external function implementation, 335
external match filter implementation, 336
external procedure, 342
external procedure implementation, 335
external sequence, 343
external sequence implementation, 336

features, 14
filter function definition, 185
filters, 185

27.8 General-Purpose Graph Transformation 389

float, 57
flow equations, 237
functions, 129

generated code, 348
generic types, 149
graph, 167
graph functions, 167
graph global variable, 45, 107, 245
graph isomorphy checking, 179
graph model, 27, 30, 39, 45, 191, 246
graph model language, 27
graph procedures, 167
graph rewrite rules, 4
graph rewrite script, 12, 250, 261
graph rewrite sequence, 49, 107, 253, 259, 280
graph rewrite sequence definition, 253
graph rewriting, 4
graph-oriented programming, 191
graphlet, 40, 49, 51, 54
graphviz, 270
GrGen.exe, 11
group node, 272
GRS, see graph rewrite sequence, see graph

rewrite sequence
GrShell, 12, 30, 245
GrShell variable, see graph global variable
GrShell.exe, 12

hierarchic, see layout algorithm, see group
node

homomorphic matching, 41, 50
host graph, 4, 51, 265
host graph sensitive search plan driven graph

pattern matching, 360

identification condition, 118
identifier, 28, 40
imperative, see attribute evaluation
imperative statements, 125
imperativeandstate, 125, 225
import, 330
indeterministic choice, 220
info tag, 273
inheritance, 28, 31, 258
inlining, 296, 367
internal graph representation, 348
internals, 347
isomorphic matching, 50
isomorphy checking, 179
iterated path, 85, 174
iterative deepening, 129, 175

Kantorowitsch tree, 282

Koch snowflake, 317

label, 245, 273
layout, see layout algorithm, see visualization
layout algorithm, 14, 279, 317
left hand side, 4, 51
LGPL, 10
LGSPBackend, 57, 149, 264, 265
lgspBackend, 13
LHS, see left hand side
libGr, 13, 30, 245
local variable, 93
loop, 113

map, 149
match, 5
match type, 186
matching strategies, 374
maybeDeleted, 345
merge, 116, 122
merge node, 226
methods, 191
modifier, 116
modify mode, 52
multiplicity, see connection assertion

NAC, see negative application condition
name, 40, 51, 247
name initialization, 123
named nested pattern, 94
negative application condition, 72
nested graph, see group node, 269
nested layout, see group node, 269
nested pattern rewrite, 80
nested patterns, 71
nested transaction, see transaction
Node, 31
node (graphlet), 41
node replacement grammar, 230
node type, 31
non-determinism, 49

object, 57
object-oriented programming, 191
one-of-set braces, 221
optimization, 289
order of precedence, 59, 62, 69, 151, 154, 158,

161
organic, see layout algorithm
orthogonal, see layout algorithm
overview, system, 9

PAC, see positive application condition
package definition, 197, 198

390 Development Goals and Design Decisions

parallelize, 345
parameter, 46, 253, 264
path, 85
pattern, 48
pattern cardinality, 75
pattern graph, 4, 40
pattern matching implementation, 350
pattern modifiers, 117
pause insertion, 218
pause insertions, 216
performance, 289
persistent name, 209, 245, 249, 257
positive application condition, 74
pragma, see annotation
precedence, see order of precedence
preservation, 52
preservation morphism, 4, 51
primitive types, 57
prio, 345
procedures, 129
pushdown machine, 351

quickstart, 19

rail diagram, 28
random match selector, 109
random-all-of operators, 221
re-evaluation, see attribute evaluation
reachability, 237
record, 205, 261
recursive pattern, 84
redefine, 40
redirect, 123
redirecting, 42
regular expression syntax, 100, 113
replace mode, 52
replay, 261
return type, 46
return value, 50
retype, 116, 257
retyping, 120
rewrite graph, 4, 40, 51
rewrite rule, 45
RHS, see right hand side
right hand side, 4, 51
ringlists, 348
rule application, see application
rule application language, 107
rule language, 39
rule modifiers, 117
rule set, 39, 43, 265
rule set language, 39

schedule, 360

scope, 41, 72, 74
search plan, 266, 323, 346, 360, 374
search program, 350, 360
search space, 216
search state space stepping, 351
sequence call, 215
sequence computations, 203
sequence constant, 112
sequence definition, 215, 253
sequence local variable, 107
set, 149
shell, see GrShell
short info tag, 273
Sierpinski triangle, 317
signature, 46
simulation, 281
single-pushout approach, 52, 375
some-of-set braces, 221
spanning tree, 86, 234, 236
split node, 226
SPO, 117
spot, 5, 40
stack machine, 351
state space, 216
state space enumeration, 242
storage, 149, 212
storage access, 163
string, 57
structural recursion, 84
subgraph comparison, 233
subgraph copying, 235
subpattern, 83
subpattern declaration, 83
subpattern entity declaration, 84
subpatterns, 83
subrule, 88
subsequences, 215
symmetric matches, 188
symmetry reduction, 188, 218
syntax diagram, see rail diagram

test, 45, 47
this, 177
traceability, 232, 236
transaction, 216
transformation in a narrow sense, 232
transformation specification, 51
Turing complete, 319
type cast, 57, see retyping
type constraint, 116, 119
type expression, 40, 59, 64
type hierarchy, 29, 34, 119, 120
type-compatible, 258

27.8 General-Purpose Graph Transformation 391

UEdge, 29
UML class diagram, 61
undefined variables, 253
undirected, 42
user input assignment, 112

V-Structure, 179, 362
validate, 259
validityCheck, 345
variable, see expression variable, 65, see graph

global variable, see sequence local vari-
able, 245, 247, 253

Varró’s benchmark, 374
VCG, 13, 269–271
visited access, 182
visited flag, 167
visualization, see group node, 269

weighted one operator, 222
working graph, 265
worklist, 240

yComp, 13, 269, 279, 280
yComp.jar, 280
yield, 96, 97
yielding outwards, 93

	1 Introduction
	1.1 What Is GrGen.NET?
	1.2 When to Use GrGen.NET
	1.3 An Example Graph-Based Representation
	1.4 When Not to Use GrGen.NET
	1.5 What Is Graph Rewriting?
	1.6 An Example For Rewriting
	1.7 An Example Rule Application on the Representation
	1.8 Why to use GrGen.NET

	2 Overview
	2.1 System Overview
	2.2 The Tools
	2.2.1 GrGen.exe
	2.2.2 GrShell.exe
	2.2.3 LibGr.dll
	2.2.4 lgspBackend.dll
	2.2.5 yComp.jar

	2.3 The Languages and their Features
	2.3.1 Graph Model Language
	2.3.2 Rule and Computations Language
	2.3.3 Rule Application Control Language
	2.3.4 Shell Language

	3 Quickstart
	3.1 Downloading & Installing
	3.2 Creating a Graph Model
	3.3 Creating Graphs
	3.4 The Rewrite Rules
	3.5 Applying the Rules
	3.6 Debugging and Output

	4 Graph Model Language
	4.1 Building Blocks
	4.1.1 Base Types

	4.2 Type Declarations
	4.2.1 Node and Edge Types
	4.2.2 Attributes and Attribute Types
	4.2.3 Enumeration Types
	4.2.4 Hints on Modeling

	5 Rule Language
	5.1 Building Blocks
	5.1.1 Graphlets

	5.2 Rules and Tests
	5.3 Pattern Part
	5.3.1 Isomorphic and Homomorphic Matching

	5.4 Replace/Modify Part
	5.4.1 Implicit Definition of the Preservation Morphism r
	5.4.2 Specification Modes for Graph Transformation
	5.4.3 Syntax

	6 Basic Types and Attribute Evaluation Expressions
	6.1 Built-In Types
	6.2 Expressions
	6.3 Boolean Expressions
	6.4 Relational Expressions
	6.5 Arithmetic and Bitwise Expressions
	6.6 String Expressions
	6.7 Type Expressions
	6.8 Primary Expressions
	6.9 Operator Priorities

	7 Nested Patterns
	7.1 Negative Application Condition (NAC)
	7.2 Positive Application Condition (PAC)
	7.3 Pattern Cardinality (iterated / multiple / optional)
	7.4 Alternative Patterns
	7.5 Nested Pattern Rewriting

	8 Subpatterns and Yielding
	8.1 Subpattern Declaration and Subpattern Entity Declaration
	8.1.1 Recursive Patterns

	8.2 Subpattern Rewriting
	8.2.1 Deletion and Preservation of Subpatterns

	8.3 Local Variables, Ordered Evaluation, and Yielding Outwards
	8.4 Flow Example, Regular Expression Syntax, and Locking

	9 Rule Application Control Language (Sequences)
	9.1 Rule Application
	9.2 Logical and Sequential Connectives
	9.3 Simple Variable Handling
	9.4 Decisions and Loops
	9.5 Quick reference table

	10 Advanced Matching and Rewriting
	10.1 Rule and Pattern Modifiers
	10.2 Static Type Constraint
	10.3 Exact Dynamic Type
	10.4 Retyping
	10.5 Copy
	10.6 Node Merging
	10.7 Edge Redirection
	10.8 Attribute Initialization

	11 Embedded Sequences and Textual Output
	11.1 Exec and Emit in Rules
	11.2 Deferred Exec and Emithere in Nested and Subpatterns

	12 Computations (Attribute Evaluation Statements)
	12.1 Assignments
	12.2 Local Variable Declarations
	12.3 Control flow
	12.4 Embedded Exec
	12.5 Computation Definition and Call
	12.5.1 Function Definition and Call
	12.5.2 Procedure Definition And Call

	12.6 The Big Picture

	13 Container Types and Computations
	13.1 Built-In Types and Concept of Containers
	13.2 Set Operations
	13.3 Map Operations
	13.4 Array Operations
	13.5 Deque Operations
	13.6 Storage Access in the Rules
	13.7 Hints on container usage

	14 Graph Type and Computations
	14.1 Built-In Types
	14.2 Graph Functions And Procedures
	14.2.1 Graph Updates / Basic Graph Manipulation
	14.2.2 Graph Query by Types
	14.2.3 Graph Query by Neighbourhood
	14.2.4 Subtle Points in the Semantics

	14.3 Subgraph Operations
	14.4 File Operations
	14.5 Graph comparison
	14.6 Visited Flags
	14.7 Graph Processing Environment Procedures
	14.7.1 Transaction Handling
	14.7.2 Misc. Global Procedures

	15 Filtering and Sorting of Matches
	15.1 Filter Functions
	15.2 Auto-Generated Filters
	15.3 Auto-Supplied Filters
	15.4 Filter calls

	16 Advanced Modelling (Object-Oriented and Graph-Oriented Programming)
	16.1 Methods
	16.1.1 Function Method Definition and Call
	16.1.2 Procedure Method Definition And Call

	16.2 Packages
	16.2.1 Package Definition in the Model
	16.2.2 Package Definition in the Actions

	16.3 Graph Nesting

	17 Sequence Computations
	17.1 Sequence Statements
	17.2 Sequence Expression
	17.3 Graph and Subgraph Based Queries and Updates
	17.4 Storage Handling in the Sequences
	17.5 Quick Reference Table

	18 Advanced Control with Backtracking
	18.1 Sequence Definitions (Procedural Abstraction)
	18.2 Transactions, Backtracking, and Pause Insertions
	18.3 For Loops
	18.4 Indeterministic Choice
	18.5 Quick Reference Table

	19 Transformation Techniques
	19.1 Merge and Split Nodes
	19.2 Node Replacement Grammars
	19.3 Mapping in a Rewriting Tool
	19.4 Comparing Structures
	19.5 Copying Structures
	19.5.1 Built-In Graph Copying

	19.6 Data Flow Analysis for Computing Reachability
	19.7 State Space Enumeration

	20 GrShell Language
	20.1 Common Commands
	20.2 Graph Creation
	20.3 Graph Input and Output
	20.4 Sequence Execution and Profiles
	20.5 Variables
	20.6 Building Blocks
	20.7 Attribute Assignment and Graph Manipulation
	20.8 Model and Graph Queries
	20.9 Validation Commands
	20.10 Graph Change Recording and Replaying
	20.11 Inclusion and Conditional Execution
	20.12 File System Commands and External Shell Execution
	20.13 Shell and Environment Configuration
	20.14 Compilation Configuration
	20.15 Backend, Graph, and Actions Selection
	20.16 LGSPBackend Custom Commands

	21 Visualization and Debugging
	21.1 Graph Visualization Commands (Nested Layout)
	21.2 yComp Usage
	21.3 Debugging Related Commands
	21.4 Using the Debugger
	21.5 Subrule Debugging and Programmed Halts
	21.6 Watchpoint configuration
	21.7 Debugging related functionality

	22 Indices and Performance Optimization
	22.1 Search Plans
	22.2 Find, Don't Search
	22.2.1 Type Indices
	22.2.2 Neighbourhood Indices
	22.2.3 The Costs
	22.2.4 Consequences For Optimization
	22.2.5 Search Planning On Request
	22.2.6 Attribute Indices
	22.2.7 Incidence Count Indices
	22.2.8 Name Index
	22.2.9 Uniqueness Index

	22.3 Location Passing and Memorization
	22.4 Profile and Parallelize
	22.5 Compilation and Static Knowledge
	22.6 Miscellaneous Things

	23 Examples
	23.1 Fractals
	23.2 Busy Beaver
	23.2.1 Graph Model
	23.2.2 Rule Set
	23.2.3 Rule Execution with GrShell

	24 Application Programming Interface
	24.1 Interface to the Host Graph
	24.2 Interface to the Rules
	24.3 Interface of the Graph Processing Environment
	24.4 Import/Export and Miscellaneous Stuff
	24.5 External Class, Function and Procedure Implementation
	24.6 External Filter and Sequence Implementation
	24.7 Graph Events
	24.8 Action Events

	25 Extensions
	25.1 External Attribute Types
	25.2 External Function Types
	25.3 External Procedure Types
	25.4 External Filter Functions
	25.5 External Sequences
	25.6 External Emitting and Parsing
	25.7 External Cloning and Comparison
	25.8 Shell Commands
	25.9 Shell and Compiler Parameters
	25.10 Annotations

	26 Understanding and Extending GrGen.NET
	26.1 How to Build
	26.2 The Generated Code
	26.3 Search Planning in Code Generation
	26.4 The Code Generator
	26.4.1 Frontend
	26.4.2 Backend

	27 Development Goals and Design Decisions
	27.1 Expressiveness
	27.2 General-Purpose Graph Rewriting
	27.3 Performance
	27.4 Understandability and Learnability
	27.5 Development Convenience
	27.6 Well Founded Semantics
	27.7 Platform Independence
	27.8 General-Purpose Graph Transformation

	Bibliography
	Index

