The Remote Sensing and GIS

Software Library.

Pete Bunting and Daniel Clewley

Documentation and Examples of using RSGISLib.
September 28, 2013

Aberystwyth University

PRIFYSGOL

EYABERYSTWYTH

——— UNIVERSITY

Copyright (©) Pete Bunting and Daniel Clewley 2013.

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0
Unported License. To view a copy of this license, visit http://creativecommons.

©N0le

org/licenses/by-sa/3.0/.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Acknowledgements

We would like to thank the developers of the software libraries which RSGISLib
depends on. Landcare Research, New Zealand, are thanked for their support
for Pete Bunting during his period of employment (2011-2012) in New Zealand
during which time RSGISLib was further developed. Mahta Moghaddam (USC)
is thanked for supporting Dan Clewley (2012 —) and the Natural Environment
Research Council (NERC) for providing funding for his PhD (2009 — 2012). John
Armston and James Shepherd are thanked for providing ideas, improvements and
bugs fixes. Additionally, all the students and collaborators who have used, tested
and reported bugs in RSGISLib are also thanked.

i

Authors

Peter Bunting

Dr Pete Bunting joined the Institute of Geography and Earth Sciences (IGES),
Aberystwyth University, in September 2004 for his Ph.D. where upon completion
in the summer of 2007 he received a lectureship in remote sensing and GIS. Prior
to joining the department, Peter received a BEng(Hons) in software engineering
from the department of Computer Science at Aberystwyth University. Pete also
spent a year working for Landcare Research in New Zealand before rejoining IGES
in 2012 as a senior lecturer in remote sensing.

Contact Detalils
EMail: pfb@aber.ac.uk

Senior Lecturer in Remote Sensing
Institute of Geography and Earth Sciences
Aberystwyth University

Aberystwyth

Ceredigion

SY23 3DB

United Kingdom

111

Daniel Clewley

Dr Dan Clewley joined IGES in 2006 undertaking an MSc in Remote Sensing and
GIS, following his MSc Dan undertook a Ph.D. entitled Retrieval of Forest Biomass
and Structure from Radar Data using Backscatter Modelling and Inversion under
the supervision of Prof. Lucas and Dr. Bunting. Prior to joining the department
Dan completed his BSc(Hons) in Physics within Aberystwyth University. Dan is
currently a post-doc researcher at the University of Southern California.

Contact Details
Email: clewley@usc.edu

Postdoctoral Research Associate

Microwave Systems, Sensors, and Imaging Lab (MiXIL)
Ming Hsieh Department of Electrical Engineering

The University of Southern California

Los Angeles

USA

Table of Contents

(1__Introduction|

[1.3.2 Escape Characters|

(1.3.3 Commentingl.,

1.3.4 ROSGISLib XMIJ

(1.4 Python Bindings|

(Lo Basic UNIXI . . . 00000 oo

(1.5.1 Editingatextfile.

(1.6 Using Batch Queues on a HPC,

2 Installing 1

[2.1 Getting the RSGISLib Source Code|

B2 Compiling ROGISTAD] .« « v v oo e

2.3 Pre-requisites|

TABLE OF CONTENTS vi

32 HDEG . . o oo 12
R33 FFETWI. 12
234 Xerces-Cl. e 12
235 MuParserl o 13
236 _GSHo 13
.............................. 13

8 Projdl 13

239 GDAL 13
2310 KEALibl oo 14
2311 GMPI. .. .o 14
R3I2MPERIo 15
3T CGALo oot 15

2.4 Compiling on Windows| 15
3 Examples — Image Processing| 17
[3.1 Basic Landsat Imagery Pre-Processingl 17
3.1.1 Convert to Radiancel 19
3.1.2 Convert to TOAl 21
[3.1.3 Re-projecting to OSGB|. 23
[3.1.4 Calculating Statistics and Image Pyramids| 24
B.1.5 Calculate an NDVI| 24
[3.1.6 Expanding the Processing to Multiple Scenes|. 25

[3.2 Linear Spectral Unmixing] 30
[3.2.1 Defining End Members| 31
[3.2.2 Unmixing the Scene| 32

TABLE OF CONTENTS

[4 Examples — Image Utilities|
4.1 Creating a new Image]
[4.1.1 Copying an existing image header|
4.2 Editing Header information|
[4.2.1 Set the projectionl
[4.2.2 Over write spatial header|{.
[4.2.3 Remove Spatial Header|.
4.3 Stacking Image Bands| o000
[4.4 Sub-setting Images| oL
[4.4.1 Subset to Image|.
442 Subset to Vector]o
[4.4.3 Subset to Polygons|
[4.5 Generate Image Tiles|
[4.5.1 Square tiles|
4.6 Mosaid
4.7 Sub-Sample the Image file|
[> Examples — Vectors|
bl Zonal Statisticslo
[>.1.1 Pixel-weighed mean|.
[>.1.2 pixelmeanLSSVar|o o000
[>.1.3 Statistics for points|
(5.2 Image Footprints|
b3 Vector Mathsl

6 Examples - Image Segmentation|

vii

35
35
35
36
36
36
36
36
37
37
38
38
39
39
39
40

42
42
46
46
47
48
48

50

TABLE OF CONTENTS

[6.1 Iterative Elimination Algorithm|

(8.2 Image Warping]

9 Examples — Radar (SAR)|

viil

20
o1

55
55
95
o6
58
58
29
60
61
61
61
62
62
63
63
64

65
65
68

70

TABLE OF CONTENTS ix

(10 Examples — Other Utilties| 74
(10.1 Running Command Line Tools from XML| 74
(10.1.1 Creating a Directory| 74

(10.1.2 Deleting Files|, 74

List of Figures

[3.1 Example of a landsat scene which has been unmixed using linear

spectral unmixing.|

List of Tables

(1.1 Keyboard shortcuts for the ne editor.| 7

[2.1 'The pre-requisite sottware libraries of RSGISLib.| 11

3.1 Landsat ETM+ (7) gains and offsets for converting DN’s to radiance| 19

3.2 Solar irradiance for the Landsat ETM+ bands). 19

[>.1 Input file format tor polygonlmagekootprints|. 48

9.1 Coeflicients for the semi-empirical method of biomass estimation |

(Saatchi et al., 2007) 73

Chapter 1

Introduction

1.1 Background

The remote sensing and GIS software library (RSGISLib) was developed at Aberys-
twyth University by Pete Bunting and Daniel Clewley. Development started in
April 2008 and has been actively maintained and added to ever since. For more

information see http://www.rsgislib.org,.

1.2 Using RSGISLib

RSGISLib has two interfaces a command line interface, where parameters are
provided by an XML file, and python bindings. Additionally a python script is
provided with RSGISLib, rsgiscmd which generates and executes a temporary

XML file. The provides access to most algorithms using standard option flags
e.g.,

rsgiscmd --algor imagecalc --option imagemaths
--image inImage.kea --output outImage.kea
-—format KEA --datatype Float32

-—expression

To see all algorithms, and available options type:

http://www.rsgislib.org

CHAPTER 1. INTRODUCTION 2

rsgiscmd --help all

Warning, this prints a lot of output so you may wish to pipe to less.

1.3 The RSGISLib XML Interface

The main commands used in the XML interface are:
rsgisexe - the main command to execute scripts

rsgislibxmllist - a command to list all the available commands within the library
(there are over 300!!)

rsgislibcmdxml.py - a command to allow script templates to be populated with

file paths and names.

rsgislibvarsxml.py - a command to input variable values into a template script.

1.3.1 XML Basics

RSGISLib is parameterised through the use of an XML script. XML stands for
Extensible Markup Language.

Extensible - XML is extensible. It lets you define your own tags, the order in
which they occur, and how they should be processed or displayed. Another
way to think about extensibility is to consider that XML allows all of us to
extend our notion of what a document is: it can be a file that lives on a file
server, or it can be a transient piece of data that flows between two computer

systems.

Markup - The most recognizable feature of XML is its tags, or elements (to be

more accurate).

Language - XML is a language that’s very similar to HTML. It’s much more
flexible than HTML because it allows you to create your own custom tags.

However, it’s important to realize that XML is not just a language. XML

CHAPTER 1. INTRODUCTION 3

is a meta-language: a language that allows us to create or define other lan-
guages. For example, with XML we can create other languages, such as RSS,
MathML (a mathematical markup language).
<parent_element>
<some_information>
</some_information>

<some_information name="some data'" value='"some other data" />

</parent_element>

XML is made up of opening and closing elements, where the hierarchy of the
elements provides meaning and structure to the information stored. Therefore,
every element has an opening and closing element. This can be defined in two
ways; firstly with two tags, where the opening tag is just enclosed with angled
brackets (< tag >) and the closing tag contains a backslash and angled brackets
< /tag >. Using this method further tags for data can be stored between the two
tags, providing structure as shown above. The second method uses just a single
tag with an ending backslash (< tag/ >). This second method is used when no

data or further tags are to be defined below current element.
<element></element>

<element/>
1.3.2 Escape Characters
As with all computing languages there are certain characters which have specific

meanings and therefore an escape character needs to be used if these characters

are required within the input.

& - &
" - '
7 - "
< - <

> - >

CHAPTER 1. INTRODUCTION 4

= - =
<element attribute="'hello'"/>
<element>
1 is &l1lt; 100
</element>

<element attribute=""world""/>

1.3.3 Commenting

To add comments to XML code and temporally comment out parts of your XML

script you need to use the XML commenting syntax as show below.

<!-- Some useful comment -->
<parent_element>
<some_information>
</some_information>
<!-- This 1s some really useful information in this comment —-->
<some_information name="some data'" value='"some other data" />

</parent_element>

All parts of the document between the opening and closing comment tags will be

ignored by the parser.

1.3.4 RSGISLib XML

For parameterisation of the rsgisexe application you will need to create an XML file
in the correct format, which the RSGISLib executable understands, while adhering
to the rules of XML outlined above. The basis for the RSGISLib XML is to provide

a list of commands. Therefore, the XML has the following structure:

<?zml wversion="1.0" encoding="UTF-8" 2>
<l--
Description:
XML File for exzecution within RSGISLb
Created by **MEx* on Wed Nov 28 15:53:41 2012.
Copyright (c) 2012 **0Organisation**. All rights reserved.

9

10

11

12

13

14

15

16

17

18

19

CHAPTER 1. INTRODUCTION)

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">

<rsgis:command algor='"name" option="algor_option" attrl="foo"
attr2="bar">
<rsgis:data attribute="blob" />
</rsgis:command>
<rsgis:command algor="algor_name" option="algorithm_option"
attr="data"/>

</rsgis:commands>

Where all the input parameters are defined using element attributes and each algo-
rithm and option have their own set of attributes to be specified. Within the XML
file imported into rsgisexe multiple command elements can be specified and they
will all be executed in the order specified in the XML file. Therefore, a sequence

of events can be specified and executed without any further interaction.

1.4 Python Bindings

For an increasing number of commands python bindings are available in addition
to the XML interface. Incorporating commands directly in python (rather than
using python to produce and execute XML files, allows more advanced processing
chains to be built. You can use the build in python help to show help for the python
bindings. To see available libraries, from an interactive python shell type.

import rsgislib

help(rsgislib)

To get help for the imageutils library you can use:

from rsgislib import imageutils

help(imageutils)

CHAPTER 1. INTRODUCTION 6

1.5 Basic UNIX

When interacting with a UNIX terminal you will need to so using a UNIX com-
mand line console. The basic UNIX commands for navigating the file system are

shown below.

List the current directory
1s

Enter the directory called ’directory_name’

cd directory_name

Go down a directory
cd ..

Display contents of a file
cat file.txt

Display contents of a file and stop at end of each page

cat file.txt | more

Display header information for an image

gdalinfo image.kea | more

Rename filel.txzt to file2.txt
mv filel.txt file2.txt

Move file.txzt to within directory output
mv file.txt output/file.txt

Copy the file file2.txzt to file2.txt
cp filel.txt file2.txt

Copy a directory filesl to files2
cp -R ./filesl ./files2

Delete a file
rm file.txt

Delete a directory

CHAPTER 1. INTRODUCTION 7

rm -Rf ./files

ne name_of_text_file.txt

1.5.1 Editing a text file

All the scripts you will use to interact with the machine are text files (even if they
have the extension .xml or .sh) to edit them we recommend you use the ‘ne’ editor
(‘the nice editor’). This editor uses commonly used desktop keyboard shortcuts
for saving files and quitting the application. Table lists the common shortcuts
while pressing escape will show a menu from which you can select the option you

require.

Table 1.1: Keyboard shortcuts for the ne editor.

Function Shortcut
Saving ctrl-s
Quit ctrl-q
Find ctrl-f
Jump to Line ctrl-j

1.6 Using Batch Queues on a HPC

For processing large amounts of data, RSGISLib can be run on a High Performance
Computer (HPC), such as HPC Wales (http://www.hpcwales.co.uk). HPCs use
batch priority queue to manage the jobs submitted by multiple users. The job of
the queue manages the jobs, which are being submitted to the computer system
to make sure that as much of the system as possible is being utilised. Therefore,
if you submit a job which is small (i.e., does not use much runtime, memory or a

large number of processes) it is likely to run much sooner than a job which requires

http://www.hpcwales.co.uk

10

11

12

13

14

10

11

CHAPTER 1. INTRODUCTION 8

a large amount of resources as it will take longer for the scheduler to find space

on the system for the large job.

There are a number of command line tools associated with queue facility, includ-
ing:

Submit a job
bsub < jobfile.lsf

List your jobs submitted
bjobs

List all jobs in queue
bjobs -u all

Info on previously run jobs

bhist -1 <job id>

Remove a job from the queue
bdel <job id>

To submit a job you need to create a job file script which provides the scheduler
information such as run time, user account etc such that it can appropriate allocate
the job. A template is shown below.

#1/bin/bash --login

#BSUB -J JOB_NAME

#BSUB -o JOB_CONSOLE_OUTPUT_FILE.out
#BSUB -e JOB_CONSOLE_ERROR_FILE.err
#BSUB -W HH:MM (RUN TIME)

#BSUB -P sam0004

#BSUB -n 1 (NUMBER OF PROCESSING CORES)
#BSUB -R "span[ptile=1]"

ENTER THE COMMAND WHICH NEEDS TO EXECUTED

rsgisexe -x processSomeData.xml

Chapter 2

Installing RSGISLib

The notes below hopefully provide some useful details on the process for installing
RSGISLib. These notes are intended for people compiling the software on a UNIX
platform such as Mac OSX, Linux or Solaris (these are the platforms on which
the software has been tested). See the end of the chapter for Windows info,
Section 2.4

To compile the software (and the pre-requisites) you will need a C++ compiler,
we use the GNU GCC (http://gcc.gnu.org) compilers but the software has also
been tested and compiles without a problem using the SunPro compiler on Solaris

and the Intel x86 compilers.

You will also need to have mercurial (http://mercurial.selenic.com) installed
to download the latest version of the RSGISLib source code and cmake http:

//www . cmake .org to configure the source code before compilation.

2.1 Getting the RSGISLib Source Code

The RSGISLib source code is hosted within a Mercurial repository on bitbucket
(https://bitbucket.org/petebunting/rsgislib). To clone the source code

into a folder (rsgislib) run the following command

hg clone https://bitbucket.org/petebunting/rsgislib rsgislib

http://gcc.gnu.org
http://mercurial.selenic.com
http://www.cmake.org
http://www.cmake.org
https://bitbucket.org/petebunting/rsgislib

CHAPTER 2. INSTALLING RSGISLIB 10
2.2 Compiling RSGISLib

If the libraries are all installed in the default location (/usr/local) then the follow-
ing commands are all that is require to build RSGISLib:

cmake -D CMAKE_INSTALL_PREFIX=/usr/local .
make

make install

If libraries are not installed within /usr/local then the path needs to be specified

using the variables available through the CMake scripts and are listed below.

cmake -D CMAKE_INSTALL_PREFIX=/usr/local \
-D BOOST_INCLUDE_DIR=/usr/local \
-D BOOST_LIB_PATH=/usr/local\

-D GDAL_INCLUDE_DIR=/usr/local \

-D GDAL_LIB_PATH=/usr/local\

-D HDF5_INCLUDE_DIR=/usr/local \

-D HDF5_LIB_PATH=/usr/local \

-D XERCESC_INCLUDE_DIR=/usr/local \
-D XERCESC_LIB_PATH=/usr/local \

-D GSL_INCLUDE_DIR=/usr/local \

-D GSL_LIB_PATH=/usr/local \

-D FFTW_INCLUDE_DIR=/usr/local \

-D FFTW_LIB_PATH=/usr/local \

-D GEOS_INCLUDE_DIR=/usr/local \

-D GEOS_LIB_PATH=/usr/local \

-D MUPARSER_INCLUDE_DIR=/usr/local \
-D MUPARSER_LIB_PATH=/usr/local \
-D CGAL_INCLUDE_DIR=/usr/local \

-D CGAL_LIB_PATH=/usr/local \

-D GMP_INCLUDE_DIR=/usr/local \

-D GMP_LIB_PATH=/usr/local \

-D MPFR_INCLUDE_DIR=/usr/local \

-D MPFR_LIB_PATH=/usr/local \

-D KEA_INCLUDE_DIR=/usr/local \

-D KEA_LIB_PATH=/usr/local \

-D CMAKE_VERBOSE_MAKEFILE=0ON \

CHAPTER 2. INSTALLING RSGISLIB 11

make

make install

On some systems you may need to run

ldconfig

this will set up the dynamic linking paths. Run this if you system returns an error

messages that the libraries cannot be found when you run rsgisexe.

2.3 Pre-requisites

The RSGISLib software library has a number of software prerequisites, which are

required to build the software (Table [2.1)).

Table 2.1: The pre-requisite software libraries of RSGISLib.

Pre-requisite] License ‘Website Usage] Min. Version
Input / Output
GDAL/OGR MIT-X http://www.gdal.org Reading and writing raster and vec- 1.6.X
tor datasets.
HDF5 BSD-style http://www.hdfgroup.org Reading and writing HDF5 files. 1.8.X
KEALib MIT-X http://www.kealib.org Accessing extra features of the KEA 1.3.0
format which are available through
GDAL.
Xerces-C Apache 2.0 http://xerces.apache.org/ Parsing XML files. 3.1.1
Xerces-c
Mathematical Operations
GNU Scientific Library (GSL) GPL 3 http://www.gnu.org/software/gsl Vector and Matrix operations and 1.13
other common mathematical tools.
FFTW GPL 2 http://www.fftw.org Fast Fourier transformation. 3.3.X
MuParser MIT-X http://muparser.beltoforion.de Parsing and evaluating mathemati- 2.2.2
cal expressions.
Geometry
GEOS LGPL 2.1 http://trac.osgeo.org/geos Spatial geometry operations (e.g., 3.X
intersect, buffer).
CGAL GPL 3 http://www.cgal.org Triangulations and interpolation. 4.X
Proj.4 MIT-X https://trac.osgeo.org/proj Presentation and transformation of 4.8.0
projections.
Other
Boost Boost http://www.boost.org Various utilities (e.g., text process- 1.48
ing and save casting) and data
structures (e.g., graphs).

The following sections provide build instructions for the libraries in an appro-
priate order. The paths and variables in the examples below are for use within
the Envmaster (https://bitbucket.org/chchrsc/envmaster) system. For a full
system installation instructions look at http://www.massey.landcareresearch.

co.nz/client/osgeo/buildinstructions/

http://www.gdal.org
http://www.hdfgroup.org
http://www.kealib.org
http://xerces.apache.org/xerces-c
http://xerces.apache.org/xerces-c
http://www.gnu.org/software/gsl
http://www.fftw.org
http://muparser.beltoforion.de
http://trac.osgeo.org/geos
http://www.cgal.org
https://trac.osgeo.org/proj
http://www.boost.org
https://bitbucket.org/chchrsc/envmaster
http://www.massey.landcareresearch.co.nz/client/osgeo/buildinstructions/
http://www.massey.landcareresearch.co.nz/client/osgeo/buildinstructions/

CHAPTER 2. INSTALLING RSGISLIB 12

2.3.1 Boost

./bootstrap.sh --prefix=/share/osgeo/fw/boost/1.51 \
--with-libraries=all \
--with-python=$PYTHON_ROOT/bin/python \
—-with-python-root=$PYTHON_ROOT

./b2

./bjam install

mkdir /share/osgeo/fw/boost/1.51/bin
cp bjam /share/osgeo/fw/boost/1.51/bin

2.3.2 HDF5

./configure --prefix=/share/osgeo/fw/hdf5/1.8.9 \
--with-z1ib=$ZLIB_ROOT \

--enable-cxx \

--enable-shared \

-with-pic

make

make install

2.3.3 FFTW

./configure --prefix=/share/osgeo/fw/fftw/3.3.2.2 \
--enable-shared \
--disable-static CPPFLAGS=-fPIC

make

make check

make install

2.3.4 Xerces-C

./configure --prefix=/share/osgeo/fw/xerces-c/3.1.1

CHAPTER 2. INSTALLING RSGISLIB

make

make install

2.3.5 MuParser

./configure --prefix=/share/osgeo/fw/muparser/2.2.2
make

make install

2.3.6 GSL

./configure --prefix=/share/osgeo/fw/gsl/1.15

make

make install

2.3.7 GEOS

./configure --prefix=/share/osgeo/fw/geos/3.2.3

make

make install

2.3.8 Proj.4

./configure --prefix=/share/osgeo/fw/proj4/4.8.0

make

make install

2.3.9 GDAL

./configure --prefix=/share/osgeo/fw/gdal/1.10.0
--with-hdf5=$HDF5_ROOT
--with-1ibz=$ZLIB_ROOT

13

CHAPTER 2. INSTALLING RSGISLIB 14

--with-xerces=$XERCES_C_ROOT \
--with-geos=$GEOS_BIN_PATH/geos-config \
--with-static-proj4=$PROJ4_ROOT \
--with-python \

--enable-shared=yes --enable-static=no

make

make install

2.3.10 KEALib

cmake -D CMAKE_INSTALL_PREFIX=/share/osgeo/fw/libkea/1.30 \
-D CMAKE_VERBOSE_MAKEFILE=0N \

-D HDF5_INCLUDE_DIR=$HDF5_INCLUDE_PATH \

-D HDF5_LIB_PATH=$HDF5_LIB_PATH \

-D GDAL_INCLUDE_DIR=$GDAL_INCLUDE_PATH \

-D GDAL_LIB_PATH=$GDAL_LIB_PATH \

make
make install

You should also set the ‘GDAL_DRIVER_PATH’ variable to the installation path
of libkea (i.e., ‘/share/osgeo/fw/libkea/1.30/gdalplugins’). This can be done by
adding the following line to your .bash_profile:

GDAL_DRIVER_PATH=/share/osgeo/fw/libkea/1.30/gdalplugins
By defining the variable GDAL will be able to read and write KEA files. To test

this run the following command ‘gdal_translate —long-usage’ and check that the
KEA format is within the list.

2.3.11 GMP

./configure --prefix=/share/osgeo/fw/gmp/5.0.5 \
--enable-cxx \
-—enable-fft

CHAPTER 2. INSTALLING RSGISLIB 15

make
make install

2.3.12 MPFR

./configure --prefix=/share/osgeo/fw/mpfr/3.1.1 \
--with-gmp=$GMP_ROOT

make

make install

2.3.13 CGAL

cmake -D CMAKE_INSTALL_PREFIX=/share/osgeo/fw/cgal/4.1 \
-D MPFR_INCLUDE_DIR=$MPFR_INCLUDE_PATH \

-D MPFR_LIBRARIES=$MPFR_LIB_PATH/libmpfr.dylib \
-D GMP_INCLUDE_DIR=$GMP_INCLUDE_PATH \

-D GMP_LIBRARIES=$GMP_LIB_PATH/libgmp.dylib \

-D GMP_LIBRARIES_DIR=$GMP_LIB_PATH \

-D GMPXX_INCLUDE_DIR=$GMP_INCLUDE_PATH \

-D GMPXX_LIBRARIES=$GMP_LIB_PATH/1libgmpxx.dylib \
-D ZLIB_LIBRARY=$ZLIB_LIB_PATH/libz.1.2.7.dylib \
-D ZLIB_INCLUDE_DIR=$ZLIB_INCLUDE_PATH \

-D CMAKE_VERBOSE_MAKEFILE=0N \

make
make install

2.4 Compiling on Windows

There is nothing that should stop you from compiling RSGISLib on Windows but
we have not tested it so there would probably be some issues which would need
working through to make it happen. This is something we are keen to see happen

but we do not have any experience in development under Windows or using Visual

CHAPTER 2. INSTALLING RSGISLIB 16

Studio. If you interested we would happily work with anyone wanting to tackle

this issue.

The other options are to install using Cygwin (http://www.cygwin.com) or to in-
stall Linux through virtualisation. VirtualBox (https://www.virtualbox.org) is
a free and open source virtualisation package with wide support for multiple plat-
forms, including Windows. The UNIX installation instructions should be followed

once you have one of these setup.

http://www.cygwin.com
https://www.virtualbox.org

Chapter 3

Examples — Image Processing

3.1 Basic Landsat Imagery Pre-Processing

The first step when downloading optical imagery is to pre-process it such that it

is geographically registered and spectrally it is a measure of reflectance.

You have been provided with four Landsat 7 ETM+ scenes covering parts of Wales.

Your task is to:

1.

2.

6.

Convert the measured spectral values to at sensor radiance.

Convert the measured at sensor radiance to top of atmosphere (TOA) re-

flectance.
Where possible pre-calculate image pyramids and statics for visualisation.
Stack the individual Landsat ETM+ bands to create a single image.

Re-project the scene to the Ordnance Survey National Grid from the Uni-

versal Transverse Mercator (UTM) it is provided in.

Calculate the Normalised Difference Vegetation Index (NDVI)

Ideally you would correct the data to surface reflectance but to do so requires

the use of an atmospheric model. Atmospheric models require parameterisation

17

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 18

so to simplify the process you will just correct the data to top of atmosphere

reflectance.

Top of atmosphere (TOA) reflectance is the ratio of the incoming light, from
the Sun (i.e., source), and the light reflected and measured at the sensor. This
assumes there is no atmospheric interference or bi-directional reflectance (BRDF)
effects within the scene. These are clearly false assumptions but it does provide
a simple and fast method of correcting to a measured unit which is corrected for

the variation in the solar irradiance, due to season and angle.

To correct the imagery to TOA the first step is to convert the 8 bit (0 — 255) digital
number (DN) pixels values to floating point radiance values (i.e., the amount of

energy measured at the sensor).

Side Question

What is radiance and what is its unit1¥]

“Radiance is defined as “The power passing through a unit area in a unit solid
angle about the normal to the area (per unit spectral interval)”

bwatts per steradian per square nano metre W-sr—t-m=3 or W - sr—
a given wavelength.

L.onm~1! for

To convert DN’s to radiance you need to use Equation [3.1}and the gains and offsets
for each landsat 7 band, provided in Table [3.I] The gains and offsets are also
available with the MTL text file associated within each Landsat scene downloaded
from the USGS.

I (LMAX — LMIN

QCALypuwe — QCAL,;) (DN — QCALpn) + LMIN (3.1)

For this exercise you only need to process bands 1-5 and 7, which are the visible,
NIR and SWIR bands with a resolution of 30 m. Bands 6 (1 and 2) are within
the thermal part of the electrometric spectrum and have a resolution of 60 m.
Finally, band 8 is a panchromatic band (measuring from green to NIR) with a

spatial resolution of 15 m.

To convert the radiance image to TOA Equation needs to be used with the

CHAPTER 3. EXAMPLES - IMAGE PROCESSING

19

Table 3.1: Landsat ETM+ (7) gains and offsets for converting DN’s to radiance

Band | LMin | LMax | QCal,,;, | QCal,.. | Wavelength (nm) | Resolution (m)
1 -6.2 191.6 1 255 450-515 30
2 -6.4 196.5 1 255 525-605 30
3 -5.0 | 152.9 1 255 630-690 30
4 -5.1 157.4 1 255 750-900 30
5 -1.0 | 31.06 1 255 15501750 30
6 (1) 0.0 17.04 1 255 10400-12500 60
6 (2) 3.2 12.65 1 255 10400-12500 60
7 -0.35 10.8 1 255 2090-2350 30
8 -4.7 | 243.1 1 255 520-900 15
coefficients shown in Table [3.2]
p=m-Ly-d* ESUN, - cosb, (3.2)

where, L, is the radiance measure at the sensor, d is the distance to the sun,

ESUN, is the solar irradiance for the wavelength of the image band and 6 is the

solar zenith.

Table 3.2: Solar irradiance for the Landsat ETM+4 bands.

Band

Solar Trradiance (W - m ™)

1

00 ~J O b= W N

1997
1812
1533
1039
230.8
84.9
1362

3.1.1 Convert to Radiance

To convert to the landsat imagery to radiance RSGISLib provides the following

command specifically for Landsat processing.

10

11

12

13

14

15

16

17

18

19

20

10

11

12

13

14

CHAPTER 3. EXAMPLES — IMAGE PROCESSING 20

<I--
A command to calibrate image Landsat data from at sensor
DNs to at sensor radtance (EQ: ((lmaz-lmin)/(gcalmaz-qcalmin))
* (DNs - qcalmin) + lmin) Eq is from landsat manual.
-=>
<rsgis:command algor="imagecalibration" option="landsatradcal"
output="image_out.env" format="GDAL Format" >
<rsgis:band name="string" image="imagel" band="int"
[sensorband="string" |
Imin="float" lmax="float" qcalmin="float"
qcalmax="float"]/>
<rsgis:band name="string" image="imagel" band="int"
[sensorband="string" |
Imin="float" lmax="float" qcalmin="float"
gcalmax="float"]/>
<rsgis:band name="string" image="imagel" band="int"
[sensorband="string" |
Imin="float" lmax="float" qcalmin="float"
gcalmax="float"]/>

</rsgis:command>

Within the example XML given above the | is symbolising ‘or’ so either a string
(as shown below) needs to be specified for the sensor band or the values need
to be given. Therefore to convert Landsat data to radiance create an XML file
containing the following, making sure the file name is the same at the file you are

processing, needs to be created.

<?zml wversion="1.0" encoding="UTF-8" 2>
<I--
Description:
XML File for exzecution within RSGISLb
to pre-process Landsat ETM+ imagery.
Created by Pete on Wed Nov 28 18:59:38 2012.
Copyright (c) 2012 Aber Uni. All rights reserved.
-—>

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<rsgis:command algor="imagecalibration" option="landsatradcal"
output="L7_20323_20000607 _rad.kea" format="KEA" >
<rsgis:band name="b1l" image="L71203023_02320000617_B10.TIF"
band="1" sensorband="LETM7_B1" />

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 21

<rsgis:band name="b2" image="L71203023_02320000617_B20.TIF"
band="1" sensorband="LETM7_B2" />
<rsgis:band name="b3" image="L71203023_02320000617_B30.TIF"
band="1" sensorband="LETM7_B3" />
<rsgis:band name="b4" image="L71203023_02320000617_B40.TIF"
band="1" sensorband="LETM7_B4" />
<rsgis:band name="b5" image="L71203023_02320000617_B50.TIF"
band="1" sensorband="LETM7_B5" />
<rsgis:band name="b7" image="L72203023_02320000617_B70.TIF"
band="1" sensorband="LETM7_B7" />
</rsgis:command>
<rsgis:command algor="imageutils" option="popimgstats"
image="L7_20323_20000607_rad.kea" ignore="0"
pyramids="yes" />

</rsgis:commands>

After the radiance calibration command you will notice there is an image utilities
command called popimgstats. This command will calculate the image band statis-
tics including the image histogram, minimum, maximum, mean, median, mode
and standard deviation of the pixel values for each image band. It will also gener-
ate image pyramids, which allow fast visualisation of the image within a pyramid

aware image viewer.

Running the XML commands

To run this script from a UNIX terminal you should run the rsgisexe command
from within the same directory as your data (this XML file needs to be saved there

as well) and it is executed with the following command:

rsgisexe -x PreProcesslLandsat.xml

3.1.2 Convert to TOA

RSGISLib has a command to convert the radiance Landsat image to top of at-
mosphere (TOA) reflectance. The XML command is shown below, note this also

includes the XML for the radiance image as well.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

CHAPTER 3. EXAMPLES — IMAGE PROCESSING 22

<?zml wversion="1.0" encoding="UTF-8" 2>

<I--

Description:
XML File for exzecution within RSGISLtb
to pre-process Landsat ETM+ imagery.
Created by Pete on Wed Nov 28 18:59:38 2012.
Copyright (c) 2012 Aber Uni. All rights reserved.

-—>

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">

<rsgis:command algor="imagecalibration" option="landsatradcal"
output="L7_20323_20000607_rad.kea" format="KEA" >

<rsgis

<rsgis

<rsgis

<rsgis

<rsgis

<rsgis

:band name="bl" image="L71203023_02320000617_B10.TIF"

band="1" sensorband="LETM7_B1" />

:band name="b2" image="L71203023_02320000617_B20.TIF"

band="1" sensorband="LETM7_B2" />

:band name="b3" image="L71203023_02320000617_B30.TIF"

band="1" sensorband="LETM7_B3" />

:band name="b4" image="L71203023_02320000617_B40.TIF"

band="1" sensorband="LETM7_B4" />

:band name="b5" image="L71203023_02320000617_B50.TIF"

band="1" sensorband="LETM7_B5" />

:band name="b7" image="L72203023_02320000617_B70.TIF"

band="1" sensorband="LETM7_B7" />

</rsgis:command>

<rsgis:command algor="imageutils" option="popimgstats"
image="L7_20323_20000607 _rad.kea" ignore="0"

<rsgis:command

<rsgis
<rsgis
<rsgis
<rsgis
<rsgis

<rsgis

pyramids="yes" />

algor="imagecalibration" option="topatmosrefl"

input="L7_20323_20000607_rad.kea"
output="L7_20323_20000607_toa.kea"
format="KEA" scaleFactor="1000"
day="17" month="06" year="2000"

elevation="57.2241705"

:band sensorband="LETM7_B1"
:band sensorband="LETM7_B2"
:band sensorband="LETM7_B3"
:band sensorband="LETM7_B4"
:band sensorband="LETM7_B5"
:band sensorband="LETM7_B7"

</rsgis:command>

datatype="UIntli6" >
/>
/>
/>
/>
/>
/>

42

43

44

45

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 23

<rsgis:command algor="imageutils'" option="popimgstats"
image="L7_20323_20000607_toa.kea" ignore="0"
pyramids="yes" />

</rsgis:commands>

The options to note are the use of a scale factor of 1000 (so each reflectance value
is multiplied by 1000), giving a range from 0 to 1000 and the use of unsigned 16
bit integers to stored the outputted data. Following processing compare the files

sizes of the radiance and TOA images, what do you notice?

To compare the file sizes list the directory using the ‘Is’ command with the ‘-1h’
switches, as shown below.

1s -1h

Side Question

Why is the unsigned integer 16 bit image so much smaller than the 32
bit floating point image?
Is any information / precision lost converting to an unsigned integer

rather than using a floating point value?lﬂ

?A 16 bit value take up half the space of a 32 bit value but integers also compress
more efficiently than floating point values as whole values are repeated

No, multiplying by 1000 means than each increment (i.e., value of 1) is equal to
0.1% reflectance and this is well below the noise threshold of the system.

Running the XML commands

To run your commands just add these commands to your radiance XML script
and then resrun your script using the rsgisexe command. Both the radiance and
the TOA images will be calculated

3.1.3 Re-projecting to OSGB

To reproject the image data to the Ordnance Survey National Grid we need to

use the command gdalwarp. GDAL is a software library which allows spatial

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 24

located images to read and written where a common interface is provided for all
the supported image formats. RSGISLib uses GDAL to read and write images
and supports all the image formats that GDAL supports. GDAL also includes a
number of command line tools for common tasks such as converting between image
formats (gdal_translate) and warping images (gdalwarp). For more information on
GDAL visit the website http://www.gdal.org.

To use gdalwarp the input and output image coordinate systems and projections
need to be specified. There are a number of ways in which this can be done but
the preferred method is through the ‘Well-Known Text’” (WKT) format. WKT
files for the input projection (UTM 30N WGS84; utm30wgs83.wkt) and output
projection (OSGB 36; osgh36.wkt) have been provided.

To use gdalwarp the following options are required (Note, the slash is used to
allow the command to be split across multiple lines withn the shell script). See
the GDAL website for a description of these options - you should get used to
consulting online resources to understand how to do what you need to do.
gdalwarp -s_srs ./utm30wgs83.wkt -t_srs ./osgb36.wkt -ot UIntil6

-wt float32 -srcnodata O -order 3 -r cubic -of KEA
L7_20323_20000607_toa.kea L7_20323_20000607_toa_osgb.kea

3.1.4 Calculating Statistics and Image Pyramids

To generate the image pyramids and image statistics for the warped image gener-
ated by gdalwarp there is a command gdalcalcastats, confusingly this is not part
of of the GDAL project and has been independently developed but is built on
GDAL, hence the name.

gdalcalcstats L7_20323_20000607_toa_osgb.kea -ignore 0

3.1.5 Calculate an NDVI

To calculate an NDVI the RSGISLib software will again be used. For this a
new XML file needs to be generated, to generate a blank XML file the rsgisexe

command with the -b option can be used, as shown below.

http://www.gdal.org

10

11

12

13

14

15

16

17

18

19

20

21

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 25

rsgisexe -b CalcLandsatNDVI.xml

Using the new XML file add the following XML to calculate the NDVI using the
bandmaths tool.

<?xml version="1.0" encoding="UTF-8" 2>
<l--
Description:
XML File for exzecution within RSGISL1b
to calculate the NDVI for a landsat 7 scene
Created by Pete on Wed Nov 28 21:11:44 2012.
Copyright (c) 2012 Aber Uni. All rights reserved.
-—>

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<rsgis:command algor="imagecalc" option="bandmaths"
output="L7_20323_20000607 _osgb_NDVI.kea" format="KEA"
datatype="Float32" expression="(NIR-Red)/(NIR+Red)" >
<rsgis:variable name="Red"
image="L7_20323_20000607 _toa_osgb.kea"
band="4" />
<rsgis:variable name="NIR"
image="L7_20323_20000607_toa_osgb.kea"
band="3" />
</rsgis:command>

</rsgis:commands>

3.1.6 Expanding the Processing to Multiple Scenes

To undertake this process on multiple scenes you have been provided with a tem-
plate script for RSGISLib which contains all the processing stages. Note that the
command line processing command has be used to call the gdalwarp command
from within the RSGISLib XML script.

<!-- A command to ezecute a command line utilities (e.g., mkdir) -->

<rsgis:command algor="commandline" option="execute" command="string" />

The the template is shown below and the key thing to notice is the lack of specified
filenames and variables, instead variables start ‘$’ have been used and will be

replaced with the true values at a later stage.

10

11

12

13

14

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

CHAPTER 3. EXAMPLES — IMAGE PROCESSING

<rsgis:command algor="imagecalibration" option="landsatradcal"
output="$PATH/$FILENAMELl rad.kea" format="KEA" >
<rsgis:band name="bl" image="$FILEPATH1"
band="1" sensorband="LETM7_B1" />
<rsgis:band name="b2" image="$FILEPATH2"
band="1" sensorband="LETM7_B2" />
<rsgis:band name="b3" image="$FILEPATH3"
band="1" sensorband="LETM7_B3" />
<rsgis:band name="b4" image="$FILEPATH4"
band="1" sensorband="LETM7_B4" />
<rsgis:band name="b5" image="$FILEPATH5"
band="1" sensorband="LETM7_B5" />
<rsgis:band name="b7" image="$FILEPATHG"
band="1" sensorband="LETM7_B7" />
</rsgis:command>
<rsgis:command algor="imageutils" option="popimgstats"
image="$PATH/$FILENAMEL rad.kea" ignore="0"
pyramids="yes" />
<rsgis:command algor="imagecalibration" option="topatmosrefl"
input="$PATH/$FILENAMEl rad.kea"
output="$PATH/$FILENAMEl_ toa.kea"
format="KEA" scaleFactor="1000"
day="$VAR1" month="$VAR2" year="$VAR3"
elevation="$VAR4" datatype="UIntl6" >
<rsgis:band sensorband="LETM7_B1" />
<rsgis:band sensorband="LETM7_B2" />
<rsgis:band sensorband="LETM7_B3" />
<rsgis:band sensorband="LETM7_B4" />
<rsgis:band sensorband="LETM7_B5" />
<rsgis:band sensorband="LETM7_B7" />
</rsgis:command>
<rsgis:command algor="imageutils'" option="popimgstats"
image="$PATH/$FILENAMEL toa.kea" ignore="0"
pyramids="yes" />
<rsgis:command algor="commandline" option="execute"
command="gdalwarp -s_srs ./utm30wgs83.wkt -t_srs
./0osgb36.wkt -ot UIntl6 -wt float32
-srcnodata 0 -order 3 -r cubic -of KEA
$PATH/$FILENAMEL_toa.kea
$PATH/$FILENAMEL_toa_osgb.kea" />

<rsgis:command algor="imageutils" option="popimgstats"

26

42

43

45

46

47

48

49

50

51

52

53

54

55

56

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 27

image="$PATH/$FILENAMEL_ toa_osgb.kea" ignore="0"
pyramids="yes" />
<rsgis:command algor="imagecalc" option="bandmaths"
output="$PATH/$FILENAMEL_ osgb_NDVI.kea" format="KEA"
datatype="Float32" expression="(NIR-Red)/(NIR+Red)" >
<rsgis:variable name="Red"
image="$PATH/$FILENAMEl_toa_osgb.kea"
band="4" />
<rsgis:variable name="NIR"
image="$PATH/$FILENAMEl_toa_osgb.kea"
band="3" />
</rsgis:command>
<rsgis:command algor="imageutils" option="popimgstats"
image="$PATH/$FILENAMEl osgb_NDVI.kea" ignore="0"
pyramids="yes" />

To understand what the different variables have been used for see the list be-

low:

$PATH - This is the path with in the file system where the output files will be

written.

$FILENAMET1 - This is the start of the file name which all output files will
have.

$FILEPATH1 - Band 1 of the input Landsat scene.
$FILEPATH?2 - Band 2 of the input Landsat scene.
$FILEPATHS3 - Band 3 of the input Landsat scene.
$FILEPATH4 - Band 4 of the input Landsat scene.
$FILEPATHS5 - Band 5 of the input Landsat scene.
$FILEPATHG6 - Band 7 of the input Landsat scene.
$VAR1 - Day of capture

$VAR2 - Month of capture

$VAR3 - Year of capture

$VARA4 - Solar Elevation

10

11

12

13

14

15

16

17

18

19

20

10

11

13

14

CHAPTER 3. EXAMPLES - IMAGE PROCESSING

28

To replace these variables with the real data values the rsgislibcmdxml.py and

rsgislibvarsxml.py scripts needs to be used as shown below.

mkdir L7_20323_200006

rsgislibcmdxml.py -i

-0

rsgislibvarsxml.py -i
-0
-v
-v
-v

-V

17_Outputs

LandsatProcessingTemplate.xml
LandsatProcessingTemplate_Filenames.xml
L7_20323_20000617_Outputs
L7_20323_20000617

LE72030232000169EDC00/L71203023_02320000617_B10.
LE72030232000169EDC00/L71203023_02320000617_B20.
LE72030232000169EDC00/L71203023_02320000617_B30.
LE72030232000169EDC00/L71203023_02320000617_B40.
LE72030232000169EDC00/L71203023_02320000617_B50.
LE72030232000169EDC00/L72203023_02320000617_B70.

LandsatProcessingTemplate_Filenames.xml
L7_20323_20000617_PreProcessing.xml

17

6

2000

57.2241705

TIF
TIF
TIF
TIF
TIF
TIF

After you have expand the shell script for generating the scripts for the other

mkdir L7_20323_200006
rsgislibcmdxml.py -1
-0

P

rsgislibvarsxml.py -i
-0
-v

-V

images you should have something which looks like this.

17_Outputs
LandsatProcessingTemplate.xml
LandsatProcessingTemplate_Filenames.xml
L7_20323_20000617_Outputs
L7_20323_20000617

LE72030232000169EDC00/L71203023_02320000617_B10.
LE72030232000169EDC00/L71203023_02320000617_B20.
LE72030232000169EDC00/L71203023_02320000617_B30.
LE72030232000169EDC00/L71203023_02320000617_B40.
LE72030232000169EDC00/L71203023_02320000617 _B50.
LE72030232000169EDC00/L72203023_02320000617_B70.

LandsatProcessingTemplate_Filenames.xml
L7_20323_20000617_PreProcessing.xml

17

6

TIF
TIF
TIF
TIF
TIF
TIF

16

17

18

19

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

CHAPTER 3. EXAMPLES - IMAGE PROCESSING

'

-V

mkdir L7_20323_200204
rsgislibcmdxml.py -1
-0

P

rsgislibvarsxml.py -i
-0
-v
-v
-v

A

mkdir L7_20323_200209
rsgislibcmdxml.py -1
-0

P

rsgislibvarsxml.py -i
-0
-v
-v
-v

-V

mkdir L7_20323_200302
rsgislibcmdxml.py -1

2000
57.2241705

04_Outputs
LandsatProcessingTemplate.xml
LandsatProcessingTemplate_Filenames.xml
L7_20323_20020404_0Outputs
L7_20323_20020404

LE72030232002094EDC00/L71203023_02320020404_B10.
LE72030232002094EDC00/L71203023_02320020404_B20.
LE72030232002094EDC00/L71203023_02320020404_B30.
LE72030232002094EDC00/L71203023_02320020404_B40.
LE72030232002094EDC00/L71203023_02320020404_B50.
LE72030232002094EDC00/L72203023_02320020404_B70.

LandsatProcessingTemplate_Filenames.xml
L7_20323_20020404_PreProcessing.xml

4

4

2002

39.9992339

11_Outputs
LandsatProcessingTemplate.xml
LandsatProcessingTemplate_Filenames.xml
L7_20323_20020911_0Outputs
L7_20323_20020911

LE720302320022545GS00/L71203023_02320020911_B10.
LE720302320022545GS00/L71203023_02320020911_B20.
LE720302320022545GS00/L71203023_02320020911_B30.
LE720302320022545GS00/L71203023_02320020911_B40.
LE720302320022545GS00/L71203023_02320020911_B50.
LE720302320022545GS00/1L72203023_02320020911_B70.

LandsatProcessingTemplate_Filenames.xml
L7_20323_20020911_PreProcessing.xml

11

9

2002

39.1746567

18_Outputs

LandsatProcessingTemplate.xml

TIF
TIF
TIF
TIF
TIF
TIF

TIF
TIF
TIF
TIF
TIF
TIF

29

57

58

59

60

61

62

63

64

66

67

68

69

70

71

CHAPTER 3. EXAMPLES - IMAGE PROCESSING

rsgislibvarsxml.py -i
-0
-v
-v
-v

-V

LandsatProcessingTemplate_Filenames.xml
L7_20323_20030218_0utputs
L7_20323_20030218

LE720302320030495GS00/L71203023_02320030218_B10.
LE720302320030495GS00/L71203023_02320030218_B20.
LE720302320030495GS00/L71203023_02320030218_B30.
LE720302320030495GS00/L71203023_02320030218_B40.
LE720302320030495GS00/L71203023_02320030218_B50.
LE720302320030495GS00/L72203023_02320030218_B70.

LandsatProcessingTemplate_Filenames.xml
L7_20323_20030218_PreProcessing.xml

18

2

2003

22.4606180

TIF
TIF
TIF
TIF
TIF
TIF

30

Finally, you run each of the XML scripts generated and using the rsgisexe command

to process your imagery.

3.2 Linear Spectral Unmixing

RSGISLib provides commands for unconstrained and constrained linear unmixing

which is commonly used to understand the proportion of endmembers contributing

to the reflectance of each pixel. In the case of linear spectral unmixing then the

combination is linear (i.e., additive) and provides the proportion of the reflectance

of each input pixel corresponding the endmembers provided. The key to spectral

unmixing is the selection of suitable endmembers which need to correspond with

the extremes of the feature space of the data you are unmixing. You can define up

ton—1 (n is the number of image bands) endmembers but is commonly less.

Using multispectral data within the UK, common endmembers are:

e Photosynthetic

Vegetation

e Non-photosynthetic Vegetation

e Shade / Water

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 31

Therefore, unmixing for these three parameters will provide an output image with

3 image bands:
1. Proportion of photosynthetic vegetation
2. Proportion of non-photosynthetic vegetation

3. Proportion of shade and water

3.2.1 Defining End Members

There are a number of automated methods for defining end members (see liter-
ature) but in this case a manual selection of the end members is undertaken by
defining a region (polygon) for each endmember using a shapefile (i.e., using QGIS
or ArcMap).

If imagery is well corrected to surface reflectance with a standardised sun and
view angle then a common set of endmembers can be used across a set of images
but if imagery is poorly corrected (i.e., top of atmospheric reflectance or at sensor

radiance) then end members need to be individually defined per image.

Once a set of polygons (one for each endmember has been define) then the fol-
lowing XML command with RSGISLib can be executed to generate a matrix file
(.mtxt) where a single spectral profile is calculated for each region and saved as a

matrix.

<!-- A command to extract the pizel wvalues for
regions to a matriz file as columns which
can be used as endmembers for unmizing

-=>

<rsgis:command algor="zonalstats" option="endmembers"

image="image.env" vector="polygons.shp"
output="output.mtxt" method="polyContainsPixel |
polyContainsPixelCenter | polyOverlapsPixel |
polyOverlapsOrContainsPixel | pixelContainsPoly |

pixelContainsPolyCenter | adaptive | envelope" />

So for example:

CHAPTER 3. EXAMPLES — IMAGE PROCESSING 32

<?zml wversion="1.0" encoding="UTF-8" 2>
<l--
Description:
XML File for exzecution within RSGISLtb
Created by **ME** on Sat Mar 30 18:12:47 2013.
Copyright (c) 2013 #*0rganisation**. All rights reserved.
-—>

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<rsgis:command algor="zonalstats'" option="endmembers"
image="./L7ETM_530N035W_20100620_AtCor_osgb_masked.kea"
vector="./EndMembers.shp" output="./Endmembers"
method="polyContainsPixelCenter" />

</rsgis:commands>

3.2.2 Unmixing the Scene

Using the matrix file representing the end members the scene can be unmixed

using either of the following XML commands.

<!-- A command to undertake an unconstrained linear spectral
unmizing of the input image for a set of endmembers -->
<rsgis:command algor="imagecalc" option="unconlinearspecunmix"
image="image.env" output="image" endmembers="matrix.mtxt"
[gain="float" offset="float" format="GDAL Format'
datatype="Byte | UInt16 | Int16 | UInt32 | Int32 |
Float32 | Float64"] />
<!-- A command to undertake a partially constrained linear spectral
unmizing of the input image for a set of endmembers where the
sum of the unmizing will be approxzimately 1 ——>
<rsgis:command algor="imagecalc" option="consumllinearspecunmix"
image="image.env" output="image" endmembers="matrix.mtxt"
weight="float" [gain="float" offset="float" format="GDAL Format'
datatype="Byte | UInt16 | Int16 | UInt32 | Int32 |
Float32 | Float64"] />

The first command is a completely unconstrained approach and will commonly
produce results which are unrealistic as the combination (mixture) does not add up

to 1 and some values could be negative which is of course impossible (a pixel cannot

10

11

12

13

15

16

17

18

19

20

21

22

23

CHAPTER 3. EXAMPLES — IMAGE PROCESSING 33

be made up of a negative amount of photosynthetic vegetation, for example). The
second is partially constrained as the combination (mixture) must add up to 1
but does still allow negative values. There is also a version of least squares (the
mathematical method used to solve the unmixing problem) which does not produce

negative values (non-negative least squares) but this version is not yet working
within RSGISLib.

Therefore, it is recommend that the partially constrained algorithm (which is the
implementation ENVI uses) is used as shown below where as the imagery is at-
mospherically corrected the same endmembers have been used on multiple im-

ages.

<?zml wversion="1.0" encoding="UTF-8" 2>
<I--
Description:
XML File for exzecution within RSGISLib
Created by **MEx** on Sat Mar 30 18:12:47 2013.
Copyright (c) 2013 #*0Organisation**. All rights reserved.
-—>

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">

<rsgis:command algor="zonalstats'" option="endmembers"
image=”./L7ETM_53ON035W_20100620_AtCor_osgb_masked.kea”
vector="./EndMembers.shp" output="./Endmembers"
method="polyContainsPixelCenter" />

<rsgis:command algor="imagecalc" option="consumllinearspecunmix"
image="./L7ETM_530N035W_20100620_AtCor_osgb_masked.kea"
output="L7ETM_530N035W_20100620_AtCor_osgb_masked_unmixed.kea"
endmembers="./Endmembers.mtxt" weight="35" format="KEA"
datatype="Float32" />

<rsgis:command algor="imagecalc" option="consumllinearspecunmix"
image=”./L7ETM_53ON035W_20100417_AtCor_osgb_masked.kea”
output="L7ETM_530N035W_20100417_AtCor_osgb_masked_unmixed.kea"
endmembers="./Endmembers.mtxt" weight="35" format="KEA"
datatype="Float32" />

</rsgis:commands>

CHAPTER 3. EXAMPLES — IMAGE PROCESSING 34

Figure 3.1: Example of a landsat scene which has been unmixed using linear
spectral unmixing.

Chapter 4

Examples — Image Utilities

4.1 Creating a new Image

4.1.1 Copying an existing image header

To create a new image with the same dimensions and location and header infor-
mation as an existing image but with a defined set of image bands, data type and
image format the following command can be used. The pixelval option is the value

two which all the pixel values will be set to.

=n

<rsgis:command algor="imageutils" option='"createcopy"
image="image.img" output="image_out.env"
numbands="int" pixelval="float"
format="GDAL Format"
datatype="Byte | UInti6 | Intl6 |
UInt32 | Int32 | Float32 | Float64" />

35

CHAPTER 4. EXAMPLES - IMAGE UTILITIES 36

4.2 Editing Header information

4.2.1 Set the projection

The following command allows a ogr wkt file to used to specify the project of the
image file such that the header is over written.

<rsgis:command algor="imageutils" option="assignproj"

image="image.env" projwkt="txt.wkt" />

4.2.2 Over write spatial header

The following command allows the spatial header information to be defined. Only
the options you wish to specify need to defined where those which are not defined
will not be changed.

<rsgis:command algor="imageutils" option="assignspatialinfo"

image="image.env"

[t1x="double"] [tly="double"]
[resX="double"] [resY="double"]
[rotX="double"] [rotY="double"]l />

4.2.3 Remove Spatial Header

The following command removes the spatial header from the input image and

makes a copy of the input image file.

<rsgis:command algor="imageutils" option='"removespatialref"

image="image.env" output="image_out.env" />

4.3 Stacking Image Bands

To stack image bands within RSGISLib there are two commands are provided,

the first attempts to stack all the images (with a specified file extension) within

10

11

12

13

14

15

16

17

18

19

20

CHAPTER 4. EXAMPLES - IMAGE UTILITIES

a directory while the second stacks a specified list of images but in both cases all

the images need to intersect and have the same image resolution.

<I--

Stacks all the image bands within a directory into a

single image

-—>

file

<rsgis:command algor="stackbands" option="dir" dir="input_DIR"

output="outputimage" ext="file_extension"
format="GDAL Format" datatype="Byte | UIntl6 |
Int32 | Float32 | Float64" />

Int16 | UInt32 |

<I--

Stacks all the image bands provided in list

into a single image file

-—>

<rsgis:command algor="stackbands" option="imgs" output="outputimage"
format="GDAL Format" datatype="Byte | UIntl6 | Inti6 |

UInt32 |

<rsgis:image
<rsgis:image
<rsgis:image
<rsgis:image

</rsgis:command>

name="band (s)
name="band (s)
name="band (s)

name="band (s)

Int32 | Float32 | Float64"

name" file="imagel"
name" file="image2"
name" file="image3"

name" file="image4"

4.4 Sub-setting Images

RSGISLib provides a number of commands for sub-setting imagery to existing

datasets and regions.

4.4.1 Subset to Image

skipValue="float" >
/>
/>
/>
/>

The first command allows an image to be sub-setted to another image (i.e., the
region of interest; ROI). Where the output image format and data type can be
specified. If they are not specified the default in the ENVI image format and the
data type is Float32.

CHAPTER 4. EXAMPLES - IMAGE UTILITIES 38

<rsgis:command algor="imageutils" option="subset2img"
image="image.env" output="output_img.env"
roi="roi.env" format="GDAL Format"
datatype="Byte | UInti16 | Int16 | UInt32 |
Int32 | Float32 | Float64" />

4.4.2 Subset to Vector

Another option is to subset the input image to the bounding box of a shapefile,
this is the region defined by all the geometries within the shapefile.
<rsgis:command algor="imageutils" option="subset"

image="image.env" output="output_img.env"

vector="vector.shp" format="GDAL Format"

datatype="Byte | UInti16 | Intl6 | UInt32 |
Int32 | Float32 | Float64" />

4.4.3 Subset to Polygons

The final option is to subset the image to a number of output images, one for
each polygon within the inputted shapefile. The shapefile attribute tables needs
an attribute containing a file path name which will be used to differentiate the
output files. The output is the base file path and file name to which the value in
the attribute table will be appended and the file extension provided appended on
the end.

<rsgis:command algor="imageutils" option="subset2polys"
image="image.env" output="image_out_base"
vector="vector.shp" outfilename="attribute"
format="GDAL Format" datatype="Byte | UIntl6 |
Int16 | UInt32 | Int32 | Float32 | Float64"

extension="env | kea | tif | etc"/>

CHAPTER 4. EXAMPLES - IMAGE UTILITIES 39

4.5 Generate Image Tiles

4.5.1 Square tiles

To cut an image into a set of image tiles the following command can be used,
where the width and height is specified in pixels and an overlap is optional (set to
zero if overlap is not required). If the offset option is set, then the files are started
half way through a tile (i.e., the first tiles will be half tiles) meaning two tilings
can be generated - useful for merging over tile boundaries.
<rsgis:command algor="imageutils" option="createtiles"

image="image.env'" output="image_out_base"

width="int" height="int" overlap="int"

format="GDAL Format"

datatype="Byte | UInti6 | Intl6 |

UInt32 | Int32 | Float32 | Float64"
offset="yes|no" />

4.6 Mosaic

The mosaic command in RSGISLib provides a number of options, the simplest
(and fastest) method for generating a mosaic assumes square tiles, with no regions
containing no data. Images may be specified in the XML or all files in a specified
directory with a given extension used.

<!-- Mosaic a list of images —-->

<rsgis:command algor="imageutils" option="mosaic"

output="mosaic.kea" nodata="float=0"

proj="IMAGE"
format="GDAL Format"
datatype="Byte | UIntl16 | Intl6 | UInt32 |

Int32 | Float32 | Float64" >
<rsgis:image file="imagel" />
<rsgis:image file="image2" />
<rsgis:image file="image3" />
<rsgis:image file="image4" />

</rsgis:command>

CHAPTER 4. EXAMPLES - IMAGE UTILITIES 40

<rsgis:command algor="imageutils" option="mosaic"
output="mosaic.kea" mnodata="float=0"

dir="directory" ext=".ext"

proj="IMAGE"
format="GDAL Format"
datatype="Byte | UIntl6 | Intl6 | UInt32 |

Int32 | Float32 | Float64" />

</rsgis:command>

The background value of the new mosaic is set using nodata, the default value is
0. As well as the simple mosaic there are a number of options for dealing with

overlapping pixels:
skipValue Skip pixels with this value.

skipLowerThresh / skipUpperThresh Skip pixels between upper and lower

thresholds, can’t be used in combination with skip value.

setSkipBand Band to check for skip value / upper lower threshold. Values are
only checked from a single band not all bands. This allows metadata bands

(e.g., image date) to be included in the mosaic.

overlapBehaviour Behaviour for overlapping regions

4.7 Sub-Sample the Image file

The following command allows a sample of an image file to be extracted as a
HDF'5 file, where pixel values with the nodata value specified are ignored and only
a sample of the pixel values are exported. If a subsample value of 1 is used then
every pixel is exported which a value of 2 means every other pixel and a value of
10 means every 10th pixel.

<rsgis:command algor="imageutils" option='"subsampleimage"

image="image.kea" output="data.hdf"
nodata="float" subsample="int" />

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

CHAPTER 4. EXAMPLES - IMAGE UTILITIES 41

The following python script can be used to read into the HDF5 file using h5py and

plots two columns as a scatter plot.

#! /usr/bin/env python

import numpy as np
import hbpy
import sys

import matplotlib.pyplot as plt

def plot(data, x, y):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datal...,x], datal...,y])

plt.show()
def run(Q):
file = ’OriginalMoscaic_sample.hdf’

if not hbpy.is_hdfb(file):
print "It was not a hdf5 file."
sys.exit()

f = h5py.File(file, ’r’)
dset = f£[’/DATA/DATA’]
plot(dset, 1, 2)
f.close()

if __name__ == ’_ _main__’:

run()

10

11

12

13

14

15

16

17

18

Chapter 5

Examples — Vectors

5.1 Zonal Statistics

To calculate statistics for pixels falling within a polygon the zonal statistics com-

mand in RSGISLib may be used

The main utility for performing zonal stats is pixel stats.

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">

<I--

Eztract statistics from pizels falling within each polygon in

a shapefile.

<rsgis:command algor="zonalstats" option="pixelstats" image="image.env"

vector="polys.shp" raster="polys
output="output.shp"
method="polyContainsPixelCenter"
force="yes | no" copyAttributes
useBandNames="yes | no"

pxlcount="yes | no" mean='"yes |

.env"

="yes

no n

stddev="yes | no" count="yes | no"

mode="yes | no" sum="yes | no"

min="yes | no

no"

minThreshold="float" maxThreshold="float" >

<rsgis:attribute name="attribute_name"

mean="yes

|IlO n

42

min="yes | no

max="yes | no

19

20

21

22

23

24

25

26

27

28

29

30

CHAPTER 5. EXAMPLES - VECTORS 43

max="yes | no " stddev="yes | no" count="yes | no"

mode="yes | no" sum="yes | no" >
<rsgis:band band="int" minThreshold="float" maxThreshold="float" />
</rsgis:attribute>

<rsgis:attribute name="attribute_name"

n

mean="yes | no min="yes | no"

max="yes | no " stddev="yes | no" count="yes | no"

mode="yes | no" sum=
<rsgis:band band="int" minThreshold="float" maxThreshold="float" />

yes | no" >

</rsgis:attribute>
</rsgis:command>

</rsgis:commands>
image The input image from which statistics will be calculated.

vector OGR file containing polygons for which statistics are to be calculated
within. It may extend beyond the polygons but must be in the same projec-

tion.
output / outputCSV Shapefile or CSV containing output statistics.

raster Optional. A rasterised version of the input polygons with pixel valued
corresponding to the FID of each polygon. Must be the same resolution as
the input image. For large datasets using a rasterised version of the shapefile
can speed up processing, particularly when the same shapefile is to be used

for multiple images.

method The method used to calculate if a pixel is counted as being within a

polygon. For options see below. can’t be used with raster.
force To overwrite an existing output polygon set "force” to yes.

copyAttributes To copy the attributes from the input file into the output shape-
file (in addiction to fields created to hold the zonal stats) set ”copyAt-
tributes” to yes. This only works for outputting a shapefile, not a CSV.

CHAPTER 5. EXAMPLES - VECTORS 44

Pixel in polygon method

A number of methods are available for deciding if a pixel is included within a

polygon

polyContainsPixel - Polygon completely contains pixel

polyContainsPixelCenter - Pixel centre is within the polygon (default)

polyOverlapsPixel -Polygon overlaps the pixel

pixelContainsPoly - Pixel contains the polygon

pixelContainsPolyCenter - Polygon centre is within pixel

envelope - All pixels in polygon envelope chosen

If no method is set ”polyContainsPixelCenter” will be used.

Attributes

The attribute, the pixel values correspond to (e.g., NDVI, sigma() are specified
using the ‘rsgis:attribute’ tag, and the image band is defined using the ‘rsgis:band’
tag.

<rsgis:attribute name="attribute_name" >

<rsgis:band band="int" />

</rsgis:attribute>

If no attributes are supplied statistics will be calculated for all image bands, named
using the band names for the image (if ‘useBandNames="yes”’) or b1, b2.. ., etc.,

if band names aren’t specified or set in the input image.

Setting minimum and maximum pixel values

Minimum and maximum pixel values may be specified and only pixels falling
within these will be used to calculate statistics from, pixels with a value of NaN

will automatically be ignored. Min / max values may be defined in the main tag,

CHAPTER 5. EXAMPLES - VECTORS 45

so that the same thresholds are applied to every band, or in the band tag to apply
only to that band.
<rsgis:command algor="zonalstats" option='"pixelstats"
minThreshold="float" maxThreshold="float" >
<rsgis:attribute name="attribute_name" >
<rsgis:band band="int" />
</rsgis:attribute>

</rsgis:command>

<rsgis:command algor="zonalstats" option="pixelstats" ... >
<rsgis:attribute name="attribute_name" >
<rsgis:band band="int" minThreshold="float" maxThreshold="float" />
</rsgis:attribute>

</rsgis:command>

Available statistics

The statistics which may be calculated from each band are.
e min
e max
e mean
e stdev
e mode - for integer images, e.g., classifications
e sum

e count - this count the number of pixels within the thresholds. It is different
from ‘pxlcount’ which counts the number of pixels within the polygon, which

is the same for all attributes.

They may be set using stat="yes” for example to calculate the mean, mean="yes”
would be set. Setting in the main tag will apply to all attributes or setting in the
attribute tag will only apply to that attribute.

There is a command that only calculates the mean ‘pixelmean’ this has a smaller

memory footprint for very large polygons and has an option if the data is in dB

10

11

12

13

14

15

16

CHAPTER 5. EXAMPLES - VECTORS 46

to ensure correct averaging. For general use the pixelstats command is recom-

mended.

5.1.1 Pixel-weighed mean

Rather than using a boolean inclusion / exclusion criteria for determining which
pixels to include in the average, the ‘pixelWeightedMean’ command uses the rela-

tive area of each pixel within the polygon to calculate a weighed average.

Yo xa
> a

Where « is the percent of the pixel that intersects the polygon, for example when

T =

(5.1)

the polygon is completely contained within the pixel a = 1.

5.1.2 pixelmeanLSSVar

This is a variation on pixel mean where the pixels are shifted around in a window

and the mean on the variance is calculated.

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<rsgis:command algor="zonalstats'" option="pixelmeanLSSVar"
image="image.env" vector="polys.shp"
method="polyContainsPixelCenter"
output="output.shp" windowSize="int" offsetSize="float"
force="yes | no" pxlcount="yes | no">
<rsgis:attribute name="attribute_name" >
<rsgis:band band="int" threshold="float" />
</rsgis:attribute>
<rsgis:attribute name="attribute_name" >
<rsgis:band band="int" threshold="float" />
</rsgis:attribute>
<rsgis:attribute name="attribute_name" >
<rsgis:band band="int" threshold="float" />
</rsgis:attribute>
</rsgis:command>

</rsgis:commands>

10

11

12

13

CHAPTER 5. EXAMPLES - VECTORS 47

Where, windowSize is the size of the window to take variance over, e.g., setting at
3 would calculate variance over a 3x3 window. The offsetSize is the distance to
move the pixels each time. The default of 1 when used with a window size of 3x3
would average over a 3x3 pixel window. Setting an offsetSize of 0.5 a window size

of 6x6 would average over the same area but at a higher resolution.

5.1.3 Statistics for points

If statistics are required for a point file, two options are available; a) buffer each
point and extract statistics from a number of pixels around the point using ‘pix-
elstats” or b) extract the value for the pixel each point is within using ‘point-

value’.

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<l--
Buffer each point by a set distance (in coordinate system

of shapefile) prior to running pizelstats.

<rsgis:command algor="vectorutils'" option="buffervector"
vector="/data/inPoints.shp"
output="/data/inPoints_buffer.shp"

buffer="float" force="yes'"/>

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<l--
Eztract the pizel wvalue for each point.

-—>

<rsgis:command algor="zonalstats" option="pointvalue"
image="image.kea"
vector="/data/points.shp"
output="/data/output.shp"
force="yes | no"

useBandNames="yes | no"/>

</rsgis:commands>

CHAPTER 5. EXAMPLES - VECTORS 48

As with ‘pixelstats’ a CSV may be outputted instead of a shapefile using ‘out-
putCSV’ instead of ‘output’

5.2 Image Footprints

This utility will create a shapefile with quadrangles from a CSV file providing
the corner coordinates. It was designed for producing a Shapefile with image

footprints.

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">

<rsgis:command algor="vectorutils" option="polygonlmageFootprints"
input="input.csv" output="vector_out.shp" force="yes | no" />

</rsgis:commands>

input A comma separated file in the following format (with no header). The

scene name must be under 50 characters.

output A shapefile containing the image footprints. Each polygon is attributed

with the string in the first column.

force Remove output if it exists.

Table 5.1: Input file format for polygonlmageFootprints

Scene Name | UL.X | ULY | URX | URY | LRX | LRY LL-X LLY
Scenel 145.667 | -28.579 | 146.315 | -28.425 | 146.473 | -28.923 | 145.822 | -29.079
Scene2 144.932 | -26.122 | 145.567 | -25.971 | 145.717 | -26.471 | 145.08 | -26.622
Scene3 144.79 | -25.629 | 145.423 | -25.479 | 145.569 | -25.979 | 144.934 | -26.131

5.3 Vector Maths

Performs mathematical expressions on attributes of a shapefile. The muparser
library is used to input the expression which supports a number of mathematical
and binary expressions. Variables are defined using the rsgis:variable tag and
the fieldname in the attribute table. The output is a shapefile with the result of

CHAPTER 5. EXAMPLES - VECTORS 49

the expression (for each polygon) saved in a new column. The heading of the new

column is specified using the 'outHeading’ tag.

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<!-- Performs wector maths on an input shapefile —-->
<rsgis:command algor="vectorutils" option="vectormaths"
input="string" output="string" expression="string"
outHeading="string" force="yes | no">
<rsgis:variable name="string" fieldname="string"/>
<rsgis:variable name="string" fieldname="string'"/>

</rsgis:command>

Chapter 6

Examples - Image

Segmentation

6.1 Iterative Elimination Algorithm

The segmentation algorithm (Shepherd et al. 2013)) is based on generating spec-

trally similar units with a minimum object size.

The algorithm consists of a number of steps

1.

2.

D.

6.

Select image bands and stack images

Stretch image data

Find unique cluster within feature space (KMeans)
Assign pixels to clusters

Clump the image

Eliminate small segments

The KMeans clusters takes just a single image where all the bands are used as input

so if multiple images are required to be inputted then they need to be stacked and

the bands which are to be used selected. As a Euclidean distance is used within

20

10

11

12

13

14

15

16

17

18

19

20

CHAPTER 6.

EXAMPLES - IMAGE SEGMENTATION 51

the feature space the image is stretched such that all the pixel values are within

the same range (i.e., 0-255).

A clustering algorithm is then used to identify the unique colours within the image,

in this case a KMeans clustering is used but other clustering algorithms could also

be used instead. The image pixels are then assigned to the clusters (classifying the

image) and the image clumped to find the connected regions of the image.

The final step is an iterative elimination of the small segments, starting with the

single pixels and going up to the maximum size of the segments specified by the

user.

Therefore, there are two key parameters within the algorithm:

1. the number of cluster centres identified by the KMeans clustering

2. the minimum size of the segments

6.1.1 XML Code

<rsgis:command

<rsgis:command

<rsgis:

algor="imageutils" option="stretch" image="$FILEPATH"
output="$PATH/$FILENAME _stretched.kea" ignorezeros="yes"
stretch="LinearStdDev" stddev="2" format="KEA" />

algor="imagecalc" option="bandmaths" output="$PATH/$FILENAME mask.kea"
format="KEA" expression="bl==070:1" >
variable name="b1" image="$FILEPATH" band="1" />

</rsgis:command>

<rsgis:command

<rsgis:command

<rsgis:command

algor="imageutils" option="mask"
image="$PATH/$FILENAME_stretched.kea"
mask="$PATH/$FILENAME_mask.kea"
output="$PATH/$FILENAME_stretched_masked.kea"

maskvalue="0" outputvalue="0" format="KEA" />

algor="commandline" option="execute"
command="rm $PATH/$FILENAME mask.kea" />
algor="commandline" option="execute"
command="rm $PATH/$FILENAME_ stretched.kea" />

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

CHAPTER 6.

<rsgis:command

<rsgis:command

<rsgis:command

<rsgis:command

<rsgis:command

<rsgis:command

<rsgis:command

<rsgis:command

<rsgis:command

<rsgis:command

EXAMPLES - IMAGE SEGMENTATION

algor="imagecalc" option="kmeanscentres"
image="$PATH/$FILENAME_stretched_masked.kea"

output="$PATH/$FILENAME clusters" numclusters="60" maxiterations="200"

degreeofchange="0.25" subsample="1" initmethod="diagonal_range_attach" />

algor="segmentation" option="labelsfromclusters"
image="$PATH/$FILENAME_stretched_masked.kea"
output="$PATH/$FILENAME_clusters.kea"
clusters="$PATH/$FILENAME clusters.gmtxt"
ignorezeros="yes" format="KEA" proj="IMAGE" />

algor="segmentation" option="elimsinglepxls"
image="$PATH/$FILENAME _stretched_masked.kea"
clumps="$PATH/$FILENAME_clusters.kea"
temp="$PATH/$FILENAME_clusters_singlepxls_tmp.kea"
output="$PATH/$FILENAME_clusters_nosinglepxls.kea"
ignorezeros="yes" format="KEA" proj="IMAGE" />

algor="commandline" option="execute"

command="rm $PATH/$FILENAME_ clusters.kea" />
algor="commandline" option="execute"

command="rm $PATH/$FILENAME_clusters_singlepxls_tmp.kea" />

algor="segmentation" option="clump"
image="$PATH/$FILENAME_clusters_nosinglepxls.kea"
output="$PATH/$FILENAME_clumps.kea" nodata="0"
format="KEA" inmemory="no" proj="IMAGE" />

algor="commandline" option="execute"
command="rm $PATH/$FILENAME_ clusters_nosinglepxls.kea" />

algor="segmentation" option="rmsmallclumpsstepwise"
image="$PATH/$FILENAME_stretched_masked.kea"
clumps="$PATH/$FILENAME_clumps.kea"
output="$PATH/$FILENAME_clumps_elim.kea"
minsize="50" maxspectraldist="200000"

format="KEA" inmemory="no" proj="IMAGE" />

algor="commandline" option="execute"
command="rm $PATH/$FILENAME_stretched_masked.kea" />

algor="commandline" option="execute"

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

CHAPTER 6. EXAMPLES - IMAGE SEGMENTATION 53

<rsgis:

<rsgis:

<rsgis:

<rsgis:

command

command

command

command

command="rm $PATH/$FILENAME_clumps.kea" />

algor="segmentation" option="relabelclumps"
image="$PATH/$FILENAME clumps_elim.kea"
output="$PATH/$FILENAME clumps_elim_final.kea"
format="KEA" inmemory="no" proj="IMAGE" />

algor="commandline" option="execute"
command="rm $PATH/$FILENAME clumps_elim.kea" />

algor="segmentation" option="meanimg"

image="$FILEPATH" clumps="$PATH/$FILENAME clumps_elim_final.kea"
output="$PATH/$FILENAME_clumps_elim_mean.kea"

format="KEA" inmemory="no" proj="IMAGE" />

algor="imageutils" option="popimgstats"
image="$PATH/$FILENAME clumps_elim_mean.kea" ignore="0" pyramids='"yes" />

To use the script provided you need to use the rsgislibxml.py command which
replaces the $FILEPATH with the file path of the input image (found by rsgis-
libxml.py within the input directory) $PATH with the provided directory path
and SFILENAME with the name of the input file. An example of this command

is given below:

rsgislibxml.py -i RunSegmentationTemplate.xml \

-0 Segmentation.xml -p ./Segments \

-d ./Data/ -e .kea -r no -t single

Once the command above has been executed then the segmentation can be run

using the rsgisexe command:

‘rsgisexe -x Segmentation.xml

The resulting segmentation will have produced 3 output files

1. xclusters.gmtxt — Cluster centres.

2. xclumps_elim _final.kea — Segment clumps.

3. xclumps_elim_mean.kea — Mean colour image using segments.

Following the segmentation the it is recommend that you make sure that the

clumps file is defined as a thematic file, as demonstrated in the following piece of

CHAPTER 6. EXAMPLES - IMAGE SEGMENTATION o4

python:

import sys

from osgeo import gdal

ds = gdal.Open(sys.argv[1], gdal.GA_Update)

for bandnum in (ds.RasterCount) :
band = ds.GetRasterBand(bandnum + 1)
band.SetMetadataltem(s)

Finally, use the gdalcalcstats command to populate the image with an attribute
table, histogram and colour table (set -ignore 0 as 0 is the background no data

value).

setthematic.py L7ETM_530NO35W_clumps_elim_final.kea
gdalcalcstats L7ETM_530N035W_clumps_elim_final.kea -ignore O

10

11

12

13

14

15

Chapter 7

Examples — Raster GIS

7.1 Populating Clumps with Statistics

7.1.1 Basic Statistics

To populate the segments with statistics (i.e., Mean for each spectral band) there
is a command with the rastergis part of the RSGISLib software. Examples of this
are shown within the XML code below, note the text given for each band is the

names of the output columns.

<?zml wversion="1.0" encoding="UTF-8" 2>
<l--
Description:
XML File for exzecution within RSGISL1b
Created by **MEx* on Thu Mar 21 09:25:21 2013.
Copyright (c) 2013 **0Organisation**. All rights reserved.
-=>

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">

<rsgis:command algor='"rastergis'" option="popattributestats"
clumps="L7ETM_530N035W_Classification.kea"
input="L7ETM_530N035W_20100417_AtCor_osgb_masked.kea" >
<rsgis:band band="1" mean="MayBlue" stddev="MaySDBlue" />
<rsgis:band band="2" mean="MayGreen" stddev="MaySDGreen" />

95

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

CHAPTER 7. EXAMPLES - RASTER GIS 26

<rsgis:band band="3" mean="lMayRed" stddev="MaySDRed" />
<rsgis:band band="4" mean="MayNIR" stddev="MaySDNIR" />
<rsgis:band band="5" mean="MaySWIR1" stddev="MaySDSWIRL" />
<rsgis:band band="6" mean="MaySWIR2" stddev="MaySDSWIR2" />

</rsgis:command>

<rsgis:command algor="rastergis" option='"popattributestats"
clumps="L7ETM_530N035W_Classification.kea"
input="L7ETM_530N035W_20100620_AtCor_osgb_masked.kea" >
<rsgis:band band="1" mean="JuneBlue" stddev="JuneSDBlue" />
<rsgis:band band="2" mean="JuneGreen" stddev="JuneSDGreen" />
<rsgis:band band="3" mean="JuneRed" stddev="JuneSDRed" />
<rsgis:band band="4" mean="JuneNIR" stddev="JuneSDNIR" />
<rsgis:band band="5" mean="JuneSWIR1" stddev="JuneSDSWIR1" />
<rsgis:band band="6" mean="JuneSWIR2" stddev="JuneSDSWIR2" />

</rsgis:command>

<rsgis:command algor="rastergis'" option="popattributestats"
clumps="L7ETM_530N035W_Classification.kea"
input="Nant_y_Arian_DEM_30m.kea" >
<rsgis:band band="1" min="MinDEM" mean="MaxDEM"
mean="MeanDEM" stddev="StdDevDEM" />

</rsgis:command>

</rsgis:commands>

7.1.2 Calculating Indicies

If you are going to use indices and other derived information within your classifica-
tion it is quite often a good idea to set up a python script to calculate those indices
and write them back to the image rather than over complicating your classification

script. An example of this is shown below.

#1/usr/bin/env python

import sys
from rios import rat
import numpy

import osgeo.gdal as gdal

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

CHAPTER 7. EXAMPLES - RASTER GIS 57

fname = "L7ETM_530N035W_Classification.kea"
ratDataset = gdal.Open(fname, gdal.GA_Update)

print ("Import Columns.'")

MayBlue = rat.readColumn(ratDataset, "MayBlue')
MayGreen = rat.readColumn(ratDataset, "MayGreen'")
MayRed = rat.readColumn(ratDataset, "MayRed")
MayNIR = rat.readColumn(ratDataset, "MayNIR")
MaySWIR1 = rat.readColumn(ratDataset, "MaySWIR1")
MaySWIR2 = rat.readColumn(ratDataset, "MaySWIR2'")

JuneBlue rat.readColumn(ratDataset, "JuneBlue')
JuneGreen = rat.readColumn(ratDataset, "JuneGreen')
JuneRed = rat.readColumn(ratDataset, "JuneRed")
JuneNIR = rat.readColumn(ratDataset, "JuneNIR")
JuneSWIR1 = rat.readColumn(ratDataset, "JuneSWIR1")

JuneSWIR2 = rat.readColumn(ratDataset, "JuneSWIR2")

MeanDEM = rat.readColumn(ratDataset, "MeanDEM")

MayNIR.astype (numpy.float32)
MayRed.astype (numpy.float32)
JuneNIR.astype (numpy.float32)
JuneRed. astype (numpy . float32)
MayBlue.astype (numpy.float32)
JuneBlue.astype (numpy.float32)

print("Calculate Indices.")
MayNDVI = (MayNIR - MayRed) / (MayNIR + MayRed)
JuneNDVI = (JuneNIR - JuneRed) / (JuneNIR + JuneRed)

MayWBI = MayBlue/MayNIR
JuneWBI = JuneBlue/JuneNIR

rat.writeColumn(ratDataset, "MayNDVI", MayNDVI)
rat.writeColumn(ratDataset, "JuneNDVI'", JuneNDVI)
rat.writeColumn(ratDataset, "MayWBI", MayWBI)

rat.writeColumn(ratDataset, "JuneWBI", JuneWBI)

10

11

12

13

14

15

16

17

18

19

10

CHAPTER 7. EXAMPLES - RASTER GIS o8

7.1.3 Percentiles: Median

If you want to use a percentile (i.e., median) then the following option is also

available (popattributepercentile).

<?zml wversion="1.0" encoding="UTF-8" 2>
<I--
Description:
XML File for execution within RSGISLzb
Created by **MEx* on Fri Apr 5 21:58:44 2013.
Copyright (c) 2013 **0Organisation**. All rights reserved.
-—>
<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<rsgis:command algor='"rastergis'" option="popattributepercentile"
clumps="L7ETM_530N035W_Classification.kea"
input="L7ETM_530N035W_20100417_AtCor_osgb_masked.kea" >
<rsgis:band band="1" name="BluelMedian" percentile="50" />
<rsgis:band band="2" name="GreenMedian" percentile="50" />
<rsgis:band band="3" name="RedMedian" percentile="50" />
<rsgis:band band="1" name="NIRMedian" percentile="50" />
<rsgis:band band="2" name="SWIR1Median" percentile="50" />
<rsgis:band band="3" name="SWIR2Median" percentile="50" />
</rsgis:command>

</rsgis:commands>

7.1.4 Location

If location of the of the segments is required this can be populated using the

following command.

<?xml wversion="1.0" encoding="UTF-8" 2>
<l--
Description:
XML File for execution within RSGISLzb
Created by **ME** on Fre Apr b5 22:12:06 2013.
Copyright (c) 2013 **0Organisation**. All rights reserved.
-—>
<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<rsgis:command algor="rastergis" option='"spatiallocation"
image="L7ETM_530N035W_Classification.kea"

11

12

CHAPTER 7. EXAMPLES - RASTER GIS

eastings="Eastings" northings="Northings" />

</rsgis:commands>

7.1.5 Shape Parameters

29

If parameters on the shape of an object are required the following command can

be used where the following features are currently available:

o Area

e Asymmetry

e Border Index

e Border Length

e Compactness

e Density

e Elliptic Fit

e Length

e Length Width Ratio
e Width

e Main Direction

e Radius Largest Enclosed Ellipse

e Radius Smallest Enclosed Ellipse

e Rectangular Fit
e Roundness

e Shape Index

10

11

12

13

14

15

16

17

10

11

12

13

14

15

CHAPTER 7. EXAMPLES - RASTER GIS 60

Created by *xMEx* on Fri Apr 5 22:20:48 2013.
Copyright (c) 2013 **0rganisation**. All rights reserved.
-—>

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<rsgis:command algor="rastergis'" option='"calcshapeindices"
clumps="L7ETM_530N035W_Classification.kea" >
<rsgis:index name="Area" column="AreaCol" />
<rsgis:index name="BorderLength" column="BorderLenCol" />
<rsgis:index name="Shapelndex" column="ShapeldxCol" />
<rsgis:index name="LengthWidth" column="LenWidCol" />
</rsgis:command>

</rsgis:commands>

7.1.6 Relative Border to a Class

To calculate the relative border of each clump to a clumps with a particular class,
for answering questions such as which clumps have a border to urban, the following

command has been made available.

<?zml wversion="1.0" encoding="UTF-8" 2>
<I--
Description:
XML File for execution within RSGISLzb
Created by *xMEx* on Fri Apr 5 22:26:24 2013.
Copyright (c) 2013 **0Organisation**. All rights reserved.
-—>

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<rsgis:command algor="rastergis" option="calcrelborderlength"
clumps="L7ETM_530N035W_Classification.kea"
ignorezeroedges="yes" colname="Bord2Urban"
classcolumn="Classification"
classname="Urban" />

</rsgis:commands>

CHAPTER 7. EXAMPLES - RASTER GIS 61

7.1.7 Populating with an Existing Classification

Where an existing classification is available and you a looking at classifying change
for example the classification can be intersected with a new segmentation (clumps

file) using the following command.

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">

<rsgis:command algor='"rastergis'" option="popcategoryproportions" clumps="clumps.env'" categori

</rsgis:commands>

7.2 Classification

A range of classification options are available and are being added but it is recom-
mended that classification is undertaken through the python scripting language
where the attribute table can be accessed using the RIOS library (see Bunting and
Clewley| (2013) for a tutorial). Numpy ‘where’ statements can be can be used to
implement a rule based classification. Alternatively, if you want to use other su-
pervised and unsupervised classifiers there are implementations within numerous
freely available python libraries (see machine learning python (mlpy) or scikit-learn

libraries).

7.2.1 Rule Based

A rule based classification can be applied using python see (Bunting and Clewley,
2013) for a tutorial.

CHAPTER 7. EXAMPLES - RASTER GIS 62

7.2.2 Updating an Existing Classification

7.3 Change Detection

A per class change detection technique is available within the library. The al-
gorithm requires a classification to be provided, see the earlier command. The
algorithm works by identifying for each class a region of the feature space which is
specified as a number of standard deviations from the mean (i.e., £3 standard de-
viations from the mean as shown below), where this can be specified on a per class
basis. The columns used for this test are specified within a comma separated list
(fields attribute). If different columns should be used for different classes then you
need to duplication this command (e.g., different indices are related to different
classes). The algorithm will then identify those clumps which are outside of this
‘valid’ range and these are likely to be regions of change or areas of inconstancy
with the rest of the class.

Therefore, the command can be used in two way:
1. To check the consistency of an existing map and dataset.
2. To find change from a new image given an old map.

Class names are provided as strings (text), while the ‘changeval’ is the value out-
putted to the ‘ChangeField’. In the example shown below a different value for
the ‘changeval” was specified for each class retaining explicit information as to its
previous class but this value should be set to 1 for all classes to simply create a

binary mask of change.

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<rsgis:command algor="rastergis" option="findchangeclumpsfromstddev"
clumps="444432_071117_clumps_lcdb.kea"

11

12

13

14

15

16

17

18

19

20

21

22

23

24

10

11

12

13

14

15

16

CHAPTER 7. EXAMPLES - RASTER GIS

<rsgis:
<rsgis:
<rsgis:
<rsgis:
<rsgis:
<rsgis:
<rsgis:
<rsgis:

<rsgis:

classcol="LCDB3_Maj" changefield="ChangeFound"

<rsgis:class name="71" stddevthres="3" changeval="1" />

class
class
class
class
class
class
class
class

class

</rsgis:command>

</rsgis:commands>

63

fields="MeanGreenRefl,MeanRedRefl ,MeanNIRRefl,MeanSWIRRefl" >

name="69"
name="68"
name="64"
name="54"
name="52"
name="51"
name="40"
name="41"
name="43"

stddevthres="3"
stddevthres="3"
stddevthres="3"
stddevthres="3"
stddevthres="3"
stddevthres="3"
stddevthres="3"
stddevthres="3"
stddevthres="3"

7.4 Other Utilities

changeval="2"
changeval="3"
changeval="4"
changeval="5"
changeval="6"
changeval="7"
changeval="8"

changeval="9"

changeval="10" />

7.4.1 Export Columns to Raster Bands

/>
/>
/>
/>
/>
/>
/>
/>

A command is available to export individual columns as individual image bands,

such as below:

<?zml wversion="1.0" encoding="UTF-8" 2>

<I--

Description:

XML File for execution within RSGISLtb
Created by **ME** on Fri Apr

-—>

b 22:39:42 2013.
Copyright (c) 2013 **0Organisation**. All rights reserved.

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">

<rsgis:command algor="rastergis" option="exportcols2raster"

clumps="L7ETM_530N035W_Classification.kea"

output="L7ETM_530N035W_ClumpMeans.kea"
format="KEA" datatype="Float32" >

<rsgis:field name="MayBlue" />

<rsgis:field name="MayGreen" />

<rsgis:field name="MayRed" />

<rsgis:field name="MayNIR" />

17

18

19

20

10

11

12

13

CHAPTER 7. EXAMPLES - RASTER GIS 64

<rsgis:field name="MaySWIR1" />
<rsgis:field name="MaySWIR2" />
</rsgis:command>

</rsgis:commands>

7.4.2 Calculate Statistics

Rather than using the gdalcalcstats or the RSGISLib command popimgstats (within
imageutils) which calculate information which is not necessarily required for raster
GIS application and can be a quite slow for very large clump files this command is
specifically written for only populating the statistics and attribute table required

for raster GIS applications using the following command:

<?zml wversion="1.0" encoding="UTF-8" 2>
<l--
Description:
XML File for exzecution within RSGISLib
Created by **MEx* on Fri Apr 6 23:10:29 2013.
Copyright (c) 2013 #*0Organisation**. All rights reserved.
-—=>
<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<rsgis:command algor="rastergis'" option="populatestats"
clumps="L7ETM_530N035W_Segmentation.kea"
pyramids="yes"
colourtable="yes" />

</rsgis:commands>

Chapter 8

Examples — Image Registration

8.1 Tie Point Generation

1 <rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">

3 <!-- A command for automatically generating a set of ground control
4 points between a pair of images. A basic algorithm with a single
5 tteration and movement of gcps ——>

=ns

6 <rsgis:command algor="registration" option="basic" reference="image"

7 floating="image" output="gcps.txt"

8 outputType="envi_img2img|envi_img2map|rsgis_img2map"

9 metric="euclidean|sqdiff |manhatten|correlation"

10 pixelgap="int" window="int" search="int"

11 threshold="float" stddevRef="float" stddevFloat="float"
12 subpixelresolution="int"/>

14 <!-— A command for automatically generating a set of ground contirol points

15 between a pair of images. An algorithm with a single layer of comnected

16 gcps which used IDW to shift meighbouring gcps within a distance threshold -->
17 <rsgis:command algor="registration" option="singlelayer" reference="image"

18 floating="image" output="gcps.txt"

19 outputType="envi_img2img|envi_img2map|rsgis_img2map"

20 metric="euclidean|sqdiff |manhatten|correlation"

21 pixelgap="int" window="int" search="int"

22 threshold="float" stddevRef="float" stddevFloat="float"

65

23

24

25

26

CHAPTER 8. EXAMPLES - IMAGE REGISTRATION 66

subpixelresolution="int" distanceThreshold="float"

maxiterations="int" movementThreshold="float" pSmoothness="float"/>

</rsgis:commands>

Basic Algorithm

The basic algorithm treats all the tie point independently and where they are each
moved to there optimal place within the search space defined but the metric, the
data window and the search space (i.e., maximum distance the tie point can be

moved). The parameters for this algorithm are:

reference The reference image which to which the floating image is to be regis-
tered.

floating The floating image to be registered to the reference image
output The output file containing the generated tie points.

outputType The format of the output file. The output format supports export-
ing for use within ENVI or a format defined for the rsgislib warp functions

(see below)

metric The similarity metric to be used to compare the images. The recommend
default is ’correlation’ (particularly for multi-modal imagery) but for images
where the pixel values are very similar the euclidean, sqdiff or manhatten

metrics can offer equivalent matching performance but are faster to calculate.

pixelgap The gaps in image pixels between the initial tie points (this is for both

the x and y axis).

window The size of the window around each tie point which will be used for the

matching.

search The distance (in pixels) from the tie point start point which will be

searched.

threshold The threshold for the image metric above/below (depending on image

metric) which matching is consider insufficient to be reliable and therefore

CHAPTER 8. EXAMPLES - IMAGE REGISTRATION 67

the match will be ignored.

stddevRef The threshold which defines the standard deviation for the window
around each tie point below which it is deemed there is insufficient informa-
tion to perform a match (note that the tie point window has to be below the

threshold for both the reference and floating image to be ignored).

stddevFloat The threshold which defines the standard deviation for the window
around each tie point below which it is deemed there is insufficient informa-
tion to perform a match (note that the tie point window has to be below the

threshold for both the reference and floating image to be ignored).

subpixelresolution The sub-pixel resolution to which the pixel shifts are esti-
mated. Note that the values are positive integers such that a value of 2 will
result in a sub pixel resolution of 0.5 of a pixel and a value 4 will be 0.25 of

a pixel.

Single Layer Algorithm

The single layer algorithm generates a connected grid of tie points where the the
inverse weighted distance of the movement of a current tie point is applied to the
connected (within a given distance) tie points. The additional parameters for this

algorithm are:
distanceThreshold The distance (in pixels) to be connected within the layer.

maxiterations The maximum number of iterations of the tie point grid to find

an optimal set of tie points.

movementThreshold The threshold for the average amount of tie point move-

ment for the optimisation to be terminated.

pSmoothness The p parameter for the inverse weighted distance calculation. A
value of 2 should be used by default.

Note: If a negative correlation is found is it turned positive for the metric as the
correlation is being maximised. For some datasets a strong negative correlation

will be expected as they are the inverse of each other.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

CHAPTER 8. EXAMPLES — IMAGE REGISTRATION 68

8.2 Image Warping

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<!-- A command to warp an input image using a set of

ground control points using a nearest neighbour algorithm —-->
<rsgis:command algor="registration" option="nnwarp"

geps="string" image="string" output="string" projection="file.wkt"

resolution="float" format="string" />

<!-- A command to warp an input image using a set of
ground control points using a triangulation —-->

<rsgis:command algor="registration" option="triangularwarp"
gcps="string" image="string" output="string" projection="file.wkt"

resolution="float" format="string" />

<!-- A command to warp an input image using a set of
ground control points using a polynomial -->

<rsgis:command algor="registration" option="polywarp"

=n =n

geps="string" image="string" output="string"

projection="file.wkt" resolution="float" format="string" polyOrder="int" />

<!-- A command to add tie points as GCPs to GDAL dataset -->
<rsgis:command algor="registration" option="gcp2gdal" gcps="string"
image="image" [output="image"] />

</rsgis:commands>

gcps The geps file as exported from the rsgislib tie point generation commands

(above)
image The floating image to be warped
output The file path for the output image

projection A file path to a text file containing the WKT string for the projection

of the output image
resolution The pixel resolution of the output image.

format The output image format (See GDAL driver names) default is ENVI if
not specified. For erdas imagine file use "HFA’.

CHAPTER 8. EXAMPLES - IMAGE REGISTRATION 69

Nearest Neighbour Warping

The nearest nearest warping algorithm simply transforms the image pixels in the
input image using the spatially closest tie point in the geps file. It is likely that
this algorithm will produce poor results when the distance between tie points is

quite large. It is also sensitive to errors in tie point locations.

Triangulation Warping

The triangulation warping produces a delaunay triangulation between the tie
points and a linear interpolation of the transformation is applied within the trian-
gles to interpolate the individual pixels. This algorithm produces very good results

where a dense grid of tie points is provided but is sensitive to noise.

Polynomial Warping

Polynomial warping is a standard approach to warping remotely sensed imagery
and is good for correcting systematic errors (such as aligned an unregistered satel-
lite image) but for random errors (such as aircraft movement) the polynomial
model cannot represent all the variation within the scene. Where the polynomial

model is appropriate it is robust to noise and gives good results.

Export to GDAL GCPs

Add GCPs to a GDAL dataset to warp using gdalwarp.

Chapter 9

Examples — Radar (SAR)

9.1 Biomass Estimation

The biomass estimation algorithm of [Saatchi et al.| (2007)) is available in RSGIS-
Lit] The algorithm uses empirically derived coefficients, which must be derived
specific to the study site / time of acquisition. Although SAR sensors don’t di-
rectly measure biomass, backscatter is a function of the structural and dielectric
properties and due to this structural link a number of studies have demonstrated
a correlation between backscatter and biomass, with the strength of correlation

varying depending on forest type and a number of other parameters.

The above ground biomass (AGB) algorithm of [Saatchi et al.| (2007) is a semi-
empirical approach using statistical regression. However, rather than total AGB,
relationships are established between the crown and trunk components separately.
The form of the equations, are linked to a simplified backscatter model and thus
the algorithm can be considered a semi-empirical approach. The equations are

given as:

log(B.) = ag+ a10% cos(fy — 6;) + az(omy cos(6y — 6)))?
—|—b10’%H sin(é’o — Ql) + bQ(UHH sin(@o — 91))2 (91)

+c100, cos(0g — 0)) + ca(ovy cos(Bp — 6;))?

!This section was modified from Chapter 2 of |Clewley (2012)) and describes work led by R.
Lucas on a ESA funded report.

70

10

CHAPTER 9. EXAMPLES — RADAR (SAR) 71

log(B;) = ag+ a10%y sin(0y — ;) + az(ogy sin(fy — 6;))?
+b10% 1 cos(0y — 0;) + ba (o cos(By — 6;))? (9.2)

+c10% cos(By — 0;) + ca(oyy cos(By — 6;))?

where B, and B; are crown and trunk biomass respectivelyﬂ and a — ¢ are co-
efficients. The equation takes a quadratic form to account for the loss of radar
sensitivity at higher values of AGB. To correct for variations in backscatter be-
cause of changes in incidence angle across the radar swath and topography, the

local incidence angle (6;) is included in the relationship, such that:
cos, =sina sinfy cos(B — fs) + cosa cos by (9.3)

where « is the local slope, 5 the azimuth angle of the radar illumination direction,
[the aspect angle at the local slope and 6y represents the incidence angle of the
SAR platform at the centre of the image pixel.

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">

<rsgis:command algor="SaatchiBiomass" option="stem"
=1

input="inputimage" output="outputimage"
a0="a0" al="al" a2="a2" bl="bl" b2="b2" cl="cl" c2="c2"/>

<rsgis:command algor="SaatchiBiomass" option="crown"
input="inputimage" output="outputimage"
a0="a0" al="al" a2="a2" bl="bl" b2="b2" cl="cl" c2="c2"/>

</rsgis:commands>

The combination of L- and P-band data may also be used to estimate canopy
biomass such that:

2
log(B.) = ag+ a102 gy cos(Byg — 6;) + az(opgy cos(fy — 6;)) (9.4)
0 2 ’
+b10p gy cos(Bg — 6;) + ba(opry cos(6y — 01))
<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<rsgis:command algor="SaatchiBiomass" option="crownPL"
input="inputimage" output="outputimage"
a0="a0" al="al" a2="a2" bl="bl" b2="b2" cl="cl" c2="c2"/>

</rsgis:commands>

2For consistency, B is used for AGB instead of W as in |Saatchi et a1.| (]2007[)

10

11

12

13

14

15

16

17

18

19

1

2

CHAPTER 9. EXAMPLES — RADAR (SAR) 72

Where the topography is very flat or there is no known information on local inci-
dence angle, 6y — 6; can be assumed to be zero, simplifying [9.1] and [9.2] to:

log(B.) = ag + a10% + aa0%y, + 1oV + oy, (9.5)

log(By) = ag+ bio%y + bty
+{HU%V‘+C§U%V

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<!-- Calculate stem biomass from a polarimetric SAR <image.
No correction for incidence angle is used ——>
<rsgis:command algor="SaatchiBiomass" option="stemNIA"
input="inputimage" output="outputimage"
a0="a0" al="al" a2="a2" bl="bl" b2="b2" cl="cl" c2="c2"/>

<!-- Calculate crown biomass from a polarimetric SAR image.
No correction for incidence angle s used ——>
<rsgis:command algor="SaatchiBiomass" option="crownNIA"
input="inputimage" output="outputimage"
a0="a0" al="al" a2="a2" bl="bl" b2="b2" cl="cl" c2="c2"/>

<!-- Calculate crown biomass from a dual-band polarimetric SAR image.
No correction for inctidence angle ts used —-—>
<rsgis:command algor="SaatchiBiomass" option="crownPLNIA"
input="inputimage" output="outputimage"
a0="a0" al="al" a2="a2" bl="bl" b2="b2" cl="cl" c2="c2"/>

</rsgis:commands>

Within RSGISLib coefficients are available which were derived from AIRSAR data
acquired in 2000 over the Injune Landscape Collaborative Project (ILCP) in central
southeast Queensland, Australia and LiDAR derived biomass (Lucas et al., 2000]).
Total LiDAR-derived AGB was split into canopy and trunk components, based on

field data and allometric equations (Lucas et al., 2004). Coefficients are provided
in Table [9.1] The best fits were obtained using L-band data (crown and trunk;
r?=0.89 in both cases).

Within RSGISLib these coefficients are available using:

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">

<rsgis:command algor="SaatchiBiomass" option="openStemL"

10

11

12

13

14

15

CHAPTER 9. EXAMPLES — RADAR (SAR)

Table 9.1:

(Saatchi et al., [2007)

73

Coefficients for the semi-empirical method of biomass estimation

Coefficient

Layer | Band | ag a; as b1 bo c1 Co r?
Crown 6.64 | 0.296 | 3.74x1073 — — -0.24 | -9.60x1073 | 0.89
2.84 | 0.108 | 4.26x107* - - -0.392 | -1.39x1072 | 0.84
L&P|228]-0556|-1.42x10"2 | 0.306 | 4.95x1073 — — 0.86
Trunk 3.27 —~ — 0.347 0.010 -0.510 | -1.96x10~2 | 0.89
3.89 - - 0.18 | 5.39x1073 | -0.278 | -1.32x1072 | 0.86

input="inputimage" output="outputimage "/>

<rsgis:command algor="SaatchiBiomass" option="openStemP"

input="inputimage" output="outputimage"/>

<rsgis:command algor="SaatchiBiomass" option="openCrownL"

input="inputimage" output="outputimage"/>

<rsgis:command algor="SaatchiBiomass" option="openCrownP"

input="inputimage" output='"outputimage"/>

<rsgis:command algor="SaatchiBiomass" option="openCrownPL"

input="inputimage" output="outputimage"/>

Chapter 10

Examples — Other Utilties

10.1 Running Command Line Tools from XML

RSGISLib provides a command which allows other command line tools are scripts
to be executed from within the XML interface. This could be something as simple

and creating a new directory or deleting some temporary files.

<rsgis:command algor= option= command= />

10.1.1 Creating a Directory

The following command will create and output directory ‘OutputFiles’.

<rsgis:command algor= option=

command= />

10.1.2 Deleting Files

The following command would delete all files which start with ‘Templmage’ and

end with ‘.kea’.

<rsgis:command algor= option=

command= />

74

Bibliography

Bunting, P., Clewley, D., 2013. Python scripting for spatial data processing. Online
at bitbucket.org/petebunting 1, 1-193.

Clewley, D., Feb. 2012. Retrieval of Forest Structure and Biomass From Radar
Data Using Backscatter Modelling and Inversion. Aberystwyth University, 1—
356.

Lucas, R. M., Cronin, N., Lee, A., Moghaddam, M., Witte, C., Tickle, P., 2006.
Empirical relationships between AIRSAR backscatter and LiDAR-derived forest
biomass, queensland, Australia. Remote Sensing of Environment 100 (3), 407—
425.

Lucas, R. M., Moghaddam, M., Cronin, N., 2004. Microwave scattering from
mixed-species forests, Queensland, Australia. IEEE Transactions on Geoscience
and Remote Sensing 42 (10), 2142-2159.

Saatchi, S. S., Halligan, K., Despain, D., Crabtree, R., 2007. Estimation of Forest
Fuel Load From Radar Remote Sensing. IEEE Transactions on Geoscience and
Remote Sensing 45 (6), 1726-1740.

Shepherd, J., Bunting, P., Dymond, J., 2013. Segmentation of imagery based on

iterative elimination. Remote Sensing Accepted for Publication.

75

	Introduction
	Background
	Using RSGISLib
	The RSGISLib XML Interface
	XML Basics
	Escape Characters
	Commenting
	RSGISLib XML

	Python Bindings
	Basic UNIX
	Editing a text file

	Using Batch Queues on a HPC

	Installing RSGISLib
	Getting the RSGISLib Source Code
	Compiling RSGISLib
	Pre-requisites
	Boost
	HDF5
	FFTW
	Xerces-C
	MuParser
	GSL
	GEOS
	Proj.4
	GDAL
	KEALib
	GMP
	MPFR
	CGAL

	Compiling on Windows

	Examples – Image Processing
	Basic Landsat Imagery Pre-Processing
	Convert to Radiance
	Convert to TOA
	Re-projecting to OSGB
	Calculating Statistics and Image Pyramids
	Calculate an NDVI
	Expanding the Processing to Multiple Scenes

	Linear Spectral Unmixing
	Defining End Members
	Unmixing the Scene

	Examples – Image Utilities
	Creating a new Image
	Copying an existing image header

	Editing Header information
	Set the projection
	Over write spatial header
	Remove Spatial Header

	Stacking Image Bands
	Sub-setting Images
	Subset to Image
	Subset to Vector
	Subset to Polygons

	Generate Image Tiles
	Square tiles

	Mosaic
	Sub-Sample the Image file

	Examples – Vectors
	Zonal Statistics
	Pixel-weighed mean
	pixelmeanLSSVar
	Statistics for points

	Image Footprints
	Vector Maths

	Examples - Image Segmentation
	Iterative Elimination Algorithm
	XML Code

	Examples – Raster GIS
	Populating Clumps with Statistics
	Basic Statistics
	Calculating Indicies
	Percentiles: Median
	Location
	Shape Parameters
	Relative Border to a Class
	Populating with an Existing Classification

	Classification
	Rule Based
	Updating an Existing Classification

	Change Detection
	Other Utilities
	Export Columns to Raster Bands
	Calculate Statistics

	Examples – Image Registration
	Tie Point Generation
	Image Warping

	Examples – Radar (SAR)
	Biomass Estimation

	Examples – Other Utilties
	Running Command Line Tools from XML
	Creating a Directory
	Deleting Files

