The Remote Sensing and GIS

Software Library.

Pete Bunting and Daniel Clewley

Documentation and Examples of using RSGISLib.
March 31, 2013

Aberystwyth University

PRIFYSGOL

EYABERYSTWYTH

——— UNIVERSITY

Copyright (©) Pete Bunting and Daniel Clewley 2013.

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0
Unported License. To view a copy of this license, visit http://creativecommons.

©N0le

org/licenses/by-sa/3.0/.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Acknowledgements

i

Authors

Peter Bunting

Dr Pete Bunting joined the Institute of Geography and Earth Sciences (IGES),
Aberystwyth University, in September 2004 for his Ph.D. where upon completion
in the summer of 2007 he received a lectureship in remote sensing and GIS. Prior
to joining the department, Peter received a BEng(Hons) in software engineering
from the department of Computer Science at Aberystwyth University. Pete also
spent a year working for Landcare Research in New Zealand before rejoining IGES
in 2012 as a senior lecturer in remote sensing.

Contact Detalils
EMail: pfb@aber.ac.uk

Senior Lecturer in Remote Sensing
Institute of Geography and Earth Sciences
Aberystwyth University

Aberystwyth

Ceredigion

SY23 3DB

United Kingdom

111

Daniel Clewley

Dr Dan Clewley joined IGES in 2006 undertaking an MSc in Remote Sensing and
GIS, following his MSc Dan undertook a Ph.D. entitled Retrieval of Forest Biomass
and Structure from Radar Data using Backscatter Modelling and Inversion under
the supervision of Prof. Lucas and Dr. Bunting. Prior to joining the department
Dan completed his BSc(Hons) in Physics within Aberystwyth University. Dan is
currently a post-doc researcher at the University of Southern California.

Contact Details
Email: clewley@usc.edu

Postdoctoral Research Associate

Microwave Systems, Sensors, and Imaging Lab (MiXIL)
Ming Hsieh Department of Electrical Engineering

The University of Southern California

Los Angeles

USA

Table of Contents

1__Introduction| 1
(1.1 Background| 1
(1.2 Using RSGISLib| 1
(L3 The RSGISIAb XML Interfacel 2

(3.1 XML Basieslo 2
[1.3.2 Escape Characters| 3
(1.3.3 Commentingl., 3
1.3.4 RSGISLib XMIJ 4

5

(1.4.1 Editing a text file| 6

(1.5 Using the Batch Queue on HPC Wales| 6

2 Installing 1 8

3 Examples — Image Processing] 9
[3.1 Stacking Image Bands| 000 9
[3.2 Basic Landsat Imagery Pre-Processingl 10

3.2.1 Convert to Radiancel 12
.22 Convert to TOAl 14

TABLE OF CONTENTS

[3.2.6 Expanding the Processing to Multiple Scenes|.

[3.3 Linear Spectral Unmixing]

[3.3.1 Defining End Members|

[3.3.2 Unmixing the Scene|

Examples — Image Registration|

Examples — Vectors|

Examples - Image Segmentation|

[6.1 Iterative Elimination Algorithm|

Examples — Raster GI1S|

(7.1 Populating Segment Statistics|

8 TODO

9 TODO

10 TODO

vi

28

29
29

30
30
31

35
35

38

39

40

List of Figures

[3.1 Example of a landsat scene which has been unmixed using linear

spectral unmixing.|

vil

List of Tables

(1.1 Keyboard shortcuts for the ne editor.| 6

(3.1 Landsat ETM+ (7) gains and offsets for converting DN’s to radiance| 11

3.2 Solar irradiance for the Landsat ETM+ bands). 12

Chapter 1

Introduction

1.1 Background

The remote sensing and GIS software library (RSGISLib) was developed at Aberys-
twyth University by Pete Bunting and Daniel Clewley. Development started in
April 2008 and has been actively maintained and added to ever since. For more

information see http://www.rsgislib.org,.

1.2 Using RSGISLib

RSGISLib has a command line user interface where the main commands you will

be using are:
rsgisexe - the main command to execute scripts

rsgislibxmllist - a command to list all the available commands within the library
(there are over 300!!)

rsgislibcmdxml.py - a command to allow script templates to be populated with

file paths and names.

rsgislibvarsxml.py - a command to input variable values into a template script.

http://www.rsgislib.org

CHAPTER 1. INTRODUCTION 2

1.3 The RSGISLib XML Interface

1.3.1 XML Basics

RSGISLib is parameterised through the use of an XML script. XML stands for
Extensible Markup Language.

Extensible - XML is extensible. It lets you define your own tags, the order in
which they occur, and how they should be processed or displayed. Another
way to think about extensibility is to consider that XML allows all of us to
extend our notion of what a document is: it can be a file that lives on a file
server, or it can be a transient piece of data that flows between two computer

systems.

Markup - The most recognizable feature of XML is its tags, or elements (to be

more accurate).

Language - XML is a language that’s very similar to HTML. It’s much more
flexible than HTML because it allows you to create your own custom tags.
However, it’s important to realize that XML is not just a language. XML
is a meta-language: a language that allows us to create or define other lan-
guages. For example, with XML we can create other languages, such as RSS,
MathML (a mathematical markup language).

<parent_element>

<some_information>
</some_information>

<some_information name="some data'" value='"some other data" />

</parent_element>

XML is made up of opening and closing elements, where the hierarchy of the
elements provides meaning and structure to the information stored. Therefore,
every element has an opening and closing element. This can be defined in two
ways; firstly with two tags, where the opening tag is just enclosed with angled
brackets (< tag >) and the closing tag contains a backslash and angled brackets
< [tag >. Using this method further tags for data can be stored between the two

tags, providing structure as shown above. The second method uses just a single

CHAPTER 1. INTRODUCTION 3

tag with an ending backslash (< tag/ >). This second method is used when no

data or further tags are to be defined below current element.
<element></element>

<element/>

1.3.2 Escape Characters

As with all computing languages there are certain characters which have specific
meanings and therefore an escape character needs to be used if these characters

are required within the input.

& - &
" - '
7 - "
< - <
> - >
= - =
<element attribute=”'hello'”/>
<element>
1 is &1t; 100
</element>

<element attribute=”"world"”/>

1.3.3 Commenting

To add comments to XML code and temporally comment out parts of your XML

script you need to use the XML commenting syntax as show below.

<parent_element>
<some_information>

</some_information>

10

11

12

13

14

15

16

17

18

19

CHAPTER 1. INTRODUCTION 4

<some_information name="some data" value='"some other data" />

</parent_element>

All parts of the document between the opening and closing comment tags will be

ignored by the parser.

1.3.4 RSGISLib XML

For parameterisation of the rsgisexe application you will need to create an XML file
in the correct format, which the RSGISLib executable understands, while adhering
to the rules of XML outlined above. The basis for the RSGISLib XML is to provide
a list of commands. Therefore, the XML has the following structure:

<?xml version="1.0" encoding="UTF-8" 2>
<I--
Description:
XML File for execution within RSGISLib
Created by **MEx* on Wed Nov 28 15:53:41 2012.
Copyright (c) 2012 **0rganisation**. All rights reserved.

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">

<!-- ENTER YOUR XML HERE -->
<rsgis:command algor="name" option="algor_option" attrl="foo"
attr2="bar">
<rsgis:data attribute="blob" />
</rsgis:command>
<rsgis:command algor="algor_name" option="algorithm_option"
attr="data"/>

</rsgis:commands>

Where all the input parameters are defined using element attributes and each algo-
rithm and option have their own set of attributes to be specified. Within the XML
file imported into rsgisexe multiple command elements can be specified and they
will all be executed in the order specified in the XML file. Therefore, a sequence

of events can be specified and executed without any further interaction.

CHAPTER 1. INTRODUCTION)

1.4 Basic UNIX

When interacting with a UNIX terminal you will need to so using a UNIX com-
mand line console. The basic UNIX commands for navigating the file system are

shown below.

List the current directory
1s

Enter the directory called ’directory_name’

cd directory_name

Go down a directory
cd ..

Display contents of a file
cat file.txt

Display contents of a file and stop at end of each page

cat file.txt | more

Display header information for an image

gdalinfo image.kea | more

Rename filel.txzt to file2.txt
mv filel.txt file2.txt

Move file.txzt to within directory output
mv file.txt output/file.txt

Copy the file file2.txzt to file2.txt
cp filel.txt file2.txt

Copy a directory filesl to files2
cp -R ./filesl ./files2

Delete a file
rm file.txt

Delete a directory

CHAPTER 1. INTRODUCTION 6

rm -Rf ./files

ne name_of_text_file.txt

1.4.1 Editing a text file

All the scripts you will use to interact with the machine are text files (even if they
have the extension .xml or .sh) to edit them we recommend you use the ‘ne’ editor
(‘the nice editor’). This editor uses commonly used desktop keyboard shortcuts
for saving files and quitting the application. Table lists the common shortcuts
while pressing escape will show a menu from which you can select the option you

require.

Table 1.1: Keyboard shortcuts for the ne editor.

Function Shortcut
Saving ctrl-s
Quit ctrl-q
Find ctrl-f
Jump to Line ctrl-j

1.5 Using the Batch Queue on HPC Wales

The high performance computer (HPC) facility ‘HPC Wales’ might be available
to some of you. The system uses a batch priority queue to manage the jobs
submitted by multiple users. The job of the queue manages the jobs, which are
being submitted to the computer system to make sure that as much of the system
as possible is being utilised. Therefore, if you submit a job which is small (i.e.,
does not use much runtime, memory or a large number of processes) it is likely to
run much sooner than a job which requires a large amount of resources as it will

take longer for the scheduler to find space on the system for the large job.

10

11

12

13

14

10

11

CHAPTER 1. INTRODUCTION 7

There are a number of command line tools associated with queue facility, includ-
ing:

Submit a job
bsub < jobfile.lsf

List your jobs submitted
bjobs

List all jobs in queue
bjobs -u all

Info on previously run jobs
bhist -1 <job id>

Remove a job from the queue
bdel <job id>

To submit a job you need to create a job file script which provides the scheduler
information such as run time, user account etc such that it can appropriate allocate
the job. A template is shown below.

#1/bin/bash —--login

#BSUB -J JOB_NAME

#BSUB -o JOB_CONSOLE_OUTPUT_FILE.out
#BSUB -e JOB_CONSOLE_ERROR_FILE.err
#BSUB -W HH:MM (RUN TIME)

#BSUB -P sam0004

#BSUB -n 1 (NUMBER OF PROCESSING CORES)
#BSUB -R "span[ptile=1]"

ENTER THE COMMAND WHICH NEEDS TO EXECUTED

rsgisexe -x processSomeData.xml

Chapter 2

Installing RSGISLib

10

11

12

13

14

15

16

17

Chapter 3

Examples — Image Processing

3.1 Stacking Image Bands

To stack image bands within RSGISLib there are two commands are provided,
the first attempts to stack all the images (with a specified file extension) within
a directory while the second stacks a specified list of images but in both cases all

the images need to intersect and have the same image resolution.

<l--
Stacks all the image bands within a directory into a
single tmage file
-—>
<rsgis:command algor="stackbands" option="dir" dir="input_DIR"
output="outputimage" ext="file_extension"
format="GDAL Format" datatype="Byte | UIntl6 |
Int16 | UInt32 | Int32 | Float32 | Float64" />
<l--
Stacks all the image bands provided in list
into a single tmage file
-—>
<rsgis:command algor="stackbands" option="imgs" output="outputimage"
format="GDAL Format" datatype="Byte | UIntl16 | Inti16 |
UInt32 | Int32 | Float32 | Float64" skipValue="float" >
<rsgis:image name="band(s) name" file="imagel" />

<rsgis:image name="band(s) name" file="image2" />

18

19

20

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 10

<rsgis:image name="band(s) name" file="image3" />
<rsgis:image name="band(s) name" file="image4" />

</rsgis:command>

3.2 Basic Landsat Imagery Pre-Processing

The first step when downloading optical imagery is to pre-process it such that it

is geographically registered and spectrally it is a measure of reflectance.

You have been provided with four Landsat 7 ETM+ scenes covering parts of Wales.

Your task is to:
1. Convert the measured spectral values to at sensor radiance.

2. Convert the measured at sensor radiance to top of atmosphere (TOA) re-

flectance.
3. Where possible pre-calculate image pyramids and statics for visualisation.
4. Stack the individual Landsat ETM+ bands to create a single image.

5. Re-project the scene to the Ordnance Survey National Grid from the Uni-

versal Transverse Mercator (UTM) it is provided in.
6. Calculate the Normalised Difference Vegetation Index (NDVI)

Ideally you would correct the data to surface reflectance but to do so requires
the use of an atmospheric model. Atmospheric models require parameterisation
so to simplify the process you will just correct the data to top of atmosphere

reflectance.

Top of atmosphere (TOA) reflectance is the ratio of the incoming light, from
the Sun (i.e., source), and the light reflected and measured at the sensor. This
assumes there is no atmospheric interference or bi-directional reflectance (BRDF)
effects within the scene. These are clearly false assumptions but it does provide
a simple and fast method of correcting to a measured unit which is corrected for

the variation in the solar irradiance, due to season and angle.

CHAPTER 3. EXAMPLES - IMAGE PROCESSING

11

To correct the imagery to TOA the first step is to convert the 8 bit (0 —255) digital

number (DN) pixels values to floating point radiance values (i.e., the amount of

energy measured at the sensor).

Side Question

What is radiance and what is its unit1¥]

“Radiance is defined as “The power passing through a unit area in a unit solid
angle about the normal to the area (per unit spectral interval)”
bwatts per steradian per square nano metre W - sr—
a given wavelength.

1

-m~3 or W-sr—

Lonm~1! for

To convert DN’s to radiance you need to use Equation [3.1}and the gains and offsets
for each landsat 7 band, provided in Table [3.I] The gains and offsets are also

available with the MTL text file associated within each Landsat scene downloaded

from the USGS.

L:<

LMAX — LMIN

QOALmax - QCALmzn

) (DN — QCALyn) + LMIN (3.1)

Table 3.1: Landsat ETM+ (7) gains and offsets for converting DN’s to radiance

Band | LMin | LMax | QCal,,;, | QCal,.. | Wavelength (nm) | Resolution (m)
1 -6.2 191.6 1 255 450-515 30
2 -6.4 196.5 1 255 525-605 30
3 -5.0 152.9 1 255 630—690 30
4 -5.1 157.4 1 255 750-900 30
5 -1.0 31.06 1 255 1550-1750 30
6 (1) 0.0 17.04 1 255 10400-12500 60
6 (2) 3.2 12.65 1 255 10400-12500 60
7 -0.35 10.8 1 255 2090-2350 30
8 4.7 | 243.1 1 255 520-900 15

For this exercise you only need to process bands 1-5 and 7, which are the visible,
NIR and SWIR bands with a resolution of 30 m. Bands 6 (1 and 2) are within

the thermal part of the electrometric spectrum and have a resolution of 60 m.

Finally, band 8 is a panchromatic band (measuring from green to NIR) with a

spatial resolution of 15 m.

10

11

12

13

CHAPTER 3. EXAMPLES - IMAGE PROCESSING

To convert the radiance image to TOA Equation needs to be used with the

coefficients shown in Table [3.2]

p=m-Ly-d* ESUN, - cosb,

where, L, is the radiance measure at the sensor, d is the distance to the sun,

ESUN, is the solar irradiance for the wavelength of the image band and @ is the

solar zenith.

Table 3.2: Solar irradiance for the Landsat ETM-+ bands.

Band

Solar Trradiance (W - m™=3)

1

O ~J O = W I

1997
1812
1533
1039
230.8
84.9

1362

3.2.1 Convert to Radiance

To convert to the landsat imagery to radiance RSGISLib provides the following

command specifically for Landsat processing.

<l--

A command to calibrate image Landsatl data from at sensor

DNs to at sensor radtance (EQ: ((lmaz-1lmin)/(qcalmaz-qcalmin))

* (DNs - gqcalmin) + lmin) Eq s from landsat manual.

-—>

<rsgis:command algor="imagecalibration" option="landsatradcal"

output="image_out.env" format="GDAL Format" >

<rsgis:band name="string" image="imagel" band="int"

[sensorband="string" |

Imin="float" Ilmax="float" qcalmin="float"
gcalmax="float"]/>

<rsgis:band name="string" image="imagel" band="int"

[sensorband="string" |

14

15

17

18

19

20

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

CHAPTER 3. EXAMPLES — IMAGE PROCESSING 13

Imin="float" lmax="float" qcalmin="float"
gcalmax="float"]/>

<rsgis:band name="string" image="imagel" band="int"
[sensorband="string" |
Imin="float" lmax="float" qcalmin="float"
gcalmax="float"]/>

</rsgis:command>

Within the example XML given above the | is symbolising ‘or’ so either a string
(as shown below) needs to be specified for the sensor band or the values need
to be given. Therefore to convert Landsat data to radiance create an XML file
containing the following, making sure the file name is the same at the file you are

processing, needs to be created.

<?xml wversion="1.0" encoding="UTF-8" 2>
<I--
Description:
XML File for exzecution within RSGISLzb
to pre-process Landsat ETM+ imagery.
Created by Pete on Wed Nov 28 18:59:38 2012.
Copyright (c) 2012 Aber Uni. All rights reserved.
-=>

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<rsgis:command algor="imagecalibration" option="landsatradcal"
output="L7_20323_20000607 _rad.kea" format="KEA" >
<rsgis:band name="bl" image="L71203023_02320000617_B10.TIF"
band="1" sensorband="LETM7_B1" />
<rsgis:band name="b2" image="L71203023_02320000617_B20.TIF"
band="1" sensorband="LETM7_B2" />
<rsgis:band name="b3" image="L71203023_02320000617_B30.TIF"
band="1" sensorband="LETM7_B3" />
<rsgis:band name="b4" image="L71203023_02320000617_B40.TIF"
band="1" sensorband="LETM7_B4" />
<rsgis:band name="b5" image="L71203023_02320000617_B50.TIF"
band="1" sensorband="LETM7_B5" />
<rsgis:band name="b7" image="L72203023_02320000617_B70.TIF"
band="1" sensorband="LETM7_B7" />
</rsgis:command>
<rsgis:command algor="imageutils" option="popimgstats"
image="L7_20323_20000607_rad.kea" ignore="0"

28

29

10

11

12

13

14

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 14

pyramids="yes" />

</rsgis:commands>

After the radiance calibration command you will notice there is an image utilities
command called popimgstats. This command will calculate the image band statis-
tics including the image histogram, minimum, maximum, mean, median, mode
and standard deviation of the pixel values for each image band. It will also gener-
ate image pyramids, which allow fast visualisation of the image within a pyramid

aware image viewer.

Running the XML commands

To run this script from a UNIX terminal you should run the rsgisexe command
from within the same directory as your data (this XML file needs to be saved there

as well) and it is executed with the following command:

rsgisexe -x PreProcesslLandsat.xml

3.2.2 Convert to TOA

RSGISLib has a command to convert the radiance Landsat image to top of at-
mosphere (TOA) reflectance. The XML command is shown below, note this also

includes the XML for the radiance image as well.

<?zml wversion="1.0" encoding="UTF-8" 2>
<l--
Description:
XML File for exzecution within RSGISLib
to pre-process Landsat ETM+ imagery.
Created by Pete on Wed Nov 28 18:59:38 2012.
Copyright (c) 2012 Aber Uni. All rights reserved.
-=>

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<rsgis:command algor="imagecalibration" option="landsatradcal"
output="L7_20323_20000607 _rad.kea" format="KEA" >
<rsgis:band name="bl" image="L71203023_02320000617_B10.TIF"
band="1" sensorband="LETM7_B1" />

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

CHAPTER 3. EXAMPLES — IMAGE PROCESSING 15

<rsgis:band
<rsgis:band
<rsgis:band
<rsgis:band
<rsgis:band
</rsgis:command

<rsgis:command

<rsgis:command

name="b2" image="L171203023_02320000617_B20.TIF"
band="1" sensorband="LETM7_B2" />

name="b3" image="171203023_02320000617_B30.TIF"
band="1" sensorband="LETM7_B3" />

name="b4" image="171203023_02320000617_B40.TIF"
band="1" sensorband="LETM7_B4" />

name="b5" image="L71203023_02320000617_B50.TIF"
band="1" sensorband="LETM7_B5" />

name="b7" image="172203023_02320000617_B70.TIF"
band="1" sensorband="LETM7_B7" />

>

algor="imageutils" option="popimgstats"
image="L7_20323_20000607_rad.kea" ignore="0"
pyramids="yes" />

algor="imagecalibration" option="topatmosrefl"
input="L7_20323_20000607_rad.kea"
output="L7_20323_20000607_toa.kea"

format="KEA" scaleFactor="1000"

day="17" month="06" year="2000"
elevation="57.2241705" datatype="UIntl6" >

<rsgis:band sensorband="LETM7_B1" />
<rsgis:band sensorband="LETM7_B2" />
<rsgis:band sensorband="LETM7_B3" />
<rsgis:band sensorband="LETM7_B4" />
<rsgis:band sensorband="LETM7_B5" />
<rsgis:band sensorband="LETM7_B7" />

</rsgis:command>

<rsgis:command

</rsgis:commands>

algor="imageutils" option="popimgstats"
image="L7_20323_20000607_toa.kea" ignore="0"
pyramids="yes" />

The options to note are the use of a scale factor of 1000 (so each reflectance value

is multiplied by 1000), giving a range from 0 to 1000 and the use of unsigned 16

bit integers to stored the outputted data. Following processing compare the files

sizes of the radiance and TOA images, what do you notice?

To compare the file sizes list the directory using the ‘lIs’ command with the ‘-1h’

switches, as shown

1s -1h

below.

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 16

Side Question

Why is the unsigned integer 16 bit image so much smaller than the 32
bit floating point image"|
Is any information / precision lost converting to an unsigned integer

rather than using a floating point Value?lﬂ

2A 16 bit value take up half the space of a 32 bit value but integers also compress
more efficiently than floating point values as whole values are repeated

No, multiplying by 1000 means than each increment (i.e., value of 1) is equal to
0.1% reflectance and this is well below the noise threshold of the system.

Running the XML commands

To run your commands just add these commands to your radiance XML script
and then resrun your script using the rsgisexe command. Both the radiance and
the TOA images will be calculated

3.2.3 Re-projecting to OSGB

To reproject the image data to the Ordnance Survey National Grid we need to
use the command gdalwarp. GDAL is a software library which allows spatial
located images to read and written where a common interface is provided for all
the supported image formats. RSGISLib uses GDAL to read and write images
and supports all the image formats that GDAL supports. GDAL also includes a
number of command line tools for common tasks such as converting between image
formats (gdal_translate) and warping images (gdalwarp). For more information on
GDAL visit the website http://www.gdal.org.

To use gdalwarp the input and output image coordinate systems and projections
need to be specified. There are a number of ways in which this can be done but
the preferred method is through the ‘Well-Known Text’” (WKT) format. WKT
files for the input projection (UTM 30N WGS84; utm30wgs83.wkt) and output
projection (OSGB 36; osgb36.wkt) have been provided.

http://www.gdal.org

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 17

To use gdalwarp the following options are required (Note, the slash is used to
allow the command to be split across multiple lines withn the shell script). See
the GDAL website for a description of these options - you should get used to
consulting online resources to understand how to do what you need to do.
gdalwarp -s_srs ./utm30wgs83.wkt -t_srs ./osgb36.wkt -ot UIntl6

-wt float32 -srcnodata O -order 3 -r cubic -of KEA
L7_20323_20000607_toa.kea L7_20323_20000607_toa_osgb.kea

3.2.4 Calculating Statistics and Image Pyramids

To generate the image pyramids and image statistics for the warped image gener-
ated by gdalwarp there is a command gdalcalcastats, confusingly this is not part
of of the GDAL project and has been independently developed but is built on
GDAL, hence the name.

gdalcalcstats L7_20323_20000607_toa_osgb.kea -ignore 0

3.2.5 Calculate an NDVI

To calculate an NDVI the RSGISLib software will again be used. For this a
new XML file needs to be generated, to generate a blank XML file the rsgisexe

command with the -b option can be used, as shown below.

rsgisexe -b CalcLandsatNDVI.xml

Using the new XML file add the following XML to calculate the NDVI using the
bandmaths tool.

11

12

13

14

15

16

17

18

19

20

21

10

11

12

13

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 18

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">
<rsgis:command algor="imagecalc" option="bandmaths"
output="L7_20323_20000607 _osgb_NDVI.kea" format="KEA"
datatype="Float32" expression="(NIR-Red)/(NIR+Red)" >
<rsgis:variable name="Red"
image="L7_20323_20000607 _toa_osgb.kea"
band="4" />
<rsgis:variable name="NIR"
image="L7_20323_20000607 _toa_osgb.kea"
band="3" />
</rsgis:command>

</rsgis:commands>

3.2.6 Expanding the Processing to Multiple Scenes

To undertake this process on multiple scenes you have been provided with a tem-
plate script for RSGISLib which contains all the processing stages. Note that the
command line processing command has be used to call the gdalwarp command
from within the RSGISLib XML script.

<!-- A command to exwecute a command line utilities (e.g., mkdir) -->

<rsgis:command algor="commandline" option="execute" command="string" />

The the template is shown below and the key thing to notice is the lack of specified
filenames and variables, instead variables start ‘$’ have been used and will be

replaced with the true values at a later stage.

<rsgis:command algor="imagecalibration" option="landsatradcal"
output="$PATH/$FILENAMEl rad.kea" format="KEA" >
<rsgis:band name="bl" image="$FILEPATHL"
band="1" sensorband="LETM7_B1" />
<rsgis:band name="b2" image="$FILEPATH2"
band="1" sensorband="LETM7_B2" />
<rsgis:band name="b3" image="$FILEPATH3"
band="1" sensorband="LETM7_B3" />
<rsgis:band name="b4" image="$FILEPATH4"
band="1" sensorband="LETM7_B4" />
<rsgis:band name="b5" image="$FILEPATH5"
band="1" sensorband="LETM7_B5" />
<rsgis:band name="b7" image="$FILEPATHE"

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

CHAPTER 3. EXAMPLES — IMAGE PROCESSING

</rsgis:command>

band="1" sensorband="LETM7_B7" />

<rsgis:command algor="imageutils" option="popimgstats"

i

p

mage="$PATH/$FILENAMEL rad.kea" ignore="0"

yramids="yes" />

<rsgis:command algor="imagecalibration" option="topatmosrefl"

i
o
f
d
e
<rsgis:band
<rsgis:band
<rsgis:band
<rsgis:band
<rsgis:band
<rsgis:band

</rsgis:command>

nput="$PATH/$FILENAME1 _rad.kea"
utput="$PATH/$FILENAMEl toa.kea"
ormat="KEA" scaleFactor="1000"
ay="$VAR1" month="$VAR2" year="$VAR3"
levation="$VAR4" datatype="UIntl6" >
sensorband="LETM7_B1" />
sensorband="LETM7_B2" />
sensorband="LETM7_B3" />
sensorband="LETM7_B4" />
sensorband="LETM7_B5" />
sensorband="LETM7_B7" />

<rsgis:command algor="imageutils'" option="popimgstats"

i

P

mage="$PATH/$FILENAMEL toa.kea" ignore="0"

yramids="yes" />

<rsgis:command algor="commandline" option="execute"

command="gdalwarp -s_srs ./utm30wgs83.wkt -t_srs

./osgb36.wkt -ot UIntl6 -wt float32
-srcnodata O -order 3 -r cubic -of KEA
$PATH/$FILENAME1_toa.kea
$PATH/$FILENAME1l_toa_osgb.kea" />

<rsgis:command algor="imageutils" option="popimgstats"

image="$PATH/$FILENAME1l_toa_osgb.kea" ignore="0"

P

yramids="yes" />

<rsgis:command algor="imagecalc" option="bandmaths"

output="$PATH/$FILENAMEl osgb_NDVI.kea" format="KEA"
datatype="Float32" expression="(NIR-Red)/(NIR+Red)" >

<rsgis:variable name="Red"

image="$PATH/$FILENAMEl_toa_osgb.kea"
band="4" />

<rsgis:variable name="NIR"

</rsgis:command>

image="$PATH/$FILENAMEl_toa_osgb.kea"
band="3" />

<rsgis:command algor="imageutils'" option="popimgstats"

19

55

56

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 20

image= ignore=

pyramids= />

To understand what the different variables have been used for see the list be-

low:

$PATH - This is the path with in the file system where the output files will be

written.

$FILENAMET1 - This is the start of the file name which all output files will

have.

$FILEPATH1 - Band 1 of the input Landsat scene.
$FILEPATH2 - Band 2 of the input Landsat scene.
$FILEPATHS3 - Band 3 of the input Landsat scene.
$FILEPATH4 - Band 4 of the input Landsat scene.
$SFILEPATHS5 - Band 5 of the input Landsat scene.
$FILEPATHG6 - Band 7 of the input Landsat scene.
$VARI1 - Day of capture

$VAR2 - Month of capture

$VAR3 - Year of capture

$VAR4 - Solar Elevation

To replace these variables with the real data values the rsgislibcmdxml.py and

rsgislibvarsxml.py scripts needs to be used as shown below.

mkdir L7_20323_20000617_0Outputs

rsgislibcmdxml.py -i LandsatProcessingTemplate.xml
-o LandsatProcessingTemplate_Filenames.xml
-p L7_20323_20000617_Outputs
-b L7_20323_20000617
-f LE72030232000169EDC00/L71203023_02320000617_B10.TIF
-f LE72030232000169EDC00/L71203023_02320000617_B20.TIF

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 21

10 -f LE72030232000169EDC00/L71203023_02320000617_B30.TIF
11 -f LE72030232000169EDC00/L71203023_02320000617_B40.TIF
12 -f LE72030232000169EDC00/L71203023_02320000617_B50.TIF
13 -f LE72030232000169EDC00/L72203023_02320000617_B70.TIF

14

15 rsgislibvarsxml.py -i LandsatProcessingTemplate_Filenames.xml

16 -o L7_20323_20000617_PreProcessing.xml
17 -v 17

18 -v 6

19 -v 2000

20 -v 57.2241705

After you have expand the shell script for generating the scripts for the other

images you should have something which looks like this.

1 mkdir L7_20323_20000617_0Outputs

2 rsgislibcmdxml.py -i LandsatProcessingTemplate.xml

3 -0 LandsatProcessingTemplate_Filenames.xml

4 -p L7_20323_20000617_Outputs

5 -b L7_20323_20000617

6 -f LE72030232000169EDC00/L71203023_02320000617_B10.TIF
7 -f LE72030232000169EDC00/L71203023_02320000617_B20.TIF
8 -f LE72030232000169EDC00/L71203023_02320000617_B30.TIF
9 -f LE72030232000169EDC00/L71203023_02320000617_B40.TIF
10 -f LE72030232000169EDC00/L71203023_02320000617_B50.TIF
11 -f LE72030232000169EDC00/L72203023_02320000617_B70.TIF
12 rsgislibvarsxml.py -i LandsatProcessingTemplate_Filenames.xml

13 -o L7_20323_20000617_PreProcessing.xml

14 -v 17

15 -v 6

16 -v 2000

17 -v 57.2241705

18
19 mkdir L7_20323_20020404_0Outputs

20 rsgislibcmdxml.py -i LandsatProcessingTemplate.xml

21 -o LandsatProcessingTemplate_Filenames.xml

22 -p L7_20323_20020404_Outputs

23 -b L7_20323_20020404

24 -f LE72030232002094EDC00/L71203023_02320020404_B10.TIF
25 -f LE72030232002094EDC00/L71203023_02320020404_B20.TIF

26 -f LE72030232002094EDC00/L71203023_02320020404_B30.TIF

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

58

59

60

61

62

63

64

65

67

CHAPTER 3. EXAMPLES - IMAGE PROCESSING

-f LE72030232002094EDC00/L71203023_02320020404_B40.TIF
-f LE72030232002094EDC00/L71203023_02320020404_B50.TIF
-f LE72030232002094EDC00/L72203023_02320020404_B70.TIF

rsgislibvarsxml.py -i
-0
-v
-V
-v

-V

mkdir L7_20323_200209
rsgislibcmdxml.py -i
-0

P

rsgislibvarsxml.py -i
-0
-v
-V
-v

-V

mkdir L7_20323_200302
rsgislibcmdxml.py -i
-0

P

rsgislibvarsxml.py -i

-0

LandsatProcessingTemplate_Filenames.xml
L7_20323_20020404_PreProcessing.xml

4

4

2002

39.9992339

11_Outputs
LandsatProcessingTemplate.xml
LandsatProcessingTemplate_Filenames.xml
L7_20323_20020911_0Outputs
L7_20323_20020911
LE720302320022545GS00/L71203023_02320020911_B10.
LE72030232002254SGS00/L71203023_02320020911_B20.
LE720302320022545GS00/L71203023_02320020911_B30.
LE720302320022545GS00/L71203023_02320020911_B40.
LE720302320022545GS00/L71203023_02320020911_B50.
LE72030232002254SGS00/L72203023_02320020911_B70.

LandsatProcessingTemplate_Filenames.xml

L7_20323_20020911_PreProcessing.xml

11

9

2002

39.1746567

18_Outputs
LandsatProcessingTemplate.xml
LandsatProcessingTemplate_Filenames.xml
L7_20323_20030218_0utputs
L7_20323_20030218
LE720302320030495GS00/L71203023_02320030218_B10.
LE72030232003049SGS00/L71203023_02320030218_B20.
LE720302320030495GS00/L71203023_02320030218_B30.
LE720302320030495GS00/L71203023_02320030218_B40.
LE720302320030495GS00/L71203023_02320030218_B50.
LE72030232003049SGS00/L72203023_02320030218_B70.
LandsatProcessingTemplate_Filenames.xml
L7_20323_20030218_PreProcessing.xml

TIF
TIF
TIF
TIF
TIF
TIF

TIF
TIF
TIF
TIF
TIF
TIF

68

69

70

71

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 23

-v 18

-v 2

-v 2003

-v 22.4606180

Finally, you run each of the XML scripts generated and using the rsgisexe command

to process your imagery.

3.3 Linear Spectral Unmixing

RSGISLib provides commands for unconstrained and constrained linear unmixing
which is commonly used to understand the proportion of endmembers contributing
to the reflectance of each pixel. In the case of linear spectral unmixing then the
combination is linear (i.e., additive) and provides the proportion of the reflectance
of each input pixel corresponding the endmembers provided. The key to spectral
unmixing is the selection of suitable endmembers which need to correspond with
the extremes of the feature space of the data you are unmixing. You can define up

ton—1 (n is the number of image bands) endmembers but is commonly less.
Using multispectral data within the UK, common endmembers are:

e Photosynthetic Vegetation

e Non-photosynthetic Vegetation

e Shade / Water

Therefore, unmixing for these three parameters will provide an output image with

3 image bands:
1. Proportion of photosynthetic vegetation
2. Proportion of non-photosynthetic vegetation

3. Proportion of shade and water

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 24

3.3.1 Defining End Members

There are a number of automated methods for defining end members (see liter-
ature) but in this case a manual selection of the end members is undertaken by
defining a region (polygon) for each endmember using a shapefile (i.e., using QGIS
or ArcMap).

If imagery is well corrected to surface reflectance with a standardised sun and
view angle then a common set of endmembers can be used across a set of images
but if imagery is poorly corrected (i.e., top of atmospheric reflectance or at sensor

radiance) then end members need to be individually defined per image.

Once a set of polygons (one for each endmember has been define) then the fol-
lowing XML command with RSGISLib can be executed to generate a matrix file
(.mtxt) where a single spectral profile is calculated for each region and saved as a

matrix.

<!-- A command to extract the pizel values for
regions to a matriz file as columns which
can be used as endmembers for unmizing
-—>
<rsgis:command algor="zonalstats" option="endmembers"
image="image.env" vector="polygons.shp"
output="output.mtxt" method="polyContainsPixel |
polyContainsPixelCenter | polyOverlapsPixel |
polyOverlapsOrContainsPixel | pixelContainsPoly |

pixelContainsPolyCenter | adaptive | envelope" />

So for example:

<?zml wersion="1.0" encoding="UTF-8" 2>
<l--
Description:
XML File for exzecution within RSGISLib
Created by **MEx* on Sat Mar 30 18:12:47 2013.
Copyright (c) 2013 **0Organisation**. All rights reserved.
-—>

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">

<rsgis:command algor="zonalstats" option="endmembers"

CHAPTER 3. EXAMPLES - IMAGE PROCESSING 25

image="./L7ETM_530N035W_20100620_AtCor_osgb_masked.kea"
vector="./EndMembers.shp" output="./Endmembers"
method="polyContainsPixelCenter" />

</rsgis:commands>

3.3.2 Unmixing the Scene

Using the matrix file representing the end members the scene can be unmixed

using either of the following XML commands.

<!-- A command to undertake an unconstrained linear spectral
unmizing of the input image for a set of endmembers —-—->
<rsgis:command algor="imagecalc" option="unconlinearspecunmix"
image="image.env" output="image" endmembers="matrix.mtxt"
[gain="float" offset="float" format="GDAL Format'
datatype="Byte | UInt16 | Int16 | UInt32 | Int32 |
Float32 | Float64"] />
<!-- A command to undertake a partially constrained linear spectral
unmizing of the input image for a set of endmembers where the
sum of the unmizing will be approxrimately 1 —-->
<rsgis:command algor="imagecalc" option="consumllinearspecunmix"
image="image.env" output="image" endmembers="matrix.mtxt"
weight="float" [gain="float" offset="float" format="GDAL Format"
datatype="Byte | UInt16 | Int16 | UInt32 | Int32 |
Float32 | Float64"] />

The first command is a completely unconstrained approach and will commonly
produce results which are unrealistic as the combination (mixture) does not add up
to 1 and some values could be negative which is of course impossible (a pixel cannot
be made up of a negative amount of photosynthetic vegetation, for example). The
second is partially constrained as the combination (mixture) must add up to 1
but does still allow negative values. There is also a version of least squares (the
mathematical method used to solve the unmixing problem) which does not produce
negative values (non-negative least squares) but this version is not yet working
within RSGISLib.

Therefore, it is recommend that the partially constrained algorithm (which is the

implementation ENVT uses) is used as shown below where as the imagery is at-

10

11

12

13

14

15

16

17

18

20

21

22

23

CHAPTER 3. EXAMPLES — IMAGE PROCESSING 26

mospherically corrected the same endmembers have been used on multiple im-

ages.

<?zml wversion="1.0" encoding="UTF-8" 2>

<I--

Description:

XML File for exzecution within RSGISLib
Created by **MEx** on Sat Mar 30 18:12:47 2013.
Copyright (c) 2013 #*0rganisation**. All rights reserved.

-—>

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">

<rsgis:command

<rsgis:command

<rsgis:command

</rsgis:commands>

algor="zonalstats" option="endmembers"
image="./L7ETM_530N035W_20100620_AtCor_osgb_masked.kea"
vector="./EndMembers.shp" output="./Endmembers"
method="polyContainsPixelCenter" />

algor="imagecalc" option="consumllinearspecunmix"
image="./L7ETM_530N035W_20100620_AtCor_osgb_masked.kea"
output="L7ETM_530N035W_20100620_AtCor_osgb_masked_unmixed.kea"
endmembers="./Endmembers.mtxt" weight="35" format="KEA"
datatype="Float32" />

algor="imagecalc" option="consumllinearspecunmix"
image="./L7ETM_530N035W_20100417_AtCor_osgb_masked.kea"
output="L7ETM_530N035W_20100417_AtCor_osgb_masked_unmixed.kea"
endmembers="./Endmembers.mtxt" weight="35" format="KEA"
datatype="Float32" />

CHAPTER 3. EXAMPLES — IMAGE PROCESSING 27

Figure 3.1: Example of a landsat scene which has been unmixed using linear
spectral unmixing.

Chapter 4

Examples — Image Registration

28

Chapter 5

Examples — Vectors

5.1 Zonal Statistics

29

Chapter 6

Examples - Image

Segmentation

6.1 Iterative Elimination Algorithm

The segmentation algorithm (?) is based on generating spectrally similar units

with a minimum object size.

The algorithm consists of a number of steps

1.

2.

D.

6.

Select image bands and stack images

Stretch image data

Find unique cluster within feature space (KMeans)
Assign pixels to clusters

Clump the image

Eliminate small segments

The KMeans clusters takes just a single image where all the bands are used as input

so if multiple images are required to be inputted then they need to be stacked and

the bands which are to be used selected. As a Euclidean distance is used within

30

10

11

12

13

14

15

16

17

18

19

20

CHAPTER 6.

EXAMPLES - IMAGE SEGMENTATION 31

the feature space the image is stretched such that all the pixel values are within

the same range (i.e., 0-255).

A clustering algorithm is then used to identify the unique colours within the image,

in this case a KMeans clustering is used but other clustering algorithms could also

be used instead. The image pixels are then assigned to the clusters (classifying the

image) and the image clumped to find the connected regions of the image.

The final step is an iterative elimination of the small segments, starting with the

single pixels and going up to the maximum size of the segments specified by the

user.

Therefore, there are two key parameters within the algorithm:

1. the number of cluster centres identified by the KMeans clustering

2. the minimum size of the segments

6.1.1 XML Code

<rsgis:command

<rsgis:command

<rsgis:

algor="imageutils" option="stretch" image="$FILEPATH"
output="$PATH/$FILENAME _stretched.kea" ignorezeros="yes"
stretch="LinearStdDev" stddev="2" format="KEA" />

algor="imagecalc" option="bandmaths" output="$PATH/$FILENAME mask.kea"
format="KEA" expression="bl==070:1" >
variable name="b1" image="$FILEPATH" band="1" />

</rsgis:command>

<rsgis:command

<rsgis:command

<rsgis:command

algor="imageutils" option="mask"
image="$PATH/$FILENAME_stretched.kea"
mask="$PATH/$FILENAME_mask.kea"
output="$PATH/$FILENAME_stretched_masked.kea"

maskvalue="0" outputvalue="0" format="KEA" />

algor="commandline" option="execute"
command="rm $PATH/$FILENAME mask.kea" />
algor="commandline" option="execute"
command="rm $PATH/$FILENAME_ stretched.kea" />

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

CHAPTER 6.

<rsgis:command

<rsgis:command

<rsgis:command

<rsgis:command

<rsgis:command

<rsgis:command

<rsgis:command

<rsgis:command

<rsgis:command

<rsgis:command

EXAMPLES - IMAGE SEGMENTATION

algor="imagecalc" option="kmeanscentres"
image="$PATH/$FILENAME_stretched_masked.kea"

output="$PATH/$FILENAME clusters" numclusters="60" maxiterations="200"

degreeofchange="0.25" subsample="1" initmethod="diagonal_range_attach" />

algor="segmentation" option="labelsfromclusters"
image="$PATH/$FILENAME_stretched_masked.kea"
output="$PATH/$FILENAME_clusters.kea"
clusters="$PATH/$FILENAME clusters.gmtxt"
ignorezeros="yes" format="KEA" proj="IMAGE" />

algor="segmentation" option="elimsinglepxls"
image="$PATH/$FILENAME _stretched_masked.kea"
clumps="$PATH/$FILENAME_clusters.kea"
temp="$PATH/$FILENAME_clusters_singlepxls_tmp.kea"
output="$PATH/$FILENAME_clusters_nosinglepxls.kea"
ignorezeros="yes" format="KEA" proj="IMAGE" />

algor="commandline" option="execute"

command="rm $PATH/$FILENAME_ clusters.kea" />
algor="commandline" option="execute"

command="rm $PATH/$FILENAME_clusters_singlepxls_tmp.kea" />

algor="segmentation" option="clump"
image="$PATH/$FILENAME_clusters_nosinglepxls.kea"
output="$PATH/$FILENAME_clumps.kea" nodata="0"
format="KEA" inmemory="no" proj="IMAGE" />

algor="commandline" option="execute"
command="rm $PATH/$FILENAME_ clusters_nosinglepxls.kea" />

algor="segmentation" option="rmsmallclumpsstepwise"
image="$PATH/$FILENAME_stretched_masked.kea"
clumps="$PATH/$FILENAME_clumps.kea"
output="$PATH/$FILENAME_clumps_elim.kea"
minsize="50" maxspectraldist="200000"

format="KEA" inmemory="no" proj="IMAGE" />

algor="commandline" option="execute"
command="rm $PATH/$FILENAME_stretched_masked.kea" />

algor="commandline" option="execute"

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

CHAPTER 6. EXAMPLES - IMAGE SEGMENTATION 33

<rsgis:

<rsgis:

<rsgis:

<rsgis:

command

command

command

command

command="rm $PATH/$FILENAME_clumps.kea" />

algor="segmentation" option="relabelclumps"
image="$PATH/$FILENAME clumps_elim.kea"
output="$PATH/$FILENAME clumps_elim_final.kea"
format="KEA" inmemory="no" proj="IMAGE" />

algor="commandline" option="execute"
command="rm $PATH/$FILENAME clumps_elim.kea" />

algor="segmentation" option="meanimg"

image="$FILEPATH" clumps="$PATH/$FILENAME clumps_elim_final.kea"
output="$PATH/$FILENAME_clumps_elim_mean.kea"

format="KEA" inmemory="no" proj="IMAGE" />

algor="imageutils" option="popimgstats"
image="$PATH/$FILENAME clumps_elim_mean.kea" ignore="0" pyramids='"yes" />

To use the script provided you need to use the rsgislibxml.py command which
replaces the $FILEPATH with the file path of the input image (found by rsgis-
libxml.py within the input directory) $PATH with the provided directory path
and SFILENAME with the name of the input file. An example of this command

is given below:

rsgislibxml.py -i RunSegmentationTemplate.xml \

-0 Segmentation.xml -p ./Segments \

-d ./Data/ -e .kea -r no -t single

Once the command above has been executed then the segmentation can be run

using the rsgisexe command:

‘rsgisexe -x Segmentation.xml

The resulting segmentation will have produced 3 output files

1. xclusters.gmtxt — Cluster centres.

2. xclumps_elim _final.kea — Segment clumps.

3. xclumps_elim_mean.kea — Mean colour image using segments.

Following the segmentation the it is recommend that you make sure that the

clumps file is defined as a thematic file, as demonstrated in the following piece of

CHAPTER 6. EXAMPLES - IMAGE SEGMENTATION 34

python:

import sys

from osgeo import gdal

ds = gdal.Open(sys.argv[1], gdal.GA_Update)

for bandnum in (ds.RasterCount) :
band = ds.GetRasterBand(bandnum + 1)
band.SetMetadataltem(s)

Finally, use the gdalcalcstats command to populate the image with an attribute
table, histogram and colour table (set -ignore 0 as 0 is the background no data

value).

setthematic.py L7ETM_530NO35W_clumps_elim_final.kea
gdalcalcstats L7ETM_530N035W_clumps_elim_final.kea -ignore O

Chapter 7

Examples — Raster GIS

7.1 Populating Segment Statistics

To populate the segments with statistics (i.e., Mean for each spectral band) there
is a command with the rastergis part of the RSGISLib software. Examples of this

are shown within the XML code below, note the text given for each band is the

10

11

12

13

14

15

16

17

names of the output columns.

<?zml wversion="1.0" encoding="UTF-8" 2>

<l--

Description:
XML File for exzecution within RSGISL1b
Created by **ME** on Thu Mar 21 09:25:21 2013.

Copyright (c) 2013 **0Organisation**. All rights reserved.

-—>

<rsgis:commands xmlns:rsgis="http://www.rsgislib.org/xml/">

<rsgis:command algor="rastergis'" option="popattributestats"
clumps="L7ETM_530N035W_Classification.kea"

<rsgis
<rsgis
<rsgis

<rsgis

input="L7ETM_530N035W_20100417_AtCor_osgb_masked.kea" >

:band band="1"
:band band="2"
:band band="3"
:band band="4"

mean="MayBlue" stddev="MaySDBlue" />
mean="MayGreen" stddev="MaySDGreen" />
mean="MayRed" stddev="MaySDRed" />
mean="MayNIR" stddev="MaySDNIR" />

35

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

10

11

12

CHAPTER 7. EXAMPLES - RASTER GIS 36

<rsgis:band band="5" mean="MaySWIR1" stddev="MaySDSWIR1" />
<rsgis:band band="6" mean="MaySWIR2" stddev="MaySDSWIR2" />

</rsgis:command>

<rsgis:command algor='"rastergis" option="popattributestats"
clumps="L7ETM_530N035W_Classification.kea"
input="L7ETM_530N035W_20100620_AtCor_osgb_masked.kea" >
<rsgis:band band="1" mean="JuneBlue" stddev="JuneSDBlue" />
<rsgis:band band="2" mean="JuneGreen" stddev="JuneSDGreen" />
<rsgis:band band="3" mean="JuneRed" stddev="JuneSDRed" />
<rsgis:band band="4" mean="JuneNIR" stddev="JuneSDNIR" />
<rsgis:band band="5" mean="JuneSWIR1" stddev="JuneSDSWIR1" />
<rsgis:band band="6" mean="JuneSWIR2" stddev="JuneSDSWIR2" />

</rsgis:command>

<rsgis:command algor="rastergis" option='"popattributestats"
clumps="L7ETM_530N035W_Classification.kea"
input="Nant_y_Arian_DEM_30m.kea" >
<rsgis:band band="1" min="MinDEM" mean="MaxDEM"
mean="MeanDEM" stddev="StdDevDEM" />

</rsgis:command>

</rsgis:commands>

If you are going to use a indices and other derived information within your clas-
sification it is quite often a good idea to set up a python script to calculate those
indices and write them back to the image rather than over complicating your

classification script. An example of this is shown below.

#1/usr/bin/env python

import sys
from rios import rat
import numpy

import osgeo.gdal as gdal

#Input file.
fname = "L7ETM_530N035W_Classification.kea"
ratDataset = gdal.Open(fname, gdal.GA_Update)

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

CHAPTER 7. EXAMPLES - RASTER GIS 37

print "Import Columns."

MayBlue = rat.readColumn(ratDataset, "MayBlue")
MayGreen = rat.readColumn(ratDataset, "MayGreen'")
MayRed = rat.readColumn(ratDataset, "MayRed")
MayNIR = rat.readColumn(ratDataset, "MayNIR")
MaySWIR1 = rat.readColumn(ratDataset, "MaySWIR1")
MaySWIR2 = rat.readColumn(ratDataset, "MaySWIR2")

JuneBlue = rat.readColumn(ratDataset, "JuneBlue'")
JuneGreen = rat.readColumn(ratDataset, "JuneGreen')
JuneRed = rat.readColumn(ratDataset, "JuneRed")
JuneNIR = rat.readColumn(ratDataset, "JuneNIR'")
JuneSWIR1 = rat.readColumn(ratDataset, "JuneSWIR1")
JuneSWIR2 = rat.readColumn(ratDataset, "JuneSWIR2")

MeanDEM = rat.readColumn(ratDataset, "MeanDEM")

MayNIR.astype (numpy.float32)
MayRed.astype (numpy.float32)
JuneNIR.astype (numpy.float32)
JuneRed.astype (numpy.float32)
MayBlue.astype (numpy.float32)
JuneBlue.astype (numpy.float32)

print "Calculate Indices."
MayNDVI = (MayNIR - MayRed) / (MayNIR + MayRed)
JuneNDVI = (JuneNIR - JuneRed) / (JuneNIR + JuneRed)

MayWBI = MayBlue/MayNIR
JuneWBI = JuneBlue/JuneNIR

rat.writeColumn(ratDataset, "MayNDVI", MayNDVI)
rat.writeColumn(ratDataset, "JuneNDVI", JuneNDVI)
rat.writeColumn(ratDataset, "MayWBI", MayWBI)

rat.writeColumn(ratDataset, "JuneWBI'", JuneWBI)

Chapter 8

TODO

38

Chapter 9

TODO

39

Chapter 10

TODO

40

	Introduction
	Background
	Using RSGISLib
	The RSGISLib XML Interface
	XML Basics
	Escape Characters
	Commenting
	RSGISLib XML

	Basic UNIX
	Editing a text file

	Using the Batch Queue on HPC Wales

	Installing RSGISLib
	Examples – Image Processing
	Stacking Image Bands
	Basic Landsat Imagery Pre-Processing
	Convert to Radiance
	Convert to TOA
	Re-projecting to OSGB
	Calculating Statistics and Image Pyramids
	Calculate an NDVI
	Expanding the Processing to Multiple Scenes

	Linear Spectral Unmixing
	Defining End Members
	Unmixing the Scene

	Examples – Image Registration
	Examples – Vectors
	Zonal Statistics

	Examples - Image Segmentation
	Iterative Elimination Algorithm
	XML Code

	Examples – Raster GIS
	Populating Segment Statistics

	TODO
	TODO
	TODO

