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ABSTRACT

Kronos is a reactive-functional programming environ-
ment for musical signal processing. It is designed for mu-
sicians and music technologists who seek custom signal
processing solutions, as well as developers of audio com-
ponents.

The chief contributions of the environment include a
type-based polymorphic system which allows for process-
ing modules to automatically adapt to incoming signal
types. An unified signal model provides a programming
paradigm that works identically on audio, MIDI, OSC and
user interface control signals. Together, these features en-
able a more compact software library, as user-facing prim-
itives are less numerous and able to function as expected
based on the program context. This reduces the vocabu-
lary required to learn programming.

This paper describes the main algorithmic contribu-
tions to the field, as well as recent research into improv-
ing compile performance when dealing with block-based
processes and massive vectors.

1. INTRODUCTION

Kronos is a functional reactive programming language|[S8]]
for signal processing tasks. It aims to be able to model
musical signal processors with simple, expressive syntax
and very high performance. It consists of a program-
ming language specification and a reference implemen-
tation that contains a just in time compiler along with a
signal I/O layer supporting audio, OSC[9] and MIDI.

The founding principle of this research project is to re-
duce the vocabulary of a musical programming language
by promoting signal processor design patterns to integrated
language features. For example, the environment auto-
mates signal update rates, eradicating the need for similar
but separate processors for audio and control rate tasks.

Further, signals can have associated type semantics.
This allows an audio processor to configure itself to suit an
incoming signal, such as mono or multichannel, or vary-
ing sample formats. Together, these language features
serve to make processors more flexible, thus requiring a
smaller set of them.

This paper describes the state of the Kronos compiler
suite as it nears production maturity. The state of the
freely available beta implementation is discussed, along

with issues that needed to be addressed in recent devel-
opment work — specifically dealing with support for mas-
sive vectors and their interaction with heterogenous signal
rates.

As its main contribution, this paper presents an algo-
rithm for reactive factorization of arbitrary signal proces-
sors. The algorithm is able to perform automatic signal
rate optimizations without user intervention or effort, han-
dling audio, MIDI and OSC signals with a unified set of
semantics. The method is demonstrated via Kronos, but
is applicable to any programming language or a system
where data dependencies can be reliably reasoned about.
Secondly, this method is discussed in the context of het-
erogenous signal rates in large vector processing, such as
those that arise when connecting huge sensor arrays to
wide ugen banks.

This paper is organized as follows; in Section [2} Kro-
nos Language Overview, the proposed language and com-
piler are briefly discussed for context. Section [3|describes
an algorithm that can perform intelligent signal rate fac-
torization on arbitrary algorithms. Section 4] Novel Fea-
tures, discusses in detail the most recent developments.
Finally, the conclusions are presented in Section 3}

2. KRONOS LANGUAGE OVERVIEW

Kronos programs can be constructed as either textual source
code files or graphical patches. The functional model is
well suited for both representations, as functional pro-
grams are essentially data flow graphs.

2.1. Functional Programming for Audio

Most of a Kronos program consists of function definitions,
as is to be expected from a functional programming lan-
guage. Functions are compositions of other functions, and
each function models a signal processing stage. Per usual,
functions are first class and can be passed as inputs to
other, higher order functions.

This allows traditional functional programming sta-
ples such as map, demonstrated in Figure [T} In the ex-
ample, a higher order function called Algorithm:Map re-
ceives from the right hand side a set of control signals,
and applies a transformation specified on the left hand
side, where each frequency value becomes an oscillator
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Figure 1. Mapping a set of sliders into an oscillator bank

at that frequency. For a thorough discussion, the reader is
referred to previous work[3]].

2.2. Types and Polymorphism as Graph Generation

Kronos allows functions to attach type semantics to sig-
nals. Therefore the system can differentiate between, say,
a stereo audio signal and a stream of complex numbers. In
each case, a data element consists of two real numbers, but
the semantic meaning is different. This is accomplished
by Types. A type annotation is essentially a semantic tag
attached to a signal of arbitrary composition.

Library and user functions can then be overloaded based
on argument types. Signal processors can be made to react
to the semantics of the signal they receive. Polymorphic
functions have powerful implications for musical applica-
tions; consider, for example, a parameter mapping strat-
egy where data connections carry information on parame-
ter ranges to which the receiving processors can automat-
ically adjust to.

2.2.1. Type Determinism

Kronos aims to be as expressive as possible at the source
level, yet as fast as possible during signal processing. That
is why the source programs are type generic, yet the run-
time programs are statically typed. This means that when-
ever a Kronos program is launched, all the signal path
types are deduced from the context. For performance rea-
sons, they are fixed for the duration of a processing run,
which allows polymorphic overload resolution to happen
at compile time.

This fixing is accomplished by a mechanism called
Type Determinism. It means that the result type of a func-
tion is uniquely determined by its argument types. In
other words, type can affect data, but not vice versa. This
leads to a scheme where performant, statically typed sig-
nal graphs can be generated from a type generic source
code. For details, the reader is referred to previous work[6].

2.3. Multirate Processing

Kronos models heterogenous signal rates as discrete up-
date events within continuous “staircase” signals. This
allows the system to handle sampled audio streams and
sparse event streams with an unified[S] signal model. The

entire signal graph is synchronous and the reactive update
model imposes so little overhead that it is entirely suitable
to be used at audio rates.

This is accomplished by defining certain active exter-
nal inputs to a signal graph. The compiler analyzes the
data flow in order to determine a combination of active
inputs or springs that drive a particular node in the graph.

Subsequently, different activity states can be modeled
from the graph by only considering those nodes that are
driven by a particular set of springs. This allows for gen-
erating a computation graph for any desired set of external
inputs, leaving out any operations whose output signal is
unchanged during the activation state.

For example, user interface elements can drive filter
coefficient computations, while the audio clock drives the
actual signal processing. However, there’s no need to sep-
arate these sections in the user program. The signal flow
can be kept intact, and the distinction between audio and
control rate becomes an optimization issue, handled by
the compiler, as opposed to a defining the structure of the
entire user program.

3. REACTIVE FUNCTIONAL AS THE
UNIVERSAL SIGNAL MODEL

3.1. Dataflow Analysis

Given an arbitrary user program, all signal data flows should
be able to be reliably detected. For functional program-
ming languages such as Kronos or Faust[7], this is triv-
ial, as all data flows are explicit. The presence of any
implicit data flows, such as the global buses in systems
like SuperCollider[[1] can pose problems for the data flow
analysis.

3.2. Reactive Clock Propagation

The general assumption is that a node is active whenever
any of its upstream nodes are active. This is because log-
ical and arithmetic operations will need to be recomputed
whenever any of their inputs change.

However, this is not true of all nodes. If an operation
merely combines unchanged signals into a vectored sig-
nal, it is apposite to maintain separate clocking records
for the components of the vectored signal rather than have
all the component clocks drive the entire vector. When the
vector is unpacked later, subsequent operations will only
join the activation states of the component signals they ac-
cess.

Similar logic applies to function calls. Since many
processors manifest naturally as functions that contain mixed
rate signal paths, all function inputs should preferably have
distinct activation states.

3.3. Stateful Operations and Clock

The logic outlined in section [3.2] works well for strictly
functional nodes — all operations whose output is uniquely
determined by their inputs rather than any state or mem-
ory.
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Figure 2. A Filter with ambigious clock sources

However, state and memory are important for many
DSP algorithms such as filters and delays. Like Faust[7],
Kronos deals with them by promoting them to language
primitives. Unit delays and ring buffers can be used to
connect to a time-delayed version of the signal graph. This
yields an elegant syntax for delay operations while main-
taining strict functional style within each update frame.

For strictly functional nodes, activation is merely an
optimization. For stateful operations such as delays, it
becomes a question of algorithmic correctness. Therefore
it is important that stateful nodes are not activated by any
springs other than the ones that define their desired clock
rate. For example, the unit delays in a filter should not be
activated by the user interface elements that control their
coefficients to avoid having the signal clock disrupted by
additional update frames from the user interface.

A resonator filter with a signal input and two control
parameters freq and radius is shown in Figure The
nodes that see several clock sources in their upstream are
indicated with a dashed border. Since these include the
two unit delay primitives, it is unclear which clock should
determine the length of the unit delay.

3.3.1. Clock Priority

The clocking ambiguities can be resolved by assigning
priorities to the springs that drive the signal graph. This

means that whenever a node is activated by multiple springs,

some springs can preclude others.

The priority can be implemented by a strict-weak or-
dering criteria, where individual spring pairs can either
have an ordered or an unordered relation. Ordered pairs

will only keep the dominant spring, while unordered springs

can coexist and both activate a node. The priority sys-
tem is shown in Figure[3] The audio clock dominates the
control signal clocks. Wires that carry control signals are
shown hollow, while audio signal wires are shown solid
black. This allows the audio clock to control the unit de-
lays over sources of lesser priority.
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Figure 3. A Filter with clocking ambiguity resolved
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Figure 4. Dynamic clock from a Transient Detector

3.3.2. Dynamic Clocking and Event Streams

The default reactivity scheme with appropriate spring pri-
orities will result in sensible clocking behavior in most
situations. However, sometimes it may be necessary to
override the default clock propagation rules.

As an example, consider an audio analyzer such as a
simple transient detector. This processor has an audio in-
put and an event stream output. The output is activated by
the input, but only sometimes; depending on whether the
algorithm decides a transient occurred during that partic-
ular activation.

This can be implemented by a clock gate primitive,
which allows a conditional inhibition of activation. With
such dynamic activation, the reactive system can be used
to model event streams — signals that do not have a reg-
ular update interval. This accomplishes many tasks that
are handled with branching in prodecural languages, and
in the end results in similar machine code. A simple ex-
ample is shown in Figure[d] The Reactive : Gate primitive
takes a truth value and a signal, inhibiting any clock up-
dates from the signal when the truth value is false. This
allows an analysis algorithm to produce an event stream
from features detected from an audio stream.



Table 1. Activation State Matrix

Clock X
Clock x 3 X X X
Clock x 4 % % X %

3.3.3. Upsampling and Decimation

For triggering several activations from a single external
activation, an upsampling mechanism is needed. A spe-
cial purpose reactive node can be inserted in the signal
graph to multiply the incoming clock rate by a rational
fraction. This allows for both up- and downsampling of
the incoming signal by a constant factor. For reactive pri-
ority resolution, clock multipliers sourced from the same
external clock are considered unordered.

To synchronously schedule a number of different ra-
tional multiplies of an external clock, it is necessary to
construct a super-clock that ticks whenever any of the mul-
tiplier clocks might tick. This means that the super-clock
multiplier must be divisible by all multiplier numerators,
yet be as small as possible. This can be accomplished
by combining the numerators one by one into a reduction
variable S with the formula in Equation (T)

_ab
~ gcd(a,b)

To construct an activation sequence from an upsam-
pled external clock, let us consider the sequence of S super-
clock ticks it triggers. Consider the super-clock multiplier
of § and a multiplier clock % In terms of the super-clock
period, the multiplier ticks at % This is guaranteed to
simplify to %, where P is an integer — the period of the
multiplier clock in super-clock ticks.

Within a period of S super-clock ticks, the multiplier
clock could potentially activate once every ged(S, P) ticks.
In the case of P = gcd(S, P) the activation pattern is de-
terministic. Otherwise, the activation pattern is different
for every tick of the external clock, and counters must be
utilized to determine which ticks are genuine activations
to maintain the period P. An activation pattern is demon-
strated in Table[T]

This system guarantees exact and synchronous timing
for all rational fraction multipliers of a signal clock. For
performance reasons, some clock jitter can be permitted
to reduce the number of required activation states. This
can be done by merging a number of adjacent super-clock
ticks. As long as the merge width is less than the smallest
P in the clock system, the clocks maintain a correct aver-
age tick frequency with small momentary fluctuations. An
example of an activation state matrix is shown in Figure
This table shows a clock and its multiplies by three and
four, and the resulting activation combinations per super-
clock tick.

fla,b) 6]

Table 2. Compilation passes performed by Kronos Beta
Pass Description
1. Specialization | Generic functions to typed functions
and overload resolution
Reactive analysis and splitting of typed
functions to different activation states
Functional data flows to
pointer side effects
Selection and scheduling of
x86 machine instructions

2. Reactivity

3. Side Effects

4. Codegen

3.3.4. Multiplexing and Demultiplexing

The synchronous multirate clock system can be leveraged
to provide oversampled or subsampled signal paths, but
also several less intuitive applications.

To implement a multiplexing or a buffering stage, a
ring buffer can be combined with a signal rate divider. If
the ring buffer contents are output at a signal rate divided
by the length of the buffer, a buffering with no overlap is
created. Dividing the signal clock by half of the buffer
length yields a 50% overlap, and so on.

The opposite can be achieved by multiplying the clock
of a vectored signal and indexing the vector with a ramp
that has a period of a non-multiplied tick. This can be
used for de-buffering a signal or canonical insert-zero up-
sampling.

3.4. Current Implementation in Kronos

The reactive system is currently implemented in Kronos
Beta as an extra pass between type specialization and ma-
chine code generation. An overview of the compilation
process is described in Table [2]

The reactive analysis happens relatively early in the
compiler pipeline, which results in some added complex-
ity. For example, when a function is factored into several
activation states, the factorizer must change some of the
types inferred by the specialization pass to maintain graph
consistency when splitting user functions to different ac-
tivation states.

Further, the complexity of all the passes depends heav-
ily on the data. During the specialization pass, a typed
function is generated for each different argument type.
For reacursive call sequences, this means each iteration
of the recursion. While the code generator is able to fold
these back into loops, compilation time grows quickly as
vector sizes increase. This hardly matters for the original
purpose of the compiler, as most of the vector sizes were
in orders of tens or hundreds, representing parallel ugen
banks.

However, the multirate processing and multiplexing
detailed in Section [3.3.4] are well suited for block pro-
cesses, such as FFT, which naturally need vector sizes
from several thousand to orders of magnitude upwards.
Such processes can currently cause compilation times from
tens of seconds to minutes, which is not desirable for a



quick development cycle and immediate feedback. The
newest developments on Kronos focus on, amongst other
things, decoupling compilation time from data complex-
ity. The relationship of these optimizations to reactive fac-
torization is explored in the following Section ]

4. NEW DEVELOPMENTS

Before Kronos reaches production maturity, a final rewrite
is underway to simplify the overrall design, improve the
features and optimize performance. This section discusses
the improvements over the beta implementation.

4.1. Sequence Recognition

Instead of specializing a recursive function separately for
every iteration, it is desirable to detect such sequences as
early as possible. The new version of the Kronos compiler
has a dedicated analysis algorithm for such sequences.

In the case of a recursion, the evolution of the induc-
tion variables is analyzed. Because Kronos is type deter-
ministic, as explained in Section the overload reso-
lution is uniquely determined by the types of the induction
variables.

In the simple case, an induction variable retains the
same type between recursions. In such a case, the over-
load resolution is invariant with regard to the variable.
In addition, the analyzer can handle homogenous vectors
that grow or shrink and compile time constants with sim-
ple arithmetic evolutions. Detected evolution rules are
lifted or separated from the user program. The analyzer
then attempts to convert these into recurrence relations,
which can be solved in closed form. Successful analysis
means that a sequence will have identical overload resolu-
tions for N iterations, enabling the internal representation
of the program to encode this efficiently.

Recognized sequences are thus compiled in constant
time, independent from the size of data vectors involved.
This is in contrast to Kronos Beta, which compiled vec-
tors in linear time. In practice, the analyzer works for
functions that iterate over vectors of homogenous values
as well as simple induction variables. It is enough to effi-
ciently detect and encode common functional idioms such
as map, reduce, unfold and zip, provided their argument
lists are homogenous.

4.2. New LLVM Backend

As a part of Kronos redesign, a decision was made to
push the reactive factorization further back in the com-
pilation pipeline. Instead of operating in typed Kronos
functions, it would operate on a low level code represen-
tation, merely removing code that was irrelevant for the
activation state at hand.

This requires some optimization passes after factor-
ization, as well as an intermediate representation between
Kronos syntax trees and machine code. Both of these are
readily provided by the widely used LLVM, a compiler

Table 3. Compilation passes performed by Kronos Final

Pass Description

1. Specialization Generic functions to typed functions
and overload resolution
Sequence recognition and encoding

2. Reactive analysis Reactive analysis

3. Copy Elision Dataflow analysis and copy elision

4. Side Effects Functional data flows to

pointer side effects

5. LLVM Codegen Generating LLVM IR with a

specific activation state

6. LLVM Optimization | Optimizing LLVM IR

7. Native Codegen Selection and scheduling of

x86 machine instructions

component capable of abstracting various low level in-
struction sets. LLVM includes both a well designed in-
termediate representation as well as industry strength op-
timization passes. As an extra benefit, it can target a num-
ber of machine architectures without additional develop-
ment effort.

In short, the refactored compiler includes more com-
pilation passes than the beta version, but each pass is sim-
pler. In addition, the LLVM project provides several of
them. The passes are detailed in Table [3] contrasted to
Table[2l

4.3. Reactive Factoring of Sequences

The newly developed sequence recognition creates some
new challenges for reactive factorization. The basic func-
tions of the two passes are opposed; the sequence analysis
combines several user functions into a compact represen-
tation for compile time performance reasons. The reactive
factorization, in contrast, splits user functions in order to
improve run time performance.

A typical optimization opportunity that requires co-
operation between reactive analysis and sequence recog-
nition would be a bank of filters controlled by a number
of different control sources. Ideally, we want to maintain
an efficient sequence representation of the audio section
of those filters, while only recomputing coefficients when
there is input from one of the control sources.

If a global control clock is defined that is shared be-
tween the control sources, no special actions are needed.
Since all iterations of the sequence see identical clocks at
the input side, they will be identically factored. Thus, the
sequence iteration can be analyzed once, and the analysis
is valid for all the iterations. The LLVM Codegen sees
a loop, and depending on the activation state it will filter
out different parts of the loop and provide the plumbing
between clock regions.

Forcing all control signals to tick at a global control
rate could make the patches easier to compile efficiently.
However, this breaks the unified signal model. A central
motivation of the reactive model is to treat event-based



and streaming signals in the same way. If a global control
clock is mandated, signal models such as MIDI streams
could no longer maintain the natural relationship between

an incoming event and a clock tick. Therefore, event streams

such as the user interface and external control interfaces
should be considered when designing the sequence fac-
torizer.

4.3.1. Heterogenous Clock Rates in Sequences

Consider a case where each control signal is associated
with a different clock source. We would still like to main-
tain the audio section as a sequence, but this is no longer
possible for the control section, as each iteration responds
to a different activation state.

In this case, the reactive factorization must compute a
distinct activation state for each iteration of the sequence.
If there is a section of the iteration with an invariant acti-
vation state, this section can be factored into a sequence
of its own.

Such sequence factorization can be achieved via hyl-
opmorphism, which is the generalization of recursive se-
quences. The theory is beyond the scope of this arti-
cle, but based on the methods in literature[2]], any se-
quence can be split into a series of two or more sequences.
In audio context, this can be leveraged so that as much
activation-invariant code as possible can be separated into
a sequence that can be maintained throughout the compi-
lation pipeline. The activation-variant sections must then
be wholly unrolled. This allows the codegen to produce
highly efficient machine code.

5. CONCLUSIONS

This paper presented an overview of Kronos, a musical
signal processing language, as well as the design of its
reactive signal model. Kronos is designed to increase the
flexibility and generality of signal processing primitives,
limiting the vocabulary that is requisite for programming.
This is accomplished chiefly via the type system and the
polymorphic programming method as well as the unified
signal model.

The reactive factorization algorithm presented in this
paper can remove the distinction between events, mes-
sages, control signals and audio signals. Each signal type
can be handled with the same set of primitives, yet the
code generator is able to leverage automatically deduced
signal metadata to optimize the resulting program.

The concepts described in this paper are implemented
in a prototype version of the Kronos compiler which is
freely available along with a visual, patching interface[4].
For a final version, the compiler is currently being re-
designed, scheduled to be released by the summer of 2013.
The compiler will be available with either a GPL3 or a
commercial license.

Some new developments of a redesigned compiler were
detailed, including strategies for handling massive vec-
tors. This is required for a radical improvement in com-
pilation times for applications that involve block process-

ing, FFTs and massive ugen banks. As Kronos aims to
be an environment where compilation should respond as
quickly as a play button, this is critical for the feasibility
of these applications.

As the compiler technology is reaching maturity, fur-
ther research will be focused on building extensive, adapt-
able and learnable libraries of signal processing primitives
for the system. Interaction with various software plat-
forms is planned. This takes the form of OSC commu-
nication as well as code generation — Kronos can be used
to build binary format extensions, which can be used as
plugins or extensions to other systems. LLVM integra-
tion opens up the possibility of code generation for DSP
and embedded devices. Finally, the visual programming
interface will be pursued further.
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