db-patch Documentation
Release 0.1-1

Miguel A. Martinez Pinedo

January 09, 2013

CONTENTS

1 User guide 3
1.1 How it works o e e e e e e 3
1.2 Features o o o o e e e e e e e 3
1.3 Patches o e e e 4
1.4 Invokingdb-patch e e e e e 7
2 Developer guide 9
2.1 Adding ODBC CONNECtionS v v v v v v e e e e e e e e e e e e e e e e e e e 9
2.2 Adding native CONNECHONS . . .« . v v v v v vt e e e e e e e e e e e e e e e e e e e 10
2.3 Creatingnew patches o e e e e e e 11
2.4 Providing more OptoONS L . it e e e e e e e e e e e e e e e e e e e 11
3 Indices and tables 13
Index 15

db-patch Documentation, Release 0.1-1

Contents:

CONTENTS 1

db-patch Documentation, Release 0.1-1

2 CONTENTS

CHAPTER
ONE

USER GUIDE

1.1 How it works

db-patch load the patch; next, it connects with the database engine (see database and connection options) and recovers
the list of all the databases. Apply the filter (see the command line options -d, -i and -e) to the databases list, and
secuentially applies the patch in each filtered database. When the process ends, it closes all the connections and finish.

For determine the patch type, and to act consequently, db-patch uses the file extension; However, it is possible to select
the patch to use through the —patch-type command line option. Currently db-patch support three patch types: SQL,
python and raw patches; but it is possible to use custom patches through plugins.

The next table shows the current relation between file extensions and patch types.

Extension Patch
sql sql
Py python
raw raw

1.2 Features

db-patch has two useful features: the dry-run mode and the ability of store the executed SQL sentences.

1.2.1 dry-run mode

Working in this mode (-t or —dry-run command line option) only the SQL sentences that does not modify the database
are executed (and showed); therefore, this mode allow test the patch before of apply it into database.

1.2.2 Store SQL sentences

This feature allow store exactly the SQL statements introduced in the database. For manage this feature there are four
command line options:

¢ -c or —clean. Avoid generate files with the SQL executed.
» —gen-dir. Define the directory where the files are stored (by default sql_sentences)

» —gen-file. Define the file names where the tag HOST will be replaced by the host, the tag NAME for the patch
name and the tag TIME a timestamp (by default: HOST_NAME_TIME.sql)

¢ -S. Show the executed SQL in the standard output.

db-patch Documentation, Release 0.1-1

1.3 Patches

1.3.1 SQL patches

(1381}

A SQL patch is a file with .sg/ extension that contains several SQL statements separated by “;”.
db-patch recovers each SQL statement and execute it into each selected database.
By example the next SQL snippet contains three statements.

-— A very simple table creation
CREATE TABLE date (day INT, month CHAR (40), year CHAR(40));

—— Adding two rows
INSERT INTO date VALUES (0, ’20127, ’"12");
INSERT INTO date VALUES (1, '2012’, ’"12");

1.3.2 Python patches

A Python patch is a python file (with .py extension) that contains a class that inherit of db-
patch.patch.python. PythonPatch and overwrites the execute method. Of this way it is possible generate SQL sentences
dinamically.

The next snippet shows a very simple Python patch. This patch connect with the database and execute a create
sentence, besides it shows messages before and after of apply the patch.

from dbpatch.patch.python import PythonPatch
class CreatePatch (PythonPatch) :
CREATE_TABLE = 'CREATE TABLE test (anInt INT, aString CHAR(40))’

def pre_execute(self):
print 'Before of execute the patch’

def execute(self, db):

connection = self.connect_to (db)
statement = self.create_statement (CreatePatch.CREATE_TABLE)
status = statement.execute ()

return status

def post_execute(self):
print 'After of execute the patch’

Sometimes could be necessary connect with other database (of the same database engine) for recover information and
generate new entries.

The next python patch introduce ten rows in the “test” database, and recover only a few of these rows. Next, it connects
with the database “filtered” and introduce the recovered rows.

Note that the method encode is used for assure that the strings use the same charset, and the method set_error is used
for store the error messages.

import time
from dbpatch.patch.python import PythonPatch

4 Chapter 1. User guide

db-patch Documentation, Release 0.1-1

class InsertTwoDbsPatch (PythonPatch) :

DB_ORIG = "test"

DB_DEST = "filtered"

The SQL sentences ends with ;

of this way the stored SQL can be used as a SQL patch
INSERT_DATE = "INSERT INTO date VALUES (2, ’2/, ’'2/);"
SELECT_MAYOR = "SELECT » FROM date WHERE day > 5;"

def execute(self, db):
if db != InsertTwoDbsPatch.DB_ORIG:
return

self.connect_to(InsertTwoDbsPatch.DB_ORIG)

local = time.localtime ()
for i in range(10):

values = (i+l, str(local[l]), str(local([0]))

statement = self.create_statement (InsertTwoDbsPatch.INSERT_DATE,
values)

status = statement.execute ()

if not status:
self.set_error(’Unable insert [%s] in db [%s]’ % \
(str (values), InsertTwoDbsPatch.DB_ORIG))
return False

select = self.create_statement (InsertTwoDbsPatch.SELECT_MAYOR)
select.execute ()
rows = select.get_rows|()

self.connect_to(InsertTwoDbsPatch.DB_DEST)

for row in rows:

encoded = (row[0], self.encode(row[l]), self.encode(row[2]))

statement = self.create_statement (InsertTwoDbsPatch.INSERT_DATE,
encoded)

status = statement.execute ()

if not status:
self.set_error (' Unable insert [%s] in db [%s]’ % \
(str (values), InsertTwoDbsPatch.DB_DEST))
return False

return True

PythonPatch class

The dbpatch.patch.python.PythonPatch class contains the next methods.

create_statement (marked_query, values=(), autocommit=True)
Create one statement for carry out SQL sentences. This method always must be used for execute SQL in any
database.

Parameters

* marked_query — The query with marks. Examples:

1.3. Patches 5

db-patch Documentation, Release 0.1-1

“INSERT INTO date VALUES (?, 7’, ‘7’)”
“SELECT * FROM date”
* values — The values for populate the marked_query.
» autocommit — Flag for enable/disable the autocommit behaviour.
Return type dbpatcher.statement.Statement

encode (the_string)
Encode the string passed by parameter taking into account the charset and the charset policy defined for the
patch (through command line options).

Parameters the_string — The string to encode
Return type The encoded string

connect_to (db_name)
Connect with the database passed by parameter.

Parameters db_name — The database name to connect
Return type None

get_databases ()
Return the list of databases taking into account the include/exclude options

Return type The list of databases (string list)

set_error (error)
Setter for error message

Parameters error — The string that contains the error message
Return type A string with the error

get_error ()
Getter for error message (internally used for to show the error when some is wrong)

Return type A string with the error

get_options ()
Getter for options object

Return type dbpatch.options.Options

pre_execute ()
This method it will be executed once before of execute the patch in all databases. It must return true if the
excution is ok, false in other case.

The child classes can overwrite this method.
Return type Boolean

before database (db_name)
This method it will be executed before of execute the patch in each database.

The child classes can overwrite this method.

Parameters db_name — The database name. That is, the name of the database where the patch will
be applied.

execute (db_name)
This method it will be executed in each database. It must return true if the excution is ok, false in other case

The child classes should overwrite this method.

6 Chapter 1. User guide

db-patch Documentation, Release 0.1-1

Parameters db_name — The database name. That is, the name of the database where the patch will
be applied.

Return type Boolean

after database (db_name)
This method it will be executed after of execute the patch in each database

The child classes can overwrite this method.

Parameters db_name — The database name. That is, the name of the database where the patch has
been applied.

post_execute ()
This method it will be executed once after of execute the patch in all databases. It must return true if the excution
is ok, false in other case.

The child classes can overwrite this method.

Return type Boolean

PreparedStatement class

The dbpatch.patch.PreparedStatement class contains the next methods.

commit ()
Commit the changes. Only if the statement has been created with autocommit=False

rollback ()
Discard the changes. Only if the statement has been created with autocommit=False

execute ()
Build, trace, and execute the SQL sentence

get_row ()
Return the first row obtained of SQL sentence execution.

Return type Tuple

get_rows ()
Return all the rows obtained of SQL sentence execution.

Return type Tuple list

1.3.3 Raw patches
A raw patch run a file as a single SQL sentence. This kind of patch it is useful when it is necessary work with

complex SQL statements (contains several ;" characters, etc). By example, it could be used for introduce triggers in
the databases.

1.4 Invoking db-patch

For a complete and documented option list execute the next command:

$> db-patch —--help

Basic invokations:

1.4. Invoking db-patch 7

db-patch Documentation, Release 0.1-1

$> db-patch -u db_user -p db_password -E MySQL -d db2patch -f patch.py --odbc-driver "MySQL"
$> db-patch -u db_user -p db_password -E MySQL -i db2x —-f patch.py —--odbc-driver "MySQL"

The options -u/-p defines the user and password for connect with the database, and the -f option determine the patch
file to apply.

The -E option defines the database engine, and the —odbc-driver defines the odbc driver to use (it can exist several
drivers for the same database engine).

The option -d define the database names to patch; On the other hand, the option -i use a regular expresion (see the re
python module) for recover the databases to patch

It is possible delegate the command line options to a file (for avoid bash history issues, etc). For this purpose you can
use the option —args-file and provide the file name. For the previous examples the file should contain the next line:

-u db_user -p db_password -E MySQL -i db2x -f patch.py —--odbc-driver "MySQL"

and should be invoked with the next command:

$> db-patch --args-file file_with_options.txt

1.4.1 More ODBC options

Note that it is possible customize the ODBC connection via command line:
e —odbc-dsn. Define a DSN for ODBC connections
* —odbc-extra. Provide extra options for make the ODBC connection string

¢ —odbc-full-connection. Define the full ODBC connection string.

1.4.2 SQL tracing options

-¢, —clean Avoid that all the SQL executed will be stored

—gen-dir=GENERATED_DIR Directory where the SQL sentences for each patch will be stored. By default:
sql_sentences

—gen-file=GEN_FILE Determines the name of the file where the generated SQL is stored.The HOST flag will be
replaced by the hostname passed by command line. The NAME flag will be replaced by the patch name without
extension. The TIME flag will be replaced by a timestamp. By default: “HOST_NAME_TIME.sql”

-S, —show-sql Show the generated SQL sentences in the standard output (stdout)

8 Chapter 1. User guide

http://docs.python.org/2/library/re.html
http://docs.python.org/2/library/re.html

CHAPTER
TWO

DEVELOPER GUIDE

This guide details how to create plugins for use db-patch with other databases, drivers or for create customized patches.

2.1 Adding ODBC connections

Currently only three databases are supported: MySQL, PostgreSQL and SQLite. However, the mechanism for support
other databases is simple.

For connect to one database using ODBC only it is necessary define correclty the connection string. However, each
database use its keywords for this purpose. Therefore, it is necessary associate each custom keyword with the keyword
used by db-patch. The next table shows the default keywords used by db-patch for create an ODBC connection string.

Keyword Meaning

USER Database user

PASSWORD | Database password
SERVER Hostname of database server
PORT Port of database server
DRIVER ODBC driver

CHARSET Database charset

For instance, PostgreSQL uses the keyword UID instance of USER and PWD instance of PASSWORD. Therefore, it
is necessary customize the connection string. To do this, it is necessary create a customized OdbcQueryBuilder and
overwrite the method get_customized_keywords as it is shown in the next code listing.

import dbpatch.connection.odbc as odbc
class PostgreSQLQueryBuilder (odbc.OdbcQueryBuilder) :
NAME = ’'postgresqgl’

def get_internal_database (self):
return ’'postgres’

def get_all databases_qguery (self):
return "SELECT datname FROM pg_database WHERE datistemplate = false"

def get_customized_keywords (self):
return {’USER’ : 'UID’,
"PASSWORD’ : ’'PWD’}

db-patch Documentation, Release 0.1-1

def register():
odbc.OdbcQueryBuilderFactory.register (PostgreSQLQueryBuilder)

The previous code listing shows other two methods that should be overwritten:

 get_internal_database. Return the name of the internal database used for the database engine. db-patch will
connect with this database for recover the full list of working databases.

» get_all_databases_query. Return the query that will recover the full list of working databases.
Other two aspects should be noted:

* The NAME class attribute. Define the name that it will be used by db-patch for register the customized ODBC
QueryBuilder.

Note: It is mandatory define the NAME attribute. The NAME is provided by the -E (-db-engine) command line
option.

* The register module method. Register the customized OdbcQueryBuilder for to be used by db-patch

Note: If the customized OdbcQueryBuilder is not registered, db-patch will not found it.

The method that creates the final ODBC connection string is OdbcQueryBuilder.get_connection_string. It is possible
overwrite, but previously it is recommended to show the code of this method because it makes checks, and add optional
options.

2.2 Adding native connections

It is possible connect with the database engine using specific drivers instead of ODBC. For to do this, it is necessary
provide a customized patcher.connection. Connection class and to use the —connection-plugins command line option.

For drivers compliant with the DB-API 2.0 specification the class patcher.connection.DbApi2Connection is pro-
vided. A new driver that use this class as parent class only should overwrite a few methods, define the NAME
class attribute and register the connection (create a module method called register and use the method db-
patch.connection.ConnectionFactory.register_connection). Next, the methods to overwrite are enumerated.

» connect. Connect with one database.
¢ get_internal_database. Return the name of the internal database.
» get_all_databases. Recover the full list of databases.
Currently there are three native implementations that can be used as examples:
* For MySQL, using the MySQLdb driver
¢ For PostgreSQL, using the psycopg?2 driver.
 For SQLite, using the sqlite3 python module.

Note: For to use your new native connection it is necessary to provide the next command line options to db-patch
* -N or —native

* —connection-plugins

10 Chapter 2. Developer guide

http://www.python.org/dev/peps/pep-0249
https://bitbucket.org/mpinedo/db-patch-mysql-native
http://mysql-python.sourceforge.net/
https://bitbucket.org/mpinedo/db-patch-postgresql-native
http://initd.org/psycopg/
https://bitbucket.org/mpinedo/db-patch-sqlite-native
http://docs.python.org/2/library/sqlite3.html

db-patch Documentation, Release 0.1-1

2.3 Creating new patches

For create a new patch only it is necessary inherit of the class dbpatch.patch. Patch, provide an implementation of the
execute method, add the EXTENSION class attribute, register the new patch (creating a module method called register
and using the method dbpatch.patch. PatchFactory.register), and use the —patch-plugins command line option.

As example see the implementation of raw and sql patches (the code shown below correspond to used for manage raw
patches).

import dbpatch.options
from dbpatch.log import LogFactory
import dbpatch.patch

class RawPatch (dbpatch.patch.Patch):

rrs

Execute all the content of a file in a single query. Useful by
example for PL SQL scripts. Be careful, you must introduce
a single query.

The keyword ’‘mydb’ will be replaced by each database name

rrs

EXTENSION = "raw’

def _ init_ (self):
dbpatch.patch.Patch.__init__ (self)

self._log = LogFactory() .get_logger (RawPatch.__name__)
patch_file = self._options.get_option (dbpatch.options.PATCH_FILE)
self._qgueries = open(patch_file, "r’).read()

def execute(self, db_name):

connection = self.connect_to (db_name)

queries = self._queries.replace ('mydb’, db_name)
statement = self.create_statement (queries)
status = statement.execute ()

if not status:
return False

return True

def register():
dbpatch.patch.PatchFactory.register (RawPatch)

2.4 Providing more options

Your new plugins could require more options. For this purpose you can use the —extra-opts command line option.
This option recover a properties file and add them into the dbpatch.options.Options object. That is, for the next file

[myopt]
optl = first
opt2 = second

using the command line option

2.3. Creating new patches 11

db-patch Documentation, Release 0.1-1

$> db-patch [...] —-—-extra-opts myopt.cfg

your plugins can recover this properties from the Options object using the keywords myopt.optl and myopt.opt2
(section.option_name)

[...]

your_optl = Context () .options.get_option ('myopt.optl”)
your_opt2 = Context ().options.get_option ('myopt.opt2’)
[...]

12

Chapter 2. Developer guide

CHAPTER
THREE

* genindex
* modindex

INDICES AND TABLES

13

db-patch Documentation, Release 0.1-1

14 Chapter 3. Indices and tables

A

after_database() (built-in function), 7

B

before_database() (built-in function), 6

C

commit() (built-in function), 7
connect_to() (built-in function), 6

create_statement() (built-in function), 5

E

encode() (built-in function), 6
execute() (built-in function), 6, 7

G

get_databases() (built-in function), 6
get_error() (built-in function), 6
get_options() (built-in function), 6
get_row() (built-in function), 7
get_rows() (built-in function), 7

P

post_execute() (built-in function), 7
pre_execute() (built-in function), 6

R

rollback() (built-in function), 7

S

set_error() (built-in function), 6

INDEX

15

	User guide
	How it works
	Features
	Patches
	Invoking db-patch

	Developer guide
	Adding ODBC connections
	Adding native connections
	Creating new patches
	Providing more options

	Indices and tables
	Index

