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1. Overview

This is a resource for students learning to solve problems that involve finding
proofs. The goal here is to present not just problems and proofs, but guidance on
how a student should go about attempting to find a proof. We focus not on tricks
to solve unusual problems but on the basic principles used to find proofs.
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2. A simple analysis problem.

We begin with a problem whose conclusion is obvious. Our goal is to see how to
find a complete proof.

2.1. Problem: Consider the sequence an given by:

• an = n/2 if n is even.
• an = 0 if n is odd.

Show that this sequence is not bounded above.

2.2. How to solve it:

2.2.1. Examining the problem.

• Firstly, the hypothesis - what is given to you, is rather simple. It is just an
explicitly described sequence.

• Next, the conclusion we need is to show that the given sequence is not
bounded.

2.2.2. Recalling relevant definitions and results.

• The one definition to recall is that of a bounded sequence. As we want to
show that an is not bounded above, let us recall what it means for an to
be bounded above.

” The sequence an is bounded above if there exists a real number C so that for all
n ∈ N, we have an < C. ”

• In this case, it turns out that we are best off working straight from the
definition. Experience will tell us when to try to use a theorem and which
one to use.

2.2.3. Strategy for proof. We often have to try different approaches till one succeeds.
It is with experience that one learns which approach is most likely to succeed in
a given situation, and, crucially, how long to follow up on an approach before
changing it.

In this case, we follow a frequently fruitful approach - prove by contradiction.
We want to show that the sequence an is not bounded, so we assume that it is and
work from there.

Assume boundedness: By the definition we just recalled, this means that we
assume the following:

“There is a constant C > 0 so that for all n ∈ N, an < C”
Remember C is fixed, but we do not know what it is. So we look for a contra-

diction treating C as a fixed but unknown constant. So our assumption is
“for all n ∈ N, an < C.”
Let us see why this is impossible. Clearly a contradiction is more likely to come

from an even n, as for n odd an = 0, so an < C as long as C is positive.
Remark: It is worth observing that here we have used another fruitful strategy,

consider cases separately. If we have to find a contradiction, it is enough to find it
in one case, so long as that case is not empty. If we had to prove a result, we would
of course have to prove it in all cases.

Returning to our goal, we want to show that it is not true that an < C for all n.
This brings us to one of the most subtle aspects of learning proofs, correctly negating
(i.e., finding the opposite meaning of) statements, especially those involving for all
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(i.e., every) and there exists (i.e., some). Let us digress a little to consider such an
example:

Negate: Every man is left-handed.
Clearly, the negation is some man is not left-handed. This is part of a general

rule, when negating, every becomes some and some becomes every.
Back to our goal: we wanted to show that it is not true that for all n ∈ N,

an < C. In other words, we wanted to show that the negation of this is true.
So following the principle of making every (for all) into some (there exists), what
remains is to show:

“there exists n > 0 so that an ≥ C.”
As we have already observed, it is better to look for an even n satisfying this.

Using the definition of an for even n, we end up with
“there exists n even so that n/2 ≥ C.”
We could try n = 2C, but this may not be an integer, leave alone even. We

modify this a little: let N be an integer with N ≥ C.
Question: Why does this exist? We will turn to this problem later.
Now we take n = 2N and observe that n/2 = N ≥ C, which was all that

remained.
Remark: One should resist the temptation to be more general than called for, so

it is better to say take n = 2N rather than saying take n to be some even integer
that is at least 2C. This is because, if we complicate the conditions n must satisfy,
it becomes unclear whether some n satisfies all of them.
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3. Derivative bounded below

We consider a problem similar to, but a little more complicated than, our first
analysis problem.

3.1. Problem: Let f : R→ R be a continuously differentiable real-valued function
so that f ′(x) > 1 for all x ∈ R. Show that the function f(x) is not bounded above.

3.2. How to solve it:

3.2.1. Examining the problem.

• Firstly, the hypothesis - what is given to you. Here this is not explicit but
a condition on the function f . So it is worth exploring with some examples
and our intution.
• The hypothesis says that the derivative is positive, so the function is in-

creasing. It is useful to ask whether this is enough. Perhaps a function
may increase at all times, but the rate of increase may get close to zero fast
enough that the function does not become unbounded.
• Indeed this is the case. Consider the function f(x) = ex

1+ex . Observe that

ex is always positive, and so 0 < ex < ex + 1. So f(x) is bounded both
above and below, as we get 0 < f(x) < 1. On the other hand, we calculate
that the derivative of f(x) is always positive (do this).
• So it is not enough that the derivative is positive. But our hypothesis tells

us that the derivative is not merely positive, but greater than 1. This means
that f(x) is not merely increasing everywhere, but doing so at speed greater
than 1. Keep in mind that we must use this in our proof.
• Next, the conclusion we need is to show that the function f(x) is not
bounded.

3.2.2. Recalling relevant definitions and results.

• First, consider the conclsuion. For this, the one definition to recall is that
of a bounded function. As we want to show that f(x) is not bounded above,
let us recall what it means for an to be bounded above.

” The function f(x) is bounded above if there exists a real number C so that for
all x ∈ R, we have f(x) < C. ”

• In this case, it turns out that we are best off working straight from the
definition.

• Now turn to the hypothesis, namely f(x) is a continuously differentiable
function with f ′(x) > 0. Most often, when working with a hypthesis in-
volving the derivative of a function, we work not with definitions but with
one of the important theorems concerning these: the Mean Value theo-
rem (or its special case Rolle’s theorem), the Fundamental theorem of
Calculus, the result that devative is zero at maxima and minima, etc.

• In this case we will use the Mean Value theorem. There is an alternative
approach using instead the Fundamental theorem of Calculus. There is no
magic recipe telling us what to use. We learn from experience what is most
likely to work, but we will still have to try different things till they work.

• Let us recall the mean value theorem. If f : [a, b] → R is a continuously
differentiable function, then there is some point c with a < c < b so that

f(b)− f(a) = f ′(c)(b− a).
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3.2.3. Strategy for proof. Let us emphasise again that we often have to try different
approaches till one succeeds. It is with experience that one learns which approach
is most likely to succeed in a given situation, and, crucially, how long to follow up
on an approach before changing it.

In this case, we again prove by contradiction. We want to show that the function
f(x) is not bounded, so we assume that it is and work from there.

Assume boundedness: By the definition we just recalled, this means that we
assume the following:

“There is a constant C > 0 so that for all x ∈ R, f(x) < C”
Remember C is fixed, but we do not know what it is. So we look for a contra-

diction treating C as a fixed but unknown constant. So our assumption is
“for all x ∈ R, f(x) < C.”
Let us see why this is impossible.Out inution says that as f(x) is increasing, it is

likely that if x is large enough, then f(x) > C. But we need to say precisely what
large enough means, and show that f(x) > C for such an x.

Let us give our large enough x a name, say x = x1. Since we can expect x1 to
be large, let us assume that x1 > 0. As mentioned earlier, it is frequently useful to
invoke the mean value theorem.

But what should we take as a and b? The mean value theorem tells us how much
the function grows in an interval, so in our situation we take the right endpoint to
be b = x1. There is no natural left end-point, so we may as well take a = 0.

In case you were mystified how we came up with b = x1 and a = 0, let me
emphasise again that there is no magic formula, and one will often come up with
many useless substitutions and constructions before finding one that works. It is
important to persist, as well as to look back over proofs once they are found and
so get better at guessing the useful constructions and choices.

Another thing to reiterate, we seemed to pull 0 out of a hat, and you have
probably guessed that there is nothing special about 0. But where any number
works, it is often better to just pick one (typically some old friend like 0 or 1)
rather than getting stuck like the proverbial donkey between two stacks of hay
(who starved as there was no way to decide which one of the stacks to turn to.

Let us see now what the mean value theorem gives us, with b = x1 and a = 0.
We obtain that for some c with 0 < c < x1, we have f(x1)− f(0) = f ′(c)(x1 − 0).

We do not know what c is, but we do know that for all x ∈ R, and in particular
x = c, we have f ′(x) > 0. We also have assumed x1 > 0. So we can deduce that

f(x1)− f(0) > 1(x1 − 0),

In other words,

f(x1) > f(0) + x1.

This is just what the Doctor ordered - remember we have to show that f(x 1) is
large if x1 is large. What we have is an inequality saying that f(x1) is larger than
the right hand side, namely f(0) + x1. Let us examine this a little carefully.

The first term, f(x), is something that our hypothesis tells nothing about. It

may be a large negative number for all we know, perhaps −1010
100

. But we do
know that it is fixed, in particular independent of x1. So we need to choose x1 so
large that the sum f(0) + x1 becomes as positive as we want.
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To make all this precise, let us examine our goal. We want to show that it is
not true that f(x) < C for all x ∈ R. We have already seen how to negate such
statements, so we conclude that we have to show:

“there exists x ∈ R so that f(x) ≥ C.”
We have given such an x a name, x = x1, but we need a recipe for actually

choosing it. More precisely, we need to choose x1 so that

f(x1) ≥ C.

But recall that we know

f(x1) > f(0) + x1

So it is enough to ensure that

f(0) + x1 ≥ C,

i.e.,

x1 ≥ C − f(0).

We take x1 = max(C − f(0), 1). This ensures x1 is positive and satisfies the
above equation). We are done.

Putting it together:
To clarify things, let us look at a sketch of the proof again.
We prove by contradiction. Suppose function f(x) is bounded. Then there exists

a number C so that f(x) < C for all x. We shall pick x = x1, with x1 > 0 so that
f(x1) ≥ C to obtain a contradiction.

Using the hypothesis and the Mean Value theorem, we deduce that for x1 > 0
we have f(x1) > f(0) + C. So, if x1 = max(C − f(0), 1), we see that f(x1) ≥ C,
giving the required contradiction.


