DEVS-Ruby: a discrete event modeling system

J. Paul Daigle
Georgia State University

General Terms: Modeling

Additional Key Words and Phrases: DEVS, Ruby

1. MOTIVATION

The DEVS formalism provides a consistent and practical means of defining discrete
event simulations. However, in application, use of DEVS has been limited to the
DEVSJAVA system, use of which requires an understanding not only of the Java
language, but of a large and complex object system.

In recent years, a number of other object-oriented languages have been gaining
in popularity, such as Scala, Ruby, Groovy, and Cf. Many of these languages have
features that Java does not that make them easier to use, such as type inference
(Scala, Cf, Ruby, Groovy), duck typing (Ruby, Groovy, Python), and monkey
patching (Ruby), as well as functional structures such as Lambda functions, object
enhancements such as Scala and Ruby mixins, and in the case of Ruby, portability
across both operating systems and virtual machines.

Our goal with DEVS-Ruby is to simplify the DEVS object system and the seman-
tics of generating DEVS models without compromising the reliability of simulations.
In addition, we wish to make it easier to install and use a DEVS modeling system.

2. CORE DESIGN

DEVS-Ruby is currently quite primitive. There are only three classes in the core
library, a the DEVSAtomic class, EventQueue class, and an Event class. These
three classes do suffice for building satisfactory primitive models, but do not con-
stitute a complete and reliable DEVS system.

2.1 EventQueue

The class EventQueue has two roles. First, as the name implies, it maintains the
discrete events and the global clock. This is done using an internal class with
methods for adding events and removing future, obsolete events from the queue if
neccessary!. In addition to this, the EventQueue maintains a data structure for
tracking couplings between objects.

The Coupling class is an example of simplifying the use of DEVS. In DEVS-
JAVA, each coupling must be defined separately. If object A is to have a coupling
to both objects B and C, two couplings must be created. In DEVS-Ruby, a the

1The accompanying ruby documentation contains complete descriptions of each class, including
attributes and methods

This document is @®®® 2011 by J. Paul Daigle.

CSC 8840: Modeling and Simulation Theory and Application, Spring 2011



2 : J. Paul Daigle

constructor for the coupling object takes an arbitrary number of arguments. The
first argument is the sender and all subsequent arguments are the recievers. This
simplifies both reading and writing of code.

2.2 Event

The Event class again uses Ruby’s optional constructor arguments. The constructor
technically takes four arguments, but all arguments are optional. This disposes of
the need to have multiple constructors for different numbers of argument sets, again
simplifying the code. An Event is marked with the sender, the time stamp, the
message, and whether it represents and internal or external event. These attributes
are used by the EventQueue in processing.

2.3 DevsAtomic

The DevsAtomic class is extended when describing new models. Unlike the prior
two classes, which should never need to be altered by the modeler, the DevsAtomic
class is meant to be inherited. This is necessary in order for the modeler to create
new models.

2.3.1 Base Class. There are two default transitions in the DevsAtomic class:
active_state and passive_state. Both of these are called via the base_transition
method. This basic transition method handles the default behaviors common to all
DevsAtomic objects and then passes control to either the internal_transition or
external transition method, depending on what kind of message it has recieved.

These methods are empty in the base class, and are meant to be defined in the
child class built by the modeler.

Internal and External messages are not strictly part of the DEVS formalism. The
purpose of these two classifications is to simplify the design of the EventQueue. An
internal ”"event” should simply schedule the internal transition function.

External events are incorrectly implemented in this alpha version of the software.
Currently, the modeler is able to schedule output messages using the time advance
function. Because of the design of the system, however, this is an easy patch. The
modeler creates a new event by calling the DevsAtomic method new_event, which
takes as its only argument the message to be sent. The time stamp of the Event
object that will be placed on the queue is set within the new_event method, so a
single change to this method can take scheduling out of the hands of the modeler.

2.3.2 Derived Class. The simple test model that we implemented consists of
a student and an alarm clock. The student sets the alarm clock and goes into a
passive state, the alarm clock sends a "ring” message to the student (which wakes
the student) and then goes into a passive state.

The entire Student class is implemented in less than 40 lines of code. It re-
quires no constructor definition, only definitions for the external _transition and
internal_transition methods. Two additional methods are defined, but these
are conveniences that exist only to improve the readability of the two required
methods. Example 1 shows the Student class.

The major flaw in the current implementation is shown in Line 26. Here we see
the modeler using the sigma function to schedule a future event. Currently, this

CSC 8840: Modeling and Simulation Theory and Application, Spring 2011



DEVS-Ruby: a discrete event modeling system : 3

Example 1 Class Definition of Student

1 require ’devs_atomic’
2
3 class Student < DevsAtomic

4 def external_transition message
5 case @Qstate

6 when : passive

7 case message

s when :ring

9 wake_up

10 end

11 end

12 end

13

14 def internal_transition message
15 case @Qstate

16 when :active

17 case message

18 when :sleep

19 set_alarm

20 end

21 end

22 end

23
24 def set_alarm

25 passive_state
26 @Qsigma = 0

27 new_event (:set)
28 end

29

30 def wake_up

31 @state = :active

32 Qsigma = 16

33 new_internal (: sleep)
34 end

35 end

will have an effect on when other models receive this method. As mentioned, this
is a simple patch.

3. BUILDING A SIMULATION

To build our simulation of the student-clock system, three classes were required, a
class to represent students, a class to represent the clock, and a class to represent
the simulation itself. Example 2 shows the code for the simulation.

The method kick_start sets the intial state of the system. After this, the method
EventQueue.next_event will update the system.

CSC 8840: Modeling and Simulation Theory and Application, Spring 2011



4 : J. Paul Daigle

Example 2 Simulation Code

1 require ’devs_atomic’
2 require ’event_queue’

4 class Coupling

5 attr_accessor :event_queue

6 attr_reader :clock, :student

7 def initialize

8 @event_queue = EventQueue.new

9 @student = Student.new(@event_queue)

10 @clock = Clock.new(@event_queue)

11 @event_queue.add_coupling @student, @clock
12 @event_queue.add_coupling @clock, @student
13 end

15 def kick_start

16 @event_queue.add_event (Event.new :sender => @student,
stamp => 0, :message=>:set)

17 end

15 end

4. FUTURE WORK

At this time DEVS-Ruby only supports very simple DEVS modeling. There is an
implied confluent function in the EventQueue (it handles internal events first), but
no means for the modeler to specify more advanced methods. Extended DEVS
models include input and output ports, which are not supported by DEVS-Ruby.

Ruby’s metaprogramming system should be useful for implementing ports in
particular. At this time, there are two ”ports”, the external and internal. The
future plan is to move these from an implied to an explicit state by creating a port
list and a method that writes transition methods using that list for both input and
output ports.

This will allow the modeler to specify ports in the model and use the syntax shown
in Lines 1.27 and 1.33 to specify ports by creating a new_[portname] message, and a
[portname_transition] method for handling cases where the input port is crucial
to model behavior.

The current system does not contain any visualization tools, which would be a
strong addition, and does not contain a test runtime to allow the modeler to run
the system step by step and investigate the state. These are very useful tools that
would make a great addition to DEVS-Ruby.

Finally, while the DEVS-Ruby system is built to be simple to use and to use
the vocabulary from DEVS as much as possible, it does not go far enough. Many
modern langugages, such as Scala, Ruby, and o, have strong support for build-
ing Domain Specific Languages. A DSL for DEVS modeling that could run be
interpreted by multiple platforms, allowing formal specifications of DEVS models
without ambiguity, would be a benefit to the modeling community as a whole.

CSC 8840: Modeling and Simulation Theory and Application, Spring 2011



