

School of Electronics and Computer Science

Faculty of Engineering, Science and Mathematics

University of Southampton

Stephen Tuttlebee

03/05/2011

An Experimental Language for Concurrency:

Components and Synchronisation on Explicit

Boundaries

Project supervisor: Dr Pawel Sobocinski

Second examiner: Professor Michael Butler

A project report submitted for the award of Computer

Science MEng

Abstract

i

Abstract

Concurrency has long been one of the most challenging areas in programming and in

Computer Science in general. In the last few years however, its prominence has increased

considerably as Moore’s Law is only sustained by adding more cores to processor chips.

Concurrency issues such as safety, deadlock and other liveness issues has encouraged

researchers to explore new paradigms and develop languages and libraries that reduce these

difficulties.

This project's goals have been similar, involving the design of an experimental language

(JavaB) aimed to simplify concurrent application development for software engineers.

JavaB's core concepts are underpinned by Sobocinski's ongoing research in process algebra.

One benefit of the language from a Software Engineering standpoint is the ability to compose

components into 'higher-order' composition components. Such composability allows

sophisticated synchronisation behaviour to be encapsulated in a single (composition)

component.

In addition to exploration into precise language semantics, the end product of the project is a

basic source-to-source translator (that converts JavaB to pure Java), and Java classes that

implement JavaB's core synchronisation primitives. The project was an ambitious one. Time

constraints meant some planned features were not implemented. Nevertheless, the project

provides a sound basis for future work.

Contents

ii

Contents

ABSTRACT ... I

CONTENTS ... II

ACKNOWLEDGEMENTS ... V

STATEMENT OF ORIGINALITY .. V

1. INTRODUCTION .. 1

2. BACKGROUND READING AND REPORT OF LITERATURE SEARCH ... 3

2.1 CONCURRENCY ... 3
2.1.1 Paradigms (Languages and Libraries) ... 3
2.1.2 Tool Support .. 4
2.1.3 Theoretical Approaches .. 4

2.2 TRANSLATOR IMPLEMENTATION ... 4
2.2.1 Considered Approaches .. 4
2.2.2 Chosen Approach .. 5

3. LANGUAGE DEFINITION .. 6

3.1 CORE CONCEPTS ... 7
3.1.1 IntProducer-IntConsumer Example ... 7
3.1.2 Basic Terminology ... 8
3.1.3 Synchronisation on a Wire .. 9
3.1.4 Wiring Components (Wiring/Glue Code) .. 12

3.2 A MORE COMPLEX SYNCHRONISATION .. 15
3.2.1 IntProducer-IntBufferCell-IntConsumer Example .. 15
3.2.2 Active and Passive Components .. 19
3.2.3 Chains of Synchronisations ... 19
3.2.4 Handler Parameters .. 19

3.3 COMPOSABILITY .. 19
3.3.1 Tensor Composition (#) ... 19

3.4 COPY SYNCHRONISATION PRIMITIVE ... 20
3.4.1 'Direction' of Copy ... 21
3.4.2 One Sender-Two Receivers .. 22
3.4.3 One Receiver-Two Senders .. 24

3.5 SWITCH SYNCHRONISATION PRIMITIVE .. 24
3.6 LANGUAGE COMPARISONS .. 25

3.6.1 Comparison with Kamaelia ... 25
3.6.2 Comparison with CSP (Communicating Sequential Processes) ... 25

4. TRANSLATOR DESIGN AND IMPLEMENTATION ... 26

4.1 TRANSLATION MECHANISMS ... 26
4.1.1 Translation Classes.. 26
4.1.2 Translation of IntProducer-IntConsumer Example ... 31
4.1.3 Algorithms for Synchronisation Primitives .. 35

4.2 TRANSLATOR HIGH-LEVEL DESIGN .. 48
4.3 TRANSLATOR DETAILED DESIGN AND IMPLEMENTATION .. 49

4.3.1 Unsuccessful Approaches .. 49
4.3.2 Lexical Analysis (JavaBLexer.g) ... 49
4.3.3 Syntactic Analysis (JavaBPhase1Parser.g) .. 50
4.3.4 Semantic Analysis (JavaBPhase2WalkerSem1.g and JavaBPhase3WalkerSem2.g) 59
4.3.5 Code Generation (JavaBPhase4WalkerGen.g and JavaBTemplates.stg) 69
4.3.6 Translator Controller code .. 77

Contents

iii

4.4 SUMMARY ... 79

5. TESTING .. 80

5.1 TESTING THE TRANSLATOR .. 80
5.1.1 Translator Test Cases .. 80
5.1.2 Supporting Classes .. 86

5.2 TESTING TRANSLATION MECHANISM CLASSES (INC. WIRE) .. 87
5.2.1 NormalWire .. 87
5.2.2 CopyWire... 87

5.3 SUMMARY ... 87

6. DEVELOPMENT PROCESS AND TOOLS ... 88

6.1 PROCESS .. 88
6.2 TOOLS ... 88

7. PROJECT MANAGEMENT .. 89

7.1 TIME MANAGEMENT ... 89
7.1.1 Overview ... 89
7.1.2 Gantt Charts .. 89
7.1.3 Comparison of Forecast and Actual Progress ... 94

7.2 RISK MANAGEMENT .. 95
7.3 SUMMARY ... 97

8. CONCLUSIONS AND FUTURE WORK .. 98

8.1 CONCLUSIONS .. 98
8.2 SUGGESTIONS FOR FUTURE WORK .. 98
8.3 SUMMARY ... 100

9. REFERENCES ... 101

APPENDIX A PROJECT BRIEF ... 105

APPENDIX B ADDITIONAL LANGUAGE EXAMPLES .. 107

B.1 INTPRODUCER-IBC-INTBUFFEREATER .. 107
B.2 SYNCCOUNTER ... 107
B.3 DISCERNINGINTCONSUMER .. 108
B.4 LAZYINTCONSUMER (FLAG-SETTING) .. 109

APPENDIX C STANDARD COMPONENTS ... 111

C.1 TRIVIAL COMPONENTS ... 111
C.2 WIRING COMPONENTS .. 112

C.2.1 Identity (wiring wires to wires) ... 112
C.2.2 Twist (flexible boundary order) ... 113
C.2.2.1 An Alternative to Twist ... 115
C.2.3 IdentityLoopback (flexible boundary sides) ... 116

C.3 IMPLEMENTATION ISSUES ... 117
C.4 CONSTRUCTING SOPHISTICATED COMPONENTS .. 117

APPENDIX D TRANSLATION MECHANISM CLASSES .. 118

D.1 COMPONENT CLASS .. 118
D.2 BOUNDARY CLASS ... 119
D.3 HANDLERRUNNABLE INTERFACE .. 120
D.4 WIRE INTERFACE .. 120

APPENDIX E INTPRODUCER-IBC-INTCONSUMER EXAMPLE TRANSLATION ... 122

APPENDIX F WIRE IMPLEMENTATIONS .. 128

F.1 NORMALWIRE IMPLEMENTATION .. 128

Contents

iv

F.2 COPYWIRE IMPLEMENTATION ... 132
F.3 FLOW CHARTS OF NORMALWIRE ... 139

F.3.1 Flow charts for Deadlock-Prone NormalWire ... 140
F.3.2 Example Deadlock ... 142
F.3.3 Flow charts for Deadlock-Free NormalWire .. 146

APPENDIX G LIST OF SEMANTIC CHECKS .. 148

G.1 FIRST SEMANTIC PHASE ... 148
G.1.1 Component Definitions ... 148
G.1.2 Wiring Code .. 149

G.2 SECOND SEMANTIC PHASE ... 149
G.2.1 Wiring Code .. 149

APPENDIX H TRANSLATOR SYSTEM MANUAL .. 150

H.1 MINIMUM SYSTEM REQUIREMENTS ... 150
H.2 RUNNING THE TRANSLATOR .. 150

H.2.1 Technical Restriction in Translating Wiring Code ... 150
H.2.2 Running ... 150

H.3 BUILDING FROM SOURCE ... 151
H.3.1 Generating the Parsers from Grammars ... 152
H.3.2 Compiling the Parsers ... 152

APPENDIX I DVD CONTENTS ... 153

Acknowledgements

v

Acknowledgements

I am grateful to my supervisor, Dr Pawel Sobocinski, for his encouragement and advice. I

appreciated his rapid e-mail replies to my questions, and his willingness to give me time,

sometimes at short notice. Without our many discussions, this project probably would not

have been possible.

I want to thank Professor Michael Butler for his input also.

I would like to thank my mother for listening to me and giving both pragmatic advice and

even attempts at technical advice (which surprisingly to me, did sometimes prove helpful),

and also my father for his occasional nuggets of wisdom.

Statement of Originality

The core ideas behind the JavaB language are based on Sobocinski's research on process

algebra. The refinement of the ideas into precise language semantics took place in

collaboration with him. Many of the language examples used in this report were also his. I

carried out the implementation work for the JavaB language, which included the translation

mechanisms and the translator itself. Implementation ideas and problems were discussed with

Sobocinski, in an effort to produce solutions. In particular, his suggestion for resolving a

deadlock in the NormalWire class was employed.

Yang Jiang's Java grammar was used as a starting point of ANTLR grammars used in

translator implementation [1]. The majority of code is my own. Where code from external

sources has been utilised, this is acknowledged within the source code.

Introduction

1

1.

Introduction

Problem

Concurrency has long been one of the most challenging areas in programming and Computer

Science in general. In the last few years however, its prominence has increased considerably.

With Moore's Law no longer translating into performance improvement through the increase

of clock speeds, the likes of Intel and AMD are instead adding more cores onto their

processor chips in an effort to maintain the performance trend[2]. Whilst adding more

processing power may be easy enough for chip manufacturers, writing software that utilises it

using the existing paradigms, languages and libraries remains a difficult task [3] [4]. Thus the

exploration of new paradigms and enhancement of existing paradigms for concurrency are

active research areas. Moreover, there are many efforts in the implementation of new

languages and supplementary libraries and tools. These streams of research all generally have

the aim of simplifying concurrency for programmers. The different languages, libraries and

tools resulting from such research have had various degrees of success.

Aspirations

This project introduces an experimental language, JavaB
1
, an extension to the Java language,

which is hoped will be a feasible language to develop concurrent programs in. JavaB is based

on the concepts of components and boundaries. Components can be thought of as somewhat

similar to objects in typical Object-Oriented languages (e.g. Java, C++). Components declare

boundaries that indicate explicitly the points through which they can synchronise with other

components, passing values between them. A vision of the language is that components may

be composed into 'higher-order' compositions, which may be treated as components

themselves. Primitive synchronisation policies may be encapsulated in a standard set of

components. Composing such standard components with other such components to achieve

sophisticated synchronisation behaviour encapsulated in a single, reusable component, is

another vision of the language. JavaB's core concepts are underpinned by Sobocinski's

ongoing research in process algebra. Being rooted in such formalisms also gives possible

scope for formally verifying the correctness of JavaB programs.

Project Scope

This project's scope is limited to early work on this language. Its focus has been three-fold.

One focus has been the exploration into the precise semantics (and syntax) of the language

itself, which took place in collaboration with Sobocinski. The second, and primary focus, was

the design and implementation of a source-to-source translator (JavaB-to-Java). Thirdly, the

construction of the above-mentioned synchronisation primitive standard components has

been another goal.

1
 The name 'JavaB' derives from the fact that the language extends Java and from the key language concept of a

boundary.

Introduction

2

Report Structure

The structure of the report is as follows:

 Chapter 2 reviews background reading undertaken and existing literature in the fields

of concurrency and translator implementation.

 Chapters 3 and 4 form the main backbone of the report. Chapter 3 describes the JavaB

language. Chapter 4 focuses on the design and implementation of the JavaB translator,

including the implementation of the language synchronisation primitives.

 The remaining chapters discuss the testing undertaken, the development process and

tools used, and project management.

 The report concludes by summarising and evaluating the project's achievements and

also considers future work.

Background Reading and Report of Literature Search

3

2.

Background Reading and Report

of Literature Search

The background research began by gaining familiarity with the concurrency mechanisms and

libraries available in Java (monitors, locking, conditions, java.util.concurrent library [5]),

since the main requirement of the project was to produce a translator that generates Java code

which implemented/simulated the semantics of JavaB (this inevitably required Java's

concurrency constructs). Books by Goetz[6] and Lea [7] provided essential reading. The

university courses[8], [9], [10] and[11] were also helpful.

2.1 Concurrency

The field of concurrency is vast, both theoretically and in practice. The following subsections

cover only the most important topics.

2.1.1 Paradigms (Languages and Libraries)

The two traditional paradigms for thread/process communication are shared-memory and

message-passing [12]. Examples of languages using a shared-memory model are Java, C and

C++ (using pthreads), C# and Python. Shared-memory approaches typically rely on the use of

locks, which are used to guard access to shared variables. Even if problems of safety ('nothing

bad ever happens'; e.g. race conditions, memory visibility problems) are overcome, liveness

('something good eventually happens') problems can be introduced instead (e.g. deadlock,

livelock, starvation). Locking is not the only strategy though. Non-blocking algorithms which

are lock-free also exist. However, writing such algorithms efficiently is difficult and they

only exist for the most common data structures [6][13] [14]. For message-passing, recent

examples include Erlang, Scala, Axum and Go.

Three surveys of the field highlight several other existing and emerging (and re-emerging)

paradigms [15] [16] [17]. Transactional Memory (TM) is one such paradigm [18] in which

transactions are applied to memory locations rather than database rows/tables. At present, TM

is only feasibly implemented in software (STM) [19] [20][21]. New languages such as

Clojure[22], Fortress[23] and Scala[24] support STM. Established ideas from functional

programming too, such as immutability and persistent data structures [25] have also been

gaining greater prominence (e.g. immutability in the shared-memory community [6]), not

least because of Clojure's influence. A final (older) paradigm for concurrency, dataflow

programming, bears similarities to functional programming and is well-described in [26] and

[27].

Background Reading and Report of Literature Search

4

These paradigms are not always implemented at the language level. There are also a

considerable number of libraries. For Java, the java.util.concurrent library was added in

JDK5 to aid programmers in development. Some libraries such as OpenMP, TBB (Thread

Building Blocks) and Java's JDK7 ForkJoin library[28] [29] are designed to make shared-

memory concurrency more declarative. However these are geared towards more

'embarassingly-parallel problems' (e.g. scientific computing) which can be separated into

independent tasks easily and have simple coordination requirements. Recent languages

Fortress, X10 and Unified Parallel C also fall under this category. This project's focus is

rather on the complex coordination requirements of more typical concurrent applications.

Libraries for message-passing include the well-established MPI (Message-Passing Interface)

(which has bindings in several languages), MPJava [30] and Kilim [31] (both Java libraries).

One particular (Python) library, Kaemalia [32], uses a concurrency paradigm bearing

similarities to that of the language being developed. Further discussion is given in section 3.4.

2.1.2 Tool Support

A lot of tool support exists for concurrency. Many tools use static or dynamic analysis of a

program to expose concurrency bugs such as data races and deadlock. Tools such as ConTest

[33], rsTest [34], CheckMate [35] and Chord [36] all perform dynamic analysis of Java

programs. Most work by instrumenting the bytecode at synchronisation points. Intel Thread

Checker and Sun Thread Analyzer [37] are examples of similar non-Java tools. Other tools

include model checkers such as SPIN [38], CHESS [39] and Java PathFinder [40]. These may

be used to prove correctness of (smaller) concurrent programs. [8] documents many more

tools.

2.1.3 Theoretical Approaches

Theoretical approaches were not researched in detail. [41],[42] and [43] survey the area in

depth. CSP (Communicating Sequential Processes) was the only approach examined. A

selection of Java software library implementations of theoretical approaches include JCSP

(CSP for Java), CTJ (Communicating Threads for Java) and Join Java.

2.2 Translator Implementation

The considered approaches to translator implementation are discussed. This is followed by

closer examination of the chosen approach.

2.2.1 Considered Approaches

One approach allows one to specify new constructs to add to the Java language: the Java

Language Extender (JLE) [44]. An advantage is that development time to construct a

translator is likely to be reduced. However it emphasises adapting Java to specific problem

domains. It was felt that it might not be flexible enough if at any point more fundamental

changes to the language were required.

A more flexible approach considered was to modify the source code of the OpenJDK

compiler itself [45][46]. Unfortunately its size and complexity, and the time required to gain

familiarity with it also ruled out this choice.

Background Reading and Report of Literature Search

5

2.2.2 Chosen Approach

Figure 34 illustrates the high-level approach chosen. This involved the use of the ANTLR

parser generator [47] [48]. The benefits of this approach were previous experience with

ANTLR and the availability of an open source ANTLR grammar for the Java language [1].

The Java Compiler API is used to programmatically invoke javac on the Java code generated

by the translator.

Figure 1 - Chosen approach to translator implementation. Shows the use of ANTLR to generate the

translator written in Java and javac to compile it. The rest of the diagram shows how to use the translator

to translate a JavaB file into a Java file (and optionally bytecode).

The OpenJDK compiler source code was studied on occasion during development of the

ANTLR grammars.

2.2.2.1 Summary of ANTLR

ANTLR generates recursive-descent recognisers (lexers, parsers, tree parsers) from ANTLR

grammar specifications. These above recognise different input types: character streams, token

streams, abstract syntax trees (ASTs), respectively, and form the different phases of the

translator. Tree parsers may generate ASTs for further processing or generate textual output.

A commonly used feature of ANTLR are actions. These are custom pieces of code written in

Java often used to perform various semantic checks. Different phases often have different

actions, reflecting the purpose of that phase. In this translator actions also aid the code

generation phase.

During translator development, three main ANTLR resources were consulted: two books

concerning ANTLR and language implementation [48] [49] and also the antlr-interest

mailing list
2
.

Interestingly, an automated approach to tree construction [50] was discovered after

implementation. Unfortunately, it had two major drawbacks. Firstly, not all types of AST

rewrite rules were supported. Secondly, although it can allow different actions to be

performed in each phase, it is not amenable to changes to the AST itself between phases.

2
 http://www.antlr.org/mailman/listinfo/antlr-interest

Language Definition

6

3.

Language Definition

This chapter explains the precise semantics (and syntax) of the language developed.

Implementations of classic 'toy' concurrency problems such as Producer-Consumer are used

to illustrate the language ideas. The language semantics presented here form the requirements

specification for the translator implementation. Examples are used throughout to aid

understanding of the language concepts
3
. The chapter closes with a brief comparison with

other similar existing languages/approaches.

It should be noted that the language is still in its infancy. In particular, the Switch

component's semantics are not clarified and there are also many other standard components

yet to be implemented which are discussed in Appendix C.

3
 All the examples in this chapter except those in sections Copy Synchronisation Primitive and Switch

Synchronisation Primitive may be successfully run through the translator (provided on the attached DVD-ROM)

and the generated output compiled (javac) and run (java). Appendix B provides additional examples that may be

run through the translator. Appendix H provides a system manual for using the translator.

Language Definition

7

3.1 Core Concepts

3.1.1 IntProducer-IntConsumer Example

Figure 2 - components, wires and boundaries in producer-consumer example

import java.util.Random;

component IntProducer { // producer that produces integers

 boundary right int out!; // (A) boundary declaration(s)

 private Random rand = new Random(); // (B) internal state of component

 __run__ { // (C) run method of component

 while(true) {

 int produced = produce_item();

 out![produced]; // (D) synchronisation statement

 }

 }

 out![int val] { // (E) the out! boundary's corresponding handler

 __block__;

 }

 private Integer produce_item() { // (F) ordinary Java method

 return rand.nextInt(1000);

 }

}

Code Listing 1 - Component Definition for the IntProducer component

component IntConsumer { // consumer that consumes integers

 boundary left int in?; // (A) boundary declaration(s)

 __run__ { // (B) run method of component

 while(true) {

 int consumed = in?; // (C) synchronisation statement

 consume_item(consumed);

 }

 }

 in?[int val] { // (D) the in? boundary's corresponding handler

 __block__;

 }

 private void consume_item(int value) { // (E) ordinary Java method

 System.out.println("IntConsumer received the value "+value);

 }

}

Code Listing 2 - Component Definition for the IntConsumer component

public class Application {

 public static void main(String[] args) {

 composition c1 = IntProducer.IntConsumer; // Composition

declaration of a sequential composition of IntProducer and IntConsumer

 __start__ c1;

 }

}

Code Listing 3 - Wiring code that wires (instances of) the two components together and then 'starts' them

(see section 3.1.4 [Wiring components])

Language Definition

8

3.1.2 Basic Terminology

3.1.2.1 Components

Components are class-like structures, given by a component definition (e.g. Code Listing 1

and Code Listing 2), whose instances can be likened to "threaded objects" since they both

possess internal state and run within their own thread of control (they have a run method)

(except passive components; see section 3.2.2). Components declare explicit boundaries

which may be thought of as the interface by which the component may be 'wired to' other

components' boundaries.

During program execution, components may directly 'synchronise' with each other on such

wired boundaries. This involves the sending and receiving of values (primitives or objects)

between the two boundaries of the components (which could be ignored if the value itself is

unimportant). Such a synchronisation is initiated by a component using a synchronisation

statement (e.g. in? or out![produced];).

3.1.2.2 Boundaries

Figure 3 - Components and boundaries. Component A has single right boundary (in?) which is an

'inward' boundary of type T. Component B has three boundaries. Its left boundary out1! is an 'outward'

boundary also of type T. A's in? and B's out1! boundaries are compatible and may be wired together.

Boundaries have a type (primitive or Object), specifying the type of the values to be sent or

received, and a direction (in (?) or out (!)), specifying whether the component is sending or

receiving on that boundary. Boundaries also have a 'side', left or right, on which they are

relative to their component (seen in Figure 3). Boundaries of components being wired

together must be compatible. They must have the same type (e.g. int with int) and opposite

directions (in? with out!) and sides (left with right). In the IntProduer-IntConsumer example,

IntProducer's right out! boundary is compatible with IntConsumer's left in? boundary,

allowing them to synchronise if wired together (and 'started'; see section 3.1.4.2). Note that

side and direction of boundaries is independent. Inward and outward boundaries may appear

on either side of a component.

A component may have multiple boundaries, allowing it to synchronise with multiple

components (potentially simultaneously). In IntProducer-IntBufferCell-IntConsumer example

of section 3.2.1, IntBufferCell has two boundaries, one which is wired with IntConsumer and

another which is wired with IntProducer.

3.1.2.3 Wires

Wires act as the basic means of connecting components. Components themselves are

independent entities. The way they are connected defines the system behaviour. As well as a

basic means of connection, wires provide the necessary synchronisation semantics. These

semantics are described in section 3.1.3.

Language Definition

9

3.1.2.4 Tug

Tug refers to when a component executes a synchronisation statement (e.g. out![produced])

on a certain boundary and thus attempts to synchronise with another component. The terms

pushing/pulling are used synonymously. They explicitly indicate the direction of the

boundary.

The following fragment from Code Listing 1 shows this:
 __run__ { // (C) run method of component

 while(true) {

 int produced = produce_item();

 out![produced]; // (D) synchronisation statement

 }

 }

Code Listing 4 - IntProducer's run method. At (D) IntProducer is said to be tugging on its out boundary.

The term 'tugging' tends to assume the boundary of interest in the component is wired to a boundary of

another component.

Thus for IntProducer above, tugging means sending/pushing the produced item (on its out

boundary) on the wire.

3.1.2.5 Handlers

Every boundary of a component has a corresponding handler. A handler specifies what action

(i.e. statements) the other component wired to that boundary should take, if they are the first

component to tug on the wire (seen more clearly in section 3.1.3).

Essentially, the first tugging component runs the other component's corresponding boundary

handler. Examples of handlers will be seen shortly.

3.1.3 Synchronisation on a Wire

The semantics of how a synchronisation takes place on a wire is presently described by way

of two examples, which illustrate the two different cases that can take place; whether the

executed handler blocks or runs to completion.

3.1.3.1 Control flow of a Synchronisation in IntProducer-IntConsumer Example

Figure 4 illustrates the course of events for one type of synchronisation that can occur;

namely where a handler action specifies to block. The corresponding IntProducer and

IntConsumer JavaB code is relisted:

Language Definition

10

import java.util.Random;

component IntProducer { // producer that produces integers

 boundary right int out!; // (A) boundary declaration(s)

 private Random rand = new Random(); // (B) internal state of component

 __run__ { // (C) run method of component

 while(true) {

 int produced = produce_item();

 out![produced]; // (D) synchronisation statement

 }

 }

 out![int val] { // (E) the out! boundary's corresponding handler

 __block__;

 }

 private Integer produce_item() { // (F) ordinary Java method

 return rand.nextInt(1000);

 }

}

Code Listing 5 - Component Definition for the IntProducer component (relisting of Code Listing 1)

component IntConsumer { // consumer that consumes integers

 boundary left int in?; // (A) boundary declaration(s)

 __run__ { // (B) run method of component

 while(true) {

 int consumed = in?; // (C) synchronisation statement

 consume_item(consumed);

 }

 }

 in?[int val] { // (D) the in? boundary's corresponding handler

 __block__;

 }

 private void consume_item(int value) { // (E) ordinary Java method

 System.out.println("IntConsumer received the value "+value);

 }

}

Code Listing 6 - Component Definition for the IntConsumer component (relisting of Code Listing 2)

Language Definition

11

Figure 4 - A synchronisation scenario for the IntProducer-IntConsumer example, where IntProducer is

first to tug. Parts of the diagram are highlighted to indicate what is happening at each point in the

synchronisation.

Note that if step 1 changed so that IntConsumer reached its in? statement first (and thus was

first to tug), then this would essentially reverse the diagram so that IntConsumer runs the

corresponding boundary in IntProducer (which is also defined to block).

Two components cannot initiate a synchronisation at exactly the same time; one component

always tugs first and thus runs the other component's handler. For many cases, handlers are

defined to just block (as above).

3.1.3.2 Control flow of a synchronisation in IntProducer-IntEater Example

Figure 5 shows the course of events for the second type of synchronisation that can occur;

where a handler action does not block but is run to completion without blocking. IntEater is

equivalent to IntConsumer except that its in? handler is empty.

Language Definition

12

Figure 5 - A synchronisation scenario for the IntProducer-IntEater example, where IntProducer is first to

tug. (In fact, this is the only possible scenario because IntEater is a passive component which never tugs -

see section 3.2.2 for explanation of passive components) Parts of the diagram are highlighted to indicate

what is happening at each point in the synchronisation.

3.1.3.3 Completing a synchronisation

The above two examples represent the two alternative ways of completing a synchronisation

after a component initiates a synchronisation (tugs first). Either:

1. The component runs the handler and is blocked. When the other component tugs

back, it atomically unblocks and sends/receives the value (Figure 4) (two-component

participation), or

2. The component runs the handler, and executes it to completion without blocking

(Figure 5) (single-component participation). The value is sent/received by means of

the handler parameter (see section 3.2.4).

Also, in the possible scenario that a currently non-tugging component (A) starts to tug whilst

another already tugging component (B) is running A's handler, then A should wait to

determine whether the B blocked or completed A's handler.

3.1.4 Wiring Components (Wiring/Glue Code)

An essential requirement for the language is the ability to wire the boundaries of components

together. The significance of boundary types, directions and sides comes to a forefront; only

compatible boundaries may be wired together (see section 3.1.2.2).

Language Definition

13

3.1.4.1 Sequential Composition (.)

This section uses the following wiring code:
public class Application {

 public static void main(String[] args) {

 composition c1 = IntProducer.IntConsumer; // Composition

declaration of a sequential composition of IntProducer and IntConsumer

 __start__ c1;

 }

}

Code Listing 7 - Wiring code for IntProducer-IntConsumer example (relisting of Code Listing 3)

The Sequential Composition operator is used to perform wiring.

Sequential composition wires up the right boundaries of its left operand's with the

corresponding left boundaries of its right operand (the 'inner' boundaries). Thus the order that

boundaries are defined within a component matters (specifically, the order with respect to

other boundaries of the same side matters). The number of corresponding boundaries must be

the same and each 'boundary pair' must also be compatible with each other (otherwise it is a

type error). Figure 6 illustrates this for Code Listing 7 above:

Figure 6 - Sequential composition of IntProducer and IntConsumer components

The result of a sequential composition is (an example of) a composition component /

'supercomponent'. Ordinary components and composition components may be treated

uniformly. A composition component is defined by the components composing it rather than

by an explicit component definition.

The left boundaries of the composition component are formed from the left boundaries of the

left operand and the right boundaries are formed from the right boundaries of the right

operand (the 'outer' boundaries). This is shown in Figure 7:

Figure 7 - Sequential composition operator applied to its two operand components A and B. The dashed

lines illustrate how the 'outer' boundaries of the operands form the boundaries of the resulting

component. (Boundary names, types and directions are not shown).

Composition components can be treated as black boxes. For example, Figure 7 could be

depicted as:

Language Definition

14

Figure 8 - A composition components may be treated as a black box, with only its 'boundary interface'

visible to the outside world.

Since a composition components are themselves components, they too can be operands in a

sequential composition, as Figure 9 shows:

Figure 9 - The result of applying the Sequential Composition operator to two components as its operands

itself is a component (a composition component). Each box in the diagram represents a component.

(Boundary names, types and directions are not shown).

Composition components are discussed further in section 3.3.

3.1.4.2 'Starting' a Composition

A __start__ statement in the wiring code takes the referenced composition component and

begins execution of the __run__ method of all active ordinary components 'within' that

composition.

One typing constraint on starting a composition is that it has no 'outer'/'dangling' boundaries.

Figure 6 is such an example. Figure 7 however, has boundaries remaining. A programmer can

artificially 'close' these remaining boundaries if necessary by using the trivial components

discussed in Appendix C.

3.1.4.3 Achieving Flexible Wiring

To wire up components whose boundaries differ only by their order, components must be

redefined with different boundary orders to be compatible. This lack of flexibility is better

resolved by use of a Twist component:

Figure 10 - Twist component. Tugs to the top left boundary cause a tug on the wire connected to the

bottom right boundary (and vice versa). Tugs to the bottom left boundary cause a tug on the wire

connected to the top right boundary (and vice versa).

Language Definition

15

Appendix C discusses this approach and an alternative approach in further detail. The

Loopback component is also discussed as a means to achieve further flexibility.

3.2 A More Complex Synchronisation

This section outlines some more concepts by example.

3.2.1 IntProducer-IntBufferCell-IntConsumer Example

This example extends the previous IntProducer-IntConsumer to add an IntBufferCell

component. The IntBufferCell has internal state to hold an integer and to mark its state as

either empty/not-empty.

Figure 11 - components, wires and boundaries in producer-IBC-consumer example

component IntBufferCell {

 // boundaries

 boundary left int in?;

 boundary right int out!;

 // internal state

 boolean empty = true;

 int value = 0;

 in?[int val] { // here 'val' is an *input parameter*

 if(empty) {

 value = val;

 empty = false;

 }

 else {

 out![value];

 value = val;

 }

 }

 out![int val] { // here 'val' is a *return parameter*

 if(!empty) {

 val = value;

 empty = true;

 }

 else {

 val = in?;

 }

 }

}

Code Listing 8 - Component Definition for the IntBufferCell component. It differs from previous

examples in that it is a passive component. Additionally, its handlers contain no __block__ statement.

Tugging components may however block via chains of synchronisations.

Language Definition

16

//P.IBC.C

public class Application {

 public static void main(String[] args) {

// wire IntProducer's right 'out' boundary to IBC's left 'in' boundary,

// and wire IBC's right 'out' boundary to IntConsumer's 'in' boundary
 composition c = IntProducer.IntBufferCell.IntConsumer;

 __start__ c;

 }

}

Code Listing 9 - Wiring code that wires (instances of) the three components together and then 'starts'

them. The component definitions for IntProducer and IntConsumer are given in Code Listing 1 and Code

Listing 2, respectively. IntBufferCell is given in Code Listing 8.

The wiring code for this application is similar to the IntProducer-IntConsumer example, with

an extra sequential composition operator required.

An example of a synchronisation for this example is shown in Figure 12 and Figure 13:

Language Definition

17

Figure 12 - A possible synchronisation for the IntProducer-IntBufferCell-IntConsumer example (top half).

Language Definition

18

Figure 13 - Bottom half of a synchronisation for the IntProducer-IntBufferCell-IntConsumer example.

Language Definition

19

3.2.2 Active and Passive Components

IntBufferCell is an example of a passive component. Components may be either active or

passive. Active components are those with a __run__ method which is executed by their own

thread of control. Passive components do not. They only contain handlers (and internal state).

These handlers are (sometimes) run by other components trying to synchronise with the

component (see section 3.1.3.1).

3.2.3 Chains of Synchronisations

The example synchronisation above introduced the possibility of chains of synchronisations.

This takes place because handlers may also execute synchronisation statements; not just the

run methods of components. Both IntBufferCell's handlers contained synchronisation

statements.

3.2.4 Handler Parameters

This example also demonstrated handler parameters (e.g. val). These may be input

parameters or return parameters, used in inward or outward boundary handlers, respectively.

Thus in inward handlers, the handler parameter should only ever be read. Likewise, in an

outward handler, the handler parameter should only ever be written to (e.g. step 4 in Figure

12). A handler may also ignore the handler parameter completely (Appendix B.1 offers an

example of this (IntBufferEater)). Also note that handlers may only have a single parameter,

corresponding to the single value being transferred in a synchronisation.

3.3 Composability

Section 3.1.4.1 discussed one operator to create composition components: Sequential

Composition. Another operator that adds far more power to the way components may be

composed together is Tensor Composition.

3.3.1 Tensor Composition (#4)

Tensor composition does not wire components as sequential composition does. Tensor places

its left operand component above its right operand component. The resulting composition

component's left boundaries is the left boundaries of its left operand followed by the left

boundaries of its right operand (analogously for its right boundaries). Figure 14 shows this:

Figure 14 - Tensor composition of components A and B. As the left operand, A's boundaries come before

B's boundaries in the resulting (composition) component. The tensor composition operator performs no

wiring; it simply creates a new component that is the 'vertical sum' of its parts.

4
 An alternative symbol that may be used for the tensor operator is '*/' (without quotes).

Language Definition

20

Again, as with sequential composition components, the resulting component may be treated

uniformly like any other component and so be further tensored or sequentially composed with

other components. An example follows:

Figure 15 - Example of a sequential composition of two tensor composition components. Each

corresponding pair of boundaries are joined by a wire.

Here, the components resulting from two tensor compositions are sequentially composed.

A further example shows a single DoubleIntConsumer that receives values on two boundaries

from separate IntProducers:

Figure 16 - Further example of sequential composition of two tensored componenents (IntProducers) with

a single ordinary component (DoubleIntConsumer) that can receive on two boundaries.

3.4 Copy Synchronisation Primitive

The basic synchronisation provided by an ordinary wire is sufficient for some applications.

However, more sophisticated synchronisation semantics are often required. This section and

the next introduce two synchronisation primitives which allow a single synchronisation to

take place among three parties rather than just two.

Copy allows a broadcast/copy of a value to take place from one boundary to two boundaries,

as Figure 17 shows:

Language Definition

21

Figure 17 - Sender S's out! boundary wired via a 'splitter' wire to the in? boundaries of receivers R1 and

R2. To be precise, the two receiving boundaries do not necessarily have to belong to two separate

components. It could be a single component with two receiving boundaries.

From an implementation standpoint, a desirable way to achieve this would be to introduce a

special Copy component that encapsulates the required synchronisation semantics of copy

(which follow shortly) and use sequential composition to wire it with its left and right

neighbouring components, as illustrated in Figure 18:

Figure 18 - Special Copy component that provides the desired synchronisation semantics. Strictly, S and

Copy should be surrounded with a box (the left-associativity of . dictates that S be sequentially composed

with Copy first and then the resulting composition sequentially composed with R1#R2).

The current implementation of Copy does not take this approach, mainly for reasons of time

constraints (see section 4.1.3.5).

3.4.1 'Direction' of Copy

Copy actually has two cases, depending on the boundary directions; either there are two

senders or two receivers. Viewing Copy again independently from its possible

implementation (i.e. using a Copy component), Figure 19 shows this:

Language Definition

22

Figure 19 - Two modes of operation for Copy synchronisation primitive, depending on the direction of the

boundaries connected to it. The semantics of Copy differ for each.

The intuitive case is where there are two receivers: the value is copied to both. The case of

two senders is rather different. The synchronisation only completes when both senders are

sending the same value. This latter case has not been explored in detail.

3.4.2 One Sender-Two Receivers

3.4.2.1 Semantics

The semantics of the one sender-two receiver case set up depends on whether a sender or a

receiver is first to tug on the wire:

Figure 20 - One Sender-Two Receivers Copy wire.

For clarity of explanation, R1 and R2 are assumed to be two separate components. Strictly,

however, there could be a single component with two inward (receiving) boundaries.

Language Definition

23

In general:

When the first component tugs (not limited to S), the handlers of both the other components

are run (possibly concurrently). These separate interactions may be treated as individual 'sub-

synchronisations'. Even if one sub-synchronisation completes (by the handler blocking and

then being unblocked, or by completing without blocking; see section 3.1.3.3), the

components involved must wait until the other sub-synchronisation also completes. S' send

value is only (atomically) transferred when both sub-synchronisations have completed

(completion as described in section 3.1.3.3).

S tugs first:

When S tugs first, R1 and R2's handlers are run (beginning a sub-synchronisation with R1

and R2). Once both sub-synchronisations have completed, the entire synchronisation is

complete, and the value may be transferred. Value transfer actually takes place in one of two

ways. Either the value is transferred upon unblocking of a blocked handler, or the value is

transferred via the handler parameter. (If via the latter, a desirable property is that the value

itself is not be made visible until the entire synchronisation completes. This is one area of

Copy's semantics that are unclear).

Rx tugs first:

When Rx (R1 or R2) tugs first, the semantics are similar to when S tugs first. The only

difference is that Rx must run S's handler before Ry's handler. The value being sent must be

known before Ry's handler is run.

3.4.2.2 Examples

In Figure 21 below, when IntProducer tugs, it runs both the other two parties' handlers. In this

example, both handlers block. The value is transferred to both atomically only when both

IntConsumers have tugged back. When an IntConsumer tugs first, the same actions take place

except that the sender's (IntProducer) handler must be run before the other receiver's

(IntConsumer) handler.

Figure 21 - One IntProducer sender and two IntConsumers as receivers with a Copy component acting as

conceptual Copy wire between them

The following example illustrates the semantics of Copy when a handler completes without

blocking. It also shows how the above example may be extended to include asynchronous

communication by using an IntBufferCell:

Language Definition

24

Figure 22 - Achieving asynchrony in the bottom IntConsumer by making the IntBufferCell the second

receiver of the Copy.

If IntProducer tugs first, both the top IntConsumer's and IntBufferCell's handlers are run.

Even though IntBufferCell's handler completes (and thus the IntProducer-IntBufferCell sub-

synchronisation also completes), the entire synchronisation only completes once the top

IntConsumer tugs back, unblocking its blocked handler. The lower IntConsumer does not

directly participate in the synchronisation; the IntBufferCell does so 'on its behalf'.

3.4.3 One Receiver-Two Senders

This direction bears similarity to above. Again, the entire synchronisation may only complete

when both sub-synchronisations complete. However, in addition to that, the synchronisation

only completes when both senders are sending the same value. Further details of this

direction of operation have not been explored.

3.5 Switch Synchronisation Primitive

Switch enforces mutual exclusively access to one boundary by two competing boundaries, as

Figure 23 shows:

Figure 23 - Switch Synchronisation Primitive. R1 and R2 compete to synchronise with S.

Similar to Copy, a special Switch component that encapsulates the required synchronisation

semantics would be used. This is illustrated in Figure 24:

Language Definition

25

Figure 24 - Special Switch component that provides the desired synchronisation semantics.

Switch is an example of an unimplemented construct. Its semantics have not yet been

established and require more investigation.

3.6 Language Comparisons

This final section gives a brief comparison with existing languages.

3.6.1 Comparison with Kamaelia

Kamaelia has a very similar concept of components [51]:

Components have "inboxes" and "outboxes" through with they communicate with

other components.

A component may send a message to one of its outboxes. If a linkage has been

created from that outbox to another component's inbox; then that message will

arrive in the inbox of the other component. In this way, components can send and

receive data - allowing you to create systems by linking many components

together.

Each component is a microprocess - rather like a thread of execution.

One unique feature of the language that differs from Kamaelia is the use of handlers. With

handlers, a chain of synchronisations can take place among components (as in producer-IBC-

consumer).

3.6.2 Comparison with CSP (Communicating Sequential Processes)

In contrast to CSP, communication between components (processes) is tightly controlled.

When a wire connects two components, only those two components can use it. It cannot be

used by other components to communicate. CSP channels on the other hand can be read or

written to by any process that has a ‘handle’ on that channel. Thus even though the

superficial resemblance of wires to CSP channels makes communication appear like

message-passing, the communication style is actually a disciplined form of shared-memory,

where the wire connecting two components is the shared-memory between those components.

(Sending a value on a wire corresponds to an atomic write. Receiving a value on a wire

corresponds to an atomic read).

Translator Design and Implementation

26

4.

Translator Design and

Implementation

The design and implementation details of the translator are discussed in this chapter. Prior to

this the core translation mechanisms between JavaB and Java are examined. In particular, the

classes implementing the synchronisation semantics of ordinary and copy wires are

examined.

4.1 Translation Mechanisms

4.1.1 Translation Classes

A 'manual' translation of what the translator might generate for the IntProducer-IntConsumer

and IntProducer-IBC-IntConsumer examples was initially undertaken. This was a necessary

requirement to understanding what code the translator should generate. It also ironed out

some misconceptions in the language semantics. The manual translation was written in a way

such that it could be generated by the translator, so that the translation mechanism could

apply to any program written in the language.

The translation closely follows the conceptual ideas of the language, with Java classes such

as Boundary, Wire and HandlerRunnable representing boundaries, wires and handlers,

respectively. IntProducer, IntConsumer and IntBufferCell likewise represent their respective

components. Component is a superclass of all components. Active components implement

Runnable (passive components do not). The Wire classes (NormalWire and CopyWire)

implement the required semantics of a synchronisation on a wire. These contain most of the

complex logic and (Java) synchronisation (see section 4.1.3).

Table 1 lists and describes the various classes. Figure 25 shows the corresponding class

diagram.

Class/Interface (I) Purpose Explanation

'Fixed' classes (written once; not generated by translator)

Component Represents a
component.

The translator generates component classes such as
IntProducer that subclass this class.

It is an abstract class which stores the name of the
component and an explicit lock associated with the
component. Subclasses can access this lock via a call to

Translator Design and Implementation

27

getLock().

Boundary<T> Represents a
boundary of a
component.

The application code creates these by invoking
create_boundary_x(), a method generated for each
boundary of a Component. This is used instead of
natively instantiating Boundary objects in the wiring
code so that the Boundary's associated handler can be
created inside the Component. Handlers require access
to the internal state of the Component and thus the
Boundary object, whose constructor requires the
handler code, is also instantiated inside the
Component.

The generic parameter T is the type of the boundary
(in the JavaB sense).

HandlerRunnable<T>
(Interface)

Represents a
handler.

The
HandlerRunnable's
run() method
contains the
handler's (partially
translated) code.

HandlerRunnable is a modification to
java.util.concurrent.Runnable that allows an input
parameter and a return parameter, both of generic
type T (the type of the handlers Boundary). The send()
method in the Wire class implementations will pass the
value being sent as an input parameter and ignore the
return parameter. Similarly, the receive() method will
not pass any meaningful input parameter but will use
the return parameter.

When a call to the create_boundary_x(Wire<T>)
method of a Component owning boundary x is made,
an anonymous HandlerRunnable object (handler) is
instantiated and then passed as a parameter into the
Boundary constructor to create the Boundary object
representing x.

Wire<T>
(Interface)

Represents any
type of wire;
specifies the public
interface all wires
must have.

Implementation of
translated run
method and
handlers of a
component
becomes simpler,
because the
translated
component does
not need to know
what underlying
Wire
implementation is
being used to wire
its boundaries.

send() and receive() methods correspond to JavaB's
synchronisation statements (e.g. in? and
out![value]). send() is called precisely when there is
an outward boundary synchronisation statement (e.g.
myOut![value]). receive() is called precisely when
there is an inward boundary synchronisation
statement (e.g. myIn?). send() and receive() can be
called by either component run methods or handlers.

The blockHandler() and finishHandler() are (only) called
by handlers (HandlerRunnables). They correspond to
the two ways a handler may complete (see section
3.1.3.3). Essentially they inform the Wire (and thus the
second tugger) of the outcome of handler execution
(blocked vs. finished without blocking) so that the
second tugger knows what to do (unblock the other
tugger vs. start a new synchronisation). blockHandler()
also implements the required blocking behaviour.

All Wires must implement a setBoundaries() method.
The purpose of this method is given in the

Translator Design and Implementation

28

ApplicationProdCons explanation.

NormalWire<T> Implements
required
synchronisation
semantics of an
'ordinary' wire.

Explanation same as for Wire<T>.

In addition, the setBoundaries() method is of the form:
 setBoundaries(sender,receiver)
since there is one sending boundary and one receiving
boundary.

CopyWire<T> Implements
required
synchronisation
semantics of a copy
wire.

Explanation same as for Wire<T>.

In addition, the setBoundaries() method is of the form:
 setBoundaries(sender,receiver1,receiver2)
since there is one sending boundary and two receiving
boundary.

(Examples of) Translator-generated classes

IntProducer Subclass of
Component.
Translation from
IntProducer
component
definition.

This component has one boundary, out!, which is
translated into the private Boundary object out (which
is instantiated when the wiring code in
ApplicationProdCons calls
create_boundary_out(Wire<Integer>
wireAttachedTo)). In general, a create_boundary_x()
method is generated for each boundary x of a
component.

The out![produced] synchronisation statement in the
run method is translated into a call to send() on the
Wire wireAttachedTo object.

The __block__; statement in the out! handler is
similarly translated to a call to blockHandler() on the
Wire wireAttachedTo object.

IntConsumer Subclass of
Component.
Translation from
IntConsumer
component
definition.

This component's translation is very similar to
IntProducer. It too has a single boundary, in?, which is
translated in the same way to a private Boundary
object in (ApplicationProdCons calls
create_boundary_in(Wire<Integer> wireAttachedTo)).

The in? synchronisation statement in the run method
is translated into a call to receive() on the Wire
wireAttachedTo object.

The __block__; statement is translated in exactly the
same way as in IntProducer.

ApplicationProdCons The main
application
containing the
translated wiring
code.

This code starts by instantiating all required
(translated) component instances, then instantiates
the required Wire objects (e.g. NormalWire), then
(indirectly through calls to
create_boundary_x(Wire<T>)) instantiates the
required Boundary objects.

The Wire objects need to have a reference to the
Boundary objects representing each end of the wire.

Translator Design and Implementation

29

Thus the wiring code also has calls to
setBoundaries(sender,receiver) on each of the Wire
objects. The constructor of Wire is not used for passing
these parameters because Boundary and Wire require
a mutual reference to each other, and thus one must
be instantiated before the other (Wire before
Boundary).

Table 1 - The name, purpose and explanation of all classes used in a manual translation. The 'fixed'

classes are those classes that are standard and are not ever generated by the translator. These classes,

together with the generated component and wiring code / application classes, implement the required

semantics of the JavaB language

The next section gives an example translation that uses these classes.

Translator Design and Implementation

30

Figure 25 - Classes used in translation. The classes in yellow are the classes that are generated by the translator. The other classes are fixed. In this example, the

IntProducer and IntConsumer classes are translated from their component definitions from Chapter 3.

Translator Design and Implementation

31

4.1.2 Translation of IntProducer-IntConsumer Example

The translations of IntProducer.javabc, IntConsumer.javabc and ApplicationProdCons.javab

from section 3.1.1, are subsequently described. A further example is given in Appendix E.

4.1.2.1 IntProducer.java and IntConsumer.java

The translations are given below, followed by an explanation.

import javab.runtime.*;

import java.util.Random;

public class IntProducer extends Component implements Runnable {

 public IntProducer() {

 super("IntProducer"); // pass name of component to superclass

(Component)

 }

 // INTERNAL STATE

 private Random rand = new Random();

 // BOUNDARIES

 private Boundary<Integer> out;

 // HANDLERS

 public Boundary<Integer> create_boundary_out(Wire<Integer>

wireAttachedTo) {

 // the handler for this boundary

 HandlerRunnable<Integer> handler = new HandlerRunnable<Integer>() {

 public Integer runHandler(Integer val) {

 // no translator housekeeping code required before user

code

 // "user code" (with JavaB parts translated) -- which could

contain a (translated) 'block;' statement

 // a block; statement in a handler is replaced with the

following single line that blocks and when unblocked returns immediately

with the value received

 if(true) return

out.getWireAttachedTo().blockHandler(val,out,IntProducer.this); // 'block;'

 // translator housekeeping code following the user code (if

user code blocks then this code is unreachable)

out.getWireAttachedTo().finishHandler(out,IntProducer.this); // At this

point we know that we have finished the handler without blocking (i.e. the

sync is complete, apart from the housekeeping tasks we are about to do now)

 return val;

 // IF OUTWARD HANDLER: it doesn't matter that we're

returning back the value the sender gave us as our dummy value for the

exchanger; the sender will ignore it anyway

 // IF INWARD HANDLER: the handler (return) parameter val

should have been set by the programmer; if it never gets set by the

programmer then the (dummy) value that was passed in will be returned

 }

 };

Translator Design and Implementation

32

 // create boundary (name, owner component, wire, handler)

 out = new Boundary<Integer>("out", this, wireAttachedTo, handler);

 return out;

 }

 // RUN METHOD

 public void run() { // (C) run method of component

 while(true) {

 int produced = produce_item();

 out.getWireAttachedTo().send(out,produced); //

out![produced] // (D) synchronisation statement

 }

 }

 // OTHER METHODS

 private Integer produce_item() { // (F) ordinary Java method

 return rand.nextInt(1000);

 }

}

Code Listing 10 - IntProducer.java - the translation of the component definition IntProducer.javabc

// consumer that consumes integers

import javab.runtime.*;

public class IntConsumer extends Component implements Runnable {

 public IntConsumer() {

 super("IntConsumer"); // pass name of component to superclass

(Component)

 }

 // BOUNDARIES

 private Boundary<Integer> in;

 // HANDLERS

 public Boundary<Integer> create_boundary_in(Wire<Integer>

wireAttachedTo) {

 // the handler for this boundary

 HandlerRunnable<Integer> handler = new HandlerRunnable<Integer>() {

 public Integer runHandler(Integer val) {

 // no translator housekeeping code required before user

code

 // "user code" (with JavaB parts translated) -- which could

contain a (translated) 'block;' statement

 // a block; statement in a handler is replaced with the

following single line that blocks and when unblocked returns immediately

with the value received

 if(true) return

in.getWireAttachedTo().blockHandler(val,in,IntConsumer.this); // 'block;'

 // translator housekeeping code following the user code (if

user code blocks then this code is unreachable)

 in.getWireAttachedTo().finishHandler(in,IntConsumer.this);

// At this point we know that we have finished the handler without blocking

(i.e. the sync is complete, apart from the housekeeping tasks we are about

to do now)

 return val;

Translator Design and Implementation

33

 // IF OUTWARD HANDLER: it doesn't matter that we're

returning back the value the sender gave us as our dummy value for the

exchanger; the sender will ignore it anyway

 // IF INWARD HANDLER: the handler (return) parameter val

should have been set by the programmer; if it never gets set by the

programmer then the (dummy) value that was passed in will be returned

 }

 };

 // create boundary (name, owner component, wire, handler)

 in = new Boundary<Integer>("in", this, wireAttachedTo, handler);

 return in;

 }

 // RUN METHOD

 public void run() {

 while(true) {

 int consumed = in.getWireAttachedTo().receive(in);

 consume_item(consumed);

 }

 }

 // OTHER METHODS

 public void consume_item(int value) {

 System.out.println("IntConsumer received the value "+value);

 }

}

Code Listing 11 - IntConsumer.java - the translation of the component definition IntConsumer.javabc

Many of the translation mechanisms in component definitions are straightforward. For

example, both IntProducer and IntConsumer are components, and so extend Component.

Moreover, both are active and so implement Runnable. Boundary declarations are translated

into Boundary instance variables, with their type as a generic parameter. In both examples,

boundaries were of type int; the translation process autoboxes them into their equivalent

reference type, Integer.

Synchronisation statements are translated to calls to send() and receive() (for outward and

inward synchronisations, respectively) on the Wire attached to the boundary being

synchronised on.

Handlers are less trivial. They are not simply translated into methods. The Wire

implementations do not know anything of the components they are attached to. They only

know the Boundarys at each of their end-points. Wire thus invokes handlers through the

appropriate Boundary. Therefore the handler must be defined before being passed into the

Boundary constructor. This is performed in the create_boundary_x() methods.

4.1.2.2 ApplicationProdCons.java

The wiring code translation is now given:

import javab.runtime.*;

import java.util.HashSet;

import java.util.Set;

import java.util.concurrent.CountDownLatch;

Translator Design and Implementation

34

public class ApplicationProdCons {

 public static void main(String[] args) {

 // Composition declaration of a sequential composition of

IntProducer and IntConsumer

 // create component instances contained in the composition

 IntProducer intProducer1 = new IntProducer();

 IntConsumer intConsumer1 = new IntConsumer();

 // create NormalWire and CopyWire instances

 NormalWire<Integer> WIRE_intProducer1_out_TO_intConsumer1_in = new

NormalWire<Integer>();

 // create boundary objects

 // (Boundary objects don't refer to each other, they only refer to

the Wire they are on the end of. That Wire object also has a mutual

reference to the Boundary object.)

 Boundary<Integer> intProducer1_out =

intProducer1.create_boundary_out(WIRE_intProducer1_out_TO_intConsumer1_in);

 Boundary<Integer> intConsumer1_in =

intConsumer1.create_boundary_in(WIRE_intProducer1_out_TO_intConsumer1_in);

 // now that we have created boundaries, set boundaries of the wire

object(s)

WIRE_intProducer1_out_TO_intConsumer1_in.setBoundaries(intProducer1_out,

intConsumer1_in);

 /* Start threads of all active components (implement Runnable) */

 // use a latch 'start gate' to ensure they start at the same time -

- see JCIP chapter 5

 final CountDownLatch startGate = new CountDownLatch(1);

 // add all Runnables to a set to be iterated over

 Set<Runnable> runnables = new HashSet<Runnable>();

 runnables.add(intProducer1);

 runnables.add(intConsumer1);

 // set of latch-altered Runnables that have been turned into

Threads

 Set<Thread> threads = new HashSet<Thread>();

 // iterate over them and wrap their run methods to include

startGate.await() at the beginning

 for(final Runnable r : runnables) {

 Thread t = new Thread() {

 public void run() {

 try {

 startGate.await();

 r.run();

 }

 catch(InterruptedException e) { e.printStackTrace(); }

 }

 };

 threads.add(t);

 t.start(); // also start the thread (it will await at latch)

 }

Translator Design and Implementation

35

 // GO! (release all the threads)

 startGate.countDown();

 }

}

Code Listing 12 - ApplicationProdCons.java - translation of wiring code ApplicationProdCons.javab

The translated wiring code first instantiates the required Component and Wire objects. In the

JavaB code, instances of components were implicitly constructed (the programmer does not

have to create component instances).

For the actual wiring, a Wire must know all the boundaries on its end-points. Equally, a

Boundary must know the Wire it is connected to. Thus a mutual reference between Wire and

Boundary is required. This is achieved by constructing the Wire object first, (indirectly)

passing that Wire into the Boundary constructor via a call to create_boundary_x() for each

end-point boundary, and finally invoking setBoundaries() on the Wire with the returned

Boundary objects.

Finally, all Runnable components are started, each assigned a thread. CountDownLatch is

used to ensure threads start simultaneously.

4.1.3 Algorithms for Synchronisation Primitives

The algorithms of an ordinary wire (NormalWire) and Copy (CopyWire) are presented in this

section. Time constraints meant Switch could not be implemented.

It was found that neither Copy and Switch could be implemented successfully just using

component definitions, but instead required their own Wire, similar to NormalWire. It is still

envisioned that special components will encapsulate these wires to look like ordinary

components (see sections 3.4/3.5).

All wires implement send() and receive(). These methods correspond to outward and inward

synchronisation statements, respectively. The blockHandler() and finishHandler() methods

are called by handlers invoked during a synchronisation to indicate whether they blocked or

completed.

4.1.3.1 NormalWire Algorithm

shared (instance) variables:

Exchanger - synchroniser used to atomically exchange values between two

 threads (the two synchronising components). The first thread

 waits for the second to arrive at exchanger.

wireLock - both a lock and condition variable on handlerFinished or

 handlerBlocked events occuring

handlerBlocked - boolean used to reflect status of handler execution; that

 the handler blocked. Set by the blockHandler() method.

handlerFinished - boolean used to reflect status of handler execution; that

 the handler finished without blocking. Set by the

 finishHandler() method.

// send() and receive() very similar (duals of each other)

send(T value) {

 atomically determine if caller first or second to tug on this wire

 if first then

 lock receiving component

Translator Design and Implementation

36

 run receiving component's boundary handler

 // unlocking of component not here, but occurs in blockHandler() or

finishHandler()

 else // second tugger

 while(!handlerFinished and !handlerBlocked)

 wait on wireLock object

 if(handlerBlocked) // event was that handler blocked

 meet at Exchanger, passing value

 else // handlerFinished -- event was that handler finished

 reattempt synchronisation by calling send() recursively

 endif

 reset handlerBlocked and handlerFinished to false for next sync

 endif

}

T receive() {

 T valueReceived; // value to return to receiver

 atomically determine if caller first or second to tug on this wire

 if first then

 lock sending component

 run sending component's boundary handler

 valueReceived = return parameter value of that handler

 // unlocking of component not here, but occurs in blockHandler() or

finishHandler()

 else // second tugger

 while(!handlerFinished and !handlerBlocked)

 wait on wireLock object

 if(handlerBlocked) // event was that handler blocked

 meet at Exchanger, passing null // receiver is receiving, not

sending anything

 valueReceived = value received at Exchanger

 else // handlerFinished -- event was that handler finished

 reattempt synchronisation by calling send() recursively

 valueReceived = value returned from send()

 endif

 endif

}

/*

 * When a handler is invoked (by the first tugger), two events can occur:

 * 1. the handler blocks, in which case it calls blockHandler() to notify

 * any second tuggers that may be waiting on wire.

 * 2. the handler finishes without blocking, in which case it calls

 * finishHandler() to notify any second tuggers that may be waiting on

 * wire.

 * Thus in a single synchronisation, only one of the two below methods is

 * called.

 */

blockHandler() { // called by first tugger's handler if it blocked

 unlock component the boundary handler belongs to (BEFORE BLOCKING via

the Exchanger)

 handlerBlocked = true

 notifyAll on wireLock

}

finishHandler() { // called by first tugger's handler if it finished

without blocking

 unlock component the boundary handler belongs to

 handlerFinished = true

Translator Design and Implementation

37

 notifyAll on wireLock

}

Figure 26 - Pseudocode of NormalWire Algorithm.

Some points of interest include the use of java.util.concurrent.Exchanger. This class

integrates the required blocking (of handlers) and value passing behaviour between sender

and receiver.

Additionally, before the first tugger runs a handler, it acquires the owning component's lock

is to ensure atomicity of handler execution with respect to other handlers of that component.

Without this, state inconsistencies could arise due to race conditions when multiple separate

synchronisations take place on the component's different boundaries.

4.1.3.2 NormalWire Implementation

The Java implementation is given in Appendix F. Here however, a snippet of the

if(firstToTug) block is shown. The pseudocode hid the complex details of if(firstToTug) that

arose in the implementation due to a deadlock situation in NormalWire.
 // first to tug

 if(runTheHandler) {

 // possibility of not being able to acquire component's lock

 boolean done = false;

 while(!done) {

 // if we succeed in grabbing the lock

 if(receiver.getOwnerComponent().getLock().tryLock()) {

 receiver.runHandler(value);

 done = true;

 }

 // if we fail to grab the lock

 else {

 if(numThreadsOnWire.get() == 1) {

 Thread.yield(); // wait efficiently

 }

 if(numThreadsOnWire.get() == 2) {

 // pretend we were running a handler and blocked

 synchronized(wireLock) {

 this.handlerBlocked = true;

 wireLock.notifyAll();

 }

 // proceed to the exchange

 try { valueExchanger.exchange(value); }

 catch (InterruptedException e) { e.printStackTrace(); }

 // decrement numThreadsOnWire now that exchange/sync is done

 numThreadsOnWire.decrementAndGet();

 done = true;

 }

 }

 }

 }

Code Listing 13 - The if(firstToTug)/if(runTheHandler) block from the send() method of NormalWire.

It's complexity is much increased by the requirement to avoid deadlock. If no deadlock were possible,

then all that would be required would be to acquire the receiving component's lock and run its handler

(two lines of code!).

The deadlock was possible when there was a component being tugged on two

boundaries/wires simultaneously. If both tugs were the first tugs on their respective wires,

then one of the tuggers acquired the component lock in order to run the component's handler.

Translator Design and Implementation

38

The deadlock could occur when that handler itself tugs on the wire with the component that

was just beaten to the component lock.

Sobocinski suggested a solution to resolve the deadlock. The use of tryLock() to attempt to

acquire the component lock meant that failure to acquire the lock does not result in threads

blocking. Instead, the loop ensures unsuccessful attempts are retried. numThreadsOnWire is

used to know what action to take upon failure.

The high-level flow charts overleaf illustrate both the deadlock-prone and deadlock-free

versions of the algorithm.

Translator Design and Implementation

39

Figure 27 - Flow chart showing logic of send() method of deadlock-prone NormalWire; the highlighted

boxes show the source of deadlock. See section F.3.1 for an equivalent flow chart that includes code

annotations from the actual implementation.

Translator Design and Implementation

40

Figure 28 - Flow chart showing logic of receive() method of deadlock-prone NormalWire; the highlighted

boxes show the source of deadlock. See section F.3.1 for an equivalent flow chart that includes code

annotations.

Translator Design and Implementation

41

Figure 29 - Flow chart showing logic of send() method of deadlock-free NormalWire; the added steps are

highlighted in green. See section F.3.3 for an equivalent flow chart that includes code annotations.

Translator Design and Implementation

42

Figure 30 - Flow chart showing logic of receive() method of deadlock-free NormalWire; the added steps

are highlighted in green. See section F.3.3 for an equivalent flow chart that includes code annotations.

Translator Design and Implementation

43

4.1.3.3 CopyWire Algorithm

An initial implementation of CopyWire was completed, which only considers the 'one sender-

two receivers' case. The CopyWire pseudocode follows:

shared (instance) variables:

 wireLock - used as condition variable on changes to the state of

subSyncHandlerFinished or subSyncHandlerBlocked

 boolean[] subSyncHandlerFinished - array of booleans used to reflect

status of handler execution for each sub-synchronisation; that the handler

finished without blocking. Set by the finishHandler() method. The first

index is for the sender's boolean value; the second index is for

receiver1's boolean value; the third for receiver2's boolean value.

 boolean[] subSyncHandlerBlocked - array of booleans used to reflect

status of handler execution for each sub-synchronisation; that the handler

blocked. Set by the blockHandler() method. The first index is for the

sender's boolean value; the second index is for receiver1's boolean value;

the third for receiver2's boolean value.

 syncIncomplete - is the *entire* synchronisation complete

 valueToTransfer - value to be transferred

 barrier - Java synchroniser (CyclicBarrier), all threads must wait at

barrier before barrier released. The barrier also has an action that is

executed after all threads have arrived at the barrier but before the

barrier is released. This is used to ensure that the entire synchronisation

does not complete until both sub-synchronisations are complete.

initialisation {

 syncIncomplete = false // state of synchronisation is 'complete' (or,

ready to start a new sync.)

 set all boolean values of subSyncHandlerFinished to false // (no sub-

synchronisations are in mid-process)

 set all boolean values of subSyncHandlerBlocked to false // (no sub-

synchronisations are in mid-process)

}

barrier action {

 syncIncomplete = false // mark synchronisation as now being complete

 Notify any 'late' tuggers, who's handlers were run by the first tugger

and thus the 'late' tuggers participation is was not required; the late

tuggers just wait to try tugging again, the only try again when notified

}

// called by sender

send(T value) {

 valueToTransfer = value

 // set by this tugger in case they are a 'late' tugger, to allow them try

tugging again

 boolean startNewSync;

 do {

 startNewSync = false; // initailise/reset startNewSync

 atomically determine if caller first or second to tug on this wire

 if first { // first to tug

 spawn thread to run receiver1's handler {

Translator Design and Implementation

44

 lock receiver1 component

 run receiver1 component's boundary handler, passing valueToTransfer

as handler input parameter

 // unlocking of component not here, but occurs in blockHandler() or

finishHandler()

 if handler finished without blocking, then wait at barrier in this

thread (if handler blocked, then the unblocking thread is responsible for

waiting at the barrier)

 }

 spawn thread to run receiver2's handler {

 lock receiver2 component

 run receiver2 component's boundary handler, passing valueToTransfer

as handler input parameter

 // unlocking of component not here, but occurs in blockHandler() or

finishHandler()

 if handler finished without blocking, then wait at barrier in this

thread (if handler blocked, then the unblocking thread is responsible for

waiting at the barrier)

 }

 wait at barrier

 }

 else { // second to tug

 first tugger (one of the receivers) must be running our handler

 therefore wait until this sender's handler has blocked or finished

 (CONDITION: subSyncHandlerFinished[sender] ||

subSyncHandlerFinished[sender])

 (CONDITION VARIABLE: wireLock)

 if handler blocked (i.e. first tugger blocked in my handler) {

 unblock first tugger

 wait at barrier (unblocking thread is responsible for waiting at

barrier)

 }

 elseif handler finished {

 startNewSync = true; // I'm 'late' to join synchronisation; set

flag for next time round the loop

 wait until current synchronisation completes (CONDITION:

!syncIncomplete)

 }

 subSyncHandlerFinished[sender] = false; // expected race condition in

resetting of flags

 subSyncHandlerBlocked[sender] = false;

 }

 } while(startNewSync);

}

/*

 * Called by either receiver.

 *

 * Logic is similar than that for send(); key difference is that sender's

handler is always executed before other

 * receiver's handler.

 *

 * Advantage to spawning separate threads for running sender's handler and

receiverY's handler is that it is general

Translator Design and Implementation

45

 * enough that the barrier waiting mechanism works in all cases (normally

it would not make sense to have threads wait

 * 'sequentially' for each other -- purpose is so that each can reach the

barrier as separate threads).

 *

 * receiverX refers to the receiver that is currently running this method;

receiverY refers to the other receiver.

 *

 * * (star) indicates new/different code to send() method.

 */

T receive() {

 // set by this tugger in case they are a 'late' tugger, to allow them try

tugging again

 boolean startNewSync;

 do {

 startNewSync = false; // initailise/reset startNewSync

 atomically determine if caller first or second to tug on this wire

 if first { // first to tug

 spawn thread to run sender's handler {

 lock sender component

 run sender component's boundary handler

 set valueToTransfer to above executed handler's return parameter

 // unlocking of component not here, but occurs in blockHandler() or

finishHandler()

 *notify other thread waiting for sender's handler / sub-

synchronisation to complete*

 if handler finished without blocking, then wait at barrier in this

thread (if handler blocked, then the unblocking thread is responsible for

waiting at the barrier)

 }

 // spawn separate thread for receiverY even though sender must

complete first

 spawn thread to run receiverY's handler {

 wait until sender's handler / sub-synchronisation completes

 lock receiverY component

 run receiverY component's boundary handler, passing valueToTransfer

as handler input parameter

 // unlocking of component not here, but occurs in blockHandler() or

finishHandler()

 if handler finished without blocking, then wait at barrier in this

thread (if handler blocked, then the unblocking thread is responsible for

waiting at the barrier)

 }

 wait at barrier

 }

 else { // second to tug

 first tugger (the sender or receiverY) must be running our handler

 wait until this receiver's handler has blocked or finished

 (CONDITION: subSyncHandlerFinished[thisReceiver] ||

subSyncHandlerFinished[thisReceiver])

 (CONDITION VARIABLE: wireLock)

 if handler blocked (i.e. first tugger blocked in my handler) {

 unblock first tugger

Translator Design and Implementation

46

 wait at barrier (unblocking thread is responsible for waiting at

barrier)

 }

 elseif handler finished {

 startNewSync = true; // I'm 'late' to join synchronisation; set

flag for next time round the loop

 wait until current synchronisation completes (CONDITION:

!syncIncomplete)

 }

 subSyncHandlerFinished[sender] = false; // expected race condition in

resetting of flags

 subSyncHandlerBlocked[sender] = false;

 }

 } while(startNewSync);

 return valueToTransfer;

}

/*

 * When a handler is invoked (by the first tugger), two events can occur:

 * 1. the handler blocks, in which case it calls blockHandler() to notify

 * any second tuggers that may be waiting on wire.

 * 2. the handler finishes without blocking, in which case it calls

 * finishHandler() to notify any second tuggers that may be waiting on

 * wire.

 * Thus in a single *sub-synchronisation*, only one of the two below

methods is

 * called.

 *

 * boundaryThatIsBlocking and boundaryThatIsFinishing could be the sender,

receiver1 or receiver2

 */

blockHandler(boundaryThatIsBlocking) { // called by handlers when they

blocked

 unlock component the boundary handler belongs to (BEFORE doing the

actual BLOCKING)

 subSyncHandlerBlocked[boundaryThatIsBlocking] = true

 notifyAll on wireLock

}

finishHandler(boundaryThatIsFinishing) { // called at the end of handlers

to indicate finishing without blocking

 unlock component the boundary handler belongs to

 subSyncHandlerFinished[boundaryThatIsFinishing] = true

 notifyAll on wireLock

}

Code Listing 14 - Pseudocode of CopyWire Algorithm.

Java's CyclicBarrier
5
 synchroniser is used to ensure that whole synchronisation only

completes when both sub-synchronisations complete. The tripping of the barrier corresponds

to the synchronisation completing. A barrier action is used to notify 'late' tuggers that the

synchronisation has completed so they may reattempt to tug.

5
 A barrier causes all threads that reach it to wait until all other threads have reached it also.

Translator Design and Implementation

47

A do..while loop rather than recursion is used to implement the reattempt to tug. NormalWire

could be improved to do the same. The use of a loop here is a more efficient and

understandable mechanism than recursion.

Currently, there is a remaining problem of deadlock that occurs when running CopyWire.

4.1.3.4 CopyWire Implementation

The implementation can be found in Appendix F.

4.1.3.5 Implementing a Copy Component

As alluded to in section 3.4, use of a standard Copy component is currently unsupported in

the translator:

Figure 31 - Unsupported feature of translator - use of special Copy component that encapsulates Copy

synchronisation semantics. Currently, Copy only supported as an operator, '/\'.

An endeavour was made to encapsulate a CopyWire object inside a component to achieve the

required semantics. However, time constraints and problems encountered left this an

unimplemented feature.

A temporary alternative approach uses a 'copy' operator, /\ (two slashes), similar to sequential

composition, rather than a specially-defined Copy component:

Figure 32 - Alternative implementation of CopyWire into the translator, which allows a CopyWire to be

placed between two compatible components (i.e. one boundary on left component, two boundaries on

right component, same types and compatible directions) using the /\ operator.

Translator Design and Implementation

48

The drawback of this approach is that composability is restricted. The copy operator cannot

be used in a tensor composition as the Copy component can:

Figure 33 - Tensor composition involving Copy component. Example of where the implemented Copy

operator is insufficient.

4.1.3.6 Fairness

Currently, for both NormalWire and CopyWire, there is a potential fairness problem.

Components can be starved of 'being-the-first-tugger' over multiple synchronisations. If a

component arrives 'late' on the wire, it waits until the current synchronisation completes

before it tugs again; however it could occur that the other component continually barges the

late component, meaning that the late component never gets to tug first. Future work may

require a queue to resolve this.

4.2 Translator High-Level Design

The phases of the translator are shown in Figure 34.

Figure 34 - Translator Phases from input JavaB file to output Java file. ANTLR grammars are stored in

.g files - the grammar file for each phase is indicated in brackets.

Translator Design and Implementation

49

JavaB source code is stored in .javab or .javabc files. .javab files contain wiring code. These

contain any ordinary Java class/program with embedded JavaB wiring syntax within it.

.javabc files contain component definitions, which may only contain a component definition

at the top-level, though nested classes may appear within the component definition.

Additionally, packages and imports may be still specified.

The translator performs syntactic and semantic checks of JavaB code, but only basic

syntactical checks of Java code. Java code is passed through to the output verbatim. Thus,

some (mainly semantic) Java errors can pass through the translator unnoticed. Consequently,

javac must be used to check for such errors.

4.3 Translator Detailed Design and Implementation

A detailed explanation of each phase's workings follows. For each, only the JavaB rules in

the grammar are explained (see attached DVD-ROM for full grammars). Where appropriate,

the grammar-level options for each grammar are also explained.

Note that the grammars here are based upon the OpenJDK Compiler-Grammar project's Java

grammar.

4.3.1 Unsuccessful Approaches

Despite some exposure to ANTLR previously, the requirements of the project necessitated

some learning curve to fully appreciate ANTLR's capabilities and limitations. The result of

this is that various approaches were taken to building the translator before an all-round

effective solution was found. Figure 35 summarises this process:

Figure 35 - Approaches taken toward final design (transition from a syntax-directed translator to a

model-driven translator)

4.3.2 Lexical Analysis (JavaBLexer.g)

The lexer tokenizes the input character stream for the parser.

The only changes from the original Java grammar lexer was the addition of new lexer rules

for new JavaB keywords (e.g. 'component', 'composition', 'boundary') and operators (e.g. '#',

'/\').

// JavaB keywords/reserved words

COMPONENT : 'component';

COMPOSITION : 'composition';

BOUNDARY : 'boundary';

LEFT : 'left';

RIGHT : 'right';

RUN : '__run__'; // run method keyword, was 'run'

BLOCK : '__block__'; // block statement keyword, was 'block'

START : '__start__'; // start statement keyword, was 'start'

// JavaB symbols

HASH : '#'; // tensor composition operator

Translator Design and Implementation

50

COPY : '/\\'; // "copy wire" sequential composition temporary

operator -- note: backslash is escaped here

// Sequential Composition symbol . already used in Java lexer rules

Figure 36 - Lexer rules for JavaB's keywords and symbols. Extract from JavaBLexer.g.

Originally, 'run' and 'start' were used as keywords of the language. Due to their relatively

commonality, particularly in multi-threaded programs, underscores were added to reduce

potential conflicts.

Another point to note is that the ANTLR actions in the WS (whitespace), COMMENT, and

LINE_COMMENT rules were changed from skip(); to $channel = HIDDEN;. This allowed

the tokens representing comments to be hidden from the parser rather than be discarded

completely, and thus ensured that whitespace and comments from the input were preserved in

the generated output (in the code generation phase).

4.3.3 Syntactic Analysis (JavaBPhase1Parser.g)

The parser receives the tokens from the lexer and ensures they follow the language grammar.

The parser matches the input tokens and builds up an AST as it goes.

parser grammar JavaBPhase1Parser;

options {

 language = Java;

 output = AST;

 backtrack = true; // backtracking required in original Java.g grammar

 memoize = true; // memoizing reduces time complexity (due to

backtracking), but increases space complexity

 tokenVocab=JavaBLexer;

}

/* Imaginary tokens (used as nodes of constructed AST) */

tokens {

 JAVAB_COMPILATION_UNIT;

 PACKAGE_DECL;

 MODIFIERS;

 ...

}

@header {

 import java.util.Map;

 import java.util.HashMap;

 import java.util.Set;

 import java.util.HashSet;

}

@members {

 // CONTEXT INSTANCE VARIABLES -- instance variables used for context

sensitivity (mainly used in gated semantic predicates) (see p125 of

hardcopy of ANTLR for example that has an inMethod instance variable)

 boolean inComponentDefinition = false;

 boolean inBoundaryDeclaration = false;

 boolean inHandlerDeclaration = false;

 boolean inRunMethodDeclaration = false;

 boolean inMethodDeclaration = false;

 // ERROR CHECKING (but no WARNINGS in this parser stage)

Translator Design and Implementation

51

 private List<String> errorList = new ArrayList<String>();

 ...

}
Code Listing 15 - Top of the parser grammar (JavaBPhase1Parser.g).

The options show the fact that the output of this parser is an AST, backtracking is used (and

memoizing) and the tokens to expect are the ones defined by JavaBLexer.g. The tokens

section lists imaginary tokens used for nodes in the output AST
6
. The header section contains

package and import statements that are included in the generated Java parser file. Likewise,

the members section contains any field or method definitions to be included in the generated

class. Here the members include variables that are used for keeping track of contextual

information during the parse and also for storing error messages to be displayed at the end.

javaBCompilationUnit returns [List<String> returnErrorList]

 @init {

 $returnErrorList = this.errorList;

 }

 : ((annotations)? packageDeclaration)?

 (importDeclaration)*

 (componentDefinition | (typeDeclaration)*)

 -> ^(JAVAB_COMPILATION_UNIT annotations? packageDeclaration?

importDeclaration* componentDefinition? typeDeclaration*)

 ;
Code Listing 16 - Start rule of parser grammar

The start rule of the grammar shows that this error message list is returned at the end of the

parse. It also shows how the imaginary token JAVAB_COMPILATION_UNIT is used as the

root node of the subtree produced by this rule. The arrow denotes an AST rewrite rule that

specifies the AST subtree to be constructed for that rule; the first element inside ^(...) is taken

as the root node.

An important observation above is that a JavaB compilation unit may contain either a

component definition or zero or more Java type declarations. Wiring code is permitted in type

declarations (e.g. classes) but not in component definitions.

The following code listings show the JavaB rules of the grammar. Some Java rules were

modified in order to integrate the JavaB rules. Only one is listed here. Note that references to

lexer rules begin with upper case (e.g. COMPONENT), whereas references to parser rules

begin with lower case (e.g. boundaryDeclaration).

// JAVA RULES REFERENCED: methodDeclaration, fieldDeclaration
componentDefinition

 scope {

 String componentName; // NOTE: handlerDeclaration rule needs

access to component name to pass to the template it invokes

 }

 @init {

 inComponentDefinition = true;

 }

 @after {

 inComponentDefinition = false;

6
 Imaginary tokens are tokens that do not have any input string associated with them but are used in the AST to

represent psuedo-operations.

Translator Design and Implementation

52

 }

 : COMPONENT IDENTIFIER LBRACE

 (bds+=boundaryDeclaration

 | cfds+=fieldDeclaration

 | hds+=handlerDeclaration

 | rm+=runMethodDeclaration

 | mds+=methodDeclaration

)*

 RBRACE

 -> ^(COMPONENT_DEF IDENTIFIER ^(BOUNDARY_DECLS ($bds)*) ^(FIELD_DECLS

($cfds)*) $rm* ^(HANDLER_DECLS ($hds)*) ^(METHOD_DECLS ($mds)*))

 ;
Code Listing 17 - componentDefinition rule (in parser grammar)

A component is defined by the component keyword, its name, and may contain boundary

declarations, ordinary Java field declarations, handler declarations, a run method or ordinary

Java method declarations. The semantic phase checks to ensure that a valid combination of

boundaries, handlers and run methods have been provided; field and method declarations do

not affect semantic validity of JavaB programs.

// JAVA RULES REFERENCED: type

// e.g. boundary left String bleftIn?;
boundaryDeclaration

 @init {

 inBoundaryDeclaration = true;

 }

 @after {

 inBoundaryDeclaration = false;

 }

 : BOUNDARY boundarySide type IDENTIFIER boundaryDirection SEMI

 -> ^(BOUNDARY_DECL IDENTIFIER boundarySide type

boundaryDirection)

 ;

boundarySide

 : LEFT

 | RIGHT

 ;

boundaryDirection

 : QUES

 | BANG

 ;

Code Listing 18 - boundaryDeclaration and helper rules (in parser grammar)

These boundary declaration rules are self-explanatory.

// JAVA RULES REFERENCED: blockStatement

runMethodDeclaration

 @init {

 inRunMethodDeclaration = true;

 }

 @after {

 inRunMethodDeclaration = false;

 }

 : RUN block

 -> ^(RUN_DECL[$RUN,"RUN_DECL"] block)

 ;

Code Listing 19 - runMethodDeclaration rule (in parser grammar)

Translator Design and Implementation

53

A run method is simply the run keyword followed by an ordinary Java block (essentially

statements inside curly braces).

// e.g. in?[int val] { code block }

// JAVA RULES REFERENCED: type, block

handlerDeclaration

 @init {

 inHandlerDeclaration = true; // used in gated semantic

predicates to provide turn alternatives on/off depending on whether we're

in a handler declaration context

 }

 @after {

 inHandlerDeclaration = false;

 }

 : handlerName=IDENTIFIER boundaryDirection LBRACKET type

parameter=IDENTIFIER RBRACKET block

 -> ^(HANDLER_DECL $handlerName boundaryDirection type $parameter

handlerBlock)

 ;

Code Listing 20 - handlerDeclaration rule (in parser grammar)

Handler declarations share similar features to the previous two rules.

statement

 : block

 | ASSERT e1=expression (COLON e2=expression)? SEMI -> ^(ASSERT $e1

$e2?)

 | IF parExpression s1=statement (options {k=1;}: (ELSE)=> ELSE

s2=statement)? -> ^(IF parExpression $s1 $s2?)

 | forstatement

 | WHILE parExpression statement -> ^(WHILE parExpression statement)

 | DO statement WHILE parExpression SEMI -> ^(DO statement

parExpression)

 | trystatement

 | SWITCH parExpression LBRACE switchBlockStatementGroups RBRACE ->

^(SWITCH parExpression switchBlockStatementGroups)

 | SYNCHRONIZED parExpression block -> ^(SYNCHRONIZED parExpression

block)

 | RETURN (expression)? SEMI -> ^(RETURN expression?)

 | THROW expression SEMI -> ^(THROW expression)

 | BREAK (IDENTIFIER)? SEMI -> ^(BREAK IDENTIFIER?)

 | CONTINUE (IDENTIFIER)? SEMI -> ^(CONTINUE IDENTIFIER?)

 | expression SEMI -> ^(EXEC expression)

 | IDENTIFIER COLON statement -> ^(LABELLED IDENTIFIER statement)

 | SEMI -> SKIP

 // additional JavaB alternatives:

 | {inComponentDefinition}?=> outSynchronizationStatement // can only

occur inside a component definition

 | {inHandlerDeclaration}?=> handlerBlockStatement

 | {!inComponentDefinition}?=> compositionDeclarationStatement // can

only occur in glue code

 | {!inComponentDefinition}?=> startStatement // can only occur in

glue code

 ;
Code Listing 21 - statement rule (in parser grammar)

Translator Design and Implementation

54

This Java rule has been augmented with four new alternatives, which use gated semantic

predicates to enable/disable those alternatives during parsing depending on contextual

information. For example, outward synchronisation statements (out![value];) are only

permitted inside component definitions; never in wiring code. Additionally, 'block' statements

are further restricted to the context of handlers. The listing below enumerates the component

definition-only rules:

/* ********* COMPONENT DEFINITION ONLY CONSTRUCTS (only allowed within

component definitions, NOT glue code) ********* */

outSynchronizationStatement

 : IDENTIFIER BANG LBRACKET expression RBRACKET SEMI

 -> ^(OUT_SYNC_STATEMENT IDENTIFIER expression)

 ;

inSynchronizationExpression

 : IDENTIFIER QUES

 : IDENTIFIER QUES

 -> ^(IN_SYNC_EXPR IDENTIFIER)

 ;

// e.g. block;

// only allowed within a component handler (only make sense inside

handlers)

handlerBlockStatement

 : BLOCK SEMI

 -> BLOCK_STATEMENT

 ;

Code Listing 22 - Rules representing 'component definition-only' constructs (in parser grammar)

The following listing contains all the wiring code rules:
/* ********* COORDINATION/GLUE CODE ONLY CONSTRUCTS (only allowed within

wiring/glue code, NOT component definitions)********* */

compositionDeclarationStatement

 : COMPOSITION IDENTIFIER EQ sequentialCompositionExpression SEMI

 -> ^(COMPOSITION_DECL[$COMPOSITION,"COMPOSITION_DECL"] ^(IDENT

IDENTIFIER) sequentialCompositionExpression)

 ;

/* COMPOSITION EXPRESSION HIERARCHY (only allowed within wiring/glue code

(they do not make sense inside component definitions)) */

/* Precedence is (highest to lowest):

 * 1. ID and parentheses (ID is a ref. to plain or composition component)

 * 2. Tensor composition

 * 3. Sequential composition / Copy sequential composition

 */

// NOTE: "copy wire" sequential composition is at equal precedence with

"normal wire" sequential composition

sequentialCompositionExpression

 : (tensorCompositionExpression -> tensorCompositionExpression) ((COPY

rightOperand=tensorCompositionExpression -> ^(COMPOSITION_COMPONENT ^(COPY

$sequentialCompositionExpression $rightOperand))) | (DOT

rightOperand=tensorCompositionExpression -> ^(COMPOSITION_COMPONENT ^(DOT

$sequentialCompositionExpression $rightOperand))))*

 ;

tensorCompositionExpression

Translator Design and Implementation

55

 : (primaryCompositionExpression -> primaryCompositionExpression) (HASH

rightOperand=primaryCompositionExpression -> ^(COMPOSITION_COMPONENT ^(HASH

$tensorCompositionExpression $rightOperand)))*

 ;

primaryCompositionExpression

 : compositionParExpression

 | IDENTIFIER -> ^(PLAIN_OR_COMPOSITION_COMPONENT ^(IDENT IDENTIFIER))

 ;

compositionParExpression

 : LPARAN sequentialCompositionExpression RPARAN

 -> sequentialCompositionExpression

 ;

/* END OF COMPOSITION EXPRESSION HIERARCHY */

startStatement

 : START IDENTIFIER SEMI

 -> ^(START_STATEMENT ^(IDENT IDENTIFIER))

 ;

Code Listing 23 - Rules representing 'wiring code-only' constructs (in parser grammar)

The wiring code rules require some discussion. Given the following .javab file:
public class Application {

 public static void main(String[] args) {

 composition twoProdComp = TwoIntProducer.IntConsumer#IntConsumer;

 __start__ twoProdComp;

 }

}

Code Listing 24 - Wiring code (.javab file) to create composition between TwoIntProducer and two

tensored IntConsumers

The composition declaration statement:
 composition twoProdComp = TwoIntProducer.IntConsumer#IntConsumer;

assigns the right-hand composition expression to the composition twoProdComp.

Composition expressions are like ordinary expressions that require a precedence hierarchy for

the different operators. In LL grammars [52] such as this one, the precedence of operators is

encoded in the grammar rules by having the lower precedence rules invoke the higher

precedence rules. Thus the order of precedence is (highest-to-lowest):

1. Reference to a plain or composition component (IDENTIFIER)

2. Tensor composition operator

3. Sequential composition operator and "copy" sequential composition operator

In the above example, the IntConsumer components are tensored before being sequentially

composed with TwoIntProducer. As usual, parentheses may be used to override precedence.

All the operators have left-to-right associativity.

Figure 37 shows the AST produced for the above composition declaration:

Translator Design and Implementation

56

Figure 37 - Composition declaration AST. This is not the AST for the entire program of Code Listing 24;

it is only the subtree for the composition declaration.

The ASTs produced for such composition declarations/expressions greatly simplify the

following tree walker phases, in semantic analysis and code generation.

The final wiring rule, startStatement, is self-explanatory. It matches input such as:
 __start__ twoProdComp;
where twoProdComp is a reference to a composition declaration.

4.3.3.1 Example Abstract Syntax Tree (AST) Output

The ASTs for IntConsumer and the wiring code of Code Listing 24 above are now shown:

Translator Design and Implementation

57

Figure 38 - AST produced by parser for the IntConsumer component definition given in Code Listing 2

Translator Design and Implementation

58

Figure 39 - AST produced by parser for the wiring code in Code Listing 24

Translator Design and Implementation

59

4.3.4 Semantic Analysis (JavaBPhase2WalkerSem1.g and
JavaBPhase3WalkerSem2.g)

The following two semantic phases perform a number of checks on the input program (in its

condensed form, an AST). The majority involve looking up identifiers in symbol tables (e.g.

component / boundary / composition symbol tables) and, for wiring code, ensuring a valid

wiring has been given. Appendix G contains a full list of semantic checks.

All semantic checks for component definitions occur in the first semantic phase:
tree grammar JavaBPhase2WalkerSem1;

options {

 language = Java;

 output = AST;

 rewrite = true;

 backtrack = true;

 memoize = true;

 tokenVocab = JavaBPhase1Parser;

 ASTLabelType = CommonTree;

}

@header {

 import java.util.Map;

 import java.util.HashMap;

 import java.util.LinkedHashMap;

 import java.util.Set;

 import java.util.HashSet;

}

@members {

 // SYMBOL TABLES

 private Map<String,LinkedHashMap<String,Boundary>>

componentToLeftBoundariesSymTable;

 private Map<String,LinkedHashMap<String,Boundary>>

componentToRightBoundariesSymTable;

 private Map<String,CompositionDeclaration> compositionsSymTable;

 private Map<String,Boolean> componentToIsActive;

 // SEMANTIC CHECK INSTANCE VARIABLES (not the same as the context

instance variables used last time -- context was used in the parser to

determine if certain alternatives in certain rules were valid or not)

 private Set<String> handlerNames = new HashSet<String>();

 private int numRunMethods = 0;

 // SEMANTIC CHECK ERROR and WARNING lists

 private List<String> errorList = new ArrayList<String>();

 private List<String> warningList = new ArrayList<String>();

 /* Overridden */

 public void displayRecognitionError(String[] tokenNames,

RecognitionException e) {

 String hdr = getErrorHeader(e);

 String msg = getErrorMessage(e, tokenNames);

 errorList.add("ERROR: "+hdr + " " + msg);

 }

}
Code Listing 25 - Top of phase 2 (semantic checks 1) tree grammar

Translator Design and Implementation

60

The important options here are output=AST and rewrite=true. The output option specifies

that the output of this tree walker should be an AST. The rewrite option is a convenience

option that allow the input AST (from the parser) to be copied to the output AST of the phase

except where stated otherwise. Since most the time the AST does not need to be extensively

modified, the rewrite option reduces the number of AST rewrite rules required to only where

changes to the tree are needed.

Code Listing 25 also shows a number of symbol tables, implemented using java.util.Map, and

variables, used for semantic checks. The two Maps componentToLeftBoundariesSymTable

and componentToRightBoundariesSymTable map component identifiers to the boundaries

of that component. The Boundary class here is used to represent a boundary, and is different

from the Boundary class used by the generated translation (see section 4.1.1). The

isCompatibleWith() method is used by the wiring semantic checks to ensure compatible

boundaries are wired together:

public class Boundary {

 private String name;

 private String type;

 private Side side; // technically, don't actually need to store the

'side', since it is known implicitly by what Map the Boundary object is put

in

 private Direction direction;

 public Boundary(String name, String type, Side side, Direction

direction) {

 this.name = name;

 this.type = type;

 this.side = side;

 this.direction = direction;

 }

 // copy constructor (used in PlainComponent)

 public Boundary(Boundary b) {

 this.name = b.getName();

 this.type = b.getType();

 this.side = b.getSide();

 this.direction = b.getDirection();

 }

 public String getName() {

 return name;

 }

 public String getType() {

 return type;

 }

 public Side getSide() {

 return side;

 }

 public Direction getDirection() {

 return direction;

 }

 public String getDirectionString() {

 if(direction == Direction.IN) { return "?"; }

Translator Design and Implementation

61

 else { return "!"; }

 }

 // is this boundary compatible with the given boundary? -- i.e.

compatible types, directions and sides

 public boolean isCompatibleWith(Boundary b) {

 boolean compatibleDirections = false;

 boolean compatibleSides = false;

 boolean compatibleTypes = this.type.equals(b.getType());

 // compatible directions?

 if(this.direction == Direction.IN) {

 if(b.direction == Direction.OUT)

 compatibleDirections = true;

 }

 else {

 if(b.direction == Direction.IN)

 compatibleDirections = true;

 }

 // compatible sides?

 if(this.side == Side.LEFT) {

 if(b.side == Side.RIGHT) {

 compatibleSides = true;

 }

 }

 else { // this.side == Side.RIGHT

 if(b.side == Side.LEFT) {

 compatibleSides = true;

 }

 }

 return (compatibleTypes && compatibleDirections &&

compatibleSides);

 }

}
Code Listing 26 - Boundary class used to aid translation process. Represents a boundary of a component.

Stores its name, type, side and direction. The most important method to note is the isCompatibleWith()

method that may be used to check whether this Boundary is compatible with a given Boundary.

Another important Map, compositionsSymTable, tracks all declared compositions in wiring

code. All these symbol tables are passed from phase to phase, used for further semantic

checks and also code generation.

Currently, one limitation of the translator is that in order to translate wiring code files, all

component definition files it references must be translated at the same time. This is so that the

translator can populate these Maps with the required information.

4.3.4.1 Component Definition Semantic Checks

A small selection of semantic checks for component definition rules from

JavaBPhase2WalkerSem1.g are now listed:

runMethodDeclaration

 @init {

 // update number of run methods seen (for semantic check

purposes)

 numRunMethods++;

Translator Design and Implementation

62

 // update component -> isActive mapping of this component to

mark it as live since it has a run method

 componentToIsActive.put($componentDefinition::componentName,true);

 }

 : ^(RUN_DECL block)

 {

 // SEMANTIC CHECK: enforce 0 (passive component) or 1 (active

component) run method

 if(numRunMethods > 1) {

 errorList.add("ERROR: ("+$RUN_DECL.line+":"+$RUN_DECL.pos+") Multiple

run methods defined. A component can define either zero (active components)

or one run method (passive components).");

 }

 }

 ;
Code Listing 27 - There should only be zero or one run method declaration in a component definition

boundaryDeclaration

 : ^(BOUNDARY_DECL IDENTIFIER boundarySide type boundaryDirection)

 {

 // SEMANTIC CHECK: no two boundaries with same identifier (i.e. ensure

this boundary identifier has not been used before). (Boundary identifiers

must be unique regardless of whether the rest of their signature is

different (i.e. their types or direction)).

 Side side = ($boundarySide.text.equals("left")) ? Side.LEFT :

Side.RIGHT;

 Direction direction = ($boundaryDirection.text.equals("!")) ?

Direction.OUT : Direction.IN;

 Boundary b = new Boundary($IDENTIFIER.text, $type.text, side,

direction);

 // check what existing boundaries there are for the current component

 if(side == Side.LEFT) {

if(!componentToLeftBoundariesSymTable.get($componentDefinition::componentNa

me).containsKey($IDENTIFIER.text)) { // .get will NOT return null -- we are

guaranteed that a component with that name exists

componentToLeftBoundariesSymTable.get($componentDefinition::componentName).

put($IDENTIFIER.text,b);

 }

 else { // error -- boundary already exists

 errorList.add("ERROR: ("+$IDENTIFIER.line+":"+$IDENTIFIER.pos+")

Boundary redeclaration. The boundary '"+b.getName()+"' has already been

declared in component '"+$componentDefinition::componentName+"'.");

 }

 }

 else if(side == Side.RIGHT) {

if(!componentToRightBoundariesSymTable.get($componentDefinition::componentN

ame).containsKey($IDENTIFIER.text)) {

 System.out.println("boundary "+$IDENTIFIER.text+" added to right

boundaries sym table");

componentToRightBoundariesSymTable.get($componentDefinition::componentName)

.put($IDENTIFIER.text,b);

 }

 else { // error -- boundary already exists

Translator Design and Implementation

63

 errorList.add("ERROR: ("+$IDENTIFIER.line+":"+$IDENTIFIER.pos+")

Boundary redeclaration. The boundary '"+b.getName()+"' has already been

declared in component '"+$componentDefinition::componentName+"'.");

 }

 }

 }

 ;
Code Listing 28 - Boundary declarations in a component definition are either added to the

componentTo[Left|Right]BoundariesSymTable symbol table, or the boundary has been

previously declared and an error is added to the list of errors.

outSynchronizationStatement

 : ^(OUT_SYNC_STATEMENT IDENTIFIER expression)

 {

 // SEMANTIC CHECK: identifier for boundary that we are sending on

actually exists

if(componentToLeftBoundariesSymTable.get($componentDefinition::componentNam

e).get($IDENTIFIER.text) == null &&

componentToRightBoundariesSymTable.get($componentDefinition::componentName)

.get($IDENTIFIER.text) == null) {

 errorList.add("ERROR: ("+$IDENTIFIER.line+":"+$IDENTIFIER.pos+")

Undeclared boundary '"+$IDENTIFIER.text+"' used in outward synchronization

expression.");

 }

 }

 ;
Code Listing 29 - Outward synchronisations must take place on a boundary that exists in the current

component ($componentDefinition::componentName).

4.3.4.2 Wiring Code Semantic Checks

Wiring code checks primarily take place in the second semantic phase, in the

compositionExpression rule. The alternatives for the rule that match different kinds of

composition expression (e.g. sequential and tensor compositions) are listed separately and

explained. The rule is recursive rule due to the nature of composition expressions, which may

be nested indefinitely (see section 3.3).

compositionExpression returns [CompositionComponent compositionComponent]

// Sequential composition

// (e.g. IntProducer.IntConsumer)

 : ^(COMPOSITION_COMPONENT ^(DOT

leftCompositionComponent=compositionExpression

rightCompositionComponent=compositionExpression))

 // found composition component defined by a sequential composition

 {

 Map<String,Boundary> leftOperandRightBoundaries =

$leftCompositionComponent.compositionComponent.getRightBoundaries();

 Map<String,Boundary> rightOperandLeftBoundaries =

$rightCompositionComponent.compositionComponent.getLeftBoundaries();

 do {

 // SEMANTIC CHECK: also ensure that the wirings between these

boundaries are all compatible (where there is an incompatibility we need to

highlight it -- a mismatch in the number of boundaries is also an obvious

error -- check that first by comparing the sizes of lists....or something

similar)

 // if mismatch in size, then error

 if(leftOperandRightBoundaries.size() !=

rightOperandLeftBoundaries.size()) {

Translator Design and Implementation

64

 errorList.add("ERROR:

("+$leftCompositionComponent.start.getLine()+":"+$leftCompositionComponent.

start.getCharPositionInLine()+" to

"+$rightCompositionComponent.start.getLine()+":"+$rightCompositionComponent

.start.getCharPositionInLine()+")"+

 " Boundary mismatch in sequential

composition. The number of boundaries for the left operand and right

operand do not match.");

 break;

 }

 // (at this point we know we have an equal number of

boundaries, however, they may not be compatible)

 // now check corresponding boundaries in the boundary lists

of the two operands are compatible

 Iterator<Map.Entry<String,Boundary>>

leftOperandRightBoundariesIterator =

leftOperandRightBoundaries.entrySet().iterator();

 Iterator<Map.Entry<String,Boundary>>

rightOperandLeftBoundariesIterator =

rightOperandLeftBoundaries.entrySet().iterator();

 while(leftOperandRightBoundariesIterator.hasNext()) {

 Map.Entry<String,Boundary>

leftOperandBoundaryPair = leftOperandRightBoundariesIterator.next();

 Boundary leftOperandBoundary =

leftOperandBoundaryPair.getValue();

 if(leftOperandBoundary == null) { continue; } //

if the programmer actually referenced a non-existent boundary then this

will be null (the error associated with it will already have been added to

the error list)

 Map.Entry<String,Boundary>

rightOperandBoundaryPair = rightOperandLeftBoundariesIterator.next();

 Boundary rightOperandBoundary =

rightOperandBoundaryPair.getValue();

 if(rightOperandBoundary == null) { continue; }

if(!leftOperandBoundary.isCompatibleWith(rightOperandBoundary)) {

 errorList.add("ERROR:

("+$leftCompositionComponent.start.getLine()+":"+$leftCompositionComponent.

start.getCharPositionInLine()+" to

"+$rightCompositionComponent.start.getLine()+":"+$rightCompositionComponent

.start.getCharPositionInLine()+")"+

 " Incompatible boundaries in

boundary lists. Boundary '"+leftOperandBoundaryPair.getKey()+"' of left

operand is incompatible with corresponding boundary

'"+rightOperandBoundaryPair.getKey()+"' of right operand.");

 }

 }

 } while(false);

 // construct appropriate object representing a sequential composition

of the two operands and their boundary lists (even if there is a semantic

error, this object will get instantiated anyway -- but that poses no

problem since the error will stop it going to the next phase: code

generation)

 $compositionComponent = new

SequentialCompositionComponent($leftCompositionComponent.compositionCompone

nt,$rightCompositionComponent.compositionComponent);

 }

Translator Design and Implementation

65

Code Listing 30 - The sequential composition (DOT) alternative of the compositionExpression rule in

JavaBPhase3Sem2.g. Sequential composition requires the most important checks, since this is where

wirings between boundaries occurs.

The checks here ensure that for each pair of boundaries that are to be wired together, they are

compatible (an error message is reported otherwise).

// "Copy" Sequential composition

// (e.g. IntProducer/\Cons#Cons)

 | ^(COMPOSITION_COMPONENT ^(COPY

leftCompositionComponent=compositionExpression

rightCompositionComponent=compositionExpression))

 {

 // semantic check of copywire wiring and then create

CopySequentialCompositionComponent object

 List<Map.Entry<String,Boundary>> leftOperandRightBoundaries = new

ArrayList<Map.Entry<String,Boundary>>($leftCompositionComponent.composition

Component.getRightBoundaries().entrySet()); // left operand should have a

single right boundary

 List<Map.Entry<String,Boundary>> rightOperandLeftBoundaries = new

ArrayList<Map.Entry<String,Boundary>>($rightCompositionComponent.compositio

nComponent.getLeftBoundaries().entrySet()); // right operand should have

two left boundaries

 do {

 // SEMANTIC CHECK: also ensure that the wirings between these

boundaries are all compatible (where there is an incompatibility we need to

highlight it -- a mismatch in the number of boundaries is also an obvious

error -- check that first by comparing the sizes of lists....or something

similar)

 // if the number of left and right boundaries is not compatible

with what a copy wire requires, then error

 if(leftOperandRightBoundaries.size() != 1) {

 errorList.add("ERROR:

("+$leftCompositionComponent.start.getLine()+":"+$leftCompositionComponent.

start.getCharPositionInLine()+")"+

 " Boundary mismatch in COPY sequential

composition. Found "+leftOperandRightBoundaries.size()+" boundaries for

left operand, expecting just 1 boundary.");

 break;

 }

 else if(rightOperandLeftBoundaries.size() != 2) {

 errorList.add("ERROR:

("+$rightCompositionComponent.start.getLine()+":"+$rightCompositionComponen

t.start.getCharPositionInLine()+")"+

 " Boundary mismatch in COPY sequential

composition. Found "+rightOperandLeftBoundaries.size()+" boundaries for

right operand, expecting just 2 boundaries.");

 break;

 }

 // (at this point we know we have the right number of boundaries

for the two operands, however, they may not be compatible)

 // now check corresponding boundaries in the boundary lists of the

two operands are compatible

 // get individual Map.Entry<String,Boundary> objects for

each boundary

 Map.Entry<String,Boundary> leftOperandBoundary =

leftOperandRightBoundaries.get(0);

Translator Design and Implementation

66

 Map.Entry<String,Boundary> rightOperandTopBoundary =

rightOperandLeftBoundaries.get(0);

 Map.Entry<String,Boundary> rightOperandBottomBoundary =

rightOperandLeftBoundaries.get(1);

if(!leftOperandBoundary.getValue().isCompatibleWith(rightOperandTopBoundary

.getValue())) {

 errorList.add("ERROR:

("+$leftCompositionComponent.start.getLine()+":"+$leftCompositionComponent.

start.getCharPositionInLine()+" to

"+$rightCompositionComponent.start.getLine()+":"+$rightCompositionComponent

.start.getCharPositionInLine()+")"+

 " Incompatible boundaries in COPY sequential

composition. Boundary '"+leftOperandBoundary.getKey()+"' of left operand is

incompatible with top boundary '"+rightOperandTopBoundary.getKey()+"' of

right operand.");

 }

if(!leftOperandBoundary.getValue().isCompatibleWith(rightOperandBottomBound

ary.getValue())) {

 errorList.add("ERROR:

("+$leftCompositionComponent.start.getLine()+":"+$leftCompositionComponent.

start.getCharPositionInLine()+" to

"+$rightCompositionComponent.start.getLine()+":"+$rightCompositionComponent

.start.getCharPositionInLine()+")"+

 " Incompatible boundaries in COPY sequential

composition. Boundary '"+leftOperandBoundary.getKey()+"' of left operand is

incompatible with bottom boundary '"+rightOperandBottomBoundary.getKey()+"'

of right operand.");

 }

 } while(false);

 // construct appropriate object representing a COPY sequential

composition of the two operands and their boundaries (even if there is a

semantic error, this object will get instantiated anyway -- but that poses

no problem since the error will stop it going to the next phase: code

generation)

 $compositionComponent = new

CopySequentialCompositionComponent($leftCompositionComponent.compositionCom

ponent,$rightCompositionComponent.compositionComponent);

 }

Code Listing 31 - The "Copy" sequential composition alternative of the compositionExpression rule in

JavaBPhase3Sem2.g. (Recall that a Copy has been temporarily added to the translator as an operator

rather than the original intention of a Copy component).

The checks for Copy sequential composition are similar in nature to that of ordinary

sequential composition. The only difference is that there must be exactly one sender boundary

for its left operand component and exactly two boundaries for its right operand component.

// Tensor composition

// (e.g. IntConsumer#IntConsumer)

 | ^(COMPOSITION_COMPONENT ^(HASH

topCompositionComponent=compositionExpression

bottomCompositionComponent=compositionExpression))

 {

 // no semantic checks required for tensor composition

 $compositionComponent = new

TensorCompositionComponent($topCompositionComponent.compositionComponent,$b

ottomCompositionComponent.compositionComponent);

Translator Design and Implementation

67

 }

Code Listing 32 - The tensor composition component alternative of the compositionExpression rule in

JavaBPhase3Sem2.g.

Tensor does not require any semantic checks. It is not a wiring operator. Any component may

be placed on any other component with no constraints.

// Reference to a plain / ordinary component

// (e.g. IntProducer)

 | ^(PLAIN_COMPONENT ^(IDENT IDENTIFIER)) // IDENTIFIER here refers to

the component *type* name of a plain component (not the instance name --

these are automatically generated internally by the code below)

 {

 System.out.println();

 System.out.println("Seen plain component: "+$IDENTIFIER.text);

 // SEMANTIC CHECK: Check the plain component exists

 // (no need to do this here since this was already checked in the

previous phase)

 // the check is:

if(componentToLeftBoundariesSymTable.get($IDENTIFIER.text) != null)

 // construct appropriate object representing plain component (in

particular, we are creating an INSTANCE of the component type)

 // Plain component constructor will automatically copy the Boundary

objects to ensure new Boundary objects are created (to ensure uniqueness of

Boundary objects)

 $compositionComponent = new PlainComponent($IDENTIFIER.text,

componentToLeftBoundariesSymTable.get($IDENTIFIER.text),

componentToRightBoundariesSymTable.get($IDENTIFIER.text));

 }

Code Listing 33 - Alternative in the compositionExpression rule for when there is a reference to a plain

component in JavaBPhase3Sem2.g.

The requirement for references to plain components is that the component exists (been

declared).

A previously declared composition may itself be referenced in a composition expression. For

example:
composition c1 = IntProducer.IntBufferCell;

composition c2 = c1.IntConsumer; // c1 referenced

Code Listing 34 - Referencing previously declared compositions within composition declarations.

Its alternative in the compositionExpression rule follows:
// Reference to previously declared composition

// (e.g. c1 being referred to in composition c2)

 | ^(COMPOSITION_COMPONENT ^(IDENT IDENTIFIER)) // IDENTIFIER here

refers to a another declared composition

 {

 // SEMANTIC CHECK: reference to a composition component that has

actually been declared.

 // Lookup composition component in composition symbol table -- we

can assume it has already been declared, error if not found (reference to

an undeclared composition component)

 CompositionDeclaration declaredCompositionComponent =

compositionsSymTable.get($IDENTIFIER.text);

 if(declaredCompositionComponent != null) {

Translator Design and Implementation

68

 $compositionComponent =

declaredCompositionComponent.getCompositionComponent();

 }

 else {

 errorList.add("ERROR:

("+$IDENTIFIER.line+":"+$IDENTIFIER.pos+")"+

 " Reference to undeclared composition component

'"+$IDENTIFIER.text+"'.");

 // compositionComponent doesn't get set in the case of error;

doesn't matter however, because errors stop next phase processing it

 }

 }

 ;
Code Listing 35 - Alternative in the compositionExpression rule for when there is a reference to a

previously declared composition component.

The requirement for references to composition components is that the composition

component has been previously declared.

The reader may have observed that at the end of each of these alternatives, an object is

constructed. These are summarised here:

// Sequential composition component is made up of its left and right

composition components
$compositionComponent = new

SequentialCompositionComponent($leftCompositionComponent.compositionCompone

nt,$rightCompositionComponent.compositionComponent);

// Copy sequential composition component is also made up of its left and

right composition components
$compositionComponent = new

CopySequentialCompositionComponent($leftCompositionComponent.compositionCom

ponent,$rightCompositionComponent.compositionComponent);

// Tensor composition component is made up of its top and bottom

composition components
$compositionComponent = new

TensorCompositionComponent($topCompositionComponent.compositionComponent,$b

ottomCompositionComponent.compositionComponent);

// Plain component is just itself; it is the atom / base case

$compositionComponent = new PlainComponent($IDENTIFIER.text,

componentToLeftBoundariesSymTable.get($IDENTIFIER.text),

componentToRightBoundariesSymTable.get($IDENTIFIER.text));

// Reference to previously declared composition component

$compositionComponent =

declaredCompositionComponent.getCompositionComponent();

Code Listing 36 - Summary of the object instantiations that take place at the end of each alternative.

These are not strictly part of the semantic phase but are preparation for the following code generation

phase.

$compositionComponent is the rule return parameter (see top of compositionExpression rule

in Code Listing 30). Thus these objects are returned from the rule and a tree of

ComponentComposition objects is built up as the AST is traversed. These objects' represent

the composition components and are used in performing semantic checks of the sequential

Translator Design and Implementation

69

composition alternative in particular (Code Listing 30). Secondly, they serve to simplify the

code generation phase (see section 4.3.5.2).

4.3.5 Code Generation (JavaBPhase4WalkerGen.g and
JavaBTemplates.stg)

For code generation, a template engine was required. The StringTemplate engine ([53] [49])

is well integrated with ANTLR and was the natural choice to use. Templates at their simplest

contain placeholders for input parameters to be inserted whilst surrounding text is output

verbatim. The templates themselves and how they are invoked from within an ANTLR

grammar is presently discussed. The templates for generating component definition .java files

are examined first, followed by the templates for wiring code .java files.

The code generation grammar is specified to have templates for its output rather than the

usual AST:
tree grammar JavaBPhase4WalkerGen;

options {

 language = Java;

 output = template;

 rewrite = true;

 backtrack = true;

 memoize = true;

 tokenVocab = JavaBPhase3WalkerSem2;

 ASTLabelType = CommonTree;

}
Code Listing 37 - Top of JavaBPhase4WalkerGen.g grammar. output = template is the key option to note.

rewite = true is also important.

Additionally, rewrite=true has been set. In this context (where output=template), this causes

the underlying tokens associated with the input tree nodes to be rewritten to the output,

except where there are template invocations from certain grammar rules that specify an

alternative output (i.e. a translation). Thus, the Java rules in the ANTLR grammar are left

untouched for the most part. Conversely, most JavaB rules specify a template that is used to

translate into appropriate output.

4.3.5.1 Component Definition Templates

The componentDefinition template acts as the high-level template to which other template

output is inserted. Its structure corresponds to the manual translation examples of section

4.1.1.

componentDefinition(name, boundaryDeclarations, fieldDeclarations,

handlerDeclarations, runMethodDeclaration, methodDeclarations) ::= <<

public class $name$ extends Component$if(runMethodDeclaration)$ implements

Runnable$endif$ {

 public $name$() {

 super("$name$"); // pass name of component to superclass

(Component)

 }

$if(fieldDeclarations)$

 // INTERNAL STATE

 $fieldDeclarations; separator="\n"$

$endif$

$if(boundaryDeclarations)$

Translator Design and Implementation

70

 // BOUNDARIES

 $boundaryDeclarations; separator="\n"$

$endif$

$if(handlerDeclarations)$

 // HANDLERS

 $handlerDeclarations; separator="\n\n"$

$endif$

$if(runMethodDeclaration)$

 // RUN METHOD

 $runMethodDeclaration$

$endif$

$if(methodDeclarations)$

 // OTHER METHODS

 $methodDeclarations; separator="\n\n"$

$endif$

}

>>
Code Listing 38 - componentDefinition template in JavaBTemplates.stg

Dollar signs are used to delimit input parameters (as well as conditionals). The conditionals

tests for the presence of the input parameter (null indicates absence). Code Listing 10 is an

example of an output that follows the structure of a component definition shown here

template.

The template is invoked in the ANTLR grammar by the correspondingly named rule, as seen

below for componentDefinition. After the rule has matched its input, the template is invoked

with values for each of its parameters.

componentDefinition

 scope {

 String componentName; // NOTE: handlerDeclaration rule needs access

to component name to pass to the template it invokes

 }

 : ^(COMPONENT_DEF IDENTIFIER { $componentDefinition::componentName =

$IDENTIFIER.text; } ^(BOUNDARY_DECLS bds+=boundaryDeclaration*)

^(FIELD_DECLS fds+=fieldDeclaration*) rm+=runMethodDeclaration*

^(HANDLER_DECLS hds+=handlerDeclaration*) ^(METHOD_DECLS

mds+=methodDeclaration*))

 -> componentDefinition(name={$IDENTIFIER.text},

boundaryDeclarations={$bds}, fieldDeclarations={$fds},

handlerDeclarations={$hds}, runMethodDeclaration={$rm},

methodDeclarations={$mds})

 ;
Code Listing 39 - componentDefinition rule in JavaBPhase4WalkerGen.g grammar, showing how the

template is invoked. The arrow -> is followed by the invocation of the template with its input parameters.

Translator Design and Implementation

71

The following are a selection of templates whose output is eventually passed into the

componentDefinition template by the componentDefinition rule above.

// component field declarations are the same as normal field declarations

except the only modifier allowed is the 'final' modifier (no public or

private keywords since everything is private by default)

// for component field declarations, we copy the input to the output for

the most part except that we add a 'private' keyword in front

componentFieldDecl(final, type, variableDeclarators) ::= <<

private$if(final)$ $final$$endif$ $type$ $variableDeclarators; separator =

", "$;

>>

// primitiveToReferenceTypesMap performs autoboxing of primitive types

boundaryDeclaration(boundaryName, type) ::= <<

private Boundary<$primitiveToReferenceTypesMap.(type)$> $boundaryName$;

>>

// the run method of a component definition; very simple translation

runMethodDeclaration(block) ::= <<

public void run() $block$

>>

// translation of handlers less trivial

handlerDeclaration(componentName, handlerBoundaryName, type, parameter,

handlerBlock) ::= <<

public Boundary<$primitiveToReferenceTypesMap.(type)$>

create_boundary_$handlerBoundaryName$(Wire<$primitiveToReferenceTypesMap.(t

ype)$> wireAttachedTo) {

 // the handler for this boundary

 HandlerRunnable<$primitiveToReferenceTypesMap.(type)$> handler = new

HandlerRunnable<$primitiveToReferenceTypesMap.(type)$>() {

 public $primitiveToReferenceTypesMap.(type)$

runHandler($primitiveToReferenceTypesMap.(type)$ $parameter$) {

 // no translator housekeeping code required before user

code

 // "user code" (with JavaB parts translated) -- which

could contain a (translated) 'block;' statement

 $handlerBlock$

 // translator housekeeping code following the user code

(if user code blocks then this code is unreachable)

 $handlerBoundaryName$.getWireAttachedTo().finishHandler($handlerBound

aryName$,$componentName$.this); // At this point we know that we have

finished the handler without blocking (i.e. the sync is complete, apart

from the housekeeping tasks we are about to do now)

 return $parameter$;

 }

 };

 // create boundary (name, owner component, wire, handler)

 $handlerBoundaryName$ = new

Boundary<$primitiveToReferenceTypesMap.(type)$>("$handlerBoundaryName$",

this, wireAttachedTo, handler);

 return $handlerBoundaryName$;

}

Translator Design and Implementation

72

>>

Code Listing 40 - Selection of templates invoked by code generation phase grammar. The output of these

templates eventually is passed as input into the componentDefinition template in Code Listing 38.

One interesting feature to note above is $primitiveToReferenceTypesMap.(type)$, which

is used to 'autobox' primitive types into their equivalent reference types. The translation

mechanism uses on Java generics and thus autoboxing primitives is a necessary step.

The following rules illustrate the invocation of two templates from Code Listing 40:
outSynchronizationStatement

 : ^(OUT_SYNC_STATEMENT IDENTIFIER expression)

 ->

outSynchronizationStatement(componentName={$componentDefinition::componentN

ame},boundaryToSendOn={$IDENTIFIER.text},exprValueToSend={$expression.text}

)

 ;

// specifically, only allowed within a component handler (only make sense

inside handlers)

handlerBlockStatement

 : BLOCK_STATEMENT

 ->

handlerBlockStatement(componentName={$componentDefinition::componentName},h

andlerBoundaryName={$handlerDeclaration::handlerBoundaryName},handlerParame

ter={$handlerDeclaration::handlerParameter})

 ;
Code Listing 41 - JavaB component definition rules in code generation grammar that invoke templates

from Code Listing 40.

As previously, it is ensured that all necessary input parameter are provided to the template.

4.3.5.2 Wiring Code Templates

In contrast to translating component definitions, only a single template is invoked to translate

wiring code: startStatement. Thus a JavaB wiring program containing composition

declarations that are not started would not yield any corresponding output in the generated

Java file (the surrounding Java would still be output).

startStatement(componentInstancesToComponentTypeMap, normalWireWiringsList,

copyWireWiringsList, runnableComponentInstancesList) ::= <<

// create component instances contained in the composition

$componentInstancesToComponentTypeMap.keys:{instanceName |

$componentInstancesToComponentTypeMap.(instanceName)$ $instanceName$ = new

$componentInstancesToComponentTypeMap.(instanceName)$();$\n$}$

// create NormalWire and CopyWire instances

$normalWireWiringsList:normalWireInstantiation()$

$copyWireWiringsList:copyWireInstantiation()$

// create boundary objects

$normalWireWiringsList:createBoundaryConnectedToNormalWire()$

$copyWireWiringsList:createBoundaryConnectedToCopyWire()$

// now that we have created boundaries, set boundaries of the wire objects

$normalWireWiringsList:normalWireSetBoundaries()$

$copyWireWiringsList:copyWireSetBoundaries()$

/* Start threads of all live components (those that implement Runnable) */

Translator Design and Implementation

73

// use a latch 'start gate' to ensure they start at the same time -- see

JCIP chapter 5

final CountDownLatch startGate = new CountDownLatch(1);

// add all Runnables to a set to be iterated over

Set<Runnable> runnables = new HashSet<Runnable>();

$runnableComponentInstancesList:{runnables.add(it);\n}$

// set of latch-altered Runnables that have been turned into Threads

Set<Thread> threads = new HashSet<Thread>();

// iterate over them and wrap their run methods to include

startGate.await() at the beginning

for(final Runnable r : runnables) {

 Thread t = new Thread() {

 public void run() {

 try {

 startGate.await();

 r.run();

 }

 catch(InterruptedException e) { e.printStackTrace(); }

 }

 };

 threads.add(t);

 t.start(); // also start the thread (it will await at latch)

}

// GO! (release all the threads)

startGate.countDown();

>>
Code Listing 42 - startStatement template, the only template invoked from the code generation grammar

Its structure corresponds to the ProdConsApplication.java manual translation of section

4.1.2.2.

The invoking startStatement rule:
startStatement

 @init {

 // data structures to be passed to template (filled by recursive

algorithm)

 List<NormalWireBoundaryWiringAggregate> normalWireWirings = new

ArrayList<NormalWireBoundaryWiringAggregate>();

 List<CopyWireBoundaryWiringAggregate> copyWireWirings = new

ArrayList<CopyWireBoundaryWiringAggregate>();

 LinkedHashMap<String,String> instancesToComponentType = new

LinkedHashMap<String,String>(); // instance name -> component type name

 List<String> runnableInstances = new ArrayList<String>();

 }

 : ^(START_STATEMENT ^(IDENT IDENTIFIER))

 {

 // ALL translation actually happens on the start statement --

composition declaration and expressions only fill symbol tables and build

up data structures etc. (mainly already done in previous phase)

 CompositionComponent compositionComponentToStart =

compositionsSymTable.get($IDENTIFIER.text).getCompositionComponent();

 // auxiliary data structures

 Map<String,Integer> componentTypeToNoOfInstances = new

HashMap<String,Integer>(); // component name -> no. of instances

Translator Design and Implementation

74

 Map<Boundary,String> boundaryToOwningComponentInstance = new

HashMap<Boundary,String>();

 // TRAVERSAL -- invoke recursive algorithm to fill data

structures with information needed by the template

compositionComponentToStart.traverse(instancesToComponentType,componentType

ToNoOfInstances,boundaryToOwningComponentInstance,runnableInstances,compone

ntToIsLive,normalWireWirings,copyWireWirings);

 }

 // NOTE: we also pass all the runnables components so that all the

runnable components inside the composition are started (runnableInstances)

 ->

startStatement(componentInstancesToComponentTypeMap={instancesToComponentTy

pe},normalWireWiringsList={normalWireWirings},copyWireWiringsList={copyWire

Wirings},runnableComponentInstancesList={runnableInstances})

 ;

Code Listing 43 - startStatement rule in code generation grammar which invokes startStatement template.

The startStatement template itself is relatively simple. The complexity arises in deriving the

values of its input parameters. The required parameters include:

 The names of component instances and their type.

(componentInstancesToComponentTypeMap)

 The subset of component instances that are Runnable.

(runnableComponentInstancesList)

 Information about all normal wirings (normalWireWiringsList)

 Information about all copy wirings (copyWireWiringsList)

As alluded to at the end of section 4.3.4.2, a hierarchy of objects is built up in the second

semantic phase that represent a composition component. One purpose of this composition

component object is that it simplifies the deriving of the input parameters above. The only

required action of the startStatement rule (Code Listing 43) before invoking the template is to

traverse the composition component that was started (compositionComponentToStart) to

derive the input parameter values. This process is shown in Figure 40:

Translator Design and Implementation

75

Figure 40 - The traversal algorithm traverses the given CompositionComponent and fills the data

structures to be passed to the startStatement template.

A discussion of the traversal algorithm first requires an explanation of the

CompositionComponent class hierarchy (Figure 41).

Translator Design and Implementation

76

Figure 41 - Class diagram of hierarchy between classes that each represent a component. This is an example of the Composite Pattern [54]. It can be seen that all

implementing classes of CompositionComponent except PlainComponent have two references back to a CompositionComponent, one for each operand of the

operation they represent (e.g. sequential composition, tensor composition, 'copy' sequential composition). These supplementary classes to the grammars may be

found on the DVD-ROM.

Translator Design and Implementation

77

Both ordinary and composition components are modelled using these classes.

PlainComponent represents an ordinary component (i.e. a component defined by a JavaB

component definition). SequentialCompositionComponent represents the composition

component resulting after the sequential composition operator has applied to its left and right

operands. Similarly, TensorCompositionComponent represents the composition component

resulting after the tensor composition operator has been applied to its top and bottom

operands. The CompositionComponent interface represents any component (ordinary or

composition), which the aforementioned classes implement. The operands of

SequentialCompositionComponent and TensorCompositionComponent are themselves

CompositionComponents, as Figure 41 shows. As a result, all CompositionComponent

objects may be treated uniformly as components which have left and right boundaries.

Every CompositionComponent class implements the traverse() method, though each

implements it differently (polymorphism). Most implementations are recursive. Both

SequentialCompositionComponent and CopySequentialCompositionComponent make

recursive calls to traverse on their left and right operands. TensorCompositionComponent

does likewise for its top and bottom operands. PlainComponent is the base case.

During the algorithm, SequentialCompositionComponent and

CopySequentialCompositionComponent update the normalWireWirings and

copyWireWirings lists, respectively. TensorCompositionComponent does not update any

data structures (it simply makes the recursive calls). PlainComponent updates the

instancesToComponentType and runnableInstances data structures.

4.3.6 Translator Controller code

This section briefly documents the main code of the translator that pulls all the phases

together.

The translateSingleFile() method below shows clearly the relationship between the phases:

public boolean translateSingleFile(File f, boolean isGlueCodeFile) throws

IOException, RecognitionException {

 // phase 1 - syntactical analysis and produce AST (which may represent a

semantically incorrect program)

 ANTLRInputStream antlrInputStream = new ANTLRInputStream(new

FileInputStream(f));

 JavaBLexer lex = new JavaBLexer(antlrInputStream);

 TokenRewriteStream tokens = new TokenRewriteStream(lex);

 JavaBPhase1Parser phase1 = new JavaBPhase1Parser(tokens);

 JavaBPhase1Parser.javaBCompilationUnit_return r1 =

phase1.javaBCompilationUnit();

 // display errors (no warnings occur for parser stage (only errors))

 for(String error : r1.returnErrorList) { System.out.println(error); }

 // exit early if an error, else get the resulting AST

 if(r1.returnErrorList.size() > 0) { return false; }

 CommonTree t1 = (CommonTree)r1.getTree();

 generateStringAST(t1);

 generatePrettyAST(t1,f.getName()+"-ParserOutputAST");

 // end phase 1

 // phase 2 - walker for semantic analysis 1 (which collects info and

performs some of the semantic checks)

 CommonTreeNodeStream nodes1 = new CommonTreeNodeStream(t1);

 nodes1.setTokenStream(tokens);

Translator Design and Implementation

78

 JavaBPhase2WalkerSem1 phase2 = new JavaBPhase2WalkerSem1(nodes1);

 JavaBPhase2WalkerSem1.javaBCompilationUnit_return r2 =

phase2.javaBCompilationUnit(componentToLeftBoundariesSymTable,componentToRi

ghtBoundariesSymTable,compositionsSymTable,componentToIsActive);

 // display errors and warnings

 for(String error : r2.returnErrorList) { System.out.println(error); }

 for(String warning : r2.returnWarningList) { System.out.println(warning);

}

 // exit early if an error (but not warnings -- warnings are not fatal)

 if(r2.returnErrorList.size() > 0) { return false; }

 // exit early if an error, else get the resulting AST

 if(r2.returnErrorList.size() > 0) { return false; }

 CommonTree t2 = (CommonTree)r2.getTree();

 generateStringAST(t2);

 generatePrettyAST(t2,f.getName()+"-Sem1OutputAST");

 // end phase 2

 // phase 3 - walker for semantic analysis 2 (rest of the semantic checks)

 CommonTreeNodeStream nodes2 = new CommonTreeNodeStream(t2);

 nodes1.setTokenStream(tokens);

 JavaBPhase3WalkerSem2 phase3 = new JavaBPhase3WalkerSem2(nodes2);

 JavaBPhase3WalkerSem2.javaBCompilationUnit_return r3 =

phase3.javaBCompilationUnit(componentToLeftBoundariesSymTable,componentToRi

ghtBoundariesSymTable,compositionsSymTable);

 // display errors and warnings

 for(String error : r3.returnErrorList) { System.out.println(error); }

 for(String warning : r3.returnWarningList) { System.out.println(warning);

}

 // exit early if an error (but not warnings -- warnings are not fatal)

 if(r3.returnErrorList.size() > 0) { return false; }

 // exit early if an error, else get the resulting AST

 if(r3.returnErrorList.size() > 0) { return false; }

 CommonTree t3 = (CommonTree)r3.getTree();

 generateStringAST(t3);

 generatePrettyAST(t3,f.getName()+"-Sem2OutputAST");

 // end phase 3

 // phase 4 - code generation (all errors assumed to be found by this

point)

 CommonTreeNodeStream nodes3 = new CommonTreeNodeStream(t3);

 nodes3.setTokenStream(tokens);

 JavaBPhase4WalkerGen phase4 = new JavaBPhase4WalkerGen(nodes3);

 phase4.setTemplateLib(templates); // give parser the templates

phase4.javaBCompilationUnit(compositionsSymTable,componentToIsActive,isGlue

CodeFile); // don't need return value because the token stream 'tokens' has

been rewritten

 File outputDirPath; // represents directory to file

 File outputFile; // the file itself

 try {

 String fileName = f.getName().substring(0,

f.getName().lastIndexOf("."))+".java"; // use same name as input file

(except the extension)

 System.out.println("Generated '"+ outputDir+fileName+"'");

 outputDirPath = new File(outputDir);

 outputDirPath.mkdirs(); // creates all necessary directories if they

don't already exist

 outputFile = new File(outputDir+fileName); // yes, that is meant to

include path too

 BufferedWriter out = new BufferedWriter(new FileWriter(outputFile));

Translator Design and Implementation

79

 out.write(tokens.toString());

 out.close();

 } catch (IOException e) { e.printStackTrace(); return false; }

 // end phase 4

 // if we got to here in one piece, then translation succeeded

 lastGeneratedJavaFile = outputFile;

 return true;

}

Code Listing 44 - translateSingleFile() method from JavaBTranslator.java. This is the core 'controller'

code for translating a single JavaB file.

4.4 Summary

This chapter discussed the core translation mechanisms, the algorithms that implement the

required synchronisation, and finally the translator itself. With respect to the language

specification laid out in Chapter 3, the core language features were successfully implemented.

The Copy and Switch synchronisation primitives were not fully however.

Testing

80

5.

Testing

This chapter documents the testing carried out on the translator and the translation

mechanism classes described in chapter 4.

5.1 Testing the Translator

The use of gUnit [55] for testing the ANTLR grammars was considered. Though gUnit is a

suitable tool, technical problems in running it rendered its use impossible. As an alternative,

test case input programs were provided to the translator. The test cases are designed mainly to

test JavaB constructs. This is because the Java rules (of the lexer and parser) do not need

extensive testing because they are based on the Java grammar from the OpenJDK Compiler-

Grammar project, which has already been extensively tested [45].

One known issue with the translator is that occasionally some ordinary Java code is not

copied to the output translation as it should. This is due to shortcomings in the tree

construction process. An example of this will be seen shortly.

5.1.1 Translator Test Cases

5.1.1.1 Test Cases for JavaB Semantic Checks

Table 2 shows the test cases used for each semantic check expected of the translator. The

tests used generally test only a single semantic check. It is possible that some bugs only

surface under certain combinations of semantic checks. Such combinations were not tested.

Test
No.

Description Input Expected
Output

Actual Output Resolution

Component Definitions

General Semantic Checks

1 Names of
components
are distinct. No
Two
component
may have same
name.

Translator is
passed three
components,
two components
with same name.

Unique
component
translation
succeeds. One
of two
components
also succeeds
but when
translator
reaches second
one shows error
message.

As expected. N/A

2 Give warning if Translator is Translation As expected. N/A

Testing

81

Test
No.

Description Input Expected
Output

Actual Output Resolution

a component
definition given
which has
neither run
method nor
any boundary
declarations

passed a
component as
described.

succeeds but
warning is
shown.

3 Component has
a declared
boundary that
has no
corresponding
handler.

Translator is
passed a
component as
described.

Translator
should
automatically
insert default
handler that
blocks into the
generated
output.

Not as
expected.
Translation
'succeeded' but
only one handler
in the
generated Java
code. There
would be an
error when
compiling wiring
code that uses
this component.

This is a known
feature still to
be
implemented.

Boundary Declarations

4 No two
boundaries of a
component
may have the
same name,
even if the rest
of their
signature is
different

Translator is
passed a
component with
three
boundaries, two
of which have
the same name.

Translation fails
with error that
boundary has
been re-
declared.

As expected,
except there
was also
spurious error
messages
regarding
conflicting types
of boundary
declared and
handlers (since
two handlers
declared with
same name).

N/A (the
spurious error
messages
cannot easily
be removed).

Run Method Declarations

5 No more than
one run
method in a
component is
permitted.

Translator is
passed a
component with
two run
methods.

Translation fails
with error
stating that
there are
multiple
declared run
methods.

As expected. N/A

Handler declarations

6 Handler has
not already
been declared.

Translator is
passed a
component that
declares multiple
handlers of same
name.

Translation fails
with error
stating that
handler has
been re-
declared.

Not as
expected.
Translation
'succeeded',
with code
generated for

Handler-
Declaration
rule in
semantic1
grammar
corrected.

Testing

82

Test
No.

Description Input Expected
Output

Actual Output Resolution

both handlers
(leading to two
methods with
same name)!

handlerNames,
a Set that kept
track of
previously
declared
handlers was
being updated
in wrong
branch of an
if..else.

7 There exists a
boundary with
same name as
the handler.

Translator is
passed a
component that
declares a
handler with no
boundary of the
same name.

Translation fails
with error.

As expected. N/A

8 Handler
direction and
type match
that of
boundary.
(This test and
the previous
actually check
that declared
handlers have
corresponding
boundary
declaration).

Translator is
passed a
component that
declares a
handler with
same name as a
declared
boundary but
incompatible
direction and/or
type.

Translation fails
with error.

As expected. N/A

Synchronisation statements

9 For an inward /
outward
synchronisation
statement,
boundary being
received / sent
on actually
exists.

Translator is
passed a
component with
a run method
containing an
synchronisation
statement on a
non-existent
boundary.

Translation fails
with error.

As expected. N/A

Wiring Code

Compositions

10 Composition is
not redeclared
with the same
name as a
previous
composition
declaration.

Translator is
passed a wiring
code application
(along with
required
components)
with two

Translation fails
with error.

As expected. N/A

Testing

83

Test
No.

Description Input Expected
Output

Actual Output Resolution

compositions
declared with
the same name.

11 Compositions
must not
reference an
identifier that
has not been
previously
declared
(either a
component or
a composition).

Translator is
passed a wiring
application. Not
all required
components are
passed as well.
The wiring
code's
composition also
references an
undeclared
composition.

Translation fails
with error,
stating that
there is no
component or
composition
with the name
used in the
composition.

As expected. N/A

12 A sequential
composition
only wires
compatible
components.

Translator is
passed a wiring
application
(along with
required
components).
Wiring code tries
to sequentially
compose two
components
with
incompatible
boundaries.
(IntConsumer
was composed
with
IntProducer,
rather than the
other way
round).

Translation fails
with error,
stating that the
two components
have
incompatible
boundaries.

Not as expected.
Translation fails,
but with
(correct) error
that there are
'dangling'
boundaries
remaining when
attempting to
start the
composition.
Reason for lack
of error was that
the test case
components did
not have any
common
boundaries
between them
at all, there was
no error.

Alter
translator to
show error
when two
components
which have no
common
boundaries are
sequentially
composed.
This situation
was not
previously
considered.

Start Statements

13 Start statement
must reference
a declared
composition.

Translator is
passed a wiring
application
(along with
required
components).
The wiring
code's start
statement
references an
undeclared
composition.

Translation fails
with error,
stating that the
start statement
references an
undeclared
composition.

As expected. N/A

Testing

84

Test
No.

Description Input Expected
Output

Actual Output Resolution

14 When a
composition is
started, no
'dangling' /
remaining
boundaries are
remaining that
have not been
wired to
another
boundary.

Translator is
passed a wiring
application
(along with
required
components).
The composition
leaves some of
its components
with dangling
boundaries.

Translation fails
with error,
stating that the
composition
cannot be
started because
it has dangling
boundaries.

As expected. N/A

Table 2 - JavaB semantic checks test cases. Based on the semantic checks of Appendix G.

As can be seen, performing these tests revealed one or two omissions from the translator's

semantic phases.

5.1.1.2 Example Program Test Cases

Various example programs were also run through the translator (some of which are given in

Appendix B), as shown in Table 3.

Test
No.

Example Program Translated
Successfully

Compiled Successfully Ran Successfully

1a P.C Yes No -

1b P.C (with method call
outside
synchronisation
statement; see below)

Yes Yes Yes

2 P.IBC.C Yes Yes Yes

3 P.IBCx4.C Yes Yes Yes

4 P.IBC.IBE Yes Yes Yes

5 TwoIntProducer.(C#C) Yes Yes Yes

6 P#P.C#C Yes Yes Yes

7 SyncCounter.C Yes Yes Yes

8a P.
DiscerningIntConsumer

No - -

8b P.
DiscerningIntConsumer
(correction)

Yes Yes Yes

9 P.LazyIntConsumer Yes Yes No

10 P/\C#C Yes Yes No

11 P/\C#(IBC.C) Yes Yes No
Table 3 - Example Program Test Cases. (P stands for IntProducer, C for IntConsumer, and IBC for

IntBufferCell).

The failure cases are now discussed.

Test 1a

The line:
 out![produce_item()];

in IntProducer, was being translated to:
 out.getWireAttachedTo().send(out,produce_item);

Testing

85

rather than the correct version:
 out.getWireAttachedTo().send(out,produce_item());

The input Java is not copied to the translation output in its entirety. The exact cause of the

bug was tracked down to unresolved issues in the Java tree construction process and their

interaction with the outwardSynchronisationStatement rule in the code generation grammar.

The remaining examples deliberately avoid having such method calls directly inside outward

synchronisation statements.

Test 8a

The failure occurred during parsing of the run method in DiscerningIntConsumer.javabc:
__run__ {

 int v; // <-- PARSER FAILS HERE

 while(true) {

 v = in?;

 while(v % 2 == 0)

 v = in?;

 consume_item(v);

 }

}

Code Listing 45 - The run method of DiscerningIntConsumer.javabc causing a failure in the parser. This

was due to a defect in the parser rather than an incorrect JavaB program.

The specific errors were:

ERROR: line 8:2 mismatched input 'while' expecting RBRACE

ERROR: line 9:5 no viable alternative at input '='

Figure 42 - Errors in Test 1a of Example Program Test Cases

Correcting the multiplicity of the blockStatement rule invocation in the

runMethodDeclaration rule resolved this:
runMethodDeclaration

 @init {

 inRunMethodDeclaration = true;

 }

 @after {

 inRunMethodDeclaration = false;

 }

 : RUN LBRACE blockStatement RBRACE // <-- CORRECTION: blockStatement*

 -> ^(RUN_DECL[$RUN,"RUN_DECL"] blockStatement)

 ;
Code Listing 46 - Problem in runMethodDeclaration rule; correction to multiplicity of blockStatement

Corresponding alterations to the tree grammars and the runMethod template were also

required.

This bug had been concealed previously because most test cases used were non-terminating

examples with a single while(true) blockStatement.

Tests 9, 10, 11

These tests all suffered from deadlock when the generated output was executed. Test 9

deadlocks due to the reasons documented in Appendix B.4. Tests 10 and 11 deadlock simply

due to the fact that the current implementation of CopyWire contains unresolved deadlocks.

Testing

86

5.1.2 Supporting Classes

The main complexity in the translator's supporting classes was in the CompositionComponent

classes (see section 4.3.5). JUnit was used to verify the correctness of the traverse() methods

of these classes; that they fill the data structures correctly.

Two JUnit test case methods follow. The DVD-ROM contains the full test suite.
@Test

public void PlainTraverse() {

 // traverse the intProducer, passing (mostly) empty data structures

 intProd1.traverse(instancesToComponentType, componentTypeToNoOfInstances,

boundaryToOwningComponentInstance, runnableInstances, componentToIsActive,

normalWireWirings, copyWireWirings);

 // check results are correct

 assertEquals(instancesToComponentType.size(), 1);

assertTrue(instancesToComponentType.get("intProducer1").equals("IntProducer

"));

 assertEquals(componentTypeToNoOfInstances.size(),1);

 assertTrue(componentTypeToNoOfInstances.get("IntProducer") == 1);

 assertEquals(boundaryToOwningComponentInstance.size(),1);

 assertEquals(runnableInstances.size(),1);

 assertTrue(runnableInstances.contains("intProducer1"));

 // no wirings

 assertEquals(normalWireWirings.size(), 0);

 assertEquals(copyWireWirings.size(), 0);

}

@Test

public void SCCTraverseTwoPlainOperands() {

 // create seq comp. and traverse

 SequentialCompositionComponent scc = new

SequentialCompositionComponent(intProd1, intCons1);

 scc.traverse(instancesToComponentType, componentTypeToNoOfInstances,

boundaryToOwningComponentInstance, runnableInstances, componentToIsActive,

normalWireWirings, copyWireWirings);

 // check results are correct

 assertEquals(instancesToComponentType.size(), 2);

assertTrue(instancesToComponentType.get("intProducer1").equals("IntProducer

"));

assertTrue(instancesToComponentType.get("intConsumer1").equals("IntConsumer

"));

 assertEquals(componentTypeToNoOfInstances.size(),2);

 assertEquals(componentTypeToNoOfInstances.get("IntProducer"),new

Integer(1));

 assertEquals(componentTypeToNoOfInstances.get("IntConsumer"),new

Integer(1));

 assertTrue(boundaryToOwningComponentInstance.size() == 2);

 assertTrue(runnableInstances.size() == 2);

 assertTrue(runnableInstances.contains("intProducer1"));

 assertTrue(runnableInstances.contains("intConsumer1"));

 // a single wiring

 assertTrue(normalWireWirings.size() == 1);

 assertTrue(normalWireWirings.get(0).getBoundaryType().equals("int"));

assertTrue(normalWireWirings.get(0).getReceiverBoundaryName().equals("in"))

;

Testing

87

assertTrue(normalWireWirings.get(0).getReceiverInstanceName().equals("intCo

nsumer1"));

assertTrue(normalWireWirings.get(0).getSenderBoundaryName().equals("out"));

assertTrue(normalWireWirings.get(0).getSenderInstanceName().equals("intProd

ucer1"));

 // should be no copy wirings

 assertTrue(copyWireWirings.size() == 0);

}

Code Listing 47 - Two JUnit test cases testing correctness of traverse() methods of PlainComponent and

SequentialCompositionComponent

5.2 Testing Translation Mechanism classes (inc. Wire)

The majority of the translation mechanism classes are trivial (see Appendix D), except the

Wire classes. Thus only the testing of these is documented here.

5.2.1 NormalWire

An effective tool used for exposing concurrency bugs was ConTest [33]. The tool works by

instrumenting Java bytecode with yields near synchronisation points. The deadlock discussed

in section 4.1.3.1 was exposed using ConTest. Used in conjunction with ConTest was

ECLEmma. This tool was used to analyse whether certain code paths in NormalWire were

taken or not.

FindBugs was used as a supplementary aid to discovering bugs. It analyses the code for 'bug

patterns'. Unfortunately, the only 'bugs' found were false positives.

5.2.2 CopyWire

Time constraints have meant testing of CopyWire thus far has also only used ConTest, and

that only to expose deadlock.

In future work, the more complex semantics of CopyWire require more systematic testing by

enumerating the different cases that can take place into equivalence classes. In particular,

equivalence classes include the various orders components may tug (sender-receiver1-

receiver2, receiver1-sender-receiver2 etc.). Additionally, the two ways handlers may

complete also form two more equivalence classes, which when combined with the various

orderings above, produce many more equivalence classes that would need to be tested.

Performing this in conjunction with ConTest would be an effective strategy.

5.3 Summary

The semantic test cases and test programs successfully uncovered a number of bugs in the

translator. For testing of the Wires, ConTest proved an invaluable tool.

Development Process and Tools

88

6.

Development Process and Tools

This chapter briefly discusses the development process chosen and software tools used in the

project.

6.1 Process

The process adopted could be described as 'evolutionary iterative development'[56].

Evolutionary in the sense that the development of the language was relatively fluid and open

to change. Often, language semantics were refined as implementation issues were

encountered (e.g. development of NormalWire class and the translator itself clarified

semantics of a wire and "sides" of boundaries, respectively). Iterative because the project

moved from initial manual translations, to a core translator, to a translator that supported

additional synchronisation primitives. Not all the planned iterations were completed however

(see Figure 43 and Figure 44 in chapter 7). Overall, this process was the most natural

approach for this project.

6.2 Tools

The software tools used in this project can be divided into several categories:

Tool Type Tools used

Integrated
Development
Environment

Eclipse used for development of 'manual translation' classes and other Java
classes. The primary reasons for its use was familiarity and availability of plug-ins
(some other tools below are actually Eclipse plug-ins e.g. ConTest, ANTLRIDE).

Netbeans/Ant were used to build the OpenJDK compiler when exploring
approaches to translator construction [46].

ANTLR
grammar
development

ANTLRWorks was initially used for grammar development. However, after
numerous problems (bugs) with the tool, the Eclipse plug-in ANTLRIDE was used
instead. Nevertheless, ANTLRWorks was still useful for performing (remote)
debugging tasks.

ANTLRIDE also better automated the grammar build process. Unfortunately this
build process was long. It built grammars that did not need rebuilding; this
consistently added an extra 10 seconds to the development cycle of each build.

Version Control
System (VCS)

The Mercurial VCS (with BitBucket7 hosting) provided essential source control,
backup and traceability.

V&V ConTest (Eclipse plug-in), FindBugs, JUnit, JProfiler (see chapter 5)

CASE Tools Visual Paradigm and Microsoft Visio were used for UML and generic diagrams
seen in this report.

Table 4 - Software tools used during project

7
 https://bitbucket.org/

Project Management

89

7.

Project Management

The main factor affecting the success of this project has been time. This chapter compares the

project's goals and the plan in the progress report with the final outcome. It also documents

some of the major problems that occurred.

7.1 Time Management

7.1.1 Overview

In general, the project's scope encompassed the following core activities:

1. Crystallising the language semantics

2. Implementing a manual translation (including NormalWire implementation)

3. Constructing the translator

4. Implementing further synchronisation primitives (Copy, Switch)

Activities one to three were indeed completed, whilst four was only partially. Thus overall,

with respect to the goals laid out in the original project brief (Appendix A), the project has

been relatively successful. The primary goal of developing the core language semantics and a

translator was achieved.

Throughout the project, regular supervisor meetings helped keep the project on-focus.

7.1.2 Gantt Charts

Figure 43 shows the Gantt chart from the progress report (from mid-December). Figure 44,

Figure 45, and Figure 46 show the final outcome Gantt chart in different formats (tasks, tasks

with percentages, and summarised tasks with percentages, respectively). As well as indicating

percentage progress, the tasks in the final Gantt chart are changed to reflect the true process

that occurred. For example, for the 'core translator', the syntactic/semantic/generation

subtasks are replaced with the translation of component definitions followed by translation of

wiring code, which reflect the actual implementation order. Another difference is that work

on the Copy construct took place before Switch. This approach was taken because it was felt

that Copy would be the simpler one to implement.

Project Management

90

Figure 43 - Progress Report Gantt chart of planned remaining work and expected order and/or parallelism of tasks.

Project Management

91

Figure 44 - Gantt chart showing final outcome in terms of progress. Highlighted in yellow are all tasks that were either partially completed or not started. The

Copy construct is an example of one that was partially completed.

Project Management

92

Figure 45 - Identical to Gantt chart in Figure 44 but with percentages explicitly shown. Again, the partially completed tasks are shown in yellow.

Project Management

93

Figure 46 - Summarised version of Figure 45 showing the overall tasks of the project and the progress made.

Project Management

94

7.1.3 Comparison of Forecast and Actual Progress

In the first term, there was no precise forecast for the project except that described in the

project brief. This was partly due to the novel nature of the project. Most of the core

semantics had already been discussed pre-term time. Additionally most of the manual

translation was implemented within the first three weeks. However, difficulties encountered

with NormalWire (see section 4.1.3.2), plus other coursework commitments, meant a full

manual translation was only completed by the end of the first term.

Since the progress report, the primary focus has been translator implementation. The progress

report Gantt chart predicted translator implementation by early February. This was an

unrealistic goal however, since substantial work only began in late January. Coursework and

exam commitments led to the decision to not focus on the project during the Christmas

vacation and semester one exam period (see Figure 44). Nevertheless, the predicted time of

six weeks to implement the translator was accurate.

During translator implementation, it was hoped it could have been finished sooner. However,

as section 4.3.1 summarised, some approaches taken led to dead-ends, which necessarily

required reworking and thus cost time. Inexperience in translator implementation (with

ANTLR and StringTemplate) and the novel nature of the JavaB language were factors in this.

Delays in translator completion meant that the other synchronisation primitives could not be

explored in full detail and/or implemented. The semantics of Copy were clarified and its

implementation in one direction completed (although suffers from deadlock). The semantics

and implementation of Switch had not begun.

Project Management

95

7.2 Risk Management

The following table is based on that in the progress report. It enumerates the anticipated risks

involved in the project but also notes actual occurrences of risks and how they were resolved.

Risk (event) Likelihood
/
Probability
(1-5)

Impact /
Loss
incurred
(1-5)

Risk
Exposure
(probability
x loss)

Action
(mitigation /
avoidance /
contingency plan)

Actual Occurrences
of risk and how
they were resolved

Personnel difficulties

Supervisor is
away

4 1 4 Keep in contact
via e-mail

1. Away in Paris
when working on
CopyWire and
requiring a meeting.
Resolved by
rearranging
meeting; this had
low negative
impact.

2. Away in Kenya
during report write
up period. Handled
by e-mail.

Difficulty in
communicating
and getting
along with
supervisor

2 3 6 Try to resolve
with supervisor. If
unsuccessful try
to resolve by
seeing second
examiner.

None.

Short-term
illness (colds,
flu etc.)

3 2 6 Get important
work done well-
before deadline;
sleep enough

A cold during
implementation of
translator AST tree
construction and
tree grammar.
Continued working
but at slower pace.

Long-term
illness/accident
/injury

1 5 5 Contact
supervisor to
determine best
course of action
and fill in a
Mitigating
Circumstances
Form (MCF) if
necessary.

None.

Supervisor has
short-term
illness

3 1 3 Keep in contact
via e-mail (if
necessary)

Once. But of no
significant impact.

Supervisor has
long-term
illness /

1 4 4 May be able to
keep in contact
via e-mail (or

None.

Project Management

96

accident / injury phone).

This project is
highly reliant on
the well-being of
my supervisor so
a "replacement
supervisor" might
not be sufficient!

Technical difficulties

Lack of progress
in language
development

3 4 12 Consult
supervisor.

Some challenges in
determining
semantics of some
constructs but these
were overcome.

Difficulty in
building
translator

3 3 9 Consult
supervisor.
Possibly invest
more time into
compiler
construction to
just get a working
first version
compiler only.

Read compiler
books to gain
inspiration/ideas.

Many difficulties,
reflected in the
number of dead-
end approaches
taken (summarised
in section
Unsuccessful
Approaches4.3.1).
Many discussions
with supervisor.
[48] was a core
reference aid.
However[49]
provided significant
help in using
StringTemplate. A
little more than first
version was
completed.

Project/Schedule difficulties

A minor fall
behind
schedule (<= 3
weeks)

5 1 5 Take time to
rethink through
tasks and
schedule. Re-plan
time. There is still
time to
recuperate.

Implementation
difficulties made
this a common
occurrence. Plans
were changed and
also talked through
with supervisor.

A major fall
behind
schedule (> 3
weeks)

3 4 12 Talk with
supervisor about
what to do, what
tasks to not
spend time on,
and generally
what the best
course of action
is.

It was realised that
Copy and Switch
could not both be
implemented. Thus
Switch was
dropped.

Project Management

97

Coursework of
other modules
is difficult /
overwhelming

1 4 4 Only courseworks
are 30%
COMP3011
Critical Systems
and 30%
COMP3006: Real-
time Computing
and Embedded
Systems.

Mitigate effect by
planning my time
early, limiting
amount of time
spent on such
coursework to get
80% of the marks
and not spend
time on the last
20%.

Small impact in
second semester.

However, in first
semester this had
large impact. In
particular,
COMP3004
coursework meant
little work on
translator was
achieved over
Christmas period.

Both computer
and backup
hard drive fail

1 5 5 Regular backup to
ECS servers.
Backup to
another backup
hard drive and
another
computer. Push
changesets to
revision control
system
(Mercurial)
frequently!

None.

 Table 5 - Risk assessment based on that in progress report, including actual occurrences and how they

were resolved

The primary risks that had occurred that had the greatest impact were: coursework from other

modules competing with the project and also difficulties in implementing the translator.

7.3 Summary

Overall, despite encountering some significant problems during the project, these were not

show-stopping. A good level of progress was achieved and most project goals were met.

Conclusions and Future Work

98

8.

Conclusions and Future Work

This chapter concludes by evaluating the project's achievements with respect to the goals set.

It then discusses possible future work on the JavaB language.

8.1 Conclusions

The vision expressed in the introduction was to develop a language that simplifies the

construction of concurrent software and makes it possible to verify their correctness. This

project has made initial inroads into fulfilling these aspirations.

The project has focused on development of a language that extends Java - JavaB. JavaB's

core semantics were clarified. This included the concepts of components, boundaries,

handlers and wires. Additionally, the core operators, sequential composition and tensor

composition were defined. The semantics and implementation of JavaB's synchronisation

primitives was well underway, with Copy (but not Switch) mainly implemented. An initial

translator that converts JavaB constructs into Java's lower-level concurrency primitives was

completed. The translator's model-driven architecture with separate phases (using ASTs)

makes extending the translator very easy.

The ambition of composing components to achieve sophisticated synchronisations has been

partially achieved. The operators of the language allow components to be composed. Indeed,

some interesting combinations of components can be constructed (see section 3.3). However,

much of the power of composability cannot be realised without standard components. These

include the synchronisation primitive components such as Copy and Switch, and also

components which enable flexible wirings such as Twist, Identity and IdentityLoopback (see

Appendix C).

The focus on implementation meant limited time could be given to the application of JavaB

to real-world applications.

8.2 Suggestions for Future Work

There is plenty of scope for extending this project.

Development of Existing Work

Firstly, there are a number of possible improvements to the translator. The AST construction

process for the Java rules require some corrections. Occasionally, some Java input is 'lost' in

the generated output. An alternative Java grammar by Dieter
8
, which includes tree

construction operations, could be used to aid this process (or even used in place of the

8
 http://www.antlr.org/grammar/1207932239307/Java1_5Grammars

Conclusions and Future Work

99

existing grammars). Another improvement would be better error messages. The semantic

error messages are good; however, syntactical error messages are not very user-friendly,

mainly due to the use of backtracking. Additionally, it would be desirable for the translator to

convert directly to bytecode without requiring javac. Modifying the OpenJDK javac compiler

would likely be a more sensible approach than implementing this by modifying the existing

translator.

The existing Wires also have scope for improvement. Correcting CopyWire to avoid

deadlock, implementing SwitchWire and encapsulating both as standard components are

essential work. Implementing the other standard components of Appendix C is also a key

improvement. Model checking tools such as Java PathFinder could be used to verify the

correctness of the Wire algorithms. Finally, fairness (see section 4.1.3.6) and performance of

the wires are further considerations.

Research Directions

One interesting idea that could be explored is allowing multiple boundaries to be treated as a

single 'logical' boundary. A synchronisation on such a logical boundary behaves like an

ordinary 'single-boundary' synchronisation. For example a component could send integers on

two boundaries o1 and o2 using the following synchronisation statement:
 (o1,o2)![5,6];

Such a synchronisation would only complete once both 'sub-synchronisations' complete for

the tugs that take place on o1 and o2. The owning component of these boundaries defines a

handler for the logical boundary.

An example of this could be an IntProducer that only sends out two integers at a time.

Figure 47 - A modified IntProducer to previously seen, that treats o1 and o2 as one logical boundary. The

IntConsumers are the same as previously seen.

It is conceivable that there applications where there are components that want to synchronise

with (i.e. be in step with) with several other components simultaneously, in a single

transaction-like fashion.

Session types [57] [58] represent another research direction. These provide a higher-level

type system that not only describe simple types but actually describe a protocol. Thus session

types could be used on wires to describe a protocol which the communications on the wire

must follow. For example, a very simple protocol could be that there are always two sends

followed by a receive.

They may also be used to attach predicates to synchronisations that happen on a wire. For

example, two boundaries sending integers could have a predicate that specifies that the two

integers must sum to 10.

Conclusions and Future Work

100

The type checking for session types would occur at both compile-time and run-time. Many

checks can actually be performed at compile-time.

Finally, further directions that could be explored include:

 Dynamic boundaries, where boundaries may change at runtime

 Subtyping of components in a similar way to that in Object-Oriented languages.

Components may inherit boundary declarations, handlers, fields and methods.

 Rolling back of synchronisations in a similar way to database transactions

 Developing methods to formally verify the correctness of JavaB programs

 Developing a graphical environment for designing networks of components

8.3 Summary

This has indeed been a challenging project. Much was learned through the process, both in

technical skills (e.g. concurrent programming, ANTLR, StringTemplate) and the skills

required in managing a large project.

Its key goals have been met, and the groundwork for future work has been laid.

Project Brief

101

9.

References

[1] Y. Jiang. (2008, October) Full ANTLR grammar from OpenJDK's Compiler Grammar

Project. [Online]. http://hg.openjdk.java.net/compiler-grammar/compiler-

grammar/langtools/file/e37d7d5df672/src/share/classes/com/sun/tools/javac/antlr/Java.g

[2] H. Sutter, "The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in

Software," Dr. Dobb's Journal, vol. 30, no. 3, March 2005.

[3] D. Patterson, "The trouble with multi-core," IEEE Spectrum, vol. 47, no. 7, pp. 28-32,

July 2010.

[4] E. A. Lee, "The Problem with Threads," University of California, Berkerley, Berkeley,

Technical Report 2006.

[5] Oracle. (2010) Java SE6 API - java.util.concurrent. [Online].

http://download.oracle.com/javase/6/docs/api/java/util/concurrent/package-

summary.html

[6] B. Goetz et al., Java Concurrency in Practice. United States: Pearson Education, Inc.,

2006.

[7] D. Lea, Concurrent Programming in Java: Design Principles and Patterns, 2nd ed. NY,

United States: Addison Wesley Longman, Inc., 2000.

[8] J. S. Bradbury. (2010, December) CSCI 5100G - Development of Concurrent Software

Systems - University of Ontario Institute of Technology. [Online].

http://faculty.uoit.ca/bradbury/CSCI5100G.html

[9] J. Svenningsson. (2010, August) TDA381 - Concurrent Programming - University of

Gothenburg. [Online].

http://www.cse.chalmers.se/edu/year/2010/course/TDA381_Concurrent_Programming/

[10] P. Welch. (2007) Concurrency Design and Practice - University of Kent. [Online].

http://www.cs.kent.ac.uk/projects/ofa/sei-cmu/

[11] B. Logan. (2008, May) G52CON Concepts of Concurrency - University of Nottingham.

[Online]. http://www.cs.nott.ac.uk/~bsl/G52CON/

[12] P. Godefroid and N. Nagappan, "Concurrency at Microsoft - An exploratory survey," in

CAV Workshop on Exploiting Concurrency Efficiently and Correctly, 2008.

[13] M. Herlihy, "Wait-free synchronization," ACM Transactions on Programming

Languages and Systems (TOPLAS), vol. 13, no. 1, pp. 124-149, January 1991.

[14] M. M. Maged and M. L. Scott, "Nonblocking algorithms and preemption-safe locking on

multiprogrammed shared memory multiprocessors," Journal of Parallel and Distributed

Computing, vol. 51, no. 1, pp. 1-26, May 1998.

[15] T. Leung. (2009, July) A Survey of Concurrency Constructs: O'Reilly Open Source

Convention 2009. [Online].

http://hg.openjdk.java.net/compiler-grammar/compiler-grammar/langtools/file/e37d7d5df672/src/share/classes/com/sun/tools/javac/antlr/Java.g
http://hg.openjdk.java.net/compiler-grammar/compiler-grammar/langtools/file/e37d7d5df672/src/share/classes/com/sun/tools/javac/antlr/Java.g
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/package-summary.html
http://faculty.uoit.ca/bradbury/CSCI5100G.html
http://www.cse.chalmers.se/edu/year/2010/course/TDA381_Concurrent_Programming/
http://www.cs.kent.ac.uk/projects/ofa/sei-cmu/
http://www.cs.nott.ac.uk/~bsl/G52CON/

Project Brief

102

http://www.oscon.com/oscon2009/public/schedule/detail/8144

[16] K. Asanovic et al., "The Landscape of Parallel Computing Research: A View from

Berkeley," EECS Department, University of California, Berkeley, Technical Report

2006.

[17] J. Boner. (2009) State You're Doing it Wrong: Alternative Concurrency Paradigms For

the JVM - JavaOne 2009 - Slideshare. [Online]. http://www.slideshare.net/jboner/state-

youre-doing-it-wrong-javaone-2009

[18] M. Herlihy and J. E. B. Moss, "Transactional Memory: Architectural Support for Lock-

Free Data Structures," in Proceedings of the 20th Annual International Symposium on

Computer Architecture (ISCA '93), San Diego, California, 1993, pp. 289-300.

[19] N. Shavit and D. Touitou, "Software transactional memory," in Proceedings of the

fourteenth annual ACM symposium on Principles of distributed computing, New York,

USA, 1995, pp. 204-213.

[20] B. Saha, A. Adl-Tabatabai, and Q. Jacobson, "Architectural Support for Software

Transactional Memory," in Proceedings of the 39th Annual IEEE/ACM International

Symposium on Microarchitecture , Washington, DC, USA, 2006, pp. 185-196.

[21] B. C. Kuszmaul and C. E. Leiserson, "Transactions Everywhere," Massachusetts

Institute of Technology Laboratory, Cambridge, Massachusetts, 2003.

[22] R. Hickey. (2010) Clojure - Refs and Transactions. [Online]. http://clojure.org/refs

[23] Project Fortress (Sun). Project Fortress - Transactions in Fortress. [Online].

http://projectfortress.sun.com/Projects/Community/wiki/TransactionsInFortress

[24] Scala STM Expert Group. (2010, December) Scala STM. [Online].

http://nbronson.github.com/scala-stm/index.html

[25] R. Hickey. (2009, October) InfoQ: Persistent Data Structures and Managed References.

[Online]. http://www.infoq.com/presentations/Value-Identity-State-Rich-Hickey

[26] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, "Advances in dataflow programming

languages," ACM Computing Surveys (CSUR), vol. 36, no. 1, pp. 1-34, March 2004.

[27] GPars. GPars Guide - Dataflow Concurrency. [Online].

http://www.gpars.org/guide/guide/7.%20Dataflow%20Concurrency.html

[28] JSR166 Expert Group. (2010) Package jsr166y - Preview versions of classes targeted for

Java 7. [Online]. http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166ydocs/

[29] B. Geotz. (2008) Talk: From Current to Parallel. [Online].

http://www.parleys.com/#st=5&id=25

[30] W. Pugh and J. Spacco, "MPJava: High-Performance Message Passing in Java Using

Java.nio," Lecture Notes in Computer Science, vol. 2958, pp. 323-339, May 2004.

[31] S. Srinivasan and A. Mycroft, "Kilim: Isolation-Typed Actors for Java," in ECOOP '08:

Proceedings of the 22nd European conference on Object-Oriented Programming,

Paphos, Cypress, 2008, pp. 104-128.

[32] BBC Research. (2010, November) Kamaelia. [Online].

http://www.kamaelia.org/Home.html

[33] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur, "Multithreaded Java program test

generation," IBM Systems Journal, vol. 41, no. 1, pp. 111-125, 2002.

[34] S. D. Stoller, "Testing Concurrent Java Programs using Randomized Scheduling,"

Electronic Notes in Theoretical Computer Science, vol. 70, no. 4, pp. 142-157,

December 2002.

[35] P. Joshi, M. Naik, K. Sen, and Gay D., "An effective dynamic analysis for detecting

http://www.oscon.com/oscon2009/public/schedule/detail/8144
http://www.slideshare.net/jboner/state-youre-doing-it-wrong-javaone-2009
http://www.slideshare.net/jboner/state-youre-doing-it-wrong-javaone-2009
http://clojure.org/refs
http://projectfortress.sun.com/Projects/Community/wiki/TransactionsInFortress
http://nbronson.github.com/scala-stm/index.html
http://www.infoq.com/presentations/Value-Identity-State-Rich-Hickey
http://www.gpars.org/guide/guide/7.%20Dataflow%20Concurrency.html
http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166ydocs/
http://www.parleys.com/#st=5&id=25
http://www.kamaelia.org/Home.html

Project Brief

103

generalised deadlocks," in Proceedings of the eighteenth ACM SIGSOFT international

symposium on Foundations of software engineering, New York, NY, USA, 2010, pp.

327-336.

[36] M. Naik, "Chord: A Static and Dynamic Program Analysis Framework for Java," Intel

Labs Berkeley, Berkeley, 2010.

[37] C. Terboven, "Comparing Intel Thread Checker and Sun Thread Analyzer," in

Proceedings ParCo 2007 Conference , 2007, pp. 668-676.

[38] SPIN. (2010, December) SPIN Model Checker - Formal Verification. [Online].

http://spinroot.com/spin/whatispin.html

[39] M. Musuvathi, S. Qadeer, and T. Ball, "CHESS: A Systematic Testing Tool for

Concurrent Software," Microsoft Research, Redmond, WA, Technical Report 2007.

[40] K. Havelund and T. Pressburger, "Model checking JAVA programs using JAVA

PathFinder," International Journal on Software Tools for Technology Transfer (STTT),

vol. 2, no. 4, pp. 366-381, 2000.

[41] E. R., Ossietzky, C. V. Olderog, Nets, Terms and Formulas: Three Views of Concurrent

Processes and their Relationship. Cambridge, United Kingdom: Cambridge University

Press, 2005.

[42] H. Bowman and R. Gomez, Concurrency Theory : Calculi and Automata for Modelling

Untimed and Timed Concurrent Systems. London, United Kingdom: Springer-Verlag

London Limited, 2005.

[43] M. Nielsen and V. Sassone, "Lectures on Petri Nets I: Basic Models," Petri Nets and

Other Models of Concurrency, vol. 1491, pp. 587-642, 1998.

[44] E. V. Wyk, L. Krishnan, A. Schwerdfeger, and D. Bodin, "Attribute Grammar-based

Language Extensions for Java," in Proceedings of ECOOP'07, LNCS, 2007.

[45] OpenJDK. OpenJDK: Compiler Grammar Project. [Online].

http://openjdk.java.net/projects/compiler-grammar/

[46] A. Hristov. (2010, March) Hacking the OpenJDK Compiler. [Online].

http://www.ahristov.com/tutorial/java-compiler.html

[47] T. Parr. (2010) ANTLR Parser Generator. [Online]. http://www.antlr.org/

[48] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific Languages.: The

Pragmatic Programmers, 2007.

[49] T Parr, Language Implementation Patterns: Create Your Own Domain-Specific and

General Programming Languages, Susannah Davidson Pfalzer, Ed. USA: Pragmatic

Bookshelf, 2010.

[50] A. J. Admiraal, Automated ANTLR Tree walker Generation.: University of Twente,

2010.

[51] BBC Research. (2010, February) Axon - the core concurrency system for Kamaelia.

[Online]. http://www.kamaelia.org/Docs/Axon/Axon.html

[52] A Aho, M Lam, and R, Ullman J Sethi, Compilers: Principles, Techniques, & Tools, 2nd

ed. USA: Pearson Addison-Wesley, 2007.

[53] T Parr. (2011, April) StringTemplate. [Online]. http://www.stringtemplate.org

[54] E Gamma, R Helm, R Johnson, and J Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software. Canada: Addison-Wesley, 1995.

[55] Leon Jen-Yuan Su. (2010, December) gUnit - Grammar Unit Testing - ANTLR 3.

[Online]. http://www.antlr.org/wiki/display/ANTLR3/gUnit+-+Grammar+Unit+Testing

http://spinroot.com/spin/whatispin.html
http://openjdk.java.net/projects/compiler-grammar/
http://www.ahristov.com/tutorial/java-compiler.html
http://www.antlr.org/
http://www.kamaelia.org/Docs/Axon/Axon.html
http://www.stringtemplate.org/
http://www.antlr.org/wiki/display/ANTLR3/gUnit+-+Grammar+Unit+Testing

Project Brief

104

[56] C Larman, "Agile & Iterative Development: A Manager's Guide," in Agile & Iterative

Development: A Manager's Guide. USA: Pearson Addison-Wesley, 2004, ch. 2, p. 15.

[57] S Gay, V Vasconcelos, and A Ravara, "Session Types for Inter-Process

Communication," University of Glasgow, Glasgow, Technical Report 2003.

[58] K Honda, N Yoshida, and M Carbone, "Multiparty Asynchronous Session Types," in

POPL'08, 2008, pp. 273-284.

[59] A. Tanenbaum, "Processes and Threads," in Modern Operating Systems. Upper Saddle

River, NJ, USA: Pearson Education, Inc., 2009, ch. 2, pp. 81-172.

Project Brief

105

Appendix A

Project Brief

Student: Stephen Tuttlebee (22632751)

Supervisor: Dr Pawel Sobocinski

Project Title:
An Experimental Language for Concurrency:

Components and Synchronisation on Explicit Boundaries

Project Description:

Problem

Concurrency has long been one of the most challenging topics in programming and in

Computer Science in general. In the last few years however, its prominence has increased

considerably. With Moore's Law no longer translating into performance improvement

through the increase of clock speeds, the likes of Intel and AMD are instead adding more

cores onto their processor chips in an effort to maintain the performance trend. Whilst adding

more processing power may be easy enough, from the programmer's perspective, utilising it

with the existing paradigms, languages and libraries is far less trivial. Thus, the exploration of

new paradigms and enhancement of existing paradigms for concurrency has become an active

area of research. As well as a search for better paradigms, there are also many efforts in the

implementation of new languages and development of libraries and tools that supplement

existing and emerging paradigms.

Goals

These streams of research all generally have the aim of simplifying concurrency for

programmers. The various different languages, libraries and tools resulting from such

research have had various degrees of success. This project introduces an experimental

language that takes a different approach towards concurrency, and it is hoped it will be a

feasible language to develop concurrent programs in. The language's core ideas were

conceptualised by Dr Pawel Sobocinski. The language is based on the concepts of

components and boundaries. Components can be thought of as somewhat similar to objects in

typical Object-Oriented languages (e.g. Java, C++). Components declare boundaries that

indicate explicitly the points through which they can communicate and synchronise with

other components. The language will be a variant of Java and will initially extend a subset of

it. This project will focus on developing the features and syntax of this language, expressing

classic 'toy' concurrency algorithms using the language and hopefully also some more real-

world examples. It is expected that the language will be constantly refined as the process of

trying to express 'toy' and real examples highlights areas of improvement for the language. A

compiler for the language that translates into Java and possibly even Java bytecode will also

be developed.

Project Brief

106

Scope

This is an ambitious project and judging whether it is truly doable in the time available is

difficult. If the project progresses well, the compiler mentioned above should be within the

scope of this project. However there are a couple of undertakings, that although relevant and

interesting, are likely to be outside the scope of this project due to time constraints. One is the

development of a runtime system that dynamically optimizes execution of code written in the

language. Additionally, optimizing the language and the compiler for performance will not be

pursued in much depth.

Additional Language Examples

107

Appendix B

Additional Language Examples

B.1 IntProducer-IBC-IntBufferEater

In this example, IntBufferEater (IBE) simply 'eats' the values sent to it. That is, its handler is

defined such that it is not possible for the IntBufferCell to block when tugging on

IntBufferEater. There is no __block__; statement in the handler nor a synchronisation

statement inside the handler that could cause a block to occur indirectly (which could happen

via a chain of synchronisations if IntBufferEater's handler were to contain a synchronisation

statement).

Figure 48 - IntBufferEater component diagram

// passive component

component IntBufferEater {

 boundary left int in?; // receives values on this boundary

 // no __run__ method

 in?[int val] {

 // eat it...or do nothing...

 eat_value(val);

 }

 private void eat_value(int value) {

 System.out.println("IntBufferEater ate value "+value);

 }

}

 Code Listing 48 - IntBufferEater component definition. It has one inward boundary, no __run__ method

and its inward boundary's handler is defined to take and eat the value being sent to it.

As can be seen in Code Listing 48, IntBufferEater has no __run__ method. It is an example

of a passive component since 'activity' (i.e. code that is running) within the component only

takes place due to synchronisations initiated by neighbouring components that invoke

IntBufferEater's handlers.

B.2 SyncCounter

This example serves to show why the handlers of a component must be executed atomically

with respect to each other. If they were not atomic, then synchronisations initiated by other

components simultaneously could lead to state inconsistencies (of the component's internal

Additional Language Examples

108

state variables, if it has any). In this example, if a tugs occur on the out1! and out2!

boundaries (being tugged by different components), then both handlers will be executed. If

these tugs occur roughly simultaneously then the handlers could be run simultaneously. If no

atomicity of handlers is enforced, then syncCount could get into an inconsistent state due

'unlucky' thread interleavings (since increment/decrement statements are not atomic at the

Java bytecode level; they form multiple bytecode instructions).

// passive component

component SyncCounter {

 boundary right int out1!;

 boundary right int out2!;

 int syncCount = 0;

 out1![int val] {

 syncCount++;

 System.out.println("syncCount increment, now equals "+syncCount);

 val = syncCount; // component wired to out1 receives value of

syncCount

 }

 out2![int val] {

 syncCount--;

 System.out.println("syncCount decremented, now equals "+syncCount);

 val = syncCount; // component wired to out2 receives value of

syncCount

 }

}

 Figure 49 - SyncCounter component definition

B.3 DiscerningIntConsumer

This is a version of IntConsumer that only consumes odd integers. Any even integers given to

it are ignored. The DiscerningIntConsumer component is defined below, along with the

necessary wiring/application code. The IntProducer component is simply that given

previously (see Code Listing 1).

// active component

// NOTE: works with an ordinary IntProducer

component DiscerningIntConsumer {

 boundary left int in?;

 __run__ {

 int v;

 // non-terminating; keep accepting values

 while(true) {

 v = in?;

 // if v is not what I'm looking for (i.e. not an odd number)

 while(v % 2 == 0)

 v = in?; // tug IntProducer to get another integer

 consume_item(v);

 }

 }

 // value 'val' being pushed to us: may be even or odd

 in?[int val] {

 // consumer not-first-to-tug case: only odd values sent to us

require this component to tug back

 if (val % 2 == 1) __block__;

Additional Language Examples

109

 }

 private void consume_item(int item) {

 System.out.println("DiscerningIntConsumer eating value "+item+", an

odd number!");

 }

}

Figure 50 - DiscerningIntConsumer component definition

This example illustrates how handlers can act like filters on the values sent (some filtering

was also required in the __run__ method, to handle the case where the consumer is first to tug

rather than the producer).

B.4 LazyIntConsumer (Flag-setting)

A potential idiom for the language is 'flag-setting'. This works in the following way:

1. Component A tugs first and runs component B's handler.

2. The handler specifies to set a flag and then block. (The flag is used to indicate A's

desire to synchronise with B.)

3. As B is running its run method, it continually polls the value of the flag. When the

flag is set, B tugs back (by executing a synchronisation statement)

LazyIntConsumer demonstrates this for a real example:
/*

 * Lazy consumer that only tugs back when sender tugs it first.

 *

 * An important issue remaining is that a run method and handlers are not

 * atomic w.r.t each other. A handler (note: only one handler can execute

 * at a time) and the run method can race. Because of this racing, it

 * possible for IntConsumer to tug first; the whole idea here is that

 * the IntConsumer is lazy, and should only ever be tugging back, never

 * tugging first.

 *

 * IN ADDITION, there are visibility problems with the senderTuggingFlag

 * variable. These can be solved by use of a volatile boolean or an

 * AtomicBoolean instead of boolean. Unfortunately, AtomicBoolean is

 * not sufficient to to provide necessary (Java) atomicity between the

 * sendertuggingFlag = true; and the __block__;.

 */

component LazyIntConsumer {

 boundary left int in?;

 boolean senderTuggingFlag; // sender is tugging, ready to give a value

 __run__ {

 while(true) {

 // flag gets read/polled in run method

 if(senderTuggingFlag) {

 int consumed = in?; // speak only when spoken to (tug only when

tugged first)

 consume_item(consumed);

 // flag also gets reset in run method after value eaten

 senderTuggingFlag = false;

 }

 }

 }

 in?[int val] {

 // flag gets set in handler

Additional Language Examples

110

 senderTuggingFlag = true;

 // RACE CONDITION: between setting the flag and blocking, the run

 // method can see the updated value of the flag and execute the in?

 // synchronisation statement -- thus LazyIntConsumer can potentially

 // tug first

 __block__;

 }

 private void consume_item(int value) { // (E) ordinary Java method

 System.out.println("LazyIntConsumer received the value "+value);

 }

}

There is one concurrency issue in the above code. Although all handlers of a given

component execute atomically with respect to each other, the run method and a given handler

of a component do not execute atomically with respect to each other. Thus there can be race

conditions on variables. Of course, this problem only occurs for active components (since

they possess a run method).

Here there is a race condition on senderTuggingFlag. This is marked in the code above. In the

handler, in between the setting of the flag and blocking, LazyIntConsumer (executing its run

method) may poll senderTuggingFlag and tug the sender before the sender who was running

the handler managed to block. Thus the desired behaviour of LazyIntConsumer always

tugging second (tugging only when tugged) is broken when this occurs.

In fact, there is a second issue with the code above, related to memory visibility of the

senderTuggingFlag.

To resolve the memory visibility issue, the senderTuggingFlag variable could be made

volatile or changed to be an AtomicBoolean. However, stronger Java synchronisation is

required to solve the race condition. The synchronisation mechanisms of the language are

currently only designed to provide synchronisation on a wire, not within the component itself

when a handler and the run method execute concurrently.

Standard Components

111

Appendix C

Standard Components

In addition to the synchronisation primitive standard components, Copy and Switch, there are

further components that are yet to be implemented or explored in full detail. The initial work

on these components is described. Initial implementations of the component definitions for

these standard components can be found on the DVD-ROM (inside

/JavaBTranslator/src/javab/std_comp/). The concept for each component listed here were

suggestions by Sobocinski.

The typing of boundaries and components is issue that arises in this section. The type of a

boundary refers to the sides, (simple) types and directions of that boundary. The type of a

component refers to the types of all its boundaries taken together as well as the relative order

of these boundaries (as defined in the component).

C.1 Trivial Components

As seen in section 3.1.4.2, a typing constraint on starting a composition is that it has no

'outer'/'dangling' boundaries. Such dangling boundaries can artificially 'closed' by using trivial

components. These trivial components contain handlers that simply either block or complete

(by doing nothing). The two trivial components available are TrivialBlock and

TrivialComplete:

Figure 51 - Trivial components TrivialBlock and TrivialComplete.

Their component definitions are given below:
component TrivialBlock {

 boundary left T in?;

 in?[T val] {

 __block__;

 }

}

 Code Listing 49 - TrivialBlock component definition. Its in boundary handler always blocks.

component TrivialComplete {

 boundary left T in?;

 in?[T val] { }

}

Standard Components

112

Code Listing 50 - TrivialComplete component definition. Its in boundary handler always completes

without blocking.

An example of their use is shown below:

Figure 52 - Using TrivialComplete to 'close' the other boundary of DoubleIntProducer before the

composition may be started.

To ensure typing constraints are met at 'start-time' (see section 3.1.4.2), IntConsumer is

tensored with TrivialComplete before being sequentially composed with DoubleIntProducer.

Doing this means ensures that all boundaries are 'closed' before the composition is started.

C.2 Wiring Components

C.2.1 Identity (wiring wires to wires)

An essential standard component is the Identity component:

Figure 53 - Identity component.

This component effectively allows wires to be wired together. When a tug is received on its

left, it simply tugs on its right. Likewise, when a tug is received on its right, it tugs on its left.

It 'extends' the tug through.

The component definition for Identity follows:
component IdentityInwardLeft {

 boundary left T in?;

 boundary right T out!;

 // if tugged/pushed on left, tug/push on right, sending the value on

 in?[T val] {

 out![val];

 }

 // if tugged/pulled on right, tug/pull on left and then pass received

value

 out![T val] {

 val = in?;

 }

}

Standard Components

113

Code Listing 51 - Identity component definition. This is actually one of the two component definitions

necessary for the different typings of Identity.

This component definition actually represents one of two possible typings for Identity. This

one specifies its inward boundary on its left and outward boundary on its right. The other

case is where the outward boundary is on its left and inward boundary is on its right.

An example of its use will be seen in the next section on Twist.

C.2.2 Twist (flexible boundary order)

As described in section 3.1.4.3, there was a problem with the flexibility in wiring two

components together. The order in which boundaries are defined (with respect to a certain

side) 'fixes' a component's interface. Component's may only be wired to other components

which have compatible 'boundary interfaces' on its left and right sides. That is, a component's

left boundary interface must be compatible with the left component's right boundary

interface, and similarly a component's right boundary interface must be compatible with the

right component's left boundary interface.

The Twist component removes these restrictions on typing by effectively 'twisting' the wires

coming in and out.

Figure 54 - Twist component.

In Twist, tugs on the top left boundary cause its handler to tug on the wire connected to the

bottom right boundary (and vice versa). Tugs on the bottom left boundary cause its handler to

tug on the wire connected to the top right boundary (and vice versa).

Of course, a single Twist component is insufficient when there is the requirement to swap

boundaries by more than one 'position'. However, by using Twist in conjunction with the

Identity component (along with tensor and sequential composition) several Twists can be

composed together to achieve the wiring up of boundaries to any desired arbitrary order.

Figure 55 gives an example:

Figure 55 - Using Twist, Identity, tensor composition and sequential composition to achieve flexible

wiring between components.

The 'path' through the middle components is shown for one particular wiring (between

boundaries a1! and b3?).

Standard Components

114

In the above example, there are actually different typings of Twist and Identity used. For

example the left Identity component above has out! on its left side and in? on its right,

whereas the right Identity component has these reversed. A similar observation can be made

for the Twist components above. In general, this is required since the directions of boundaries

of components A and B are not known in advance. The appropriately typed version of the

each standard component must be used (e.g. the Twist components above are two different

typings of the same standard component; their functionality is equivalent but their boundary

interfaces are different).

Rather than force programmers to perform all this wiring using Twist and Identity, a friendly

syntax could be used to allow the programmer to just specify which boundaries should be

wired with which other boundaries. The translator could then automatically insert the

required Twist and Identity components.

Finally, given the current implementation, such a wiring as above would not be intolerably

inefficient.

The component definition of Twist follows.
component Twist {

 boundary left T leftTop?;

 boundary left E leftBottom?;

 boundary right E rightTop!;

 boundary right T rightBottom!;

 // if tugged/pushed on top left, tug/push on bottom right, sending the

value on

 leftTop?[T val] {

 rightBottom[val];

 }

 // if tugged/pushed on bottom left, tug/push on top right, sending the

value on

 leftBottom?[E val] {

 rightTop![val];

 }

 // if tugged/pulled on bottom right, tug/pull on top left and then pass

received value

 rightBottom![T val] {

 val = leftTop?;

 }

 // if tugged/pulled on top right, tug/pull on bottom left and then pass

received value

 rightTop![E val] {

 val = leftBottom?;

 }

}

Code Listing 52 - Twist component definition. This is actually one of four component definitions

necessary for the different typings of Twist.

This component definition actually represents one of four possible typings for Twist. This

one specifies two inward boundaries on the left side and two outward boundaries on the right

side.

Standard Components

115

C.2.2.1 An Alternative to Twist

During the development of the translator, an alternative approach to achieve flexible wirings

between boundaries was originally taken. This approach does not use Twist or any other

components to achieve such wirings. Instead, the programmer specifies which boundaries

should be wired to which other boundaries using an ordered list inside the composition

declaration. For example:
 composition c = DoubleIntProducer<out2,out1>.<in1,in2>

(IntConsumer1#IntConsumer2);

This wires DoubleIntProducer's out2 boundary with IntConsumer1's in1 boundary, and

DoubleIntProducer's out1 boundary with IntConsumer2's in2 boundary. In this example, this

is effectively the same as inserting a Twist component between the two components.

With this approach, boundaries do not have their sides defined in the component definition.

Instead they are determined in the wiring code. For example DoubleIntProducer's out1 and

out2 boundaries could have been placed on either side, but the programmer decided to place

them on the right.

Unfortunately, this approach suffers from the problem that when two components are

tensored, their boundaries are combined, and this can lead to conflicting boundary names.

The example above avoided this problem by having two nearly identical IntConsumer

components which deliberately used different boundary names in their component

definitions. One approach considered to solve this was to let the programmer rename

boundaries where necessary, to avoid ambiguities:
 composition c = DoubleIntProducer<out2,out1>.<in as in1, in as

in2>(IntConsumer#IntConsumer);

This no longer requires the use of multiple IntConsumer component definitions to avoid the

ambiguity. The as keyword is used for the renaming.

This approach has been set aside as a possible way to achieve flexible wiring, as an

alternative to the current solution of using Twist.

Standard Components

116

C.2.3 IdentityLoopback (flexible boundary sides)

One further component used for flexible wiring is the Loopback component. This component

is similar to the Identity component in that it allows wires to be connected together (in fact, it

is just another typing of Identity). The difference to Identity is that both boundaries appear on

the same side:

Figure 56 - IdentityLoopback component. Functionally equivalent to Identity except that both boundaries

appear on same side.

Its component definition follows:
component IdentityLB {

 boundary left T in?;

 boundary left T out!;

 // if tugged/pushed on top left, tug/push on bottom left, sending the

value on

 in?[T val] {

 out![val];

 }

 // if tugged/pulled on bottom left, tug/pull on top left and then pass

received value

 out![T val] {

 val = in?;

 }

}

Code Listing 53 - IdentityLoopback component definition.

The definition is the same as Identity except for a single change to the typing, that of the out!

boundary, which is specified to be on the left (rather than right, as it is in Identity).

IdentityLoopback, in conjunction with Identity, can be used to swap the sides of two

boundaries in a component. This is shown in the example below:

Figure 57 - Using IdentityLoopback in conjunction with Identity to swap two boundaries' sides.

Standard Components

117

As for the other standard components, there are multiple typings of IdentityLoopback. The

two boundaries could appear be either side (both left, or both right). Secondly, the order of

the boundaries could be changed.

C.3 Implementation Issues

For the standard components defined here, there is the common problem of the typing of their

boundaries. For each component above, it was highlighted that there are several variants for

its different typings to allow it to be connected to any combination of surrounding

components. These typings only considered different sides and directions. The area of the

simple type of the component was ignored (e.g. int). The component definitions used generic

types to indicate that there would be a need to make use of Java's generics mechanism to

cater for the simple types of the boundaries the standard components are being wired to. This

use of generics could be allowed at the programmer-level or only at the implementation-level,

so that the translator generates code that instantiates the appropriate simple type of the

standard components used using Java generics.

C.4 Constructing Sophisticated Components

Combining these standard components with synchronisation primitives such as Copy and

Switch, using the core operators of the language can enable the construction of components

that encapsulate quite sophisticated synchronisation policies.

The following example makes use of two Copy components and an Identity component to

achieve a Copy synchronisation which involves four parties rather than three:

Figure 58 - Four-party Copy synchronisation with one sender and three receivers, constructed using two

Copy components and an Identity component.

A similar type of topology could be used with Switch, or even a mixture of Copy and Switch.

It could also potentially be extended to any number of receivers.

Translation Mechanism Classes

118

Appendix D

Translation Mechanism Classes

The source code for the Component and Boundary classes and the HandlerRunnable and

Wire interfaces from section 4.1.1 are listed here. The other classes from section 4.1.1 are

already listed in chapter 4.

D.1 Component class
package javab.runtime;

import java.util.concurrent.locks.Lock;

import java.util.concurrent.locks.ReentrantLock;

/**

 * Component superclass.

 *

 * Every component has an explicit lock associated with it that is used to

ensure execution of any handlers belonging to that component are atomic

w.r.t. each other.

 *

 * This class cannot simply implement Runnable because not all components

are active components. Passive components should definitely not be forced

be forced to implement run().

 *

 * @author Stephen J T

 */

public abstract class Component {

 private String componentName;

 private final Lock handlerLock;

 public Component(String componentName) {

 this.componentName = componentName;

 this.handlerLock = new ReentrantLock();

 }

 public Lock getLock() {

 return handlerLock;

 }

 public String getName() {

 return componentName;

 }

}

Code Listing 54 - Component class used in Translation Mechanism. All generated components from the

translator have this as their superclass.

Translation Mechanism Classes

119

D.2 Boundary class
package javab.runtime;

/**

 * Represents a boundary that is associated with a component. A component

may have several boundaries. Some of those boundaries are

 * 'inward', some 'outward'. The concept of 'inward' and 'outward' is not

explicitly shown here; a boundary's direction is instead indicated

 * by the way it is glued together with Wires in the main Application code

(the Wires explicitly know which boundary is the sender and which

 * is the receiver by the order in which the boundary objects are passed

into the Wire's setBoundaries(sender, receiver) method).

*/

public class Boundary<T> {

 private Component ownerComponent;

 private String name;

 private HandlerRunnable<T> handlerCode;

 private Wire<T> wireAttachedTo;

 public Boundary(String boundaryName, Component ownerComponent, Wire<T>

wireAttachedTo, HandlerRunnable<T> handler) {

 this.name = boundaryName;

 this.ownerComponent = ownerComponent;

 this.handlerCode = handler;

 this.wireAttachedTo = wireAttachedTo;

 }

 public Component getOwnerComponent() {

 return ownerComponent;

 }

 public String getBoundaryName() {

 return name;

 }

 /**

 * This method forwards the request to run the boundary's handler to the

HandlerRunnable object, stored inside this

 * Boundary object. It is forwarded to the identically named runHandler()

method inside the HandlerRunnable object

 * which contains the real handler code.

 *

 * Thus this method indirectly causes the handler associated with this

Boundary to be run by the component/thread

 * that was first to synchronise on this Boundary.

 *

 * @param value The value being passed that may or may not be used inside

the handler (depends if it is a sender or receiver).

 * @return The value (of type T) returned by the handler

 */

 public T runHandler(T value) {

 return handlerCode.runHandler(value);

 }

 /**

 * Get the wire that this boundary is attached to.

 *

 * @return the wireAttachedTo

 */

 public Wire<T> getWireAttachedTo() {

Translation Mechanism Classes

120

 return wireAttachedTo;

 }

}

Code Listing 55 - Boundary class in used in translation mechanism.

D.3 HandlerRunnable interface
package javab.runtime;

/**

 * Use this instead of Runnable since run() in Runnable does not allow a

value to be passed as a parameter. Handlers need

 * the value sent by the sender passed to them to (optionally) use in the

code of the handler.

 *

 * Conceptually, in the semantics of the language, handlers do NOT have

parameters or return values. The reason for them

 * here however is because for the Java implementation it allows

transferring of values between components to be much simpler

 * (as well as possible!). Specifically for the sender on a Wire, it will

SUPPLY parameters and IGNORE the returned value.

 * For the receiver on a Wire, it will IGNORE parameters and USE the

returned value.

 *

 * @author Stephen J T

 *

 * @param <T>

 */

public interface HandlerRunnable<T> {

 public T runHandler(T value);

}

Code Listing 56 - HandlerRunnable interface used in translation mechanism. This class is used in

component classes to represent their handlers.

D.4 Wire interface
package javab.runtime;

/**

 * Run methods or handlers should be allowed to call send or receive on

 * any kind of wire. Handlers (and only handlers) must be able to call

 * blockHandler() and finishedHandler() to indicate what happened in

 * the handler.

 *

 * The only way to get round problem of having a common interface for

 * handlers and run methods to use for sending and receiving WHILST at the

 * same time being able to know which boundary invoked the receive or send

 * for CopyWire, requires that all Wires pass the sending/receiving

 * Boundary regardless of whether that specific Wire implementation needs

 * it (e.g. NormalWire doesn't need it, since it is unambiguous who called

 * the send() and receive() methods; CopyWire though does need to know who

 * called receive(), since there are two possible boundaries that called

 * it).

 *

 * @author stephen

 *

 * @param <T>

 */

public interface Wire<T> {

 // extra boundary parameter may be needed later for two sender-one

receiver version of the CopyWire, and also for SwitchWire probably

Translation Mechanism Classes

121

 public void send(Boundary<T> sendingBoundary, T value);

 // extra boundary parameter needed for the basic one sender-two receiver

version of CopyWire

 public T receive(Boundary<T> receivingBoundary);

 public T blockHandler(T sentValue, Boundary<T>

sendingOrReceivingBoundary, Component componentToUnlock);

 public void finishHandler(Boundary<T> sendingOrReceivingBoundary,

Component componentToUnlock);

}

Code Listing 57 - Wire interface used in translation mechanism. Wire implementations such as

NormalWire and CopyWire implement this interface.

IntProducer-IBC-IntConsumer Example Translation

122

Appendix E

IntProducer-IBC-IntConsumer

Example Translation

This section extends the discussion in section 4.1.2 with a further example.

The translation for the IntProducer-IntBufferCell-IntConsumer example is given here. The

JavaB component definitions for IntProducer and IntConsumer and their Java translations are

already listed and explained in section 4.1.2. Thus only the JavaB code and Java translation

for IntBufferCell is listed. (This is so because the translations of components is independent

of how those components may be wired together). The application/wiring code and its

translation is also listed.
component IntBufferCell {

 // boundaries

 boundary left int in?;

 boundary right int out!;

 // internal state

 boolean empty = true;

 int value = 0;

 in?[int val] { // here 'val' is an *input parameter*

 if(empty) {

 value = val;

 empty = false;

 }

 else {

 out![value];

 value = val;

 }

 }

 out![int val] { // here 'val' is a *return parameter*

 if(!empty) {

 val = value;

 empty = true;

 }

 else {

 val = in?;

 }

 }

}

Code Listing 58 - IntBufferCell component definition (IntBufferCell.javabc) (relisting of Code Listing 8).

IntProducer-IBC-IntConsumer Example Translation

123

The translation of IntBufferCell.javabc follows:
import javab.runtime.*;

public class IntBufferCell extends Component {

 public IntBufferCell() {

 super("IntBufferCell"); // pass name of component to superclass

(Component)

 }

 // INTERNAL STATE

 private boolean empty = true;

 private int value = 0;

 // BOUNDARIES

 private Boundary<Integer> in;

 private Boundary<Integer> out;

 // HANDLERS

 public Boundary<Integer> create_boundary_in(Wire<Integer> wireAttachedTo)

{

 // the handler for this boundary

 HandlerRunnable<Integer> handler = new HandlerRunnable<Integer>() {

 public Integer runHandler(Integer val) {

 // no translator housekeeping code required before user code

 // "user code" (with JavaB parts translated) -- which could contain

a (translated) 'block;' statement

 if(empty) {

 value = val;

 empty = false;

 }

 else {

 out.getWireAttachedTo().send(out,value); // out![value]

 value = val;

 }

 // translator housekeeping code following the user code (if user

code blocks then this code is unreachable)

 in.getWireAttachedTo().finishHandler(in,IntBufferCell.this); // At

this point we know that we have finished the handler without blocking (i.e.

the sync is complete, apart from the housekeeping tasks we are about to do

now)

 return val;

 // IF OUTWARD HANDLER: it doesn't matter that we're returning back

the value the sender gave us as our dummy value for the exchanger; the

sender will ignore it anyway

 // IF INWARD HANDLER: the handler (return) parameter val should

have been set by the programmer; if it never gets set by the programmer

then the (dummy) value that was passed in will be returned

 }

 };

 // create boundary (name, owner component, wire, handler)

 in = new Boundary<Integer>("in", this, wireAttachedTo, handler);

 return in;

 }

IntProducer-IBC-IntConsumer Example Translation

124

 public Boundary<Integer> create_boundary_out(Wire<Integer>

wireAttachedTo) {

 // the handler for this boundary

 HandlerRunnable<Integer> handler = new HandlerRunnable<Integer>() {

 public Integer runHandler(Integer val) {

 // no translator housekeeping code required before user code

 // "user code" (with JavaB parts translated) -- which could contain

a (translated) 'block;' statement

 if(!empty) {

 val = value;

 empty = true;

 }

 else {

 val = in.getWireAttachedTo().receive(in);

 }

 // translator housekeeping code following the user code (if user

code blocks then this code is unreachable)

 out.getWireAttachedTo().finishHandler(out,IntBufferCell.this); //

At this point we know that we have finished the handler without blocking

(i.e. the sync is complete, apart from the housekeeping tasks we are about

to do now)

 return val;

 // IF OUTWARD HANDLER: it doesn't matter that we're returning back

the value the sender gave us as our dummy value for the exchanger; the

sender will ignore it anyway

 // IF INWARD HANDLER: the handler (return) parameter val should

have been set by the programmer; if it never gets set by the programmer

then the (dummy) value that was passed in will be returned

 }

 };

 // create boundary (name, owner component, wire, handler)

 out = new Boundary<Integer>("out", this, wireAttachedTo, handler);

 return out;

 }

}

Code Listing 59 - Java translation of IntBufferCell component (IntBufferCell.javabc)

As explained in section 4.1.2.1, the translation mechanisms for component definitions are

generally one-to-one. For example, the internal state of the component is simply copied into

the output verbatim as they are ordinary Java variables. Additionally, the two boundaries 'in'

and 'out', are translated into two Boundary objects of generic parameter Integer, an

autoboxing of the primitive 'int' type that the boundaries were declared as.

The translation of handlers is more complex. A handler is more than an ordinary method. It is

associated with a particular Boundary object and so must be passed into its Boundary

constructor. This is performed by generating a create_boundary_x() method for each

boundary which the wiring code calls. The method stores the constructed Boundary inside the

appropriate Boundary instance variable inside the class and also returns that Boundary object

to the wiring code so that the wiring code may use it (in fact, what the wiring code does is

pass the returned Boundary object into the setBoundaries() method of the NormalWire that is

between two components). The Java parts of JavaB handlers do not change. Translations are

only required on JavaB constructs.

IntProducer-IBC-IntConsumer Example Translation

125

Taking IntBufferCell's out handler as an example, a create_boundary_out() method is

generated that corresponds to the Boundary that the handler is associated with. In this

method, the handler code is placed inside an anonymous HandlerRunnable object which is

then passed into the Boundary object constructor to create the 'out' boundary. In the handler

code itself, the in? synchronisation statement in the else clause is translated into a call to

receive() on the wire that the 'in' boundary is attached to. Before returning with the handler

parameter (return val;), a call is made to finishHandler on the wire associated with this 'out'

boundary handler to indicate that the synchronisation has completed by completing without

blocking (when a handler blocks, it returns early from the handler at the point of the block

and so the automatically generated finishHandler() method is not reached - see the

IntProducer translated code in section 4.1.2.1).

To note here is that IntBufferCell's handlers are not defined to block as IntProducer and

IntConsumer's handlers are. Therefore it does not contain any call to blockHandler() inside

either of its handler 'methods'.

The JavaB wiring code and its Java translation now follow:
//P.IBC.C

public class Application {

 public static void main(String[] args) {

// wire IntProducer's right 'out' boundary to IBC's left 'in' boundary,

// and wire IBC's right 'out' boundary to IntConsumer's 'in' boundary
 composition c = IntProducer.IntBufferCell.IntConsumer;

 __start__ c;

 }

}

Code Listing 60 - Wiring code for IntProducer-IntBufferCell-IntConsumer example (relisting of Code

Listing 9).

//P.IBC.C

import javab.runtime.*;

import java.util.HashSet;

import java.util.Set;

import java.util.concurrent.CountDownLatch;

public class Application {

 public static void main(String[] args) {

 // wire up IntProducer's right 'out' boundary with IBC's left 'in'

boundary,

 // and wire up IBC's right 'out' boundary with IntConsumer's 'in'

boundary

 // create component instances contained in the composition

 IntProducer intProducer1 = new IntProducer();

 IntBufferCell intBufferCell1 = new IntBufferCell();

 IntConsumer intConsumer1 = new IntConsumer();

 // create NormalWire and CopyWire instances

 NormalWire<Integer> WIRE_intProducer1_out_TO_intBufferCell1_in = new

NormalWire<Integer>();

 NormalWire<Integer> WIRE_intBufferCell1_out_TO_intConsumer1_in = new

NormalWire<Integer>();

 // create boundary objects

IntProducer-IBC-IntConsumer Example Translation

126

 // (Boundary objects don't refer to each other, they only refer to the

Wire they are on the end of. That Wire object also has a mutual reference

to the Boundary object.)

 // use proper names for now, rather than aliases for the instance names

of Boundary objects here (the Boundary objects here remember are different

to the ones used in the translator -- they just happen to have the same

name)

 Boundary<Integer> intProducer1_out =

intProducer1.create_boundary_out(WIRE_intProducer1_out_TO_intBufferCell1_in

);

 Boundary<Integer> intBufferCell1_in =

intBufferCell1.create_boundary_in(WIRE_intProducer1_out_TO_intBufferCell1_i

n);

 Boundary<Integer> intBufferCell1_out =

intBufferCell1.create_boundary_out(WIRE_intBufferCell1_out_TO_intConsumer1_

in);

 Boundary<Integer> intConsumer1_in =

intConsumer1.create_boundary_in(WIRE_intBufferCell1_out_TO_intConsumer1_in)

;

 // now that we have created boundaries, set boundaries of the wire

object(s)

WIRE_intProducer1_out_TO_intBufferCell1_in.setBoundaries(intProducer1_out,

intBufferCell1_in);

WIRE_intBufferCell1_out_TO_intConsumer1_in.setBoundaries(intBufferCell1_out

, intConsumer1_in);

 /* Start threads of all live components (those that implement Runnable)

*/

 // use a latch 'start gate' to ensure they start at the same time --

see JCIP chapter 5)

 final CountDownLatch startGate = new CountDownLatch(1);

 // add all Runnables to a set to be iterated over

 Set<Runnable> runnables = new HashSet<Runnable>();

 runnables.add(intProducer1);

 runnables.add(intConsumer1);

 // set of latch-altered Runnables that have been turned into Threads

 Set<Thread> threads = new HashSet<Thread>();

 // iterate over them and wrap their run methods to include

startGate.await() at the beginning

 for(final Runnable r : runnables) {

 Thread t = new Thread() {

 public void run() {

 try {

 startGate.await();

 r.run();

 }

 catch(InterruptedException e) { e.printStackTrace(); }

 }

 };

 threads.add(t);

 t.start(); // also start the thread (it will await at latch)

 }

 // GO! (release all the threads)

IntProducer-IBC-IntConsumer Example Translation

127

 startGate.countDown();

 }

}

Code Listing 61 - Java Translation of wiring code above (Application.javab).

The wiring code here is very similar to that in section 4.1.2.2. Here an IntBufferCell object is

also instantiated. Additionally, two more Boundary objects are created which correspond to

the two boundaries of the IntBufferCell that has been introduced into the composition.

Another point to note is that there is an extra NormalWire object and the NormalWire objects

end-point boundaries are set to different Boundary objects to that seen in section 4.1.2.2,

since there is an extra component and a different wiring between them.

Wire Implementations

128

Appendix F

Wire Implementations

F.1 NormalWire Implementation
package javab.runtime;

import java.util.concurrent.Exchanger;

import java.util.concurrent.atomic.AtomicInteger;

public class NormalWire<T> implements Wire<T> {

 private final Object wireLock;

 private Boundary<T> sender;

 private Boundary<T> receiver;

 private final Exchanger<T> valueExchanger;

 @GuardedBy("wireLock") private boolean syncIncomplete;

 private volatile boolean handlerBlocked;

 private final Object sendMethodLock;

 private final Object receiveMethodLock;

 private AtomicInteger numThreadsOnWire; // 0 <= x <= 2

 public NormalWire() {

 this.wireLock = new Object();

 this.sender = null;

 this.receiver = null;

 this.valueExchanger = new Exchanger<T>();

 this.syncIncomplete = false;

 this.handlerBlocked = false;

 this.sendMethodLock = new Object();

 this.receiveMethodLock = new Object();

 this.numThreadsOnWire = new AtomicInteger(0);

 }

 public synchronized void setBoundaries(Boundary<T> sender, Boundary<T> receiver)

{

 this.sender = sender;

 this.receiver = receiver;

 }

 public void send(Boundary<T> sendingBoundary, T value) {

 synchronized(sendMethodLock) { // acquire "send lock" so that no two threads

can do a send() at the same time

 // break the symmetry

 boolean runTheHandler;

 synchronized(wireLock) {

 runTheHandler = !syncIncomplete;

 syncIncomplete = true;

Wire Implementations

129

 numThreadsOnWire.incrementAndGet();

 }

 // first to tug

 if(runTheHandler) {

 // possibility of not being able to acquire component's lock

 boolean done = false;

 while(!done) {

 // if we succeed in grabbing the lock

 if(receiver.getOwnerComponent().getLock().tryLock()) {

 receiver.runHandler(value);

 done = true;

 }

 // if we fail to grab the lock

 else {

 if(numThreadsOnWire.get() == 1) {

 Thread.yield();

 }

 if(numThreadsOnWire.get() == 2) {

 // pretend we were running a handler and blocked

 synchronized(wireLock) {

 this.handlerBlocked = true;

 wireLock.notifyAll();

 }

 // proceed to the exchange

 try { valueExchanger.exchange(value); }

 catch (InterruptedException e) { e.printStackTrace(); }

 // decrement numThreadsOnWire now that exchange/sync is done

 numThreadsOnWire.decrementAndGet();

 done = true;

 }

 }

 }

 }

 // second to tug

 else {

 boolean startNewSync;

 synchronized(wireLock) {

 // while handler has neither finished nor blocked, wait

 while(syncIncomplete && !handlerBlocked) {

 // wait until notified

 try { wireLock.wait(); }

 catch (InterruptedException e) { e.printStackTrace(); }

 }

 // if the handler blocked, don't start new sync

 if(handlerBlocked)

 startNewSync = false;

 // else handler must have completed

 else

 startNewSync = true;

 // reset flags

 syncIncomplete = false;

 handlerBlocked = false;

 }

 // if the sync completed, then start a new sync ('re-tug')

 if(startNewSync) {

 // decrement BEFORE doing the recursive call

 numThreadsOnWire.decrementAndGet();

 send(sendingBoundary,value);

Wire Implementations

130

 }

 // otherwise, the handler must have blocked, so meet at exchanger

 else {

 try { valueExchanger.exchange(value); }

 catch (InterruptedException e) { e.printStackTrace(); }

 // decrement numThreadsOnWire now that exchange/sync is done

 numThreadsOnWire.decrementAndGet();

 }

 }

 }

 }

 public T receive(Boundary<T> receivingBoundary) {

 T valueReceived = null;

 synchronized(receiveMethodLock) {

 // break the symmetry

 boolean runTheHandler;

 synchronized(wireLock) {

 runTheHandler = !syncIncomplete;

 syncIncomplete = true;

 numThreadsOnWire.incrementAndGet();

 }

 // first to tug

 if(runTheHandler) {

 // possibility of not being able to acquire component's lock

 boolean done = false;

 while(!done) {

 // if we succeed in grabbing the lock

 if(sender.getOwnerComponent().getLock().tryLock()) {

 valueReceived = sender.runHandler(null);

 done = true;

 }

 // if we fail to grab the lock

 else {

 if(numThreadsOnWire.get() == 1) {

 Thread.yield();

 }

 if(numThreadsOnWire.get() == 2) {

 // pretend we were running a handler and that we blocked

 synchronized(wireLock) {

 this.handlerBlocked = true;

 wireLock.notifyAll();

 }

 // proceed to the exchange

 try { valueReceived = valueExchanger.exchange(null); }

 catch (InterruptedException e) { e.printStackTrace(); }

 // decrement numThreadsOnWire now that exchange/sync is done

 numThreadsOnWire.decrementAndGet();

 done = true;

 }

 }

 }

 }

 // second to tug

 else {

 boolean startNewSync;

 synchronized(wireLock) {

 // while handler has neither finished nor blocked, wait

 while(syncIncomplete && !handlerBlocked) {

 // wait until notified

 try { wireLock.wait(); }

Wire Implementations

131

 catch (InterruptedException e) { e.printStackTrace(); }

 }

 // if the handler blocked then don't start new sync

 if(handlerBlocked)

 startNewSync = false;

 // else the handler must have completed

 else

 startNewSync = true;

 // reset flags

 syncIncomplete = false;

 handlerBlocked = false;

 }

 // if sync completed, then need to start a new tug

 if(startNewSync) {

 // decrement BEFORE doing the recursive call

 numThreadsOnWire.decrementAndGet();

 valueReceived = receive(receivingBoundary);

 }

 // otherwise, the handler must have blocked

 else {

 try { valueReceived = valueExchanger.exchange(null); }

 catch (InterruptedException e) { e.printStackTrace(); }

 // decrement numThreadsOnWire now that exchange/sync is done

 numThreadsOnWire.decrementAndGet();

 }

 }

 }

 return valueReceived;

 }

 /**

 * Called by a handler when it encounters a __block__; statement.

 * It will cause the component running the handler to block at

 * the Exchanger until the other componen tugs back via a call

 * to valueExchanger.exhange().

 */

 public T blockHandler(T sentValue, Boundary<T> sendingOrReceivingBoundary,

Component componentToUnlock) {

 synchronized(wireLock) {

 numThreadsOnWire.decrementAndGet();

 componentToUnlock.getLock().unlock();

 this.handlerBlocked = true;

 wireLock.notifyAll();

 }

 T valueReceived = null;

 try { valueReceived = valueExchanger.exchange(sentValue); }

 catch (InterruptedException e) { e.printStackTrace(); }

 return valueReceived;

 }

 /**

 * Called by a handler to notify us when it has finished

 * without blocking.

 */

 public void finishHandler(Boundary<T> sendingOrReceivingBoundary, Component

componentToUnlock) {

 synchronized(wireLock) {

 numThreadsOnWire.decrementAndGet();

 componentToUnlock.getLock().unlock();

 this.syncIncomplete = false;

 wireLock.notifyAll();

 }

 }

Wire Implementations

132

}

Code Listing 62 - NormalWire Java Implementation

F.2 CopyWire Implementation
package javab.runtime;

import java.util.HashMap;

import java.util.Map;

import java.util.concurrent.BrokenBarrierException;

import java.util.concurrent.CyclicBarrier;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

import java.util.concurrent.Semaphore;

public class CopyWire<T> implements Wire<T> {

 private final Object wireLock;

 private Boundary<T> sender;

 private Boundary<T> receiver1;

 private Boundary<T> receiver2;

 private final ExecutorService exec; // executor for thread pool of threads that

run the handlers

 private final CyclicBarrier barrier;

 private volatile T valueToTransfer;

 @GuardedBy("wireLock") private boolean syncIncomplete; // state of entire

synchronisation

 private final Object syncIncompleteCondition; // condition variable on state of

syncIncomplete

 // partial synchronisations between subgroups of the 3 parties (i.e. between sets

of two parties)

 // state of "partial" synchronizations

 @GuardedBy("wireLock") private boolean[] partialSyncHandlerFinished;

 @GuardedBy("wireLock") private boolean[] partialSyncHandlerBlocked;

 private Semaphore[] handlerBlockedConditionVar;

 // mappings of boundaries to indices into the arrays above

 private Map<Boundary<T>,Integer> boundaryToArrayIndex;

 private boolean sendersHandlerRun; // has sender's handler run? (n/a when sender

first to tug)

 private Object sendersHandlerRunCondition; // condition variable on above

variable

 public CopyWire() {

 this.wireLock = new Object();

 this.sender = null;

 this.receiver1 = null;

 this.receiver2 = null;

 this.valueToTransfer = null;

 this.exec = Executors.newFixedThreadPool(2);

 this.barrier = new CyclicBarrier(3, new Runnable() {

 public void run() {

 // mark the synchronisation as now being complete

 syncIncomplete = false;

 synchronized(syncIncompleteCondition) {

 // may be up to 2 threads waiting on this condition variable

 // (if both second and third tuggers were 'late' for current

synchronization)

 syncIncompleteCondition.notifyAll();

 }

 }

 });

Wire Implementations

133

 this.syncIncomplete = false;

 this.syncIncompleteCondition = new Object();

 this.partialSyncHandlerFinished = new boolean[3];

 this.partialSyncHandlerBlocked = new boolean[3];

 this.handlerBlockedConditionVar = new Semaphore[3];

 // initialise values

 for(int i = 0; i < 3; i++) {

 this.partialSyncHandlerFinished[i] = false;

 this.partialSyncHandlerBlocked[i] = false;

 this.handlerBlockedConditionVar[i] = new Semaphore(0);

 }

 this.boundaryToArrayIndex = new HashMap<Boundary<T>,Integer>();

 this.sendersHandlerRun = false;

 this.sendersHandlerRunCondition = new Object();

 }

 public synchronized void setBoundaries(Boundary<T> sender, Boundary<T> receiver1,

Boundary<T> receiver2) {

 this.sender = sender;

 this.receiver1 = receiver1;

 this.receiver2 = receiver2;

 // initialise mappings here because sender, receiver1 and receiver2 not

available until setBoundaries is called

 this.boundaryToArrayIndex.put(this.sender, 0);

 this.boundaryToArrayIndex.put(this.receiver1, 1);

 this.boundaryToArrayIndex.put(this.receiver2, 2);

 }

 // (sendingBoundary parameter only required for the other version CopyWire with

two senders and one receiver)

 public void send(Boundary<T> sendingBoundary, final T value) {

 valueToTransfer = value;

 // do..while used here as a better means of starting a new sync.

 boolean startNewSync;

 do {

 // initialise/reset startNewSync

 startNewSync = false;

 // break the symmetry

 boolean firstToTug;

 synchronized(wireLock) {

 firstToTug = !syncIncomplete;

 syncIncomplete = true;

 }

 // if the SENDER WAS FIRST to tug {Development Note: 'tryLock' stuff removed

for simplicity; thus deadlock may be possible}

 if(firstToTug) {

 // run both receivers' handlers in separate threads

 // start thread pool going!

 exec.execute(new Runnable() {

 public void run() {

 receiver1.getOwnerComponent().getLock().lock();

 receiver1.runHandler(valueToTransfer); // returns dummy value that we

ignore

 // at this point, receiver1's handler has either finished without

blocking or it has blocked-then-unblocked-by-receiver1

 // unlock occurs in blockHandler() or finishedHandler() methods

Wire Implementations

134

 // if handler finished without blocking, then wait at the barrier (in

this thread)

 boolean handlerFinishedWithoutBlocking;

 int index = boundaryToArrayIndex.get(receiver1);

 synchronized(wireLock) {

 handlerFinishedWithoutBlocking = partialSyncHandlerFinished[index];

 }

 if(handlerFinishedWithoutBlocking) {

 try { barrier.await(); }

 catch (InterruptedException e) { e.printStackTrace(); }

 catch (BrokenBarrierException e) { e.printStackTrace(); }

 }

 }

 });

 exec.execute(new Runnable() {

 public void run() {

 receiver2.getOwnerComponent().getLock().lock();

 receiver2.runHandler(valueToTransfer); // returns dummy value that we

ignore

 // at this point, receiver2's handler has either finished without

blocking or it has blocked-then-unblocked-by-receiver2

 // unlock occurs in blockHandler() or finishedHandler() methods

 // if handler finished without blocking, then wait at the barrier (in

this thread)

 boolean handlerFinishedWithoutBlocking;

 int index = boundaryToArrayIndex.get(receiver2);

 synchronized(wireLock) {

 handlerFinishedWithoutBlocking = partialSyncHandlerFinished[index];

 }

 if(handlerFinishedWithoutBlocking) {

 try { barrier.await(); }

 catch (InterruptedException e) { e.printStackTrace(); }

 catch (BrokenBarrierException e) { e.printStackTrace(); }

 }

 }

 });

 // wait at barrier until release is caused by everyone arriving

 try { barrier.await(); }

 catch (InterruptedException e) { e.printStackTrace(); }

 catch (BrokenBarrierException e) { e.printStackTrace(); }

 // when barrier trips, imagine barrier action happening here...

 }

 // if SENDER WAS SECOND OR THIRD to tug

 else {

 // (NOTE: no running of handlers takes place)

 int index = boundaryToArrayIndex.get(sendingBoundary);

 // wait and see whether the handlers run by the first guy finished or

blocked

 boolean handlerBlocked,handlerFinished;

 synchronized(wireLock) {

 // while handler has neither finished nor blocked, wait

 while(!partialSyncHandlerFinished[index] &&

!partialSyncHandlerBlocked[index]) {

 // wait until notified

 try { wireLock.wait(); }

 catch (InterruptedException e) { e.printStackTrace(); }

 }

 handlerBlocked = partialSyncHandlerBlocked[index];

 handlerFinished = partialSyncHandlerFinished[index];

 }

Wire Implementations

135

 if(handlerBlocked) {

 // unblock them

 handlerBlockedConditionVar[index].release();

 // wait at barrier (we DON'T wait at the barrier in the case where they

finished the handler)

 try { barrier.await(); }

 catch (InterruptedException e) { e.printStackTrace(); }

 catch (BrokenBarrierException e) { e.printStackTrace(); }

 }

 if(handlerFinished) {

 startNewSync = true;

 synchronized(syncIncompleteCondition) {

 // wait until entire synchronization is complete; when it is complete

then at that point start a new sync

 while(syncIncomplete) {

 try {

 syncIncompleteCondition.wait();

 }

 catch (InterruptedException e) { e.printStackTrace(); }

 }

 }

 // the above will only be released from wait until the barrier action has

been executed

 }

 synchronized(wireLock) {

 // reset flags (only one of these will truly be necessary)

 partialSyncHandlerFinished[index] = false;

 partialSyncHandlerBlocked[index] = false;

 }

 }

 } while(startNewSync);

 // returns nothing

 }

 // the two receivers 'share' (i.e. both call) this method

 public T receive(Boundary<T> receivingBoundary) {

 // do..while used here as a better means of starting a new sync.

 boolean startNewSync;

 do {

 // initialise/reset startNewSync

 startNewSync = false;

 // break the symmetry

 boolean firstToTug;

 synchronized(wireLock) {

 firstToTug = !syncIncomplete;

 syncIncomplete = true;

 }

 // if this receiver WAS FIRST to tug {Development Note: 'tryLock' stuff

removed for simplicity; thus deadlock may be possible}

 if(firstToTug) {

 exec.execute(new Runnable() {

 public void run() {

 sender.getOwnerComponent().getLock().lock();

 valueToTransfer = sender.runHandler(null);

 // unlock occurs in blockHandler() or finishedHandler() methods

 // notify the other spawned thread that will run the other receiver's

handler that the sender's handler has been run

 synchronized(sendersHandlerRunCondition) {

 sendersHandlerRun = true;

 sendersHandlerRunCondition.notifyAll();

 }

Wire Implementations

136

 // if handler finished without blocking, then wait at the barrier (in

this thread)

 boolean handlerFinishedWithoutBlocking;

 int index = boundaryToArrayIndex.get(sender);

 synchronized(wireLock) {

 handlerFinishedWithoutBlocking = partialSyncHandlerFinished[index];

 }

 if(handlerFinishedWithoutBlocking) {

 try { barrier.await(); }

 catch (InterruptedException e) { e.printStackTrace(); }

 catch (BrokenBarrierException e) { e.printStackTrace(); }

 }

 }

 });

 // determine who the other receiver is who's handler will need to be run

 final Boundary<T> otherReceiver;

 if(receivingBoundary == receiver1) { otherReceiver = receiver2; }

 else if(receivingBoundary == receiver2) { otherReceiver = receiver1; }

 else { throw new AssertionError("The boundary passed to the receive()

method was neither of the receiving boundaries specified originally."); }

 exec.execute(new Runnable() {

 public void run() {

 // wait until sender's handler has been run and its return value set to

valueToTransfer

 synchronized(sendersHandlerRunCondition) {

 while(!sendersHandlerRun) {

 try {

 sendersHandlerRunCondition.wait();

 }

 catch (InterruptedException e) { e.printStackTrace(); }

 }

 // reset flag for the next sync

 sendersHandlerRun = false;

 }

 otherReceiver.getOwnerComponent().getLock().lock();

 otherReceiver.runHandler(valueToTransfer);

 // unlock occurs in blockHandler() or finishedHandler() methods

 // if handler finished without blocking, then wait at the barrier (in

this thread)

 boolean handlerFinishedWithoutBlocking;

 int index = boundaryToArrayIndex.get(otherReceiver);

 synchronized(wireLock) {

 handlerFinishedWithoutBlocking = partialSyncHandlerFinished[index];

 }

 if(handlerFinishedWithoutBlocking) {

 try { barrier.await(); }

 catch (InterruptedException e) { e.printStackTrace(); }

 catch (BrokenBarrierException e) { e.printStackTrace(); }

 }

 }

 });

 // wait at barrier until release is caused by everyone arriving

 try { barrier.await(); }

 catch (InterruptedException e) { e.printStackTrace(); }

 catch (BrokenBarrierException e) { e.printStackTrace(); }

 // when barrier trips, imagine barrier action happening here...

 }

 // if this receiver WAS SECOND OR THIRD to tug

 else {

 // NOTE: no running of handlers takes place

Wire Implementations

137

 int index = boundaryToArrayIndex.get(receivingBoundary);

 // wait and see whether the handlers run by the first guy finished or

blocked (the first guy was either the sender or the other receiver)

 boolean handlerBlocked,handlerFinished;

 synchronized(wireLock) {

 // while handler has neither finished nor blocked, wait

 while(!partialSyncHandlerFinished[index] &&

!partialSyncHandlerBlocked[index]) {

 // wait until notified

 try { wireLock.wait(); }

 catch (InterruptedException e) { e.printStackTrace(); }

 }

 handlerBlocked = partialSyncHandlerBlocked[index];

 handlerFinished = partialSyncHandlerFinished[index];

 }

 if(handlerBlocked) {

 // unblock them

 handlerBlockedConditionVar[index].release();

 // wait at barrier (we DON'T wait at the barrier in the case where they

finished the handler)

 try { barrier.await(); }

 catch (InterruptedException e) { e.printStackTrace(); }

 catch (BrokenBarrierException e) { e.printStackTrace(); }

 }

 if(handlerFinished) {

 startNewSync = true;

 synchronized(syncIncompleteCondition) {

 // wait until entire synchronization is complete; when it is complete

then at that point start a new sync

 while(syncIncomplete) {

 try {

 syncIncompleteCondition.wait();

 }

 catch (InterruptedException e) { e.printStackTrace(); }

 }

 }

 // the above will only be released from wait until the barrier action has

been executed

 }

 synchronized(wireLock) {

 // reset flags (only one of these will truly be necessary)

 partialSyncHandlerFinished[index] = false;

 partialSyncHandlerBlocked[index] = false;

 }

 }

 } while(startNewSync);

 return valueToTransfer;

 }

 /**

 * Called by handlers that complete the synchronization by blocking (although the

synchronization won't be complete until unblocked).

 *

 * This method may be called by a handler that corresponds to a sending or

receiving boundary -- hence there is both a parameter and a return value for the

 * sent and received values. A handler that calls this method will only make use

of the parameter or the return value, but not both.

 *

 * This method and the finishedHandler() method get called twice between them in

a single synchronization -- once by the second tugger and once by the third tugger.

Wire Implementations

138

 *

 * This could be called simultaneously by the 2 threads that are running the

handlers e.g. if the sender tugged first, then there could be two threads

 * running receiver1 and receiver2's handlers.

 *

 * @param sentValue Value to be sent (only meaningful for senders)

 * @param boundary The sending or receiving boundary that is calling this

blockHandler method. Only used in CopyWire (not used/needed in NormalWire).

 * @param componentToUnlock The component that owns the handler (who's associated

lock needs to be released before the actual blocking occurs)

 * @return Value to be received (only meaningful for receivers)

 */

 public T blockHandler(T sentValue, Boundary<T> boundary, Component

componentToUnlock) {

 // appropriate index into arrays

 int index = boundaryToArrayIndex.get(boundary);

 synchronized(wireLock) {

 componentToUnlock.getLock().unlock();

 // indicate that sync will complete by blocking-then-unblocking (rather than

finishing the handler)

 this.partialSyncHandlerBlocked[index] = true;

 wireLock.notifyAll();

 }

 // BLOCK (or don't block if someone's already ready for us; because this is a

semaphore)

 handlerBlockedConditionVar[index].acquireUninterruptibly();

 return valueToTransfer;

 }

 /**

 * Called by a handlers that complete the synchronisation by finishing the

handler without blocking.

 *

 * This method and the blockHandler() method get called twice between them in a

single synchronisation -- once by the second tugger and once by the third tugger.

 *

 * @param boundary The sending or receiving boundary that is calling this

finishedHandler method. Only used in CopyWire (not used/needed in NormalWire).

 * @param componentToUnlock The component that owns the handler (who's associated

lock needs to be released)

 */

 public void finishHandler(Boundary<T> boundary, Component componentToUnlock) {

 // appropriate index into arrays

 int index = boundaryToArrayIndex.get(boundary);

 synchronized(wireLock) {

 componentToUnlock.getLock().unlock();

 this.partialSyncHandlerFinished[index] = true;

 wireLock.notifyAll();

 }

 }

 /**

 * Necessary method for the main application thread to call when all the normal

program threads have terminated and the only remaining nondaemon

 * threads are those in the Executor thread pool of this CopyWire. Thus a

shutdown method needs to be exposed so that the program can

 * ask for the executor / thread pool to be shutdown. This is so that the JVM may

exit -- the JVM does not exit until all nondaemon threads have

 * terminated.

 */

 public void shutdownExecutor() {

 // normal approach of awaitTermination() and shutdown() not working

 // temporary solution

Wire Implementations

139

 exec.shutdownNow();

 }

}
Code Listing 63 - CopyWire Java Implementation

F.3 Flow charts of NormalWire

The original NormalWire implementation suffered from deadlock. The fundamental cause of

the deadlock is due to the acquisition of a component's locks, which must be acquired before

running any handler of that component. Component locks are acquired to ensure atomicity of

handler execution with respect to other handlers in the component.

The following subsections show flow charts representing the NormalWire logic for both the

deadlock-prone and deadlock-free versions of NormalWire. An example is also provided.

Wire Implementations

140

F.3.1 Flow charts for Deadlock-Prone NormalWire

Figure 59 - Flow chart showing logic of send() method of deadlock-prone NormalWire, annotated with

corresponding code fragments

Wire Implementations

141

Figure 60 - Flow chart showing logic of receive() method of deadlock-prone NormalWire, annotated with

corresponding code fragments.

Wire Implementations

142

F.3.2 Example Deadlock

A specific scenario demonstrating how deadlock can occur in the deadlock-prone version of

NormalWire is now given using the IntProducer-IntBufferCell-IntConsumer example:

[PRODUCER THREAD] producer about to send()

[CONSUMER THREAD] consumer about to receive()

[PRODUCER THREAD] IntProducer1 (the sender) was first to tug and so is going to run the handler

(but it must first succeed in acquiring the component lock of intBufferCell1 (the receiver))

[CONSUMER THREAD] IntConsumer1 (the receiver) was first to tug and so is going to run the

handler (but it must first succeed in acquiring the component lock of intBufferCell1 (the sender))

[CONSUMER THREAD] Someone is running intBufferCell1's handler when trying to pull a value from

it

[CONSUMER THREAD] IBC intBufferCell1 is empty, so it will first receive() on its neighbour in order

to get a value which it will then return to the pulling component. The IBC remains empty throughout.

[CONSUMER THREAD] intBufferCell1 (the receiver) is second to tug and so is NOT going to run the

handler but is going to wait to see whether the sender finishes the handler (sync is complete) or

blocks in the handler (unblocking and transfer of value required and then sync is complete).

DEADLOCK!

Both IntProducer and IntConsumer are first to tug on their respective wires, with

IntBufferCell in the middle. IntConsumer beats IntProducer1 to acquiring IntBufferCell's

component lock and so may run IntBufferCell's (out!) handler. IntProducer1 is essentially left

blocked on the P-IBC wire for IntBufferCell's component lock to be released so that

InProducer can run IntBufferCell's (in?) handler. Meanwhile, when IntConsumer runs the

out! handler, a synchronisation statement in the handler is encountered which causes a tug on

the P-IBC wire. Since IntProducer is already first on that wire, the consumer thread will wait

on the wire, expecting that IntProducer is busily running a handler in IntBufferCell. In reality,

IntProducer is waiting for the IntBufferCell component lock so that it can run the handler.

Thus the producer thread is waiting on a component lock which is held by the consumer

thread. The consumer thread is waiting on the producer thread to finish running the

IntBufferCell's in? handler, which cannot happen until the component lock is released.

DEADLOCK.

This scenario is also illustrated in the following flow charts. The flow charts should be taken

together as the same execution of the program. The order of steps taken are numbered

sequentially, with concurrent steps indicated with additional letters to distinguish them (e.g.

1a, 1b). Execution begins in Figure 61 and Figure 62.

Wire Implementations

143

Figure 61 - IntProducer, when executing its run method, wants to synchronise with IntBufferCell.

Therefore send() is run by the producer thread on the Wire between IntProducer and IntBufferCell. The

numbers shown indicate the order of execution by threads (producer thread in this figure) (letters are

used when two events occur simultaneously).

Wire Implementations

144

Figure 62 - IntConsumer, when executing its run method, wants to synchronise with IntBufferCell.

Therefore receive() is run by the consumer thread on the Wire between IntConsumer and IntBufferCell.

The numbers shown indicate the order of execution by threads (consumer thread in this figure) (letters

are used when two events occur simultaneously).

Wire Implementations

145

Figure 63 - IntBufferCell, when executing its out handler, wants to synchronise with IntProducer.

Therefore receive() is run by the consumer thread (who is running that handler) on the Wire between

IntBufferCell and IntProducer. The numbers shown indicate the order of execution by threads (consumer

thread in this figure) (letters are used when two events occur simultaneously).

Wire Implementations

146

F.3.3 Flow charts for Deadlock-Free NormalWire

Figure 64 - Flow chart showing logic of the corrected send() method of deadlock-free NormalWire,

annotated with corresponding code fragments

Wire Implementations

147

Figure 65 - Flow chart showing logic of the receive() method of deadlock-free NormalWire, annotated

with corresponding code fragments

List of Semantic Checks

148

Appendix G

List of Semantic Checks

The following sections list the semantic checks performed.

G.1 First Semantic Phase

G.1.1 Component Definitions

Component Definitions (in general)

 SEMANTIC CHECK: checking that the names of components are distinct -- no two

components can have same name/identifier

 SEMANTIC CHECK: warning (rather than an error) if there is component definition

which has NEITHER a run method NOR any boundary declarations. Such a

component would be useless (with no run method of its own and no boundaries, it

cannot run of its itself nor can other components synchronise with it). Notify the

programmer of this!

 (not implemented) SEMANTIC CHECK / TREE REWRITE: if there was is a

boundary declared that has no corresponding handler then generate one for it (by

rewriting the tree slightly).

Boundary declarations

 SEMANTIC CHECK: no two boundaries with same identifier (i.e. ensure this

boundary identifier has not been used before). Boundary identifiers must be unique

regardless of whether the rest of their signature is different (i.e. their types or

direction).

Run method declarations

 SEMANTIC CHECK: ensure either zero (passive component) or one (active

component) run method. No more than one run method is permitted.

Handler declarations

 SEMANTIC CHECK 1: this handler has not already been declared (i.e. at most a

single handler can be declared per boundary)

 SEMANTIC CHECK 2: there should exist a boundary with the same name as the

handler

 SEMANTIC CHECK 3: do the handler direction and type also match that of the

boundary

Outward synchronisation statements

 SEMANTIC CHECK: identifier for boundary being sent on actually exists

List of Semantic Checks

149

Inward synchronisation expressions

 SEMANTIC CHECK: identifier for boundary being received on actually exists

G.1.2 Wiring Code

Composition Declarations

 SEMANTIC CHECK: composition has not already been declared

Composition Expressions (reference to plain or composition component)

 SEMANTIC CHECK: an identifier in a composition expression is either a reference

to a plain or composition component. Thus check there exists a plain or composition

component with that identifier (by looking up in symbol tables)

Start statement

 SEMANTIC CHECK: composition to be started, represented by an identifier, refers

to a composition that exists (i.e. there is a composition that has been declared with

that identifier).

G.2 Second Semantic Phase

The second semantic phase only performs wiring code checks. No further checks for

component definitions is required. It ensures that the wiring specified by the programmer is

valid.

G.2.1 Wiring Code

Composition Expressions

 SEMANTIC CHECK: in sequential composition expression, ensure that the wirings

between boundaries are all compatible.

 SEMANTIC CHECK: a reference to a previously declared composition component

must be checked to ensure that the composition component has actually been

declared.

Start statement

 SEMANTIC CHECK: ensure no remaining/'dangling' left or right boundaries of this

composition component that is being started. Otherwise it is a type error.

Translator System Manual

150

Appendix H

Translator System Manual

The translator itself can be found on the attached DVD-ROM. The instructions here are based

on the examples and directory structure used on the DVD-ROM. However, for these

commands to run successfully, the DVD directories should be copied to another writable file

system (since the DVD-ROM is read-only, the translator will fail if attempts are made to

write the generated Java files to the DVD).

To simply run the pre-compiled translator without any rebuilding, then read only sections H.1

and H.2. To rebuild the translator from source then also see section H.3.

H.1 Minimum System requirements

To simply run the pre-built translator on an input .javab or .javabc file:

 Java 6 JDK (see: http://www.java.com/en/download/help/sysreq.xml)

 ANTLR Parser Generator v3.3 (choose Complete ANTLR 3.3 Java binaries jar (all

tools and Java runtime) at http://www.antlr.org/download.html); place this in a

sensible directory (e.g. C:\ANTLR3.3\lib on Windows)

o The CLASSPATH environment variable should be updated to include the path

to the ANTLR runtime. Alternatively, Java's -cp option may be used instead.

H.2 Running the translator

H.2.1 Technical Restriction in Translating Wiring Code

To translate an application/wiring code file (.javab), the current implementation requires that

all component definition files (.javabc) that are referenced in the wiring code file be

translated in the same execution of the translator. Running the translator on the referenced

components beforehand in a different execution of the translator will not help - all referenced

components must be translated along with the wiring code file(s) in the same execution of the

translator. Trying to do so will result in the translation failing.

This is a technical restriction due to the way the translator is implemented. Translating a

single component definition file is allowable, however this is rarely of any use because any

meaningful program will include wiring/application code file, and due to the technical

restriction noted above, when that wiring code file is translated the component definition will

also need to be (re)translated in the process.

H.2.2 Running

The main translator program is JavaBTranslator.class. The translator can take several

arguments, most of which are optional:

 -f or --files (compulsory)

Translator System Manual

151

Follow this option with the .javab and .javabc files to be translated

 -o or --output

Output directory that the output from the translator should be put. If the directory does

not exist, then it is created. If this option is not given then the current directory is used

as the output directory.

 -a or --ast

Setting this option is used for debugging purposes. When switched on, this option will

print a string representation of the Abstract Syntax Tree (AST) produced by each

internal phase of the translator.

 -p or --prettyast

The same as -a/--ast but which uses the GraphViz dot program to produce a .png

image of the AST. This option assumes that dot is installed on the system and also on

the CLASSPATH. The .png image is placed in the output directory under a new

directory 'ast-output'.

 -c or --javac

Setting this option causes the translator to run the generated output (.java files)

through javac, generating .class files. Follow this option with the path to the javab

standard runtime library (which is inside /bin). If a following path is not given, the

output directory will be used by default.

To run the translator for a real application, cd into /bin, and run:
java translator.JavaBTranslator -o ../translator-

generated/example_programs/02_P.IBC.C/ -f ../tests/example_programs/02_P.IBC.C/*

where the test example chosen might be different.

To translate and compile (using javac) in one command run:
java translator.JavaBTranslator -c ./ -o ../translator-

generated/example_programs/02_P.IBC.C/ -f ../tests/example_programs/02_P.IBC.C/*

To manually compile using javac, first cd into the directory containing the generated Java

files, and run:
javac -cp .;path/to/javab/runtime/lib/ *.java

The classpath must be set to include the required Javab runtime library. To compile the

example above would require (assuming the current working directory is translator-

generated/example_programs/02_P.IBC.C/):
 javac -cp .;../../../bin/ *.java

To then run the resulting Java program:
java -cp .;path/to/javab/runtime/lib/ Application

where Application is the name of the class that had the main() method within it. The directory

containing the generated .class files is also specified in the classpath in addition to the path to

the runtime library. Here the current directory contains the .class files. The above example

would require:
 java -cp .;../../../bin/ Application

H.3 Building from Source

To build the translator from its source, one can build using Eclipse or manually.

To build the translator from within Eclipse, the ANTLRIDE plugin must be installed. The

antlr-3.3-complete.jar file (ANTLR runtime) needs to be added to the build path of the

project in order to do this. The ANTLR grammars can be built just by saving them. The

translator's Java files generated by ANTLR are automatically compiled in/by Eclipse.

Translator System Manual

152

To build manually take the following steps:

H.3.1 Generating the Parsers from Grammars

1. Navigate to the /src directory awhich contains the grammars and supporting Java

classes.

2. First, run the ANTLR tool on the grammar files in that directory to generate the

parsers written in Java:
 java org.antlr.Tool -o ../antlr-generated *.g

This generates .tokens files in addition to the .java files, putting both into the /antlr-

generated directory.

H.3.2 Compiling the Parsers

3. In /src, copy JavaBTranslator.java into /antlr-generated

4. Navigate to the /antlr-generated directory.

5. Compile the ANTLR's generated .java files by running:
javac -d ../bin -cp .;../src;C:/antlr-3.3/lib/antlr-3.3-complete.jar

*.java

Create the /bin directory if not done already.

This assumes that the ANTLR jar is stored in the path used above.

The -d option tells javac the directory to output all the .class files.

6. Finally, copy JavaBTemplates.stg from /src into /bin

The following webpages may be consulted for help when running java and javac on

Windows:

 http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/java.html

 http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/javac.html

DVD Contents

153

Appendix I

DVD Contents

/antlr-runtime

/JavaBTranslator

 /antlr-generated

 /translator

 /bin

 /src

 /javab

 /runtime

 /std_comp

 /junittests

 /translator

 /tests

 /translator-generated

 /yang-java-grammar

CONTENTS.txt

translatorSystemManual.pdf

The precise contents of the above directories is contained in the CONTENTS.txt file on the

DVD-ROM.

The most important directory to note is /JavaBTranslator/src/translator which contains the

translator source code files (all except JavaBTranslator.stg).

The /JavaBTranslator directory is also an Eclipse project and thus may be imported into

Eclipse if desired. (To build the ANTLR grammars from within Eclipse, the ANTLRIDE

plugin must be installed. The antlr-3.3-complete.jar file (ANTLR runtime) needs to be added

to the build path of the project in order to do this).

translatorSystemManual.pdf contains a copy of Appendix H.

