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Abstract 

Concurrency has long been one of the most challenging areas in programming and in 

Computer Science in general. In the last few years however, its prominence has increased 

considerably as Moore’s Law is only sustained by adding more cores to processor chips. 

Concurrency issues such as safety, deadlock and other liveness issues has encouraged 

researchers to explore new paradigms and develop languages and libraries that reduce these 

difficulties.  

 

This project's goals have been similar, involving the design of an experimental language 

(JavaB) aimed to simplify concurrent application development for software engineers. 

JavaB's core concepts are underpinned by Sobocinski's ongoing research in process algebra. 

One benefit of the language from a Software Engineering standpoint is the ability to compose 

components into 'higher-order' composition components. Such composability allows 

sophisticated synchronisation behaviour to be encapsulated in a single (composition) 

component. 

 

In addition to exploration into precise language semantics, the end product of the project is a 

basic source-to-source translator (that converts JavaB to pure Java), and Java classes that 

implement JavaB's core synchronisation primitives. The project was an ambitious one. Time 

constraints meant some planned features were not implemented. Nevertheless, the project 

provides a sound basis for future work. 
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1.  

Introduction 

Problem 

Concurrency has long been one of the most challenging areas in programming and Computer 

Science in general. In the last few years however, its prominence has increased considerably. 

With Moore's Law no longer translating into performance improvement through the increase 

of clock speeds, the likes of Intel and AMD are instead adding more cores onto their 

processor chips in an effort to maintain the performance trend[2]. Whilst adding more 

processing power may be easy enough for chip manufacturers, writing software that utilises it 

using the existing paradigms, languages and libraries remains a difficult task [3] [4]. Thus the 

exploration of new paradigms and enhancement of existing paradigms for concurrency are 

active research areas. Moreover, there are many efforts in the implementation of new 

languages and supplementary libraries and tools. These streams of research all generally have 

the aim of simplifying concurrency for programmers. The different languages, libraries and 

tools resulting from such research have had various degrees of success. 

 

Aspirations 

This project introduces an experimental language, JavaB
1
, an extension to the Java language, 

which is hoped will be a feasible language to develop concurrent programs in. JavaB is based 

on the concepts of components and boundaries. Components can be thought of as somewhat 

similar to objects in typical Object-Oriented languages (e.g. Java, C++). Components declare 

boundaries that indicate explicitly the points through which they can synchronise with other 

components, passing values between them. A vision of the language is that components may 

be composed into 'higher-order' compositions, which may be treated as components 

themselves. Primitive synchronisation policies may be encapsulated in a standard set of 

components. Composing such standard components with other such components to achieve 

sophisticated synchronisation behaviour encapsulated in a single, reusable component, is 

another vision of the language. JavaB's core concepts are underpinned by Sobocinski's 

ongoing research in process algebra. Being rooted in such formalisms also gives possible 

scope for formally verifying the correctness of JavaB programs. 

 

Project Scope 

This project's scope is limited to early work on this language. Its focus has been three-fold. 

One focus has been the exploration into the precise semantics (and syntax) of the language 

itself, which took place in collaboration with Sobocinski. The second, and primary focus, was 

the design and implementation of a source-to-source translator (JavaB-to-Java). Thirdly, the 

construction of the above-mentioned synchronisation primitive standard components has 

been another goal. 

                                                 
1
 The name 'JavaB' derives from the fact that the language extends Java and from the key language concept of a 

boundary. 
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Report Structure 

The structure of the report is as follows: 

 Chapter 2 reviews background reading undertaken and existing literature in the fields  

of concurrency and translator implementation. 

 Chapters 3 and 4 form the main backbone of the report. Chapter 3 describes the JavaB 

language. Chapter 4 focuses on the design and implementation of the JavaB translator, 

including the implementation of the language synchronisation primitives. 

 The remaining chapters discuss the testing undertaken, the development process and 

tools used, and project management. 

 The report concludes by summarising and evaluating the project's achievements and 

also considers future work. 
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2.  

Background Reading and Report 

of Literature Search 

The background research began by gaining familiarity with the concurrency mechanisms and 

libraries available in Java (monitors, locking, conditions, java.util.concurrent library [5]), 

since the main requirement of the project was to produce a translator that generates Java code 

which implemented/simulated the semantics of JavaB (this inevitably required Java's 

concurrency constructs). Books by Goetz[6] and Lea [7] provided essential reading. The 

university courses[8], [9], [10] and[11] were also helpful. 

2.1 Concurrency 

The field of concurrency is vast, both theoretically and in practice. The following subsections 

cover only the most important topics. 

2.1.1 Paradigms (Languages and Libraries) 

The two traditional paradigms for thread/process communication are shared-memory and 

message-passing [12]. Examples of languages using a shared-memory model are Java, C and 

C++ (using pthreads), C# and Python. Shared-memory approaches typically rely on the use of 

locks, which are used to guard access to shared variables. Even if problems of safety ('nothing 

bad ever happens'; e.g. race conditions, memory visibility problems) are overcome, liveness 

('something good eventually happens') problems can be introduced instead (e.g. deadlock, 

livelock, starvation). Locking is not the only strategy though. Non-blocking algorithms which 

are lock-free also exist. However, writing such algorithms efficiently is difficult and they 

only exist for the most common data structures [6][13] [14]. For message-passing, recent 

examples include Erlang, Scala, Axum and Go. 

 

Three surveys of the field highlight several other existing and emerging (and re-emerging) 

paradigms [15] [16] [17]. Transactional Memory (TM) is one such paradigm [18] in which 

transactions are applied to memory locations rather than database rows/tables. At present, TM 

is only feasibly implemented in software (STM) [19] [20][21]. New languages such as 

Clojure[22], Fortress[23] and Scala[24] support STM. Established ideas from functional 

programming too, such as immutability and persistent data structures [25] have also been 

gaining greater prominence (e.g. immutability in the shared-memory community [6]), not 

least because of Clojure's influence. A final (older) paradigm for concurrency, dataflow 

programming, bears similarities to functional programming and is well-described in [26] and 

[27]. 
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These paradigms are not always implemented at the language level. There are also a 

considerable number of libraries.  For Java, the java.util.concurrent library was added in 

JDK5 to aid programmers in development. Some libraries such as OpenMP, TBB (Thread 

Building Blocks) and Java's JDK7 ForkJoin library[28] [29] are designed to make shared-

memory concurrency more declarative. However these are geared towards more 

'embarassingly-parallel problems' (e.g. scientific computing) which can be separated into 

independent tasks easily and have simple coordination requirements. Recent languages 

Fortress, X10 and Unified Parallel C also fall under this category. This project's focus is 

rather on the complex coordination requirements of more typical concurrent applications. 

Libraries for message-passing include the well-established MPI (Message-Passing Interface) 

(which has bindings in several languages), MPJava [30] and Kilim [31] (both Java libraries). 

 

One particular (Python) library, Kaemalia [32], uses a concurrency paradigm bearing 

similarities to that of the language being developed. Further discussion is given in section 3.4. 

2.1.2 Tool Support 

A lot of tool support exists for concurrency. Many tools use static or dynamic analysis of a 

program to expose concurrency bugs such as data races and deadlock. Tools such as ConTest 

[33], rsTest [34], CheckMate [35] and Chord [36] all perform dynamic analysis of Java 

programs. Most work by instrumenting the bytecode at synchronisation points.  Intel Thread 

Checker and Sun Thread Analyzer [37] are examples of similar non-Java tools. Other tools 

include model checkers such as SPIN [38], CHESS [39] and Java PathFinder [40]. These may 

be used to prove correctness of (smaller) concurrent programs. [8] documents many more 

tools. 

2.1.3 Theoretical Approaches 

Theoretical approaches were not researched in detail. [41],[42] and [43] survey the area in 

depth. CSP (Communicating Sequential Processes) was the only approach examined. A 

selection of Java software library implementations of theoretical approaches include JCSP 

(CSP for Java), CTJ (Communicating Threads for Java) and Join Java. 

2.2 Translator Implementation 

The considered approaches to translator implementation are discussed. This is followed by 

closer examination of the chosen approach. 

2.2.1 Considered Approaches 

One  approach allows one to specify new constructs to add to the Java language: the Java 

Language Extender (JLE) [44]. An advantage is that development time to construct a 

translator is likely to be reduced. However it emphasises adapting Java to specific problem 

domains. It was felt that it might not be flexible enough if at any point more fundamental 

changes to the language were required. 

 

A more flexible approach considered was to modify the source code of the OpenJDK 

compiler itself [45][46]. Unfortunately its size and complexity, and the time required to gain 

familiarity with it also ruled out this choice. 
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2.2.2 Chosen Approach 

Figure 34 illustrates the high-level approach chosen. This involved the use of the ANTLR 

parser generator [47] [48]. The benefits of this approach were previous experience with 

ANTLR and the availability of an open source ANTLR grammar for the Java language [1]. 

The Java Compiler API is used to programmatically invoke javac on the Java code generated 

by the translator. 

 

 
Figure 1 - Chosen approach to translator implementation. Shows the use of ANTLR to generate the 

translator written in Java and javac to compile it. The rest of the diagram shows how to use the translator 

to translate a JavaB file into a Java file (and optionally bytecode). 

 

The OpenJDK compiler source code was studied on occasion during development of the 

ANTLR grammars. 

2.2.2.1 Summary of ANTLR 

ANTLR generates recursive-descent recognisers (lexers, parsers, tree parsers) from ANTLR 

grammar specifications. These above recognise different input types: character streams, token 

streams, abstract syntax trees (ASTs), respectively, and form the different phases of the 

translator.  Tree parsers may generate ASTs for further processing or generate textual output. 

 

A commonly used feature of ANTLR are actions. These are custom pieces of code written in 

Java often used to perform various semantic checks. Different phases often have different 

actions, reflecting the purpose of that phase. In this translator actions also aid the code 

generation phase. 

 

During translator development, three main ANTLR resources were consulted: two books 

concerning ANTLR and language implementation [48] [49] and also the antlr-interest 

mailing list
2
. 

 

Interestingly, an automated approach to tree construction [50] was discovered after 

implementation. Unfortunately, it had two major drawbacks. Firstly, not all types of AST 

rewrite rules were supported. Secondly, although it can allow different actions to be 

performed in each phase, it is not amenable to changes to the AST itself between phases.

                                                 
2
 http://www.antlr.org/mailman/listinfo/antlr-interest 
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3.  

Language Definition 

This chapter explains the precise semantics (and syntax) of the language developed. 

Implementations of classic 'toy' concurrency problems such as Producer-Consumer are used 

to illustrate the language ideas. The language semantics presented here form the requirements 

specification for the translator implementation. Examples are used throughout to aid 

understanding of the language concepts
3
. The chapter closes with a brief comparison with 

other similar existing languages/approaches. 

 

It should be noted that the language is still in its infancy. In particular, the Switch 

component's semantics are not clarified and there are also many other standard components 

yet to be implemented which are discussed in Appendix C. 

 

 

  

                                                 
3
 All the examples in this chapter except those in sections Copy Synchronisation Primitive and Switch 

Synchronisation Primitive may be successfully run through the translator (provided on the attached DVD-ROM) 

and the generated output compiled (javac) and run (java). Appendix B provides additional examples that may be 

run through the translator. Appendix H provides a system manual for using the translator. 
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3.1 Core Concepts 

3.1.1 IntProducer-IntConsumer Example 

 
Figure 2 - components, wires and boundaries in producer-consumer example 

 

import java.util.Random; 

 

component IntProducer { // producer that produces integers 

    boundary right int out!; // (A) boundary declaration(s) 

    private Random rand = new Random(); // (B) internal state of component 

 

    __run__ { // (C) run method of component 

        while(true) { 

            int produced = produce_item(); 

            out![produced]; // (D) synchronisation statement 

        } 

    } 

 

    out![int val] { // (E) the out! boundary's corresponding handler 

        __block__; 

    } 

     

    private Integer produce_item() { // (F) ordinary Java method 

        return rand.nextInt(1000); 

    } 

} 

Code Listing 1 - Component Definition for the IntProducer component 

component IntConsumer { // consumer that consumes integers 

    boundary left int in?; // (A) boundary declaration(s) 

 

    __run__ { // (B) run method of component 

        while(true) { 

            int consumed = in?; // (C) synchronisation statement 

            consume_item(consumed); 

        } 

    } 

 

    in?[int val] { // (D) the in? boundary's corresponding handler 

        __block__; 

    } 

 

    private void consume_item(int value) { // (E) ordinary Java method 

        System.out.println("IntConsumer received the value "+value); 

    } 

} 

Code Listing 2 - Component Definition for the IntConsumer component 

public class Application { 

    public static void main(String[] args) { 

        composition c1 = IntProducer.IntConsumer; // Composition 

declaration of a sequential composition of IntProducer and IntConsumer 

        __start__ c1; 

    } 

} 

Code Listing 3 - Wiring code that wires (instances of) the two components together and then 'starts' them 

(see section 3.1.4 [Wiring components]) 
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3.1.2 Basic Terminology 

3.1.2.1 Components 

Components are class-like structures, given by a component definition (e.g. Code Listing 1 

and Code Listing 2), whose instances can be likened to "threaded objects" since they both 

possess internal state and run within their own thread of control (they have a run method) 

(except passive components; see section 3.2.2). Components declare explicit boundaries 

which may be thought of as the interface by which the component may be 'wired to' other 

components' boundaries. 

 

During program execution, components may directly 'synchronise' with each other on such 

wired boundaries. This involves the sending and receiving of values (primitives or objects) 

between the two boundaries of the components (which could be ignored if the value itself is 

unimportant). Such a synchronisation is initiated by a component using a synchronisation 

statement (e.g. in? or out![produced];). 

3.1.2.2 Boundaries 

 
Figure 3 - Components and boundaries. Component A has single right boundary (in?) which is an 

'inward' boundary of type T. Component B has three boundaries. Its left boundary out1! is an 'outward' 

boundary also of type T. A's in? and B's out1! boundaries are compatible and may be wired together.  

 

Boundaries have a type (primitive or Object), specifying the type of the values to be sent or 

received, and a direction (in (?) or out (!)), specifying whether the component is sending or 

receiving on that boundary. Boundaries also have a 'side', left or right, on which they are 

relative to their component (seen in Figure 3). Boundaries of components being wired 

together must be compatible. They must have the same type (e.g. int with int) and opposite 

directions (in? with out!) and sides (left with right). In the IntProduer-IntConsumer example, 

IntProducer's right out! boundary is compatible with IntConsumer's left in? boundary, 

allowing them to synchronise if wired together (and 'started'; see section 3.1.4.2). Note that 

side and direction of boundaries is independent. Inward and outward boundaries may appear 

on either side of a component. 

 

A component may have multiple boundaries, allowing it to synchronise with multiple 

components (potentially simultaneously). In IntProducer-IntBufferCell-IntConsumer example  

of section 3.2.1, IntBufferCell has two boundaries, one which is wired with IntConsumer and 

another which is wired with IntProducer. 

3.1.2.3 Wires 

Wires act as the basic means of connecting components. Components themselves are 

independent entities. The way they are connected defines the system behaviour. As well as a 

basic means of connection, wires provide the necessary synchronisation semantics. These 

semantics are described in section 3.1.3. 
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3.1.2.4 Tug 

Tug refers to when a component executes a synchronisation statement (e.g. out![produced]) 

on a certain boundary and thus  attempts to synchronise with another component. The terms 

pushing/pulling are used synonymously. They explicitly indicate the direction of the 

boundary. 

 

The following fragment from Code Listing 1 shows this: 
    __run__ { // (C) run method of component 

        while(true) { 

            int produced = produce_item(); 

            out![produced]; // (D) synchronisation statement 

        } 

    } 

Code Listing 4 - IntProducer's run method. At (D) IntProducer is said to be tugging on its out boundary. 

The term 'tugging' tends to assume the boundary of interest in the component is wired to a boundary of 

another component. 

 

Thus for IntProducer above, tugging means sending/pushing the produced item (on its out 

boundary) on the wire. 

3.1.2.5 Handlers 

Every boundary of a component has a corresponding handler. A handler specifies what action 

(i.e. statements) the other component wired to that boundary should take, if they are the first 

component to tug on the wire (seen more clearly in section 3.1.3).  

 

Essentially, the first tugging component runs the other component's corresponding boundary 

handler. Examples of handlers will be seen shortly. 

3.1.3 Synchronisation on a Wire 

The semantics of how a synchronisation takes place on a wire is presently described by way 

of two examples, which illustrate the two different cases that can take place; whether the 

executed handler blocks or runs to completion. 

3.1.3.1 Control flow of a Synchronisation in IntProducer-IntConsumer Example 

Figure 4 illustrates the course of events for one type of synchronisation that can occur; 

namely where a handler action specifies to block. The corresponding IntProducer and 

IntConsumer JavaB code is relisted: 
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import java.util.Random; 

 

component IntProducer { // producer that produces integers 

    boundary right int out!; // (A) boundary declaration(s) 

    private Random rand = new Random(); // (B) internal state of component 

 

    __run__ { // (C) run method of component 

        while(true) { 

            int produced = produce_item(); 

            out![produced]; // (D) synchronisation statement 

        } 

    } 

 

    out![int val] { // (E) the out! boundary's corresponding handler 

        __block__; 

    } 

     

    private Integer produce_item() { // (F) ordinary Java method 

        return rand.nextInt(1000); 

    } 

} 

Code Listing 5 - Component Definition for the IntProducer component (relisting of Code Listing 1) 

 
component IntConsumer { // consumer that consumes integers 

    boundary left int in?; // (A) boundary declaration(s) 

 

    __run__ { // (B) run method of component 

        while(true) { 

            int consumed = in?; // (C) synchronisation statement 

            consume_item(consumed); 

        } 

    } 

 

    in?[int val] { // (D) the in? boundary's corresponding handler 

        __block__; 

    } 

 

    private void consume_item(int value) { // (E) ordinary Java method 

        System.out.println("IntConsumer received the value "+value); 

    } 

} 

Code Listing 6 - Component Definition for the IntConsumer component (relisting of Code Listing 2) 
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Figure 4 - A synchronisation scenario for the IntProducer-IntConsumer example, where IntProducer is 

first to tug. Parts of the diagram are highlighted to indicate what is happening at each point in the 

synchronisation. 

 

Note that if step 1 changed so that IntConsumer reached its in? statement first (and thus was 

first to tug), then this would essentially reverse the diagram so that IntConsumer runs the 

corresponding boundary in IntProducer (which is also defined to block). 

  

Two components cannot initiate a synchronisation at exactly the same time; one component 

always tugs first and thus runs the other component's handler. For many cases, handlers are 

defined to just block (as above). 

3.1.3.2 Control flow of a synchronisation in IntProducer-IntEater Example 

Figure 5 shows the course of events for the second type of synchronisation that can occur; 

where a handler action does not block but is run to completion without blocking. IntEater is 

equivalent to IntConsumer except that its in? handler is empty. 
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Figure 5 - A synchronisation scenario for the IntProducer-IntEater example, where IntProducer is first to 

tug. (In fact, this is the only possible scenario because IntEater is a passive component which never tugs - 

see section 3.2.2 for explanation of passive components) Parts of the diagram are highlighted to indicate 

what is happening at each point in the synchronisation. 

3.1.3.3 Completing a synchronisation 

The above two examples represent the two alternative ways of completing a synchronisation 

after a component initiates a synchronisation (tugs first). Either: 

1. The component runs the handler and is blocked. When the other component tugs 

back, it atomically unblocks and sends/receives the value (Figure 4) (two-component 

participation), or 

2. The component runs the handler, and executes it to completion without blocking 

(Figure 5) (single-component participation). The value is sent/received by means of 

the handler parameter (see section 3.2.4).  

 

Also, in the possible scenario that a currently non-tugging component (A) starts to tug whilst 

another already tugging component (B) is running A's handler, then A should wait to 

determine whether the B blocked or completed A's handler. 

3.1.4 Wiring Components (Wiring/Glue Code) 

An essential requirement for the language is the ability to wire the boundaries of components 

together. The significance of boundary types, directions and sides comes to a forefront; only 

compatible boundaries may be wired together (see section 3.1.2.2). 
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3.1.4.1 Sequential Composition ( . ) 

This section uses the following wiring code: 
public class Application { 

    public static void main(String[] args) { 

        composition c1 = IntProducer.IntConsumer; // Composition 

declaration of a sequential composition of IntProducer and IntConsumer 

        __start__ c1; 

    } 

} 

Code Listing 7 - Wiring code for IntProducer-IntConsumer example (relisting of Code Listing 3) 

 

The Sequential Composition operator is used to perform wiring. 

 

Sequential composition wires up the right boundaries of its left operand's with the 

corresponding left boundaries of its right operand (the 'inner' boundaries). Thus the order that 

boundaries are defined within a component matters (specifically, the order with respect to 

other boundaries of the same side matters). The number of corresponding boundaries must be 

the same and each 'boundary pair' must also be compatible with each other (otherwise it is a 

type error). Figure 6 illustrates this for Code Listing 7 above: 

 

 
Figure 6 - Sequential composition of IntProducer and IntConsumer components 

 

The result of a sequential composition is (an example of) a composition component / 

'supercomponent'. Ordinary components and composition components may be treated 

uniformly. A composition component is defined by the components composing it rather than 

by an explicit component definition. 

 

The left boundaries of the composition component are formed from the left boundaries of the 

left operand and the right boundaries are formed from the right boundaries of the right 

operand (the 'outer' boundaries). This is shown in Figure 7: 

 
Figure 7 - Sequential composition operator applied to its two operand components A and B. The dashed 

lines illustrate how the 'outer' boundaries of the operands form the boundaries of the resulting 

component. (Boundary names, types and directions are not shown). 

 

Composition components can be treated as black boxes. For example, Figure 7 could be 

depicted as: 
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Figure 8 - A composition components may be treated as a black box, with only its 'boundary interface' 

visible to the outside world. 

 

Since a composition components are themselves components, they too can be operands in a 

sequential composition,  as Figure 9 shows: 

 
Figure 9 - The result of applying the Sequential Composition operator to two components as its operands 

itself is a component (a composition component). Each box in the diagram represents a component. 

(Boundary names, types and directions are not shown). 

 

Composition components are discussed further in section 3.3. 

3.1.4.2 'Starting' a Composition 

A __start__ statement in the wiring code takes the referenced composition component and 

begins execution of the __run__ method of all active ordinary components 'within' that 

composition. 

 

One typing constraint on starting a composition is that it has no 'outer'/'dangling' boundaries. 

Figure 6 is such an example. Figure 7 however, has boundaries remaining. A programmer can 

artificially 'close' these remaining boundaries if necessary by using the trivial components 

discussed in Appendix C. 

3.1.4.3 Achieving Flexible Wiring 

To wire up components whose boundaries differ only by their order, components must be 

redefined with different boundary orders to be compatible. This lack of flexibility is better 

resolved by use of a Twist component: 

 
Figure 10 - Twist component. Tugs to the top left boundary cause a tug on the wire connected to the 

bottom right boundary (and vice versa). Tugs to the bottom left boundary cause a tug on the wire 

connected to the top right boundary (and vice versa). 
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Appendix C discusses this approach and an alternative approach in further detail. The 

Loopback component is also discussed as a means to achieve further flexibility. 

3.2 A More Complex Synchronisation 

This section outlines some more concepts by example. 

3.2.1 IntProducer-IntBufferCell-IntConsumer Example 

This example extends the previous IntProducer-IntConsumer to add an IntBufferCell 

component. The IntBufferCell has internal state to hold an integer and to mark its state as 

either empty/not-empty. 

 

 
Figure 11 - components, wires and boundaries in producer-IBC-consumer example 

 
component IntBufferCell { 

    // boundaries 

    boundary left int in?; 

    boundary right int out!; 

     

    // internal state 

    boolean empty = true; 

    int value = 0; 

 

    in?[int val] { // here 'val' is an *input parameter* 

        if(empty) { 

            value = val; 

            empty = false; 

        } 

        else { 

            out![value]; 

            value = val; 

        } 

    } 

 

    out![int val] { // here 'val' is a *return parameter* 

        if(!empty) { 

            val = value; 

            empty = true; 

        } 

        else { 

            val = in?; 

        } 

    } 

} 

Code Listing 8 - Component Definition for the IntBufferCell component. It differs from previous 

examples in that it is a passive component. Additionally, its handlers contain no __block__ statement. 

Tugging components may however block via chains of synchronisations. 
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//P.IBC.C 

public class Application { 

    public static void main(String[] args) { 

// wire IntProducer's right 'out' boundary to IBC's left 'in' boundary, 

// and wire IBC's right 'out' boundary to IntConsumer's 'in' boundary 
        composition c = IntProducer.IntBufferCell.IntConsumer; 

        __start__ c; 

    } 

} 

Code Listing 9 - Wiring code that wires (instances of) the three components together and then 'starts' 

them. The component definitions for IntProducer and IntConsumer are given in Code Listing 1 and Code 

Listing 2, respectively. IntBufferCell is given in Code Listing 8. 

 

The wiring code for this application is similar to the IntProducer-IntConsumer example, with 

an extra sequential composition operator required. 

 

An example of a synchronisation for this example is shown in Figure 12 and Figure 13: 



 

Language Definition   

17 

 

 
Figure 12 - A possible synchronisation for the IntProducer-IntBufferCell-IntConsumer example (top half). 

  



 

Language Definition   

18 

 

 
Figure 13 - Bottom half of a synchronisation for the IntProducer-IntBufferCell-IntConsumer example.
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3.2.2 Active and Passive Components 

IntBufferCell is an example of a passive component. Components may be either active or 

passive. Active components are those with a __run__ method which is executed by their own 

thread of control. Passive components do not. They only contain handlers (and internal state). 

These handlers are (sometimes) run by other components trying to synchronise with the 

component (see section 3.1.3.1).  

3.2.3 Chains of Synchronisations 

The example synchronisation above introduced the possibility of chains of synchronisations. 

This takes place because handlers may also execute synchronisation statements; not just the 

run methods of components. Both IntBufferCell's handlers contained synchronisation 

statements. 

3.2.4 Handler Parameters 

This example also demonstrated handler parameters (e.g. val). These may be input 

parameters or return parameters, used in inward or outward boundary handlers, respectively. 

Thus in inward handlers, the handler parameter should only ever be read. Likewise, in an 

outward handler, the handler parameter should only ever be written to (e.g. step 4 in Figure 

12). A handler may also ignore the handler parameter completely (Appendix B.1 offers an 

example of this (IntBufferEater)). Also note that handlers may only have a single parameter, 

corresponding to the single value being transferred in a synchronisation. 

3.3 Composability 

Section 3.1.4.1 discussed one operator to create composition components: Sequential 

Composition. Another operator that adds far more power to the way components may be 

composed together is Tensor Composition. 

3.3.1 Tensor Composition ( #4 ) 

Tensor composition does not wire components as sequential composition does. Tensor places 

its left operand component above its right operand component. The resulting composition 

component's left boundaries is the left boundaries of its left operand followed by the left 

boundaries of its right operand (analogously for its right boundaries). Figure 14 shows this: 

 

 
Figure 14 - Tensor composition of components A and B. As the left operand, A's boundaries come before 

B's boundaries in the resulting (composition) component. The tensor composition operator performs no 

wiring; it simply creates a new component that is the 'vertical sum' of its parts. 

                                                 
4
 An alternative symbol that may be used for the tensor operator is '*/' (without quotes). 
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Again, as with sequential composition components, the resulting component may be treated 

uniformly like any other component and so be further tensored or sequentially composed with 

other components.  An example follows: 

 

 
Figure 15 - Example of a sequential composition of two tensor composition components. Each 

corresponding pair of boundaries are joined by a wire. 

 

Here, the components resulting from two tensor compositions are sequentially composed.  

 

A further example shows a single DoubleIntConsumer that receives values on two boundaries 

from separate IntProducers: 

 
Figure 16 - Further example of sequential composition of two tensored componenents (IntProducers) with 

a single ordinary component (DoubleIntConsumer) that can receive on two boundaries. 

3.4 Copy Synchronisation Primitive 

The basic synchronisation provided by an ordinary wire is sufficient for some applications. 

However, more sophisticated synchronisation semantics are often required. This section and 

the next introduce two synchronisation primitives which allow a single synchronisation to 

take place among three parties rather than just two. 

 

Copy allows a broadcast/copy of a value to take place from one boundary to two boundaries, 

as Figure 17 shows: 
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Figure 17 - Sender S's out! boundary wired via a 'splitter' wire to the in? boundaries of receivers R1 and 

R2. To be precise, the two receiving boundaries do not necessarily have to belong to two separate 

components. It could be a single component with two receiving boundaries. 

 

From an implementation standpoint, a desirable way to achieve this would be to introduce a 

special Copy component that encapsulates the required synchronisation semantics of copy 

(which follow shortly) and use sequential composition to wire it with its left and right 

neighbouring components, as illustrated in Figure 18: 

 

 
Figure 18 - Special Copy component that provides the desired synchronisation semantics. Strictly, S and 

Copy should be surrounded with a box (the left-associativity of . dictates that S be sequentially composed 

with Copy first and then the resulting composition sequentially composed with R1#R2). 

 

The current implementation of Copy does not take this approach, mainly for reasons of time 

constraints (see section 4.1.3.5).  

3.4.1 'Direction' of Copy 

Copy actually has two cases, depending on the boundary directions; either there are two 

senders or two receivers. Viewing Copy again independently from its possible 

implementation (i.e. using a Copy component), Figure 19 shows this: 
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Figure 19 - Two modes of operation for Copy synchronisation primitive, depending on the direction of the 

boundaries connected to it. The semantics of Copy differ for each. 

 

The intuitive case is where there are two receivers: the value is copied to both. The case of 

two senders is rather different. The synchronisation only completes when both senders are 

sending the same value. This latter case has not been explored in detail. 

3.4.2 One Sender-Two Receivers 

3.4.2.1 Semantics 

The semantics of the one sender-two receiver case set up depends on whether a sender or a 

receiver is first to tug on the wire: 

 
Figure 20 - One Sender-Two Receivers Copy wire. 

 

For clarity of explanation, R1 and R2 are assumed to be two separate components. Strictly, 

however, there could be a single component with two inward (receiving) boundaries. 
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In general:  

When the first component tugs (not limited to S), the handlers of both the other components 

are run (possibly concurrently). These separate interactions may be treated as individual 'sub-

synchronisations'. Even if one sub-synchronisation completes (by the handler blocking and 

then being unblocked, or by completing without blocking; see section 3.1.3.3), the 

components involved must wait until the other sub-synchronisation also completes. S' send 

value is only (atomically) transferred when both sub-synchronisations have completed 

(completion as described in section 3.1.3.3).  

 

S tugs first: 

When S tugs first, R1 and R2's handlers are run (beginning a sub-synchronisation with R1 

and R2). Once both sub-synchronisations have completed, the entire synchronisation is 

complete, and the value may be transferred. Value transfer actually takes place in one of two 

ways. Either the value is transferred upon unblocking of a blocked handler, or the value is 

transferred via the handler parameter. (If via the latter, a desirable property is that the value 

itself is not be made visible until the entire synchronisation completes. This is one area of 

Copy's semantics that are unclear). 

 

Rx tugs first: 

When Rx (R1 or R2) tugs first, the semantics are similar to when S tugs first. The only 

difference is that Rx must run S's handler before Ry's handler. The value being sent must be 

known before Ry's handler is run. 

3.4.2.2 Examples 

In Figure 21 below, when IntProducer tugs, it runs both the other two parties' handlers. In this 

example, both handlers block. The value is transferred to both atomically only when both 

IntConsumers have tugged back. When an IntConsumer tugs first, the same actions take place 

except that the sender's (IntProducer) handler must be run before the other receiver's 

(IntConsumer) handler. 

 

 
Figure 21 - One IntProducer sender and two IntConsumers as receivers with a Copy component acting as 

conceptual Copy wire between them 

 

The following example illustrates the semantics of Copy when a handler completes without 

blocking. It also shows how the above example may be extended to include asynchronous 

communication by using an IntBufferCell: 
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Figure 22 - Achieving asynchrony in the bottom IntConsumer by making the IntBufferCell the second 

receiver of the Copy. 

 

If IntProducer tugs first, both the top IntConsumer's and IntBufferCell's handlers are run. 

Even though IntBufferCell's handler completes (and thus the IntProducer-IntBufferCell sub-

synchronisation also completes), the entire synchronisation only completes once the top 

IntConsumer tugs back, unblocking its blocked handler. The lower IntConsumer does not 

directly participate in the synchronisation; the IntBufferCell does so 'on its behalf'. 

3.4.3 One Receiver-Two Senders 

This direction bears similarity to above. Again, the entire synchronisation may only complete 

when both sub-synchronisations complete. However, in addition to that, the synchronisation 

only completes when both senders are sending the same value. Further details of this 

direction of operation have not been explored. 

3.5 Switch Synchronisation Primitive 

Switch enforces mutual exclusively access to one boundary by two competing boundaries, as 

Figure 23 shows: 

 

 
Figure 23 - Switch Synchronisation Primitive. R1 and R2 compete to synchronise with S. 

 

Similar to Copy, a special Switch component that encapsulates the required synchronisation 

semantics would be used. This is illustrated in Figure 24: 
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Figure 24 - Special Switch component that provides the desired synchronisation semantics. 

 

Switch is an example of an unimplemented construct. Its semantics have not yet been 

established and require more investigation. 

3.6 Language Comparisons 

This final section gives a brief comparison with existing languages. 

3.6.1 Comparison with Kamaelia 

Kamaelia has a very similar concept of components [51]: 

Components have "inboxes" and "outboxes" through with they communicate with 

other components. 

A component may send a message to one of its outboxes. If a linkage has been 

created from that outbox to another component's inbox; then that message will 

arrive in the inbox of the other component. In this way, components can send and 

receive data - allowing you to create systems by linking many components 

together. 

Each component is a microprocess - rather like a thread of execution. 

One unique feature of the language that differs from Kamaelia is the use of handlers. With 

handlers, a chain of synchronisations can take place among components (as in producer-IBC-

consumer). 

3.6.2 Comparison with CSP (Communicating Sequential Processes) 

In contrast to CSP, communication between components (processes) is tightly controlled. 

When a wire connects two components, only those two components can use it. It cannot be 

used by other components to communicate. CSP channels on the other hand can be read or 

written to by any process that has a ‘handle’ on that channel. Thus even though the 

superficial resemblance of wires to CSP channels makes communication appear like 

message-passing, the communication style is actually a disciplined form of shared-memory, 

where the wire connecting two components is the shared-memory between those components. 

(Sending a value on a wire corresponds to an atomic write. Receiving a value on a wire 

corresponds to an atomic read). 
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4.  

Translator Design and 

Implementation 

The design and implementation details of the translator are discussed in this chapter. Prior to 

this the core translation mechanisms between JavaB and Java are examined. In particular, the 

classes implementing the synchronisation semantics of ordinary and copy wires are 

examined. 

4.1 Translation Mechanisms 

4.1.1 Translation Classes 

A 'manual' translation of what the translator might generate for the IntProducer-IntConsumer 

and IntProducer-IBC-IntConsumer examples was initially undertaken. This was a necessary 

requirement to understanding what code the translator should generate. It also ironed out 

some misconceptions in the language semantics. The manual translation was written in a way 

such that it could be generated by the translator, so that the translation mechanism could 

apply to any program written in the language. 

 

The translation closely follows the conceptual ideas of the language, with Java classes such 

as Boundary, Wire and HandlerRunnable representing boundaries, wires and handlers, 

respectively. IntProducer, IntConsumer and IntBufferCell likewise represent their respective 

components. Component is a superclass of all components. Active components implement 

Runnable (passive components do not). The Wire classes (NormalWire and CopyWire) 

implement the required semantics of a synchronisation on a wire. These contain most of the 

complex logic and (Java) synchronisation (see section 4.1.3). 

 

Table 1 lists and describes the various classes. Figure 25 shows the corresponding class 

diagram. 

 

Class/Interface (I) Purpose Explanation 

'Fixed' classes (written once; not generated by translator) 

Component Represents a 
component.  

The translator generates component classes such as 
IntProducer that subclass this class. 
 
It is an abstract class which stores the name of the 
component and an explicit lock associated with the 
component. Subclasses can access this lock via a call to 
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getLock(). 

Boundary<T> Represents a 
boundary of a 
component. 

The application code creates these by invoking 
create_boundary_x(), a method generated for each 
boundary of a Component. This is used instead of 
natively instantiating Boundary objects in the wiring 
code so that the Boundary's associated handler can be 
created inside the Component. Handlers require access 
to the internal state of the Component and thus the 
Boundary object, whose constructor requires the 
handler code, is also instantiated inside the 
Component. 
 
The generic parameter T is the type of the boundary 
(in the JavaB sense). 

HandlerRunnable<T> 
(Interface) 

Represents a 
handler. 
 
The 
HandlerRunnable's 
run() method 
contains the 
handler's (partially 
translated) code. 

HandlerRunnable is a modification to 
java.util.concurrent.Runnable that allows an input 
parameter and a return parameter, both of generic 
type T (the type of the handlers Boundary). The send() 
method in the Wire class implementations will pass the 
value being sent as an input parameter and ignore the 
return parameter. Similarly, the receive() method will 
not pass any meaningful input parameter but will use 
the return parameter. 
 
When a call to the create_boundary_x(Wire<T>) 
method of a Component owning boundary x is made, 
an anonymous HandlerRunnable object (handler) is 
instantiated and then passed as a parameter into the 
Boundary constructor to create the Boundary object 
representing x. 

Wire<T> 
(Interface) 

Represents any 
type of wire; 
specifies the public 
interface all wires 
must have.  
 
Implementation of 
translated run 
method and 
handlers of a 
component 
becomes simpler, 
because the 
translated 
component does 
not need to know 
what underlying 
Wire 
implementation is  
being used to wire 
its boundaries. 

send() and receive() methods correspond to JavaB's 
synchronisation statements (e.g. in? and 
out![value]). send() is called precisely when there is 
an outward boundary synchronisation statement (e.g. 
myOut![value]). receive() is called precisely when 
there is an inward boundary synchronisation 
statement (e.g. myIn?).  send() and receive() can be 
called by either component run methods or handlers. 
 
The blockHandler() and finishHandler() are (only) called 
by handlers (HandlerRunnables). They correspond to 
the two ways a handler may complete (see section 
3.1.3.3). Essentially they inform the Wire (and thus the 
second tugger) of the outcome of handler execution 
(blocked vs. finished without blocking) so that the 
second tugger knows what to do (unblock the other 
tugger vs. start a new synchronisation). blockHandler() 
also implements the required blocking behaviour. 
 
All Wires must implement a setBoundaries() method. 
The purpose of this method is given in the 
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ApplicationProdCons explanation. 

NormalWire<T> Implements 
required 
synchronisation 
semantics of an 
'ordinary' wire. 

Explanation same as for Wire<T>.  
 
In addition, the setBoundaries() method is of the form:  
  setBoundaries(sender,receiver) 
since there is one sending boundary and one receiving 
boundary. 

CopyWire<T> Implements 
required 
synchronisation 
semantics of a copy 
wire. 

Explanation same as for Wire<T>.  
 
In addition, the setBoundaries() method is of the form:  
  setBoundaries(sender,receiver1,receiver2) 
since there is one sending boundary and two receiving 
boundary. 

(Examples of) Translator-generated classes 

IntProducer Subclass of 
Component. 
Translation from 
IntProducer 
component 
definition. 

This component has one boundary, out!, which is 
translated into the private Boundary object out (which 
is instantiated when the wiring code in 
ApplicationProdCons calls 
create_boundary_out(Wire<Integer> 
wireAttachedTo)).  In general, a create_boundary_x() 
method is generated for each boundary x of a 
component. 
 
The out![produced] synchronisation statement in the 
run method is translated into a call to send() on the 
Wire wireAttachedTo object. 
 
The __block__; statement in the out! handler is 
similarly translated to a call to blockHandler() on the 
Wire wireAttachedTo object. 

IntConsumer Subclass of 
Component. 
Translation from 
IntConsumer 
component 
definition. 

This component's translation is very similar to 
IntProducer. It too has a single boundary, in?, which is 
translated in the same way to a private Boundary 
object in (ApplicationProdCons calls 
create_boundary_in(Wire<Integer> wireAttachedTo)). 
 
The in? synchronisation statement in the run method 
is translated into a call to receive() on the Wire 
wireAttachedTo object. 
 
The __block__; statement is translated in exactly the 
same way as in IntProducer. 

ApplicationProdCons The main 
application 
containing the 
translated wiring 
code. 

This code starts by instantiating all required 
(translated) component instances, then instantiates 
the required Wire objects (e.g. NormalWire), then 
(indirectly through calls to 
create_boundary_x(Wire<T>)) instantiates the 
required Boundary objects. 
 
The Wire objects need to have a reference to the 
Boundary objects representing each end of the wire. 
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Thus the wiring code also has calls to 
setBoundaries(sender,receiver) on each of the Wire 
objects. The constructor of Wire is not used for passing 
these parameters because Boundary and Wire require 
a mutual reference to each other, and thus one must 
be instantiated before the other (Wire before 
Boundary). 

Table 1 - The name, purpose and explanation of all classes used in a manual translation. The 'fixed' 

classes are those classes that are standard and are not ever generated by the translator. These classes, 

together with the generated component and wiring code / application classes, implement the required 

semantics of the JavaB language 

 

The next section gives an example translation that uses these classes. 
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Figure 25 - Classes used in translation. The classes in yellow are the classes that are generated by the translator. The other classes are fixed. In this example, the 

IntProducer and IntConsumer classes are translated from their component definitions from Chapter 3.
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4.1.2 Translation  of IntProducer-IntConsumer Example 

The translations of IntProducer.javabc, IntConsumer.javabc and ApplicationProdCons.javab 

from section 3.1.1, are subsequently described. A further example is given in Appendix E. 

4.1.2.1 IntProducer.java and IntConsumer.java 

The translations are given below, followed by an explanation. 

 
import javab.runtime.*; 

 

import java.util.Random; 

 

public class IntProducer extends Component implements Runnable { 

    public IntProducer() { 

        super("IntProducer"); // pass name of component to superclass 

(Component) 

    } 

 

    // INTERNAL STATE 

    private Random rand = new Random(); 

 

    // BOUNDARIES 

    private Boundary<Integer> out; 

 

    // HANDLERS 

    public Boundary<Integer> create_boundary_out(Wire<Integer> 

wireAttachedTo) { 

        // the handler for this boundary 

 

        HandlerRunnable<Integer> handler = new HandlerRunnable<Integer>() { 

            public Integer runHandler(Integer val) { 

                // no translator housekeeping code required before user 

code 

 

                // "user code" (with JavaB parts translated) -- which could 

contain a (translated) 'block;' statement 

                // a block; statement in a handler is replaced with the 

following single line that blocks and when unblocked returns immediately 

with the value received 

                if(true) return 

out.getWireAttachedTo().blockHandler(val,out,IntProducer.this); // 'block;' 

 

                // translator housekeeping code following the user code (if 

user code blocks then this code is unreachable) 

                

out.getWireAttachedTo().finishHandler(out,IntProducer.this); // At this 

point we know that we have finished the handler without blocking (i.e. the 

sync is complete, apart from the housekeeping tasks we are about to do now) 

                return val; 

                // IF OUTWARD HANDLER: it doesn't matter that we're 

returning back the value the sender gave us as our dummy value for the 

exchanger; the sender will ignore it anyway 

                // IF INWARD  HANDLER: the handler (return) parameter val 

should have been set by the programmer; if it never gets set by the 

programmer then the (dummy) value that was passed in will be returned 

            } 

        }; 
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        // create boundary (name, owner component, wire, handler) 

        out = new Boundary<Integer>("out", this, wireAttachedTo, handler); 

        return out; 

    } 

 

    // RUN METHOD 

    public void run() { // (C) run method of component 

            while(true) { 

                int produced = produce_item(); 

                out.getWireAttachedTo().send(out,produced); // 

out![produced] // (D) synchronisation statement 

            } 

        } 

 

    // OTHER METHODS 

    private Integer produce_item() { // (F) ordinary Java method 

            return rand.nextInt(1000); 

        } 

} 

Code Listing 10 - IntProducer.java - the translation of the component definition IntProducer.javabc 

 
// consumer that consumes integers 

import javab.runtime.*; 

 

public class IntConsumer extends Component implements Runnable { 

    public IntConsumer() { 

        super("IntConsumer"); // pass name of component to superclass 

(Component) 

    } 

 

 

    // BOUNDARIES 

    private Boundary<Integer> in; 

 

    // HANDLERS 

    public Boundary<Integer> create_boundary_in(Wire<Integer> 

wireAttachedTo) { 

        // the handler for this boundary 

 

        HandlerRunnable<Integer> handler = new HandlerRunnable<Integer>() { 

            public Integer runHandler(Integer val) { 

                // no translator housekeeping code required before user 

code 

 

                // "user code" (with JavaB parts translated) -- which could 

contain a (translated) 'block;' statement 

                // a block; statement in a handler is replaced with the 

following single line that blocks and when unblocked returns immediately 

with the value received 

                if(true) return 

in.getWireAttachedTo().blockHandler(val,in,IntConsumer.this); // 'block;' 

 

                // translator housekeeping code following the user code (if 

user code blocks then this code is unreachable) 

                in.getWireAttachedTo().finishHandler(in,IntConsumer.this); 

// At this point we know that we have finished the handler without blocking 

(i.e. the sync is complete, apart from the housekeeping tasks we are about 

to do now) 

                return val; 
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                // IF OUTWARD HANDLER: it doesn't matter that we're 

returning back the value the sender gave us as our dummy value for the 

exchanger; the sender will ignore it anyway 

                // IF INWARD  HANDLER: the handler (return) parameter val 

should have been set by the programmer; if it never gets set by the 

programmer then the (dummy) value that was passed in will be returned 

            } 

        }; 

 

 

        // create boundary (name, owner component, wire, handler) 

        in = new Boundary<Integer>("in", this, wireAttachedTo, handler); 

        return in; 

    } 

 

    // RUN METHOD 

    public void run() { 

        while(true) { 

                    int consumed = in.getWireAttachedTo().receive(in); 

                    consume_item(consumed); 

                } 

    } 

 

    // OTHER METHODS 

    public void consume_item(int value) { 

            System.out.println("IntConsumer received the value "+value); 

        } 

} 

Code Listing 11 - IntConsumer.java - the translation of the component definition IntConsumer.javabc 

 

Many of the translation mechanisms in component definitions are straightforward. For 

example, both IntProducer and IntConsumer are components, and so extend Component. 

Moreover, both are active and so implement Runnable. Boundary declarations are translated 

into Boundary instance variables, with their type as a generic parameter. In both examples, 

boundaries were of type int; the translation process autoboxes them into their equivalent 

reference type, Integer. 

 

Synchronisation statements are translated to calls to send() and receive() (for outward and 

inward synchronisations, respectively) on the Wire attached to the boundary being 

synchronised on. 

 

Handlers are less trivial. They are not simply translated into methods. The Wire 

implementations do not know anything of the components they are attached to. They only 

know the Boundarys at each of their end-points. Wire thus invokes handlers through the 

appropriate Boundary. Therefore the handler must be defined before being passed into the 

Boundary constructor. This is performed in the create_boundary_x() methods. 

4.1.2.2 ApplicationProdCons.java 

The wiring code translation is now given: 

 
import javab.runtime.*; 

 

 

import java.util.HashSet; 

import java.util.Set; 

import java.util.concurrent.CountDownLatch; 
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public class ApplicationProdCons { 

    public static void main(String[] args) { 

         // Composition declaration of a sequential composition of 

IntProducer and IntConsumer 

        // create component instances contained in the composition 

        IntProducer intProducer1 = new IntProducer(); 

        IntConsumer intConsumer1 = new IntConsumer(); 

 

 

        // create NormalWire and CopyWire instances 

        NormalWire<Integer> WIRE_intProducer1_out_TO_intConsumer1_in = new 

NormalWire<Integer>(); 

 

 

        // create boundary objects 

        // (Boundary objects don't refer to each other, they only refer to 

the Wire they are on the end of. That Wire object also has a mutual 

reference to the Boundary object.) 

        Boundary<Integer> intProducer1_out = 

intProducer1.create_boundary_out(WIRE_intProducer1_out_TO_intConsumer1_in); 

        Boundary<Integer> intConsumer1_in = 

intConsumer1.create_boundary_in(WIRE_intProducer1_out_TO_intConsumer1_in); 

 

 

        // now that we have created boundaries, set boundaries of the wire 

object(s) 

WIRE_intProducer1_out_TO_intConsumer1_in.setBoundaries(intProducer1_out, 

intConsumer1_in); 

 

 

        /* Start threads of all active components (implement Runnable) */ 

        // use a latch 'start gate' to ensure they start at the same time -

- see JCIP chapter 5 

        final CountDownLatch startGate = new CountDownLatch(1); 

 

        // add all Runnables to a set to be iterated over 

        Set<Runnable> runnables = new HashSet<Runnable>(); 

        runnables.add(intProducer1); 

        runnables.add(intConsumer1); 

 

 

        // set of latch-altered Runnables that have been turned into 

Threads 

        Set<Thread> threads = new HashSet<Thread>(); 

 

        // iterate over them and wrap their run methods to include 

startGate.await() at the beginning 

        for(final Runnable r : runnables) { 

          Thread t = new Thread() { 

            public void run() { 

              try { 

                startGate.await(); 

                r.run(); 

              } 

              catch(InterruptedException e) { e.printStackTrace(); } 

            } 

          }; 

          threads.add(t); 

          t.start(); // also start the thread (it will await at latch) 

        } 
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        // GO! (release all the threads) 

        startGate.countDown(); 

    } 

} 

Code Listing 12 - ApplicationProdCons.java - translation of wiring code ApplicationProdCons.javab 

 

The translated wiring code first instantiates the required Component and Wire objects. In the 

JavaB code, instances of components were implicitly constructed (the programmer does not 

have to create component instances). 

 

For the actual wiring, a Wire must know all the boundaries on its end-points. Equally, a 

Boundary must know the Wire it is connected to. Thus a mutual reference between Wire and 

Boundary is required. This is achieved by constructing the Wire object first, (indirectly) 

passing that Wire into the Boundary constructor via a call to create_boundary_x() for each 

end-point boundary, and finally invoking setBoundaries() on the Wire with the returned 

Boundary objects. 

 

Finally, all Runnable components are started, each assigned a thread. CountDownLatch is 

used to ensure threads start simultaneously. 

4.1.3 Algorithms for Synchronisation Primitives 

The algorithms of an ordinary wire (NormalWire) and Copy (CopyWire) are presented in this 

section. Time constraints meant Switch could not be implemented.  

 

It was found that neither Copy and Switch could be implemented successfully just using 

component definitions, but instead required their own Wire, similar to NormalWire. It is still 

envisioned that special components will encapsulate these wires to look like ordinary 

components (see sections 3.4/3.5). 

 

All wires implement send() and receive(). These methods correspond to outward and inward 

synchronisation statements, respectively. The blockHandler() and finishHandler() methods 

are called by handlers invoked during a synchronisation to indicate whether they blocked or 

completed. 

4.1.3.1 NormalWire Algorithm 

shared (instance) variables: 

Exchanger - synchroniser used to atomically exchange values between two 

  threads (the two synchronising components). The first thread 

  waits for the second to arrive at exchanger. 

wireLock - both a lock and condition variable on handlerFinished or  

      handlerBlocked events occuring 

handlerBlocked - boolean used to reflect status of handler execution; that 

       the handler blocked. Set by the blockHandler() method. 

handlerFinished - boolean used to reflect status of handler execution; that 

   the handler finished without blocking. Set by the 

   finishHandler() method. 

 

// send() and receive() very similar (duals of each other) 

send(T value) { 

    atomically determine if caller first or second to tug on this wire 

    if first then 

        lock receiving component 
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        run receiving component's boundary handler 

        // unlocking of component not here, but occurs in blockHandler() or 

finishHandler() 

    else // second tugger 

        while(!handlerFinished and !handlerBlocked) 

            wait on wireLock object 

        if(handlerBlocked) // event was that handler blocked 

            meet at Exchanger, passing value 

        else // handlerFinished -- event was that handler finished 

            reattempt synchronisation by calling send() recursively 

        endif 

        reset handlerBlocked and handlerFinished to false for next sync 

    endif 

} 

 

T receive() { 

    T valueReceived; // value to return to receiver 

     

    atomically determine if caller first or second to tug on this wire 

    if first then 

        lock sending component 

        run sending component's boundary handler 

        valueReceived = return parameter value of that handler 

        // unlocking of component not here, but occurs in blockHandler() or 

finishHandler() 

    else // second tugger 

        while(!handlerFinished and !handlerBlocked) 

            wait on wireLock object 

        if(handlerBlocked) // event was that handler blocked 

            meet at Exchanger, passing null // receiver is receiving, not 

sending anything 

            valueReceived = value received at Exchanger 

        else // handlerFinished -- event was that handler finished 

            reattempt synchronisation by calling send() recursively 

            valueReceived = value returned from send() 

        endif 

    endif 

} 

 

/*  

 * When a handler is invoked (by the first tugger), two events can occur: 

 * 1. the handler blocks, in which case it calls blockHandler() to notify 

 *  any second tuggers that may be waiting on wire. 

 * 2. the handler finishes without blocking, in which case it calls 

 *  finishHandler() to notify any second tuggers that may be waiting on 

 *  wire. 

 * Thus in a single synchronisation, only one of the two below methods is  

 * called. 

 */ 

 

blockHandler() { // called by first tugger's handler if it blocked 

    unlock component the boundary handler belongs to (BEFORE BLOCKING via 

the Exchanger) 

    handlerBlocked = true 

    notifyAll on wireLock 

} 

 

finishHandler() { // called by first tugger's handler if it finished 

without blocking 

    unlock component the boundary handler belongs to 

    handlerFinished = true 
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    notifyAll on wireLock 

} 

Figure 26 - Pseudocode of NormalWire Algorithm. 

 

Some points of interest include the use of java.util.concurrent.Exchanger. This class 

integrates the required blocking (of handlers) and value passing behaviour between sender 

and receiver. 

 

Additionally, before the first tugger runs a handler, it acquires the owning component's lock 

is to ensure atomicity of handler execution with respect to other handlers of that component. 

Without this, state inconsistencies could arise due to race conditions when multiple separate 

synchronisations take place on the component's different boundaries.  

4.1.3.2 NormalWire Implementation 

The Java implementation is given in Appendix F. Here however, a snippet of the 

if(firstToTug) block is shown. The pseudocode hid the complex details of if(firstToTug) that 

arose in the implementation due to a deadlock situation in NormalWire. 
      // first to tug 

      if(runTheHandler) { 

        // possibility of not being able to acquire component's lock 

        boolean done = false; 

        while(!done) { 

          // if we succeed in grabbing the lock 

          if(receiver.getOwnerComponent().getLock().tryLock()) { 

            receiver.runHandler(value); 

 

            done = true; 

          } 

          // if we fail to grab the lock 

          else { 

            if(numThreadsOnWire.get() == 1) { 

              Thread.yield(); // wait efficiently 

            } 

            if(numThreadsOnWire.get() == 2) { 

              // pretend we were running a handler and blocked 

              synchronized(wireLock) { 

                this.handlerBlocked = true; 

                wireLock.notifyAll(); 

              } 

 

              // proceed to the exchange 

              try { valueExchanger.exchange(value); } 

              catch (InterruptedException e) { e.printStackTrace(); } 

 

              // decrement numThreadsOnWire now that exchange/sync is done 

              numThreadsOnWire.decrementAndGet(); 

 

              done = true; 

            } 

          } 

  } 

      } 

Code Listing 13 - The if(firstToTug)/if(runTheHandler) block from the send() method of NormalWire. 

It's complexity is much increased by the requirement to avoid deadlock. If no deadlock were possible, 

then all that would be required would be to acquire the receiving component's lock and run its handler 

(two lines of code!). 

 

The deadlock was possible when there was a component being tugged on two 

boundaries/wires simultaneously. If both tugs were the first tugs on their respective wires, 

then one of the tuggers acquired the component lock in order to run the component's handler. 
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The deadlock could occur when that handler itself tugs on the wire with the component that 

was just beaten to the component lock.  

 

Sobocinski suggested a solution to resolve the deadlock. The use of tryLock() to attempt to 

acquire the component lock meant that failure to acquire the lock does not result in threads 

blocking. Instead, the loop ensures unsuccessful attempts are retried. numThreadsOnWire is 

used to know what action to take upon failure. 

 

The high-level flow charts overleaf illustrate both the deadlock-prone and deadlock-free 

versions of the algorithm. 
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Figure 27 - Flow chart showing logic of send() method of deadlock-prone NormalWire; the highlighted 

boxes show the source of deadlock. See section F.3.1 for an equivalent flow chart that includes code 

annotations from the actual implementation. 
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Figure 28 - Flow chart showing logic of receive() method of deadlock-prone NormalWire; the highlighted 

boxes show the source of deadlock. See section F.3.1 for an equivalent flow chart that includes code 

annotations. 

 

 

 

 



 

Translator Design and Implementation   

41 

 

 
Figure 29 - Flow chart showing logic of send() method of deadlock-free NormalWire; the added steps are 

highlighted in green. See section F.3.3 for an equivalent flow chart that includes code annotations. 
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Figure 30 - Flow chart showing logic of receive() method of deadlock-free NormalWire; the added steps 

are highlighted in green. See section F.3.3 for an equivalent flow chart that includes code annotations. 
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4.1.3.3 CopyWire Algorithm 

An initial implementation of CopyWire was completed, which only considers the 'one sender-

two receivers' case. The CopyWire pseudocode follows: 

 
shared (instance) variables: 

  wireLock - used as condition variable on changes to the state of 

subSyncHandlerFinished or subSyncHandlerBlocked 

   

  boolean[] subSyncHandlerFinished - array of booleans used to reflect 

status of handler execution for each sub-synchronisation; that the handler 

finished without blocking. Set by the finishHandler() method. The first 

index is for the sender's boolean value; the second index is for 

receiver1's boolean value; the third for receiver2's boolean value. 

   

  boolean[] subSyncHandlerBlocked - array of booleans used to reflect 

status of handler execution for each sub-synchronisation; that the handler 

blocked. Set by the blockHandler() method. The first index is for the 

sender's boolean value; the second index is for receiver1's boolean value; 

the third for receiver2's boolean value. 

   

  syncIncomplete - is the *entire* synchronisation complete 

   

  valueToTransfer - value to be transferred 

   

  barrier - Java synchroniser (CyclicBarrier), all threads must wait at 

barrier before barrier released. The barrier also has an action that is 

executed after all threads have arrived at the barrier but before the 

barrier is released. This is used to ensure that the entire synchronisation 

does not complete until both sub-synchronisations are complete. 

 

 

initialisation { 

  syncIncomplete = false // state of synchronisation is 'complete' (or, 

ready to start a new sync.) 

  set all boolean values of subSyncHandlerFinished to false // (no sub-

synchronisations are in mid-process) 

  set all boolean values of subSyncHandlerBlocked to false // (no sub-

synchronisations are in mid-process) 

} 

 

barrier action { 

  syncIncomplete = false // mark synchronisation as now being complete 

  Notify any 'late' tuggers, who's handlers were run by the first tugger 

and thus the 'late' tuggers participation is was not required; the late 

tuggers just wait to try tugging again, the only try again when notified 

} 

 

// called by sender 

send(T value) { 

    valueToTransfer = value 

   

  // set by this tugger in case they are a 'late' tugger, to allow them try 

tugging again 

  boolean startNewSync; 

  do { 

    startNewSync = false; // initailise/reset startNewSync 

     

    atomically determine if caller first or second to tug on this wire 

    if first { // first to tug 

      spawn thread to run receiver1's handler { 
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        lock receiver1 component 

        run receiver1 component's boundary handler, passing valueToTransfer 

as handler input parameter 

        // unlocking of component not here, but occurs in blockHandler() or 

finishHandler() 

         

        if handler finished without blocking, then wait at barrier in this 

thread (if handler blocked, then the unblocking thread is responsible for 

waiting at the barrier) 

      } 

       

      spawn thread to run receiver2's handler { 

        lock receiver2 component 

        run receiver2 component's boundary handler, passing valueToTransfer 

as handler input parameter 

        // unlocking of component not here, but occurs in blockHandler() or 

finishHandler() 

         

        if handler finished without blocking, then wait at barrier in this 

thread (if handler blocked, then the unblocking thread is responsible for 

waiting at the barrier) 

      } 

       

      wait at barrier 

    } 

    else { // second to tug 

      first tugger (one of the receivers) must be running our handler 

      therefore wait until this sender's handler has blocked or finished 

      (CONDITION: subSyncHandlerFinished[sender] || 

subSyncHandlerFinished[sender]) 

      (CONDITION VARIABLE: wireLock) 

       

      if handler blocked (i.e. first tugger blocked in my handler) { 

        unblock first tugger 

        wait at barrier (unblocking thread is responsible for waiting at 

barrier) 

      } 

      elseif handler finished { 

        startNewSync = true; // I'm 'late' to join synchronisation; set 

flag for next time round the loop 

        wait until current synchronisation completes (CONDITION: 

!syncIncomplete) 

      } 

       

      subSyncHandlerFinished[sender] = false; // expected race condition in 

resetting of flags 

      subSyncHandlerBlocked[sender] = false; 

    } 

  } while(startNewSync); 

} 

 

/* 

 * Called by either receiver. 

 * 

 * Logic is similar than that for send(); key difference is that sender's 

handler is always executed before other  

 * receiver's handler. 

 * 

 * Advantage to spawning separate threads for running sender's handler and 

receiverY's handler is that it is general 
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 * enough that the barrier waiting mechanism works in all cases (normally 

it would not make sense to have threads wait 

 * 'sequentially' for each other -- purpose is so that each can reach the 

barrier as separate threads). 

 *  

 * receiverX refers to the receiver that is currently running this method; 

receiverY refers to the other receiver. 

 * 

 *   * (star) indicates new/different code to send() method. 

 */ 

T receive() { 

  // set by this tugger in case they are a 'late' tugger, to allow them try 

tugging again 

  boolean startNewSync; 

  do { 

    startNewSync = false; // initailise/reset startNewSync 

     

    atomically determine if caller first or second to tug on this wire 

    if first { // first to tug 

      spawn thread to run sender's handler { 

        lock sender component 

        *run sender component's boundary handler* 

        *set valueToTransfer to above executed handler's return parameter* 

        // unlocking of component not here, but occurs in blockHandler() or 

finishHandler() 

         

        *notify other thread waiting for sender's handler / sub-

synchronisation to complete* 

         

        if handler finished without blocking, then wait at barrier in this 

thread (if handler blocked, then the unblocking thread is responsible for 

waiting at the barrier) 

      } 

       

      // spawn separate thread for receiverY even though sender must 

complete first 

      spawn thread to run receiverY's handler { 

        *wait until sender's handler / sub-synchronisation completes* 

       

        lock receiverY component 

        run receiverY component's boundary handler, passing valueToTransfer 

as handler input parameter 

        // unlocking of component not here, but occurs in blockHandler() or 

finishHandler() 

         

        if handler finished without blocking, then wait at barrier in this 

thread (if handler blocked, then the unblocking thread is responsible for 

waiting at the barrier) 

      } 

       

      wait at barrier 

    } 

    else { // second to tug 

      first tugger (the sender or receiverY) must be running our handler 

      wait until this receiver's handler has blocked or finished 

      (CONDITION: subSyncHandlerFinished[thisReceiver] || 

subSyncHandlerFinished[thisReceiver]) 

      (CONDITION VARIABLE: wireLock) 

       

      if handler blocked (i.e. first tugger blocked in my handler) { 

        unblock first tugger 
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        wait at barrier (unblocking thread is responsible for waiting at 

barrier) 

      } 

      elseif handler finished { 

        startNewSync = true; // I'm 'late' to join synchronisation; set 

flag for next time round the loop 

        wait until current synchronisation completes (CONDITION: 

!syncIncomplete) 

      } 

       

      subSyncHandlerFinished[sender] = false; // expected race condition in 

resetting of flags 

      subSyncHandlerBlocked[sender] = false; 

    } 

  } while(startNewSync); 

   

  *return valueToTransfer;* 

} 

 

/*  

 * When a handler is invoked (by the first tugger), two events can occur: 

 * 1. the handler blocks, in which case it calls blockHandler() to notify 

 *  any second tuggers that may be waiting on wire. 

 * 2. the handler finishes without blocking, in which case it calls 

 *  finishHandler() to notify any second tuggers that may be waiting on 

 *  wire. 

 * Thus in a single *sub-synchronisation*, only one of the two below 

methods is  

 * called. 

 * 

 * boundaryThatIsBlocking and boundaryThatIsFinishing could be the sender, 

receiver1 or receiver2 

 */ 

 

blockHandler(boundaryThatIsBlocking) { // called by handlers when they 

blocked 

    unlock component the boundary handler belongs to (BEFORE doing the 

actual BLOCKING) 

    subSyncHandlerBlocked[boundaryThatIsBlocking] = true 

    notifyAll on wireLock 

} 

 

finishHandler(boundaryThatIsFinishing) { // called at the end of handlers 

to indicate finishing without blocking 

    unlock component the boundary handler belongs to 

    subSyncHandlerFinished[boundaryThatIsFinishing] = true 

    notifyAll on wireLock 

} 

Code Listing 14 - Pseudocode of CopyWire Algorithm. 

 

Java's CyclicBarrier
5
 synchroniser is used to ensure that whole synchronisation only 

completes when both sub-synchronisations complete. The tripping of the barrier corresponds 

to the synchronisation completing. A barrier action is used to notify 'late' tuggers that the 

synchronisation has completed so they may reattempt to tug. 

 

                                                 
5
 A barrier causes all threads that reach it to wait until all other threads have reached it also. 
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A do..while loop rather than recursion is used to implement the reattempt to tug. NormalWire 

could be improved to do the same. The use of a loop here is a more efficient and 

understandable mechanism than recursion. 

 

Currently, there is a remaining problem of deadlock that occurs when running CopyWire. 

4.1.3.4 CopyWire Implementation 

The implementation can be found in Appendix F. 

4.1.3.5 Implementing a Copy Component 

As alluded to in section 3.4, use of a standard Copy component is currently unsupported in 

the translator: 

 
Figure 31 - Unsupported feature of translator - use of special Copy component that encapsulates Copy 

synchronisation semantics. Currently, Copy only supported as an operator, '/\'. 

 

An endeavour was made to encapsulate a CopyWire object inside a component to achieve the 

required semantics. However, time constraints and problems encountered left this an 

unimplemented feature. 

 

A temporary alternative approach uses a 'copy' operator, /\ (two slashes), similar to sequential 

composition, rather than a specially-defined Copy component: 

 

 
Figure 32 - Alternative implementation of CopyWire into the translator, which allows a CopyWire to be 

placed between two compatible components (i.e. one boundary on left component, two boundaries on 

right component, same types and compatible directions) using the /\ operator. 
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The drawback of this approach is that composability is restricted. The copy operator cannot 

be used in a tensor composition as the Copy component can: 

  
Figure 33 - Tensor composition involving Copy component. Example of where the implemented Copy 

operator is insufficient. 

4.1.3.6 Fairness 

Currently, for both NormalWire and CopyWire, there is a potential fairness problem. 

Components can be starved of 'being-the-first-tugger' over multiple synchronisations. If a 

component arrives 'late' on the wire, it waits until the current synchronisation completes 

before it tugs again; however it could occur that the other component continually barges the 

late component, meaning that the late component never gets to tug first. Future work may 

require a queue to resolve this. 

4.2 Translator High-Level Design 

The phases of the translator are shown in Figure 34. 

 

 
Figure 34 - Translator Phases from input JavaB file to output Java file. ANTLR grammars are stored in 

.g files - the grammar file for each phase is indicated in brackets. 
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JavaB source code is stored in .javab or .javabc files. .javab files contain wiring code. These 

contain any ordinary Java class/program with embedded JavaB wiring syntax within it. 

.javabc files contain component definitions, which may only contain a component definition 

at the top-level, though nested classes may appear within the component definition. 

Additionally, packages and imports may be still specified. 

 

The translator performs syntactic and semantic checks of JavaB code, but only basic 

syntactical checks of Java code. Java code is passed through to the output verbatim. Thus, 

some (mainly semantic) Java errors can pass through the translator unnoticed. Consequently, 

javac must be used to check for such errors. 

4.3 Translator Detailed Design and Implementation 

A detailed explanation of each phase's workings follows. For each, only the JavaB rules in 

the grammar are explained (see attached DVD-ROM for full grammars). Where appropriate, 

the grammar-level options for each grammar are also explained. 

 

Note that the grammars here are based upon the OpenJDK Compiler-Grammar project's Java  

grammar. 

4.3.1 Unsuccessful Approaches 

Despite some exposure to ANTLR previously, the requirements of the project necessitated 

some learning curve to fully appreciate ANTLR's capabilities and limitations. The result of 

this is that various approaches were taken to building the translator before an all-round 

effective solution was found. Figure 35 summarises this process: 

 
Figure 35 - Approaches taken toward final design (transition from a syntax-directed translator to a 

model-driven translator) 

4.3.2 Lexical Analysis (JavaBLexer.g) 

The lexer tokenizes the input character stream for the parser. 

 

The only changes from the original Java grammar lexer was the addition of new lexer rules 

for new JavaB keywords (e.g. 'component', 'composition', 'boundary') and operators (e.g. '#', 

'/\'). 

 
// JavaB keywords/reserved words 

COMPONENT   : 'component'; 

COMPOSITION : 'composition'; 

BOUNDARY    : 'boundary'; 

LEFT        : 'left'; 

RIGHT       : 'right'; 

RUN         : '__run__'; // run method keyword, was 'run' 

BLOCK       : '__block__'; // block statement keyword, was 'block' 

START       : '__start__'; // start statement keyword, was 'start' 

// JavaB symbols 

HASH        : '#'; // tensor composition operator 
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COPY        : '/\\'; // "copy wire" sequential composition temporary 

*operator* -- note: backslash is escaped here 

// Sequential Composition symbol . already used in Java lexer rules 

Figure 36 - Lexer rules for JavaB's keywords and symbols. Extract from JavaBLexer.g. 

 

Originally, 'run' and 'start' were used as keywords of the language. Due to their relatively 

commonality, particularly in multi-threaded programs, underscores were added to reduce 

potential conflicts. 

  

Another point to note is that the ANTLR actions in the WS (whitespace), COMMENT, and 

LINE_COMMENT rules were changed from skip(); to $channel = HIDDEN;. This allowed 

the tokens representing comments to be hidden from the parser rather than be discarded 

completely, and thus ensured that whitespace and comments from the input were preserved in 

the generated output (in the code generation phase). 

4.3.3 Syntactic Analysis (JavaBPhase1Parser.g) 

The parser receives the tokens from the lexer and ensures they follow the language grammar. 

The parser matches the input tokens and builds up an AST as it goes. 

 
parser grammar JavaBPhase1Parser; 

 

options { 

  language = Java; 

  output = AST; 

  backtrack = true; // backtracking required in original Java.g grammar 

  memoize = true; // memoizing reduces time complexity (due to 

backtracking), but increases space complexity 

  tokenVocab=JavaBLexer; 

} 

 

/* Imaginary tokens (used as nodes of constructed AST) */ 

tokens { 

  JAVAB_COMPILATION_UNIT; 

  PACKAGE_DECL; 

  MODIFIERS; 

 

  ... 

} 

 

@header { 

  import java.util.Map; 

  import java.util.HashMap; 

  import java.util.Set; 

  import java.util.HashSet; 

} 

 

@members { 

 // CONTEXT INSTANCE VARIABLES -- instance variables used for context 

sensitivity (mainly used in gated semantic predicates) (see p125 of 

hardcopy of ANTLR for example that has an inMethod instance variable) 

 boolean inComponentDefinition = false; 

 boolean inBoundaryDeclaration = false; 

 boolean inHandlerDeclaration = false; 

 boolean inRunMethodDeclaration = false; 

 boolean inMethodDeclaration = false; 

 

 // ERROR CHECKING (but no WARNINGS in this parser stage) 
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 private List<String> errorList = new ArrayList<String>(); 

 

 ... 

} 
Code Listing 15 - Top of the parser grammar (JavaBPhase1Parser.g).  

 

The options show the fact that the output of this parser is an AST, backtracking is used (and 

memoizing) and the tokens to expect are the ones defined by JavaBLexer.g. The tokens 

section lists imaginary tokens used for nodes in the output AST
6
. The header section contains 

package and import statements that are included in the generated Java parser file. Likewise, 

the members section contains any field or method definitions to be included in the generated 

class. Here the members include variables that are used for keeping track of contextual 

information during the parse and also for storing error messages to be displayed at the end. 

 
javaBCompilationUnit returns [List<String> returnErrorList] 

 @init { 

 $returnErrorList = this.errorList; 

 } 

    : ((annotations)? packageDeclaration)? 

        (importDeclaration)* 

        (componentDefinition | (typeDeclaration)*) 

        -> ^(JAVAB_COMPILATION_UNIT annotations? packageDeclaration? 

importDeclaration* componentDefinition? typeDeclaration*) 

    ; 
Code Listing 16 - Start rule of parser grammar 

 

The start rule of the grammar shows that this error message list is returned at the end of the 

parse. It also shows how the imaginary token  JAVAB_COMPILATION_UNIT is used as the 

root node of the subtree produced by this rule. The arrow denotes an AST rewrite rule that 

specifies the AST subtree to be constructed for that rule; the first element inside ^(...) is taken 

as the root node. 

 

An important observation above is that a JavaB compilation unit may contain either a 

component definition or zero or more Java type declarations. Wiring code is permitted in type 

declarations (e.g. classes) but not in component definitions. 

 

The following code listings show the JavaB rules of the grammar. Some Java rules were 

modified in order to integrate the JavaB rules. Only one is listed here. Note that references to 

lexer rules begin with upper case (e.g. COMPONENT), whereas references to parser rules 

begin with lower case (e.g. boundaryDeclaration). 
 

// JAVA RULES REFERENCED: methodDeclaration, fieldDeclaration 
componentDefinition 

  scope { 

  String componentName; // NOTE: handlerDeclaration rule needs 

access to component name to pass to the template it invokes 

  } 

  @init { 

  inComponentDefinition = true; 

  } 

  @after { 

  inComponentDefinition = false; 

                                                 
6
 Imaginary tokens are tokens that do not have any input string associated with them but are used in the AST to 

represent psuedo-operations. 
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  } 

    : COMPONENT IDENTIFIER LBRACE 

      ( bds+=boundaryDeclaration 

      | cfds+=fieldDeclaration 

      | hds+=handlerDeclaration 

      | rm+=runMethodDeclaration 

      | mds+=methodDeclaration 

      )* 

      RBRACE 

      -> ^(COMPONENT_DEF IDENTIFIER ^(BOUNDARY_DECLS ($bds)*) ^(FIELD_DECLS 

($cfds)*) $rm* ^(HANDLER_DECLS ($hds)*) ^(METHOD_DECLS ($mds)*)) 

    ; 
Code Listing 17 - componentDefinition rule (in parser grammar) 

 

A component is defined by the component keyword, its name, and may contain boundary 

declarations, ordinary Java field declarations, handler declarations, a run method or ordinary 

Java method declarations. The semantic phase checks to ensure that a valid combination of 

boundaries, handlers and run methods have been provided; field and method declarations do 

not affect semantic validity of JavaB programs. 
 

// JAVA RULES REFERENCED: type 

// e.g. boundary left String bleftIn?; 
boundaryDeclaration 

  @init { 

  inBoundaryDeclaration = true; 

  } 

  @after { 

  inBoundaryDeclaration = false; 

  } 

    : BOUNDARY boundarySide type IDENTIFIER boundaryDirection SEMI 

  -> ^(BOUNDARY_DECL IDENTIFIER boundarySide type 

boundaryDirection) 

    ; 

 

boundarySide 

    : LEFT 

    | RIGHT 

    ; 

 

boundaryDirection 

    : QUES 

    | BANG 

    ; 

Code Listing 18 - boundaryDeclaration and helper rules (in parser grammar) 

These boundary declaration rules are self-explanatory. 

 
// JAVA RULES REFERENCED: blockStatement 

runMethodDeclaration 

  @init { 

  inRunMethodDeclaration = true; 

  } 

  @after { 

  inRunMethodDeclaration = false; 

  } 

    : RUN block 

  -> ^(RUN_DECL[$RUN,"RUN_DECL"] block) 

    ; 

Code Listing 19 - runMethodDeclaration rule (in parser grammar) 
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A run method is simply the run keyword followed by an ordinary Java block (essentially 

statements inside curly braces). 

 
// e.g. in?[int val] { code block } 

// JAVA RULES REFERENCED: type, block 

handlerDeclaration 

  @init { 

  inHandlerDeclaration = true; // used in gated semantic 

predicates to provide turn alternatives on/off depending on whether we're 

in a handler declaration context 

  } 

  @after { 

  inHandlerDeclaration = false; 

  } 

    :   handlerName=IDENTIFIER boundaryDirection LBRACKET type 

parameter=IDENTIFIER RBRACKET block 

        -> ^(HANDLER_DECL $handlerName boundaryDirection type $parameter 

handlerBlock) 

    ; 

Code Listing 20 - handlerDeclaration rule (in parser grammar) 

 

Handler declarations share similar features to the previous two rules. 

 
statement 

    :   block 

    |   ASSERT e1=expression (COLON e2=expression)? SEMI -> ^(ASSERT $e1 

$e2?) 

    |   IF parExpression s1=statement (options {k=1;}: (ELSE)=> ELSE 

s2=statement)? -> ^(IF parExpression $s1 $s2?) 

    |   forstatement 

    |   WHILE parExpression statement -> ^(WHILE parExpression statement) 

    |   DO statement WHILE parExpression SEMI -> ^(DO statement 

parExpression) 

    |   trystatement 

    |   SWITCH parExpression LBRACE switchBlockStatementGroups RBRACE -> 

^(SWITCH parExpression switchBlockStatementGroups) 

    |   SYNCHRONIZED parExpression block -> ^(SYNCHRONIZED parExpression 

block) 

    |   RETURN (expression )? SEMI -> ^(RETURN expression?) 

    |   THROW expression SEMI -> ^(THROW expression) 

    |   BREAK (IDENTIFIER)? SEMI -> ^(BREAK IDENTIFIER?) 

    |   CONTINUE (IDENTIFIER)? SEMI -> ^(CONTINUE IDENTIFIER?) 

    |   expression SEMI -> ^(EXEC expression) 

    |   IDENTIFIER COLON statement -> ^(LABELLED IDENTIFIER statement) 

    |   SEMI -> SKIP 

    // additional JavaB alternatives: 

    |   {inComponentDefinition}?=> outSynchronizationStatement // can only 

occur inside a component definition 

    |   {inHandlerDeclaration}?=> handlerBlockStatement 

    |   {!inComponentDefinition}?=> compositionDeclarationStatement // can 

only occur in glue code 

    |   {!inComponentDefinition}?=> startStatement // can only occur in 

glue code 

    ; 
Code Listing 21 - statement rule (in parser grammar) 
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This Java rule has been augmented with four new alternatives, which use gated semantic 

predicates to enable/disable those alternatives during parsing depending on contextual 

information. For example, outward synchronisation statements (out![value];) are only 

permitted inside component definitions; never in wiring code. Additionally, 'block' statements 

are further restricted to the context of handlers. The listing below enumerates the component 

definition-only rules: 

 
/* ********* COMPONENT DEFINITION ONLY CONSTRUCTS (only allowed within 

component definitions, NOT glue code) ********* */ 

outSynchronizationStatement 

    :   IDENTIFIER BANG LBRACKET expression RBRACKET SEMI 

        -> ^(OUT_SYNC_STATEMENT IDENTIFIER expression) 

    ; 

 

inSynchronizationExpression 

    :   IDENTIFIER QUES 

 

    :   IDENTIFIER QUES 

        -> ^(IN_SYNC_EXPR IDENTIFIER) 

    ; 

 

// e.g. block; 

// only allowed within a component handler (only make sense inside 

handlers) 

handlerBlockStatement 

    :   BLOCK SEMI 

        -> BLOCK_STATEMENT 

    ; 

Code Listing 22 - Rules representing 'component definition-only' constructs (in parser grammar) 
 

The following listing contains all the wiring code rules: 
/* ********* COORDINATION/GLUE CODE ONLY CONSTRUCTS (only allowed within 

wiring/glue code, NOT component definitions)********* */ 

compositionDeclarationStatement 

    :   COMPOSITION IDENTIFIER EQ sequentialCompositionExpression SEMI 

        -> ^(COMPOSITION_DECL[$COMPOSITION,"COMPOSITION_DECL"] ^(IDENT 

IDENTIFIER) sequentialCompositionExpression) 

    ; 

 

/* COMPOSITION EXPRESSION HIERARCHY (only allowed within wiring/glue code 

(they do not make sense inside component definitions)) */ 

/* Precedence is (highest to lowest): 

 * 1. ID and parentheses (ID is a ref. to plain or composition component) 

 * 2. Tensor composition 

 * 3. Sequential composition / Copy sequential composition 

 */ 

 

// NOTE: "copy wire" sequential composition is at equal precedence with 

"normal wire" sequential composition 

sequentialCompositionExpression 

    : (tensorCompositionExpression -> tensorCompositionExpression) ((COPY 

rightOperand=tensorCompositionExpression -> ^(COMPOSITION_COMPONENT ^(COPY 

$sequentialCompositionExpression $rightOperand))) | (DOT 

rightOperand=tensorCompositionExpression -> ^(COMPOSITION_COMPONENT ^(DOT 

$sequentialCompositionExpression $rightOperand))))* 

    ; 

 

tensorCompositionExpression 
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    : (primaryCompositionExpression -> primaryCompositionExpression) (HASH 

rightOperand=primaryCompositionExpression -> ^(COMPOSITION_COMPONENT ^(HASH 

$tensorCompositionExpression $rightOperand)))* 

    ; 

 

primaryCompositionExpression 

    :   compositionParExpression 

    |   IDENTIFIER -> ^(PLAIN_OR_COMPOSITION_COMPONENT ^(IDENT IDENTIFIER)) 

    ; 

 

compositionParExpression 

    :   LPARAN sequentialCompositionExpression RPARAN 

        -> sequentialCompositionExpression 

    ; 

 

/* END OF COMPOSITION EXPRESSION HIERARCHY */ 

 

startStatement 

    :   START IDENTIFIER SEMI 

        -> ^(START_STATEMENT ^(IDENT IDENTIFIER)) 

    ; 

Code Listing 23 - Rules representing 'wiring code-only' constructs (in parser grammar) 

 

The wiring code rules require some discussion. Given the following .javab file: 
public class Application { 

    public static void main(String[] args) { 

        composition twoProdComp = TwoIntProducer.IntConsumer#IntConsumer; 

        __start__ twoProdComp; 

    } 

} 

Code Listing 24 - Wiring code (.javab file) to create composition between TwoIntProducer and two 

tensored IntConsumers 

 

The composition declaration statement: 
 composition twoProdComp = TwoIntProducer.IntConsumer#IntConsumer; 

assigns the right-hand composition expression to the composition twoProdComp.  

 

Composition expressions are like ordinary expressions that require a precedence hierarchy for 

the different operators. In LL grammars [52] such as this one, the precedence of operators is 

encoded in the grammar rules by having the lower precedence rules invoke the higher 

precedence rules. Thus the order of precedence is (highest-to-lowest): 

1. Reference to a plain or composition component (IDENTIFIER) 

2. Tensor composition operator 

3. Sequential composition operator and "copy" sequential composition operator 

In the above example, the IntConsumer components are tensored before being sequentially 

composed with TwoIntProducer. As usual, parentheses may be used to override precedence. 

All the operators have left-to-right associativity. 

 

Figure 37 shows the AST produced for the above composition declaration: 
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Figure 37 - Composition declaration AST. This is not the AST for the entire program of Code Listing 24; 

it is only the subtree for the composition declaration. 

 

The ASTs produced for such composition declarations/expressions greatly simplify the 

following tree walker phases, in semantic analysis and code generation. 

 

The final wiring rule, startStatement, is self-explanatory. It matches input such as: 
 __start__ twoProdComp; 
where twoProdComp is a reference to a composition declaration. 

4.3.3.1 Example Abstract Syntax Tree (AST) Output 

The ASTs for IntConsumer and the wiring code of Code Listing 24 above are now shown: 
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Figure 38 - AST produced by parser for the IntConsumer component definition given in Code Listing 2 
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Figure 39 - AST produced by parser for the wiring code in Code Listing 24
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4.3.4 Semantic Analysis (JavaBPhase2WalkerSem1.g and 
JavaBPhase3WalkerSem2.g) 

The following two semantic phases perform a number of checks on the input program (in its 

condensed form, an AST). The majority involve looking up identifiers in symbol tables (e.g. 

component / boundary / composition symbol tables) and, for wiring code, ensuring a valid 

wiring has been given. Appendix G contains a full list of semantic checks. 

 

All semantic checks for component definitions occur in the first semantic phase: 
tree grammar JavaBPhase2WalkerSem1; 

 

options { 

  language = Java; 

  output = AST; 

  rewrite = true; 

  backtrack = true; 

  memoize = true; 

  tokenVocab = JavaBPhase1Parser; 

  ASTLabelType = CommonTree; 

} 

 

@header { 

  import java.util.Map; 

  import java.util.HashMap; 

  import java.util.LinkedHashMap; 

  import java.util.Set; 

  import java.util.HashSet; 

} 

 

@members { 

  // SYMBOL TABLES 

  private Map<String,LinkedHashMap<String,Boundary>> 

componentToLeftBoundariesSymTable; 

  private Map<String,LinkedHashMap<String,Boundary>> 

componentToRightBoundariesSymTable; 

 

  private Map<String,CompositionDeclaration> compositionsSymTable; 

  private Map<String,Boolean> componentToIsActive; 

 

  // SEMANTIC CHECK INSTANCE VARIABLES (not the same as the context 

instance variables used last time -- context was used in the parser to 

determine if certain alternatives in certain rules were valid or not) 

  private Set<String> handlerNames = new HashSet<String>(); 

  private int numRunMethods = 0; 

 

  // SEMANTIC CHECK ERROR and WARNING lists 

  private List<String> errorList = new ArrayList<String>(); 

  private List<String> warningList = new ArrayList<String>(); 

 

  /* Overridden */ 

  public void displayRecognitionError(String[] tokenNames, 

RecognitionException e) { 

    String hdr = getErrorHeader(e); 

    String msg = getErrorMessage(e, tokenNames); 

    errorList.add("ERROR: "+hdr + " " + msg); 

  } 

} 
Code Listing 25 - Top of phase 2 (semantic checks 1) tree grammar 



 

Translator Design and Implementation   

60 

 

 

The important options here are output=AST and rewrite=true. The output option specifies 

that the output of this tree walker should be an AST. The rewrite option is a convenience 

option that allow the input AST (from the parser) to be copied to the output AST of the phase 

except where stated otherwise. Since most the time the AST does not need to be extensively 

modified, the rewrite option reduces the number of AST rewrite rules required to only where 

changes to the tree are needed. 

 

Code Listing 25 also shows a number of symbol tables, implemented using java.util.Map, and 

variables, used for semantic checks. The two Maps componentToLeftBoundariesSymTable 

and componentToRightBoundariesSymTable  map component identifiers to the boundaries 

of that component. The Boundary class here is used to represent a boundary, and is different 

from the Boundary class used by the generated translation (see section 4.1.1). The 

isCompatibleWith() method is used by the wiring semantic checks to ensure compatible 

boundaries are wired together: 

 
public class Boundary { 

 private String name; 

 private String type; 

 private Side side; // technically, don't actually need to store the 

'side', since it is known implicitly by what Map the Boundary object is put 

in 

 private Direction direction; 

 public Boundary(String name, String type, Side side, Direction 

direction) { 

  this.name = name; 

  this.type = type; 

  this.side = side; 

  this.direction = direction; 

 } 

 

 // copy constructor (used in PlainComponent) 

 public Boundary(Boundary b) { 

  this.name = b.getName(); 

  this.type = b.getType(); 

  this.side = b.getSide(); 

  this.direction = b.getDirection(); 

 } 

 

 public String getName() { 

  return name; 

 } 

 

 public String getType() { 

  return type; 

 } 

 

 public Side getSide() { 

  return side; 

 } 

 

 public Direction getDirection() { 

  return direction; 

 } 

 

 public String getDirectionString() { 

  if(direction == Direction.IN) { return "?"; } 
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  else { return "!"; } 

 } 

 

 // is this boundary compatible with the given boundary? -- i.e. 

compatible types, directions and sides 

 public boolean isCompatibleWith(Boundary b) { 

  boolean compatibleDirections = false; 

  boolean compatibleSides = false; 

  boolean compatibleTypes = this.type.equals(b.getType()); 

 

  // compatible directions? 

  if(this.direction == Direction.IN) { 

   if(b.direction == Direction.OUT) 

    compatibleDirections = true; 

  } 

  else { 

   if(b.direction == Direction.IN) 

    compatibleDirections = true; 

  } 

 

  // compatible sides? 

  if(this.side == Side.LEFT) { 

   if(b.side == Side.RIGHT) { 

    compatibleSides = true; 

   } 

  } 

  else { // this.side == Side.RIGHT 

   if(b.side == Side.LEFT) { 

    compatibleSides = true; 

   } 

  } 

 

  return (compatibleTypes && compatibleDirections && 

compatibleSides); 

 } 

} 
Code Listing 26 - Boundary class used to aid translation process. Represents a boundary of a component. 

Stores its name, type, side and direction. The most important method to note is the isCompatibleWith() 

method that may be used to check whether this Boundary is compatible with a given Boundary. 

 

Another important Map, compositionsSymTable, tracks all declared compositions in wiring 

code. All these symbol tables are passed from phase to phase, used for further semantic 

checks and also code generation. 

 

Currently, one limitation of the translator is that in order to translate wiring code files, all 

component definition files it references must be translated at the same time. This is so that the 

translator can populate these Maps with the required information. 

4.3.4.1 Component Definition Semantic Checks 

A small selection of semantic checks for component definition rules from 

JavaBPhase2WalkerSem1.g are now listed: 

 
runMethodDeclaration 

  @init { 

  // update number of run methods seen (for semantic check 

purposes) 

  numRunMethods++; 
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  // update component -> isActive mapping of this component to 

mark it as live since it has a run method 

 

 componentToIsActive.put($componentDefinition::componentName,true); 

  } 

  :   ^(RUN_DECL block) 

    { 

    // SEMANTIC CHECK: enforce 0 (passive component) or 1 (active 

component) run method 

    if(numRunMethods > 1) { 

      errorList.add("ERROR: ("+$RUN_DECL.line+":"+$RUN_DECL.pos+") Multiple 

run methods defined. A component can define either zero (active components) 

or one run method (passive components)."); 

    } 

    } 

    ; 
Code Listing 27 - There should only be zero or one run method declaration in a component definition 

 
boundaryDeclaration 

     : ^(BOUNDARY_DECL IDENTIFIER boundarySide type boundaryDirection) 

    { 

    // SEMANTIC CHECK: no two boundaries with same identifier (i.e. ensure 

this boundary identifier has not been used before). (Boundary identifiers 

must be unique regardless of whether the rest of their signature is 

different (i.e. their types or direction)). 

    Side side = ($boundarySide.text.equals("left")) ? Side.LEFT : 

Side.RIGHT; 

    Direction direction = ($boundaryDirection.text.equals("!")) ? 

Direction.OUT : Direction.IN; 

    Boundary b = new Boundary($IDENTIFIER.text, $type.text, side, 

direction); 

 

    // check what existing boundaries there are for the current component 

    if(side == Side.LEFT) { 

      

if(!componentToLeftBoundariesSymTable.get($componentDefinition::componentNa

me).containsKey($IDENTIFIER.text)) { // .get will NOT return null -- we are 

guaranteed that a component with that name exists        

componentToLeftBoundariesSymTable.get($componentDefinition::componentName).

put($IDENTIFIER.text,b); 

      } 

      else { // error -- boundary already exists 

        errorList.add("ERROR: ("+$IDENTIFIER.line+":"+$IDENTIFIER.pos+") 

Boundary redeclaration. The boundary '"+b.getName()+"' has already been 

declared in component '"+$componentDefinition::componentName+"'."); 

      } 

    } 

    else if(side == Side.RIGHT) { 

      

if(!componentToRightBoundariesSymTable.get($componentDefinition::componentN

ame).containsKey($IDENTIFIER.text)) { 

        System.out.println("boundary "+$IDENTIFIER.text+" added to right 

boundaries sym table"); 

        

componentToRightBoundariesSymTable.get($componentDefinition::componentName)

.put($IDENTIFIER.text,b); 

      } 

      else { // error -- boundary already exists 
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        errorList.add("ERROR: ("+$IDENTIFIER.line+":"+$IDENTIFIER.pos+") 

Boundary redeclaration. The boundary '"+b.getName()+"' has already been 

declared in component '"+$componentDefinition::componentName+"'."); 

      } 

    } 

    } 

    ; 
Code Listing 28 - Boundary declarations in a component definition are either added to the 

componentTo[Left|Right]BoundariesSymTable symbol table, or the boundary has been 

previously declared and an error is added to the list of errors. 

 
outSynchronizationStatement 

    :   ^(OUT_SYNC_STATEMENT IDENTIFIER expression) 

        { 

        // SEMANTIC CHECK: identifier for boundary that we are sending on 

actually exists 

if(componentToLeftBoundariesSymTable.get($componentDefinition::componentNam

e).get($IDENTIFIER.text) == null && 

componentToRightBoundariesSymTable.get($componentDefinition::componentName)

.get($IDENTIFIER.text) == null) { 

          errorList.add("ERROR: ("+$IDENTIFIER.line+":"+$IDENTIFIER.pos+") 

Undeclared boundary '"+$IDENTIFIER.text+"' used in outward synchronization 

expression."); 

        } 

        } 

    ; 
Code Listing 29 - Outward synchronisations must take place on a boundary that exists in the current 

component ($componentDefinition::componentName). 

4.3.4.2 Wiring Code Semantic Checks 

Wiring code checks primarily take place in the second semantic phase, in the 

compositionExpression rule. The alternatives for the rule that match different kinds of 

composition expression (e.g. sequential and tensor compositions) are listed separately and 

explained. The rule is recursive rule due to the nature of composition expressions, which may 

be nested indefinitely (see section 3.3). 

 
compositionExpression returns [CompositionComponent compositionComponent] 

// Sequential composition 

// (e.g. IntProducer.IntConsumer) 

    : ^(COMPOSITION_COMPONENT ^(DOT 

leftCompositionComponent=compositionExpression 

rightCompositionComponent=compositionExpression)) 

      // found composition component defined by a sequential composition 

      { 

      Map<String,Boundary> leftOperandRightBoundaries = 

$leftCompositionComponent.compositionComponent.getRightBoundaries(); 

      Map<String,Boundary> rightOperandLeftBoundaries = 

$rightCompositionComponent.compositionComponent.getLeftBoundaries(); 

 

      do { 

       // SEMANTIC CHECK: also ensure that the wirings between these 

boundaries are all compatible (where there is an incompatibility we need to 

highlight it -- a mismatch in the number of boundaries is also an obvious 

error -- check that first by comparing the sizes of lists....or something 

similar) 

      // if mismatch in size, then error 

      if(leftOperandRightBoundaries.size() != 

rightOperandLeftBoundaries.size()) { 
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         errorList.add("ERROR: 

("+$leftCompositionComponent.start.getLine()+":"+$leftCompositionComponent.

start.getCharPositionInLine()+" to 

"+$rightCompositionComponent.start.getLine()+":"+$rightCompositionComponent

.start.getCharPositionInLine()+")"+ 

                       " Boundary mismatch in sequential 

composition. The number of boundaries for the left operand and right 

operand do not match."); 

         break; 

      } 

 

      // (at this point we know we have an equal number of 

boundaries, however, they may not be compatible) 

      // now check corresponding boundaries in the boundary lists 

of the two operands are compatible 

      Iterator<Map.Entry<String,Boundary>> 

leftOperandRightBoundariesIterator = 

leftOperandRightBoundaries.entrySet().iterator(); 

       Iterator<Map.Entry<String,Boundary>> 

rightOperandLeftBoundariesIterator = 

rightOperandLeftBoundaries.entrySet().iterator(); 

       while(leftOperandRightBoundariesIterator.hasNext()) { 

       Map.Entry<String,Boundary> 

leftOperandBoundaryPair = leftOperandRightBoundariesIterator.next(); 

       Boundary leftOperandBoundary = 

leftOperandBoundaryPair.getValue(); 

       if(leftOperandBoundary == null) { continue; } // 

if the programmer actually referenced a non-existent boundary then this 

will be null (the error associated with it will already have been added to 

the error list) 

       Map.Entry<String,Boundary> 

rightOperandBoundaryPair = rightOperandLeftBoundariesIterator.next(); 

       Boundary rightOperandBoundary = 

rightOperandBoundaryPair.getValue(); 

       if(rightOperandBoundary == null) { continue; } 

       

if(!leftOperandBoundary.isCompatibleWith(rightOperandBoundary)) { 

         errorList.add("ERROR: 

("+$leftCompositionComponent.start.getLine()+":"+$leftCompositionComponent.

start.getCharPositionInLine()+" to 

"+$rightCompositionComponent.start.getLine()+":"+$rightCompositionComponent

.start.getCharPositionInLine()+")"+ 

                       " Incompatible boundaries in 

boundary lists. Boundary '"+leftOperandBoundaryPair.getKey()+"' of left 

operand is incompatible with corresponding boundary 

'"+rightOperandBoundaryPair.getKey()+"' of right operand."); 

       } 

    } 

   } while(false); 

 

      // construct appropriate object representing a sequential composition 

of the two operands and their boundary lists (even if there is a semantic 

error, this object will get instantiated anyway -- but that poses no 

problem since the error will stop it going to the next phase: code 

generation) 

      $compositionComponent = new 

SequentialCompositionComponent($leftCompositionComponent.compositionCompone

nt,$rightCompositionComponent.compositionComponent); 

      } 
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Code Listing 30 - The sequential composition (DOT) alternative of the compositionExpression rule in 

JavaBPhase3Sem2.g. Sequential composition requires the most important checks, since this is where 

wirings between boundaries occurs. 

 

The checks here ensure that for each pair of boundaries that are to be wired together, they are 

compatible (an error message is reported otherwise). 
 

// "Copy" Sequential composition 

// (e.g. IntProducer/\Cons#Cons) 

    | ^(COMPOSITION_COMPONENT ^(COPY 

leftCompositionComponent=compositionExpression 

rightCompositionComponent=compositionExpression)) 

    { 

      // semantic check of copywire wiring and then create 

CopySequentialCompositionComponent object 

      List<Map.Entry<String,Boundary>> leftOperandRightBoundaries = new 

ArrayList<Map.Entry<String,Boundary>>($leftCompositionComponent.composition

Component.getRightBoundaries().entrySet()); // left operand should have a 

single right boundary 

      List<Map.Entry<String,Boundary>> rightOperandLeftBoundaries = new 

ArrayList<Map.Entry<String,Boundary>>($rightCompositionComponent.compositio

nComponent.getLeftBoundaries().entrySet()); // right operand should have 

two left boundaries 

 

      do { 

        // SEMANTIC CHECK: also ensure that the wirings between these 

boundaries are all compatible (where there is an incompatibility we need to 

highlight it -- a mismatch in the number of boundaries is also an obvious 

error -- check that first by comparing the sizes of lists....or something 

similar) 

        // if the number of left and right boundaries is not compatible 

with what a copy wire requires, then error 

        if(leftOperandRightBoundaries.size() != 1) { 

           errorList.add("ERROR: 

("+$leftCompositionComponent.start.getLine()+":"+$leftCompositionComponent.

start.getCharPositionInLine()+")"+ 

                         " Boundary mismatch in COPY sequential 

composition. Found "+leftOperandRightBoundaries.size()+" boundaries for 

left operand, expecting just 1 boundary."); 

           break; 

        } 

        else if(rightOperandLeftBoundaries.size() != 2) { 

           errorList.add("ERROR: 

("+$rightCompositionComponent.start.getLine()+":"+$rightCompositionComponen

t.start.getCharPositionInLine()+")"+ 

                         " Boundary mismatch in COPY sequential 

composition. Found "+rightOperandLeftBoundaries.size()+" boundaries for 

right operand, expecting just 2 boundaries."); 

           break; 

        } 

 

        // (at this point we know we have the right number of boundaries 

for the two operands, however, they may not be compatible) 

        // now check corresponding boundaries in the boundary lists of the 

two operands are compatible 

 

      // get individual Map.Entry<String,Boundary> objects for 

each boundary 

      Map.Entry<String,Boundary> leftOperandBoundary = 

leftOperandRightBoundaries.get(0); 
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      Map.Entry<String,Boundary> rightOperandTopBoundary = 

rightOperandLeftBoundaries.get(0); 

        Map.Entry<String,Boundary> rightOperandBottomBoundary = 

rightOperandLeftBoundaries.get(1); 

 

        

if(!leftOperandBoundary.getValue().isCompatibleWith(rightOperandTopBoundary

.getValue())) { 

          errorList.add("ERROR: 

("+$leftCompositionComponent.start.getLine()+":"+$leftCompositionComponent.

start.getCharPositionInLine()+" to 

"+$rightCompositionComponent.start.getLine()+":"+$rightCompositionComponent

.start.getCharPositionInLine()+")"+ 

                        " Incompatible boundaries in COPY sequential 

composition. Boundary '"+leftOperandBoundary.getKey()+"' of left operand is 

incompatible with top boundary '"+rightOperandTopBoundary.getKey()+"' of 

right operand."); 

        } 

        

if(!leftOperandBoundary.getValue().isCompatibleWith(rightOperandBottomBound

ary.getValue())) { 

          errorList.add("ERROR: 

("+$leftCompositionComponent.start.getLine()+":"+$leftCompositionComponent.

start.getCharPositionInLine()+" to 

"+$rightCompositionComponent.start.getLine()+":"+$rightCompositionComponent

.start.getCharPositionInLine()+")"+ 

                        " Incompatible boundaries in COPY sequential 

composition. Boundary '"+leftOperandBoundary.getKey()+"' of left operand is 

incompatible with bottom boundary '"+rightOperandBottomBoundary.getKey()+"' 

of right operand."); 

        } 

      } while(false); 

 

      // construct appropriate object representing a COPY sequential 

composition of the two operands and their boundaries (even if there is a 

semantic error, this object will get instantiated anyway -- but that poses 

no problem since the error will stop it going to the next phase: code 

generation) 

      $compositionComponent = new 

CopySequentialCompositionComponent($leftCompositionComponent.compositionCom

ponent,$rightCompositionComponent.compositionComponent); 

    } 

Code Listing 31 - The "Copy" sequential composition alternative of the compositionExpression rule in 

JavaBPhase3Sem2.g. (Recall that a Copy has been temporarily added to the translator as an operator 

rather than the original intention of a Copy component). 
 

The checks for Copy sequential composition are similar in nature to that of ordinary 

sequential composition. The only difference is that there must be exactly one sender boundary 

for its left operand component and exactly two boundaries for its right operand component. 
 

// Tensor composition 

// (e.g. IntConsumer#IntConsumer) 

    | ^(COMPOSITION_COMPONENT ^(HASH 

topCompositionComponent=compositionExpression 

bottomCompositionComponent=compositionExpression)) 

     { 

       // no semantic checks required for tensor composition 

       $compositionComponent = new 

TensorCompositionComponent($topCompositionComponent.compositionComponent,$b

ottomCompositionComponent.compositionComponent); 
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     } 

Code Listing 32 - The tensor composition component alternative of the compositionExpression rule in 

JavaBPhase3Sem2.g. 
 

Tensor does not require any semantic checks. It is not a wiring operator. Any component may 

be placed on any other component with no constraints. 
 

// Reference to a plain / ordinary component 

// (e.g. IntProducer) 

    | ^(PLAIN_COMPONENT ^(IDENT IDENTIFIER)) // IDENTIFIER here refers to 

the component *type* name of a plain component (not the instance name -- 

these are automatically generated internally by the code below) 

      { 

        System.out.println(); 

        System.out.println("Seen plain component: "+$IDENTIFIER.text); 

 

        // SEMANTIC CHECK: Check the plain component exists 

        // (no need to do this here since this was already checked in the 

previous phase) 

        // the check is: 

if(componentToLeftBoundariesSymTable.get($IDENTIFIER.text) != null) 

 

 

        // construct appropriate object representing plain component (in 

particular, we are creating an INSTANCE of the component type) 

        // Plain component constructor will automatically copy the Boundary 

objects to ensure new Boundary objects are created (to ensure uniqueness of 

Boundary objects) 

        $compositionComponent = new PlainComponent($IDENTIFIER.text, 

componentToLeftBoundariesSymTable.get($IDENTIFIER.text), 

componentToRightBoundariesSymTable.get($IDENTIFIER.text)); 

      } 

Code Listing 33 - Alternative in the compositionExpression rule for when there is a reference to a plain 

component in JavaBPhase3Sem2.g. 
 

The requirement for references to plain components is that the component exists (been 

declared). 

 

A previously declared composition may itself be referenced in a composition expression. For 

example: 
composition c1 = IntProducer.IntBufferCell; 

composition c2 = c1.IntConsumer; // c1 referenced 

Code Listing 34 - Referencing previously declared compositions within composition declarations. 

 

Its alternative in the compositionExpression rule follows: 
// Reference to previously declared composition 

// (e.g. c1 being referred to in composition c2) 

    | ^(COMPOSITION_COMPONENT ^(IDENT IDENTIFIER)) // IDENTIFIER here 

refers to a another declared composition 

     { 

          // SEMANTIC CHECK: reference to a composition component that has 

actually been declared. 

          // Lookup composition component in composition symbol table -- we 

can assume it has already been declared, error if not found (reference to 

an undeclared composition component) 

          CompositionDeclaration declaredCompositionComponent = 

compositionsSymTable.get($IDENTIFIER.text); 

          if(declaredCompositionComponent != null) { 
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            $compositionComponent = 

declaredCompositionComponent.getCompositionComponent(); 

          } 

          else { 

            errorList.add("ERROR: 

("+$IDENTIFIER.line+":"+$IDENTIFIER.pos+")"+ 

                           " Reference to undeclared composition component 

'"+$IDENTIFIER.text+"'."); 

            // compositionComponent doesn't get set in the case of error; 

doesn't matter however, because errors stop next phase processing it 

          } 

     } 

    ; 
Code Listing 35 - Alternative in the compositionExpression rule for when there is a reference to a 

previously declared composition component. 

 

The requirement for references to composition components is that the composition 

component has been previously declared. 

 

The reader may have observed that at the end of each of these alternatives, an object is 

constructed. These are summarised here: 

 
// Sequential composition component is made up of its left and right 

composition components 
$compositionComponent = new 

SequentialCompositionComponent($leftCompositionComponent.compositionCompone

nt,$rightCompositionComponent.compositionComponent); 

 

// Copy sequential composition component is also made up of its left and 

right composition components 
$compositionComponent = new 

CopySequentialCompositionComponent($leftCompositionComponent.compositionCom

ponent,$rightCompositionComponent.compositionComponent); 

 

// Tensor composition component is made up of its top and bottom 

composition components 
$compositionComponent = new 

TensorCompositionComponent($topCompositionComponent.compositionComponent,$b

ottomCompositionComponent.compositionComponent); 

 

// Plain component is just itself; it is the atom / base case 

$compositionComponent = new PlainComponent($IDENTIFIER.text, 

componentToLeftBoundariesSymTable.get($IDENTIFIER.text), 

componentToRightBoundariesSymTable.get($IDENTIFIER.text)); 

 

// Reference to previously declared composition component 

$compositionComponent = 

declaredCompositionComponent.getCompositionComponent(); 

Code Listing 36 - Summary of the object instantiations that take place at the end of each alternative. 

These are not strictly part of the semantic phase but are preparation for the following code generation 

phase. 

 

$compositionComponent is the rule return parameter (see top of compositionExpression rule 

in Code Listing 30). Thus these objects are returned from the rule and a tree of 

ComponentComposition objects is built up as the AST is traversed. These objects' represent 

the composition components and are used in performing semantic checks of the sequential 
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composition alternative in particular (Code Listing 30). Secondly, they serve to simplify the 

code generation phase (see section 4.3.5.2). 

4.3.5 Code Generation (JavaBPhase4WalkerGen.g and 
JavaBTemplates.stg) 

For code generation, a template engine was required. The StringTemplate engine ([53] [49]) 

is well integrated with ANTLR and was the natural choice to use. Templates at their simplest 

contain placeholders for input parameters to be inserted whilst surrounding text is output 

verbatim. The templates themselves and how they are invoked from within an ANTLR 

grammar is presently discussed. The templates for generating component definition .java files 

are examined first, followed by the templates for wiring code .java files. 

 

The code generation grammar is specified to have templates for its output rather than the 

usual AST: 
tree grammar JavaBPhase4WalkerGen; 

 

options { 

  language = Java; 

  output = template; 

  rewrite = true; 

  backtrack = true; 

  memoize = true; 

  tokenVocab = JavaBPhase3WalkerSem2; 

  ASTLabelType = CommonTree; 

}  
Code Listing 37 - Top of JavaBPhase4WalkerGen.g grammar. output = template is the key option to note. 

rewite = true is also important. 

 

Additionally, rewrite=true has been set. In this context (where output=template), this causes 

the underlying tokens associated with the input tree nodes to be rewritten to the output, 

except where there are template invocations from certain grammar rules that specify an 

alternative output (i.e. a translation). Thus, the Java rules in the ANTLR grammar are left 

untouched for the most part. Conversely, most JavaB rules specify a template that is used to 

translate into appropriate output. 

4.3.5.1 Component Definition Templates 

The componentDefinition template acts as the high-level template to which other template 

output is inserted. Its structure corresponds to the manual translation examples of section 

4.1.1. 
 

componentDefinition(name, boundaryDeclarations, fieldDeclarations, 

handlerDeclarations, runMethodDeclaration, methodDeclarations) ::= << 

public class $name$ extends Component$if(runMethodDeclaration)$ implements 

Runnable$endif$ { 

 public $name$() { 

  super("$name$"); // pass name of component to superclass 

(Component) 

 } 

$if(fieldDeclarations)$ 

 

 // INTERNAL STATE 

 $fieldDeclarations; separator="\n"$ 

$endif$ 

$if(boundaryDeclarations)$ 
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 // BOUNDARIES 

 $boundaryDeclarations; separator="\n"$ 

$endif$ 

$if(handlerDeclarations)$ 

 

 

 // HANDLERS 

 $handlerDeclarations; separator="\n\n"$ 

$endif$ 

$if(runMethodDeclaration)$ 

 

 

 // RUN METHOD 

 $runMethodDeclaration$ 

$endif$ 

$if(methodDeclarations)$ 

 

 

 // OTHER METHODS 

 $methodDeclarations; separator="\n\n"$ 

$endif$ 

 

} 

>> 
Code Listing 38 - componentDefinition template in JavaBTemplates.stg 

 

Dollar signs are used to delimit input parameters (as well as conditionals). The conditionals 

tests for the presence of the input parameter (null indicates absence). Code Listing 10 is an 

example of an output that follows the structure of a component definition shown here 

template. 

 

The template is invoked in the ANTLR grammar by the correspondingly named rule, as seen 

below for componentDefinition. After the rule has matched its input, the template is invoked 

with values for each of its parameters. 

 
componentDefinition 

   scope { 

   String componentName; // NOTE: handlerDeclaration rule needs access 

to component name to pass to the template it invokes 

   } 

    :   ^(COMPONENT_DEF IDENTIFIER { $componentDefinition::componentName = 

$IDENTIFIER.text; } ^(BOUNDARY_DECLS bds+=boundaryDeclaration*) 

^(FIELD_DECLS fds+=fieldDeclaration*) rm+=runMethodDeclaration* 

^(HANDLER_DECLS hds+=handlerDeclaration*) ^(METHOD_DECLS 

mds+=methodDeclaration*)) 

        -> componentDefinition(name={$IDENTIFIER.text}, 

boundaryDeclarations={$bds}, fieldDeclarations={$fds}, 

handlerDeclarations={$hds}, runMethodDeclaration={$rm}, 

methodDeclarations={$mds}) 

    ; 
Code Listing 39 - componentDefinition rule in JavaBPhase4WalkerGen.g grammar, showing how the 

template is invoked. The arrow -> is followed by the invocation of the template with its input parameters. 
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The following are a selection of templates whose output is eventually passed into the 

componentDefinition template by the componentDefinition rule above. 

 
// component field declarations are the same as normal field declarations 

except the only modifier allowed is the 'final' modifier (no public or 

private keywords since everything is private by default) 

// for component field declarations, we copy the input to the output for 

the most part except that we add a 'private' keyword in front 

componentFieldDecl(final, type, variableDeclarators) ::= << 

private$if(final)$ $final$$endif$ $type$ $variableDeclarators; separator = 

", "$; 

>> 

 

// primitiveToReferenceTypesMap performs autoboxing of primitive types 

boundaryDeclaration(boundaryName, type) ::= << 

private Boundary<$primitiveToReferenceTypesMap.(type)$> $boundaryName$; 

>> 

 

// the run method of a component definition; very simple translation 

runMethodDeclaration(block) ::= << 

public void run() $block$ 

>> 

 

// translation of handlers less trivial 

handlerDeclaration(componentName, handlerBoundaryName, type, parameter, 

handlerBlock) ::= << 

public Boundary<$primitiveToReferenceTypesMap.(type)$> 

create_boundary_$handlerBoundaryName$(Wire<$primitiveToReferenceTypesMap.(t

ype)$> wireAttachedTo) { 

 // the handler for this boundary 

 

 HandlerRunnable<$primitiveToReferenceTypesMap.(type)$> handler = new 

HandlerRunnable<$primitiveToReferenceTypesMap.(type)$>() { 

  public $primitiveToReferenceTypesMap.(type)$ 

runHandler($primitiveToReferenceTypesMap.(type)$ $parameter$) { 

   // no translator housekeeping code required before user 

code 

 

   // "user code" (with JavaB parts translated) -- which 

could contain a (translated) 'block;' statement 

   $handlerBlock$ 

 

   // translator housekeeping code following the user code 

(if user code blocks then this code is unreachable) 

  

 $handlerBoundaryName$.getWireAttachedTo().finishHandler($handlerBound

aryName$,$componentName$.this); // At this point we know that we have 

finished the handler without blocking (i.e. the sync is complete, apart 

from the housekeeping tasks we are about to do now) 

   return $parameter$; 

  } 

 }; 

 

 

 // create boundary (name, owner component, wire, handler) 

 $handlerBoundaryName$ = new 

Boundary<$primitiveToReferenceTypesMap.(type)$>("$handlerBoundaryName$", 

this, wireAttachedTo, handler); 

 return $handlerBoundaryName$; 

} 
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>> 

Code Listing 40 - Selection  of templates invoked by code generation phase grammar. The output of these 

templates eventually is passed as input into the componentDefinition template in Code Listing 38. 

 

One interesting feature to note above is $primitiveToReferenceTypesMap.(type)$, which 

is used to 'autobox' primitive types into their equivalent reference types. The translation 

mechanism uses on Java generics and thus autoboxing primitives is a necessary step. 

 

The following rules illustrate the invocation of two templates from Code Listing 40:  
outSynchronizationStatement 

    :   ^(OUT_SYNC_STATEMENT IDENTIFIER expression) 

        -> 

outSynchronizationStatement(componentName={$componentDefinition::componentN

ame},boundaryToSendOn={$IDENTIFIER.text},exprValueToSend={$expression.text}

) 

    ; 

 

// specifically, only allowed within a component handler (only make sense 

inside handlers) 

handlerBlockStatement 

    :   BLOCK_STATEMENT 

        -> 

handlerBlockStatement(componentName={$componentDefinition::componentName},h

andlerBoundaryName={$handlerDeclaration::handlerBoundaryName},handlerParame

ter={$handlerDeclaration::handlerParameter}) 

    ; 
Code Listing 41 - JavaB component definition rules in code generation grammar that invoke templates 

from Code Listing 40. 

 

As previously, it is ensured that all necessary input parameter are provided to the template. 

4.3.5.2 Wiring Code Templates 

In contrast to translating component definitions, only a single template is invoked to translate 

wiring code: startStatement. Thus a JavaB wiring program containing composition 

declarations that are not started would not yield any corresponding output in the generated 

Java file (the surrounding Java would still be output). 

 
startStatement(componentInstancesToComponentTypeMap, normalWireWiringsList, 

copyWireWiringsList, runnableComponentInstancesList) ::= << 

// create component instances contained in the composition 

$componentInstancesToComponentTypeMap.keys:{instanceName | 

$componentInstancesToComponentTypeMap.(instanceName)$ $instanceName$ = new 

$componentInstancesToComponentTypeMap.(instanceName)$();$\n$}$ 

 

// create NormalWire and CopyWire instances 

$normalWireWiringsList:normalWireInstantiation()$ 

$copyWireWiringsList:copyWireInstantiation()$ 

 

// create boundary objects 

$normalWireWiringsList:createBoundaryConnectedToNormalWire()$ 

$copyWireWiringsList:createBoundaryConnectedToCopyWire()$ 

 

// now that we have created boundaries, set boundaries of the wire objects 

$normalWireWiringsList:normalWireSetBoundaries()$ 

$copyWireWiringsList:copyWireSetBoundaries()$ 

 

/* Start threads of all live components (those that implement Runnable) */ 
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// use a latch 'start gate' to ensure they start at the same time -- see 

JCIP chapter 5 

final CountDownLatch startGate = new CountDownLatch(1); 

 

// add all Runnables to a set to be iterated over 

Set<Runnable> runnables = new HashSet<Runnable>(); 

$runnableComponentInstancesList:{runnables.add($it$);$\n$}$ 

 

// set of latch-altered Runnables that have been turned into Threads 

Set<Thread> threads = new HashSet<Thread>(); 

 

// iterate over them and wrap their run methods to include 

startGate.await() at the beginning 

for(final Runnable r : runnables) { 

  Thread t = new Thread() { 

    public void run() { 

      try { 

        startGate.await(); 

        r.run(); 

      } 

      catch(InterruptedException e) { e.printStackTrace(); } 

    } 

  }; 

  threads.add(t); 

  t.start(); // also start the thread (it will await at latch) 

} 

 

// GO! (release all the threads) 

startGate.countDown(); 

>> 
Code Listing 42 - startStatement template, the only template invoked from the code generation grammar 

 

Its structure corresponds to the ProdConsApplication.java manual translation of section 

4.1.2.2. 

 

The invoking startStatement rule: 
startStatement 

    @init { 

     // data structures to be passed to template (filled by recursive 

algorithm) 

     List<NormalWireBoundaryWiringAggregate> normalWireWirings = new 

ArrayList<NormalWireBoundaryWiringAggregate>(); 

     List<CopyWireBoundaryWiringAggregate> copyWireWirings = new 

ArrayList<CopyWireBoundaryWiringAggregate>(); 

     LinkedHashMap<String,String> instancesToComponentType = new 

LinkedHashMap<String,String>(); // instance name -> component type name 

     List<String> runnableInstances = new ArrayList<String>(); 

    } 

    :   ^(START_STATEMENT ^(IDENT IDENTIFIER)) 

    { 

     // ALL translation actually happens on the start statement -- 

composition declaration and expressions only fill symbol tables and build 

up data structures etc. (mainly already done in previous phase) 

     CompositionComponent compositionComponentToStart = 

compositionsSymTable.get($IDENTIFIER.text).getCompositionComponent(); 

 

      // auxiliary data structures 

      Map<String,Integer> componentTypeToNoOfInstances = new 

HashMap<String,Integer>(); // component name -> no. of instances 
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      Map<Boundary,String> boundaryToOwningComponentInstance = new 

HashMap<Boundary,String>(); 

 

     // TRAVERSAL -- invoke recursive algorithm to fill data 

structures with information needed by the template 

compositionComponentToStart.traverse(instancesToComponentType,componentType

ToNoOfInstances,boundaryToOwningComponentInstance,runnableInstances,compone

ntToIsLive,normalWireWirings,copyWireWirings); 

    } 

        // NOTE: we also pass all the runnables components so that all the 

runnable components inside the composition are started (runnableInstances) 

        -> 

startStatement(componentInstancesToComponentTypeMap={instancesToComponentTy

pe},normalWireWiringsList={normalWireWirings},copyWireWiringsList={copyWire

Wirings},runnableComponentInstancesList={runnableInstances}) 

    ; 

Code Listing 43 - startStatement rule in code generation grammar which invokes startStatement template. 

 

The startStatement template itself is relatively simple. The complexity arises in deriving the 

values of its input parameters. The required parameters include: 

 The names of component instances and their type. 

(componentInstancesToComponentTypeMap) 

 The subset of component instances that are Runnable. 

(runnableComponentInstancesList) 

 Information about all normal wirings (normalWireWiringsList) 

 Information about all copy wirings (copyWireWiringsList) 

 

As alluded to at the end of section 4.3.4.2, a hierarchy of objects is built up in the second 

semantic phase that represent a composition component. One purpose of this composition 

component object is that it simplifies the deriving of the input parameters above. The only 

required action of the startStatement rule (Code Listing 43) before invoking the template is to 

traverse the composition component that was started (compositionComponentToStart) to 

derive the input parameter values. This process is shown in Figure 40: 
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Figure 40 - The traversal algorithm traverses the given CompositionComponent and fills the data 

structures to be passed to the startStatement template. 

 

A discussion of the traversal algorithm first requires an explanation of the  

CompositionComponent class hierarchy (Figure 41).  
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Figure 41 - Class diagram of hierarchy between classes that each represent a component. This is an example of the Composite Pattern [54]. It can be seen that all 

implementing classes of CompositionComponent except PlainComponent have two references back to a CompositionComponent, one for each operand of the 

operation they represent (e.g. sequential composition, tensor composition, 'copy' sequential composition). These supplementary classes to the grammars may be 

found on the DVD-ROM. 
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Both ordinary and composition components are modelled using these classes. 

PlainComponent represents an ordinary component (i.e. a component defined by a JavaB 

component definition). SequentialCompositionComponent represents the composition 

component resulting after the sequential composition operator has applied to its left and right 

operands. Similarly, TensorCompositionComponent represents the composition component 

resulting after the tensor composition operator has been applied to its top and bottom 

operands. The CompositionComponent interface represents any component (ordinary or 

composition), which the aforementioned classes implement. The operands of 

SequentialCompositionComponent and TensorCompositionComponent are themselves 

CompositionComponents, as Figure 41 shows. As a result, all CompositionComponent 

objects may be treated uniformly as components which have left and right boundaries. 

 

Every CompositionComponent class implements the traverse() method, though each 

implements it differently (polymorphism). Most implementations are recursive. Both 

SequentialCompositionComponent and CopySequentialCompositionComponent make 

recursive calls to traverse on their left and right operands. TensorCompositionComponent 

does likewise for its top and bottom operands. PlainComponent is the base case. 

 

During the algorithm, SequentialCompositionComponent and 

CopySequentialCompositionComponent update the normalWireWirings and 

copyWireWirings lists, respectively. TensorCompositionComponent does not update any 

data structures (it simply makes the recursive calls). PlainComponent updates the 

instancesToComponentType and runnableInstances data structures. 

4.3.6 Translator Controller code 

This section briefly documents the main code of the translator that pulls all the phases 

together. 

 

The translateSingleFile() method below shows clearly the relationship between the phases: 

 
public boolean translateSingleFile(File f, boolean isGlueCodeFile) throws 

IOException, RecognitionException { 

  // phase 1 - syntactical analysis and produce AST (which may represent a 

semantically incorrect program) 

  ANTLRInputStream antlrInputStream = new ANTLRInputStream(new 

FileInputStream(f)); 

  JavaBLexer lex = new JavaBLexer(antlrInputStream); 

  TokenRewriteStream tokens = new TokenRewriteStream(lex); 

  JavaBPhase1Parser phase1 = new JavaBPhase1Parser(tokens); 

  JavaBPhase1Parser.javaBCompilationUnit_return r1 = 

phase1.javaBCompilationUnit(); 

  // display errors (no warnings occur for parser stage (only errors)) 

  for(String error : r1.returnErrorList) { System.out.println(error); } 

  // exit early if an error, else get the resulting AST 

  if(r1.returnErrorList.size() > 0) { return false; } 

  CommonTree t1 = (CommonTree)r1.getTree(); 

  generateStringAST(t1); 

  generatePrettyAST(t1,f.getName()+"-ParserOutputAST"); 

  // end phase 1 

 

  // phase 2 - walker for semantic analysis 1 (which collects info and 

performs some of the semantic checks) 

  CommonTreeNodeStream nodes1 = new CommonTreeNodeStream(t1); 

  nodes1.setTokenStream(tokens); 
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  JavaBPhase2WalkerSem1 phase2 = new JavaBPhase2WalkerSem1(nodes1); 

  JavaBPhase2WalkerSem1.javaBCompilationUnit_return r2 = 

phase2.javaBCompilationUnit(componentToLeftBoundariesSymTable,componentToRi

ghtBoundariesSymTable,compositionsSymTable,componentToIsActive); 

  // display errors and warnings 

  for(String error : r2.returnErrorList) { System.out.println(error); } 

  for(String warning : r2.returnWarningList) { System.out.println(warning); 

} 

  // exit early if an error (but not warnings -- warnings are not fatal) 

  if(r2.returnErrorList.size() > 0) { return false; } 

  // exit early if an error, else get the resulting AST 

  if(r2.returnErrorList.size() > 0) { return false; } 

  CommonTree t2 = (CommonTree)r2.getTree(); 

  generateStringAST(t2); 

  generatePrettyAST(t2,f.getName()+"-Sem1OutputAST"); 

  // end phase 2 

 

  // phase 3 - walker for semantic analysis 2 (rest of the semantic checks) 

  CommonTreeNodeStream nodes2 = new CommonTreeNodeStream(t2); 

  nodes1.setTokenStream(tokens); 

  JavaBPhase3WalkerSem2 phase3 = new JavaBPhase3WalkerSem2(nodes2); 

  JavaBPhase3WalkerSem2.javaBCompilationUnit_return r3 = 

phase3.javaBCompilationUnit(componentToLeftBoundariesSymTable,componentToRi

ghtBoundariesSymTable,compositionsSymTable); 

  // display errors and warnings 

  for(String error : r3.returnErrorList) { System.out.println(error); } 

  for(String warning : r3.returnWarningList) { System.out.println(warning); 

} 

  // exit early if an error (but not warnings -- warnings are not fatal) 

  if(r3.returnErrorList.size() > 0) { return false; } 

  // exit early if an error, else get the resulting AST 

  if(r3.returnErrorList.size() > 0) { return false; } 

  CommonTree t3 = (CommonTree)r3.getTree(); 

  generateStringAST(t3); 

  generatePrettyAST(t3,f.getName()+"-Sem2OutputAST"); 

  // end phase 3 

 

  // phase 4 - code generation (all errors assumed to be found by this 

point) 

  CommonTreeNodeStream nodes3 = new CommonTreeNodeStream(t3); 

  nodes3.setTokenStream(tokens); 

  JavaBPhase4WalkerGen phase4 = new JavaBPhase4WalkerGen(nodes3); 

  phase4.setTemplateLib(templates); // give parser the templates 

  

phase4.javaBCompilationUnit(compositionsSymTable,componentToIsActive,isGlue

CodeFile); // don't need return value because the token stream 'tokens' has 

been rewritten 

 

  File outputDirPath; // represents directory to file 

  File outputFile; // the file itself 

  try { 

    String fileName = f.getName().substring(0, 

f.getName().lastIndexOf("."))+".java"; // use same name as input file 

(except the extension) 

    System.out.println("Generated '"+ outputDir+fileName+"'"); 

    outputDirPath = new File(outputDir); 

    outputDirPath.mkdirs(); // creates all necessary directories if they 

don't already exist 

    outputFile = new File(outputDir+fileName); // yes, that is meant to 

include path too 

    BufferedWriter out = new BufferedWriter(new FileWriter(outputFile)); 
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    out.write(tokens.toString()); 

    out.close(); 

  } catch (IOException e) { e.printStackTrace(); return false; } 

  // end phase 4 

 

  // if we got to here in one piece, then translation succeeded 

  lastGeneratedJavaFile = outputFile; 

  return true; 

} 

Code Listing 44 - translateSingleFile() method from JavaBTranslator.java. This is the core 'controller' 

code for translating a single JavaB file. 

4.4 Summary 

This chapter discussed the core translation mechanisms, the algorithms that implement the 

required synchronisation, and finally the translator itself. With respect to the language 

specification laid out in Chapter 3, the core language features were successfully implemented. 

The Copy and Switch synchronisation primitives were not fully however. 
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5.  

Testing 

This chapter documents the testing carried out on the translator and the translation 

mechanism classes described in chapter 4. 

5.1 Testing the Translator 

The use of gUnit [55] for testing the ANTLR grammars was considered. Though gUnit is a 

suitable tool, technical problems in running it rendered its use impossible. As an alternative, 

test case input programs were provided to the translator. The test cases are designed mainly to 

test JavaB constructs. This is because the Java rules (of the lexer and parser) do not need 

extensive testing because they are based on the Java grammar from the OpenJDK Compiler-

Grammar project, which has already been extensively tested [45].  

 

One known issue with the translator is that occasionally some ordinary Java code is not 

copied to the output translation as it should. This is due to shortcomings in the tree 

construction process. An example of this will be seen shortly.  

5.1.1 Translator Test Cases 

5.1.1.1 Test Cases for JavaB Semantic Checks 

Table 2 shows the test cases used for each semantic check expected of the translator. The 

tests used generally test only a single semantic check. It is possible that some bugs only 

surface under certain combinations of semantic checks. Such combinations were not tested. 

 

Test 
No. 

Description Input Expected 
Output 

Actual Output Resolution 

Component Definitions 

General Semantic Checks 

1 Names of 
components 
are distinct. No 
Two 
component 
may have same 
name. 

Translator is 
passed three 
components, 
two components 
with same name. 

Unique 
component 
translation 
succeeds. One 
of two 
components 
also succeeds 
but when 
translator 
reaches second 
one shows error 
message. 

As  expected. N/A 

2 Give warning if Translator is Translation As expected. N/A 
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Test 
No. 

Description Input Expected 
Output 

Actual Output Resolution 

a component 
definition given 
which has 
neither run 
method nor 
any boundary 
declarations 

passed a 
component as 
described. 

succeeds but 
warning is 
shown. 

3 Component has 
a declared 
boundary that 
has no 
corresponding 
handler. 

Translator is 
passed a 
component as 
described. 

Translator 
should 
automatically 
insert default 
handler that 
blocks into the 
generated 
output. 

Not as 
expected. 
Translation 
'succeeded' but 
only one handler 
in the  
generated Java 
code. There 
would be an 
error when 
compiling wiring 
code that uses 
this component. 

This is a known 
feature still to 
be 
implemented. 

Boundary Declarations 

4 No two 
boundaries of a 
component 
may have the 
same name, 
even if the rest 
of their 
signature is 
different 

Translator is 
passed a 
component with 
three 
boundaries, two 
of which have 
the same name. 

Translation fails 
with error that 
boundary has 
been re-
declared. 

As expected, 
except there 
was also 
spurious error 
messages 
regarding 
conflicting types 
of boundary 
declared and 
handlers (since 
two handlers 
declared with 
same name). 

N/A (the 
spurious error 
messages 
cannot easily 
be removed). 

Run Method Declarations 

5 No more than 
one run 
method in a 
component is 
permitted. 

Translator is 
passed a 
component with 
two run 
methods. 

Translation fails 
with error 
stating that 
there are 
multiple 
declared run 
methods. 

As expected. N/A 

Handler declarations 

6 Handler has 
not already 
been declared. 

Translator is 
passed a 
component that 
declares multiple 
handlers of same 
name. 

Translation fails 
with error 
stating that 
handler has 
been re-
declared. 

Not as 
expected. 
Translation 
'succeeded', 
with code 
generated for 

Handler-
Declaration 
rule in 
semantic1 
grammar 
corrected. 
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Test 
No. 

Description Input Expected 
Output 

Actual Output Resolution 

both handlers 
(leading to two 
methods with 
same name)! 

handlerNames, 
a Set that kept 
track of 
previously 
declared 
handlers was 
being updated 
in wrong 
branch of an 
if..else. 

7 There exists a 
boundary with 
same name as 
the handler. 

Translator is 
passed a 
component that 
declares a 
handler with no 
boundary of the 
same name. 

Translation fails 
with error. 

As expected. N/A 

8 Handler 
direction and 
type match 
that of 
boundary. 
(This test and 
the previous 
actually check 
that declared 
handlers have 
corresponding 
boundary 
declaration). 

Translator is 
passed a 
component that 
declares a 
handler with 
same name as a 
declared 
boundary but 
incompatible 
direction and/or 
type. 

Translation fails 
with error. 

As expected. N/A 

Synchronisation statements 

9 For an inward / 
outward 
synchronisation 
statement, 
boundary being 
received / sent 
on actually 
exists. 

Translator is 
passed a 
component with 
a run method 
containing an 
synchronisation 
statement on a 
non-existent 
boundary. 

Translation fails 
with error. 

As expected. N/A 

Wiring Code 

Compositions 

10 Composition is 
not redeclared 
with the same 
name as a 
previous 
composition 
declaration. 

Translator is 
passed a wiring 
code application 
(along with 
required 
components) 
with two 

Translation fails 
with error. 

As expected. N/A 
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Test 
No. 

Description Input Expected 
Output 

Actual Output Resolution 

compositions 
declared with 
the same name. 

11 Compositions 
must not 
reference an 
identifier that 
has not been 
previously 
declared 
(either a 
component or 
a composition). 

Translator is 
passed a wiring 
application. Not 
all required 
components are 
passed as well. 
The wiring 
code's 
composition also 
references an 
undeclared 
composition. 

Translation fails 
with error, 
stating that 
there is no 
component or 
composition 
with the name 
used in the 
composition. 

As expected. N/A 

12 A sequential 
composition 
only wires 
compatible 
components. 

Translator is 
passed a wiring 
application 
(along with 
required 
components). 
Wiring code tries 
to sequentially 
compose two 
components 
with 
incompatible 
boundaries. 
(IntConsumer 
was composed 
with 
IntProducer, 
rather than the 
other way 
round). 

Translation fails 
with error, 
stating that the 
two components 
have 
incompatible 
boundaries. 

Not as expected. 
Translation fails, 
but with 
(correct) error 
that there are 
'dangling' 
boundaries 
remaining when 
attempting to 
start the 
composition. 
Reason for lack 
of error was that 
the test case 
components did 
not have any 
common 
boundaries 
between them 
at all, there was 
no error. 

Alter 
translator to 
show error 
when two 
components 
which have no 
common 
boundaries are 
sequentially 
composed. 
This situation 
was not 
previously 
considered. 

Start Statements 

13 Start statement 
must reference 
a declared 
composition. 

Translator is 
passed a wiring 
application 
(along with 
required 
components). 
The wiring 
code's start 
statement 
references an 
undeclared 
composition.  

Translation fails 
with error, 
stating that the 
start statement 
references an 
undeclared 
composition. 

As expected. N/A 
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Test 
No. 

Description Input Expected 
Output 

Actual Output Resolution 

14 When a 
composition is 
started, no 
'dangling' / 
remaining 
boundaries are 
remaining that 
have not been 
wired to 
another 
boundary. 

Translator is 
passed a wiring 
application 
(along with 
required 
components). 
The composition 
leaves some of 
its components 
with dangling 
boundaries. 

Translation fails 
with error, 
stating that the 
composition 
cannot be 
started because 
it has dangling 
boundaries. 

As expected. N/A 

Table 2 - JavaB semantic checks test cases. Based on the semantic checks of Appendix G. 

 

As can be seen, performing these tests revealed one or two omissions from the translator's 

semantic phases. 

5.1.1.2 Example Program Test Cases 

Various example programs were also run through the translator (some of which are given in 

Appendix B), as shown in Table 3. 

Test 
No. 

Example Program Translated 
Successfully 

Compiled Successfully Ran Successfully 

1a P.C Yes No - 

1b P.C (with method call 
outside 
synchronisation 
statement; see below) 

Yes Yes Yes 

2 P.IBC.C Yes Yes Yes 

3 P.IBCx4.C Yes Yes Yes 

4 P.IBC.IBE Yes Yes Yes 

5 TwoIntProducer.(C#C) Yes Yes Yes 

6 P#P.C#C Yes Yes Yes 

7 SyncCounter.C Yes Yes Yes 

8a P. 
DiscerningIntConsumer 

No - - 

8b P. 
DiscerningIntConsumer 
(correction) 

Yes Yes Yes 

9 P.LazyIntConsumer Yes Yes No 

10 P/\C#C Yes Yes No 

11 P/\C#(IBC.C) Yes Yes No 
Table 3 - Example Program Test Cases. (P stands for IntProducer, C for IntConsumer, and IBC for 

IntBufferCell). 

The failure cases are now discussed. 

 

Test 1a 

The line: 
 out![produce_item()]; 

in IntProducer, was being translated to: 
 out.getWireAttachedTo().send(out,produce_item);  
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rather than the correct version: 
 out.getWireAttachedTo().send(out,produce_item()); 

 

The input Java is not copied to the translation output in its entirety. The exact cause of the 

bug was tracked down to unresolved issues in the Java tree construction process and their 

interaction with the outwardSynchronisationStatement rule in the code generation grammar. 

 

The remaining examples deliberately avoid having such method calls directly inside outward 

synchronisation statements. 

 

Test 8a 

The failure occurred during parsing of the run method in DiscerningIntConsumer.javabc: 
__run__ { 

  int v; // <-- PARSER FAILS HERE 

  while(true) { 

    v = in?; 

    while(v % 2 == 0) 

      v = in?; 

    consume_item(v); 

  } 

} 

Code Listing 45 - The run method of DiscerningIntConsumer.javabc causing a failure in the parser. This 

was due to a defect in the parser rather than an incorrect JavaB program. 

 

The specific errors were: 

ERROR: line 8:2 mismatched input 'while' expecting RBRACE 

ERROR: line 9:5 no viable alternative at input '=' 

Figure 42 - Errors in Test 1a of Example Program Test Cases 

 

Correcting the multiplicity of the blockStatement rule invocation in the 

runMethodDeclaration rule resolved this: 
runMethodDeclaration 

    @init { 

    inRunMethodDeclaration = true; 

    } 

    @after { 

    inRunMethodDeclaration = false; 

    } 

    : RUN LBRACE blockStatement RBRACE // <-- CORRECTION: blockStatement* 

    -> ^(RUN_DECL[$RUN,"RUN_DECL"] blockStatement) 

    ; 
Code Listing 46 - Problem in runMethodDeclaration rule; correction to multiplicity of blockStatement 

 

Corresponding alterations to the tree grammars and the runMethod template were also 

required. 

 

This bug had been concealed previously because most test cases used were non-terminating 

examples with a single while(true) blockStatement. 

 

Tests 9, 10, 11 

These tests all suffered from deadlock when the generated output was executed.  Test 9 

deadlocks due to the reasons documented in Appendix B.4. Tests 10 and 11 deadlock simply 

due to the fact that the current implementation of CopyWire contains unresolved deadlocks. 
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5.1.2 Supporting Classes 

The main complexity in the translator's supporting classes was in the CompositionComponent 

classes (see section 4.3.5). JUnit was used to verify the correctness of the traverse() methods 

of these classes; that they fill the data structures correctly. 

 

Two JUnit test case methods follow. The DVD-ROM contains the full test suite. 
@Test 

public void PlainTraverse() { 

  // traverse the intProducer, passing (mostly) empty data structures  

  intProd1.traverse(instancesToComponentType, componentTypeToNoOfInstances, 

boundaryToOwningComponentInstance, runnableInstances, componentToIsActive, 

normalWireWirings, copyWireWirings); 

 

  // check results are correct 

  assertEquals(instancesToComponentType.size(), 1); 

assertTrue(instancesToComponentType.get("intProducer1").equals("IntProducer

")); 

  assertEquals(componentTypeToNoOfInstances.size(),1); 

  assertTrue(componentTypeToNoOfInstances.get("IntProducer") == 1); 

  assertEquals(boundaryToOwningComponentInstance.size(),1); 

  assertEquals(runnableInstances.size(),1); 

  assertTrue(runnableInstances.contains("intProducer1")); 

 

  // no wirings 

  assertEquals(normalWireWirings.size(), 0); 

  assertEquals(copyWireWirings.size(), 0); 

} 

 

@Test 

public void SCCTraverseTwoPlainOperands() { 

  // create seq comp. and traverse 

  SequentialCompositionComponent scc = new 

SequentialCompositionComponent(intProd1, intCons1); 

  scc.traverse(instancesToComponentType, componentTypeToNoOfInstances, 

boundaryToOwningComponentInstance, runnableInstances, componentToIsActive, 

normalWireWirings, copyWireWirings); 

 

  // check results are correct 

  assertEquals(instancesToComponentType.size(), 2); 

assertTrue(instancesToComponentType.get("intProducer1").equals("IntProducer

")); 

assertTrue(instancesToComponentType.get("intConsumer1").equals("IntConsumer

")); 

  assertEquals(componentTypeToNoOfInstances.size(),2); 

  assertEquals(componentTypeToNoOfInstances.get("IntProducer"),new 

Integer(1)); 

  assertEquals(componentTypeToNoOfInstances.get("IntConsumer"),new 

Integer(1)); 

  assertTrue(boundaryToOwningComponentInstance.size() == 2); 

  assertTrue(runnableInstances.size() == 2); 

  assertTrue(runnableInstances.contains("intProducer1")); 

  assertTrue(runnableInstances.contains("intConsumer1")); 

 

  // a single wiring 

  assertTrue(normalWireWirings.size() == 1); 

  assertTrue(normalWireWirings.get(0).getBoundaryType().equals("int")); 

assertTrue(normalWireWirings.get(0).getReceiverBoundaryName().equals("in"))

; 
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assertTrue(normalWireWirings.get(0).getReceiverInstanceName().equals("intCo

nsumer1")); 

assertTrue(normalWireWirings.get(0).getSenderBoundaryName().equals("out"));

assertTrue(normalWireWirings.get(0).getSenderInstanceName().equals("intProd

ucer1")); 

 

  // should be no copy wirings 

  assertTrue(copyWireWirings.size() == 0); 

} 

Code Listing 47 - Two JUnit test cases testing correctness of traverse() methods of PlainComponent and 

SequentialCompositionComponent 

5.2 Testing Translation Mechanism classes (inc. Wire) 

The majority of the translation mechanism classes are trivial (see Appendix D), except the 

Wire classes. Thus only the testing of these is documented here. 

5.2.1 NormalWire 

An effective tool used for exposing concurrency bugs was ConTest [33]. The tool works by 

instrumenting Java bytecode with yields near synchronisation points. The deadlock discussed 

in section 4.1.3.1 was exposed using ConTest. Used in conjunction with ConTest was 

ECLEmma. This tool was used to analyse whether certain code paths in NormalWire were 

taken or not. 

 

FindBugs was used as a supplementary aid to discovering bugs. It analyses the code for 'bug 

patterns'. Unfortunately, the only 'bugs' found were false positives. 

5.2.2 CopyWire 

Time constraints have meant testing of CopyWire thus far has also only used ConTest, and 

that only to expose deadlock.  

 

In future work, the more complex semantics of CopyWire require more systematic testing by 

enumerating the different cases that can take place into equivalence classes. In particular, 

equivalence classes include the various orders components may tug (sender-receiver1-

receiver2, receiver1-sender-receiver2 etc.). Additionally, the two ways handlers may 

complete also form two more equivalence classes, which when combined with the various 

orderings above, produce many more equivalence classes that would need to be tested. 

Performing this in conjunction with ConTest would be an effective strategy. 

5.3 Summary 

The semantic test cases and test programs successfully uncovered a number of bugs in the 

translator. For testing of the Wires, ConTest proved an invaluable tool. 
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6.  

Development Process and Tools 

This chapter briefly discusses the development process chosen and software tools used in the 

project. 

6.1 Process 

The process adopted could be described as 'evolutionary iterative development'[56]. 

Evolutionary in the sense that the development of the language was relatively fluid and open 

to change. Often, language semantics were refined as implementation issues were 

encountered (e.g. development of NormalWire class and the translator itself clarified 

semantics of a wire and "sides" of boundaries, respectively). Iterative because the project 

moved from initial manual translations, to a core translator, to a translator that supported 

additional synchronisation primitives. Not all the planned iterations were completed however 

(see Figure 43 and Figure 44 in chapter 7). Overall, this process was the most natural 

approach for this project.  

6.2 Tools 

The software tools used in this project can be divided into several categories: 

Tool Type Tools used 

Integrated 
Development 
Environment 

Eclipse used for development of 'manual translation' classes and other Java 
classes. The primary reasons for its use was familiarity and availability of plug-ins 
(some other tools below are actually Eclipse plug-ins e.g. ConTest, ANTLRIDE). 
 
Netbeans/Ant were used to build the OpenJDK compiler when exploring 
approaches to translator construction [46]. 

ANTLR 
grammar 
development 

ANTLRWorks was initially used for grammar development. However, after 
numerous problems (bugs) with the tool, the Eclipse plug-in ANTLRIDE was used 
instead. Nevertheless, ANTLRWorks was still useful for performing (remote) 
debugging tasks. 
 
ANTLRIDE also better automated the grammar build process. Unfortunately this 
build process was long. It built grammars that did not need rebuilding; this 
consistently added an extra 10 seconds to the development cycle of each build. 

Version Control 
System (VCS) 

The Mercurial VCS (with BitBucket7 hosting) provided essential source control, 
backup and traceability. 

V&V ConTest (Eclipse plug-in), FindBugs, JUnit, JProfiler (see chapter 5) 

CASE Tools Visual Paradigm and Microsoft Visio were used for UML and generic diagrams 
seen in this report. 

Table 4 - Software tools used during project 

                                                 
7
 https://bitbucket.org/ 
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7.  

Project Management 

The main factor affecting the success of this project has been time. This chapter compares the 

project's goals and the plan in the progress report with the final outcome. It also documents 

some of the major problems that occurred.  

7.1 Time Management 

7.1.1 Overview 

In general, the project's scope encompassed the following core activities: 

1. Crystallising the language semantics 

2. Implementing a manual translation (including NormalWire implementation) 

3. Constructing the translator 

4. Implementing further synchronisation primitives (Copy, Switch) 

 

Activities one to three were indeed completed, whilst four was only partially. Thus overall, 

with respect to the goals laid out in the original project brief (Appendix A), the project has 

been relatively successful. The primary goal of developing the core language semantics and a 

translator was achieved. 

 

Throughout the project, regular supervisor meetings helped keep the project on-focus. 

7.1.2 Gantt Charts 

Figure 43 shows the Gantt chart from the progress report (from mid-December). Figure 44, 

Figure 45, and  Figure 46 show the final outcome Gantt chart in different formats (tasks, tasks 

with percentages, and summarised tasks with percentages, respectively). As well as indicating 

percentage progress, the tasks in the final Gantt chart are changed to reflect the true process 

that occurred. For example, for the 'core translator', the syntactic/semantic/generation 

subtasks are replaced with the translation of component definitions followed by translation of 

wiring code, which reflect the actual implementation order. Another difference is that work 

on the Copy construct took place before Switch. This approach was taken because it was felt 

that Copy would be the simpler one to implement. 
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Figure 43 -  Progress Report Gantt chart of planned remaining work and expected order and/or parallelism of tasks. 
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Figure 44 - Gantt chart showing final outcome in terms of progress. Highlighted in yellow are all tasks that were either partially completed or not started. The 

Copy construct is an example of one that was partially completed. 
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Figure 45 - Identical to Gantt chart in Figure 44 but with percentages explicitly shown. Again, the partially completed tasks are shown in yellow. 
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Figure 46 - Summarised version of Figure 45 showing the overall tasks of the project and the progress made. 
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7.1.3 Comparison of Forecast and Actual Progress  

In the first term, there was no precise forecast for the project except that described in the 

project brief. This was partly due to the novel nature of the project. Most of the core 

semantics had already been discussed pre-term time. Additionally most of the manual 

translation was implemented within the first three weeks. However, difficulties encountered 

with NormalWire (see section 4.1.3.2), plus other coursework commitments, meant a full 

manual translation was only completed by the end of the first term. 

 

Since the progress report, the primary focus has been translator implementation. The progress 

report Gantt chart predicted translator implementation by early February. This was an 

unrealistic goal however, since substantial work only began in late January. Coursework and 

exam commitments led to the decision to not focus on the project during the Christmas 

vacation and semester one exam period (see Figure 44). Nevertheless, the predicted time of 

six weeks to implement the translator was accurate. 

 

During translator implementation, it was hoped it could have been finished sooner. However, 

as section 4.3.1 summarised, some approaches taken led to dead-ends, which necessarily 

required reworking and thus cost time. Inexperience in translator implementation (with 

ANTLR and StringTemplate) and the novel nature of the JavaB language were factors in this. 

 

Delays in translator completion meant that the other synchronisation primitives could not be 

explored in full detail and/or implemented. The semantics of Copy were clarified and its 

implementation in one direction completed (although suffers from deadlock). The semantics 

and implementation of Switch had not begun. 
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7.2 Risk Management 

The following table is based on that in the progress report. It enumerates the anticipated risks 

involved in the project but also notes actual occurrences of risks and how they were resolved. 

 

Risk (event) Likelihood 
/ 
Probability 
(1-5) 

Impact / 
Loss 
incurred 
(1-5) 

Risk 
Exposure 
(probability 
x loss) 

Action 
(mitigation / 
avoidance / 
contingency plan) 

Actual Occurrences 
of risk and how 
they were resolved 

Personnel difficulties  

Supervisor is  
away 
 

4 1 4 Keep in contact 
via e-mail 

1. Away in Paris 
when working on 
CopyWire and 
requiring a meeting. 
Resolved by 
rearranging 
meeting; this had 
low negative 
impact. 
 
2. Away in Kenya 
during report write 
up period. Handled 
by e-mail. 

Difficulty in 
communicating 
and getting 
along with 
supervisor 

2 3 6 Try to resolve 
with supervisor. If 
unsuccessful try 
to resolve by 
seeing second 
examiner. 

None. 

Short-term 
illness (colds, 
flu etc.) 

3 2 6 Get important 
work done well-
before deadline; 
sleep enough 

A cold during 
implementation of 
translator AST tree 
construction and 
tree grammar. 
Continued working 
but at slower pace. 

Long-term 
illness/accident
/injury 

1 5 5 Contact 
supervisor to 
determine best 
course of action 
and fill in a 
Mitigating 
Circumstances 
Form (MCF) if 
necessary. 

None. 

Supervisor has 
short-term 
illness 

3 1 3 Keep in contact 
via e-mail (if 
necessary) 

Once. But of no 
significant impact. 

Supervisor has 
long-term 
illness / 

1 4 4 May be able to 
keep in contact 
via e-mail (or 

None. 
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accident / injury phone). 
 
This project is 
highly reliant on 
the well-being of 
my supervisor so 
a "replacement 
supervisor" might 
not be sufficient! 

Technical difficulties  

Lack of progress 
in language 
development 

3 4 12 Consult 
supervisor. 

Some challenges in 
determining 
semantics of some 
constructs but these 
were overcome. 

Difficulty in 
building 
translator 

3 3 9 Consult 
supervisor. 
Possibly invest 
more time into 
compiler 
construction to 
just get a working 
first version 
compiler only. 
 
Read compiler 
books to gain 
inspiration/ideas. 

Many difficulties, 
reflected in the 
number of dead-
end approaches 
taken (summarised 
in section 
Unsuccessful 
Approaches4.3.1). 
Many discussions 
with supervisor.  
[48] was a core 
reference aid. 
However[49] 
provided significant 
help in using 
StringTemplate. A 
little more than first 
version was 
completed. 

Project/Schedule difficulties  

A minor fall 
behind 
schedule (<= 3 
weeks) 

5 1 5 Take time to 
rethink through 
tasks and 
schedule. Re-plan 
time. There is still 
time to 
recuperate. 

Implementation 
difficulties made 
this a common 
occurrence. Plans 
were changed and 
also talked through 
with supervisor.  

A major fall 
behind 
schedule (> 3 
weeks) 

3 4 12 Talk with 
supervisor about 
what to do, what 
tasks to not 
spend time on, 
and generally 
what the best 
course of action 
is. 

It was realised that 
Copy and Switch 
could not both be 
implemented. Thus 
Switch was 
dropped. 
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Coursework of 
other modules 
is difficult / 
overwhelming 

1 4 4 Only courseworks 
are 30% 
COMP3011 
Critical Systems 
and 30% 
COMP3006: Real-
time Computing 
and Embedded 
Systems. 
 
Mitigate effect by 
planning my time 
early, limiting 
amount of time 
spent on such 
coursework to get 
80% of the marks 
and not spend 
time on the last 
20%. 

Small impact in 
second semester. 
 
However, in first 
semester this had 
large impact. In 
particular, 
COMP3004 
coursework meant 
little work on 
translator was 
achieved over 
Christmas period. 

Both computer 
and backup 
hard drive fail 

1 5 5 Regular backup to 
ECS servers.  
Backup to 
another backup 
hard drive and 
another 
computer. Push 
changesets to 
revision control 
system 
(Mercurial) 
frequently! 

None. 

 Table 5 - Risk assessment based on that in progress report, including actual occurrences and how they 

were resolved 

 

The primary risks that had occurred that had the greatest impact were: coursework from other 

modules competing with the project and also difficulties in implementing the translator.  

7.3 Summary 

Overall, despite encountering some significant problems during the project, these were not 

show-stopping. A good level of progress was achieved and most project goals were met. 
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8.  

Conclusions and Future Work 

This chapter concludes by evaluating the project's achievements with respect to the goals set. 

It then discusses possible future work on the JavaB language. 

8.1 Conclusions 

The vision expressed in the introduction was to develop a language that simplifies the 

construction of concurrent software and makes it possible to verify their correctness. This 

project has made initial inroads into fulfilling these aspirations. 

 

The project has focused on development of a language that extends Java - JavaB. JavaB's 

core semantics were clarified. This included the concepts of components, boundaries, 

handlers and wires. Additionally, the core operators, sequential composition and tensor 

composition were defined. The semantics and implementation of JavaB's synchronisation 

primitives was well underway, with Copy (but not Switch) mainly implemented. An initial 

translator that converts JavaB constructs into Java's lower-level concurrency primitives was 

completed. The translator's model-driven architecture with separate phases (using ASTs) 

makes extending the translator very easy. 

 

The ambition of composing components to achieve sophisticated synchronisations has been 

partially achieved. The operators of the language allow components to be composed. Indeed, 

some interesting combinations of components can be constructed (see section 3.3). However, 

much of the power of composability cannot be realised without standard components. These 

include the synchronisation primitive components such as Copy and Switch, and also 

components which enable flexible wirings such as Twist, Identity and IdentityLoopback (see 

Appendix C).  

 

The focus on implementation meant limited time could be given to the application of JavaB 

to real-world applications. 

8.2 Suggestions for Future Work 

There is plenty of scope for extending this project. 

 

Development of Existing Work 

Firstly, there are a number of possible improvements to the translator. The AST construction 

process for the Java rules require some corrections. Occasionally, some Java input is 'lost' in 

the generated output. An alternative Java grammar by Dieter
8
, which includes tree 

construction operations, could be used to aid this process (or even used in place of the 

                                                 
8
 http://www.antlr.org/grammar/1207932239307/Java1_5Grammars 
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existing grammars). Another improvement would be better error messages. The semantic 

error messages are good; however, syntactical error messages are not very user-friendly, 

mainly due to the use of backtracking. Additionally, it would be desirable for the translator to 

convert directly to bytecode without requiring javac. Modifying the OpenJDK javac compiler 

would likely be a more sensible approach than implementing this by modifying the existing 

translator. 

 

The existing Wires also have scope for improvement. Correcting CopyWire to avoid 

deadlock, implementing SwitchWire and encapsulating both as standard components are 

essential work. Implementing the other standard components of Appendix C is also a key 

improvement. Model checking tools such as Java PathFinder could be used to verify the 

correctness of the Wire algorithms. Finally, fairness (see section 4.1.3.6)  and performance of 

the wires are further considerations.  

 

Research Directions 

One interesting idea that could be explored is allowing multiple boundaries to be treated as a 

single 'logical' boundary. A synchronisation on such a logical boundary behaves like an 

ordinary 'single-boundary' synchronisation.  For example a component could send integers on 

two boundaries o1 and o2 using the following synchronisation statement: 
 (o1,o2)![5,6]; 

Such a synchronisation would only complete once both 'sub-synchronisations' complete for 

the tugs that take place on o1 and o2. The owning component of these boundaries defines a 

handler for the logical boundary. 

 

An example of this could be an IntProducer that only sends out two integers at a time. 

 
Figure 47 - A modified IntProducer to previously seen, that treats o1 and o2 as one logical boundary. The 

IntConsumers are the same as previously seen. 

 

It is conceivable that there applications where there are components that want to synchronise 

with (i.e. be in step with) with several other components simultaneously, in a single 

transaction-like fashion. 

 

Session types [57] [58] represent another research direction. These provide a higher-level 

type system that not only describe simple types but actually describe a protocol. Thus session 

types could be used on wires to describe a protocol which the communications on the wire 

must follow. For example, a very simple protocol could be that there are always two sends 

followed by a receive. 

 

They may also be used to attach predicates to synchronisations that happen on a wire. For 

example, two boundaries sending integers could have a predicate that specifies that the two 

integers must sum to 10. 

 



 

Conclusions and Future Work   

100 

 

The type checking for session types would occur at both compile-time and run-time. Many 

checks can actually be performed at compile-time. 

 

Finally, further directions that could be explored include: 

 Dynamic boundaries, where boundaries may change at runtime 

 Subtyping of components in a similar way to that in Object-Oriented languages. 

Components may inherit boundary declarations, handlers, fields and methods. 

 Rolling back of synchronisations in a similar way to database transactions 

 Developing methods to formally verify the correctness of JavaB programs 

 Developing a graphical environment for designing networks of components 

8.3 Summary 

This has indeed been a challenging project. Much was learned through the process, both in 

technical skills (e.g. concurrent programming, ANTLR, StringTemplate) and the skills 

required in managing a large project. 

 

Its key goals have been met, and the groundwork for future work has been laid. 
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Project Brief 

Student: Stephen Tuttlebee (22632751) 

Supervisor: Dr Pawel Sobocinski 

 

Project Title: 
An Experimental Language for Concurrency: 

Components and Synchronisation on Explicit Boundaries 

 

Project Description: 

Problem 

Concurrency has long been one of the most challenging topics in programming and in 

Computer Science in general. In the last few years however, its prominence has increased 

considerably. With Moore's Law no longer translating into performance improvement 

through the increase of clock speeds, the likes of Intel and AMD are instead adding more 

cores onto their processor chips in an effort to maintain the performance trend. Whilst adding 

more processing power may be easy enough, from the programmer's perspective, utilising it 

with the existing paradigms, languages and libraries is far less trivial. Thus, the exploration of 

new paradigms and enhancement of existing paradigms for concurrency has become an active 

area of research. As well as a search for better paradigms, there are also many efforts in the 

implementation of new languages and development of libraries and tools that supplement 

existing and emerging paradigms. 

 

Goals 

These streams of research all generally have the aim of simplifying concurrency for 

programmers. The various different languages, libraries and tools resulting from such 

research have had various degrees of success. This project introduces an experimental 

language that takes a different approach towards concurrency, and it is hoped it will be a 

feasible language to develop concurrent programs in. The language's core ideas were 

conceptualised by Dr Pawel Sobocinski. The language is based on the concepts of 

components and boundaries. Components can be thought of as somewhat similar to objects in 

typical Object-Oriented languages (e.g. Java, C++). Components declare boundaries that 

indicate explicitly the points through which they can communicate and synchronise with 

other components. The language will be a variant of Java and will initially extend a subset of 

it. This project will focus on developing the features and syntax of this language, expressing 

classic 'toy' concurrency algorithms using the language and hopefully also some more real-

world examples. It is expected that the language will be constantly refined as the process of 

trying to express 'toy' and real examples highlights areas of improvement for the language. A 

compiler for the language that translates into Java and possibly even Java bytecode will also 

be developed. 
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Scope 

This is an ambitious project and judging whether it is truly doable in the time available is 

difficult. If the project progresses well, the compiler mentioned above should be within the 

scope of this project. However there are a couple of undertakings, that although relevant and 

interesting, are likely to be outside the scope of this project due to time constraints. One is the 

development of a runtime system that dynamically optimizes execution of code written in the 

language. Additionally, optimizing the language and the compiler for performance will not be 

pursued in much depth. 
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Appendix B  

Additional Language Examples 

B.1 IntProducer-IBC-IntBufferEater 

In this example, IntBufferEater (IBE) simply 'eats' the values sent to it. That is, its handler is 

defined such that it is not possible for the IntBufferCell to block when tugging on 

IntBufferEater. There is no __block__; statement in the handler nor a synchronisation 

statement inside the handler that could cause a block to occur indirectly (which could happen 

via a chain of synchronisations if IntBufferEater's handler were to contain a synchronisation 

statement). 

 

 
Figure 48 - IntBufferEater component diagram 

 
// passive component 

component IntBufferEater { 

    boundary left int in?; // receives values on this boundary 

 

    // no __run__ method 

 

    in?[int val] { 

        // eat it...or do nothing... 

        eat_value(val); 

    } 

 

    private void eat_value(int value) { 

        System.out.println("IntBufferEater ate value "+value); 

    } 

} 

 Code Listing 48 - IntBufferEater component definition. It has one inward boundary, no __run__ method 

and its inward boundary's handler is defined to take and eat the value being sent to it.  

 

As can be seen in Code Listing 48, IntBufferEater has no __run__ method. It is an example 

of a passive component since 'activity' (i.e. code that is running) within the component only 

takes place due to synchronisations initiated by neighbouring components that invoke 

IntBufferEater's handlers. 

B.2 SyncCounter 

This example serves to show why the handlers of a component must be executed atomically 

with respect to each other. If they were not atomic, then synchronisations initiated by other 

components simultaneously could lead to state inconsistencies (of the component's internal 
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state variables, if it has any). In this example, if a tugs occur on the out1! and out2! 

boundaries (being tugged by different components), then both handlers will be executed. If 

these tugs occur roughly simultaneously then the handlers could be run simultaneously. If no 

atomicity of handlers is enforced, then syncCount could get into an inconsistent state due 

'unlucky' thread interleavings (since increment/decrement statements are not atomic at the 

Java bytecode level; they form multiple bytecode instructions). 

 
// passive component 

component SyncCounter { 

    boundary right int out1!; 

    boundary right int out2!; 

    int syncCount  = 0; 

 

    out1![int val] { 

        syncCount++; 

        System.out.println("syncCount increment, now equals "+syncCount); 

        val = syncCount; // component wired to out1 receives value of 

syncCount 

    } 

 

    out2![int val] { 

        syncCount--; 

        System.out.println("syncCount decremented, now equals "+syncCount); 

        val = syncCount; // component wired to out2 receives value of 

syncCount 

    } 

} 

 Figure 49 - SyncCounter component definition 

B.3 DiscerningIntConsumer 

This is a version of IntConsumer that only consumes odd integers. Any even integers given to 

it are ignored. The DiscerningIntConsumer component is defined below, along with the 

necessary wiring/application code. The IntProducer component is simply that given 

previously (see Code Listing 1). 

 
// active component 

// NOTE: works with an ordinary IntProducer 

component DiscerningIntConsumer { 

    boundary left int in?; 

     

    __run__ { 

        int v; 

        // non-terminating; keep accepting values 

        while(true) { 

            v = in?; 

            // if v is not what I'm looking for (i.e. not an odd number) 

            while(v % 2 == 0) 

                v = in?; // tug IntProducer to get another integer 

            consume_item(v); 

        } 

    } 

     

    // value 'val' being pushed to us: may be even or odd 

    in?[int val] { 

        // consumer not-first-to-tug case: only odd values sent to us 

require this component to tug back 

        if (val % 2 == 1) __block__; 
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    } 

     

    private void consume_item(int item) { 

        System.out.println("DiscerningIntConsumer eating value "+item+", an 

odd number!"); 

    } 

} 

Figure 50 - DiscerningIntConsumer component definition 

 

This example illustrates how handlers can act like filters on the values sent (some filtering 

was also required in the __run__ method, to handle the case where the consumer is first to tug 

rather than the producer). 

B.4 LazyIntConsumer (Flag-setting) 

A potential idiom for the language is 'flag-setting'. This works in the following way: 

1. Component A tugs first and runs component B's handler. 

2. The handler specifies to set a flag and then block. (The flag is used to indicate A's 

desire to synchronise with B.) 

3. As B is running its run method, it continually polls the value of the flag. When the 

flag is set, B tugs back (by executing a synchronisation statement) 

 

LazyIntConsumer demonstrates this for a real example: 
/*  

 * Lazy consumer that only tugs back when sender tugs it first. 

 * 

 * An important issue remaining is that a run method and handlers are not 

 * atomic w.r.t each other. A handler (note: only one handler can execute 

 * at a time) and the run method can race. Because of this racing, it  

 * possible for IntConsumer  to tug first; the whole idea here is that  

 * the IntConsumer is lazy, and should only ever be tugging back, never  

 * tugging first. 

 * 

 * IN ADDITION, there are visibility problems with the senderTuggingFlag 

 * variable. These can be solved by use of a volatile boolean or an  

 * AtomicBoolean instead of boolean. Unfortunately, AtomicBoolean is  

 * not sufficient to to provide necessary (Java) atomicity between the  

 * sendertuggingFlag = true; and the __block__;. 

 */ 

component LazyIntConsumer { 

  boundary left int in?; 

  boolean senderTuggingFlag; // sender is tugging, ready to give a value 

 

  __run__ { 

    while(true) { 

      // flag gets read/polled in run method 

      if(senderTuggingFlag) { 

        int consumed = in?; // speak only when spoken to (tug only when 

tugged first) 

        consume_item(consumed); 

        // flag also gets reset in run method after value eaten 

        senderTuggingFlag = false; 

      } 

    } 

  } 

 

  in?[int val] { 

    // flag gets set in handler 
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    senderTuggingFlag = true; 

    // RACE CONDITION: between setting the flag and blocking, the run 

    // method can see the updated value of the flag and execute the in? 

    // synchronisation statement -- thus LazyIntConsumer can potentially 

    // tug first 

    __block__; 

  } 

 

  private void consume_item(int value) { // (E) ordinary Java method 

    System.out.println("LazyIntConsumer received the value "+value); 

  } 

} 

 

There is one concurrency issue in the above code. Although all handlers of a given 

component execute atomically with respect to each other, the run method and a given handler 

of a component do not execute atomically with respect to each other. Thus there can be race 

conditions on variables. Of course, this problem only occurs for active components (since 

they possess a run method). 

 

Here there is a race condition on senderTuggingFlag. This is marked in the code above. In the 

handler, in between the setting of the flag and blocking, LazyIntConsumer (executing its run 

method) may poll senderTuggingFlag and tug the sender before the sender who was running 

the handler managed to block. Thus the desired behaviour of LazyIntConsumer always 

tugging second (tugging only when tugged) is broken when this occurs. 

 

In fact, there is a second issue with the code above, related to memory visibility of the 

senderTuggingFlag. 

 

To resolve the memory visibility issue, the senderTuggingFlag variable could be made 

volatile or changed to be an AtomicBoolean. However, stronger Java synchronisation is 

required to solve the race condition. The synchronisation mechanisms of the language are 

currently only designed to provide synchronisation on a wire, not within the component itself 

when a handler and the run method execute concurrently. 
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Appendix C  

Standard Components 

In addition to the synchronisation primitive standard components, Copy and Switch, there are 

further components that are yet to be implemented or explored in full detail. The initial work 

on these components is described. Initial implementations of the component definitions for 

these standard components can be found on the DVD-ROM (inside 

/JavaBTranslator/src/javab/std_comp/). The concept for each component listed here were 

suggestions by Sobocinski. 

 

The typing of boundaries and components is issue that arises in this section. The type of a 

boundary refers to the sides, (simple) types and directions of that boundary. The type of a 

component refers to the types of all its boundaries taken together as well as the relative order 

of these boundaries (as defined in the component). 

C.1 Trivial Components 

As seen in section 3.1.4.2, a typing constraint on starting a composition is that it has no 

'outer'/'dangling' boundaries. Such dangling boundaries can artificially 'closed' by using trivial 

components. These trivial components contain  handlers that simply either block or complete 

(by doing nothing). The two trivial components available are TrivialBlock and 

TrivialComplete: 

 

 
Figure 51 - Trivial components TrivialBlock and TrivialComplete. 

 

Their component definitions are given below: 
component TrivialBlock { 

    boundary left T in?; 

 

    in?[T val] { 

        __block__; 

    } 

} 

 Code Listing 49 - TrivialBlock component definition. Its in boundary handler always blocks. 

 

component TrivialComplete { 

    boundary left T in?; 

 

    in?[T val] { } 

} 
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Code Listing 50 - TrivialComplete component definition. Its in boundary handler always completes 

without blocking. 

 

An example of their use is shown below: 

 
Figure 52 - Using TrivialComplete to 'close' the other boundary of DoubleIntProducer before the 

composition may be started. 

 

To ensure typing constraints are met at 'start-time' (see section 3.1.4.2), IntConsumer is 

tensored with TrivialComplete before being sequentially composed with DoubleIntProducer. 

Doing this means ensures that all boundaries are 'closed' before the composition is started. 

C.2 Wiring Components 

C.2.1 Identity (wiring wires to wires) 

An essential standard component is the Identity component: 

 
Figure 53 - Identity component. 

 

This component effectively allows wires to be wired together. When a tug is received on its 

left, it simply tugs on its right. Likewise, when a tug is received on its right, it tugs on its left. 

It 'extends' the tug through. 

 

The component definition for Identity follows: 
component IdentityInwardLeft { 

  boundary left T in?; 

  boundary right T out!; 

   

  // if tugged/pushed on left, tug/push on right, sending the value on 

  in?[T val] { 

    out![val]; 

  } 

   

  // if tugged/pulled on right, tug/pull on left and then pass received 

value 

  out![T val] { 

    val = in?; 

  } 

} 
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Code Listing 51 - Identity component definition. This is actually one of the two component definitions 

necessary for the different typings of Identity. 

 

This component definition actually represents one of two possible typings for Identity. This 

one specifies its inward boundary on its left and outward boundary on its right. The other 

case is where the outward boundary is on its left and inward boundary is on its right. 

 

An example of its use will be seen in the next section on Twist. 

C.2.2 Twist (flexible boundary order) 

As described in section 3.1.4.3, there was a problem with the flexibility in wiring two 

components together. The order in which boundaries are defined (with respect to a certain 

side) 'fixes' a component's interface. Component's  may only be wired to other components 

which have compatible 'boundary interfaces' on its left and right sides. That is, a component's 

left boundary interface must be compatible with the left component's right boundary 

interface, and similarly a component's right boundary interface must be compatible with the 

right component's left boundary interface. 

 

The Twist component  removes these restrictions on typing by effectively 'twisting' the wires 

coming in and out.  

 
Figure 54 - Twist component. 

 

In Twist, tugs on the top left boundary cause its handler to tug on the wire connected to the 

bottom right boundary (and vice versa). Tugs on the bottom left boundary cause its handler to 

tug on the wire connected to the top right boundary (and vice versa). 

 

Of course, a single Twist component is insufficient when there is the requirement to swap 

boundaries by more than one 'position'. However, by using Twist in conjunction with the 

Identity component (along with tensor and sequential composition) several Twists can be 

composed together to achieve the wiring up of boundaries to any desired arbitrary order. 

Figure 55 gives an example: 

 

 
Figure 55 - Using Twist, Identity, tensor composition and sequential composition to achieve flexible 

wiring between components. 

 

The 'path' through the middle components is shown for one particular wiring (between 

boundaries a1! and b3?). 
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In the above example, there are actually different typings of Twist and Identity used. For 

example the left Identity component above has out! on its left side and in? on its right, 

whereas the right Identity component has these reversed. A similar observation can be made 

for the Twist components above. In general, this is required since the directions of boundaries 

of components A and B are not known in advance. The appropriately typed version of the 

each standard component must be used (e.g. the Twist components above are two different 

typings of the same standard component; their functionality is equivalent but their boundary 

interfaces are different). 

 

Rather than force programmers to perform all this wiring using Twist and Identity, a friendly 

syntax could be used to allow the programmer to just specify which boundaries should be 

wired with which other boundaries. The translator could then automatically insert the 

required Twist and Identity components. 

 

Finally, given the current implementation, such a wiring as above would not be intolerably 

inefficient. 

 

The component definition of Twist follows. 
component Twist { 

  boundary left T leftTop?; 

  boundary left E leftBottom?; 

   

  boundary right E rightTop!; 

  boundary right T rightBottom!; 

 

  // if tugged/pushed on top left, tug/push on bottom right, sending the 

value on 

  leftTop?[T val] { 

    rightBottom[val]; 

  } 

 

  // if tugged/pushed on bottom left, tug/push on top right, sending the 

value on 

  leftBottom?[E val] { 

    rightTop![val]; 

  } 

   

  // if tugged/pulled on bottom right, tug/pull on top left and then pass 

received value 

  rightBottom![T val] { 

    val = leftTop?; 

  } 

   

  // if tugged/pulled on top right, tug/pull on bottom left and then pass 

received value 

  rightTop![E val] { 

    val = leftBottom?; 

  } 

} 

Code Listing 52 - Twist component definition. This is actually one of four component definitions 

necessary for the different typings of Twist. 

 

This component definition actually represents one of four possible typings for Twist. This 

one specifies two inward boundaries on the left side and two outward boundaries on the right 

side. 
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C.2.2.1 An Alternative to Twist 

During the development of the translator, an alternative approach to achieve flexible wirings 

between boundaries was originally taken. This approach does not use Twist or any other 

components to achieve such wirings. Instead, the programmer specifies which boundaries 

should be wired to which other boundaries using an ordered list inside the composition 

declaration. For example: 
 composition c = DoubleIntProducer<out2,out1>.<in1,in2> 

(IntConsumer1#IntConsumer2); 

 

This wires DoubleIntProducer's out2 boundary with IntConsumer1's in1 boundary, and 

DoubleIntProducer's out1 boundary with IntConsumer2's in2 boundary. In this example, this 

is effectively the same as inserting a Twist component between the two components. 

 

With this approach, boundaries do not have their sides defined in the component definition. 

Instead they are determined in the wiring code. For example DoubleIntProducer's out1 and 

out2 boundaries could have been placed on either side, but the programmer decided to place 

them on the right. 

 

Unfortunately, this approach suffers from the problem that when two components are 

tensored, their boundaries are combined, and this can lead to conflicting boundary names. 

The example above avoided this problem by having two nearly identical IntConsumer 

components which deliberately used different boundary names in their component 

definitions. One approach considered to solve this was to let the programmer rename 

boundaries where necessary, to avoid ambiguities: 
 composition c = DoubleIntProducer<out2,out1>.<in as in1, in as 

in2>(IntConsumer#IntConsumer); 

 

This no longer requires the use of multiple IntConsumer component definitions to avoid the 

ambiguity. The as keyword is used for the renaming. 

 

This approach has been set aside as a possible way to achieve flexible wiring, as an 

alternative to the current solution of using Twist. 
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C.2.3 IdentityLoopback (flexible boundary sides) 

One further component used for flexible wiring is the Loopback component. This component 

is similar to the Identity component in that it allows wires to be connected together (in fact, it 

is just another typing of Identity). The difference to Identity is that both boundaries appear on 

the same side: 

 
Figure 56 - IdentityLoopback component. Functionally equivalent to Identity except that both boundaries 

appear on same side. 

 

Its component definition follows: 
component IdentityLB { 

  boundary left T in?; 

  boundary left T out!; 

   

  // if tugged/pushed on top left, tug/push on bottom left, sending the 

value on 

  in?[T val] { 

    out![val]; 

  } 

   

  // if tugged/pulled on bottom left, tug/pull on top left and then pass 

received value 

  out![T val] { 

    val = in?; 

  } 

} 

Code Listing 53 - IdentityLoopback component definition. 

 

The definition is the same as Identity except for a single change to the typing, that of the out! 

boundary, which is specified to be on the left (rather than right, as it is in Identity). 

 

IdentityLoopback, in conjunction with Identity, can be used to swap the sides of two 

boundaries in a component. This is shown in the example below: 

 
Figure 57 - Using IdentityLoopback in conjunction with Identity to swap two boundaries' sides. 
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As for the other standard components, there are multiple typings of IdentityLoopback. The 

two boundaries could appear be either side (both left, or both right). Secondly, the order of 

the boundaries could be changed. 

C.3 Implementation Issues 

For the standard components defined here, there is the common problem of the typing of their 

boundaries. For each component above, it was highlighted that there are several variants for 

its different typings to allow it to be connected to any combination of surrounding 

components. These typings only considered different sides and directions. The area of the 

simple type of the component was ignored (e.g. int). The component definitions used generic 

types to indicate that there would be a need to make use of Java's generics mechanism to 

cater for the simple types of the boundaries the standard components are being wired to. This 

use of generics could be allowed at the programmer-level or only at the implementation-level, 

so that the translator generates code that instantiates the appropriate simple type of the 

standard components used using Java generics. 

C.4 Constructing Sophisticated Components 

Combining these standard components with synchronisation primitives such as Copy and 

Switch, using the core operators of the language can enable the construction of components 

that encapsulate quite sophisticated synchronisation policies. 

 

The following example makes use of two Copy components and an Identity component to 

achieve a Copy synchronisation which involves four parties rather than three: 

 

 
Figure 58 - Four-party Copy synchronisation with one sender and three receivers, constructed using two 

Copy components and an Identity component. 

 

A similar type of topology could be used with Switch, or even a mixture of Copy and Switch. 

It could also potentially be extended to any number of receivers. 



 

Translation Mechanism Classes   

118 

 

Appendix D  

Translation Mechanism Classes  

The source code for the Component and Boundary classes and the HandlerRunnable and 

Wire interfaces from section 4.1.1 are listed here. The other classes from section 4.1.1 are 

already listed in chapter 4. 

D.1 Component class 
package javab.runtime; 

 

import java.util.concurrent.locks.Lock; 

import java.util.concurrent.locks.ReentrantLock; 

 

/** 

 * Component superclass. 

 * 

 * Every component has an explicit lock associated with it that is used to 

ensure execution of any handlers belonging to that component are atomic 

w.r.t. each other. 

 * 

 * This class cannot simply implement Runnable because not all components 

are active components. Passive components should definitely not be forced 

be forced to implement run(). 

 * 

 * @author Stephen J T 

 */ 

public abstract class Component { 

  private String componentName; 

  private final Lock handlerLock; 

 

 

  public Component(String componentName) { 

    this.componentName = componentName; 

    this.handlerLock = new ReentrantLock(); 

  } 

   

  public Lock getLock() { 

    return handlerLock; 

  } 

 

  public String getName() { 

    return componentName; 

  } 

} 

Code Listing 54 - Component class used in Translation Mechanism. All generated components from the 

translator have this as their superclass. 
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D.2 Boundary class 
package javab.runtime; 

 

/** 

 * Represents a boundary that is associated with a component. A component 

may have several boundaries. Some of those boundaries are 

 * 'inward', some 'outward'. The concept of 'inward' and 'outward' is not 

explicitly shown here; a boundary's direction is instead indicated 

 * by the way it is glued together with Wires in the main Application code 

(the Wires explicitly know which boundary is the sender and which 

 * is the receiver by the order in which the boundary objects are passed 

into the Wire's setBoundaries(sender, receiver) method). 

*/ 

public class Boundary<T> { 

  private Component ownerComponent; 

  private String name; 

  private HandlerRunnable<T> handlerCode; 

  private Wire<T> wireAttachedTo; 

 

  public Boundary(String boundaryName, Component ownerComponent, Wire<T> 

wireAttachedTo, HandlerRunnable<T> handler) { 

    this.name = boundaryName; 

    this.ownerComponent = ownerComponent; 

    this.handlerCode = handler; 

    this.wireAttachedTo = wireAttachedTo; 

  } 

 

  public Component getOwnerComponent() { 

    return ownerComponent; 

  } 

 

  public String getBoundaryName() { 

    return name; 

  } 

 

  /** 

   * This method forwards the request to run the boundary's handler to the 

HandlerRunnable object, stored inside this 

   * Boundary object. It is forwarded to the identically named runHandler() 

method inside the HandlerRunnable object 

   * which contains the real handler code. 

   * 

   * Thus this method indirectly causes the handler associated with this 

Boundary to be run by the component/thread 

   * that was first to synchronise on this Boundary. 

   * 

   * @param value The value being passed that may or may not be used inside 

the handler (depends if it is a sender or receiver). 

   * @return The value (of type T) returned by the handler 

   */ 

  public T runHandler(T value) { 

    return handlerCode.runHandler(value); 

  } 

 

  /** 

   * Get the wire that this boundary is attached to. 

   * 

   * @return the wireAttachedTo 

   */ 

  public Wire<T> getWireAttachedTo() { 
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    return wireAttachedTo; 

  } 

} 

Code Listing 55 - Boundary class in used in translation mechanism. 

D.3 HandlerRunnable interface 
package javab.runtime; 

 

/** 

 * Use this instead of Runnable since run() in Runnable does not allow a 

value to be passed as a parameter. Handlers need 

 * the value sent by the sender passed to them to (optionally) use in the 

code of the handler. 

 * 

 * Conceptually, in the semantics of the language, handlers do NOT have 

parameters or return values. The reason for them 

 * here however is because for the Java implementation it allows 

transferring of values between components to be much simpler 

 * (as well as possible!). Specifically for the sender on a Wire, it will 

SUPPLY parameters and IGNORE the returned value. 

 * For the receiver on a Wire, it will IGNORE parameters and USE the 

returned value. 

 * 

 * @author Stephen J T 

 * 

 * @param <T> 

 */ 

public interface HandlerRunnable<T> { 

  public T runHandler(T value); 

} 

Code Listing 56 - HandlerRunnable interface used in translation mechanism. This class is used in 

component classes to represent their handlers. 

D.4 Wire interface 
package javab.runtime; 

 

/** 

 * Run methods or handlers should be allowed to call send or receive on  

 * any kind of wire. Handlers (and only handlers) must be able to call  

 * blockHandler() and finishedHandler() to indicate what happened in 

 * the handler. 

 * 

 * The only way to get round problem of having a common interface for  

 * handlers and run methods to use for sending and receiving WHILST at the 

 * same time being able to know which boundary invoked the receive or send 

 * for CopyWire, requires that all Wires pass the sending/receiving  

 * Boundary regardless of whether that specific Wire implementation needs  

 * it (e.g. NormalWire doesn't need it, since it is unambiguous who called 

 * the send() and receive() methods; CopyWire though does need to know who 

 * called receive(), since there are two possible boundaries that called  

 * it). 

 * 

 * @author stephen 

 * 

 * @param <T> 

 */ 

public interface Wire<T> { 

  // extra boundary parameter may be needed later for two sender-one 

receiver version of the CopyWire, and also for SwitchWire probably 
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  public void send(Boundary<T> sendingBoundary, T value); 

  // extra boundary parameter needed for the basic one sender-two receiver 

version of CopyWire 

  public T receive(Boundary<T> receivingBoundary); 

 

  public T blockHandler(T sentValue, Boundary<T> 

sendingOrReceivingBoundary, Component componentToUnlock); 

  public void finishHandler(Boundary<T> sendingOrReceivingBoundary, 

Component componentToUnlock); 

} 

Code Listing 57 - Wire interface used in translation mechanism. Wire implementations such as 

NormalWire and CopyWire implement this interface. 
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Appendix E  

IntProducer-IBC-IntConsumer 

Example Translation 

This section extends the discussion in section 4.1.2 with a further example. 

 

The translation for the IntProducer-IntBufferCell-IntConsumer example is given here. The 

JavaB component definitions for IntProducer and IntConsumer and their Java translations are 

already listed and explained in section 4.1.2. Thus only the JavaB code and Java translation 

for IntBufferCell is listed. (This is so because the translations of components is independent 

of how those components may be wired together). The application/wiring code and its 

translation is also listed. 
component IntBufferCell { 

    // boundaries 

    boundary left int in?; 

    boundary right int out!; 

     

    // internal state 

    boolean empty = true; 

    int value = 0; 

 

    in?[int val] { // here 'val' is an *input parameter* 

        if(empty) { 

            value = val; 

            empty = false; 

        } 

        else { 

            out![value]; 

            value = val; 

        } 

    } 

 

    out![int val] { // here 'val' is a *return parameter* 

        if(!empty) { 

            val = value; 

            empty = true; 

        } 

        else { 

            val = in?; 

        } 

    } 

} 

Code Listing 58 - IntBufferCell component definition (IntBufferCell.javabc) (relisting of Code Listing 8). 
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The translation of IntBufferCell.javabc follows: 
import javab.runtime.*; 

 

public class IntBufferCell extends Component { 

  public IntBufferCell() { 

    super("IntBufferCell"); // pass name of component to superclass 

(Component) 

  } 

 

  // INTERNAL STATE 

  private boolean empty = true; 

  private int value = 0; 

 

  // BOUNDARIES 

  private Boundary<Integer> in; 

  private Boundary<Integer> out; 

 

  // HANDLERS 

  public Boundary<Integer> create_boundary_in(Wire<Integer> wireAttachedTo) 

{ 

    // the handler for this boundary 

 

    HandlerRunnable<Integer> handler = new HandlerRunnable<Integer>() { 

      public Integer runHandler(Integer val) { 

        // no translator housekeeping code required before user code 

 

        // "user code" (with JavaB parts translated) -- which could contain 

a (translated) 'block;' statement 

        if(empty) { 

              value = val; 

              empty = false; 

            } 

            else { 

              out.getWireAttachedTo().send(out,value); // out![value] 

              value = val; 

            } 

 

        // translator housekeeping code following the user code (if user 

code blocks then this code is unreachable) 

        in.getWireAttachedTo().finishHandler(in,IntBufferCell.this); // At 

this point we know that we have finished the handler without blocking (i.e. 

the sync is complete, apart from the housekeeping tasks we are about to do 

now) 

        return val; 

        // IF OUTWARD HANDLER: it doesn't matter that we're returning back 

the value the sender gave us as our dummy value for the exchanger; the 

sender will ignore it anyway 

        // IF INWARD  HANDLER: the handler (return) parameter val should 

have been set by the programmer; if it never gets set by the programmer 

then the (dummy) value that was passed in will be returned 

      } 

    }; 

 

 

    // create boundary (name, owner component, wire, handler) 

    in = new Boundary<Integer>("in", this, wireAttachedTo, handler); 

    return in; 

  } 
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  public Boundary<Integer> create_boundary_out(Wire<Integer> 

wireAttachedTo) { 

    // the handler for this boundary 

 

    HandlerRunnable<Integer> handler = new HandlerRunnable<Integer>() { 

      public Integer runHandler(Integer val) { 

        // no translator housekeeping code required before user code 

 

        // "user code" (with JavaB parts translated) -- which could contain 

a (translated) 'block;' statement 

        if(!empty) { 

              val = value; 

              empty = true; 

            } 

            else { 

              val = in.getWireAttachedTo().receive(in); 

            } 

 

        // translator housekeeping code following the user code (if user 

code blocks then this code is unreachable) 

        out.getWireAttachedTo().finishHandler(out,IntBufferCell.this); // 

At this point we know that we have finished the handler without blocking 

(i.e. the sync is complete, apart from the housekeeping tasks we are about 

to do now) 

        return val; 

        // IF OUTWARD HANDLER: it doesn't matter that we're returning back 

the value the sender gave us as our dummy value for the exchanger; the 

sender will ignore it anyway 

        // IF INWARD  HANDLER: the handler (return) parameter val should 

have been set by the programmer; if it never gets set by the programmer 

then the (dummy) value that was passed in will be returned 

      } 

    }; 

 

 

    // create boundary (name, owner component, wire, handler) 

    out = new Boundary<Integer>("out", this, wireAttachedTo, handler); 

    return out; 

  } 

} 

Code Listing 59 - Java translation of IntBufferCell component (IntBufferCell.javabc) 

 

As explained in section 4.1.2.1, the translation mechanisms for component definitions are 

generally one-to-one. For example, the internal state of the component is simply copied into 

the output verbatim as they are ordinary Java variables. Additionally, the two boundaries 'in' 

and 'out', are translated into two Boundary objects of generic parameter Integer, an 

autoboxing of the primitive 'int' type that the boundaries were declared as.  

 

The translation of handlers is more complex. A handler is more than an ordinary method. It is 

associated with a particular Boundary object and so must be passed into its Boundary 

constructor. This is performed by generating a create_boundary_x() method for each 

boundary which the wiring code calls. The method stores the constructed Boundary inside the 

appropriate Boundary instance variable inside the class and also returns that Boundary object 

to the wiring code so that the wiring code may use it (in fact, what the wiring code does is 

pass the returned Boundary object into the setBoundaries() method of the NormalWire that is 

between two components).  The Java parts of JavaB handlers do not change. Translations are 

only required on JavaB constructs. 
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Taking IntBufferCell's out handler as an example, a create_boundary_out() method is 

generated that corresponds to the Boundary that the handler is associated with. In this 

method, the handler code is placed inside an anonymous HandlerRunnable object which is 

then passed into the Boundary object constructor to create the 'out' boundary. In the handler 

code itself, the in? synchronisation statement in the else clause is translated into a call to 

receive() on the wire that the 'in' boundary is attached to. Before returning with the handler 

parameter (return val;), a call is made to finishHandler on the wire associated with this 'out' 

boundary handler to indicate that the synchronisation has completed by completing without 

blocking (when a handler blocks, it returns early from the handler at the point of the block 

and so the automatically generated finishHandler() method is not reached - see the 

IntProducer translated code in section 4.1.2.1). 

 

To note here is that IntBufferCell's handlers are not defined to block as IntProducer and 

IntConsumer's handlers are. Therefore it does not contain any call to blockHandler() inside 

either of its handler 'methods'. 

 

The JavaB wiring code and its Java translation now follow: 
//P.IBC.C 

public class Application { 

    public static void main(String[] args) { 

// wire IntProducer's right 'out' boundary to IBC's left 'in' boundary, 

// and wire IBC's right 'out' boundary to IntConsumer's 'in' boundary 
        composition c = IntProducer.IntBufferCell.IntConsumer; 

        __start__ c; 

    } 

} 

Code Listing 60 - Wiring code for IntProducer-IntBufferCell-IntConsumer example (relisting of Code 

Listing 9). 

 
//P.IBC.C 

import javab.runtime.*; 

 

import java.util.HashSet; 

import java.util.Set; 

import java.util.concurrent.CountDownLatch; 

 

public class Application { 

  public static void main(String[] args) { 

    // wire up IntProducer's right 'out' boundary with IBC's left 'in' 

boundary, 

    // and wire up IBC's right 'out' boundary with IntConsumer's 'in' 

boundary 

     

    // create component instances contained in the composition 

    IntProducer intProducer1 = new IntProducer(); 

    IntBufferCell intBufferCell1 = new IntBufferCell(); 

    IntConsumer intConsumer1 = new IntConsumer(); 

 

    // create NormalWire and CopyWire instances 

    NormalWire<Integer> WIRE_intProducer1_out_TO_intBufferCell1_in = new 

NormalWire<Integer>(); 

    NormalWire<Integer> WIRE_intBufferCell1_out_TO_intConsumer1_in = new 

NormalWire<Integer>(); 

 

    // create boundary objects 



 

IntProducer-IBC-IntConsumer Example Translation

   

126 

 

    // (Boundary objects don't refer to each other, they only refer to the 

Wire they are on the end of. That Wire object also has a mutual reference 

to the Boundary object.) 

    // use proper names for now, rather than aliases for the instance names 

of Boundary objects here (the Boundary objects here remember are different 

to the ones used in the translator -- they just happen to have the same 

name) 

    Boundary<Integer> intProducer1_out = 

intProducer1.create_boundary_out(WIRE_intProducer1_out_TO_intBufferCell1_in

); 

    Boundary<Integer> intBufferCell1_in = 

intBufferCell1.create_boundary_in(WIRE_intProducer1_out_TO_intBufferCell1_i

n); 

    Boundary<Integer> intBufferCell1_out = 

intBufferCell1.create_boundary_out(WIRE_intBufferCell1_out_TO_intConsumer1_

in); 

    Boundary<Integer> intConsumer1_in = 

intConsumer1.create_boundary_in(WIRE_intBufferCell1_out_TO_intConsumer1_in)

; 

 

    // now that we have created boundaries, set boundaries of the wire 

object(s) 

    

WIRE_intProducer1_out_TO_intBufferCell1_in.setBoundaries(intProducer1_out, 

intBufferCell1_in); 

    

WIRE_intBufferCell1_out_TO_intConsumer1_in.setBoundaries(intBufferCell1_out

, intConsumer1_in); 

 

    /* Start threads of all live components (those that implement Runnable) 

*/ 

    // use a latch 'start gate' to ensure they start at the same time -- 

see JCIP chapter 5) 

    final CountDownLatch startGate = new CountDownLatch(1); 

 

    // add all Runnables to a set to be iterated over 

    Set<Runnable> runnables = new HashSet<Runnable>(); 

    runnables.add(intProducer1); 

    runnables.add(intConsumer1); 

 

    // set of latch-altered Runnables that have been turned into Threads 

    Set<Thread> threads = new HashSet<Thread>(); 

 

    // iterate over them and wrap their run methods to include 

startGate.await() at the beginning 

    for(final Runnable r : runnables) { 

      Thread t = new Thread() { 

        public void run() { 

          try { 

            startGate.await(); 

            r.run(); 

          } 

          catch(InterruptedException e) { e.printStackTrace(); } 

        } 

      }; 

      threads.add(t); 

      t.start(); // also start the thread (it will await at latch) 

    } 

 

    // GO! (release all the threads) 
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    startGate.countDown(); 

  } 

} 

Code Listing 61 - Java Translation of wiring code above (Application.javab). 

 

The wiring code here is very similar to that in section 4.1.2.2. Here an IntBufferCell object is 

also instantiated. Additionally, two more Boundary objects are created which correspond to 

the two boundaries of the IntBufferCell that has been introduced into the composition. 

Another point to note is that there is an extra NormalWire object and the NormalWire objects 

end-point boundaries are set to different Boundary objects to that seen in section 4.1.2.2, 

since there is an extra component and a different wiring between them. 
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Appendix F  

Wire Implementations 

F.1 NormalWire Implementation 
package javab.runtime; 

 

import java.util.concurrent.Exchanger; 

import java.util.concurrent.atomic.AtomicInteger; 

 

public class NormalWire<T> implements Wire<T> { 

  private final Object wireLock; 

  private Boundary<T> sender; 

  private Boundary<T> receiver; 

  private final Exchanger<T> valueExchanger; 

  @GuardedBy("wireLock") private boolean syncIncomplete; 

  private volatile boolean handlerBlocked; 

 

  private final Object sendMethodLock; 

  private final Object receiveMethodLock; 

 

  private AtomicInteger numThreadsOnWire; // 0 <= x <= 2 

 

  public NormalWire() { 

    this.wireLock = new Object(); 

 

    this.sender = null; 

    this.receiver = null; 

 

    this.valueExchanger = new Exchanger<T>(); 

    this.syncIncomplete = false; 

    this.handlerBlocked = false; 

 

    this.sendMethodLock = new Object(); 

    this.receiveMethodLock = new Object(); 

 

    this.numThreadsOnWire = new AtomicInteger(0); 

  } 

 

  public synchronized void setBoundaries(Boundary<T> sender, Boundary<T> receiver) 

{ 

    this.sender = sender; 

    this.receiver = receiver; 

  } 

 

  public void send(Boundary<T> sendingBoundary, T value) { 

    synchronized(sendMethodLock) { // acquire "send lock" so that no two threads 

can do a send() at the same time 

 

      // break the symmetry 

      boolean runTheHandler; 

      synchronized(wireLock) { 

        runTheHandler = !syncIncomplete; 

        syncIncomplete = true; 
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        numThreadsOnWire.incrementAndGet(); 

      } 

 

 

      // first to tug 

      if(runTheHandler) { 

        // possibility of not being able to acquire component's lock 

        boolean done = false; 

        while(!done) { 

          // if we succeed in grabbing the lock 

          if(receiver.getOwnerComponent().getLock().tryLock()) { 

            receiver.runHandler(value); 

 

            done = true; 

          } 

          // if we fail to grab the lock 

          else { 

            if(numThreadsOnWire.get() == 1) { 

              Thread.yield(); 

            } 

            if(numThreadsOnWire.get() == 2) { 

              // pretend we were running a handler and blocked 

              synchronized(wireLock) { 

                this.handlerBlocked = true; 

                wireLock.notifyAll(); 

              } 

 

              // proceed to the exchange 

              try { valueExchanger.exchange(value); } 

              catch (InterruptedException e) { e.printStackTrace(); } 

 

              // decrement numThreadsOnWire now that exchange/sync is done 

              numThreadsOnWire.decrementAndGet(); 

 

              done = true; 

            } 

          } 

        } 

      } 

      // second to tug 

      else { 

        boolean startNewSync; 

        synchronized(wireLock) { 

          // while handler has neither finished nor blocked, wait 

          while(syncIncomplete && !handlerBlocked) { 

            // wait until notified 

            try { wireLock.wait(); } 

            catch (InterruptedException e) { e.printStackTrace(); } 

          } 

 

          // if the handler blocked, don't start new sync 

          if(handlerBlocked) 

            startNewSync = false; 

          // else handler must have completed 

          else 

            startNewSync = true; 

 

          // reset flags 

          syncIncomplete = false; 

          handlerBlocked = false; 

        } 

 

        // if the sync completed, then start a new sync ('re-tug') 

        if(startNewSync) { 

          // decrement BEFORE doing the recursive call 

          numThreadsOnWire.decrementAndGet(); 

          send(sendingBoundary,value); 
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        } 

        // otherwise, the handler must have blocked, so meet at exchanger 

        else { 

          try { valueExchanger.exchange(value); } 

          catch (InterruptedException e) { e.printStackTrace(); } 

 

          // decrement numThreadsOnWire now that exchange/sync is done 

          numThreadsOnWire.decrementAndGet(); 

        } 

      } 

    } 

  } 

 

  public T receive(Boundary<T> receivingBoundary) { 

    T valueReceived = null; 

    synchronized(receiveMethodLock) { 

 

      // break the symmetry 

      boolean runTheHandler; 

      synchronized(wireLock) { 

        runTheHandler = !syncIncomplete; 

        syncIncomplete = true; 

 

        numThreadsOnWire.incrementAndGet(); 

      } 

 

      // first to tug 

      if(runTheHandler) { 

        // possibility of not being able to acquire component's lock 

        boolean done = false; 

        while(!done) { 

          // if we succeed in grabbing the lock 

          if(sender.getOwnerComponent().getLock().tryLock()) { 

            valueReceived = sender.runHandler(null); 

            done = true; 

          } 

          // if we fail to grab the lock 

          else { 

            if(numThreadsOnWire.get() == 1) { 

              Thread.yield(); 

            } 

            if(numThreadsOnWire.get() == 2) { 

              // pretend we were running a handler and that we blocked 

              synchronized(wireLock) { 

                this.handlerBlocked = true; 

                wireLock.notifyAll(); 

              } 

 

              // proceed to the exchange 

              try { valueReceived = valueExchanger.exchange(null); } 

              catch (InterruptedException e) { e.printStackTrace(); } 

 

              // decrement numThreadsOnWire now that exchange/sync is done 

              numThreadsOnWire.decrementAndGet(); 

 

              done = true; 

            } 

          } 

        } 

      } 

      // second to tug 

      else { 

        boolean startNewSync; 

        synchronized(wireLock) { 

          // while handler has neither finished nor blocked, wait 

          while(syncIncomplete && !handlerBlocked) { 

            // wait until notified 

            try { wireLock.wait(); } 
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            catch (InterruptedException e) { e.printStackTrace(); } 

          } 

 

          // if the handler blocked then don't start new sync 

          if(handlerBlocked) 

            startNewSync = false; 

          // else the handler must have completed 

          else 

            startNewSync = true; 

 

          // reset flags 

          syncIncomplete = false; 

          handlerBlocked = false; 

        } 

 

        // if sync completed, then need to start a new tug 

        if(startNewSync) { 

          // decrement BEFORE doing the recursive call 

          numThreadsOnWire.decrementAndGet(); 

          valueReceived = receive(receivingBoundary); 

        } 

        // otherwise, the handler must have blocked 

        else { 

          try { valueReceived = valueExchanger.exchange(null); } 

          catch (InterruptedException e) { e.printStackTrace(); } 

 

          // decrement numThreadsOnWire now that exchange/sync is done 

          numThreadsOnWire.decrementAndGet(); 

        } 

      } 

    } 

    return valueReceived; 

  } 

 

  /** 

   * Called by a handler when it encounters a __block__; statement. 

   * It will cause the component running the handler to block at 

   * the Exchanger until the other componen tugs back via a call 

   * to valueExchanger.exhange(). 

   */ 

  public T blockHandler(T sentValue, Boundary<T> sendingOrReceivingBoundary, 

Component componentToUnlock) { 

    synchronized(wireLock) { 

      numThreadsOnWire.decrementAndGet(); 

      componentToUnlock.getLock().unlock(); 

      this.handlerBlocked = true; 

      wireLock.notifyAll(); 

    } 

 

    T valueReceived = null; 

    try { valueReceived = valueExchanger.exchange(sentValue); } 

    catch (InterruptedException e) { e.printStackTrace(); } 

    return valueReceived; 

  } 

 

  /** 

   * Called by a handler to notify us when it has finished 

   * without blocking. 

   */ 

  public void finishHandler(Boundary<T> sendingOrReceivingBoundary, Component 

componentToUnlock) { 

    synchronized(wireLock) { 

      numThreadsOnWire.decrementAndGet(); 

      componentToUnlock.getLock().unlock(); 

      this.syncIncomplete = false; 

      wireLock.notifyAll(); 

    } 

  } 
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} 

Code Listing 62 - NormalWire Java Implementation 

F.2 CopyWire Implementation 
package javab.runtime; 

 

import java.util.HashMap; 

import java.util.Map; 

import java.util.concurrent.BrokenBarrierException; 

import java.util.concurrent.CyclicBarrier; 

import java.util.concurrent.ExecutorService; 

import java.util.concurrent.Executors; 

import java.util.concurrent.Semaphore; 

 

public class CopyWire<T> implements Wire<T> { 

  private final Object wireLock; 

 

  private Boundary<T> sender; 

  private Boundary<T> receiver1; 

  private Boundary<T> receiver2; 

  private final ExecutorService exec; // executor for thread pool of threads that 

run the handlers 

  private final CyclicBarrier barrier; 

 

  private volatile T valueToTransfer; 

  @GuardedBy("wireLock") private boolean syncIncomplete; // state of entire 

synchronisation 

  private final Object syncIncompleteCondition; // condition variable on state of 

syncIncomplete 

 

  // partial synchronisations between subgroups of the 3 parties (i.e. between sets 

of two parties) 

  // state of "partial" synchronizations 

  @GuardedBy("wireLock") private boolean[] partialSyncHandlerFinished; 

  @GuardedBy("wireLock") private boolean[] partialSyncHandlerBlocked; 

  private Semaphore[] handlerBlockedConditionVar; 

 

  // mappings of boundaries to indices into the arrays above 

  private Map<Boundary<T>,Integer> boundaryToArrayIndex; 

 

  private boolean sendersHandlerRun; // has sender's handler run? (n/a when sender 

first to tug) 

  private Object sendersHandlerRunCondition; // condition variable on above 

variable 

 

  public CopyWire() { 

    this.wireLock = new Object(); 

    this.sender = null; 

    this.receiver1 = null; 

    this.receiver2 = null; 

    this.valueToTransfer = null; 

    this.exec = Executors.newFixedThreadPool(2); 

 

    this.barrier = new CyclicBarrier(3, new Runnable() { 

      public void run() { 

        // mark the synchronisation as now being complete 

        syncIncomplete = false; 

        synchronized(syncIncompleteCondition) { 

          // may be up to 2 threads waiting on this condition variable 

          // (if both second and third tuggers were 'late' for current 

synchronization) 

          syncIncompleteCondition.notifyAll(); 

        } 

      } 

    }); 
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    this.syncIncomplete = false; 

    this.syncIncompleteCondition = new Object(); 

 

    this.partialSyncHandlerFinished = new boolean[3]; 

    this.partialSyncHandlerBlocked = new boolean[3]; 

    this.handlerBlockedConditionVar = new Semaphore[3]; 

 

    // initialise values 

    for(int i = 0; i < 3; i++) { 

      this.partialSyncHandlerFinished[i] = false; 

      this.partialSyncHandlerBlocked[i] = false; 

      this.handlerBlockedConditionVar[i] = new Semaphore(0); 

    } 

 

    this.boundaryToArrayIndex = new HashMap<Boundary<T>,Integer>(); 

 

    this.sendersHandlerRun = false; 

    this.sendersHandlerRunCondition = new Object(); 

  } 

 

  public synchronized void setBoundaries(Boundary<T> sender, Boundary<T> receiver1, 

Boundary<T> receiver2) { 

    this.sender = sender; 

    this.receiver1 = receiver1; 

    this.receiver2 = receiver2; 

 

    // initialise mappings here because sender, receiver1 and receiver2 not 

available until setBoundaries is called 

    this.boundaryToArrayIndex.put(this.sender, 0); 

    this.boundaryToArrayIndex.put(this.receiver1, 1); 

    this.boundaryToArrayIndex.put(this.receiver2, 2); 

  } 

 

 

  // (sendingBoundary parameter only required for the other version CopyWire with 

two senders and one receiver) 

  public void send(Boundary<T> sendingBoundary, final T value) { 

    valueToTransfer = value; 

 

    // do..while used here as a better means of starting a new sync. 

    boolean startNewSync; 

    do { 

      // initialise/reset startNewSync 

      startNewSync = false; 

 

      // break the symmetry 

      boolean firstToTug; 

      synchronized(wireLock) { 

        firstToTug = !syncIncomplete; 

        syncIncomplete = true; 

      } 

 

      // if the SENDER WAS FIRST to tug {Development Note: 'tryLock' stuff removed 

for simplicity; thus deadlock may be possible} 

      if(firstToTug) { 

        // run both receivers' handlers in separate threads 

 

        // start thread pool going! 

        exec.execute(new Runnable() { 

          public void run() { 

            receiver1.getOwnerComponent().getLock().lock(); 

            receiver1.runHandler(valueToTransfer); // returns dummy value that we 

ignore 

            // at this point, receiver1's handler has either finished without 

blocking or it has blocked-then-unblocked-by-receiver1 

            // unlock occurs in blockHandler() or finishedHandler() methods 
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            // if handler finished without blocking, then wait at the barrier (in 

this thread) 

            boolean handlerFinishedWithoutBlocking; 

            int index = boundaryToArrayIndex.get(receiver1); 

            synchronized(wireLock) { 

              handlerFinishedWithoutBlocking = partialSyncHandlerFinished[index]; 

            } 

 

            if(handlerFinishedWithoutBlocking) { 

              try { barrier.await(); } 

              catch (InterruptedException e) { e.printStackTrace(); } 

              catch (BrokenBarrierException e) { e.printStackTrace(); } 

            } 

          } 

        }); 

        exec.execute(new Runnable() { 

          public void run() { 

            receiver2.getOwnerComponent().getLock().lock(); 

            receiver2.runHandler(valueToTransfer); // returns dummy value that we 

ignore 

            // at this point, receiver2's handler has either finished without 

blocking or it has blocked-then-unblocked-by-receiver2 

            // unlock occurs in blockHandler() or finishedHandler() methods 

 

            // if handler finished without blocking, then wait at the barrier (in 

this thread) 

            boolean handlerFinishedWithoutBlocking; 

            int index = boundaryToArrayIndex.get(receiver2); 

            synchronized(wireLock) { 

              handlerFinishedWithoutBlocking = partialSyncHandlerFinished[index]; 

            } 

 

            if(handlerFinishedWithoutBlocking) { 

              try { barrier.await(); } 

              catch (InterruptedException e) { e.printStackTrace(); } 

              catch (BrokenBarrierException e) { e.printStackTrace(); } 

            } 

          } 

        }); 

 

        // wait at barrier until release is caused by everyone arriving 

        try { barrier.await(); } 

        catch (InterruptedException e) { e.printStackTrace(); } 

        catch (BrokenBarrierException e) { e.printStackTrace(); } 

        // when barrier trips, imagine barrier action happening here... 

      } 

      // if SENDER WAS SECOND OR THIRD to tug 

      else { 

        // (NOTE: no running of handlers takes place) 

 

        int index = boundaryToArrayIndex.get(sendingBoundary); 

 

        // wait and see whether the handlers run by the first guy finished or 

blocked 

        boolean handlerBlocked,handlerFinished; 

        synchronized(wireLock) { 

          // while handler has neither finished nor blocked, wait 

          while(!partialSyncHandlerFinished[index] && 

!partialSyncHandlerBlocked[index]) { 

            // wait until notified 

            try { wireLock.wait(); } 

            catch (InterruptedException e) { e.printStackTrace(); } 

          } 

 

          handlerBlocked = partialSyncHandlerBlocked[index]; 

          handlerFinished = partialSyncHandlerFinished[index]; 

        } 
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        if(handlerBlocked) { 

          // unblock them 

          handlerBlockedConditionVar[index].release(); 

          // wait at barrier (we DON'T wait at the barrier in the case where they 

finished the handler) 

          try { barrier.await(); } 

          catch (InterruptedException e) { e.printStackTrace(); } 

          catch (BrokenBarrierException e) { e.printStackTrace(); } 

        } 

 

        if(handlerFinished) { 

          startNewSync = true; 

 

          synchronized(syncIncompleteCondition) { 

            // wait until entire synchronization is complete; when it is complete 

then at that point start a new sync 

            while(syncIncomplete) { 

              try { 

                syncIncompleteCondition.wait(); 

              } 

              catch (InterruptedException e) { e.printStackTrace(); } 

            } 

          } 

          // the above will only be released from wait until the barrier action has 

been executed 

        } 

 

        synchronized(wireLock) { 

          // reset flags (only one of these will truly be necessary) 

          partialSyncHandlerFinished[index] = false; 

          partialSyncHandlerBlocked[index] = false; 

        } 

      } 

    } while(startNewSync); 

 

    // returns nothing 

  } 

 

  // the two receivers 'share' (i.e. both call) this method 

  public T receive(Boundary<T> receivingBoundary) { 

    // do..while used here as a better means of starting a new sync. 

    boolean startNewSync; 

    do { 

      // initialise/reset startNewSync 

      startNewSync = false; 

 

      // break the symmetry 

      boolean firstToTug; 

      synchronized(wireLock) { 

        firstToTug = !syncIncomplete; 

        syncIncomplete = true; 

      } 

 

      // if this receiver WAS FIRST to tug {Development Note: 'tryLock' stuff 

removed for simplicity; thus deadlock may be possible} 

      if(firstToTug) { 

        exec.execute(new Runnable() { 

          public void run() { 

            sender.getOwnerComponent().getLock().lock(); 

            valueToTransfer = sender.runHandler(null); 

            // unlock occurs in blockHandler() or finishedHandler() methods 

 

            // notify the other spawned thread that will run the other receiver's 

handler that the sender's handler has been run 

            synchronized(sendersHandlerRunCondition) { 

              sendersHandlerRun = true; 

              sendersHandlerRunCondition.notifyAll(); 

            } 
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            // if handler finished without blocking, then wait at the barrier (in 

this thread) 

            boolean handlerFinishedWithoutBlocking; 

            int index = boundaryToArrayIndex.get(sender); 

            synchronized(wireLock) { 

              handlerFinishedWithoutBlocking = partialSyncHandlerFinished[index]; 

            } 

 

            if(handlerFinishedWithoutBlocking) { 

              try { barrier.await(); } 

              catch (InterruptedException e) { e.printStackTrace(); } 

              catch (BrokenBarrierException e) { e.printStackTrace(); } 

            } 

          } 

        }); 

 

        // determine who the other receiver is who's handler will need to be run 

        final Boundary<T> otherReceiver; 

        if(receivingBoundary == receiver1) { otherReceiver = receiver2; } 

        else if(receivingBoundary == receiver2) { otherReceiver = receiver1; } 

        else { throw new AssertionError("The boundary passed to the receive() 

method was neither of the receiving boundaries specified originally."); } 

 

        exec.execute(new Runnable() { 

          public void run() { 

            // wait until sender's handler has been run and its return value set to 

valueToTransfer 

            synchronized(sendersHandlerRunCondition) { 

              while(!sendersHandlerRun) { 

                try { 

                  sendersHandlerRunCondition.wait(); 

                } 

                catch (InterruptedException e) { e.printStackTrace(); } 

              } 

              // reset flag for the next sync 

              sendersHandlerRun = false; 

            } 

 

            otherReceiver.getOwnerComponent().getLock().lock(); 

            otherReceiver.runHandler(valueToTransfer); 

            // unlock occurs in blockHandler() or finishedHandler() methods 

 

            // if handler finished without blocking, then wait at the barrier (in 

this thread) 

            boolean handlerFinishedWithoutBlocking; 

            int index = boundaryToArrayIndex.get(otherReceiver); 

            synchronized(wireLock) { 

              handlerFinishedWithoutBlocking = partialSyncHandlerFinished[index]; 

            } 

 

            if(handlerFinishedWithoutBlocking) { 

              try { barrier.await(); } 

              catch (InterruptedException e) { e.printStackTrace(); } 

              catch (BrokenBarrierException e) { e.printStackTrace(); } 

            } 

          } 

        }); 

 

        // wait at barrier until release is caused by everyone arriving 

        try { barrier.await(); } 

        catch (InterruptedException e) { e.printStackTrace(); } 

        catch (BrokenBarrierException e) { e.printStackTrace(); } 

        // when barrier trips, imagine barrier action happening here... 

      } 

      // if this receiver WAS SECOND OR THIRD to tug 

      else { 

        // NOTE: no running of handlers takes place 
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        int index = boundaryToArrayIndex.get(receivingBoundary); 

 

        // wait and see whether the handlers run by the first guy finished or 

blocked (the first guy was either the sender or the other receiver) 

        boolean handlerBlocked,handlerFinished; 

        synchronized(wireLock) { 

          // while handler has neither finished nor blocked, wait 

          while(!partialSyncHandlerFinished[index] && 

!partialSyncHandlerBlocked[index]) { 

            // wait until notified 

            try { wireLock.wait(); } 

            catch (InterruptedException e) { e.printStackTrace(); } 

          } 

 

          handlerBlocked = partialSyncHandlerBlocked[index]; 

          handlerFinished = partialSyncHandlerFinished[index]; 

        } 

 

        if(handlerBlocked) { 

          // unblock them 

          handlerBlockedConditionVar[index].release(); 

          // wait at barrier (we DON'T wait at the barrier in the case where they 

finished the handler) 

          try { barrier.await(); } 

          catch (InterruptedException e) { e.printStackTrace(); } 

          catch (BrokenBarrierException e) { e.printStackTrace(); } 

        } 

 

        if(handlerFinished) { 

          startNewSync = true; 

 

          synchronized(syncIncompleteCondition) { 

            // wait until entire synchronization is complete; when it is complete 

then at that point start a new sync 

            while(syncIncomplete) { 

              try { 

                syncIncompleteCondition.wait(); 

              } 

              catch (InterruptedException e) { e.printStackTrace(); } 

            } 

          } 

          // the above will only be released from wait until the barrier action has 

been executed 

        } 

 

        synchronized(wireLock) { 

          // reset flags (only one of these will truly be necessary) 

          partialSyncHandlerFinished[index] = false; 

          partialSyncHandlerBlocked[index] = false; 

        } 

      } 

    } while(startNewSync); 

 

    return valueToTransfer; 

  } 

 

  /** 

   * Called by handlers that complete the synchronization by blocking (although the 

synchronization won't be complete until unblocked). 

   * 

   * This method may be called by a handler that corresponds to a sending or 

receiving boundary -- hence there is both a parameter and a return value for the 

   * sent and received values. A handler that calls this method will only make use 

of the parameter or the return value, but not both. 

   * 

   * This method and the finishedHandler() method get called twice between them in 

a single synchronization -- once by the second tugger and once by the third tugger. 
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   * 

   * This could be called simultaneously by the 2 threads that are running the 

handlers e.g. if the sender tugged first, then there could be two threads 

   * running receiver1 and receiver2's handlers. 

   * 

   * @param sentValue Value to be sent (only meaningful for senders) 

   * @param boundary The sending or receiving boundary that is calling this 

blockHandler method. Only used in CopyWire (not used/needed in NormalWire). 

   * @param componentToUnlock The component that owns the handler (who's associated 

lock needs to be released before the actual blocking occurs) 

   * @return Value to be received (only meaningful for receivers) 

   */ 

  public T blockHandler(T sentValue, Boundary<T> boundary, Component 

componentToUnlock) { 

    // appropriate index into arrays 

    int index = boundaryToArrayIndex.get(boundary); 

 

    synchronized(wireLock) { 

      componentToUnlock.getLock().unlock(); 

      // indicate that sync will complete by blocking-then-unblocking (rather than 

finishing the handler) 

      this.partialSyncHandlerBlocked[index] = true; 

      wireLock.notifyAll(); 

    } 

 

    // BLOCK (or don't block if someone's already ready for us; because this is a 

semaphore) 

    handlerBlockedConditionVar[index].acquireUninterruptibly(); 

 

    return valueToTransfer; 

  } 

 

 

  /** 

   * Called by a handlers that complete the synchronisation by finishing the 

handler without blocking. 

   * 

   * This method and the blockHandler() method get called twice between them in a 

single synchronisation -- once by the second tugger and once by the third tugger. 

   * 

   * @param boundary The sending or receiving boundary that is calling this 

finishedHandler method. Only used in CopyWire (not used/needed in NormalWire). 

   * @param componentToUnlock The component that owns the handler (who's associated 

lock needs to be released) 

   */ 

  public void finishHandler(Boundary<T> boundary, Component componentToUnlock) { 

    // appropriate index into arrays 

    int index = boundaryToArrayIndex.get(boundary); 

 

    synchronized(wireLock) { 

      componentToUnlock.getLock().unlock(); 

      this.partialSyncHandlerFinished[index] = true; 

      wireLock.notifyAll(); 

    } 

  } 

 

  /** 

   * Necessary method for the main application thread to call when all the normal 

program threads have terminated and the only remaining nondaemon 

   * threads are those in the Executor thread pool of this CopyWire. Thus a 

shutdown method needs to be exposed so that the program can 

   * ask for the executor / thread pool to be shutdown. This is so that the JVM may 

exit -- the JVM does not exit until all nondaemon threads have 

   * terminated. 

   */ 

  public void shutdownExecutor() { 

    // normal approach of awaitTermination() and shutdown() not working 

    // temporary solution 
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    exec.shutdownNow(); 

  } 

} 
Code Listing 63 - CopyWire Java Implementation 

F.3 Flow charts of NormalWire 

The original NormalWire implementation suffered from deadlock. The fundamental cause of 

the deadlock is due to the acquisition of a component's locks, which must be acquired before 

running any handler of that component. Component locks are acquired to ensure atomicity of 

handler execution with respect to other handlers in the component. 

 

The following subsections show flow charts representing the NormalWire logic for both the 

deadlock-prone and deadlock-free versions of NormalWire. An example is also provided.  
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F.3.1 Flow charts for Deadlock-Prone NormalWire 

 
Figure 59 - Flow chart showing logic of send() method of deadlock-prone NormalWire, annotated with 

corresponding code fragments 
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Figure 60 - Flow chart showing logic of receive() method of deadlock-prone NormalWire, annotated with 

corresponding code fragments.  
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F.3.2 Example Deadlock 

A specific scenario demonstrating how deadlock can occur in the deadlock-prone version of 

NormalWire is now given using the IntProducer-IntBufferCell-IntConsumer example: 

 

[PRODUCER THREAD] producer about to send() 

[CONSUMER THREAD] consumer about to receive() 

[PRODUCER THREAD] IntProducer1 (the sender) was first to tug and so is going to run the handler 

(but it must first succeed in acquiring the component lock of intBufferCell1 (the receiver)) 

[CONSUMER THREAD] IntConsumer1 (the receiver) was first to tug and so is going to run the 

handler (but it must first succeed in acquiring the component lock of intBufferCell1 (the sender)) 

[CONSUMER THREAD] Someone is running intBufferCell1's handler when trying to pull a value from 

it 

[CONSUMER THREAD] IBC intBufferCell1 is empty, so it will first receive() on its neighbour in order 

to get a value which it will then return to the pulling component. The IBC remains empty throughout. 

[CONSUMER THREAD] intBufferCell1 (the receiver) is second to tug and so is NOT going to run the 

handler but is going to wait to see whether the sender finishes the handler (sync is complete) or 

blocks in the handler (unblocking and transfer of value required and then sync is complete). 

DEADLOCK! 

 

Both IntProducer and IntConsumer are first to tug on their respective wires, with 

IntBufferCell in the middle. IntConsumer beats IntProducer1 to acquiring IntBufferCell's 

component lock and so may run IntBufferCell's (out!) handler. IntProducer1 is essentially left 

blocked on the P-IBC wire for IntBufferCell's component lock to be released so that 

InProducer can run IntBufferCell's (in?) handler. Meanwhile, when IntConsumer runs the  

out! handler, a synchronisation statement in the handler is encountered which causes a tug on 

the P-IBC wire. Since IntProducer is already first on that wire, the consumer thread will wait 

on the wire, expecting that IntProducer is busily running a handler in IntBufferCell. In reality, 

IntProducer is waiting for the IntBufferCell component lock so that it can run the handler. 

Thus the producer thread is waiting on a component lock which is held by the consumer 

thread. The consumer thread is waiting on the producer thread to finish running the 

IntBufferCell's in? handler, which cannot happen until the component lock is released. 

DEADLOCK. 

 

This scenario is also illustrated in the following flow charts. The flow charts should be taken 

together as the same execution of the program. The order of steps taken are numbered 

sequentially, with concurrent steps indicated with additional letters to distinguish them (e.g. 

1a, 1b). Execution begins in Figure 61 and Figure 62. 
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Figure 61 - IntProducer, when executing its run method, wants to synchronise with IntBufferCell. 

Therefore send() is run by the producer thread on the Wire between IntProducer and IntBufferCell. The 

numbers shown indicate the order of execution by threads (producer thread in this figure) (letters are 

used when two events occur simultaneously). 
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Figure 62 - IntConsumer, when executing its run method, wants to synchronise with IntBufferCell. 

Therefore receive() is run by the consumer thread on the Wire between IntConsumer and IntBufferCell. 

The numbers shown indicate the order of execution by threads (consumer thread in this figure) (letters 

are used when two events occur simultaneously). 

 



 

Wire Implementations   

145 

 

 
Figure 63 - IntBufferCell, when executing its out handler, wants to synchronise with IntProducer. 

Therefore receive() is run by the consumer thread (who is running that handler) on the Wire between 

IntBufferCell and IntProducer. The numbers shown indicate the order of execution by threads (consumer 

thread in this figure) (letters are used when two events occur simultaneously).  
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F.3.3 Flow charts for Deadlock-Free NormalWire 

 
Figure 64 - Flow chart showing logic of the corrected send() method of deadlock-free NormalWire, 

annotated with corresponding code fragments 
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Figure 65 - Flow chart showing logic of the receive() method of deadlock-free NormalWire, annotated 

with corresponding code fragments
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Appendix G  

List of Semantic Checks 

The following sections list the semantic checks performed. 

G.1 First Semantic Phase 

G.1.1 Component Definitions 

Component Definitions (in general) 

 SEMANTIC CHECK: checking that the names of components are distinct -- no two 

components can have same name/identifier 

 SEMANTIC CHECK: warning (rather than an error) if there is component definition 

which has NEITHER a run method NOR any boundary declarations. Such a 

component would be useless (with no run method of its own and no boundaries, it 

cannot run of its itself nor can other components synchronise with it). Notify the 

programmer of this! 

 (not implemented) SEMANTIC CHECK / TREE REWRITE: if there was is a 

boundary declared that has no corresponding handler then generate one for it (by 

rewriting the tree slightly). 

 

Boundary declarations 

 SEMANTIC CHECK: no two boundaries with same identifier (i.e. ensure this 

boundary identifier has not been used before). Boundary identifiers must be unique 

regardless of whether the rest of their signature is different (i.e. their types or 

direction). 

 

Run method declarations 

 SEMANTIC CHECK: ensure either zero (passive component) or one (active 

component) run method. No more than one run method is permitted. 

 

Handler declarations 

 SEMANTIC CHECK 1: this handler has not already been declared (i.e. at most a 

single handler can be declared per boundary) 

 SEMANTIC CHECK 2: there should exist a boundary with the same name as the 

handler 

 SEMANTIC CHECK 3: do the handler direction and type also match that of the 

boundary 

 

Outward synchronisation statements 

 SEMANTIC CHECK: identifier for boundary being sent on actually exists 
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Inward synchronisation expressions 

 SEMANTIC CHECK: identifier for boundary being received on actually exists 

G.1.2 Wiring Code 

Composition Declarations 

 SEMANTIC CHECK: composition has not already been declared 

 

Composition Expressions (reference to plain or composition component) 

 SEMANTIC CHECK: an identifier in a composition expression is either a reference 

to a plain or composition component. Thus check there exists a plain or composition 

component with that identifier (by looking up in symbol tables) 

 

Start statement 

 SEMANTIC CHECK: composition to be started, represented by an identifier, refers 

to a composition that exists (i.e. there is a composition that has been declared with 

that identifier). 

 

G.2 Second Semantic Phase 

The second semantic phase only performs wiring code checks. No further checks for 

component definitions is required. It ensures that the wiring specified by the programmer is 

valid. 

G.2.1 Wiring Code 

Composition Expressions 

 SEMANTIC CHECK: in sequential composition expression, ensure that the wirings 

between boundaries are all compatible. 

 SEMANTIC CHECK: a reference to a previously declared composition component 

must be checked to ensure that the composition component has actually been 

declared. 

 

Start statement 

 SEMANTIC CHECK: ensure no remaining/'dangling' left or right boundaries of this 

composition component that is being started. Otherwise it is a type error. 
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Appendix H  

Translator System Manual 

The translator itself can be found on the attached DVD-ROM. The instructions here are based 

on the examples and directory structure used on the DVD-ROM. However, for these 

commands to run successfully, the DVD directories should be copied to another writable file 

system (since the DVD-ROM is read-only, the translator will fail if attempts are made to 

write the generated Java files to the DVD). 

 

To simply run the pre-compiled translator without any rebuilding, then read only sections H.1 

and H.2. To rebuild the translator from source then also see section H.3. 

H.1 Minimum System requirements 

To simply run the pre-built translator on an input .javab or .javabc file: 

 Java 6 JDK (see: http://www.java.com/en/download/help/sysreq.xml) 

 ANTLR Parser Generator v3.3 (choose Complete ANTLR 3.3 Java binaries jar (all 

tools and Java runtime) at http://www.antlr.org/download.html); place this in a 

sensible directory (e.g. C:\ANTLR3.3\lib on Windows) 

o The CLASSPATH environment variable should be updated to include the path 

to the ANTLR runtime. Alternatively, Java's -cp option may be used instead. 

H.2 Running the translator 

H.2.1 Technical Restriction in Translating Wiring Code 

To translate an application/wiring code file (.javab), the current implementation requires that 

all component definition files (.javabc) that are referenced in the wiring code file be 

translated in the same execution of the translator. Running the translator on the referenced 

components beforehand in a different execution of the translator will not help - all referenced 

components must be translated along with the wiring code file(s) in the same execution of the 

translator. Trying to do so will result in the translation failing. 

 

This is a technical restriction due to the way the translator is implemented. Translating a 

single component definition file is allowable, however this is rarely of any use because any 

meaningful program will include wiring/application code file, and due to the technical 

restriction noted above, when that wiring code file is translated the component definition will 

also need to be (re)translated in the process. 

H.2.2 Running 

The main translator program is JavaBTranslator.class. The translator can take several 

arguments, most of which are optional: 

 -f or --files (compulsory) 
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Follow this option with the .javab and .javabc files to be translated 

 -o or --output 

Output directory that the output from the translator should be put. If the directory does 

not exist, then it is created. If this option is not given then the current directory is used 

as the output directory. 

 -a or --ast 

Setting this option is used for debugging purposes. When switched on, this option will 

print a string representation of the Abstract Syntax Tree (AST) produced by each 

internal phase of the translator.  

 -p or --prettyast 

The same as -a/--ast  but which uses the GraphViz dot program to produce a .png 

image of the AST. This option assumes that dot is installed on the system and also on 

the CLASSPATH. The .png image is placed in the output directory under a new 

directory 'ast-output'. 

 -c or --javac 

Setting this option causes the translator to run the generated output (.java files) 

through javac, generating .class files. Follow this option with the path to the javab 

standard runtime library (which is inside /bin). If a following path is not given, the 

output directory will be used by default. 

 

To run the translator for a real application, cd into /bin, and run: 
java translator.JavaBTranslator -o ../translator-

generated/example_programs/02_P.IBC.C/ -f ../tests/example_programs/02_P.IBC.C/* 

where the test example chosen might be different. 

 

To translate and compile (using javac) in one command run: 
java translator.JavaBTranslator -c ./ -o ../translator-

generated/example_programs/02_P.IBC.C/ -f ../tests/example_programs/02_P.IBC.C/* 

 

To manually compile using javac, first cd into the directory containing the generated Java 

files, and run: 
javac -cp .;path/to/javab/runtime/lib/ *.java 

The classpath must be set to include the required Javab runtime library. To compile the 

example above would require (assuming the current working directory is translator-

generated/example_programs/02_P.IBC.C/): 
 javac -cp .;../../../bin/ *.java 

 

To then run the resulting Java program: 
java -cp .;path/to/javab/runtime/lib/ Application 

where Application is the name of the class that had the main() method within it. The directory 

containing the generated .class files is also specified in the classpath in addition to the path to 

the runtime library. Here the current directory contains the .class files. The above example 

would require: 
 java -cp .;../../../bin/ Application 

H.3 Building from Source 

To build the translator from its source, one can build using Eclipse or manually. 

 

To build the translator from within Eclipse, the ANTLRIDE plugin must be installed. The 

antlr-3.3-complete.jar file (ANTLR runtime) needs to be added to the build path of the 

project in order to do this. The ANTLR grammars can be built just by saving them. The 

translator's Java files generated by ANTLR are automatically compiled in/by Eclipse. 
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To build manually take the following steps: 

H.3.1 Generating the Parsers from Grammars 

1. Navigate to the /src directory awhich contains the grammars and supporting Java 

classes. 

2. First, run the ANTLR tool on the grammar files in that directory to generate the 

parsers written in Java: 
 java org.antlr.Tool -o ../antlr-generated *.g 

This generates .tokens files in addition to the .java files, putting both into the /antlr-

generated directory.  

H.3.2 Compiling the Parsers 

3. In /src, copy JavaBTranslator.java into /antlr-generated 

4. Navigate to the /antlr-generated directory. 

5. Compile the ANTLR's generated .java files by running: 
javac -d ../bin -cp .;../src;C:/antlr-3.3/lib/antlr-3.3-complete.jar 

*.java 

 

Create the /bin directory if not done already. 

This assumes that the ANTLR jar is stored in the path used above. 

The -d option tells javac the directory to output all the .class files. 

6. Finally, copy JavaBTemplates.stg from /src into /bin 

 

 

The following webpages may be consulted for help when running java and javac on 

Windows: 

 http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/java.html 

 http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/javac.html 
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Appendix I  

DVD Contents 

/antlr-runtime 

/JavaBTranslator 

 /antlr-generated   

  /translator 

 /bin 

 /src 

  /javab         

   /runtime 

   /std_comp 

  /junittests 

  /translator 

 /tests 

 /translator-generated 

 /yang-java-grammar 

CONTENTS.txt 

translatorSystemManual.pdf 

 

 

The precise contents of the above directories is contained in the CONTENTS.txt file on the 

DVD-ROM. 

 

The most important directory to note is /JavaBTranslator/src/translator which contains the 

translator source code files (all except JavaBTranslator.stg). 

 

The /JavaBTranslator directory is also an Eclipse project and thus may be imported into 

Eclipse if desired. (To build the ANTLR grammars from within Eclipse, the ANTLRIDE 

plugin must be installed. The antlr-3.3-complete.jar file (ANTLR runtime) needs to be added 

to the build path of the project in order to do this). 

 

translatorSystemManual.pdf contains a copy of Appendix H. 


