
Università di Bologna

Elaborato di Programmazione ad oggetti

Java software to set and play different polyomino
based puzzles

Author:

Di Luigi William

18 maggio 2014

1 Introduction

What is a polyomino based puzzle?

Polyomino based puzzles are just like normal puzzles, but they are played using polyominoes.
They’ve been around since at least 1907. Sir Arthur C. Clarke was fascinated by them. They came
close to being featured in the movie 2001: A Space Odyssey (1968) in the form of a variation of the
board game “Pentominoes”, but were replaced at the last minute by chess.

Like many puzzles in recreational mathematics, polyominoes raise many combinatorial problems.
The first one I encountered was the problem of determining the maximum number of V-pentominoes
(or the densest packing) covering the cells of the square N × N . I had the opportunity to tackle for
some time a real wooden version of this puzzle where N = 12 (for such a board it’s possible to pack
as much as 27 pieces)1. Later I decided to clone this as a Python game2 in order to try to solve it.
Obviously, I didn’t manage to do so. Here is what that little program looked like:

1 http://oeis.org/A214294
2 https://github.com/wil93/pentomino-cover-game

1

http://oeis.org/A214294
https://github.com/wil93/pentomino-cover-game

Later on, I decided to actually build it with my uncle’s help:

Once you empty the box it’s funny to see people struggling to put all 27 pieces back in. The
complexity of this puzzle comes from the fact that, for N = 12, the solution is unique under rotation
and reflection.

Another somewhat interesting problem regarding pentominoes (the one featured in the picture
about 2001: A Space Odyssey) is called, without much imagination, “Pentominoes”. It is a nim-like
board game where two or more players alternate placing a pentomino on the board, avoiding overlapping
any piece placed earlier. The one that can’t make a move loses.

The two-player version of “Pentominoes” has been weakly solved in 1996 by Hilarie Orman. It was
proved to be a first player win by examining around 22 billion board positions3.

Why did you rewrite the existing software?

The Python clone I wrote for the first puzzle turned out to be just fine for what I wanted to achieve.
The problem is that, since the program wasn’t designed with OOP principles in mind, if now I want
to play a slightly different pentomino based puzzle then I would need to heavily change the codebase.

In particular, one could easily identify the following design flaws:

No modularity
The program is literally just a single file containing lots of routines: this reflects badly on code
maintenance. Some time ago I was demonstrating that puzzle to some high school students and
I needed to quickly add a temporary “cheat code” that automatically solved the puzzle. Not so
difficult but, needless to say, with a modular codebase I would have probably done it faster.

Poor code reusing
For example, in four different routines (checkFree, doPaint, setBusy and addPentomino) you can
find this exact piece of code:

for i in xrange(self.numPieces):
new_x = x + self.pos[self.rotation][i][0]
new_y = y + self.pos[self.rotation][i][1]
Do stuff with (new_x, new_y) ...

3 Hilarie K. Orman. Pentominoes: A First Player Win (Pdf).

2

http://www.msri.org/publications/books/Book29/files/orman.pdf

Which could be rewritten in a much nicer way using iterators. Let’s not talk about the heavy
code duplication found in the drawCell routine.

No encapsulation
Every routine has access to the full game state. For example: the checkFree routine, which only
purpose is to check whether a cell may or not be a valid spot to place an entire pentomino, has
the faculty to change the window title.

In addition to plain design flaws, another motivation for an OOP rewrite of the software could be to
allow multiplayer gaming (for example, in “Pentominoes”), possibly through a local network.

2 Overall analysis

We want the new software to make it easy to code different types of games. Strictly speaking, we
want a Java framework for implementing polyomino based puzzles. This framework should be written
as much modular as possible, in order to allow further customization. In particular, we detail the
following requirements for such a framework:

• It shall be easy to code different polyominoes, thus each one of them shall specify its shape, color
and name in a simple ASCII text file.

• It shall be possible to customize the shape and behavior of the grid.
• The game-player interaction shall be mediated by an entity which shall support, if needed, more

than one player.

In order to demonstrate the framework, I decided to support with the minimal amount of effort
per game every one of the following games (upon selection from a dedicated “main menu”):

� Twenty-seven
This is the first puzzle described in the introduction. It is characterized by:

• The only available polyomino is the V-pentomino (27 copies of it).
• The game is played on a rectangular 12× 12 grid.
• There is only one (local) player.

� Crucitetris
This is similar to the first puzzle, but instead of a “best fit”, the user has to find a perfect fit,
given that some of the cells are not usable. It is characterized by:

• A subset of all tetrominoes and pentominoes are available (in a limited quantity).
• The game is played on a rectangular grid, in which some of the cells are not usable.
• There is only one (local) player.

� Pentominoes
As described in the introduction, this is a two player game. It is characterized by:

• All pentominoes are available (not limited in quantity).
• The game is played on a rectangular 8× 8 grid.
• There are two players, one of which can be remotely connected via LAN.

Also, I decided to support every pentomino and tetromino. If another polyomino type is needed, it
will have to be prepared as described in the next section.

3

3 Implementation choices

The naming scheme I followed for polyominoes is the one that pairs each piece with the letter that
most closely resemble it4, the same I did for tetrominoes:

F I L N P T

U V W X Y Z

L N T O I

Each polyomino is identified by two files. For example, let’s consider the F-pentomino. Its descriptor
files are F.png which is a visual representation of the piece, and F.txt which defines its actual structure.
In general, the *.txt file is a simple ASCII text file consisting of 3+N lines, where N is the polyomino’s
area (that is, the number of blocks of which it is made):

1. The first line is the polyomino’s name. Any ASCII line will do.
2. The second line is the polyomino’s color, any CSS compliant5 color string will do.
3. The third line is the polyomino’s area N , it must be a positive integer.
4. Each one of the next N lines contains two space-separated non-negative integers i and j. These

are the coordinates of one of the N blocks of which the polyomino, centered in (0, 0), is made.

Here is what the F-pentomino looks like:

-1, 1-1, 0

0, 00, -1

1, 0

Here is what there’s inside F.txt:

F
#ddbb99
5
-1 0
-1 1
0 -1
0 0
1 0

4 (Gardner 1960, Golomb 1995)
5 http://www.w3.org/TR/css3-color/

4

http://www.w3.org/TR/css3-color/

4 Architectural design

The main design concept I chose to follow was to encode every game type in a specific instance of a
“GameState” class. This class would hold all of the information needed, like: polyominoes available, grid
type and so on. Also, the “view” of the game (which is made basically of GameField, GameFieldCtrl,
GridPainter) is decoupled from the “model” (which is the Grid). I didn’t make a sharp distinction
between MVC components in the project setup, though I might do it in the future.

4.1 Overall architecture

Follows an abstract representation of the overall software architecture. Red, blue and green boxes
stand for “view”, “model” and “controller” respectively.

Polyomino

PlayerMode

Grid

Player

MainLoop

PlayerLoop

GridPainter

Cell

GameField(Ctrl)

creates an
instance of

active
polyomino

GameState

decides player
sequence based on

is a
set of

decides succession
and number of

Game

visualizes

WinnerDecide

calls about
60 times/sec

characterized
by

Move

yields
specialized
by

encapsulates

specialized
by

specialized
by

creates an
instance of

4.2 Design patterns adopted

Whenever possible, the following software design patterns have been used:

� Strategy pattern
The GameState class is “the strategy” by which any game type is characterized. It defines what
grid, polyomino set and player mode will be used. It also encapsulates WinnerDecide, another
class which follows the strategy pattern, used to determine if the current user has won the match.

5

� Template method pattern
The AbstractGrid implements most of Grid interface’s methods by calling appropriately a few ab-
stract methods (the template methods). When a concrete Grid implementation will be needed,
the developer will extend this class and will only have to implement those missing methods.

� Decorator pattern
The ObstacledGrid class is a Grid decorator (its constructor takes a Grid instance, which will
be internally referenced). It adds new supported methods (in this case, just the addObstacle me-
thod) while every other call to Grid’s methods will be “redirected” to the internally referenced
Grid. Another example of decorator is the BrightAnimatedColor class, which decorates java-
fx.paint.Color. This class internally stores the “decoration parameters” only and, when a Color
has to be decorated, it must be passed as a parameter to its animateColor method.

� Observer pattern
The Grid interface is “observable”, since it allows any instance of GridObserver to be registered
as one of its observers. Whenever a change is made to the grid (i.e. a polyomino is removed) an
event is emitted to all observers. The GameFieldCtrl class implements GridObserver, thus it is
an “observer”.

� Singleton pattern
I don’t really like this pattern, as it tends to introduce global state and causes classes to be
difficult to test in isolation (as it is necessary to first initialize the singleton). However, I did use
it for the GameContainer class, which keeps references to the main loop, player loop, edit/undo
buttons and so on. I plan to reduce the content of this class (or even to completely delete it).

4.3 Packages’ organization

The project is composed of different packages. Each package wraps up related classes (i.e. the grid
interface and all concrete grids are in the same package). Follows a description for each package.

4.3.1 org.tilemup

The main package. It only contains the Game class, from which the application is instantiated.

<<Java Class>>

Game

org.tilemup

Game()

switchScene(Scene):void

main(String[]):void

start(Stage):void

stop():void

Game
This class is the entry point of the game. It extends the javafx.application.Application class. Its
switchScene method is used to replace the current scene with a given new one.

6

4.3.2 org.tilemup.game

This package contains basic constructs such as MainLoop and PlayerLoop, which together form the
game loop.

<<Java Class>>

PlayerLoop

org.tilemup.game

PlayerLoop(PlayerMode,Grid,Label)

run():void

<<Java Class>>

GameContainer

org.tilemup.game

getField():Canvas

setField(Canvas):void

getMainLoop():MainLoop

setMainLoop(MainLoop):void

getRoot():Node

setRoot(Node):void

getPolyToButton():List<Pair<Polyomino,ToggleButton>>

setPolyToButton(List<Pair<Polyomino,ToggleButton>>):void

getUndoBtn():Button

setUndoBtn(Button):void

getEditBtn():ToggleButton

setEditBtn(ToggleButton):void

getSelectablePolys():ToggleGroup

setSelectablePolys(ToggleGroup):void

getPlayerLoop():PlayerLoop

setPlayerLoop(PlayerLoop):void

getLastLocalMove():Move

setLastLocalMove(Move):void

getWinnerDecide():WinnerDecide

setWinnerDecide(WinnerDecide):void

<<Java Class>>

MainLoop

org.tilemup.game

MainLoop(Canvas,GameState,int,int)

handle(long):void

mouseMoved(double,double):void

scroll(ScrollEvent,boolean,boolean):void

mouseReleased(double,double):void

keyHandle(KeyCode,boolean):void

isEditMode():boolean

setEditMode(boolean):void

clearMousePosition():void

setShowPreview(boolean):void

setActivePolyomino(Polyomino):void

undoLastMove():void

toggleEditMode():void

getMove():Move

-playerLoop 0..1

-mainLoop 0..1

7

MainLoop
This class is responsible for user interaction with the puzzle: it handles the drawing of the grid
on the screen. It extends the javafx.animation.animationTimer class.

PlayerLoop
It’s responsible for the alternation of players during a match’s life cycle.

GameContainer
It’s a singleton whose job is to keep references to useful properties. Some of these properties
may be moved away, in the future.

4.3.3 org.tilemup.game.draw

It contains the ConcreteGridPainter class for drawing grid cells and polyominoes to the screen. In
the future, if another style of drawing will be needed, it will suffice to make another class implement
the GridPainter interface.

<<Java Interface>>

GridPainter

org.tilemup.game.draw

getCellSide():int

drawGrid(boolean,long):void

drawPreview(Polyomino,Coords,boolean):void

drawX(Cell):void

<<Java Class>>

ConcreteGridPainter

org.tilemup.game.draw

ConcreteGridPainter(Canvas,Grid,int,int)

getCellSide():int

drawGrid(boolean,long):void

drawPreview(Polyomino,Coords,boolean):void

drawX(Cell):void

GridPainter
This interface defines the contract a class must fulfill in order to be a candidate for drawing the
game field to the screen.

ConcreteGridPainter
It’s the “reference” GridPainter implementation.

4.3.4 org.tilemup.game.grid

This package abstracts the concept of grid by defining the Grid interface, which says that a grid
must respond to getWidth(), getCell(i, j) and things like that. Also it contains all “concrete” grids (for
now, only RectGrid) as well as a grid decorator called ObstacledGrid which enhances any Grid by
adding “obstacles”, which are just unusable grid cells.

8

<<Java Class>>

AbstractGrid

org.tilemup.game.grid

removedCells: int

AbstractGrid()

getAdjacent(Cell,int):Cell

isPlaceable(Polyomino,Coords):boolean

addPolyomino(Polyomino,Coords,Color,State):void

unsetPolyomino(int):Polyomino

applyMove(Move):void

computeBorders():void

addObserver(GridObserver):void

removeObserver(GridObserver):void

notifyRemove(Polyomino):void

notifyAdd(Polyomino):void

onBoard():int

unsetLastPolyomino():void

biggestPolyominoSpace():int

iterator():Iterator<Cell>

getCell(int,int):Cell

setCell(int,int,Cell):void

<<Java Interface>>

GridObserver

org.tilemup.game.grid

removePolyomino(Polyomino):void

addPolyominoBack(Polyomino):void

<<Java Class>>

ObstacledGrid

org.tilemup.game.grid

ObstacledGrid(Grid)

addObstacle(int,int):void

getWidth():int

getHeight():int

iterator():Iterator<Cell>

getCell(int,int):Cell

setCell(int,int,Cell):void

getAdjacent(Cell,int):Cell

computeBorders():void

isPlaceable(Polyomino,Coords):boolean

addPolyomino(Polyomino,Coords,Color,State):void

unsetPolyomino(int):Polyomino

onBoard():int

unsetLastPolyomino():void

addObserver(GridObserver):void

removeObserver(GridObserver):void

notifyRemove(Polyomino):void

notifyAdd(Polyomino):void

biggestPolyominoSpace():int

getFreeCells():int

applyMove(Move):void

<<Java Class>>

Cell

org.tilemup.game.grid

Cell(int,int)

reset():void

isAvailable():boolean

getColor():Color

setColor(Color):void

getBorder(int):byte

setBorders(byte[]):void

setState(State):void

getState():State

getBlockID():int

setBlockID(int):void

setReference(Polyomino):void

getReference():Polyomino

<<Java Enumeration>>

State

org.tilemup.game.grid

VACANT: State

OCCUPIED: State

UNAVAILABLE: State

State()

<<Java Interface>>

Grid

org.tilemup.game.grid

getAdjacent(Cell,int):Cell

computeBorders():void

isPlaceable(Polyomino,Coords):boolean

addPolyomino(Polyomino,Coords,Color,State):void

unsetPolyomino(int):Polyomino

getCell(int,int):Cell

setCell(int,int,Cell):void

getWidth():int

getHeight():int

getFreeCells():int

onBoard():int

unsetLastPolyomino():void

biggestPolyominoSpace():int

addObserver(GridObserver):void

removeObserver(GridObserver):void

notifyRemove(Polyomino):void

notifyAdd(Polyomino):void

applyMove(Move):void

<<Java Class>>

Coords

org.tilemup.game.grid

Coords(int,int)

equals(Object):boolean

hashCode():int

getI():int

setI(int):void

getJ():int

setJ(int):void

<<Java Class>>

RectGrid

org.tilemup.game.grid

RectGrid(int,int)

iterator():Iterator<Cell>

getCell(int,int):Cell

setCell(int,int,Cell):void

getWidth():int

getHeight():int

getFreeCells():int-matrix

0..*

-state

0..1

-observerList 0..*

-grid 0..1

9

Grid
This interface defines the contract a class must fulfill in order to be a grid.

AbstractGrid
This abstract class follows the template method pattern, so it defines the grid’s behavior
depending on a few abstract methods: iterator, getCell, setCell. One could decide to specialize
this class, for example, by using a hash map to store the grid, and just these three methods
should be overridden. The default implementation, though, uses just a simple matrix.

RectGrid
As outlined, this is the default grid implementation. It stores cells using a simple matrix. As the
name hints, it allows to create any (not too big) rectangular grid.

Cell
Represents a single grid cell. It has: state, color, borders (that can be thin or thick), a reference
to the polyomino which covers it (or null if there isn’t any).

Cell.State
Represents a cell’s state, which can be vacant, occupied or unavailable.

Coords
Is a very basic class, essentially a pair of integers.

ObstacledGrid
This class follows the decorator pattern, since it decorates any Grid by adding “obstacles” to it.
To add an obstacle, the addObstacle method shall be called (every other call will be dispatched
to the underlying grid).

4.3.5 org.tilemup.game.players

In this package there are three main concepts wrapped: the Player, which must always respond to
getMove; the Move, returned by the player; the PlayerMode, which is how the PlayerLoop interacts
with the player(s). Among other things, here is implemented the logic for LAN connection between
players.

WinnerDecide
When we check if the user has won, we call the win method on an instance of this interface.

PlayerMode
This abstract class defines a player mode, which decides whether the player is allowed to use
“unset the last polyomino placed” as a move. Also, it shall respond to getPlayer and nextPlayer,
in order for the player loop to work. Three specialized versions of this class are provided by
default:

• SinglePlayerMode — This class implements a single player mode, “undo” is allowed and
nextPlayer does nothing.

• TwoPlayersMode — This class implements a two players mode, “undo” is disallowed. It
is further specialized to:

� LanTwoPlayersMode — This class, when nextPlayer is called, will handle the upda-
ting (and the dispatch to the other player) of lastLocalMove.

10

<<Java Class>>

ClientPlayer

org.tilemup.game.players

ClientPlayer(String,String,int)

connect():void

disconnect():void

run():void

getMove():Move

<<Java Class>>

LocalPlayer

org.tilemup.game.players

LocalPlayer(String)

getMove():Move

connect():void

disconnect():void

run():void

<<Java Class>>

SinglePlayerMode

org.tilemup.game.players

SinglePlayerMode(Player)

allowsUndo():boolean

getPlayer():Player

nextPlayer():void

startPlayers():void

stopPlayers():void

<<Java Class>>

Move

org.tilemup.game.players

Move(Polyomino,Coords,String,State,Integer)

getPolyomino():Polyomino

setPolyomino(Polyomino):void

getCellState():State

setCellState(State):void

getCenter():Coords

setCenter(Coords):void

getColor():String

setColor(String):void

isWinning():boolean

setWinning():void

getDeleteID():Integer

setDeleteID(Integer):void

<<Java Class>>

LanTwoPlayersMode
org.tilemup.game.players

LanTwoPlayersMode(Player,Player)

nextPlayer():void

<<Java Class>>

RemotePlayer
org.tilemup.game.players

socket: Socket

RemotePlayer(String)

sendLastLocalMove(Move):void

<<Java Class>>

PlayerMode

org.tilemup.game.players

PlayerMode()

allowsUndo():boolean

nextPlayer():void

getPlayer():Player

startPlayers():void

stopPlayers():void

<<Java Class>>

ServerPlayer
org.tilemup.game.players

ServerPlayer(String,int)

connect():void

disconnect():void

run():void

getMove():Move

<<Java Class>>

Player
org.tilemup.game.players

activeToggle: ToggleButton

name: String

gameEnded: boolean

Player(String)

getOverrideColor():Color

setOverrideColor(Color):void

isMyTurn():boolean

setMyTurn(boolean):void

gameOver():void

connect():void

disconnect():void

getMove():Move

<<Java Interface>>

WinnerDecide

org.tilemup.game.players

win():boolean

<<Java Class>>

TwoPlayersMode

org.tilemup.game.players

turn: int

TwoPlayersMode(Player,Player)

allowsUndo():boolean

getPlayer():Player

nextPlayer():void

startPlayers():void

stopPlayers():void

-player

0..1
-players

0..*

#move 0..1

#lastLocalMove

0..1

11

Player
This abstract class defines a player, which is basically a thread which, when it’s not his turn
to move, waits. Being a thread, it extends java.lang.Thread. It shall respond to connect and
disconnect. These implementations are provided by default:

• LocalPlayer — This player “connects” by just binding mouse and key events the local
game field (and “disconnects” by unbinding the same events).

• RemotePlayer — This abstract player is able to send a given move over the network. It’s
specialized to:
� ServerPlayer — This player “connects” by creating a ServerSocket and waiting a client

to connect. It “disconnects” by destroying the open socket.
� ClientPlayer —This player “connects” to a server by creating a Socket ; it “disconnects”

by destroying it.

Move
This class “serializes” a player’s move, in order to send it over the network (if needed). Every
Grid shall respond to an applyMove method which takes a Move as parameter.

4.3.6 org.tilemup.game.poly

This package, in the Polyomino class, defines what a polyomino actually is. Also, a static method
is provided for reading polyominoes from ASCII text files.

<<Java Class>>

Block

org.tilemup.game.poly

Block(int,int)

getBorders():byte[]

setBorders(byte[]):void

<<Java Class>>

Polyomino

org.tilemup.game.poly

readPolyominoes(String,String,List<Integer>):List<Counter<Polyomino>>

Polyomino(String)

iterator():Iterator<Block>

computeDefaultBorders():void

rotateRight():void

rotateLeft():void

reflectVertically():void

reflectHorizontally():void

getName():String

getFileStream():InputStream

setName(String):void

getColor():Color

setColor(Color):void

-pieces 0..*

12

Polyomino
This class lays out the structure and behavior of a polyomino. It also defines its entire logic
(rotation, reflection). It implements the Iterable interface, in order to provide an easy way to
visit every block of the polyomino (as hinted in the introductory chapter).

Polyomino.Block
This nested class represents a single block of the polyomino. It extends Coords.

4.3.7 org.tilemup.game.state

Defines the concept of GameState, which is just a class that encapsulates the structure of a certain
game, in terms of: grid type, polyominoes available and player mode.

<<Java Class>>

TwentySeven
org.tilemup.game.state

TwentySeven()

<<Java Class>>

CruciTetris
org.tilemup.game.state

CruciTetris()

<<Java Class>>

GameState

org.tilemup.game.state

GameState()

setGrid(Grid):void

getGrid():Grid

getPolyominoes():List<Counter<Polyomino>>

addPolyominoes(List<Counter<Polyomino>>):void

getPlayerMode():PlayerMode

setPlayerMode(PlayerMode):void

setWinnerDecide(WinnerDecide):void

getWinnerDecide():WinnerDecide

<<Java Class>>

Pentominoes
org.tilemup.game.state

Pentominoes()

GameState
This class follows the strategy pattern, since it encapsulates all the properties of the game
type that will be played, such as: grid type, polyominoes available, player mode, winner decision
technique. The three specialized “strategies” provided, which have already been described in the
“Overall analysis” chapter, use the following winner decision techniques:

• TwentySeven — When there are exactly 122 − 27 · 5 = 9 free cells left, the player won.

• CruciTetris — When there are 0 free cells left, the player won.

• Pentominoes — When the biggest fillable area on the grid drops below 5 squares, the
current player has made the winning move.

13

4.3.8 org.tilemup.ui

Mostly UI-related code. The view for each “window” is loaded from resources which can be found
in this package.

<<Java Class>>

SceneWithLayout

org.tilemup.ui

SceneWithLayout(String)

getScene():Scene

getController():Object

<<Java Class>>

MainMenu

org.tilemup.ui

MainMenu()

<<Java Class>>

GameField

org.tilemup.ui

GameField(GameState)

<<Java Class>>

GameFieldCtrl

org.tilemup.ui

GameFieldCtrl()

backToMenu():void

undoLastMove():void

toggleEditMode():void

initializeGameField(GameState):void

removePolyomino(Polyomino):void

addPolyominoBack(Polyomino):void

<<Java Class>>

MainMenuCtrl

org.tilemup.ui

MainMenuCtrl()

twentySeven():void

crucitetris():void

pentominoes():void

SceneWithLayout
This class extends javafx.scene.Scene and provides an easy way to load FXML layout files. When
the Node gets loaded, the specified controller gets instantiated and injected. Then, both the
scene and the scene’s controller are made available via getter methods. Ideally, each window in
the game should extend SceneWithLayout, passing its FXML layout file to the constructor.

MainMenu
Loads MainMenu.fxml (styled via MainMenu.css).

MainMenuCtrl
Defines the events bound to MainMenu’s buttons.

GameField
Loads GameField.fxml (styled via GameField.css).

GameFieldCtrl
Defines the events bound to GameField ’s buttons, handles the right bar (where polyominos avai-
lable are listed) resizing it appropriately. It also handles cursor changes, and starts the MainLoop
and PlayerLoop. It follows the observer pattern, since it implements the GridObserver interface.

14

In that way, when the grid receives or loses a polyomino, GameFieldCtrl will be notified and will
act accordingly (that is, it will change the value of that polyomino’s counter).

4.3.9 org.tilemup.util

Some useful “general-purpose” classes.

<<Java Class>>

Counter<K>
org.tilemup.util

Counter(K,int)

increaseCount(Integer):void

getKey()

setKey(K):void

getCount():Integer

setCount(Integer):void

<<Java Class>>

BrightAnimatedColor

org.tilemup.util

BrightAnimatedColor()

animateColor(Color,double):Color

<<Java Enumeration>>

Direction

org.tilemup.util

UP: Direction

DOWN: Direction

-direction

0..1

BrightAnimatedColor
This class decorates a javafx.paint.Color, making it aware of the time elapsed. The animateColor
method takes a color and the time elapsed since the last “decoration”, and yields a brighter (or
darker) version of the given color in such a way that, if called often enough, the color will appear
to “vibrate”.

Counter<K>
This is a generic class which associates an integer to some key of type K.

5 Conclusions

The work flow was quite straightforward, except some moving of classes between packages (just
refactoring). In the future, I plan to improve Tile ’em up! and to clean up the code even more.

5.1 Implementation issues & External libraries

I used the ControlsFX open source library which provides high quality UI controls and other tools
to complement the core JavaFX distribution. It can be seen in action when a match ends (the dialog
control which announces the end of the game) and when a “Pentominoes” match starts (the LAN play
selection dialog).

ControlsFX is one of the reasons I was forced to use the 1.8 version of the JDK (and the reason I
decided to use Maven). In fact, it is only available for JavaFX 8 which, in turn, is only available for
the 1.8 version of the JDK.

Other reasons that forced me to use that version include some JavaFX 2.2 bugs:

15

• The MenuBar (which I then removed anyway) flickered.
• Stage.setResizable(false) didn’t work.
• JavaFX’s startup was very slow on slow connections (if not connected, the startup time was

negligible). This was caused by JavaFX 2.2 proxy auto-detecting.

5.2 What I’ve learned

Developing Tile ’em up! gave me a better grip of the Java language and of the OOP paradigm.
Also, since I only knew git, it allowed me to learn Mercurial, thus deepening my knowledge of DVCSs.

I think I used a little more of the assigned 100 hours, because of the numerous bugs that brought
me to switch from JavaFX 2.2 (JDK 1.7) to JavaFX 8 (JDK 1.8). Also, I wasn’t used to Mercurial
(and I really like git’s staging area) so I found difficult to make “atomic” commits (so I did, sometimes,
commit unrelated changes). Also, I’ve spent quite some of that time learning JavaFX from scratch.

5.3 Next release of Tile ’em up!

The next version of Tile ’em up! will likely feature the following:

• Keyboard shortcuts to select polyominos. Ambiguous keycodes (like “L” which can be both a
tetromino and a pentomino) will be resolved by cycling through the matching polyominoes, thus,
typing “L” one time will trigger the L-tetromino, typing it again will trigger the L-pentomino.

• Game levels will be supported. For example, there will be more than a single CruciTetris puzzle.
• Add the option to play Pentominoes against the computer. AI algorithms will be required.

16

	Introduction
	Overall analysis
	Implementation choices
	Architectural design
	Overall architecture
	Design patterns adopted
	Packages' organization
	org.tilemup
	org.tilemup.game
	org.tilemup.game.draw
	org.tilemup.game.grid
	org.tilemup.game.players
	org.tilemup.game.poly
	org.tilemup.game.state
	org.tilemup.ui
	org.tilemup.util

	Conclusions
	Implementation issues & External libraries
	What I've learned
	Next release of Tile 'em up!

