
Kojo Explorations
Level 1

by

Anusha, Aditya, and Lalit Pant

Version: May 11, 2018

License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
CC BY-NC-SA 4.0
Author: Lalit Pant
This book uses ideas from: Code.org and Challenges with Kojo by Björn Regnell
© 2010–2018 Lalit Pant (lalit@kogics.net) http://www.kogics.net
© 2015 Code.org http://code.org
© 2015 Björn Regnell, Lund University http://lth.se/programmera

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.kogics.net
http://code.org
http://lth.se/programmera


A word about Kojo
Kojo is a learning environment where youngsters (from ages 8 to 80!) play, create, and learn.
They play with small Scala programs. They create drawings, animations, games, and Arduino
based intelligent circuits (with appropriate additional hardware). And they learn logical and cre-
ative thinking, programming, problem solving, math, physics, emotional grit, collaboration (via
pair programming), and a lot more. Very importantly, they also learn how to learn with under-
standing. All of this fosters in them a mindset of exploration, innovation, self-reliance, growth,
mental discipline, and teamwork – with Kojo as the enabler.

A Note for Facilitators and Teachers
This book contains a series of activities for kids to play with.

Most activities contain a fully defined program and a picture of the output of the program. For
such activities, ask a kid to type in the instructions in the program inside the script editor, run it,
and then check that the actual output of the programmatches the output shown in the book. Then,
ask the kid to do some reflection, i.e., think about and discuss what was just learned.

Many activities contain something new. Ask kids to keep an eye out for this and to figure out what
these new instructions do.

Some activities contain an incomplete program, with the incomplete areas marked with ???, and
a picture of the output of the (complete) program. For such activities, ask a kid to type in the
program inside the script editor, fill out the incomplete portions of the program, run it, and then
(as before) check that the actual output of the program matches the output shown in the book.
This should be followed by some reflection, as before.

The activities as described above support sequences of (a) guided work, (b) exploration, and (c)
challenges that need to be carried out (marked with ???) . As kids go about doing these sequences
of activities, you should encourage the following:

• exploration, discovery, and a sense of play.

• perseverance in the face of unexpected results, and joy in the process of figuring out what
went wrong.

• commitment to solving the challenges.

• reflection and discussion about what was learned.

• digressions and diversions from the provided sequence of activities.

It is not important to finish all the activities. But it is vitally important to spend time with, go deep
into, enjoy, and learn from each activity!

2



clear()
forward(50)

clear()
forward(50)
right()
forward(50)
right()

clear()
forward(50)
???

clear()
forward(50)
???

clear()
forward(50)
right()
forward(50)
left()
forward(50)

clear()
???

clear()
setSpeed(medium)
???

3



A couple of Interactive Activities

Beginner Challenges
At this point, open up the Beginner Challenges by going into Tools -> Beginner Challenges in the
top level Kojo Menu. Go through the challenges:

Playing with Angles
As you know, for drawing with the turtle, you have two basic commands available to you:

• forward – to move the turtle forward in the direction of its nose, and to draw a line as it
moves forward.

• right (or left) – to change the direction (or heading) of the turtle’s nose.

Before you move any further, it is important for you to understand how the right (or left) com-
mand changes the direction of the turtle’s nose. To experiment with this, go to Samples -> Math
Learning Modules -> Playing with Angles in the Kojo Menu (and also look at some well known
angles shown on the next page):

4



Well Known Angles

clear()
beamsOn()
setSpeed(fast)
forward(100)
right(??)
forward(100)
???

clear()
beamsOn()
setSpeed(fast)
forward(100)
???

5



clear()
forward(30)
hop(30)
forward(30)

clear()
forward(-30)
hop(-30)
forward(-30)

clear()
showAxes()
setPenColor(black)
setPenThickness(8)
right()
forward(100)
hop(-100)
setPenColor(red)
forward(-100)
// does anything here remind you of the

number-line?

clear()
forward(150)
right(90)
???

hop(50)
right(90)
hop(50)
left(90)

forward(50)
right(90)
???

6



clear()
setSpeed(medium)
forward(100)
???

clear()
setSpeed(fast)
forward(200)
// pay attention to symmetry
???

clear()
// Note the use of the repeat command
// How does the repeat command help?
repeat(???) {

forward(100)
right(90)

}

clear()
// Use repeat, hop, etc to make the

figure
???

clear()
setSpeed(medium)
repeat(4) {

setPenColor(randomColor)
forward(50)
right(90)
???

}

7



clear()
setSpeed(medium)
repeat(10) {

forward(10)
???

}

clear()
setSpeed(medium)
setPenColor(black)
repeat(10) {

setFillColor(randomColor)
repeat(4) {
???

}
???

}

clear()
setSpeed(medium)
setPenThickness(4)
repeat(8) {

setPenColor(randomColor)
forward(50)
hop(-50)
right(45)

}

clear()
setSpeed(fast)
repeat(???) {

setPenColor(randomColor)
forward(100)
hop(-100)
right(1)

}

8



clear()
forward(50)
right(15)
setPenColor(black)
forward(50)

clear()
forward(50)
right(30)
setPenColor(black)
forward(50)

clear()
forward(50)
right(45)
setPenColor(black)
forward(50)

clear()
forward(50)
right(60)
setPenColor(black)
forward(50)

clear()
forward(50)
right(90)
setPenColor(black)
forward(50)

clear()
forward(50)
right(90 + 60)
setPenColor(black)
forward(50)

9



clear()
setSpeed(medium)
setBackground(black)
setPenColor(yellow)
setFillColor(brown)
repeat(4) {

forward(100)
right(???)

}
hop(100)
right(???)
repeat(3) {

forward(100)
right(???)

}

clear()
setSpeed(medium)
setBackground(blue)
setPenColor(yellow)
right(50)
repeat(5) {

forward(50)
left(10)

}
setFillColor(red)
left(???)
repeat(4) {

forward(???)
right(90)

}

clear()
setSpeed(medium)
setBackground(blue)
setPenColor(yellow)
right(90)
circle(25)
right(90)
forward(50)
right(90 + 45)
forward(50)
hop(-50)
right(90)
forward(50)
???

10



Free Thinking Time
You have done a fair bit of guided activity. Now it’s time to make a few drawings of your own! Feel
free to first sketch your idea on paper and then draw it in Kojo.

Here are some ideas to get you going:

• Flags of a few different countries.

• Patterns made out of geometric shapes like squares, rectangles, triangles, etc.

• Drawings based on real-world objects like houses, buildings, cars, ships, tanks, etc.

• Anything else that you can dream up!

After you are done, move on to the next page of the book...

11



// Within Kojo scripts/programs, lines in green that begin with a
double slash (like this one) are ignored by Kojo and are meant
for you, the reader.

// Such lines are program 'comments'; comments are written in
programs to explain things to humans.

// You can use Kojo as a (super) calculator. Let's begin with
some simple calculations.

// Kojo supports two types of numbers - Int (integers - positive
and negative whole numbers) and Double (decimal fractions).

// Type in the following lines, and then run your script using
Shift+Enter to see the result values as shown below:

2 + 3 //> res18: Int = 5
9 - 5 //> res19: Int = 4
6 * 7 //> res20: Int = 42
7 / 5 //> res21: Int = 1
7.0 / 5 //> res22: Double = 1.4

// You can use brackets to group calculations as you want; how
does this relate to BODMAS?

(9 * (4 + 3)) - (2 * 4) //> res23: Int = 55

// The print and println commands let you write out things to the
Kojo Output Pane.

// The println command does a print, and then puts a new line in
the output.

// repeatFor is very similar to repeat, except that it gives you
a repetition counter that can be used to do something slightly
different in your repeated code.

// Using these commands, and Kojo's calculating ability, you can
easily generate multiplication tables:

clearOutput()
// table of six; you can change this to whatever you want.
val t = 6
print("Table of "); println(t)
println("-----------")
repeatFor(1 to 10) { n =>

val ans = t * n
print(t); print(" x "); print(n); print(" = "); println(ans)

}

// Some additional things to know:
// the val instruction allows you to give a name to a value.
// you can write multiple commands on a line separated by a

semi-colon (;).
// Things written withing double quotes - " " - are strings.

Strings are meant for input and output from programs.

Table of 6
-----------
6 x 1 = 6
6 x 2 = 12
6 x 3 = 18
6 x 4 = 24
6 x 5 = 30
6 x 6 = 36
6 x 7 = 42
6 x 8 = 48
6 x 9 = 54
6 x 10 = 60

12



// Kojo has a couple of useful functions for calculating the HCF
and the LCM of numbers:

kmath.hcf(10, 15) //> res14: Int = 5
kmath.hcf(12, 27) //> res15: Int = 3
kmath.lcm(10, 15) //> res16: Int = 30
kmath.lcm(12, 27) //> res17: Int = 108

// You can do calculations with fractions (or Rational numbers)
in Kojo by using the .r syntax:

2/3.r + 4/5.r //> res24: builtins.Rational = 22/15

Now let’s move back to programming with the Turtle...

13



// You can teach Kojo new commands using
the def instruction

def square() {
repeat(4) {

forward(50)
right(90)

}
}
clear()
square()

def square() {
// same as before

}
clear()
setSpeed(medium)
repeat(3) {

square()
right(30)

}

def square() { /* same as before */ }
clear()
setSpeed(medium)
repeat(2) {

square()
hop(25)
right(90)
hop(25)
left(90)

}

def square() {
// similar to before; size 15

}
clear()
setSpeed(medium)
repeat(10) {

???
}

14



def square() { /* same as before */ }
def ladder() {

repeat(10) {
setPenColor(randomColor)
???

}
}
clear()
setSpeed(medium)
ladder()

def square() { /* same as before */ }
def ladder() { /* same as before */ }
clear()
setSpeed(medium)
setPenThickness(4)
repeat(10) {

ladder()
???

}

// New commands that you teach Kojo can
also take inputs

def square(n: Int) {
repeat(4) {

forward(n)
right(90)

}
}
clear()
setSpeed(medium)
square(50)
square(100)
square(150)

Next, let’s work with patterns in a systematic way...

15



// The basic shape for the next few
patterns:

def square() {
repeat(4) {

forward(50)
right()

}
}
clear()
setSpeed(medium); setPenColor(black)
square()

def square() { /* same as before */ }

// The building block of the pattern.
Make the shape, then position the
turtle to make the next shape in the
pattern:

def block() {
square()
right(90)
hop(50)
left(90)
hop(25)

}
cleari()
setSpeed(medium); setPenColor(black)
// Just repeat the block to make the

pattern:
repeat(3) {

block()
}

def square() { /* same as before */ }

// The building block of the pattern:
def block() {

square()
???

}
cleari()
setSpeed(medium); setPenColor(black)
// Just repeat the block to make the

pattern:
repeat(2) {

block()
}

16



def square() { /* same as before */ }

// The building block of the pattern:
def block() {

square()
???

}
cleari()
setSpeed(medium); setPenColor(black)
// Just repeat the block to make the

pattern:
repeat(5) {

block()
}

Each program that you write to make a pattern should contain:

• the definition (via a def) of the fundamental shape inside the pattern. As you define this
shape, make sure that you think about the starting position and direction (or heading) of the
turtle within this shape.

• the definition (via a def) of the pattern building-block. This includes the fundamental shape,
and some commands to set the position and direction of the turtle to make the next building
block in the pattern. This position and direction relates to the starting position and direction
of the fundamental shape.

• A repeat command that makes the pattern building-block a certain number of times
to create the full pattern.

Here’s a template for the kind of code you should write to make these pattern figures:

// define the fundamental shape present inside the pattern
def shape() {
}

// define the building block of the pattern,
// based on the fundamental shape
def block() {

shape()
// position the turtle for the next block

}

cleari()
setSpeed(medium)
repeat(8) {

block()
}

17



Using the above ideas, write programs to make the following patterns shown on this page. Within
each pattern, every building block has a different color – to help you to easily identify it:

def shape() {
???

}
def block() {

shape()
???

}
cleari(); setSpeed(medium)
repeat(8) {

block()
}

def shape() {
???

}
def block() {

shape()
???

}
cleari(); setSpeed(medium)
repeat(8) {

block()
}

clear()
setSpeed(medium)
setPenThickness(4)
repeat(???) {

setPenColor(randomColor)
???
right(???)

}

def shape() {
???

}
def block() {

shape()
???

}
cleari(); setSpeed(medium)
repeat(8) {

block()
}

18



Extended Exercise – Hands on with Forty figures
On the next two pages you will see forty different figures (these are Kojo drawings of the figures
presented in a wonderful book by Barry Newell called Turtle Confusion). Some of these figures are
building blocks for patterns, while others are the patterns themselves. Use the ideas learned while
working through the previous pages to make the patterns. As mentioned earlier, each program
that you write to make a pattern should contain:

• the definition (via a def) of the fundamental shape inside the pattern. As you define this
shape, make sure that you think about the starting position and direction (or heading) of the
turtle within this shape.

• the definition (via a def) of the pattern building-block. This includes the fundamental shape,
and some commands to set the position and direction of the turtle to make the next building
block in the pattern. This position and direction relates to the starting position and direction
of the fundamental shape.

• A repeat command that makes the pattern building-block a certain number of times
to create the full pattern.

Here again is a template (with one additional optional step compared to the previous template)
for the kind of code you should write to make the figures:

// define the fundamental shape present inside the pattern
def shape() {
}

// define the building block of the pattern,
// based on the fundamental shape
def block() {

shape()
// position the turtle for the next block

}

cleari()
setSpeed(medium)
// this optional step is new:
// change the turtle's direction if needed
// and then repeat the block to make the pattern
repeat(8) {

block()
}

19

http://constructingmodernknowledge.com/cmk08/?p=1451


Figures 1 to 25

20



Figures 26 to 40

21


