
Kojo Programming Quick-Ref

Lalit Pant

Kojo Programming Quick-Ref

Lalit Pant

February 14, 2014

Copyright © 2014 Lalit Pant (lalit@kogics.net)

This publication is licensed under the Creative Commons
attribution non-commercial share-alike license

Contents

1 Introduction 3
1.1 Program building blocks . 3
1.2 Fundamental Ideas in Programming . 5
1.3 Types, Objects, and Classes . 7

2 Primitives 9
2.1 Turtle . 9
2.2 Picture . 10

2.2.1 Picture Creation . 10
2.2.2 Picture Transformation . 11
2.2.3 Picture Interaction . 12
2.2.4 Picture game example . 13
2.2.5 Picture based widgets . 15

2.3 Types . 16
2.4 Collections . 19
2.5 Utility commands and functions . 20

3 Composition 21
3.1 Command composition . 21
3.2 Function composition . 22
3.3 Data composition . 23

4 Abstraction 25

5 Selection 27

6 Conclusion 28

2

1 Introduction
This book is meant for a couple of different audiences:

• Children who have been using Kojo for a while, and want a concise reference to the
ideas, terminology, and useful features of Kojo.

• Adults who are familiar with programming, andwant a quickway to get productivewith
Kojo.

This book hasmany code listings. At the bottom of each listing, you will find a couple of links
– one to “Run code online” for that listing, and the other one to “View code online”. You
are encouraged to run the code for the listings to get the most out of the book. To do this
effectively, start up Kojo-Web as you start reading the book. From then on, every time you
click on a “Run code online” link for a listing, Kojo will quickly pop-up to the front, load the
code for the listing, and run it. You can then study the code and play with it inside Kojo. If
you are unable to run Kojo-Web for any reason, you can start up Kojo-Desktop, and make
use of the “View code online” links to easily copy and paste the code for the listings into Kojo.
If you are not online you can, of course, copy and paste the code directly from the book into
Kojo.

1.1 Program building blocks
A programwithin Kojo is a series of instructions for Kojo to carry out. These instructions can
be:

Commands, which let you take actions (like moving the turtle forward) or indirectly affect
future actions (like setting the pen color).

Actions are effects produced by your program that you can see, hear, etc. They result
in outputs from your program.

Listing 1.1: Using commands

clear()

setPenColor(blue) // affects a future action

forward(100) // carries out an action

Run code online View code online

Expressions, which let you do calculations or computations. Expressions are evaluated to
compute data values. Expressions are made out of:

Literals, which evaluate to themselves, e.g., 5, 7.1, List(1, 2, 3), ``road''.

3

http://www.kogics.net/webkojo
http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/command-sample.kojo
http://www.kogics.net/public/kojolite/samples/quickref/command-sample.kojo

1.1. PROGRAM BUILDING BLOCKS CHAPTER 1. INTRODUCTION

Functions, which covert (or map) inputs to outputs – a function takes some values as
inputs and computes or returns an output value based on the inputs, e.g., sum(5,
7), and multiply(2, 9). Note that a command can also take inputs, but (unlike a
function) it does not return an output value that can be used within your program.
Instead, a command results in an action or an indirect affect on future actions – it
has a side-effect.
You invoke or call commands and functions to make use of them.

Operators, which are functions with names made up of special characters like +, *,

and !, e.g., 5 + 7, 2 * 9.

Listing 1.2: Using expressions

// #worksheet -- run as a worksheet

5

7.1

"road"

List(1, 2, 3)

5 + 7

2 * 9

math.max(5, 10)

math.abs(-30)

Run code online View code online

Keyword-instructions, which help you to structure your program, e.g., by letting you com-
bine your commands, functions, and data values into higher level building blocks that
you can use in your programs (more on this in the next section). A keyword instruction
ultimately behaves like a command or an expression.

Listing 1.3: Using keywords

// #worksheet

// use def keyword to define new functions

def sum(n1: Int, n2: Int) = n1 + n2

def multiply(n1: Int, n2: Int) = n1 * n2

// use case class keyword to define a new class

case class Rational(num: Int, den: Int) {

require(den != 0)

def +(other: Rational) =

Rational(num * other.den + other.num * den,

den * other.den)

}

// use the newly defined stuff

sum(5, 7)

4

http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/expression-sample.kojo
http://www.kogics.net/public/kojolite/samples/quickref/expression-sample.kojo

1.2. FUNDAMENTAL IDEAS IN PROGRAMMING CHAPTER 1. INTRODUCTION

multiply(2, 9)

// create instances of the new class

// and add them using the '+' function from the class

Rational(2, 3) + Rational(4, 5)

Run code online View code online

Impure-functions and queries, which are instructions that do not fit into the command or
expression mold:

Impure-functions are instructions that have a side-effect (like a command) and also
return a value (like a function), e.g., an instruction that draws a shape and also
returns it. You should avoid impure functions if you can.

Queries are functions that can returndifferent values ondifferent calls, e.g., turtle.position.

Listing 1.4: Impure functions and queries

// #worksheet

// define an impure function that carries out an action

// and also returns a value

def impure(h: Int, w: Int) = {

val pic = PicShape.rect(h, w)

draw(pic)

pic

}

cleari()

// use the impure function

val pic = impure(40, 60)

// position is a query that returns

// the turtle's current position

position

forward(100)

position

Run code online View code online

1.2 Fundamental Ideas in Programming
It’s helpful to think about programming in Kojo in terms of the following fundamental ideas:

Primitives, which are the building-blocks (commands and functions) already provided by
the environment. For example:

Commands – forward, right, setPenColor, etc.

Functions – Picture, trans, rot, scale, etc.

5

http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/keyword-sample.kojo
http://www.kogics.net/public/kojolite/samples/quickref/keyword-sample.kojo
http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/impure-query-sample.kojo
http://www.kogics.net/public/kojolite/samples/quickref/impure-query-sample.kojo

1.2. FUNDAMENTAL IDEAS IN PROGRAMMING CHAPTER 1. INTRODUCTION

Composition, which allows you to combine the available building-blocks as required.

Listing 1.5: Examples of composition

// a sequence of commands

forward(100)

right()

forward(50)

// command looping

repeat(4) {

forward(10)

}

// nesting of functions within commands

forward(math.max(5, 10))

// function nesting

math.abs(math.min(20, -30))

val pic = PicShape.rect(40, 60)

// function chaining

rot(60) * trans(10, 15) * scale(1.5) -> pic

// higher order functions

(1 to 10).filter { n => n % 2 == 0 }

Run code online View code online

Abstraction, which allows you to give names to your compositions, so that they become
available as bigger building-blocks (which can take part in further composition). Hid-
ing of internal (implementation) details is an important aspect of abstraction.

Listing 1.6: Examples of abstration

// create abstractions sum, multiply and Rational

// using appropriate keywords

def sum(n1: Int, n2: Int) = n1 + n2

def multiply(n1: Int, n2: Int) = n1 * n2

case class Rational(num: Int, den: Int) {

require(den != 0)

def +(other: Rational) =

Rational(num * other.den + other.num * den,

den * other.den)

}

// use the newly defined abstractions

sum(5, 7)

6

http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/composition-sample.kojo
http://www.kogics.net/public/kojolite/samples/quickref/composition-sample.kojo

1.3. TYPES, OBJECTS, AND CLASSES CHAPTER 1. INTRODUCTION

multiply(2, 9)

Rational(2, 3) + Rational(4, 5)

Run code online View code online

Selection, which allows you to choose from a series of building blocks during the process of
composition.

Listing 1.7: Examples of selection

val size = 40

val thershold = 50

// make big shapes red

if (size > thershold) {

setFillColor(red)

}

else {

setFillColor(green)

}

// make small shapes move faster

val speed = if (size < thershold) 100 else 60

Run code online View code online

1.3 Types, Objects, and Classes
Every data value in Kojo has a (static) type associated with it. This type tells Kojo what com-
mands and functions that value can work with. How is that? For every command, Kojo
knows the types of the inputs to the command; for every function, Kojo knows the types of
the inputs to the function and the type of the return value of the function. So it’s straightfor-
ward for Kojo to figure out what data values are compatible with the inputs to a command
or function, and what data values are compatible with output of a function. So, for example,
if you try to call setPenColor(10) or setPenThickness(blue), Kojo will catch your mistake
right away and tell you about it. Or, if you are defining a function that returns an Int, and
you actually return the value blue from it, Kojo will again step in to point out your mistake.

Listing 1.8: Types in commands and functions

// a command with one input value named n - of type Int

// note that the type of a value is written 'value: type'

def square(n: Int) {

repeat(4) {

forward(100)

right()

}

}

7

http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/abstraction-sample.kojo
http://www.kogics.net/public/kojolite/samples/quickref/abstraction-sample.kojo
http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/selection-sample.kojo
http://www.kogics.net/public/kojolite/samples/quickref/selection-sample.kojo

1.3. TYPES, OBJECTS, AND CLASSES CHAPTER 1. INTRODUCTION

// a function with two input values named n1 and n2

// both n1 and n2 are of type Int

// the function returns a value of type Int

def sum(n1: Int, n2: Int): Int = n1 + n2

// most of the time the return type of the function can

// be inferred, so you don't need to explicitly provide it

def sum2(n1: Int, n2: Int) = n1 + n2

clear()

square(sum(40, 60))

Run code online View code online

Every data value in Kojo is an object. What’s an object? It’s a data value with commands
and functions attached to it. These commands and functions are called methods. You call
a method on an object like this – object.method(inputs). So, if you have a picture called
pic, you can call the translate method on it like this – pic.translate(10, 20). The methods
available on an object are determined by the type of the object; a method on an object works
within the context of that object.
Kojo has a lot of predefined types (some of these are described in Section 2.3 on page 16).

You can create new types using the class keyword (as you saw in Listing 1.6 on page 6).

8

http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/types-func-comm.kojo
http://www.kogics.net/public/kojolite/samples/quickref/types-func-comm.kojo

2 Primitives
Note that Kojo includes the Java and Scala runtime environments. Anything
that is part of these environments is available out of the box in Kojo.

This section describes some useful primitives available within Kojo.

2.1 Turtle

Command Description

clear() Clears the turtle canvas, and brings the turtle to the center of
the canvas.

forward(steps) Moves the turtle forward by the given number of steps.

back(steps) Moves the turtle back by the given number of steps.

right() Turns the turtle right (clockwise) through ninety degrees.

right(angle) Turns the turtle right (clockwise) through the given angle in
degrees.

right(angle, radius) Turns the turtle right (clockwise) through the given angle in
degrees, along the arc of a circle with the given radius.

left(), left(angle),

left(angle, radius)

These commands work in a similar manner to the
corresponding right() commands.

setAnimationDelay(delay) Sets the turtle’s speed. The specified delay is the amount of time
(in milliseconds) taken by the turtle to move through a distance
of one hundred steps. The default delay is 1000 milliseconds (or
1 second).

setPenColor(color) Specifies the color of the pen that the turtle draws with.

setPenThickness(size) Specifies the width of the pen that the turtle draws with.

setFillColor(color) Specifies the fill color of the figures drawn by the turtle.

9

2.2. PICTURE CHAPTER 2. PRIMITIVES

Command Description

setBackground(color) Sets the canvas background to the specified color. You can use
predefined colors for setting the background, or you can create
your own colors using the Color, ColorHSB, and ColorG

functions.

penUp() Pulls the turtle’s pen up, and prevents it from drawing lines as it
moves.

penDown() Pushes the turtle’s pen down, and makes it draw lines as it
moves. The turtle’s pen is down by default.

hop(steps) Moves the turtle forward by the given number of steps with the
pen up, so that no line is drawn. The pen is put down after the
hop.

cleari() Clears the turtle canvas and makes the turtle invisible.

invisible() Hides the turtle.

savePosHe() Saves the turtle’s current position and heading, so that they can
easily be restored later with a restorePosHe().

restorePosHe() Restores the turtle’s current position and heading based on an
earlier savePosHe().

write(obj) Makes the turtle write the specified object as a string at its
current location.

setPenFontSize(n) Specifies the font size of the pen that the turtle writes with.

2.2 Picture

2.2.1 Picture Creation
These functions create pictures. The createdpicture needs to bedrawn (via the draw(picture)
command) for it to become visible in the canvas.

Function Description

Picture { drawingCode } Makes a picture out of the given turtle drawing code.

picRow(pictures)

HPics(pictures)

Creates a horizontal row of the supplied pictures.

picCol(pictures)

VPics(pictures)

Creates a vertical column of the supplied pictures.

10

2.2. PICTURE CHAPTER 2. PRIMITIVES

Function Description

picStack(pictures)

GPics(pictures)

Creates a stack of the supplied pictures.

PicShape.hline(length) Creates a picture of a horizontal line with the given length.

PicShape.vline(length) Creates a picture of a vertical line with the given length.

PicShape.rect(height,

width)

Creates a picture of a rectangle with the given height and width.

PicShape.circle(radius) Creates a picture of a circle with the given radius.

PicShape.arc(radius) Creates a picture of an arc with the given radius and angle.

PicShape.text(content,

size)

Creates a picture out of the given text with the given font-size.

PicShape.image(fileName) Creates a picture out of an image from the file with the given
name.

PicShape.widget(w) Creates a picture out of the given widget.

2.2.2 Picture Transformation
These functions transform picture. A transform is applied to a picture using the -> operator.
Transforms are combined using the * operator, e.g., trans(10, 20) * rot(30) -> picture

first translates and then rotates the given picture.

Function Description

trans(x, y) -> picture Creates a new picture by translating the given picture by the
given x and y values.

offset(x, y) -> picture Creates a new picture by offsetting the given picture by the
given x and y values with respect to the global (canvas)
coordinate system.

rot(angle) -> picture Creates a new picture by rotating the given picture by the given
angle.

scale(factor) ->

picture

scale(xf, yf) -> picture

Creates a new picture by scaling the given picture by the given
scaling factor(s).

penColor(color) ->

picture

Creates a new picture by setting the pen color for the given
picture to the given color.

11

2.2. PICTURE CHAPTER 2. PRIMITIVES

Function Description

trans(x, y) -> picture Creates a new picture by translating the given picture by the
given x and y values.

offset(x, y) -> picture Creates a new picture by offsetting the given picture by the
given x and y values with respect to the global (canvas)
coordinate system.

fillColor(color) ->

picture

Creates a new picture by filling the given picture with the given
color.

penWidth(thickness) ->

picture

Creates a new picture by setting the pen width for the given
picture to the given thickness.

hue(factor) -> picture Creates a new picture by changing the hue of the given picture’s
fill color by the given factor. The factor needs to be between -1
and 1.

sat(factor) -> picture Creates a new picture by changing the saturation of the given
picture’s fill color by the given factor. The factor needs to be
between -1 and 1.

brit(factor) -> picture Creates a new picture by changing the brightness of the given
picture’s fill color by the given factor. The factor needs to be
between -1 and 1.

opac(factor) -> picture Creates a new picture by changing the opacity of the given
picture by the given factor.

axes -> picture Creates a new picture by turning on the local axes for the given
picture (to help during picture construction).

2.2.3 Picture Interaction
These commands enable a picture to interact with a user.

Command Description

picture.react { self =>

// reaction code

}

The code supplied to react is called many times per second
to allow the picture to take part in an animation. The code
can use the isKeyPressed(keyCode) function to make the
animation interactive.

p2.onMouseClick { (x, y) =>

// on click code

}

The supplied code is called, with the current mouse position
as input, when the mouse is clicked inside the picture.

12

2.2. PICTURE CHAPTER 2. PRIMITIVES

Command Description

picture.react { self =>

// reaction code

}

The code supplied to react is called many times per second
to allow the picture to take part in an animation. The code
can use the isKeyPressed(keyCode) function to make the
animation interactive.

p2.onMouseDrag { (x, y) =>

// on drag code

}

The supplied code is called, with the current mouse position
as input, when the mouse is dragged inside the picture.

p2.onMouseEnter { (x, y) =>

// on enter code

}

The supplied code is called, with the current mouse
position as input, when the mouse enters the picture.

p2.onMouseExit { (x, y) =>

// on exit code

}

The supplied code is called, with the current mouse
position as input, when the mouse exits the picture.

p2.onMouseMove { (x, y) =>

// on move code

}

The suppled code is called, with the current mouse position
as input, when the mouse is clicked.

p2.onMousePress { (x, y) =>

// on press code

}

The supplied code is called, with the current mouse position
as input, when the mouse is pressed inside the picture.

p2.onMouseRelease { (x, y)

=>

// on release code

}

The supplied code is called, with the current mouse position
as input, when the mouse is released inside the picture.

2.2.4 Picture game example
Here is a very simple game that shows picture creation, transformation, and interaction in
action.

Listing 2.1: A Picture based game

// a simple game

// you need to keep the rectangle within the canvas

// the rectangle moves and grows in size

// its speed goes up as its size increases

// you can rotate it by pressing the 'P' key

// you can make it smaller by clicking on it

def p = PicShape.rect(40, 60)

val p1 = fillColor(green) * penColor(gray) -> p

val cb = canvasBounds

val walls = GPics(

trans(-cb.width / 2, -cb.height / 2) -> PicShape.vline(cb.height),

13

2.2. PICTURE CHAPTER 2. PRIMITIVES

trans(cb.width / 2, -cb.height / 2) -> PicShape.vline(cb.height),

trans(-cb.width / 2, -cb.height / 2) -> PicShape.hline(cb.width),

trans(-cb.width / 2, cb.height / 2) -> PicShape.hline(cb.width)

)

cleari()

draw(p1)

draw(walls)

p1.react { self =>

self.translate(1, 0)

self.scale(1.001)

if (isKeyPressed(Kc.VK_P)) {

self.rotate(1)

}

if (self.collidesWith(walls)) {

self.setFillColor(red)

self.stopReactions()

}

}

p1.onMouseClick { (x, y) =>

p1.scale(0.9)

}

activateCanvas()

Run code online View code online

14

http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/picture-sample.kojo
http://www.kogics.net/public/kojolite/samples/quickref/picture-sample.kojo

2.2. PICTURE CHAPTER 2. PRIMITIVES

2.2.5 Picture based widgets
To utilize a user-interface widget as a picture, you need to first create it, and then make a
picture out of it by using the PicShape.widget(w) function. Once you have a widget picture,
you can use it just like any other picture.
So how do you create a widget? You are, of course, free to go directly to the Java Swing API

and create any widget/component from there that you want. But Kojo provides high-level
support for creating a selected few user interface widgets:

Constructor Function Description

Label(text) Creates a Label with the given text.

TextField(default) Creates a text field with the given default value.

Button(text) {

// on click code

}

Creates a Button with the given text and the given action code.
The action code is called whenever the button is clicked. From
within the action code, you can read the value of any other
widget by using that widget’s value function.

DropDown(elements) Creates a drop down list with the given elements

Slider(min, max,

current, step)

Creates a slider that goes from min to max in increments of step,
with current as the initial value.

Listing 2.2: Picture based widgets

// An example showing the use of user-interface widgets

// (as pictures) in the canvas

val reptf = TextField(5)

val linef = TextField(60)

val angletf = TextField(360 / 5)

val colordd = DropDown("blue", "green", "yellow")

val colors = Map(

"blue" -> blue,

"green" -> green,

"yellow" -> yellow

)

val instructions =

<html>

To run the example, specify the required

values in the fields below, and click on the

Make + animate button at the bottom.

</html>.toString

15

2.3. TYPES CHAPTER 2. PRIMITIVES

val panel = ColPanel(

RowPanel(Label(instructions)),

RowPanel(Label("Line size: "), linef),

RowPanel(Label("Repeat count: "), reptf),

RowPanel(Label("Angle between lines: "), angletf),

RowPanel(Label("Fill color: "), colordd),

RowPanel(Button("Make + animate figure") {

val velocity = 50 // pixels per second

val cbx = canvasBounds.x

val figure =

trans(cbx, 0) * fillColor(colors(colordd.value)) -> Picture {

repeat(reptf.value) {

forward(linef.value)

right(angletf.value)

}

}

draw(figure)

val starttime = epochTime

figure.react { self =>

val ptime = epochTime

val t1 = ptime - starttime

val d = cbx + velocity * t1

self.setPosition(d, 0)

}

})

)

val pic = PicShape.widget(panel)

cleari()

draw(trans(canvasBounds.x, canvasBounds.y) -> pic)

Run code online View code online

2.3 Types
As mentioned earlier, Kojo includes the Java and Scala runtime environments.
Any type available in these environments can be used in Kojo via the import
keyword.

It’s useful to know about the following predefined types within Kojo:

Numbers, which are available in a few different types:

Int – integer, e.g., -3, -2, -1, 0, 1, 2, 3, etc. The maximum integer value (based on the
fact that integers are stored in 32 bits and are signed) is 2147483647. If you want
an integral number bigger than that, you will need to use a long.

16

http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/widgets-picture-sample.kojo
http://www.kogics.net/public/kojolite/samples/quickref/widgets-picture-sample.kojo

2.3. TYPES CHAPTER 2. PRIMITIVES

Long – long integer, e.g., 2222222222l (note the l at the end that tells Kojo that this is
a long integer)

Double – double precision decimal fraction, e.g., 9.5

Rational – rational numbers or fractions. You can create rationals in a couple of dif-
ferent ways:

Literal-values, which are built using r prefixed strings, e.g., r''2/3'' and r''5/7''.

Rational-conversions, using the r function available within other numbers, e.g.,
1.r, 3.r, etc. This works well with the fact that once you have a rational number
in an arithmetic expression, it lifts the other numbers in the expression to
make them rationals, resulting in a rational result for the whole expression,
e.g., 2.r / 3, 3.r / 4 + 5.r / 6, etc.

Listing 2.3: Using numbers

// #worksheet

// Part 1 -- Ints and Double

// the usual arithmetic operators are available

// +, -, * (multiplication), and / (division)

2 + 3 * 4 / 7 - 6

2.1 * 3.2 + 7

// Part 2 - Rationals

// In additional to the usual operators,

// ** (exponentiation) is also available

val a = r"9/10"

val b = a * r"10/9"

val x = 3.r / 4 + 4.r / 5

val y = 1.r / 4 + 1.r / 8 * 2 * 3

2.r / 4 ** 2

8.r ** (1.r / 3)

val z = x.toDouble

Run code online View code online

Booleans, which represent truth and falsity in programs, and are used within conditions.
You can create booleans in a few different ways:

Literal-values – true and false.

Comparison-operators like ==, <, <=, >, and >= working on two values that support
the operator, e.g., 2 < 3, 4 == 5, blue == red, etc.

Colors, which are used for setting background colors, and the pen and fill colors of shapes.
Functions for working with colors are described in Section 2.5 on page 20

Strings, which represent language text, and are useful for input to and output from Kojo.
You can create strings in few different ways:

17

http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/number-sample.kojo
http://www.kogics.net/public/kojolite/samples/quickref/number-sample.kojo

2.3. TYPES CHAPTER 2. PRIMITIVES

Literal-values – text enclosedwithin double quotes, e.g., ``this is a literal string''.

Multi-line-literals – text enclosed within trip quotes (see Listing 2.4 for an example).

Interpolated-strings – text enclosed within double or triple quotes that can contain
external values, e.g., s''this string has $external data''.

HTML, which can be used to create styled text – for use within Label widgets.

Listing 2.4: Booleans, Strings, and HTML

// #worksheet

// booleans

val b1 = true

val b2 = false

// the operators && (and), || (or), and !(not) are available

b1 && b2

b1 || b2

!b2

val n = 10

(n > 1) && (n < 15)

(n > 1) || (n < 5)

(n > 1) && (n < 5)

// strings

val string1 = "some text"

val string2 = """Line 1

Line2

Line3

"""

val x = 30

val y = 40

val string3 = s"the value of x is $x"

val string4 = s"""the value of y is $y

and the sum of x and y is ${x + y}

"""

// html/xml

val html1 = <html>

This is some html text

</html>

Run code online View code online

Pictures, which are used for making composable and transformable shapes that can be ani-
mated. Functions for working with pictures are described in Section 2.2 on page 10

18

http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/bool-string-html-sample.kojo
http://www.kogics.net/public/kojolite/samples/quickref/bool-string-html-sample.kojo

2.4. COLLECTIONS CHAPTER 2. PRIMITIVES

Widgets, like text fields, buttons, drop-downs, etc., which are used to obtain input from the
user. Widgets are further described in Section 2.2.5 on page 15.

Collections, which let you store data values in different ways (sequences, sets, maps, etc.)
for future processing. Collections are further described in the next section.

2.4 Collections
Detailed information on Scala collections is available in the Scala collections guide. These
collections are available within Kojo, and can be used directly as described in the guide.

19

http://docs.scala-lang.org/overviews/collections/introduction.html

2.5. UTILITY COMMANDS AND FUNCTIONS CHAPTER 2. PRIMITIVES

2.5 Utility commands and functions
Here are some miscellaneous utility functions available within Kojo:

Function Description

Color(red, green, blue,

opacity)

Creates a new color based on the given red, green, blue, and
(optional) opacity values. This color can be used with
commands like setPenColor, etc.

hueMod(color, factor) Computes and returns a new color made by changing the hue of
the given color by the given factor. The factor needs to be
between -1 and 1.

satMod(color, factor) Computes and returns a new color made by changing the
saturation of the given color by the given factor. The factor
needs to be between -1 and 1.

britMod(color, factor) Computes and returns a new color made by changing the
brightness of the given color by the given factor. The factor
needs to be between -1 and 1.

canvasBounds Returns the bounds of the canvas: the x and y coordinates of its
bottom left point, and its width and height.

textExtent(text,

fontSize)

Computes and returns the size/extent of the given text fragment
for the given font size. The extent is returned as a bounding
rectangle with the bottom left and the top right points.

activateCanvas Transfers focus to the canvas, so that keyboard events are
directed to the canvas.

20

3 Composition
Composition allows you to combine primitives (and higher level building-blocks) to do useful
things. The following are some of the forms of composition available within Kojo:

3.1 Command composition
Sequencing allows you to chain commands together one after the other.

Looping lets you repeat a bunch of commands more than once.

Recursion allows you, while you are defining a command, to get it to call itself.

Listing 3.1: Command composition

// examples of command composition

// a sequence of commands

clear()

forward(100)

right()

forward(50)

// a loop

repeat(4) {

forward(10)

}

// a loop with an index

repeati(4) { i =>

println(i)

}

// a loop with a condition

var x = 0

repeatWhile(x < 4) {

println(x)

x += 1

}

// do the same thing as above with a different kind of loop

x = 0

21

3.2. FUNCTION COMPOSITION CHAPTER 3. COMPOSITION

repeatUntil(x > 3) {

println(x)

x += 1

}

// recursion

def pattern(n: Int) {

if (n < 10) {

forward(n)

}

else {

forward(n)

right()

pattern(n - 10)

}

}

clear()

pattern(100)

Run code online View code online

3.2 Function composition
Nesting/chaining allows you to call many functions one after the other.

Sequencing with stored intermediate results is an alternative to nesting/chaining.

Higher-order-functions let you use functions as inputs to a function, and a function as an
output from a function.

Recursion allows you, while you are defining a function, to get it to call itself.

For-comprehensions give you a compact notation for transforming collections of data into
other collections. This is based on nested and chained calls to certain well defined
methods within the collection types. See the Programming in Scala book for more
details.

Listing 3.2: Function composition

// #worksheet

// function nesting; functions are called from inside out

math.abs(math.min(20, -30))

// sequencing to do the same thing as above

val r1 = math.min(20, -30)

math.abs(r1)

22

http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/cmd-composition-details.kojo
http://www.kogics.net/public/kojolite/samples/quickref/cmd-composition-details.kojo
http://www.artima.com/pins1ed/for-expressions-revisited.html
http://www.artima.com/pins1ed/for-expressions-revisited.html

3.3. DATA COMPOSITION CHAPTER 3. COMPOSITION

val pic = PicShape.rect(40, 60)

// function chaining; functions are called from left to right

rot(60) * trans(10, 15) * scale(1.5) -> pic

// higher order functions

(1 to 10).filter { n => n % 2 == 0 }

(1 to 5).map { n => n * 2 }

// a function that uses recursion

// as there is only one expression inside the function,

// the curly brackets are optional

// if the function had a sequence of expressions,

// the curly brackets would be mandatory

def factorial(n: Int): Int = {

if (n == 0) 1 else n * factorial(n - 1)

}

factorial(5)

// for comprehensions

for (i <- 1 to 5) yield (i * 2)

Run code online View code online

3.3 Data composition
You compose data values by putting them inside other data values. This is enabled via the
following:

Collections – these are predefine classes/types that let you put your data inside them. Col-
lections are described further in Section 2.4 on page 19.

Classes –you can define your own classes that combine data values. This is described further
in Section 4 on page 25

Listing 3.3: Data composition

// #worksheet

// example of data composition (and abstraction)

// the 'num' and 'den' data values are combined together

// in the Rational class,

// and associated with a '+' function.

case class Rational(num: Int, den: Int) {

require(den != 0)

def +(other: Rational) =

Rational(num * other.den + other.num * den, den * other.den)

}

23

http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/func-composition-details.kojo
http://www.kogics.net/public/kojolite/samples/quickref/func-composition-details.kojo

3.3. DATA COMPOSITION CHAPTER 3. COMPOSITION

// we create two instances of the Rational class and add them

Rational(2, 3) + Rational(4, 5)

Run code online View code online

24

http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/data-composition-details.kojo
http://www.kogics.net/public/kojolite/samples/quickref/data-composition-details.kojo

4 Abstraction
Abstraction allows you to give names to your compositions. These named elements then
become available within your program – for direct use and as building-blocks for further
composition. Hiding of internal (implementation) details is an important aspect of abstrac-
tion; while using an abstraction, you can focus on what it does without worrying about how it
does it. Abstraction within Kojo is done with the help of the following keyword instructions:

val, which lets you create a named value.

def, which lets you define a new command or function.

Listing 4.1: Using val and def

// #worksheet

// create a named value

val size = 50

// define a new command

def square(n: Int) {

repeat(4) {

forward(n)

right()

}

}

clear()

// use the new command along with the named value

square(size)

square(size * 2)

// define a new function

def sum(n1: Int, n2: Int) = n1 + n2

// use the new function

sum(5, 7)

Run code online View code online

class, which lets you create a new class (and type). Classes help you to compose data values,
along with related commands and functions, into named entities that you can use in
your programs. Note that there are two versions of the class keyword – just class by

25

http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/val-def-abstraction.kojo
http://www.kogics.net/public/kojolite/samples/quickref/val-def-abstraction.kojo

CHAPTER 4. ABSTRACTION

itself, and case class. The use of case classes is encourage in Kojo, as they are simpler
to use and more powerful. See the Programming in Scala book for more details.

Listing 4.2: Using classes

// #worksheet

// example of abstraction (and data composition)

// a new class called Rational is created

// the 'num' and 'den' data values are combined together

// in this class,

// and associated with a '+' function.

case class Rational(num: Int, den: Int) {

require(den != 0)

def +(other: Rational) =

Rational(num * other.den + other.num * den, den * other.den)

}

// we create two instances of the Rational class and add them

Rational(2, 3) + Rational(4, 5)

Run code online View code online

trait, which lets you create new traits. Traits help you to separate the interfaces of abstrac-
tions from their implementations. They also help with mixin composition, rich inter-
faces, class decoration, etc. See the Programming in Scala book for more details.

implicit, which gives you a flexible and controlled way to extend software. See the Program-
ming in Scala book for more details.

26

http://www.artima.com/pins1ed/case-classes-and-pattern-matching.html
http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/class-abstraction.kojo
http://www.kogics.net/public/kojolite/samples/quickref/class-abstraction.kojo
http://www.artima.com/pins1ed/traits.html
http://www.artima.com/pins1ed/implicit-conversions-and-parameters.html

5 Selection
Selection allows you to choose from a set of alternative instructions as you write your pro-
grams. Selection is based on the following constructs:

If-else allows you to choose between alternatives based on boolean conditions. This works
well for a few few alternatives and simple conditions

Pattern-matching also allows you to choose between alternatives based on boolean condi-
tions. But the conditions can be expressed in much more powerful ways (than if-else).
Pattern matching works well with a large number of alternatives and complex condi-
tions.

Listing 5.1: Examples of selection

// example of if-else

val size = 40

val thershold = 50

// make big shapes red

if (size > thershold) {

setFillColor(red)

}

else {

setFillColor(green)

}

// make small shapes move faster

val speed = if (size < thershold) 100 else 60

// example of pattern matching

val data = "abc"

val result = data match {

case "abc" => "xyz"

case "def" => "jkl"

case _ => "Unknown"

}

println(result)

Run code online View code online

27

http://www.kogics.net/runwebkojo?codeurl=http://www.kogics.net/public/kojolite/samples/quickref/selection-details.kojo
http://www.kogics.net/public/kojolite/samples/quickref/selection-details.kojo

6 Conclusion
This book outlines some core ideas about programming used within Kojo, and provides a
reference to commonly used commands, functions, and keywords. It provides examples for
all the ideas discussed.
Kojo benefits tremendously from being built on the foundations of the Java and Scala plat-

forms, and from using Scala as its programming language. It benefits due to the rich func-
tionality of these platforms, which is available out of the box in Kojo. It also benefits from
all the documentation and books out there that describe the Scala language and the Java
libraries. The knowledge available in this reading material can be directly used within Kojo:

• You can read more about the Scala language in the Programming in Scala book.

• You can find more information about the Scala API in the official Scaladoc.

• You can find more information about the Java API in the official Javadoc.

If you have any comments on the book, don’t hesitate to write tome at pant.lalit@gmail.com.

28

http://www.artima.com/pins1ed/
http://www.scala-lang.org/api/
http://docs.oracle.com/javase/7/docs/api/

	1 Introduction
	1.1 Program building blocks
	1.2 Fundamental Ideas in Programming
	1.3 Types, Objects, and Classes

	2 Primitives
	2.1 Turtle
	2.2 Picture
	2.2.1 Picture Creation
	2.2.2 Picture Transformation
	2.2.3 Picture Interaction
	2.2.4 Picture game example
	2.2.5 Picture based widgets

	2.3 Types
	2.4 Collections
	2.5 Utility commands and functions

	3 Composition
	3.1 Command composition
	3.2 Function composition
	3.3 Data composition

	4 Abstraction
	5 Selection
	6 Conclusion

