Play . Create . Learn

http://www.kogics.net/

By
Lalit Pant

With contributions and feedback from

Anusha Pant, REACHA (www.reacha.org), and the kids at the Kalpana Center

Copyright © 2010-2014 Kogics (www.kogics.net)

This publication is licensed under the

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

This publication can be used freely in a Non-Commercial setting as per the license above.

Commercial use of this publication is restricted as per the terms below:

No part of this publication may be reproduced, modified, distributed, stored in a retrieval
system, republished, displayed, or performed — for money or compensation of any other

kind, either solely or as part of a larger offering or service — without a prior written
agreement with Kogics.

If you make a modified version of this publication for Non-Commercial use - this page,
including the above notices, must be retained at the front of the publication.

Book version: Aug 15, 2014

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://www.kogics.net/

Yl (0] Lo] =1 1o] o IO TP 8
Bl 1=T0] o V2O UPUPP U PPPPORN 8
o0 (= o] = 9
Activity 2 — Using the Kojo Environment EffeCtiVely.........cooviciieeeeee e 10
Y11 2 o] (o] =1 n Lo o VU PPUPUPPR 10
o (=T o] 7 = 11
ACtiVity 3 —Pen and Fill COlOr ... e e e e rrrrr e e e e e e e e 12
Y11 2 o] (o] =1 n Lo o FU S PPUPRPPR 12
o0 (= o] = 13
Activity 4 — Mixing Colors With @ fuNCHON.........cooiiiiiiie e 14
Y] L 3 4] Lo =T u To] o TR UPUP Nt 14
1 11T V7 15
] ol [T PPPTPPPRRN 16
Activity 5 — HOpPIiNg With SPEEd........uiieieei e e e 17
Y=1 Ll 2 o] (o] 1 n (o o FU P PPPPPPPPPP 17
o0 (T o] 18
ACHIVITY 6 = ANEIES.ccii it e e e s e e e st e e e s st e e e et a e e e eeaaaaaeeeeaann 19
Y=1 Ll o] (o] 1 n (o o DU P PPPPPPPP 19
(=T o 7 = 20
JANo n)Y YA T Tl o - [u o] T PP PT P UPPPPPPPRR 21
Activity 6.5 — TUrNING With @ radiUS........cooiciiiieiiee e e e e e e e e e e e e 22
=1Ll 2 o] (o] 1 n (o T o VS UPPUPPPPRP 22
o (=T o] 7 = 23
Activity 7 — Repeating COMMANGS.....ccccoiiiiiiiiieiiee ettt e et e e e e e e e e s e e e e e eeaeas 24
Y=l o] Lo] =1 To] o FO U UPPPRRPRPRPRIRt 24
(=T o] 7 = 24
Activity 8 — Analyzing the Repeat command.........coccuviiiiiiei i 25
Y=Ll o] Lo] =1 To] o FO U P UPPPRRPRPPPOt 25
1 11T V7 26
o (=T o] 7 = 26
Activity 8.5 — RaNdOM NUMDDEIS....ccciiieeeee et e e e e rr e e e e e e e e neaeeennenananan 27
Y11 2 o] (o] =1 n Lo o VU PEPRPPR 27
o0 (= o] = 28
Activity 9 — Repeating to make @ Pattern..... .. 29
Y]} 3 T4] Lo =T u To] o AU UPUPR Rt 31
o0 (= o] = 32
Activity 9a — Pattern Drawing PractiCe..... ... ittt e eeeeenaaes 33
Activity 9b — Extra Practice With Patterns........ccoo i 34
Activity 9c — Extra Practice with Angle based Patterns.........cccovveeviiniiiee e 35
YA ¥otn V7LV KO R O | (oW] =T u o o IS 36
=1L 2 o] (o] 1 n (o T o FU O PPPUPPPPRR 36
] ol [T PSP PPPTPPPPPN 37
ACtiVity 11 — YOUr OWN COMMANGS...cccciiiiiiiiiieeeeeeeeeiiirreeeeeeeeeestrrreeeeeeeeesetasrreeeeeeeesassseeeeeaaens 38

Y=1 Ll 2 o] (o] 1 n (o o VU PPPPPPPPP 39

] ol [T PP PPPPPTPPPRRN 41

ACEIVILY 12 — NAMEA VAlUEBS....eiieiieee ettt e e e e e e e e e e e e e s nnrreneeeaaeeas 42
Y=1 Ll 2 o] (o] 1 n (o o VU PPPPPPPPP 43

B 1 0T VU 43

oG] ol 1] =T PUPPR 44

Activity 13 — Your own dynamicC COMMANDS.......uuvieiriireeeriiiieeeeniiieeessireeesssirnereeeeeseeeeeesessnnns 45
Y1) 3 0] LoT =1 uTo] o FOR PP UPPP IOt 46

LI T=Te] V2P USSP 46

(=T o] 7 = 47

Activity 14 — Mini Project. ... 49
ACHVITY 15 — BrEaK FIrEO..cciiiiiiiiieeeeee ettt ettt e e e e e e e e sesabbaae e e e e e e e s ssrrraeeeens 50
ACHVItY 16 — STHNES AN 1Ottt et ebe e e e e e eabeeeenreeeearaeeas 51
Y=l o] Lo] =1 To] o FORR U PP PPPRRPPRPRPPPRt 51

B 1 0110] o V2P PUPURPUPRRR 51

o (=T o] = 52

ACHVITY 17 — CONAIIONAIS....uviiiieiiei it e e e et e e e e s eesnabrreereeeeeeeas 53
1 11T V7 53

Activity 18 — Repeat With @ COUNTEIc..uviveeeiie e e e e e e e e 54
Y]} 3 T4 0] Lo =T u T o TR RPNt 55

1 1= 55

o0 (= o] = 56

Activity 19 — YOUr OWN fUNCHONS.......eviiiiiiiiee e e e e e earae e 58
Y]} 3 T4] Lo =T uTo] o AU PUPUPR Rt 58

1 11T V7 59

] ol [T PSP PPPTPPPPPN 60

YA Yot VAL A O el O = 1YY 61
Y=1 Ll 2 o] (o] 1 n (o o FU P PPPPPPPPPP 61

B 1 0o VU 61

oG] ol 1] TP PPPPR 62

ACTIVITY 21 = SEQUEBNCES. .. e e s 64
Y1) 3 o] LoT =1 uTo] o FOR PP U PPP ROt 64

oG] ol 1] =T U PPPPPPPRN 64

WAt A AL YA Al |V, - o Lt 65
=1L 2 o] (o] 1 n (o T o HU S PPPUPPPPRR 65

o (=T o] 7 = 65

ACHVITY 23 — Variables. ... e e e e e e e e e e e e e e e e e e e aaaaaaes 66
Y=l o] Lo] =1 To] o FO U UPPPRRPRPRPRIRt 66

(=T o] 7 = 67

1Y o] 18 a o o 1= PP 68
Activity 1 — Commands and Programs.......c..ueeeeiieeeiiiciiiieeeeeeeeieiiiireeeeeeeeeeiesssreereeseessesssssnens 68
Activity 2 — Using the Kojo Environment Effectively.........cccoveiieciiiiiiiiiie e, 68
ACEVITY 3 = PN aNd Fill COIOTcciiiiiiiiiiiiieiiei et e e e e e e e e e eeaaees 69
Activity 4 — Mixing Colors with @ fuNCHON........c..eviiiiiee e 69
Activity 5 — Hopping With SPEEd........ceiiiiiiieee s 70
Vot A VAL A ST Y o F=d 71

ACtiVity 62 — PracltiCe.. .o, 72

Activity 6.5 = Turning With @ radiUs.........ccccuiiiiieiii e 73

Activity 7 — Repeating CoOmMMANdS.........uuiiiiiiiieiiiieee ettt e e s eaeeeee e 73
Activity 8 — Analyzing the Repeat Command..........ccceeiiiicciiiieiee e 74
Activity 8.5 = Random NUMDEIS......ccooiiiiiiiiiee e e e e s 74
Activity 9 — Repeating to make @ pattern..... .., 75
Activity 9a — Pattern Drawing PractiCe.......uuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeieeeeeeeeeeeeeets e 76
Activity 9b — Extra Practice With Patterns.......ooccuiiiiiiiieeiiiiiec e 77
Activity 9c — Extra Practice with Angle based Patterns.........ccoovveeeeeieeicciiicicccceiieee e, 78
Activity 14 — MiNi Project......ooo oo 79
Activity X — Repeating to make @ Pattern.........eeeeei it 81
ACHVITY 21 — SEQUEBNCES. ... 82

FAN o u AL YA A |V, - T o L 82

Before you start reading this book, make sure that you have read (or at least browsed
through) the Kojo introduction book (Kojo, An Introduction) — which can be freely
downloaded from:

http://www.kogics.net/kojo-ebooks

At the very least, you should be familiar with:
* The different windows within Kojo.
* The buttons in the Script Editor toolbar.

* The actions available within the context menus of the Script Editor and the Drawing
Canvas.

http://www.kogics.net/kojo-ebooks

Activity 1 — Commands and Programs

Activity 1 - Commands and Programs

This activity involves the following:
* Learning about commands, actions, and programs.

* Learning the clear(), forward(), and right() commands, and using them to make a
square geometrical figure.

* Using the Kojo error recovery feature.

Step 1. Type in the following code within the Script Editor and run it:

forward(100)

Q1. What does the turtle do?

Step 2. Clear the line made on the Drawing Canvas in the Reset Pan and Zoom
previous step by right-clicking on the Canvas and pressing Clear.

Then delete the text in the Script Editor by pressing the Clear ?

Editor toolbar button. E——

Now type in the following code and run it:

showScale()
forward(200)

Q2a. What does the turtle do?

Q2b. What do you think the forward(someInput) command does? What does the input to
the command specify (feel free to experiment with different inputs to the command to
validate your answer)?

Q2c. What do you think the showScale() command does? Does it show you the unit of
length for drawing on the turtle canvas? This unit of length is called a pixel.

Step 3. Clear the Drawing Canvas and Script Editor. Then type in the following code and run
it:

right()

Q3a. What does the turtle do?

Activity 1 — Commands and Programs

Q3b. What do you think the right() command does?

Step 4. Clear the Script Editor. Then type in the following code and run it:

clear()

Q4. What does the clear() command do? How is it useful?

Step 5. Type in the following incorrect code and run it:

clear()
forwardx(100)

Q5. What does Kojo tell you? Observe the kind of message that Kojo shows you when you
give it an incorrect command to run. Using this message, can you determine (and go to) the
line in your program that has the problem?

Step 6. Type in the following code and run it. Q6a. But first guess (before running the code)
what figure is made by this program:

clear()
forward(100)
right()
forward(100)
right()

Play with the clear(), forward(), and right() commands before you move on to the
exercise. Deliberately make a few mistakes (misspelled commands, missing round-brackets)
and then try to fix the mistakes with the help of the Kojo error messages.

A program is a series of instructions for the computer. These instructions can be of a few
different kinds. The first kind of instruction (the kind that you have seen in this activity) is a
command. A command makes the computer carry out an action (like moving the turtle
forward) or indirectly affects future actions (like setting the pen color).

Actions are effects produced by your program that you can see, hear, etc. They result in
outputs from your program.

Activity 1 — Commands and Programs

Write a program to make the given figure. The length of the sides
of the square is 100 units.

Activity 2 — Using the Kojo Environment Effectively

Activity 2 — Using the Kojo Environment Effectively

This activity involves the following:
* Exploring program tracing, error recovery, and history navigation.
* Practicing the selection, copying, cutting, and pasting of program text.

* Exploring code completion.

Step 1. Practice the following based on the square making program from the previous
activity.

1. Program Tracing (via the Trace Script toolbar button). = ____

2. Error Recovery (via the Check Script toolbar button). ¥

3. History Navigation — via the History Previous and Next toolbar a =2
buttons or the History Pane.

4. Text selection — bring your keyboard cursor to the beginning of the text that you want
to select, press the Shift key, and then (while keeping the Shift key pressed) press the
Arrow Keys to select text).

5. Copying (Ctrl+C) — Press the Control key, and then (while keeping the Control key
pressed) press the C key to copy the currently selected text into the Clipboard.

6. Pasting (Ctrl+V) — Move the keyboard cursor to the location where you want to paste
text, press the Control key, and then (while keeping the Control key pressed) press the
V key to paste the text (from the Clipboard) at the current cursor location.

7. Cutting (Ctrl+X) — Press the Control key, and then (while keeping the Control key
pressed) press the X key to cut the currently selected text into the Clipboard.

8. Code Completion (Ctrl+Space) — to help you to write your code more efficiently.

Q1. What does each of the above features do?

Self Exploration

Play with the above features before you move on to the exercise.

10

Activity 2 — Using the Kojo Environment Effectively

Exercise

Write a program to make the figure below. Use copy-and-paste and code-completion along
the way. The dimensions of the two rectangles are:

length=120 units ; breadth= % of length

First Rectangle

Second Rectangle

11

Activity 3 — Pen and Fill Color

Activity 3 — Pen and Fill Color

This activity involves the following:
* Learning about pen and fill colors.
* Learning the left() command.

* Applying the idea of ratio and proportion in constructing a figure made out of two
rectangles.

Step 1. Type in the following code and run it (use copy-and-paste and code-completion along
the way):

clear()
setPenColor(blue)
setFillColor(green)
forward(100)

left()

forward(590)

right()

forward(50)

right()
forward(100)

Qla. What do you think the setPenColor() command does (as you answer questions like
this, feel free to play around with the given command)? What does the input to the
command specify?

Q1b. What do you think the setFillColor() command does? What does the input to the
command specify?

Qlc. What do you think the 1left() command does?

Self Exploration

Play with the inputs to the setPenColor(), setFillColor(), and forward() commands in
the code above. See how changing these inputs modifies the figure.

12

Activity 3 — Pen and Fill Color

Exercise

Write a program to make the given figure. The pen color is blue, and
the fill color is green.

To determine the dimensions of the figure, imagine that it is made out
of two rectangles — a vertical one and a horizontal one:

* Vertical rectangle — length=120 , ratio of
breadth :length=1:3

* Horizontal rectangle — length=90 |, ratio of breadth:length

is in the same proportion as the corresponding ratio for the
vertical rectangle.

13

Activity 4 — Mixing Colors with a function

Activity 4 — Mixing Colors with a function

This activity involves the following:
* Learning about functions.
* Learning to use the Color function to create new colors.
* Learning about the RGB color model used to represent colors in computers.

* Applying the idea of ratios to determine numbers related to sizes and colors in a given
figure.

Step 1. Type in the following code and run it (note that just the third line in this code is
different from the code in Step 1 of the previous activity. So you can pull up that code in your
history, and modify just the third line):

clear()

setPenColor(blue)
setFillColor(Color(200, 100, 50, 255))
forward(100)

left()

forward(50)

right()

forward(590)

right()

forward(100)

Q1la. What do you think the Color function does?

Q1b. What do the four different inputs to the Color function specify? Play with different
input values to try to answer this.

Self Exploration

Play with the inputs to the Color function in the code above. See how changing these inputs
modifies the figure. Also, click on the word Color in your Script Editor. This will bring up a
color chooser (shown in the next page). You can then interactively play with the fill color for
the figure.

14

Activity 4 — Mixing Colors with a function

| [R@B | swatches | Hsv | HsL | cmvk |

Preview

I ® Red O 200 [
() Green b 100
) Blue 19 . 30 E
&lpha @ | 255
Color Code £86432 |

[= | - [l Sample Text Sample Text

. = . Sample Text Sample Text

Theory

Before this activity, the programs that you wrote involved using commands with number

values as inputs. Let’s expand on the definition of a program.

A program contains a series of instructions. These instructions can be of a few different

kinds:

* The first kind of instruction that you have seen is a command. A command makes
the computer carry out an action (e.g. moving the turtle forward) or affects a future
action (e.g. setting the turtle pen color). It is said that a command has a side-effect.

* The second kind of instruction that you have seen (which is the focus of this activity)
is a function. A function takes some values as inputs and computes and returns an
output value based on the inputs, e.g., Color(200, 100, 50, 255) takes four
number values as inputs and returns a Color value as an output.

Let's dig into the color function; this function takes four inputs — the red, green, blue, and
alpha/opacity components of the color you want to create. The component values need to
be in the range 0-255. Do a Google search for “RGB color” to learn more about how colors

are represented by these four components inside computers.

15

Activity 4 — Mixing Colors with a function

Exercise

Write a program to make the given figure with the following
specifications:

Cross arm — length=50 |, ratio of breadth:length is 3:5

Fill color — ratio of red:green :blue:opacity is 1:2:3:4 ,
blue=150

16

Activity 5 — Hopping with Speed

Activity 5 — Hopping with Speed

This activity involves the following:

* Learning how to control the speed of the turtle and the thickness of the lines drawn
by it.

* Learning how to make the turtle move without drawing lines.
* Learning the setAnimationDelay, setPenThickness, and hop commands

* Learning to estimate the dimensions of a figure given the size of one line in the figure.

Step 1. Type in the following code and run it:

clear()
setAnimationDelay(100)
setPenThickness(5)
forward(20)
hop(20)
forward(20)
hop(20)
forward(20)
hop(-100)

right()

hop(20)
forward(20)
hop(20)
forward(20)

Qla. What do you think the setAnimationDelay() command does? What does the input to
the command specify?

Q1b. What do you think the setPenThickness() command does? What does the input to the
command specify?

Qlc. What do you think the hop() command does? What does the input to the command
specify?

Self Exploration

Play with the inputs to the setAnimationDelay(), setPenThickness() and hop() commands
in the code above. See how changing these inputs modifies the figure and the speed with

17

Activity 5 — Hopping with Speed

which the figure is made.

Write a program to make the given figure. The pen color is
brown. The outline of the face is a square with a length of 200. -f

Use your best judgment to estimate the other dimensions in the
figure.

18

Activity 6 — Angles

Activity 6 — Angles

This activity involves the following:
* Learning how to make the turtle turn through angles other than 90°.
* Exploring angles.

* Using the idea of supplementary angles.

Step 1. Type in the following code and run it:

clear()

showProtractor()

repeat (3) {
forward(100)
right(120)

Qla. What do you think the input to the right() command above specifies?

Q1b. What do you think the showProtractor() command does? Does it help you to get an
idea of the sizes of different angles?

Qlc. The angles of an equilateral triangle are 60°. Why does the turtle turn through 120° to
make the above equilateral triangle?

Self Exploration

Play with the inputs to the right() command in the code above. See how changing these
inputs modifies the figure.

19

Activity 6 — Angles

Exercise

Write programs to make the following figures (without the written angle sizes).

30° 60° 90°

120° .! 180°

20

Activity 6a — Practice

Activity 6a — Practice

Write programs to make the following figures:

Equilateral

Triangle —_
100

200 /

21

Activity 6.5 — Turning with a radius

Activity 6.5 — Turning with a radius

This activity involves the following:
* Learning how to make the turtle turn along an arc of a circle.
* Learning to set the background color of the canvas.

* Explorations with geometry and angles.

Step 1. Type in the following code and run it:

clear()
right(150, 50)

Q1la. What do you think the two inputs to the right() command specify?

Q1b. Can you identify the circle along which the turtle moves in response to the right
command above. Where is the center of this circle? What is its radius?

Step 2. Type in the following code and run it:

clear()

setAnimationDelay(100)
setBackground(Color(@, 128, 215))
setPenColor(black)

right(150, 50)

right(90)

right (150, 50)

right(90)

right (150, 50)

Q2. What do you think the setBackground() command does?

Self Exploration

Play with the inputs to the right() and setBackground() commands in the code above. See
how changing these inputs modifies the figure.

22

Activity 6.5 — Turning with a radius

Exercise

Write a program to make the following figure.

23

Activity 7 — Repeating commands

Activity 7 — Repeating commands

This activity involves the following:
* Learning the repeat command.

* Learning about removing code duplication/repetition by using the repeat command.

Step 1. Type in the following code and run it:

clear()

repeat (2) {
forward(100)
right()

Qla. What do you think the repeat() command does?

Q1b. How many inputs does the repeat() command take? What do these inputs signify?

Self Exploration

Play with the inputs to the repeat() and forward() commands in the code above. See how
changing these inputs modifies the figure.

Exercise

Write a program, using the repeat command, to make the following figure. The length of the
square is 100 units. The pen color is gray, and the fill color is orange.

24

Activity 8 — Analyzing the Repeat command

Activity 8 — Analyzing the Repeat command

This activity involves the following:

* Gaining a deeper understanding of the repeat command.

Step 1. Type in and run the following programs:

clear() clear()
repeat (4) { forward(100)
forward(100) right()
right() forward(100)
} right()
forward(100)
right()
forward(100)
right()

Qla. What's the figure made by the program on the left?
Q1l1b. What's the figure made by the program on the right?
Qlc. How are these programs similar?

Q1d. How are these programs different?

Qle. Is there an easy, mechanical way of converting from one to the other?

Self Exploration
Play with the inputs to the repeat() and forward() commands in the code on the left. See

how changing these inputs modifies the figure. For changes on the left, think about how you
would need to modify the program on the right to achieve a similar effect.

25

Activity 8 — Analyzing the Repeat command

Theory

The repeat () command allows you to run other commands for a specified number of times.

Note that repeat () takes two inputs:

repeat_(2) {
The first input, thzﬁ::?;(l% The second Lnput, a
number 2, specifies g e block 0f code between
y curly brackets (or

how wany times to
|rt‘p!at something braces), specifies what
to repeat

The repeat() command has a couple of big benefits:
* It makes your programs shorter by removing repetition.

* It makes your programs easier to understand.

Exercise

Write a program, using the repeat command, to make the following figure (a flock of birds).

26

Activity 8.5 — Random numbers

Activity 8.5 - Random numbers

This activity involves the following:
* Learning to use random numbers to make interesting figures.
* Learning to use the random function.

* Learning to nest functions within commands.

Step 1. Type in the following code and run it using the Run as Worksheet button:

random(50)

Qla. What do you think the random functions does?

Step 2. Run the code above a few more times.

Q2. Now what do you think the random functions does?

Step 3. Type in the following code and run it (a few times)

clear()

setAnimationDelay(10)

setPenColor(gray)

repeat(20) {
savePosHe()
setPenThickness(random(20))
setPenColor(Color(9, 30, 200, random(255)))
right(random(360))
forward(random(100))
restorePosHe()

Q3a. What do you think the forward(random(100)) instruction does?
Q3b. What do you think the savePosHe() and restorePosHe() commands do?

Self Exploration

Play with the code in Step 3 above and try to fully understand it.

27

Activity 8.5 — Random numbers

Exercise

Write a program to make a figure that looks somewhat like the figure below. The figure is
made out of vertical lines with random lengths, a width of 20 pixels, and a pen color of black
with random opacity.

28

Activity 9 — Repeating to make a pattern

Activity 9 — Repeating to make a pattern

This activity involves the following:
* Learning to analyze and identify patterns.

* Learning to make patterns using the repeat command.

Step 1. Learn the procedure for making patterns.

Let's say you want to make a figure like the one below. The pen color is dark gray, and the fill
color is pink. The length of the square is 100 units.

Do you see a pattern here?

So, what's a pattern?
A pattern is something that contains a repeated building-block; the building-
block is repeated to make the pattern.

For the current discussion, you can think of a pattern as a figure that contains a
smaller building-block shape inside it. This building-block is repeated in a
uniform way to make the pattern.

Patterns play a crucial role in Computer Programming and Math, as we'll see...

Try to identify the building-block of the above pattern.

29

Activity 9 — Repeating to make a pattern

The building-block of the pattern is:

Note that the building-block consists of three things:
* A Shape. In this case, the Shape is a square

* A Position and a Direction for the turtle relative to the Shape, so that it is ready to
draw the next building-block in the pattern. In this case, the Position is the top-right
corner of the square, and Direction is north

Let's come up with a little recipe for making patterns. Given a pattern that you have to make,
follow this procedure:

1. ldentify the building-block of the pattern and draw it out on paper. The building-block
should contain three pieces of information: a shape, a turtle position (marked with a
circle on your paper sheet), and a turtle direction (marked with an arrow on your
paper sheet).

2. Draw the building-block in Kojo

3. Repeat the building-block, for as many times as the pattern requires, using the repeat
command. To do this, you should Cut the code for drawing the building-block from
Step 2 above — and Paste it inside the repeat command curly brackets.

30

Activity 9 — Repeating to make a pattern

Step 2. Using the above procedure, you can come up with a program like the following for
making the pattern. Type the program in and run it.

clear()

setAnimationDelay(100)

setPenColor(darkGray)

setFillColor(pink)

repeat(3) { // The stuff inside this repeat command is the pattern
building-block

// start of building-block

repeat(4) { // The building-block itself uses the repeat command
forward(100)
right()

}
hop(100)

right()

hop(100)

left()

// end of building-block

Make sure you understand how this program makes the pattern.

Note — in a Kojo program, anything after a // on a line is called a comment, and is ignored by
Kojo. Comments are for human consumption.

Q2a. Identify the start of the building-block in the code above.

Q2b. Identify the end of the building-block in the code above.

Q2c. What pieces of information does the building-block contain?
Q2d. What lines in the code above specify the building-block shape?
Q2e. What lines in the code above specify the building-block position?
Q2f. What lines in the code above specify the building-block direction?

Q2g. What is a comment? How many comments do you see in the code above?

Play with the code above to try out a few different buildings blocks. For this you need to
modify the code between the '// start of building-block' and '// end of building-block'
comments.

31

Activity 9 — Repeating to make a pattern

Exercise

Write a program to make the following pattern. The length of the square is 100 units. Each

subsequent square in the pattern starts half-way along the height of the previous square. The
pen color is magenta. The fill color is cyan.

Use the three-step pattern-making procedure to make this pattern.

32

Activity 9a — Pattern Drawing Practice

Activity 9a — Pattern Drawing Practice

Write programs to make the following patterns. Use the three-step pattern-making
procedure described in Activity 7 to make the patterns. Each program should be no more
than 14 lines of code.

—#

The length of the square is 100
units. Each subsequent square in
the pattern starts 80% along the
width of the previous square.

The pen color is purple. The fill
color is orange.

|_*_ The width of the rectangle is 100 units
3

The height of the rectangle is 10 of its width

Each subsequent rectangle in the pattern starts 25%
along the width of the previous rectangle.

The pen color is black. The fill color is yellow.

33

Activity 9b — Extra Practice with Patterns

Activity 9b — Extra Practice with Patterns

Write programs to make the following patterns. Use the three-step pattern-making
procedure described in Activity 7 to make the patterns. Each program should be no more
than 14 lines of code, unless specified otherwise. Use dimensions of your own choice such
that your patterns look like the ones below.

The program to make this figure can be longer than 14
lines

34

Activity 9c — Extra Practice with Angle based Patterns

Activity 9c — Extra Practice with Angle based Patterns

Write programs to make the following patterns. Use the three-step pattern-making
procedure described in Activity 7 to make the patterns.

The length of the sides of the star is 100 units. The
pen color is grey, and the fill color is yellow.

Make use of the following facts to determine the
turning angle for the turtle required to make this

figure:
* To turn all the way around in a full circle, you

need to turn through 360 degrees.

* The turtle makes a certain number of full circle
turns (cumulatively) while making this figure.

* The turtle makes a certain number of actual
turns to complete these full circle turns

One of the shorter sides of each triangle is 100
units in length. The pen color is darkGray and the
fill color is orange.

Make use of the following facts to determine the
turning angles for the turtle and the unknown
lengths in the figure:

* Properties of Isosceles triangles.

* Pythagoras theorem.

The pen color is grey, and the fill color is yellow. The
triangles have the same dimension as in the
previous pattern.

35

Activity 10 - Calculations

This activity involves the following:
* Learning to do calculations within Kojo
* Learning about expressions.

* Using the idea of operator precedence and associativity (BODMAS) in expressions.

Step 1. Type in the following code and run it (by using the Run as Worksheet button)

10 + 2
10 * 2
10 - 2
10 / 2

Qla. How can you do the operations of addition, subtraction, multiplication, and division of
numbers within Kojo?

Step 2. Type in the following code and run it (by using the Run as Worksheet button)

10 + 2 * 4
(10 + 2) * 4

Q2a. Can you combine multiple operations on numbers within a single expression? If so, in
what order are the different operations carried out?

Q2b. Can you change the default order in which operations are carried out?

Play with doing different kinds of calculations.

Theory

Let’s review the definition of a program.

A program contains a series of instructions. These instructions can be of a few different
kinds:

* The first kind of instruction that you have seen is a command. A command makes

36

Activity 10 - Calculations

the computer carry out an action (e.g. moving the turtle forward) or affects a future
action (e.g. setting the turtle pen color). It is said that a command has a side-effect.

* The second kind of instruction that you saw was a function (Color(red, green,
blue, alpha) — for color mixing). A function takes some values as inputs and
computes and returns an output value based on the inputs.

In this activity, you have worked with arithmetic operators like +, -, *, and /. These are also
functions, but they are called in infix notation (e.g. 1 + 2) as opposed to prefix notation
(e.g. +(1, 2)). Functions belong to a category of instructions called expressions. Most
expressions are functions. The ones that are not (e.g. a number like 2) are called literals and
evaluate to themselves (i.e., the text 2 in your program evaluates to the number 2 when the
program runs). In other words, expressions are either functions or literals.

Calculate the area of the given figure with the help of the calculation capability in Kojo. The
dimensions of the two rectangles in the figure are:

Outer Rectangle: length = 160, breadth = 100
Inner Rectangle: length = 100, breadth = 60

37

Activity 11 — Your own commands

Activity 11 — Your own commands

This activity involves the following:

Learning to create new commands within Kojo using the def instruction

Learning about keyword instructions.

Becoming familiar with the very important ideas of primitives, composition, and

abstraction.

Applying the idea of percentages to determine the dimensions of geometric figures.

Step 1. Type in the following code and run it:

clear()

setAnimationDelay(100)

repeat(4) {
forward(50)
right()

¥

hop (60)

repeat(4) {
forward(50)
right()

}

right()

hop (60)

left()

repeat(4) {
forward(50)
right()

¥

hop (60)

repeat(4) {
forward(50)
right()

Step 2. Now type in this code and run it:

clear()
setAnimationDelay(100)

38

Activity 11 — Your own commands

def square() {

repeat(4) {
forward(590)

right()

}

square()
hop(60)
square()
right()
hop (60)
left()

square()
hop(60)
square()

Q2a. How is the code in Step 1 similar to the code in Step 2? How is it different?
Q2b. What do you think the def instruction does?

Play with:

* Changing the definition of the square command to make squares of size other than
50.

* Using the square command to create additional squares within the drawing.

As mentioned earlier, programs are made out of a series of instructions for the computer.
You saw two kinds of instructions in the previous activity:

1. Commands, which let you take actions or affect future actions (like moving the turtle
forward or setting the pen color).

2. Expressions, which let you do calculations (e.g. 5+9).

You saw a new kind of instruction in this activity — a keyword instruction (def). A keyword
instruction allows you to structure your program better (there’s more to it than that, but
this is a good working definition).

The def keyword instruction lets you create new commands of your own. You can then use

39

Activity 11 — Your own commands

or call these commands just like you would call predefined Kojo commands.

The code in Step 2 defines the square command. Here's a closer look at that fragment of
code:

The def Youw define the body of
keyword allows Your new command
you to create a " within a block.
new command def square() {“

V" repeat (4) {

forwa r‘d‘(Sa)
Adight() W
V1

You caAn NAMLE your
nwew command

whatever you want within your new

command, You can use
pre-existing commands
as desired

What's the benefit of creating your own commands?

These commands allow you to capture commonly used patterns of code, give them a name,
and then reuse them. This reduces code duplication, and makes your programs easier to
understand.

There’s also a way of looking at the def instruction in terms of a deeper idea. Let’s look at
that idea.

Computer programming is about three basic things:

* primitives — these are the instructions already available in our programming
environment.

* composition — this is how you combine primitives to do what is required.

e abstraction — this is how you give our compositions a name, so that they can be used
as higher level primitives within your programs. These abstractions are used without
regard to how they are implemented.

Seen from this perspective, the def instruction allows you to:
* create a new abstraction i.e. your new command.

* implement the abstraction using a combination of primitives i.e. pre-existing
commands.

40

Activity 11 — Your own commands

Exercise

Write a program to make the given figure. The square size is 50, and the vertical and
horizontal distance between the squares is 40% of the square size.

41

Activity 12 — Named Values

Activity 12 — Named Values

This activity involves the following:
* Learning to assign names to values using the val keyword instruction.

* Applying the idea of percentages to determine the dimensions of geometric figures.

Step 1. Type in the following code and run it:

clear()

repeat(4) {
forward(100)
right()

}

repeat(4) {
forward(50)
right()

}

repeat(4) {
forward(25)
right()

}

Step 2. Now make the figure that you made in the previous step twice as large (how can you
do this?).

Step 3. Type in the following code and run it:

val size = 100
// You can also use a calculation to determine size
// val size = canvasBounds.height * 0.75

clear()

repeat(4) {
forward(size)
right()

}

repeat(4) {
forward(size/2)
right()

¥

repeat(4) {

42

Activity 12 — Named Values

forward(size/4)
right()

Step 4. Now make the figure that you made in the previous step twice as large (how can you
do this?).

Q4a. Was it easier to increase the size of the previous figure in Step 2 or was it easier in Step
4?

Q4b. What do you think the val instruction does?

Play with:
* Resizing the figure by assigning different number to the size named-value.

* Making new squares using the size named-value.

The val keyword instruction allows you to create named values of your own. You can then
use these named values in different locations in your program.

The first line in the code in Step 3 uses the val keyword instruction. Here's a closer look at
that fragment of code:

~val ;'_.ize = 100_

The val keyword

allows you to :

create @ nwew The result of the expréession
named-value on the RHS of the equal
sigw is bound to the
named-value

You cawn give your
nwamed-value whatever
WA ME you want

After this line of code in the program, the name size is available within the program with a
value of 100.

Named values give you the ability to refer to numbers by name, as opposed to their values.
Why would you want to do that (i.e. refer to numbers by name)?

For the following reasons:

43

Activity 12 — Named Values

* To make it easier to make changes in your program. You saw this when you needed
to make a smaller or larger version of the figure above. You just had to change one
line at the beginning of your program to change the size of the figure, instead of
having to scan through your whole program and making multiple changes.

* To make your program more understandable. Looking at the program in Step 3, it

becomes clear right away that the size of the squares made by the program can be
controlled.

* To avoid redoing calculations for values that will be used multiple times in your
program.

Think about how all of this relates to the idea of primitives, composition, and abstraction.

Write a program to make the figure shown below. The figure has three triangles. As we move
from the biggest to the smallest triangle, each triangle is 75% of the size of the previous
triangle.

Now, make a change in just one line of your program to make the bigger figure shown below:

44

Activity 13 — Your own dynamic commands

Activity 13 — Your own dynamic commands

This activity involves the following:

* Learning to create new commands that take inputs, thus letting them change their

behavior based on input values.

* Learning to estimate the dimensions of a figure given the size of one line in the figure.

Step 1. Type in the following code and run it:

clear()
setAnimationDelay(100)
setPenColor(black)
setFillColor(orange)
repeat(3) {

repeat(4) {

forward(100)
right()

}

repeat(4) {
forward(70)
right()

}

repeat(4) {
forward(30)
right()

}

forward(100)

Step 2. Now type in this code and run it:

clear()
setAnimationDelay(100)
setPenColor(black)
setFillColor(orange)
def square(n: Int) {
repeat(4) {
forward(n)
right()

45

Activity 13 — Your own dynamic commands

repeat(3) {
square(100)
square(70)
square(30)
forward(100)

How is the code in Step 1 similar to the code in Step 2? How is it different?

Play with using the square command to create additional different sized squares within the
drawing.

Here’s a detailed picture showing you how to create a new command that takes an input:

Theiwputtothe
square command is a
‘named value’ called

, The ‘type’ of
" the Lnput is

‘lint’
‘side’ :
def squareféide: ;gj) {
repeat (4) {
forward(side)
right()
} %
ﬂ You use the input

named value within
your command

Within the round-brackets in the first line of code above, you are telling Kojo that the input
to the square command is called side, and that its type is Int (where, as you have seen
earlier, Int stands for integer). Now, instead of always drawing squares of the same size, the
square command can draw squares of different sizes - based on the input that is provided to
it.

Inputs to commands are named values that can be used within the body of a command (do
you remember named values from an earlier Activity?).

46

Activity 13 — Your own dynamic commands

Inputs also have types associated with them. The type of an input tells Kojo:
* the permissible values of the input.
* the operators and commands that it can work with.
Telling Kojo the type of the input to your user defined command has a couple of
advantages:
* It makes it easy for Kojo to identify problems with your usage of the input value, and
to tell you if you make a mistake.
* It makes it easier for you (and your friends) to understand what the command does
when you (or they) look at it later.

Think about how all of this relates to the idea of primitives, composition, and abstraction.

Write a program to make the given figure. The size of the vertical black line that runs from
the bottom to the top of the figure is 300. Use your best judgment to estimate the other
dimensions in the figure.

47

Activity 14 — Mini Project

Activity 14 — Mini Project

Write programs to make the following figures. Use things like the repeat command and user
defined commands to help you in making the figures.

[Todo — Figure 2]

48

Activity 15 — Break Free

Activity 15 — Break Free

Use everything that you have learnt till now to make your own creation. First, sketch your
idea out on paper. Then start making it within Kojo. As you go along, keep refining your idea
till you are satisfied with what you have.

Feel free to share your creation with us on the Kojo Code Exchange.

The Code Exchange is a website to which you can post your Kojo sketches and
C:@ code — with one click of a button within Kojo.

This Code Exchange is a good place for Kojo users to showcase their work, look
at and rate the work of others, provide comments and exchange ideas, and
learn in a collaborative fashion.

49

http://www.kogics.net/codeexchange
http://www.kogics.net/codeexchange

Activity 16 — Strings and I/0

Activity 16 — Strings and 1/O

This activity involves the following:
* Learning about impure functions.
* Learning to use the readln and readiInt functions.
* Learning to use the write command.
* Learning about program input and output.
* Learning about strings.

* Learning about string interpolation.

Step 1. Type in the following code and run it:

val name = readln("What's your name?")
val age = readInt("What's your age?")
clear()

write(s"Hello $name, your age is $age")

Qla. What do you think the readln instruction does?
Q1b. What do you think the readInt instruction does?
Qlc. What do you think is the data between the double quotes (")

Q1d. Why do you think the input to the write command has an ‘s’ at the beginning — s"Hello
Sname, your age is Sage"?

Qle. Is the program above taking any input? Is it providing any output?

Self Exploration

Play with the code above as you see fit.

Theory

This activity covers a lot of ground. Let's look at the new ideas introduced in this activity:

50

Activity 16 — Strings and I/0

A Program interacts with its user by taking in inputs that the user provides, working with
these inputs, and providing outputs that the users can see. The following commands are
used for this in Kojo:

readln — takes a String typed in by the user and makes it available to the program.

readInt — takes a String typed in by the user, converts it to an integer, and makes it available
to the program.

write —takes a String, and shows it to the user inside the drawing canvas.

But wait a minute. Are readln and readInt commands? They seem to be commands
because they produce an action (a textbox shows up in the output widow where we can
type in stuff). But they also return a value (whatever the user types in). Since a command
never returns anything, they are not really commands. But they are not functions either
(because they carry out an action). So what are they?

We call them impure functions.

Next, let us look at Strings, which are used by all three instructions mentioned above.
Strings are:

* used to represent text.
* atype within Kojo.

* particularly useful for providing input to a program and generating output from a
program.

You create a string by enclosing some text within double quotes, e.g., “an example string”.
When you use a string,