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Prerequisites

Before you start reading this book, make sure that you have read (or at least browsed 
through) the Kojo introduction book (Kojo, An Introduction) – which can be freely 
downloaded from:

http://www.kogics.net/kojo-ebooks

At the very least, you should be familiar with:

• The different windows within Kojo.

• The buttons in the Script Editor toolbar.

• The actions available within the context menus of the Script Editor and the Drawing 
Canvas.

http://www.kogics.net/kojo-ebooks


  Activity 1 – Commands and Programs

  Activity 1 – Commands and Programs

This activity involves the following:

• Learning about commands, actions, and programs.

• Learning the clear(), forward(), and right() commands, and using them to make a 
square geometrical figure.

• Using the Kojo error recovery feature.

Step 1. Type in the following code within the Script Editor and run it:

forward(100)

Q1. What does the turtle do?

Step 2. Clear the line made on the Drawing Canvas in the
previous step by right-clicking on the Canvas and pressing Clear.
Then delete the text in the Script Editor by pressing the Clear
Editor toolbar button. 

Now type in the following code and run it:

showScale()
forward(200)

Q2a. What does the turtle do?

Q2b. What do you think the forward(someInput) command does? What does the input to 
the command specify (feel free to experiment with different inputs to the command to 
validate your answer)?

Q2c. What do you think the showScale() command does? Does it show you the unit of 
length for drawing on the turtle canvas? This unit of length is called a pixel.

Step 3. Clear the Drawing Canvas and Script Editor. Then type in the following code and run 
it:

right()

Q3a. What does the turtle do?
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  Activity 1 – Commands and Programs

Q3b. What do you think the right() command does?  

Step 4. Clear the Script Editor. Then type in the following code and run it:

clear()

Q4. What does the clear() command do? How is it useful?

Step 5. Type in the following incorrect code and run it:

clear()
forwardx(100)

Q5. What does Kojo tell you? Observe the kind of message that Kojo shows you when you 
give it an incorrect command to run. Using this message, can you determine (and go to) the 
line in your program that has the problem?

Step 6. Type in the following code and run it. Q6a. But first guess (before running the code) 
what figure is made by this program:

clear()
forward(100)
right()
forward(100)
right()

  Self Exploration

Play with the clear(), forward(), and right() commands before you move on to the 
exercise. Deliberately make a few mistakes (misspelled commands, missing round-brackets) 
and then try to fix the mistakes with the help of the Kojo error messages.

  Theory

A program is a series of instructions for the computer. These instructions can be of a few 
different kinds. The first kind of instruction (the kind that you have seen in this activity) is a 
command. A command makes the computer carry out an action (like moving the turtle 
forward) or indirectly affects future actions (like setting the pen color). 

Actions are effects produced by your program that you can see, hear, etc. They result in 
outputs from your program. 
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  Activity 1 – Commands and Programs

  Exercise

Write a program to make the given figure. The length of the sides
of the square is 100 units.
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  Activity 2 – Using the Kojo Environment Effectively

  Activity 2 – Using the Kojo Environment Effectively

This activity involves the following:

• Exploring program tracing, error recovery, and history navigation.

• Practicing the selection, copying, cutting, and pasting of program text.

• Exploring code completion.

Step 1. Practice the following based on the square making program from the previous 
activity.

1. Program Tracing (via the Trace Script toolbar button).

2. Error Recovery (via the Check Script toolbar button).

3. History Navigation – via the History Previous and Next toolbar
buttons or the History Pane.

4. Text selection – bring your keyboard cursor to the beginning of the text that you want
to select, press the Shift key, and then (while keeping the Shift key pressed) press the 
Arrow Keys to select text).

5. Copying (Ctrl+C) – Press the Control key, and then (while keeping the Control key 
pressed) press the C key to copy the currently selected text into the Clipboard. 

6. Pasting (Ctrl+V) – Move the keyboard cursor to the location where you want to paste 
text, press the Control key, and then (while keeping the Control key pressed) press the
V key to paste the text (from the Clipboard) at the current cursor location.

7. Cutting (Ctrl+X) – Press the Control key, and then (while keeping the Control key 
pressed) press the X key to cut the currently selected text into the Clipboard. 

8. Code Completion (Ctrl+Space) – to help you to write your code more efficiently.

Q1. What does each of the above features do?

  Self Exploration

Play with the above features before you move on to the exercise.
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  Activity 2 – Using the Kojo Environment Effectively

  Exercise

Write a program to make the figure below. Use copy-and-paste and code-completion along 
the way. The dimensions of the two rectangles are: 

length=120 units ; breadth=
1
3
of length

11
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  Activity 3 – Pen and Fill Color

  Activity 3 – Pen and Fill Color

This activity involves the following:

• Learning about pen and fill colors.

• Learning the left() command.

• Applying the idea of ratio and proportion in constructing a figure made out of two 
rectangles.

Step 1. Type in the following code and run it (use copy-and-paste and code-completion along
the way):

clear()
setPenColor(blue)
setFillColor(green)
forward(100)
left()
forward(50)
right()
forward(50)
right()
forward(100)

Q1a. What do you think the setPenColor() command does (as you answer questions like 
this, feel free to play around with the given command)? What does the input to the 
command specify?

Q1b. What do you think the setFillColor() command does? What does the input to the 
command specify?

Q1c. What do you think the left() command does?

  Self Exploration

Play with the inputs to the setPenColor(), setFillColor(), and forward() commands in 
the code above. See how changing these inputs modifies the figure.
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  Activity 3 – Pen and Fill Color

  Exercise 

Write a program to make the given figure. The pen color is blue, and
the fill color is green. 

To determine the dimensions of the figure, imagine that it is made out
of two rectangles – a vertical one and a horizontal one:

• Vertical rectangle – length=120 , ratio of
breadth : length=1 :3

• Horizontal rectangle – length=90 , ratio of breadth : length
is in the same proportion as the corresponding ratio for the
vertical rectangle.
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Activity 4 – Mixing Colors with a function

Activity 4 – Mixing Colors with a function

This activity involves the following:

• Learning about functions.

• Learning to use the Color function to create new colors.

• Learning about the RGB color model used to represent colors in computers.

• Applying the idea of ratios to determine numbers related to sizes and colors in a given
figure.

Step 1. Type in the following code and run it (note that just the third line in this code is 
different from the code in Step 1 of the previous activity. So you can pull up that code in your
history, and modify just the third line):

clear()
setPenColor(blue)
setFillColor(Color(200, 100, 50, 255))
forward(100)
left()
forward(50)
right()
forward(50)
right()
forward(100)

Q1a. What do you think the Color function does?

Q1b. What do the four different inputs to the Color function specify? Play with different 
input values to try to answer this.

  Self Exploration

Play with the inputs to the Color function in the code above. See how changing these inputs 
modifies the figure. Also, click on the word Color in your Script Editor. This will bring up a 
color chooser (shown in the next page). You can then interactively play with the fill color for 
the figure.
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Activity 4 – Mixing Colors with a function

  Theory

Before this activity, the programs that you wrote involved using commands with number 
values as inputs. Let’s expand on the definition of a program.

A program contains a series of instructions. These instructions can be of a few different 
kinds:

• The first kind of instruction that you have seen is a command. A command makes 
the computer carry out an action (e.g. moving the turtle forward) or affects a future 
action (e.g. setting the turtle pen color). It is said that a command has a side-effect.

• The second kind of instruction that you have seen (which is the focus of this activity) 
is a function. A function takes some values as inputs and computes and returns an 
output value based on the inputs, e.g., Color(200, 100, 50, 255) takes four 
number values as inputs and returns a Color value as an output.

Let's dig into the color function; this function takes four inputs – the red, green, blue, and 
alpha/opacity components of the color you want to create. The component values need to 
be in the range 0-255. Do a Google search for “RGB color” to learn more about how colors 
are represented by these four components inside computers.
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Activity 4 – Mixing Colors with a function

  Exercise 

Write a program to make the given figure with the following
specifications:

Cross arm – length=50 , ratio of breadth : length is 3 :5

Fill color – ratio of red :green :blue :opacity is 1:2 :3 :4 ,
blue=150
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  Activity 5 – Hopping with Speed

  Activity 5 – Hopping with Speed

This activity involves the following:

• Learning how to control the speed of the turtle and the thickness of the lines drawn 
by it.

• Learning how to make the turtle move without drawing lines.

• Learning the setAnimationDelay, setPenThickness, and hop commands.

• Learning to estimate the dimensions of a figure given the size of one line in the figure.

Step 1. Type in the following code and run it:

clear()
setAnimationDelay(100)
setPenThickness(5)
forward(20)
hop(20)
forward(20)
hop(20)
forward(20)
hop(-100)
right()
hop(20)
forward(20)
hop(20)
forward(20)

Q1a. What do you think the setAnimationDelay() command does?  What does the input to 
the command specify?

Q1b. What do you think the setPenThickness() command does?  What does the input to the
command specify?

Q1c. What do you think the hop() command does?  What does the input to the command 
specify?

  Self Exploration

Play with the inputs to the setAnimationDelay(), setPenThickness() and hop() commands 
in the code above. See how changing these inputs modifies the figure and the speed with 
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  Activity 5 – Hopping with Speed

which the figure is made.

  Exercise

Write a program to make the given figure. The pen color is
brown. The outline of the face is a square with a length of 200.
Use your best judgment to estimate the other dimensions in the
figure.
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  Activity 6 – Angles

  Activity 6 – Angles

This activity involves the following:

• Learning how to make the turtle turn through angles other than 90°.

• Exploring angles. 

• Using the idea of supplementary angles.

Step 1. Type in the following code and run it:

clear()
showProtractor()
repeat (3) {
    forward(100)
    right(120)
}

Q1a. What do you think the input to the right() command above specifies?

Q1b. What do you think the showProtractor() command does? Does it help you to get an 
idea of the sizes of different angles?

Q1c. The angles of an equilateral triangle are 60°. Why does the turtle turn through 120° to 
make the above equilateral triangle?

  Self Exploration

Play with the inputs to the right() command in the code above. See how changing these 
inputs modifies the figure. 
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  Activity 6 – Angles

  Exercise

Write programs to make the following figures (without the written angle sizes).

20
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  Activity 6a – Practice

  Activity 6a – Practice

Write programs to make the following figures:

21
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  Activity 7 – Repeating commands

  Activity 7 – Repeating commands

This activity involves the following:

• Learning the repeat command.

• Learning about removing code duplication/repetition by using the repeat command.

Step 1. Type in the following code and run it:

clear()
repeat (2) {
    forward(100)
    right()
}

Q1a. What do you think the repeat() command does? 

Q1b. How many inputs does the repeat() command take? What do these inputs signify?

  Self Exploration

Play with the inputs to the repeat() and forward() commands in the code above. See how 
changing these inputs modifies the figure.

  Exercise

Write a program, using the repeat command, to make the following figure. The length of the 
square is 100 units. The pen color is gray, and the fill color is orange.
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  Activity 8 – Analyzing the Repeat command

  Activity 8 – Analyzing the Repeat command

This activity involves the following:

• Gaining a deeper understanding of the repeat command.

Step 1. Type in and run the following programs:

clear()
repeat (4) {
    forward(100)
    right()
}

clear()
forward(100)
right()
forward(100)
right()
forward(100)
right()
forward(100)
right()

Q1a. What's the figure made by the program on the left?

Q1b. What's the figure made by the program on the right?

Q1c. How are these programs similar?

Q1d. How are these programs different?

Q1e. Is there an easy, mechanical way of converting from one to the other?

  Self Exploration

Play with the inputs to the repeat() and forward() commands in the code on the left. See 
how changing these inputs modifies the figure. For changes on the left, think about how you 
would need to modify the program on the right to achieve a similar effect.

23



  Activity 8 – Analyzing the Repeat command

  Theory

The repeat() command allows you to run other commands for a specified number of times.

Note that repeat() takes two inputs:

The repeat() command has a couple of big benefits:

• It makes your programs shorter by removing repetition.

• It makes your programs easier to understand.

  Exercise

Write a program, using the repeat command, to make the figure
that you made in activity 4. The only difference from that figure
is that the outline of the face is a square with a length of 300
instead of 200.

24



  Activity 9 – Repeating to make a pattern

  Activity 9 – Repeating to make a pattern

This activity involves the following:

• Learning to analyze and identify patterns.

• Learning to make patterns using the repeat command.

Step 1. Learn the procedure for making patterns.

Let's say you want to make a figure like the one below. The pen color is dark gray, and the fill 
color is pink. The length of the square is 100 units.

Do you see a pattern here?


So, what's a pattern?

A pattern is something that contains a repeated building-block;  the building-
block is repeated to make the pattern. 

For the current discussion, you can think of a pattern as a figure that contains a
smaller building-block shape inside it. This building-block is repeated in a 
uniform way to make the pattern.

Patterns play a crucial role in Computer Programming and Math, as we'll see...

Try to identify the building-block of the above pattern.
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  Activity 9 – Repeating to make a pattern

The building-block of the pattern is:

Note that the building-block consists of three things:

• A Shape. In this case, the Shape is a square

• A Position and a Direction for the turtle relative to the Shape, so that it is ready to 
draw the next building-block in the pattern. In this case, the Position is the top-right 
corner of the square, and Direction is north

Let's come up with a little recipe for making patterns. Given a pattern that you have to make, 
follow this procedure:

1. Identify the building-block of the pattern and draw it out on paper. The building-block
should contain three pieces of information: a shape, a turtle position (marked with a 
circle on your paper sheet), and a turtle direction (marked with an arrow on your 
paper sheet).

2. Draw the building-block in Kojo

3. Repeat the building-block, for as many times as the pattern requires, using the repeat
command. To do this, you should Cut the code for drawing the building-block from 
Step 2 above – and Paste it inside the repeat command curly brackets.
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  Activity 9 – Repeating to make a pattern

Step 2. Using the above procedure, you can come up with a program like the following for 
making the pattern. Type the program in and run it.

clear()
setAnimationDelay(100)
setPenColor(darkGray)
setFillColor(pink)
repeat(3) { // The stuff inside this repeat command is the pattern 
building-block 
    // start of building-block
    repeat(4) { // The building-block itself uses the repeat command
        forward(100)
        right()
    }
    hop(100)
    right()
    hop(100)
    left()
    // end of building-block
}

Make sure you understand how this program makes the pattern. 

Note – in a Kojo program, anything after a // on a line is called a comment, and is ignored by 
Kojo. Comments are for human consumption.

Q2a. Identify the start of the building-block in the code above.

Q2b. Identify the end of the building-block in the code above.

Q2c. What pieces of information does the building-block contain?

Q2d. What lines in the code above specify the building-block shape?

Q2e. What lines in the code above specify the building-block position?

Q2f. What lines in the code above specify the building-block direction?

Q2g. What is a comment? How many comments do you see in the code above?

  Self Exploration

Play with the code above to try out a few different buildings blocks. For this you need to 
modify the code between the '// start of building-block' and '// end of building-block' 
comments.
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  Activity 9 – Repeating to make a pattern

  Exercise

Write a program to make the following pattern. The length of the square is 100 units. Each 
subsequent square in the pattern starts half-way along the height of the previous square. The
pen color is magenta. The fill color is cyan.

Use the three-step pattern-making procedure to make this pattern.
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  Activity 9a – Pattern Drawing Practice

  Activity 9a – Pattern Drawing Practice

Write programs to make the following patterns. Use the three-step pattern-making 
procedure described in Activity 7 to make the patterns. Each program should be no more 
than 14 lines of code.

The length of the square is 100 
units. Each subsequent square in 
the pattern starts 80% along the 
width of the previous square.

The pen color is purple. The fill 
color is orange.

The width of the rectangle is 100 units

The height of the rectangle is
3
10

of its width

Each subsequent rectangle in the pattern starts 25% 
along the width of the previous rectangle. 

The pen color is black. The fill color is yellow.
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  Activity 9b – Extra Practice with Patterns

  Activity 9b – Extra Practice with Patterns

Write programs to make the following patterns. Use the three-step pattern-making 
procedure described in Activity 7 to make the patterns. Each program should be no more 
than 14 lines of code, unless specified otherwise. Use dimensions of your own choice such 
that your patterns look like the ones below.

The program to make this figure can be longer than 14 
lines
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  Activity 9c – Extra Practice with Angle based Patterns

  Activity 9c – Extra Practice with Angle based Patterns

Write programs to make the following patterns. Use the three-step pattern-making 
procedure described in Activity 7 to make the patterns.

The length of the sides of the star is 100 units. The 
pen color is grey, and the fill color is yellow.

Make use of the following facts to determine the 
turning angle for the turtle required to make this 
figure:

• To turn all the way around in a full circle, you 
need to turn through 360 degrees.

• The turtle makes a certain number of full circle 
turns (cumulatively) while making this figure.

• The turtle makes a certain number of actual 
turns to complete these full circle turns

One of the shorter sides of each triangle is 100 
units in length. The pen color is darkGray and the 
fill color is orange.

Make use of the following facts to determine the 
turning angles for the turtle and the unknown 
lengths in the figure:

• Properties of Isosceles triangles.

• Pythagoras theorem. 

 

The pen color is grey, and the fill color is yellow. The
triangles have the same dimension as in the 
previous pattern. 
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  Activity 10 – Calculations

This activity involves the following:

• Learning to do calculations within Kojo

• Learning about expressions.

Step 1. Type in the following code and run it (by using the Run as Worksheet button)

10 + 2
10 * 2
10 – 2
10 / 2

Q1a. How can you do the operations of addition, subtraction, multiplication, and division of 
numbers within Kojo?

Step 2. Type in the following code and run it (by using the Run as Worksheet button)

10 + 2 * 4
(10 + 2) * 4

Q2a. Can you combine multiple operations on numbers within a single expression? If so, in 
what order are the different operations carried out?

Q2b. Can you change the default order in which operations are carried out?

  Self Exploration

Play with doing different kinds of calculations.

Theory

Let’s review the definition of a program.

A program contains a series of instructions. These instructions can be of a few different 
kinds:

• The first kind of instruction that you have seen is a command. A command makes 
the computer carry out an action (e.g. moving the turtle forward) or affects a future 
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action (e.g. setting the turtle pen color). It is said that a command has a side-effect.

• The second kind of instruction that you saw was a function (Color(red, green, 
blue, alpha) – for color mixing). A function takes some values as inputs and 
computes and returns an output value based on the inputs. 

In this activity, you have worked with arithmetic operators like +, -, *, and /. These are also 
functions, but they are called in infix notation (e.g. 1 + 2) as opposed to prefix notation 
(e.g. +(1, 2) ). Functions belong to a category of instructions called expressions. Most 
expressions are functions. The ones that are not (e.g. a number like 2) are called literals and 
evaluate to themselves (i.e., the text 2 in your program evaluates to the number 2 when the 
program runs). In other words, expressions are either functions or literals.

  

  Exercise

Calculate the area of the given figure with the help of the calculation capability in Kojo. The 
dimensions of the two rectangles in the figure are:

Outer Rectangle: length = 160, breadth = 100

Inner Rectangle: length = 100, breadth = 60
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  Activity 11 – Your own commands

This activity involves the following:

• Learning to create new commands within Kojo using the def instruction

• Learning about keyword instructions.

• Becoming familiar with the very important ideas of primitives, composition, and 
abstraction.

Step 1. Type in the following code and run it:

clear()
setAnimationDelay(100)
repeat(4) {
    forward(50)
    right()
}
hop(60)
repeat(4) {
    forward(50)
    right()
}
right()
hop(60)
left()
repeat(4) {
    forward(50)
    right()
}
hop(60)
repeat(4) {
    forward(50)
    right()
}

Step 2. Now type in this code and run it:

clear()
setAnimationDelay(100)
def square() {
    repeat(4) {
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  Activity 11 – Your own commands

        forward(50)
        right()
    }
}
square()
hop(60)
square()
right()
hop(60)
left()
square()
hop(60)
square()

Q2a. How is the code in Step 1 similar to the code in Step 2? How is it different?

Q2b. What do you think the def instruction does?

  Self Exploration

Play with:

• Changing the definition of the square command to make squares of size other than 
50.

• Using the square command to create additional squares within the drawing.

  Theory

As mentioned earlier, programs are made out of a series of instructions for the computer. 
You saw two kinds of instructions in the previous activity:

1. Commands, which let you take actions or affect future actions (like moving the turtle
forward or setting the pen color).

2. Expressions, which let you do calculations (e.g. 5+9).

You saw a new kind of instruction in this activity – a keyword instruction (def). A keyword 
instruction allows you to structure your program better (there’s more to it than that, but 
this is a good working definition). 

The def keyword instruction lets you create new commands of your own. You can then use 
or call these commands just like you would call predefined Kojo commands. 
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The code in Step 2 defines the square command. Here's a closer look at that fragment of 
code:

What's the benefit of creating your own commands? 

These commands allow you to capture commonly used patterns of code, give them a name, 
and then reuse them. This reduces code duplication, and makes your programs easier to 
understand.

There’s also a way of looking at the def instruction in terms of a deeper idea. Let’s look at 
that idea.

Computer programming is about three basic things:

• primitives – these are the instructions already available in our programming 
environment.

• composition – this is how you combine primitives to do what is required.

• abstraction – this is how you give our compositions a name, so that they can be used
as higher level primitives within your programs. These abstractions are used without
regard to how they are implemented.

Seen from this perspective, the def instruction allows you to:

• create a new abstraction i.e. your new command.

• implement the abstraction using a combination of primitives i.e. pre-existing 
commands.
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  Exercise

Write a program to make the given figure. The square size is 50, and the vertical and 
horizontal distance between the squares is 40% of the square size.
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  Activity 12 – Named Values

This activity involves the following:

• Learning to assign names to values using the val keyword instruction.

Step 1. Type in the following code and run it:

clear()
repeat(4) {
    forward(100)
    right()
}
repeat(4) {
    forward(50)
    right()
}
repeat(4) {
    forward(25)
    right()
}

Step 2. Now make the figure that you made in the previous step twice as large (how can you 
do this?).

Step 3. Type in the following code and run it:

val size = 100
// You can also use a calculation to determine size
// val size = canvasBounds.height * 0.75
clear()
repeat(4) {
    forward(size)
    right()
}
repeat(4) {
    forward(size/2)
    right()
}
repeat(4) {
    forward(size/4)
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    right()
}

Step 4. Now make the figure that you made in the previous step twice as large (how can you 
do this?).

Q4a. Was it easier to increase the size of the previous figure in Step 2 or was it easier in Step 
4?

Q4b. What do you think the val instruction does?

  Self Exploration

Play with:

• Resizing the figure by assigning different number to the size named-value.

• Making new squares using the size named-value.

  Theory

The val keyword instruction allows you to create named values of your own. You can then 
use these named values in different locations in your program.

The first line in the code in Step 3 uses the val keyword instruction. Here's a closer look at 
that fragment of code:

After this line of code in the program, the name size is available within the program with a 
value of 100. 

Named values give you the ability to refer to numbers by name, as opposed to their values.

Why would you want to do that (i.e. refer to numbers by name)? 

For the following reasons: 

• To make it easier to make changes in your program. You saw this when you needed 
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to make a smaller or larger version of the figure above. You just had to change one 
line at the beginning of your program to change the size of the figure, instead of 
having to scan through your whole program and making multiple changes. 

• To make your program more understandable. Looking at the program in Step 3, it 
becomes clear right away that the size of the squares made by the program can be 
controlled. 

• To avoid redoing calculations for values that will be used multiple times in your 
program.

Think about how all of this relates to the idea of primitives, composition, and abstraction.

  Exercise

Write a program to make the figure shown below. The figure has three triangles. As we move
from the biggest to the smallest triangle, each triangle is 75% of the size of the previous 
triangle.

Now, make a change in just one line of your program to make the bigger figure shown below:
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  Activity 13 – Your own dynamic commands

Step 1. Type in the following code and run it:

clear()
setAnimationDelay(100)
setPenColor(black)
setFillColor(orange)
repeat(3) {
    repeat(4) {
        forward(100)
        right()
    }
    repeat(4) {
        forward(70)
        right()
    }
    repeat(4) {
        forward(30)
        right()
    }
    forward(100)
}

Step 2. Now type in this code and run it:

clear()
setAnimationDelay(100)
setPenColor(black)
setFillColor(orange)
def square(n: Int) {
    repeat(4) {
        forward(n)
        right()
    }
}
repeat(3) {
    square(100)
    square(70)
    square(30)
    forward(100)
}
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How is the code in Step 1 similar to the code in Step 2? How is it different?

  Self Exploration

Play with using the square command to create additional different sized squares within the 
drawing.

  Theory

Here’s a detailed picture showing you how to create a new command that takes an input:

Within the round-brackets in the first line of code above, you are telling Kojo that the input 
to the square command is called side, and that its type is Int (where, as you have seen 
earlier, Int stands for integer). Now, instead of always drawing squares of the same size, the 
square command can draw squares of different sizes - based on the input that is provided to
it.

Inputs to commands are named values that can be used within the body of a command (do 
you remember named values from an earlier Activity?). 

Inputs also have types associated with them. The type of an input tells Kojo:

• the permissible values of the input.

• the operators and commands that it can work with.

Telling Kojo the type of the input to your user defined command has a couple of 
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advantages:

• It makes it easy for Kojo to identify problems with your usage of the input value, and
to tell you if you make a mistake.

• It makes it easier for you (and your friends) to understand what the command does 
when you (or they) look at it later.

Think about how all of this relates to the idea of primitives, composition, and abstraction.

  

  Exercise

Write a program to make the given figure. The size of the vertical black line that runs from 
the bottom to the top of the figure is 300. Use your best judgment to estimate the other 
dimensions in the figure.
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  Activity 14 – Mini Project

Write programs to make the following figures. Use things like the repeat command and user 
defined commands to help you in making the figures.

44



  Activity 15 – Break Free

  Activity 15 – Break Free

Use everything that you have learnt till now to make your own creation. First, sketch your 
idea out on paper. Then start making it within Kojo. As you go along, keep refining your idea 
till you are satisfied with what you have.

Feel free to share your creation with us on the Kojo Code Exchange. 


The Code Exchange is a website to which you can post your Kojo sketches and 
code - with one click of a button within Kojo. 

This Code Exchange is a good place for Kojo users to showcase their work, look 
at and rate the work of others, provide comments and exchange ideas, and 
learn in a collaborative fashion. 
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  Activity 16 – Strings and I/O

Step 1. Type in the following code and run it:

val name = readln("What's your name?")
val age = readln("What's your age?")
clear()
write(s"Hello $name, your age is $age")

Q1a. What do you think the readln instruction does?

Q1b. What do you think the readInt instruction does?

Q1c. What do you think is the data between the double quotes (")

Q1d. Why do you think the  input to the write command has an ‘s’ at the beginning – s"Hello 
$name, your age is $age"?

Q1e. Is the program above taking any input? Is it providing any output?

  Self Exploration

Play with the code above as you see fit.

  Theory

Strings:

• Are used to represent text.

• Are a type within Kojo.

• Are particularly useful for providing Input to a program and generating output from 
a program.

  

  Exercise

Write a program that reads in 2 numbers provided by the user, and then writes out their 
average.
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  Activity 17 – Conditionals

Step 1. Type in the following code and run it:

  Theory

Introduce the idea of selection as a fundamental element of programming in addition to 
primitives, composition and abstraction.
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  Activity 18 – Repeat with a counter

Till now, you have used the repeat command to do exactly the same thing multiple times. But
what if you want to do a similar (but slightly different) thing multiple times? Look at the 
following figure:

You can see the that, starting from the center, the turtle goes forward and right to make the 
figure. That's also what the turtle does to make a square. What's different here is that each 
time the turtle moves forward, it moves forward by a slightly greater amount. 

Do you see that?

Step 1. Type in the following code and run it:

clear()
setAnimationDelay(100)
repeati(20) { i =>
    forward(10 * i)
    right()
}

Q1a. What do you think the repeati command does?

Q1b. How is the repeati command different from the repeat command?

Step 2. Type in the following code and trace it (via the Trace Script toolbar button):

clear()
setAnimationDelay(100)
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def repCode(i: Int) {
    forward(10 * i)
    right()
}    
repeati(20)(repCode)

Look at the program trace and answer the following questions:

Q2a. How many inputs does the repeati command take?

Q2b. What is the second input to the repeati command?

Q2c. What does the repeati command do with its second input?

  Self Exploration

Play with the inputs to the repeati() and forward() commands in the code above (make 
the input to the forward command depend on 'i'). See how changing these inputs modifies 
the figure. 

  Theory

Commands can take multiple inputs in a couple of different ways. Imagine that there's a 
command to make rectangles on the screen. This command will need two inputs – a length 
and a breadth. You can define this command in two different ways:

def rectangle1(l: Int, b: Int) {
   // body not shown
}
def rectangle2(l: Int)(b: Int) {
   // body not shown
}

You can now call these different versions of the rectangle command in the following ways:

The one input list version:

rectangle1(100, 50)

The multiple input lists version:

rectangle2(100)(50)

Why do we have two different ways to define commands? The answer to that is beyond the 
scope of this book, but in case you're curious and want to research the idea further on the 
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web, this relates to currying and partial application of commands  and functions.

The repeat command works (like the second case above) with multiple input lists. So you 
could call it like this:

repeat(3)( forward(100) )

Here, the first input tells the repeat command how many times to do something, and the 
second input tells it what to do. The repeat command calls the supplied code the specified 
number of times.

This works fine if you want to repeat just one command (like forward(100) above). But what
if you want to repeat multiple commands? That's where blocks (the things within curly 
brackets) come in. A block allows you to combine multiple commands into a group, and pass
it as one input into the repeat command:

repeat (3) ({
    forward(100)
    right(45)
})

But now that you are using curly brackets, the round-brackets are redundant, and you can 
just write:

repeat (3) {
    forward(100)
    right(45)
}

The repeati command works in a similar way, except that it gives the specified code some 
information to allow it to do similar but slightly different things. This information is in the 
form of a repeat counter:

repeati(20) { i => // i is the repeat counter
    forward(10 * i)
    right()
}

Your job is to map (or convert) the repeat counter into a required value based on the task 
that you are trying to accomplish.
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  Exercise

A 6-line figure where the length of each line is 10 more than the length of the previous line 
and the total length is 270.

A 6-line figure where the length of each line is twice the length of the previous line and the 
total length is 252.
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  Activity 19 – Your own functions

Step 1. Type in the following code and run it:

clearOutput()
def reqVal(i: Int) = {
    5 + 2 * (i - 1)
}

repeati(5) { i =>
    println(reqVal(i))
}

Q1a. Which line in the above code maps (or converts) the repeat counter to the required 
value (where the required value is the number that we are trying to print in the Output 
pane)?

Q1b. What do you think the def instruction is doing in the above code?

Q1c. What are the numbers printed in the Output Pane by the above code?

Q1d. How is an arithmetic sequence being used in the above code? What are the a  and
d  parameters of this arithmetic sequence?

Step 2. Type in the following code and run it:

clearOutput()
def reqVal(i: Int) = -4 + 3 * (i - 1)
repeati(5) { i =>
    println(reqVal(i))
}

Q2a. What are the numbers printed in the Output Pane by the above code.

Q2b. How is the def instruction in Step 2 different from the def instruction in Step 1

Q2c. How is an arithmetic sequence being used in the above code? What are the a  and
d  parameters of this arithmetic sequence?

  Self Exploration

Play with how the required value is calculated in Step 2. See how changing the formula in the
reqVal function changes the numbers printed in the Output Pane. 
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  Theory

We know that programs are made out of three types of instructions: commands, 
expressions, and keyword instructions. 

Let’s look further at expressions. The simplest expressions are literals – data values (like 3 
and 4) that you write down in your code that cannot be simplified any further. All other 
expressions are built out of functions operating on simpler expressions - e.g. 3 + 4, where 
the expression 3 + 4 is built out of the function + and the simpler expressions 3 and 4. 

Some of the predefined functions available within Kojo are +, -, *, /, math.max, math.sqrt 
etc. 

In this activity you have seen how you can define your own functions:

def reqVal(i: Int) = {
    5 + 2 * (i - 1)
}

Note how similar this is to the way in which you create a new command. The big difference 
is the use of the equals sign on the first line of the definition:

def reqVal(i: Int) = {

Command definitions do not require this = sign.

This is meant to signify that functions are equivalent to the value that they calculate - and 
return to the caller - based on the inputs provided to them.  To understand this idea better, 
let's look at the following function call:

reqVal(1)

Here, reqVal(1) is equivalent to the value that it calculates (5) – because it takes an input: 
1, and returns this value.

User defined commands, on the other hand, are not equivalent to anything – because they 
don't calculate and return any values; instead, they just carry out some actions. Hence, we 
don't put the = sign on the first line of their definition.

Think about how defining new functions relates to the idea of primitives, composition, and 
abstraction.
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  Exercise

Write a command called numberLine which takes the following inputs:

start: Int – the number where the number line starts.

end: Int – the number where the number line ends.

divisions – the number of divisions on the number line between the start and end numbers.

The numberLine command then draws the specified portion of the number line on the 
drawing canvas. For example, the following call to numberLine:

numberLine(2, 10, 12)

should draw this:

Note – you can use the setPenFontSize(n) command to decrease the size of the font used to
write text. The above figure uses a font size of 12.
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  Activity 20 – Classes

Step 1. Type in the following code and run it in worksheet mode:

case class Student(firstName: String, lastName: String, age: Int) {
    def teenager = age > 12 && age < 20
    def fullName = firstName + lastName
}

val student = Student("Anusha", "Pant", 12)
student.teenager

Q1a. What do you think the case class keyword does?

Q1b. What is Student? A new value or a new type?

  Self Exploration

Play with the code above as you see fit.

  Theory

A case class definition allows you to create a new abstraction via the composition of  
multiple predefined data items and functions/commands that act on this combination of 
data items. The functions/commands inside a class are called methods.

In concrete terms, a case class defines:

• a new type

• a constructor function for values of that type

A class is just a blueprint/template for values of the type that it defines. These values  
(called objects or instances of the class) are created via the constructor function.
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  Exercise

(1) Write a class to describe Rational numbers. 

The class should take two inputs: numerator and denominator

It should provide the following methods: add, subtract, multiply, divide

Using this class, you should be able to add two rational numbers like this:

val r1 = new Rational(2, 3)
val r2 = new Rational(3, 4)
r1.add(r2)

Now comes an interesting idea:

r1.add(r2) can be written as r1 add r2. If you rename add to +, that becomes r1 + r2 

(1b) Rename add to +, subtract to -, multiply to *, and divide to /. You should now be able to 
use the usual arithmetic operators with rational numbers just like you use them with the pre-
existing integers.

 

(2) Refine the numberLine command that you wrote in the previous Activity. This time, 
instead of writing decimal fractions next to the tick-marks on the line, write rational numbers

(which represent fractions with the form 
m
n

). For example, the following call to 

numberLine:

numberLine(2, 10, 8)

should draw this:

And the following call to numberLine:

numberLine(2, 10, 16)

Should draw this:

(3) Refine your numberLine command so that the following call to numberLine:

numberLine(2, 10, 16)

draws this:
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Note – you can use the following function to help you:

    def gcd(n1: Int, n2: Int): Int = {
        if (n2 == 0) n1 else gcd(n2, n1 % n2)
    }
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  Activity 21 – Sequences

Step 1. Type in the following code and run it:

clear()
val colors = Seq(blue, green, yellow)

colors.foreach { c =>
    setFillColor(c)
    repeat(4) {
        forward(100)
        right()
    }
    right()
    hop(150)
    left()
}

Q1a. What do you think the Seq function does?

Q1b. What do you think the foreach command does?

  Self Exploration

Play with the code above as you see fit.

  Exercise

Write a program to make the given figure.

Hints:

• define a command to make regular polygons. The
command should take one input – the number of
sides of the polygon.

• use the savePosHe() and restorePosHe()
commands to help you with this exercise.
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  Activity 22 – Maps

Step 1. Type in the following code and run it:

clear()
val distances = Map(
    "Small" -> 20,
    "Medium" -> 80,
    "Large" -> 160
)
val d = readln("How much distance should the turtle move (Small, Medium, 
Large)?")
forward(distances(d))

Q1a. What do you think the Map function does?

Q1b. What’s a constructor function?

Q1c. What does distances(d) do in the above code?

  Self Exploration

Play with the code above as you see fit.

  Exercise

Write a program that does the following:

• Reads in a color (one of green, blue, or yellow).

• Make a parallelogram (like the one on the right)
filled with the given color.
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  Activity 23 – Variables

Step 1. Type in the following code and run it:

val numbers = Seq(1, 2, 3, 4, 5)
var sum = 0
numbers.foreach { n => 
    sum = sum + n
}
clearOutput()
println(s"The sum of the given numbers is: $sum")

Q1a. What do you think the var keyword instruction does?

Q1b. How do you think the var instruction is different from the val instruction?

Step 2. Type in the following code and run it:

var numbers = Seq.empty[Int]
val msg = "Enter a number, or nothing to finish"
var num = readln(msg)
repeatWhile(num != "") {
    numbers = numbers :+ num.toInt
    num = readln(msg)
}

var sum = 0
numbers.foreach { n => 
    sum = sum + n
}
clearOutput()
println(s"The sum of the given numbers is: $sum")

Q2a. What are the different ways in which variables are used (via the var instruction) in this 
program?

  Self Exploration

Play with the code above as you see fit.
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  Exercise

(1) Write a program that does the following:

• Asks the user a series of questions.

• Makes a bar graph based on the answers.

(2) Write a program that does the following:

• Asks the user a series of questions.

• Makes a histogram based on the answers.
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  Solutions

  Activity 1 – Commands and Programs

clear()
forward(100)
right()
forward(100)
right()
forward(100)
right()
forward(100)
right()

  Activity 2 – Using the Kojo Environment Effectively

clear()
forward(100)
right()
forward(40)
right()
forward(100)
right()
forward(40)
right()

right()

forward(100)
right()
forward(40)
right()
forward(100)
right()
forward(40)
right()
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  Activity 3 – Pen and Fill Color

clear()
setPenColor(blue)
setFillColor(green)
forward(100)
left()
forward(30)
right()
forward(40)
right()
forward(100)
right()
forward(40)
right()
forward(30)
left()
forward(100)
right()
forward(40)

  Activity 4 – Mixing Colors with a function

clear()
setFillColor(Color(50, 100, 150, 200))
left()
forward(50)
right()
forward(30)
right()
forward(50)
left()
forward(50)
right()
forward(30)
right()
forward(50)
left()
forward(50)
right()
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forward(30)
right()
forward(50)
left()
forward(50)
right()
forward(30)
right()
forward(50)

  Activity 5 – Hopping with Speed

clear()
setAnimationDelay(10)
setPenColor(brown)
forward(200)
right()
forward(200)
right()
forward(200)
right()
forward(200)
right()
hop(150)
right()
hop(30)
forward(40)
right()
forward(40)
right()
forward(40)
right()
forward(40)
right()
hop(100)
forward(40)
right()
forward(40)
right()
forward(40)
right()
forward(40)
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right()
right()
hop(100)
right()
setPenThickness(10)
forward(60)
back(30)
right()
hop(30)
forward(40)

  Activity 6 – Angles

Figure 1

clear()
setAnimationDelay(100)
setPenColor(blue)
left()
forward(100)
right(150)
forward(100)

Figure 2

clear()
setAnimationDelay(100)
setPenColor(blue)
left()
forward(100)
right(120)
forward(100)

Figure 4

clear()
setAnimationDelay(100)
setPenColor(blue)
left()
forward(100)
right(60)
forward(100)
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  Activity 6a – Practice

Figure 1

clear()
setAnimationDelay(100)
setPenColor(brown)
setFillColor(yellow)
forward(100)
left()
forward(10)
right(120)
forward(100)
right(120)
forward(100)
right(120)
forward(10)
left()
forward(100)
right()
forward(30)
right()
forward(40)
left()
forward(20)
left()
forward(40)
right()
forward(30)

Figure 2

clear()
setAnimationDelay(100)
setPenColor(gray)
setFillColor(yellow)
left()
forward(200)
right(60)
forward(60)
right(90 + 30)
forward(260)
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right(120)
forward(60)
right(60)
hop(100)
right()
hop(60 * 0.866)
setPenThickness(8)
setPenColor(purple)
setFillColor(green)
forward(120)
right(120)
forward(50)
right(120)
forward(50)

  Activity 7 – Repeating commands

clear()
setPenColor(gray)
setFillColor(orange)
repeat (4) {
    forward(100)
    right()
}

  Activity 8 – Analyzing the Repeat Command

clear()
setAnimationDelay(10)
setPenColor(brown)
repeat(4) {
    forward(200)
    right()
}
hop(150)
right()
hop(30)
repeat(4) {
    forward(40)
    right()
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}
hop(100)
repeat(4) {
    forward(40)
    right()
}
right()
hop(100)
right()
setPenThickness(10)
forward(60)
back(30)
right()
hop(30)
forward(40)

  Activity 9 – Repeating to make a pattern

clear()
setAnimationDelay(100)
setPenColor(magenta)
setFillColor(cyan)
repeat(3) {
    repeat(6) {
        forward(100)
        right()
    }
    forward(50)
    right(180)
}
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  Activity 9a – Pattern Drawing Practice

clear()
setAnimationDelay(100)
setPenColor(purple)
setFillColor(orange)
repeat(3) {
    repeat(4) {
        forward(100)
        right()
    }
    forward(100)
    right()
    forward(80)
    left()
}

clear()
setAnimationDelay(100)
setPenColor(black)
setFillColor(yellow)
repeat(3) {
    repeat(2) {
        forward(30)
        right()
        forward(100)
        right()
    }
    forward(30)
    right()
    forward(40)
    left()
}
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  Activity 9b – Extra Practice with Patterns

clear()
setAnimationDelay(100)
setPenColor(black)
setFillColor(yellow)
repeat (4) {
    repeat (2) {
        forward(100)
        right()
        forward(40)
        right()
    }
    right()
}
invisible()

clear()
setAnimationDelay(100)
setPenColor(black)
setFillColor(orange)
repeat (4) {
    repeat (2) {
        forward(100)
        right()
        forward(40)
        right()
    }
    forward(40)
    right()
}
invisible()

clear()
setAnimationDelay(100)
setPenColor(black)
setFillColor(yellow)
repeat (4) {
        forward(100)
        right()
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        forward(100)
        right()
    forward(100)
    left()
    forward(100)
    left()
}
invisible()

clear()
setAnimationDelay(100)
setPenColor(black)
setFillColor(orange)
repeat(3) {
    repeat(4) {
        forward(100)
        right()
    }
    repeat(4) {
        forward(40)
        right()
    }
    forward(100)
}
invisible()

  Activity 9c – Extra Practice with Angle based Patterns

clear()
setAnimationDelay(100)
setPenColor(gray)
setFillColor(yellow)
repeat (5) {
    forward(200)
    right(144)    
}
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clear()
setAnimationDelay(100)
setPenColor(darkGray)
setFillColor(orange)
repeat(8) {
    forward(math.sqrt(2 * 100 * 100)) 
    right(135)
    forward(100)
    right(90)
    forward(100)
    right(180)
}

clear()
setAnimationDelay(100)
setPenColor(gray)
setFillColor(yellow)

repeat(8) {
    forward(100)
    right(135)
    forward(math.sqrt(2 * 100 * 100)) 
    right(135)
    forward(100)
    right()
    hop(100)
    right(45)
}

  Activity x – Repeating to make a pattern

clear()
setAnimationDelay(100)
setPenColor(magenta)
setFillColor(cyan)
repeat(3) {
    repeat(6) {
        forward(100)
        right()
    }
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    forward(50)
    right(180)
}

  Activity 21 – Sequences

val colors = Seq(blue, green, yellow)

def rpoly(n: Int) {
    repeat(n) {
        forward(100 / n)
        right(360 / n)
    }
}

clear()
setAnimationDelay(10)

colors.foreach { c =>
    setFillColor(c)
    savePosHe()
    repeati(4) { i =>
        savePosHe()
        rpoly(i + 2)
        restorePosHe()
        right()
        hop(50)
        left()
    }
    restorePosHe()
    hop(50)
}

  Activity 22 – Maps

clear()
val colors = Map(
    "green" -> green,
    "blue" -> blue,
    "yellow" -> yellow
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)

val c = readln("What colored parellelogram do you want?")

setFillColor(colors(c))

repeat(2) {
    right(30)
    forward(100)
    right(60)
    forward(150)
    right(90)
}
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