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Abstract

Autonomous vehicles like unmanned aerial vehicles, mobile robots, or satellites have var-

ious applications today. Formations of these autonomous agents have shown superior

behavior in cooperative work over single, complex systems. However, coordination of

such formations requires elaborate control strategies and poses new challenges to con-

troller design. Simulations provide a low-cost method to test those controllers and to gain

insight into several fields of formation control.

This project proposes a simulation environment for formation control with an object-

oriented software architecture. The simulator is developed in Matlab and supports linear

and non-linear two- or three-dimensional systems. Inter-agent communication is defined

using a graph-theoretic approach and the behavior of formations of agents with equal

or different dynamics and controllers can be simulated and analyzed. Formation prop-

erties, like the number of agents, communication topology, external reference input, and

formation shape can be changed dynamically during a simulation run. Influences of com-

munication disturbances on the formation performance due to obstacles and a limited

transmission range, as well as transmission time delays, can be analyzed. Simulation

results are visualized in 2D or 3D and stored for further analysis.

Scenarios for formations of quadrocopters are designed and used to validate the simulation

environment and to analyze formations. Influences of controller design, communication

topology, formation reference input, and communication time delays on formation sta-

bility and performance are investigated. Additionally, two different strategies to define

formations are compared. To analyze performance, several measures are introduced and

evaluated with respect to their significance.



Contents

Abstract ii

List of Figures vi

List of Abbreviations and Symbols ix

1 Introduction 1

1.1 Agent Formations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Formation Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Available Simulation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions and Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . 5

2 Formation Control Framework 7

2.1 Communication Topology and Graph Theory . . . . . . . . . . . . . . . . . 7

2.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Directed Graphs and Connectivity . . . . . . . . . . . . . . . . . . 8

2.1.3 Algebraic Representation . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Reference Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Directed Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Simulator Architecture 16

3.1 Modeling Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



CONTENTS iv

3.1.1 Agents Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Space Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.3 Time Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.4 Communication Modeling . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Object-Oriented Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Reusability and Extendability . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Object Interaction Paradigms . . . . . . . . . . . . . . . . . . . . . 20

3.3 Matlab Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.2 Simulation Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Advanced Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Simulation and Analysis 34

4.1 Definition of Performance Measures . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Time Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.3 Changing Communication Topology . . . . . . . . . . . . . . . . . . 43

4.3 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Reference Input Accessibility . . . . . . . . . . . . . . . . . . . . . 47

4.3.3 Communication Topology . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.4 Limited Communication Range . . . . . . . . . . . . . . . . . . . . 55

4.4 Directed Vectors versus Distances . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Evaluation of Performance Measures . . . . . . . . . . . . . . . . . . . . . 62



CONTENTS v

5 Conclusions and Outlook 64

5.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Outlook and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 69



List of Figures

1.1 Vehicle with two-level controller structure . . . . . . . . . . . . . . . . . . 3

2.1 Undirected graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Directed graph Gd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Components of Gd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Block diagram of a single agent . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Closed loop system of a formation . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Formation defined by directed vectors . . . . . . . . . . . . . . . . . . . . . 14

2.7 Formation defined by undirected distances . . . . . . . . . . . . . . . . . . 15

3.1 Directed communication link, i receives from j . . . . . . . . . . . . . . . . 18

3.2 Class cup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 UML class diagram of the simulation environment . . . . . . . . . . . . . . 22

3.4 Class SimulationManager . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Class Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Abstract class GeneralizedAgent with child classes VirtualLeader and

Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7 Abstract class Model with child classes LinearModel and Quadrocopter-

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8 Abstract class Animator with child classes Animator2D and Animator3D . 27

3.9 Class Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.10 Class RefInputGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.11 UML activity diagram of the top-level simulation process . . . . . . . . . . 29



LIST OF FIGURES vii

3.12 Graphical user interface of the simulator . . . . . . . . . . . . . . . . . . . 30

4.1 Distances considered for the tracking errors . . . . . . . . . . . . . . . . . . 36

4.2 Distances considered for the formation errors . . . . . . . . . . . . . . . . . 37

4.3 Circular communication topology with ten agents . . . . . . . . . . . . . . 38

4.4 Trajectories of the circular formation in the x-y-plane with Knominal after

30 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 x-positions over time of the circular formation with Knominal after 150 s . . 39

4.6 Trajectories of the circular formation in the x-y-plane with Krobust after 30 s 40

4.7 x-positions over time of the circular formation with Krobust after 150 s . . . 40

4.8 Trajectories of the circular formation in the x-y-plane with Krobust and a

time delay of 0.4 s after 30 s . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.9 x-positions over time of the circular formation with Krobust and a time delay

of 0.4 s after 150 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.10 Formation of nine agents with three triangles . . . . . . . . . . . . . . . . . 43

4.11 Triangle-formation in the x-y-plane . . . . . . . . . . . . . . . . . . . . . . 43

4.12 x-positions over time of the triangle-formation with Knominal after 50 s . . . 44

4.13 Delta-formation with ten agents . . . . . . . . . . . . . . . . . . . . . . . . 45

4.14 Delta-formation in the x-y-plane after 10 s, full communication topology,

all agents receive the reference input . . . . . . . . . . . . . . . . . . . . . 46

4.15 Delta-formation in the x-y-plane after 10 s, full communication topology,

one agent receives the reference input . . . . . . . . . . . . . . . . . . . . . 48

4.16 Delta-formation with 14 communication links (choice 1), four agents receive

the reference input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.17 Delta-formation in the x-y-plane after 10 s, 14 communication links (choice

1), four agents receive the reference input . . . . . . . . . . . . . . . . . . . 50

4.18 Delta-formation with 14 communication links (choice 2), four agents receive

the reference input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.19 Delta-formation in the x-y-plane after 10 s, 14 communication links (choice

2), four agents receive the reference input . . . . . . . . . . . . . . . . . . . 53



LIST OF FIGURES viii

4.20 Delta-formation with star-communication topology, one agent receives the

reference input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.21 Delta-formation in the x-y-plane after 10 s, star communication topology,

one agent receives the reference input . . . . . . . . . . . . . . . . . . . . . 54

4.22 Delta-formation with limited communication range, one agent receives the

reference input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.23 Delta-formation in the x-y-plane, limited communication range, one agent

receives the reference input . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.24 Delta-formation with six agents, minimal communication topology . . . . . 57

4.25 Delta-formation in the x-y-plane, minimal communication, one agent re-

ceives the reference input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.26 Delta-formation with six agents, minimally persistent communication topol-

ogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.27 Delta-formation in the x-y-plane, undirected vector as reference input, min-

imal persistent communication, one agent receives the reference input . . . 61



List of Abbreviations and Symbols

Abbreviations

AHS Automated Highway System

AUV Autonomous Underwater Vehicle

DoF Degree of Freedom

GUI Graphical User Interface

MAS Multi-Agent System

OOP Object-Oriented Programming

UAV Unmanned Aerial Vehicle

UML Unified Modeling Language

Symbols

⊗ Kronecker product

Matrices

A Adjacency matrix

AK , BK , CK , DK System matrices of the controller

AP , BP , CP , DP System matrices of the plant

ΩP , ΓP Discrete-time system matrices of the plant

I Identity matrix

L Laplacian matrix



LIST OF ABBREVIATIONS AND SYMBOLS x

Vectors

c2D Two-dimensional coordinate vector

c3D Three-dimensional coordinate vector

e Formation error for the whole formation

ei Formation error for one agent, controller input vector

γi Plant output vector for internal feedback of an agent

r External reference input vector for the whole formation

rij Reference vector between agents i and j

ui Controller output vector/plant input vector for one agent

vi Controller state vector for one agent

xi Plant state vector for one agent

y Agents output vector for the whole formation

yi Agent output vector for one agent, transmitted to the other agents

yi,ref,k, yj,ref,k Agent reference output vector at timestep k

yi,k, yj,k Agent output vector at timestep k

Scalars

αa Critical-agents ratio

αl Critical-links ratio

A Set of arcs of a graph G
dG(v) Degree of a vertex v

dG,in(v), dG,out(v) In-/out-degree of a vertex v

dij Reference distance between agents i and j

εf1 Formation Error 1

εf2 Formation Error 2

εt1 Tracking Error 1

εt2 Tracking Error 2

G Graph

Ji Set of vehicles in a formation that agent i can receive from

Na Number of agents in a formation

Nk Number of timesteps of a simulation

Nl Number of communication links in a formation



LIST OF ABBREVIATIONS AND SYMBOLS xi

V Set of vertices of a graph G
vi Vertices of a graph G
x, y, z Spatial coordinates

θ, η, φ Rotational coordinates

Indices

i, j Agents

k Timestep



Chapter 1

Introduction

Mobile autonomous agents have been a field of extensive research during the last decades.

Technological advances in this area have increased the interest in formations of vehicles in

multi-agent systems (MAS). Those vehicles can be all kinds of mobile, independent agents

that autonomously interact with the environment and other agents. A few applications of

formations are given in the following section. Section 1.2 introduces the control challenges

posed by MAS and Section1.3 summarizes available simulation tools. An outline of the

thesis is given in Section 1.4.

1.1 Agent Formations

A formation can be any constellation of agents, consisting of at least two, and up to a large

number of vehicles. Vehicles in the sense of this thesis include all kinds of autonomous

systems, in the air, under water, or on ground. Formations with very large numbers of

members are also named flocks or swarms in literature [OS06]. A formation consists of a

number of autonomous agents with same dynamical behavior, which have the ability to

communicate with each other. They are dynamically decoupled, that is, the motion of

one agent does not directly affect the other agents.

The interest in vehicle formations is fueled by some major advantages that groups of

agents might have, compared to individual vehicles. Groups of vehicles have the potential

to perform tasks that go beyond the abilities of individual agents [FM04]. Distributed

control of formations can also increase robustness and reliability, since a mission goal does

not solely rely on a centralized control unit and single agents can be replaced without

compromising the overall mission goal. Furthermore, the number of agents can be varied
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according to the specific task, and generally less communication capabilities are required

compared to centralized systems [PPW09]. In the following, a few examples of vehicle

formations are given to illustrate those advantages.

Unmanned Aerial Vehicles (UAVs) Advances in autonomous flight control and nav-

igation have enabled various applications for UAV formations. An early and major field

of research are military and security systems [Mur07, CPR01]. Fields of interest are au-

tonomous formation flights of aircraft, cooperative spatial reconnaissance and surveillance,

or rendezvous maneuvers.

But also civil scientific research shows an increased interest in formation control of UAVs

[PPW09]. Applications might be civil reconnaissance or security surveillance. For con-

sistent surveillance (without dead spots), for example, a formation of UAVs is likely to

outperform individual, uncoordinated vehicles.

Satellite Missions Next to terrestrial vehicle formations, also spacecraft formations

are subject to current research. An US Airforce mission has investigated the potential of

microsatellite clusters for high-resolution imaging. The equivalent antenna realized by a

formation of those microsatellites is much larger than an instrument deployed on a single

spacecraft [Fax02]. Microsatellites have the potential to reduce cost and simultaneously

increase functionality and reliability compared to large-scale single satellites [Kri07].

Another example for a currently planned satellite formation flight is the joined NASA/ESA

science mission “LISA” (Laser Interferometer Space Antenna). It consists of three space-

craft in an equilateral triangular setup to measure gravitational waves [LIS09]. Since the

separation of the three satellites constitutes interferometer arms of 5 million km length,

a comparable setup is impossible to integrate into a single satellite.

Automated Highway Systems (AHS) With an increasing number of advanced driver

assistance systems being integrated into modern automobiles, the technology of AHS is

brought closer to reality. The Program on Advanced Technology for the Highway (PATH)

at the University of California, Berkeley, has proven the capabilities of automated vehicle

control [PAT09]. Cooperation of vehicles increases safety, since information sharing be-

tween individual vehicles can support collision avoidance. Beyond that, automated vehicle

platoons driving at close space allow for higher traffic density in populous areas.
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Autonomous Underwater Vehicles (AUVs) AUVs are used for scientific, com-

mercial, and military applications. To solve complex tasks, formations of AUVs have

recently been investigated by researchers. Facing the same challenges as satellite- or

UAV-formations, the underwater environment poses some further difficulties for AUV

formations. Ocean currents can heavily impact vehicle dynamics. Also, underwater

communication is rather limited compared to above-ground or satellite communication

[Fax02].

1.2 Formation Control

The general goal of formation control is to establish and maintain the position of several

agents relative to each other or an external reference. [Mur07] classifies formation control

as one subtask of cooperative control of MAS. This control task can be faced with cen-

tralized or decentralized approaches. Since superiority of formations over single vehicles

largely founds on autonomous agents with decentral control units, this thesis focuses on

decentralized formation control.

Pi

KLocal

KFormation

ei
yi

ui

Figure 1.1: Vehicle with two-level controller structure

A decentralized control task, for example the formation control of autonomous quad-rotor

helicopters in [PPW09], can be divided into two levels, as illustrated in Figure 1.1. First,

each single unit’s dynamics (Pi) have to be stabilized internally by a local controller KLocal.

On a second level, the relative position of the dynamically decoupled units to each other

are controlled by KFormation. While KLocal uses the internal states of a vehicle, KFormation

needs information acquired from other agents and from external references. Inter-agent

communication is a central point of interest in decentralized formation control. The

formation and communication framework used in this thesis is explained in Chapter 2.
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1.3 Available Simulation Tools

Several software tools are available to analyze interaction between agents in one or another

way. This section briefly investigates some of those tools, which have been found in

literature or on the Internet, towards their applicability to the simulation of formations.

With an increased interest in agent-based simulations in various fields of research during

the last years, several software libraries have been established. Often, they are available

as free open-source software, developed privately or by university research teams. MASON

[Mas09], Swarm [Swa09], JADE [BPR99], and NetLogo [Net09] are four well-known software

frameworks, which are freely accessible and usable. Due to their very general architec-

ture, they allow for various applications, reaching from the simulation of ant behavior

[LCRPS04] to insights into the renewable energy market [Wei08]. However, this general

architecture requires extensive and costly adaptions to adjust to the requirements for a

formation simulation framework, since standard control syntax is generally not supported.

Also, special requirements to the simulation environment, like a switching communication

topology or communication time delays would not be straightforward to implement.

Next to those freely accessible general software libraries, commercial agent-based simula-

tion platforms are available. MATSim [Mat09] and SIMWALK [Sim09] are tools to simulate

traffic or pedestrian flows. With limitations to those areas of application, they are not

suitable to analyze formation control problems. Webots is a commercial software package

for the simulation of mobile robots [Cyb09]. It allows to model robot interaction and com-

munication via sensors, and to program controllers in standard programming languages.

However, Webots focuses on prototyping of robots and their components. To get insights

into formation behavior, the agents in a formation would have to be physically developed

before, which is beyond the scope of this thesis. Thus, Webots might be a promising

platform for future work on developing real vehicles, but is too restricted to physical rep-

resentations of agents for the requirements of the simulation environment designed in this

thesis.

As further explained in Section 3.3, Matlab-based simulation environments provide conve-

nient solutions for control analysis. There are several Matlab-based simulation testbeds,

like a spacecraft formation simulation developed by the NASA Jet Propulsion Labora-

tory [Jet09] or software evolving from Master theses [Hac09, Cle06]. These simulators are

either not freely accessible, or are restricted to simulating very particular problems. No

Matlab-based software has been found that could conveniently be adapted to the problems

discussed in this thesis.
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Despite the variety of agent-based simulation software available freely or commercially,

no tools could be found that can easily and cost-efficiently be adapted to the formation

control framework described in Chapter 2 and, thus, serve as a basis for a formation

simulation environment.

1.4 Contributions and Thesis Outline

Formation control is a broad field of research, with various concepts and control strate-

gies being developed. While specialized simulation tools provide possibilities to analyze

particular problems, they are often hard to adapt to changing demands. To overcome this

problem, this thesis introduces an object-oriented simulation environment that is flexible

and easily scalable and extendable.

In detail, this includes:

• Development of an object-oriented simulation environment for formation control

that

– has a modular structure and is easily extendable,

– implements standard Matlab control syntax,

– supports dynamic changes to the number of agents, communication topology,

and formation shape during a simulation,

– allows for simulations of agents with different dynamics and controllers within

one formation,

– includes transmission time delays, a limited communication range, and obsta-

cles disturbing the communication,

– implements two different ways to define a formation by its reference input,

– visualizes simulation results on-the-fly with various animation features and

allows to generate plots and save simulation data,

– is equipped with a graphical user interface (GUI).

• To support future collaborative extensions to the program code by several con-

tributers, a version control system is used.

• For validation, test simulations are carried out, which investigate the influence of

controller design, communication topology, and time delays on formation stability

and performance.
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• Several performance measures are proposed to evaluate different aspects of formation

performance and robustness.

Chapter 1 gives a brief introduction to applications of vehicle formations and the concept

of formation control. Available simulation tools for MAS are reviewed. The control

framework implemented in the simulator, as well as basics of Graph Theory, which is

used to model the communication structure, are described in Chapter 2. Chapter 3

depicts the modeling approach that has been followed, and provides detailed explanation

of the simulator structure and functionality. The simulation environment is validated with

various test simulations in Chapter 4. Additionally, performance measures to support

these analyses are defined and evaluated with respect to their significance.



Chapter 2

Formation Control Framework

Various fields of research subsume under the term formation control, and terminology is

partly ambiguous. [Mur07] categorizes formation control as one subtask of cooperative

control in MAS. This chapter depicts the formation control framework, on which the

proposed simulation environment founds. Section 2.1 explains the methodology to define

the inter-agent communication, Sections 2.2 and 2.3 describe control strategy and related

reference input used for the simulations in Chapter 4.

2.1 Communication Topology and Graph Theory

A property which is important to all areas of formation control is the underlying commu-

nication topology, where communication entitles all kind of information exchange between

agents. Without information about other vehicles in the formation, an agent is not able

to maintain its relative position. Thus, information sharing is a necessary prerequisite

for control of formations. From an individual agent’s point of view, information about

other agents can be obtained in two ways. First, the agent can sense the positions of

neighboring vehicles via on-board sensors, the other vehicle has a passive role and the

information flow is uni-directional [DFK+02, BA98]. Second, agents can transmit infor-

mation about their own states to other agents. In this case, vehicles need to be capable

of sending and receiving, the information flow can be uni- or bi-directional. Either way of

information exchange represents a form of communication. To define this communication,

a graph-theoretic concept is deployed.

Graph Theory has proven to be a convenient way to mathematically express a formation’s

communication topology. [Fax02] and [FM04] are early and frequently quoted works,
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Figure 2.1: Undirected graph, a) Gu1 with disconnected vertex, b) Gu2, complete graph

which systematically apply graph Theory to formation control and link it to control-

theoretic concepts. Some relevant basics are explained below, following the definitions in

[Die05]. Advanced mathematical background and detailed derivations and explanations

can also be found in [GR04]. [GY06] and [Fou09] give numerous applications.

2.1.1 Basic Definitions

A graph G consists of a set of vertices V , also called nodes, and a set of arcs (or edges,

lines) A. An arc a connects two vertices vi, vj, where a = (vi, vj) ∈ A and vi, vj ∈ V . It

is assumed that there are no self-loops in the graph, which means for any (vi, vj) ∈ A,

vi 6= vj. Hence, an arc starting from one vertex never leads back to the same vertex. As

long as no direction is specified for the connection between two vertices, that is, for each

arc (vi, vj) ∈ A also (vj, vi) ∈ A, the graph is called undirected. A graphical representation

of a simple undirected graph is shown in Figure 2.1 (a).

The number of arcs connected to each vertex is given by the degree dG(v) of a vertex v. A

vertex with dG(v) = 0 is disconnected from the graph. If all vertices of G have maximum

degree, meaning every possible arc in the graph exists, G is said to be complete (see Figure

2.1 (b).

2.1.2 Directed Graphs and Connectivity

To utilize Graph Theory for the representation of communication topologies of a group of

agents, undirected graphs need to be extended to directed graphs. That is, arcs between

vertices not only symbolize a connection of those vertices, but also its direction. A directed

graph can be illustrated simply by adding arrow-heads to the arcs, see Figure 2.2. An

arrow from vi to vj means that vi has access to vj. Thus, if the vertices represent agents



2 Formation Control Framework 9

2 3

6 5

4

1

7

Figure 2.2: Directed graph Gd

in a formation, agent v3 can sense/receive information from v2, while v2 can not receive

from v3. Note that this definition might make the arrow point in the opposite direction

of the actual information flow, depending on the kind of information transmission.

For directed graphs, the degree of a vertex dG(v) as defined in the previous section has

to be extended analogously. The in-degree dG,in(v) of a vertex v is the number of arcs

pointing to v, the out-degree dG,out(v) determines the number of arcs starting from v and

pointing to another vertex. If in-degree and out-degree of G are equal for every vertex, G
is undirected.

A graph G, in which every vertex has access to any other vertex (also by concatenating

several arcs) is termed strongly connected [Fax02]. If there are subsets of vertices in

G, which do not have access to other subsets in the graph, G is divided into several

components. Since the subset {v3, v4, v5} in Figure 2.2 can access the remaining graph,

but can not be accessed by the other vertices in G, it is said to be one component of G.

Likewise, the subset {v2, v6, v7} and the single vertex {v1} are components of G. All three

components are depicted in Figure 2.3.

2.1.3 Algebraic Representation

Graphical representation of graphs is convenient to support visualization and understand-

ing of a problem. Algebraic graph Theory links the structure of a graph to different matrix

representations of the same graph, which are beneficial for computational processing. The

algebraic definition of a graph, which is the most relevant in the context of this thesis, is

the adjacency matrix A. The adjacency matrix of a graph G is a square matrix of size

n× n, where n is the number of vertices vi in G. It is defined as
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Figure 2.3: Components of Gd

aij =

 1, if (vi, vj) ∈ A(G)

0, otherwise
(2.1)

The i-th row of A determines, which vertices the vertex vi can receive from, the i-th

column specifies the vertices that can receive from vi. The adjacency matrix of the graph

in Figure 2.2, for example, is

A =



0 1 0 0 0 0 1

0 0 0 0 0 1 1

0 1 0 1 1 0 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 1 0 0 0 1 0


(2.2)

A second important matrix-representation of a graph is the normalized Laplacian matrix

L [Fax02], which is defined as

L = D−1 (D −A) (2.3)

where D is a matrix with the out-degree dG,out(vi) of each vertex on the diagonal. The

Laplacian corresponding to the adjacency matrix in (2.2) and the graph in Figure 2.2 is
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L =



1 −1
2

0 0 0 0 −1
2

0 1 0 0 0 −1
2
−1

2

0 −1
4

1 −1
4
−1

4
0 −1

4

0 0 0 1 −1 0 0

0 0 0 0 1 −1 0

0 −1 0 0 0 1 0

0 −1
2

0 0 0 −1
2

1


(2.4)

Note that each row sums to one and the outgoing arcs of each vertex are weighted equally.

While the adjacency matrix uniquely defines the structure of a graph, the Laplacian

holds additional information. Particularly the eigenvalues of L are frequently analyzed

by researchers to gain insight into graph-theoretic properties and formation-stability issues

[FM04].

2.2 Control Strategy

A control strategy in formation control can focus on several areas, some of which are for-

mation synthesis, formation maintaining, inter-agent collision avoidance, obstacle collision

avoidance, and tracking.

[FM04] distinguishes between two main categories in formation control, the leader-follower

approach and the virtual leader approach. In the leader-follower approach, a reference

trajectory is defined by the leading vehicle and other vehicles try to maintain a predefined

relative distance to the leader and among each other. The virtual leader approach states

that the vehicles in the formation synthesize a common single reference point, which acts

as a virtual leader for the formation. This task is often achieved by consensus algorithms

[OSFM07, XA05, PRS07], which allow the agents to agree on common states and, thus,

synthesize a common virtual leading vehicle. The simulation environment developed as

the subject of this thesis implements the leader-follower approach and is further described

in Chapter 3. However, it is aimed at keeping the design as flexible as possible to allow

for future extensions to other concepts.

The control strategy, which will be used to validate the simulator and for analysis in

Chapter 4, is described in [PPW09], which founds on [FM04]. Each agent in the forma-

tion consists of a model P , representing the agent’s dynamics, and a controller K. K
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γi

ui

vehicle i

ei yi

controller K(s) plant P (s)

Figure 2.4: Block diagram of a single agent

simultaneously stabilizes the vehicle and compensates for the position/orientation error

within the formation. A block diagram of one single agent is depicted in Figure 2.4. The

dynamics of agent i with internal states xi in state space form are

ẋi = APxi +BPui

yi = CP,1xi +DPui

(2.5)

where ui is the control input signal and yi the sensible output, that is, coordinates and

spatial orientation of the agent. [PPW09] neglectsDP for real-world quadrocopter agents.

Since physical signals are never delay-free, there is no direct feed-through of the input

signal ui.

As Figure 2.4 illustrates, a signal γi closes the internal feedback loop of the agent, which

might have other dimensions than yi. The complete state space model for one agent is

ẋi = APxi +BPui

yi = CP,1xi

γi = CP,2xi

(2.6)

The control law for each agent writes

v̇i = AKvi +BK,1ei +BK,2γi

ui = CKvi +DK,1ei +DK,2γi

(2.7)

with internal states vi and input ei. The inner loop to stabilize the agent’s dynamics is

closed by the feedback signal γi.

For control of the vehicle’s relative position within the formation, a second loop needs to

be closed to feed back states of other agents (see Figure 2.5). This second loop represents
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Figure 2.5: Closed loop system of a formation

the communication between agents. From the fed-back outputs y and the reference signal

r, an error signal e has to be derived for each agent. [FM04] defines ei as the equally

weighted sum of errors relative to all neighbors agent i can receive information from,

ei =
1

|Ji|
∑
j∈Ji

eij (2.8)

with Ji being the set of vehicles agent i can receive from and |Ji| the number of those

vehicles. eij is the error between the i-th and the j-th vehicle,

eij = rij − (yi − yj) (2.9)

rij is the relative reference input, for example the desired distance between agents i and

j.

The dimensions e, r, and y in Figure 2.5 hold error signals, absolute reference signals, and

outputs for all vehicles in the formation in one single column vector, e =
[
eT1 , ..., e

T
N

]T
,

r =
[
rT1 , ..., r

T
N

]T
and y =

[
yT
1 , ...,y

T
N

]T
. The error e can then be computed with matrix

calculus as

e = L(p) (r − v) (2.10)

with L(p) = L ⊗ Ip. Ip is the unity matrix of rank p, where p is the number of outputs

of a single agent.

2.3 Reference Input

Next to the communication topology, which defines who can exchange information, it

is also important what kind of information is transmitted. Depending on the controller

design, this question is directly related to the type of reference input that is available

to the agents, since the reference input is compared to the transmitted outputs of other
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Figure 2.6: Formation defined by directed vectors

agents, in order to generate a control signal. The reference input holds the information,

which distances or positions the agents should keep relative to each other. This thesis

focuses on two types of reference signals, which are explained in the following sections.

2.3.1 Directed Vectors

The controller design approach followed in [PPW09] uses directed vectors to specify the

reference input. If the outputs yi in Figure 2.5 hold the three spatial coordinates yi =

[xi, yi, zi]
T , for example, then the rij in (2.9) represent a directed vector between agents

i and j,

rij =

 rx,i − rx,j
ry,i − ry,j
rz,i − rz,j

 (2.11)

Thus, a formation in which each agent can only receive information from one neighbor,

as in Figure 2.6, is uniquely defined. With the robust controller from [PPW09], this

formation will also be stable. Note that the relative vectors in (2.11) are not limited to

the three spatial coordinates, but could be extended to include agent rotations as well.

2.3.2 Distances

A second approach to define a formation are relative distances. In contrast to directed

vectors, only the undirected distance between two agents is specified. In the case of
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Figure 2.7: Formation defined by undirected distances

three-dimensional spatial coordinates, the relative distance between two agents writes

dij =

∥∥∥∥∥∥∥
 rx,i − rx,j

ry,i − ry,j
rz,i − rz,j


∥∥∥∥∥∥∥ (2.12)

With specifying distances as reference input, the formation in Figure 2.6 is not rigid any-

more. An agent, which only receives from one neighbor, can be anywhere on a circle

around the other agent to drive its error signal to zero. Thus, further requirements to

the underlying communication topology have to be established. [YADF09] developed a

control law for two-dimensional formations, assuming a minimally persistent communica-

tion topology. A minimally persistent formation is defined by a graph, which is minimally

rigid and each vertex (agent) has an out-degree of not more than two. Applying this def-

inition to the formation in the previous section, the communication topology is extended

as illustrated in Figure 2.7. Now, the formation is rigid again. However, there is one

additional degree of freedom (DoF), compared to a formation defined by directed vectors.

Agent 2, introduced as the first follower by [YADF09], only receives from the leader. In

the orthogonal direction, on a circle around the leader, the first follower can rotate the

formation. Thus, in a two-dimensional formation defined by undirected distances, a leader

can only define the position, while it requires a co-leader to specify the orientation.



Chapter 3

Simulator Architecture

The design of the proposed simulation environment is influenced by various requirements,

such as dynamic changes of the communication topology or the number of agents, easy

future extendability, and a modular structure. This chapter outlines the modeling ap-

proach in the following section, briefly describes the object-oriented design in the Matlab

environment in Sections 3.2 and 3.3, and details the simulator structure in Section 3.4.

3.1 Modeling Approach

The first step in developing an environment to simulate the real world is to decide on

a modeling approach. This requires to reduce the complex real world to significant at-

tributes and find suitable models for those attributes. In the sense of this thesis, the

real world is represented by the formation control framework as described in Chapter 2.

Relevant attributes in this framework are the agents in a formation, the space, in which a

formation is located, the time, along which it propagates in space and possibly changes its

shape, communication topology, or number of members, and the communication between

agents.

3.1.1 Agents Modeling

In the simulation environment, agents, for example quad-rotor helicopters as in [PPW09],

are defined by their dynamic model. In case of a state space representation as in (2.6),

the linearized model simplifies vehicle dynamics. However, the simulator also allows to

consider nonlinear models.
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Agents do not have any spatial extent. That is, they can be located at coincidental

points and not collide. However, depending on the dynamical model, they have a spatial

orientation and can rotate around the given DoF.

3.1.2 Space Modeling

Many of the applications of formation control in Section 1.1, like UAVs, AUVs, or satellite

missions include three-dimensional constellations of vehicles. Thus, the simulation envi-

ronment allows to implement and visualize two- and three-dimensional systems. Space

is implemented as a Cartesian coordinate system free of physical obstacles. An agent’s

coordinate vector has the form

c3D = [x y z θ η φ]T (3.1)

c2D = [x y φ]T (3.2)

where x, y, z are the position of an agent and θ, η, φ its orientation. The measurement

dimension is not specified and depends on the units used in the model. The three spatial

dimensions are not physically limited. However, their size is restricted by the Matlab

data type double.

3.1.3 Time Modeling

Requirements, such as dynamic changes to the formation during a simulation, as well as

inter-agent communication at specific points in time, suggest a discrete-time environment.

In the real world, continuous time poses challenges for the implementation of, for example,

a clocked communication. A discrete time simulation environment simplifies a timed

communication and execution of tasks by providing a global clock with constant timesteps

k of length ts for the system.

Agent dynamics given in continuous time, as in (2.6), can easily be transformed to a

discrete-time representation [Wer09]

xk+1 = ΩPxk + ΓPuk (3.3)

yk = CPxk +DPuk (3.4)

where ΩP and ΓP are system matrix and input matrix of the discrete-time system. The

control law in (2.7) can be transformed analogously. Since physical signals are never delay-

free, real-world agents need at least one timestep to compute the next outputs. Thus,
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there is no direct feed-through from the input uk to the output yk, and in the following

DP = 0 (3.5)

3.1.4 Communication Modeling

Since the different agents in a formation are dynamically decoupled, communication is

the only way of interaction between agents. As outlined in Section 2.1, inter-agent com-

munication is modeled using Graph Theory. The adjacency matrix determines if for two

given agents i and j a communication link exists. This communication channel is defined

as a directed link, as depicted in Figure 3.1.

i j

Figure 3.1: Directed communication link, i receives from j

The direction of a communication link follows the definition in [FM04], thus, an arrow

from i to j means that i has access to information from j, which does not necessarily

represent the physical direction of information flow. This convention goes in line with the

UML definition for getter -methods [BRJ05], i gets information from j.

3.2 Object-Oriented Design

Some key demands in the motivation to develop this formation control simulation envi-

ronment are to provide a flexible platform that

• is easily scalable to the number of agents,

• allows for simulations of formations with dynamically changing communication

topology,

• supports on-the-fly adding and removing of agents,

• is easily extendable,

• is intuitively understandable and usable.
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While classic procedural programming approaches often provide a quick and cheap solu-

tion to a particular control problem, they have proven to struggle with the requirements

mentioned above. Object-oriented programming (OOP) offers a good way to meet those

requirements. In the following, some key concepts of OOP are briefly reviewed.

3.2.1 Abstraction

In order to solve problems, programming languages provide abstractions of the real world

[Eck06]. OOP follows a very intuitive way of abstraction by modeling problem with several

objects. Objects in the program code can then be very similar to real-world objects; they

have a name, properties, and methods/actions one can perform on them. Objects are

instances of classes, which define their properties and methods. Figure 3.2 shows an UML

class diagram1 of a class cup. An object of this class has properties like its content or

fillingLevel. Those properties can be changed by the user by invoking the object’s methods

fill() or drink().

Likewise, the object-oriented design of the simulation environment aims at providing an

intuitively understandable and easy usable platform. Every agent, for example, is an

instance of the class agent with properties and methods similar to a real-world agent in

a formation. This approach supports intuitive usability and understanding, as well as

dynamic changes during program execution, since an additional agent will just be created

by another instance of its corresponding class.

+fill()
+drink()

-content
-fillingLevel

cup

Figure 3.2: Class cup

3.2.2 Reusability and Extendability

One of the major advantages of OOP is the reusability and extendability of code [Eck06].

There are two main concepts to achieve this.

First, objects of existing classes can be used within new classes, the functionality of those

existing classes can be reused. This concept is called composition. The cup class in Figure

1All unified modeling language (UML) diagrams in this thesis follow the definitions in [BRJ05]
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3.2, for example, could be used in another class café. For the class café, the functionality

of the cups in it would not have to be defined again.

As a second approach, existing classes can be extended to new classes. That is, properties

and methods of an existing class are extended or changed within a new class, the new

class is derived from an existing class by inheritance. To create cups with a label of a café

printed on them, for example, a new class labeledCup could be derived from the existing

class cup, which inherits all properties and methods of the parent class and just adds an

extra property label.

The simulation environment makes use of composition and inheritance, as explained in

Section 3.4, to allow for extension of the program and reusability of all or parts of the

code in future projects.

3.2.3 Object Interaction Paradigms

In OOP, two main programming paradigms which describe the interaction between objects

have to be distinguished [dCLF93]. In the well-known case of synchronized communica-

tion, objects interact by calling each others methods. Although one could think of this

procedure as an uni-directional communication, the calling object waits for a reply and,

thus, the communication is synchronized and bidirectional.

The second approach is event-driven programming. That is, objects can trigger an event,

and other objects, which listen to this event, execute a specified behavior. Since the

object that triggers the event does not know about the listeners to this event, this way of

communication is unidirectional and unsynchronized.

For the simulation environment in this thesis, a hybrid approach is followed. To ensure a

stable and robust simulation run, the main simulation follows the concept of synchronized

communication, which leads to a sequential program execution. For example, agents in

the formation should not transmit their new states to each other before every agent has

finished computing them. The sequential simulation loop is explained in Section 3.4.

For user-friendly operation, a (GUI) is developed, see Section 3.5. A GUI is a typical

event-driven application, since it reacts to user prompts. The event-driven GUI triggers

processes of the sequentially executed simulation environment.
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3.3 Matlab Environment

The proposed simulation environment is developed in Matlab, a widely used software for

control systems engineering. This way, systems and controllers defined in Matlab can be

conveniently tested in the simulator, and output data can easily be processed with existing

tools. Providing the simulation environment as a Matlab toolbox also supports future

extensions by researchers, who might not be familiar with “traditional” OOP languages,

like JAVA.

With the 2008a release, Matlab supports OOP features similar to those of other object-

oriented languages like JAVA or C++. OOP has also been possible in versions prior to the

2008a release [Reg07], syntax was rather inconvenient however. Since 2008a, it is possible

to define properties and methods in class definition files. Hence the proposed simulation

environment requires a Matlab release of 2008a or higher.

3.4 Structure

The proposed simulation environment follows a hierarchical structure. Objects in the pro-

gram represent either physical components in the real world, like the agents in a formation,

or features of the simulator. The UML class diagram of the simulation environment in Fig-

ure 3.3 illustrates the hierarchical composition. The class SimulationManager provides

the overall organizational structure and centralizes all functionalities of the simulator. As

the head of the hierarchy, it contains all other objects, directly or as components of other

objects.

The classes directly contained in SimulationManager are RefInputGenerator, Formation,

and Animator3D or Animator2D respectively, depending on the dimensions chosen by the

user. Those two classes inherit from the parent class Animator. Formation holds one ob-

ject of Memory and VirtualLeader, and several objects Agent, depending on the size of the

formation. VirtualLeader and Agent inherit from their parent class GeneralizedAgent.

Each Agent object contains a model, which is either a LinearModel object or a Quadro-

copterModel object, both derived from the parent class Model. The QuadrocopterModel

is an example for a nonlinear model implementation, further nonlinear models can easily

be configured as child classes of Model.

The classes Animator, GeneralizedAgent, and Model are abstract classes. This means,

they serve as parent classes for other classes, but do not have any direct instances. A
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closer look at the functionalities of each class is given in the following section. Section

3.4.2 depicts the temporal process of a simulation run.

Agent

Formation

SimulationManager

VirtualLeader

GeneralizedAgent

Model

Memory

Animator

LinearModel QuadrocopterModel

RefInputGenerator Animator2DAnimator3D

1

0..1

1

1 0..1

1

1

1

1

1

0..*

1

1

0..1

1

1

either, or

either, or

Figure 3.3: UML class diagram of the simulation environment

3.4.1 Classes

For the purpose of easy reference and future extendability, the individual classes of the

simulator are presented in this section. Each class consists of a class name, properties,

and methods. For abstract classes, the class name is printed in italic characters. This

also holds for abstract methods, which are implemented in any of the corresponding child

classes, but do not have an implementation in the parent class.

Properties and methods are provided with different access identifiers. Public properties

or methods are indicated with a preceding “+”, they can be accessed by any other object
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in the program. Properties and methods, which can only be accessed by their own object,

are called private and marked with a “−”. Private methods that can also be accessed by

objects of inherited classes are protected and identified with a “#”.

For clarity and simplicity, all getter- and setter-methods are omitted in the diagrams in

this section. The only purpose of those methods is to retrieve or set the value of a method’s

property. The most important properties and methods of each class are explained in the

following.

Simulation Manager The class SimulationManager controls the simulation flow and

is depicted in Figure 3.4. It is responsible for the initialization of the formation and sim-

ulates every timestep according to its global sampling time t s. During each simulation

loop, the formation or its reference input might be changed with changeFormationRe-

fInput() and changeFormation(). Depending on the dimension of the considered system,

each timestep can be visualized with an Animator2D or Animator3D object. All settings

for the formation setup and the animation are stored in settings. To assign an unique

ID to each agent (since the number of agents might change during a simulation run), the

idCount variable stores the highest used agent ID. To further process simulation data, the

methods plot() and saveData() allow to plot and save agent positions and the underlying

communication topology.

+initialization ()
+simulate()
+plot()
+saveData()
-changeFormationRefInput()
-changeFormation()
-saveAgentData()
-saveAdjacency ()

SimulationManager
-formation : Formation
-animator : Animator
-refInputGenerator : RefInputGenerator
-t_s
-settings
-idCount

Figure 3.4: Class SimulationManager

Formation As the point of interest for the simulation environment, the Formation

class in Figure 3.5 subsumes all objects that are physically involved in a formation of
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agents. It holds a cell array agents containing the virtual leader and all agents being

present in the formation. The formation class organizes the interaction between agents

(agentsSend(), agentsReceiveFromOthers()) and can add and remove agents (addAgent(),

addVirtualLeader(), removeAgent()). It keeps track of the relevant formation properties

(agentIds, formationRefInput, relRefInput, outputs, coordinates, agentDistances) and the

communication topology (adjacency), as well as changes to it (modifyAdjacency()). An

object memory is used to store agent coordinates at each timestep (saveAgentData()) and

their respective communication topology (saveAdjacency()).

+addAgent()
+addVirtualLeader()
+removeAgent()
+calculateStep()
+calculateAgentDistances()
+modifyAdjacency()
+saveAgentData()
+saveAdjacency ()
+agentsSend()
+agentsReceiveFromOthers()
+agentsReceiveRefInput()

Formation
-agents : Agent
-memory : Memory
-agentIds
-formationRefInput
-relRefInput
-outputs
-coordinates
-adjacency
-agentDistances

Figure 3.5: Class Formation

Agents The agents in the formation are represented by instances of the class Agent,

which inherits from the class GeneralizedAgent, see Figure 3.6. Also the virtual leader,

which acts as reference input for the formation, inherits from GeneralizedAgent, since

many actions have to be performed on both the agents and the virtual leader. Common

for both classes are a unique id, input and output vector refInput and output and spatial

coordinates coordinates derived from the output vector. All methods that are common

to both agents and virtual leader are defined in the GeneralizedAgent class.

Each agent contains an object Model, which holds models of the controller and agent

dynamics. The method calculateStep(), which calls calculateE(), calculateNewState(),

and calculateOutput(), computes the formation error and the new states and output of
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the agent. In order to do this, the agent needs the outputs (outputOthers) of other

agents, which it can receive from, and, in case of time delays, its own backdated output

(ownSavedOutput). Since the virtual leader only represents a reference input, it does not

require any other properties. The methods calculateStep() and calculateOutput() update

the reference input and make it available to the other agents in the formation, which can

receive the virtual leader’s output.

+receiveRefInput()
+sendOutput()
+calculateStep()
#calculateOutput()
#calculateCoordinates()

GeneralizedAgent
-id
-y_k
-coordinates
-output2Coordinates
-refInput

+calculateStep()
+receiveOutputOthers()
-calculateE()
-calculateNewState()
-calculateOutput()

Agent
-model : Model
-e_k
-ownSavedOutput
-outputOthers

+calculateStep()
-calculateOutput()

VirtualLeader

Figure 3.6: Abstract class GeneralizedAgent with child classes VirtualLeader and

Agent

Model As an abstract class, Model in Figure 3.7 does not have any direct instances.

For the standard case, the class LinearModel is derived as a child. To allow for im-

plementation of nonlinear models or controllers as well, further child classes can be cre-

ated. As an example for the implementation of a nonlinear dynamic model, the class

QuadrocopterModel has been built.

Common to all models are controller and model states u k, v kplus1, y k, x kplus1, and

an offset value v 0, representing the initial position of the agent. The abstract method
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calculateStep() has different implementations in the child classes, depending on the kind

of model or algorithm used.

The LinearModel class holds a controllerModel and a plantModel as standard Matlab

state space representations. The quadrocopter model has the same linear controller con-

trollerModel and needs the additional variables x and t for the nonlinear model algorithm

implemented in calculateStep().

+

-
-
-

+calculateStep()

-y_k
-y_0
-u_k
-x_kplus1
-v_kplus1

Model

+calculateStep()

-controllerModel
-plantModel
-outputDim

LinearModel

+calculateStep()

-controllerModel
-x
-t

QuadrocopterModel

Figure 3.7: Abstract class Model with child classes LinearModel and QuadrocopterModel

Animator For visualization of results during a simulation, the simulation manager

contains an object inherited from the abstract Animator class. At creation time of the

SimulationManager object, the dimension specified in the initialization file determines if

an Animator2D or Animator3D object is created. Both classes have the same methods,

which only differ slightly due to different Matlab commands for two or three dimensions.

The various settings variables of Animator determine graphical properties of the anima-

tion. The public method animate() plots the agents and calls, depending on the specified

plotting settings, the private methods to plot arrows, trails, agent IDs, and obstacles,

and to resize the current axis dimensions, if necessary. A matrix in the user input file

determines, which entries of the agents’ output vectors are visualized (i.e., which entries

correspond to the physical dimensions x, y, z).

Memory An instance of the Memory class in Figure 3.9 is contained in the Formation

object. The methods saveOutputs() and saveAdjacency() store agent data and the ad-



3 Simulator Architecture 27

+animate()
-determineAxis()
-resizeAxis ()
-drawArrows()
-drawTrails()
-plotAgentIds()
-drawObstacles()

Animator
-settingsCommon
-settingsAgents
-settingsVirtualLeader
-settingsTrails
-trailCoordinates
-settingsObstacles
-obstaclesColorspec
-arrowsLinespec

+animate()
-determineAxis()
-resizeAxis ()
-drawArrows()
-drawTrails()
-plotAgentIds()
-drawObstacles()

Animator2D

+animate()
-determineAxis()
-resizeAxis()
-drawArrows()
-drawTrails()
-plotAgentIds()
-drawObstacles()

Animator3D

Figure 3.8: Abstract class Animator with child classes Animator2D and Animator3D

+saveOutputs()
+saveAdjacency ()
+getBackDatedOutput()
-addAgent()

-agentStorage
-adjacencyStorage

Memory

Figure 3.9: Class Memory

jacency matrix of the formation in the corresponding variables agentStorage and adja-

cencyStorage. This data can be retrieved after a simulation run for plotting or further

analyses. An additional function of the Memory object is to provide agent outputs from

preceding timesteps in case of time delays. The method getBackDatedOutput() allows to
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access backdated data for each agent in the formation, which can be used to represent

signal transmission time delays.

+calculateRelRefInputVectors()
+calculateRelRefInputDistances()

RefInputGenerator

Figure 3.10: Class RefInputGenerator

Reference Input Generator The RefInputGenerator class (see Figure 3.10) con-

tained in the simulation manager provides the functionality to compute the relative dis-

tance from each agent to all other agents from the absolute agent positions specified in the

initialization file. Depending on the way the reference input is defined (as directed vectors

or distances, as explained in Section 2.3), the methods calculateRelRefInputVectors() or

calculateRelRefInputDistances() compute the corresponding values.

3.4.2 Simulation Flow

The run of a simulation is determined by user input and internal processes. Those pro-

cesses are controlled by the simulation manager, which in turn is triggered by the GUI.

The main simulation loop, divided into those two control instances, is illustrated in an

UML activity diagram in Figure 3.11. Some extended functionalities for expert users are

provided in Section 3.6.

A new simulation is started on user command by the GUI. The GUI reads initialization

data from an input file and passes this data, as well as further simulation and animation

settings specified by the user, to the simulation manager. After the new formation is

initialized in the simulation manager, and each time the simulation is interrupted, settings

can be changed in the GUI.

The simulation loop controlled by the simulation manager is triggered by the GUI. To

ensure secure program execution, the simulation manager only reacts to commands of the

GUI after every full executed loop. The user can choose to interrupt the simulation, for

example to change settings or plot data, or to finish the simulation run. As long as no

user input to the GUI is registered, a new loop is executed.
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Simulation ManagerGUI

[interruption]

change formation

update formation ref. input

update adjacency

calculate step

animate

save data

[no formation changes] 

[formation changes] 

[no interruption] 

[end simulation] 

start simulation

[do not end simulation]

initialize formation

animate initial position

save data

new simulation

load initialization data

select/change settings

Figure 3.11: UML activity diagram of the top-level simulation process
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3.5 Graphical User Interface

The simulation environment contains a GUI, which provides the interface between user

and program. The GUI is opened by executing the Matlab-file FAST.m (FAST stands

for Formation Analysis Simulation Toolbox). A screenshot of the GUI is shown in Figure

3.12. Its two main functions are to display the simulation results and to start and control

simulations by user input. The GUI is divided into four main functional regions, which

are the central visualization frame, a group of general control buttons in the top right

corner, control elements for formation properties at the right side of the visualization

frame, and control elements for animation settings below the animation frame.

For during-the-simulation visualization, the central part of the GUI shows a two-dimensional

or three-dimensional coordinate space, in which, depending on the animation settings, all

or part of the formation is plotted. The user can rotate the coordinate frame with a tog-

gle button in the top left toolbar, or switch to plane- or 3D-view with the corresponding

buttons. The elapsed simulation time is printed above the coordinate frame.

Figure 3.12: Graphical user interface of the simulator
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To set up a new simulation and to start, interrupt, or end it, the main control buttons in

the top right corner of the GUI are used. While a simulation is interrupted, or after it is

finished, the user can request to generate plots or save simulation data to a file.

Formation settings, like reference input, time delays, or a limited communication range,

can be set by the drop-down menus on the right side. The user can also define commu-

nication obstacles or changes of the formation, which will then be read from a specified

file. Formation settings can be changed before a simulation, or during an interruption.

For during-the-simulation animation of the simulation results, the user can select to plot

communication links, agent ids, or trails showing the previous positions of each agent.

To speed up a simulation, the number of timesteps to be animated can be reduced. By

default, the axes of the coordinate frame are resized to show all agents in the formation

as close as possible. However, axes can also be manually adjusted by the user.

During initialization of a simulation, the GUI collects all required settings and passes them

to an object of the SimulationManager class. To initialize formations with requirements

that go beyond the capabilities of the GUI, a SimulationManager object could also be

created and provided with these settings manually, as explained in the following section.

3.6 Advanced Functionality

Settings for most simulations can be controlled by the GUI, as explained in the previous

section. Next to an initialization file, which has to be specified prior to a simulation, no

further input is required for a variety of applications. This section depicts some extended

simulation functionalities provided to the user.

Advanced Initialization Next to formations with equal agent controllers and dynam-

ics, as examined in Chapter 4, the initialization file allows to specify different controllers

and dynamic models for each agent in the formation. Since the models for controller

and dynamics of each agent are stored in a vector, each vector entry might be defined

separately to provide those different models.

Initial positions of agents can be specified by offset values, added to the agents’ output

vector. If required, also initial states for each agent can be defined in the initialization

file.
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N-Dimensional Simulations The simulation environment allows to simulate systems

of arbitrary dimensions. Since only two or three dimensions can be visualized, a matrix

output2Coordinates determines, which of the dimensions of the agents’ output vectors

should be animated. This way, two or three dimensions of n-dimensional systems can be

visualized. For 1-dimensional configurations, x- and y-dimension coincide.

Reference Input The user can define the formation reference input in the GUI. Alter-

natively, a reference trajectory can be specified in a file. For each timestep in a simulation,

the next entry of the reference input vector is evaluated. If the number of timesteps ex-

ceeds the length of the vector, the last entry is treated as a constant value until the end

of the simulation. During a simulation, the user can switch between input from a file and

manual input.

Communication Obstacles Communication obstacles can be defined in another in-

put file. They can be configured as balloons or two-dimensional surfaces with arbitrary

location. If a communication link between two agents intersects with an obstacle, the link

becomes inactive and no communication between the corresponding agents is possible

as long as the intersection continues. The user can enable and disable communication

obstacles during a simulation.

Formation Changes Various changes of formation properties can be specified in an

input file prior to a simulation. Each change is linked to a point in time, at which it

occurs. This way, repeatable simulations with changing properties can be realized. The

simulation environment implements

• changes in the communication topology,

• changes in the formation shape,

• removal of one or several agents,

• adding of one or several agents.

Several changes can be scheduled for the same time instant and will be executed after

each other.
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Simulation without GUI The GUI provides a convenient way to initialize, start,

control, and end simulations. However, it is also possible to create a SimulationManager

object manually. At creation time, the user has to provide all required arguments, like

initialization data or animation settings, to construct the object. All methods to control

a simulation are public and can be invoked manually, once the SimulationManager is

created.



Chapter 4

Simulation and Analysis

The proposed simulation environment aims at providing a general, extendable controller

testbed, to gain insight into several fields of formation analysis and for various types

of agents. However, to validate the simulation environment and to carry out analyses,

particular scenarios have to be chosen. All analyses in this chapter, except Section 4.2.3,

implement a linearized quadrocopter model as derived in [PPW09]. The measurement

dimension is meter. The simulator’s capabilities are demonstrated by analyses conducted

with those quadrocopter models.

For control of quadrocopter formations, three different controllers are used in this chapter:

1. Krobust, a robust controller derived in [PPW09] with a H∞ design approach. This

controller claims to be robustly stable for any given communication topology and

number of agents.

2. Knominal, a controller which stabilizes one single quadrocopter [Pop09]. For forma-

tions of quadrocopters, this controller does not guarantee stability.

3. Kcomplete, a controller developed to stabilize a formation of ten quadrocopters with

a complete communication topology [Pop09]. Thus, it stabilizes any formation of

ten copters, as long as there exists a communication link between any two copters

in the formation.

Comparing formation performance of different simulations in this chapter raises the ques-

tion of how to measure this performance. While for stability issues various “hard” criteria

exist and a formation can be either stable or unstable, comparing the tracking performance

of a formation is ambiguous and requires suitable measures. Thus, this chapter has a dual
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focus: Several simulations are analyzed with respect to stability and performance in Sec-

tions 4.2, 4.3, and 4.4. To support those analyses, performance measures are proposed in

Section 4.1 and evaluated in Section 4.5.

4.1 Definition of Performance Measures

To allow for quantitative formation performance analyses, suitable criteria have to be

defined. Four aspects of tracking performance are identified in this section, which describe

• how close a formation can follow a reference trajectory,

• how well the formation shape is maintained while following this trajectory,

• how robust the formation is against communication link failures,

• how robust the formation is against agent failures.

Corresponding measures to deploy those criteria are defined in the following.

Tracking Error To quantify differences in how well a formation can follow a specific

reference trajectory, the outputs of the agents in a formation have to be compared to the

predefined reference signal for each timestep. Two approaches are presented to compare

those values.

First, the output error of each agent, compared to its corresponding reference value, is

computed as shown in Figure 4.1 (a). To obtain the overall error for a period of time,

those output errors are summed up for all agents in the formation and over all timesteps:

εt1 =
1

Nk

Nk∑
k=1

(
1

Na

Na∑
i=1

∥∥yi,ref,k − yi,k

∥∥) =
1

NaNk

Nk∑
k=1

Na∑
i=1

∥∥yi,ref,k − yi,k

∥∥ (4.1)

with Nk being the number of timesteps, Na the number of agents i in the formation,

yi,ref,k the reference signal (for example the spatial coordinates) for agent i at timestep

k, and yi,k the current output of agent i at the corresponding timestep. Thus, εt1 is the

average distance over all agents and timesteps that an agent in the formation deviates

from its reference position.

Another approach is to compare the formation’s common position error, rather than each

agent’s error separately. This requires to define one single point as the common position

of a formation, see Figure 4.1 (b). To weigh all agents equally, the geometric center of all
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a) b)

yi,k

yi,ref,k

yi,k

yi,ref,k

Figure 4.1: Distances considered for the tracking errors, a) εt1, b) εt2

agents’ positions is chosen. This way, one point in space is computed as the position of

a formation and compared to the point computed from the reference signal in the same

way:

εt2 =
1

Nk

Nk∑
k=1

∥∥∥∥∥ 1

Na

Na∑
i=1

yi,ref,k −
1

Na

Na∑
i=1

yi,k

∥∥∥∥∥ =
1

NaNk

Nk∑
k=1

∥∥∥∥∥
Na∑
i=1

(
yi,ref,k − yi,k

)∥∥∥∥∥ (4.2)

εt2 is the average distance between the geometric center of the formation and the geometric

center of the predefined reference signal over all timesteps.

Formation Error Next to the precision at which a formation can follow a reference

trajectory, it is also important how well the formation maintains its shape. A formation

shape is determined by the agents’ positions relative to each other. Thus, the inter-agent

distances are identified as relevant dimensions to be considered.

The first proposed formation error compares the directed vector between two agents in

the formation to the vector derived from their reference positions, as illustrated in Figure

4.2. Subtracting those two vectors gives the error-vector (grey vector arrow in the figure).

The average length of all error vectors between each two agents over all timesteps is

εf1 =
1

Nk

Nk∑
k=1

(
1

Na(Na−1)
2

Na∑
i=1

Na∑
j=i+1

∥∥(yj,ref,k − yi,ref,k)− (yj,k − yi,k)
∥∥)

=
2

Na(Na − 1)Nk

Nk∑
k=1

Na∑
i=1

Na∑
j=i+1

∥∥(yj,ref,k − yi,ref,k)− (yj,k − yi,k)
∥∥ (4.3)

with Nk, Na, yi,ref,k, and yi,k as specified for (4.1), and yj,ref,k and yj,k analogously for

agent j.

A second, broader defined error does not consider directed vectors between the agents,

but only undirected inter-agent distances. Hence, the distance between each two agents

is compared to the reference distance and summed up for all agents in the formation and
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yj,k = yj,ref,k yi,ref,k

yi,k

Figure 4.2: Distances considered for the formation errors

over all timesteps,

εf2 =
1

Nk

Nk∑
k=1

(
1

Na(Na−1)
2

Na∑
i=1

Na∑
j=i+1

∣∣∣∥∥yj,ref,k − yi,ref,k

∥∥− ∥∥yj,k − yi,k

∥∥∣∣∣)

=
2

Na(Na − 1)Nk

Nk∑
k=1

Na∑
i=1

Na∑
j=i+1

∣∣∣∥∥yj,ref,k − yi,ref,k

∥∥− ∥∥yj,k − yi,k

∥∥∣∣∣ (4.4)

where the single bars in the above expression represent the absolute value or modulus.

Other than for εf1, the lengths of the two black vector arrows in Figure 4.2 are compared

directly. Thus, if both vectors have the same length, but different direction, the error

would be zero.

Critical-Links Ratio To measure robustness of a formation’s performance, two more

criteria are defined. Formations might track reference signals very well, but fail fatally

as soon as one communication link breaks. The critical-links ratio αl reveals, how many

communication links, relative to the overall number of links, are critical to the formation’s

existence.

αl =
Nl,critical

Nl

(4.5)

where Nl,critical is the number of links critical to the formation, and Nl the total number of

communication links. A critical-links ratio of αl = 0.1, for example, means that out of ten

existing communication links in a formation, the removal of one link would destroy the

formation, while the removal of each of the nine other links does not harm the formation

structure. Performance might decrease, however, for any removed link, which is not

considered in this ratio.

Critical-Agents Ratio Analogously to the critical-links ratio, a critical-agents ratio is

defined. This quotient specifies, how many agents are critical to the formation’s existence.

An agent is called critical, if its failure would destroy all or part of the remaining formation.
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The critical-agents ratio is defined as

αa =
Na,critical

Na

(4.6)

with Na,critical being the number of these critical agents, and Na being the total number

of agents in the formation.

4.2 Stability

Stability of a formation is a precondition for applications and their safe operation. This

section investigates the effect of two different controllers on the overall formation stability,

as well as the influence of time delays and changes of the communication topology.

4.2.1 Controller
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Figure 4.3: Circular communication topology with ten agents

A communication topology, which is challenging for formation stability, is shown in Figure

4.3. In this circular communication structure, each agent only receives from one other

agent, its neighbor to one side. The formation does not have access to any external

reference input. Thus, errors can easily be amplified in the circular closed loop.

As a model formation in this section, a circular shape is chosen. Thus, Figure 4.3 not

only depicts the communication topology, but also the desired formation shape. All agents

start from the same initial position, which will lead to a large position error and, thus,

to a high acceleration of each agent in the beginning of the simulation. Note that, for
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Figure 4.4: Trajectories of the circular formation in the x-y-plane with Knominal after 30 s
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Figure 4.5: x-positions over time of the circular formation with Knominal after 150 s

conformity with the simulator conventions, the ten agents are labeled by 2 to 11. Number

1 always holds the formation reference input, which is not needed for this simulation.

Two different controllers are compared in this section. One is the robust controller Krobust
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Figure 4.6: Trajectories of the circular formation in the x-y-plane with Krobust after 30 s
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Figure 4.7: x-positions over time of the circular formation with Krobust after 150 s

explained in the beginning of this chapter, designed to stabilize any formation of quadro-

copters with arbitrary communication topology. The second controller Knominal was de-
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signed to stabilize a single quadrocopter. For the simulation, all ten agents start from

coincident initial positions and receive reference input to form a circle with radius 5 m.

The trajectories of all agents for the formation with controllers Knominal are drawn in

Figure 4.4. Depicted are the first 30 s of the simulation. All agents are moving on spiral

paths with increasing diameter, which clearly shows formation instability. For a longer

time period of 150 s, the x-positions of all agents are shown in Figure 4.5. Amplitudes of

the spiral oscillation grow exponentially and the formation becomes instable. Thus, the

controller Knominal, which can stabilize single quadrocopters, is not able to stabilize the

formation with the underlying circular communication topology.

The second considered controller Krobust leads to the trajectories depicted in Figure 4.6.

Compared to Knominal, the copters move on similar spiral trajectories, but with notably

decreasing diameter. This indicates that the quadrocopters converge to distinct final

positions within the spiral, the formation is stable. Also Figure 4.7, showing x-positions

over time, supports this observation. Amplitudes decrease clearly, and after about 100 s,

the quadrocopters have reached their final positions.

Comparison of the two controllers Knominal and Krobust shows that formations pose special

challenges to controller design. Controllers, which might efficiently stabilize single agents,

are not necessarily suitable for formation control in the given framework. They have to

achieve two complementary goals, stabilization of a single vehicle and of the formation as

a whole.

4.2.2 Time Delay

If it comes to implementations of formation control to real vehicles, an important issue to

be considered is transmission time delay. No physical signal can be transmitted delay-free.

Especially for formations of flying agents, which might be separated by large distances,

time delays have to be considered.

Figure 4.8 shows the trajectories for the formation with Krobust and the same circular

communication topology in Figure 4.3, but with a communication time delay of 0.4 s.

The controller Krobust, which is robust for the circular, delay-free communication topol-

ogy, can not stabilize the formation for the given time delay. Figure 4.9 clearly shows

increasing amplitudes, the formation becomes instable. Thus, time delays pose an addi-

tional challenge to formation control. The robust controller Krobust is not able to stabilize

formations with transmission time delays. Strategies have to be found, how to account

for communication time delays in formation control.
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Figure 4.8: Trajectories of the circular formation in the x-y-plane with Krobust and a time

delay of 0.4 s after 30 s
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Figure 4.9: x-positions over time of the circular formation with Krobust and a time delay

of 0.4 s after 150 s
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4.2.3 Changing Communication Topology
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Figure 4.10: Formation of nine agents with three triangles
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Figure 4.11: Triangle-formation in the x-y-plane, a) initial positions, b) after 19 s, c) after

35 s

In the real world, changes to the communication structure of a formation could be caused

by obstacles or perturbation of the signal transmission. Thus, it is important to gain

insight into the influence of those changes to formation stability. For the simulation in

this section, the formation in Figure 4.10 is chosen. It consists of three triangles, connected
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in a line. For demonstration purposes, a non-linear quadrocopter model is implemented

for this simulation. Knominal, which does not guarantee formation stability, is implemented

as a controller.
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Figure 4.12: x-positions over time of the triangle-formation with Knominal after 50 s

At the beginning of the simulation, all agents are assigned initial positions that differ from

their reference position to generate position errors, see Figure 4.11 (a). The controller is

able to stabilize the formation with the given communication topology, the agents con-

verge to their specified positions (Figure 4.11 (b)). After 20 s, the communication links

between agents 2 and 8 and between 4 and 9 are deleted. As a consequence, the right

triangle, which is now disconnected from the remaining formation, starts to oscillate with

increasing amplitude (Figure 4.11 (c)) while the remaining formation stays stable. The

agent’s x-positions over time in Figure 4.12 clearly illustrate that, after a stabilization of

the formation during the first 20 s, the changed communication topology leads to insta-

bility of part of the formation. This phenomenon emphasizes the necessity for the design

of robust controllers as in [PPW09], that stabilize formations independently of changes

to the communication topology.
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4.3 Tracking

One important property of formations is their tracking capability. Since applications for

vehicle formations mostly involve movements of the formation over time, it is significant

how well the formation can follow a reference trajectory. This section investigates the

influence of controller design (Section 4.3.1), reference input availability (Section 4.3.2),

and inter-agent communication (Sections 4.3.3 and 4.3.4) on the tracking performance.

The performance measures defined in Section 4.1 are used.
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Figure 4.13: Delta-formation with ten agents

As a model formation, a delta-constellation with ten agents is chosen, see Figure 4.13.

Again, for conformity with the simulator conventions, the ten agents are labeled by 2 to

11. The number 1 always holds the formation reference input, which is not shown in this

figure.

For the reference trajectory, which serves as a dynamic reference signal for the formation,

a sine signal in two dimensions,

y = 5 sin (0.25x) (4.7)

is used. For simplicity, the z-coordinate is kept constant.

4.3.1 Controller

This section compares two different controllers in their influence on the tracking perfor-

mance. Both analyses implement the delta-formation in Figure 4.13 with a full commu-

nication topology. That is, each agent can receive from each other agent, and each agent

can also receive the formation reference input.
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Figure 4.14: Delta-formation in the x-y-plane after 10 s, full communication topology, all

agents receive the reference input, a) with Krobust, b) with Kcomplete

The first controller is the robust controller Krobust. It claims to be robustly stable for

any given communication topology and number of agents. A snapshot of the formation

at 10 s, following the sine trajectory in (4.7), is given in Figure 4.14 (a). The formation

shape is perfectly maintained, while it can only follow the reference signal at a notable

distance delay (agent 6 should coincide with the reference signal, represented by the blue

circle). Following (4.1) and (4.2), the tracking errors for one full sine trajectory are

εt1 =
1

10 · 5026

5026∑
k=1

10∑
i=1

∥∥yi,ref,k − yi,k

∥∥ = 6.6056 (4.8)

εt2 =
1

10 · 5026

5026∑
k=1

∥∥∥∥∥
10∑
i=1

(
yi,ref,k − yi,k

)∥∥∥∥∥ = 6.6056 (4.9)

The formation errors from (4.3) and (4.4) give

εf1 =
2

10(10− 1)5026

5026∑
k=1

10∑
i=1

10∑
j=i+1

∥∥(yj,ref,k − yi,ref,k)− (yj,k − yi,k)
∥∥

= 6.3772× 10−15 (4.10)

εf2 =
2

10(10− 1)5026

5026∑
k=1

10∑
i=1

10∑
j=i+1

∣∣∣∥∥yj,ref,k − yi,ref,k

∥∥− ∥∥yj,k − yi,k

∥∥∣∣∣
= 4.1210× 10−15 (4.11)

which are negligible for the given formation.
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For the full communication topology, the critical-links ratio is

αl =
0

55
= 0 (4.12)

since no failure of a single link is critical to the formation shape. Likewise

αa =
0

10
= 0 (4.13)

No agent failure endangers the existence of the formation.

The same analysis is carried out with the controller Kcomplete, especially developed for

a formation of ten agents and full communication topology. Figure 4.14 (b) shows a

similar situation compared to the previous simulation for a formation implementing this

controller. The formation shape is maintained perfectly, while the reference signal can be

followed at a slightly shorter distance. Tracking and formation errors compute as

εt1 =
1

10 · 5026

5026∑
k=1

10∑
i=1

∥∥yi,ref,k − yi,k

∥∥ = 5.6870 (4.14)

εt2 =
1

10 · 5026

5026∑
k=1

∥∥∥∥∥
10∑
i=1

(
yi,ref,k − yi,k

)∥∥∥∥∥ = 5.6870 (4.15)

εf1 =
2

10(10− 1)5026

5026∑
k=1

10∑
i=1

10∑
j=i+1

∥∥(yj,ref,k − yi,ref,k)− (yj,k − yi,k)
∥∥

= 2.4028× 10−14 (4.16)

εf2 =
2

10(10− 1)5026

5026∑
k=1

10∑
i=1

10∑
j=i+1

∣∣∣∥∥yj,ref,k − yi,ref,k

∥∥− ∥∥yj,k − yi,k

∥∥∣∣∣
= 1.5377× 10−15 (4.17)

Since the communication topology did not change, αl and αa are zero again.

Comparing the tracking errors for both controllers, it concludes that Kcomplete is superior

to Krobust for the given communication topology. Not surprisingly, different controllers

influence the tracking performance of a formation for the same underlying communication

topology.

4.3.2 Reference Input Accessibility

In the previous section, all agents had access to the formation reference signal. To ana-

lyze the effect of the reference input accessibility on the tracking performance, the same
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Figure 4.15: Delta-formation in the x-y-plane after 10 s, full communication topology, one

agent receives the reference input

simulation with controller Kcomplete has been carried out for only one agent receiving this

signal. The snapshot after 10 s in Figure 4.15 demonstrates that the formation’s tracking

capability is reduced drastically. While the reference signal has proceeded from [0 0]T to

[4.75 5]T , the formation, initially centered with agent 6 at [0 0]T , has only moved slightly.

The tracking errors for the whole sine trajectory,

εt1 =
1

10 · 5026

5026∑
k=1

10∑
i=1

∥∥yi,ref,k − yi,k

∥∥ = 11.8457 (4.18)

εt2 =
1

10 · 5026

5026∑
k=1

∥∥∥∥∥
10∑
i=1

(
yi,ref,k − yi,k

)∥∥∥∥∥ = 11.8457 (4.19)

are more than two times larger as for the corresponding formation in Figure 4.14 (b).

The formation errors of

εf1 =
2

10(10− 1)5026

5026∑
k=1

10∑
i=1

10∑
j=i+1

∥∥(yj,ref,k − yi,ref,k)− (yj,k − yi,k)
∥∥

= 0.2063 (4.20)
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εf2 =
2

10(10− 1)5026

5026∑
k=1

10∑
i=1

10∑
j=i+1

∣∣∣∥∥yj,ref,k − yi,ref,k

∥∥− ∥∥yj,k − yi,k

∥∥∣∣∣
= 0.1400 (4.21)

show that also the formation shape is maintained less accurately. This is due to a dis-

placement of agent 6 compared to the other agents, see Figure 4.15.

Critical-links and critical-agents ratio give

αl =
1

46
= 0.0217 (4.22)

αa =
1

10
= 0.1 (4.23)

This is due to agent 6, whose failure would be fatal, since it is the only agent receiving

the reference signal.

It appears that, with an increasing number of agents being able to receive the reference

signal, the ability to maintain the formation shape increases, as well as robustness of the

communication topology.

4.3.3 Communication Topology
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Figure 4.16: Delta-formation with 14 communication links (choice 1), four agents receive

the reference input

As a major property of formations, their underlying inter-agent communication topology

is expected to influence tracking performance. Thus, this section focuses on two delta-

formations with ten agents as in Figure 4.13. Both formations have the same controllers
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Kcomplete, the same number of communication links, and four agents each can receive the

reference input signal.
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Figure 4.17: Delta-formation in the x-y-plane after 10 s, 14 communication links (choice

1), four agents receive the reference input

The first proposed communication topology is depicted in Figure 4.16. 14 inter-agent

communication links are distributed among the agents. Agents 2, 4, 7, and 11 can access

the reference signal and are drawn with a dashed line. Figure 4.17 illustrates that, after

10 s, the formation is stretched compared to its specified shape. Agents 5, 8, and 9 move

much slower than the other agents, illustrated by the grey trails following each agent. For

one full sine trajectory, the tracking and formation errors are

εt1 =
1

10 · 5026

5026∑
k=1

10∑
i=1

∥∥yi,ref,k − yi,k

∥∥ = 5.6512 (4.24)

εt2 =
1

10 · 5026

5026∑
k=1

∥∥∥∥∥
10∑
i=1

(
yi,ref,k − yi,k

)∥∥∥∥∥ = 5.6360 (4.25)
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εf1 =
2

10(10− 1)5026

5026∑
k=1

10∑
i=1

10∑
j=i+1

∥∥(yj,ref,k − yi,ref,k)− (yj,k − yi,k)
∥∥

= 2.8456 (4.26)

εf2 =
2

10(10− 1)5026

5026∑
k=1

10∑
i=1

10∑
j=i+1

∣∣∣∥∥yj,ref,k − yi,ref,k

∥∥− ∥∥yj,k − yi,k

∥∥∣∣∣
= 2.0533 (4.27)

and the ratios compute as

αl =
6

18
= 0.33 (4.28)

αa =
5

10
= 0.5 (4.29)

This means, 1/3 of all communication links and 1/2 of all agents are critical to maintain

the formation shape.
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Figure 4.18: Delta-formation with 14 communication links (choice 2), four agents receive

the reference input

The same formation with another communication topology is depicted in Figure 4.18.

Again, four agents can receive the reference input and 14 communication links exist.

Figure 4.19 shows that, after 10 s, the formation can maintain its shape much better than

the one in Figure 4.17. The tracking errors give

εt1 =
1

10 · 5026

5026∑
k=1

10∑
i=1

∥∥yi,ref,k − yi,k

∥∥ = 1.3021 (4.30)
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εt2 =
1

10 · 5026

5026∑
k=1

∥∥∥∥∥
10∑
i=1

(
yi,ref,k − yi,k

)∥∥∥∥∥ = 1.3016 (4.31)

and the formation errors are

εf1 =
2

10(10− 1)5026

5026∑
k=1

10∑
i=1

10∑
j=i+1

∥∥(yj,ref,k − yi,ref,k)− (yj,k − yi,k)
∥∥

= 0.5323 (4.32)

εf2 =
2

10(10− 1)5026

5026∑
k=1

10∑
i=1

10∑
j=i+1

∣∣∣∥∥yj,ref,k − yi,ref,k

∥∥− ∥∥yj,k − yi,k

∥∥∣∣∣
= 0.3374 (4.33)

The critical-links and -agents ratios give

αl =
4

18
= 0.22 (4.34)

for the four reference signal links of agents 3, 4, 9, 10, and

αa =
0

10
= 0 (4.35)

εt1 and εt2 are about four times smaller compared to the first formation, εf1 and εf2 as

much as six times smaller. Additionally, αl and αa show that the second formation is

more robust to communication link and agent failure.

As a conclusion, the communication structure has a large influence on a formation’s

tracking performance. Even for an equal number of communication links, performance

varies significantly.

Furthermore, also the number of inter-agent communication links heavily influences track-

ing performance. While the formation in Section 4.3.1 with full communication topology

maintains its shape perfectly, the communication topology in Figure 4.18 is superior in

keeping a small position error. This poses a trade-off between formation shape and track-

ing performance.

As a special case, the communication topology in Figure 4.20 is analyzed. Each agent

only receives from agent 6, which in turn is the only agent that can access the external

reference input. This gives agent 6 the role of a single leader in the formation.

The formation flight after 10 s is shown in Figure 4.21. The formation shape is very

well maintained, only agent 6 is off-centered compared to its neighbors. In addition, the



4 Simulation and Analysis 53

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

11

7

10

4

1

2

6

9

3

10 s

5

8

x [m]

y 
[m

]

Figure 4.19: Delta-formation in the x-y-plane after 10 s, 14 communication links (choice

2), four agents receive the reference input
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Figure 4.20: Delta-formation with star-communication topology, one agent receives the

reference input

formation follows the reference trajectory with very small delay. The errors give

εt1 =
1

10 · 5026

5026∑
k=1

10∑
i=1

∥∥yi,ref,k − yi,k

∥∥ = 2.1489 (4.36)
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εt2 =
1

10 · 5026

5026∑
k=1

∥∥∥∥∥
10∑
i=1

(
yi,ref,k − yi,k

)∥∥∥∥∥ = 2.1489 (4.37)

εf1 =
2

10(10− 1)5026

5026∑
k=1

10∑
i=1

10∑
j=i+1

∥∥(yj,ref,k − yi,ref,k)− (yj,k − yi,k)
∥∥

= 0.1452 (4.38)

εf2 =
2

10(10− 1)5026

5026∑
k=1

10∑
i=1

10∑
j=i+1

∣∣∣∥∥yj,ref,k − yi,ref,k

∥∥− ∥∥yj,k − yi,k

∥∥∣∣∣
= 0.0919 (4.39)

αl =
10

10
= 1 (4.40)

αa =
0

10
= 0.1 (4.41)
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Figure 4.21: Delta-formation in the x-y-plane after 10 s, star communication topology,

one agent receives the reference input

It is obvious that this communication topology combines very good tracking behavior

with very good shape-maintaining. However, a failure of agent 6 would be fatal and
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leave the formation uncontrolled. Also, every link failure in the formation would lead to a

disconnected agent, see (4.40). A failure of the reference signal link to agent 6 would affect

the whole formation. Thus, system robustness is reduced drastically with this reduced

single-leader communication topology.

4.3.4 Limited Communication Range
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Figure 4.22: Delta-formation with limited communication range, one agent receives the

reference input

Inspired by technical limitations in the real world, one exemplary simulation with limited

communication range is presented in this section. Depending on the implementation of

communication links between real agents, restrictions to the communication range could

be a thread to formation performance. Under water, for example, signal transmission is

challenging compared to radio frequency transmission in air. Also realizations making use

of optical sensors have a limited transmission range.

For this simulation, a full communication topology is defined, that is, each agent can

receive from any other agent. However, by setting a very restrictive transmission range

of 3 m, the initial communication topology is reduced to the one depicted in Figure 4.22.

In the undeformed formation, each agent can receive from their closest neighbors.

Since only agent 6 can receive the reference signal, the formation shows poor performance

in tracking the sine signal in (4.7). Figure 4.23 (a) shows that, after 20 s, agent 6 is

already separated too far from agents 9 and 10 to maintain signal transmission. After

30 s, more links are broken (Figure 4.23 (b)), which leads to a disruption of the formation

after 35 s (Figure 4.23 (c)). Since none of the agents 7-11 can receive the reference signal,
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Figure 4.23: Delta-formation in the x-y-plane, limited communication range, one agent

receives the reference input, a) after 20 s, b) after 30 s, c) after 35 s, d) after 40 s

this group is left behind by the remaining formation and stops moving (Figure 4.23 (d)).

The controller Kcomplete can stabilize the two partial formations.

This simulation illustrates that restrictions such as a limited communication range pose

threads to formation control. For real-world implementations, secure signal transmission

is a major requirement to guarantee formation performance and stability. It has to be

ensured that, in case of communication failures, the controllers can stabilize the sub-

formations.
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4.4 Directed Vectors versus Distances

Section 2.3 explains two ways to define a formation. All simulations in this chapter up

to this point implement directed vectors as reference input. That is, each agent knows

which x-, y−, and z−position it has to maintain relative to the other agents (if there is

a communication link between those agents). A second strategy to define the formation

shape is explained in Section 2.3.2. Instead of directed vectors, only undirected distances

are defined for each two agents. The two different approaches are compared in this section.

A control law for point agents in the plane, where the formation is defined by undirected

distances, is derived in [YADF09]. Since the proposed control law is non-linear, depends

on the agents’ positions, and is only valid for small motions, it has not been implemented

for this simulation. To allow for comparison with the control framework of [FM04], using

the controllers from previous analyses in this chapter, the undirected distances reference

input is adapted to this framework. The weighted sum of errors for each agent still

computes as in (2.8). The eij are now modified to include distances,

eij =
yi − yj∥∥yi − yj

∥∥ (dij − ∥∥yi − yj

∥∥) (4.42)

with dij being the reference distance between agents i and j. Note that this adaption

follows a solely intuitive understanding and does not found on a theoretic background.

It’s only purpose is to compare the two given ways of defining inter-agent distances.
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Figure 4.24: Delta-formation with six agents, minimal communication topology

For the first simulation, the communication topology in Figure 4.24 is defined. This

arrangement of agents also illustrates the desired formation shape. With each agent only

receiving from one neighbor, it is the most reduced communication structure to define a

coherent formation. Krobust is used as controller.
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Figure 4.25: Delta-formation in the x-y-plane, minimal communication, one agent receives

the reference input, a) initial positions, b) directed vectors as reference input, after 20 s,

c) undirected distances as reference input, after 20 s

The initial positions of all agents are shown in Figure 4.25 (a). For directed vectors as

reference input, the formation after 20 s is plotted in Figure 4.25 (b). As expected, Krobust,

which is robust for any given communication topology of directed vectors, can stabilize

the formation in its specified shape. The formation errors, for only one timestep at 20 s,

confirm this observation:

εf1 =
2

6(6− 1)1

2001∑
k=2000

6∑
i=1

6∑
j=i+1

∥∥(yj,ref,k − yi,ref,k)− (yj,k − yi,k)
∥∥

= 0.0141 (4.43)
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εf2 =
2

6(6− 1)1

2001∑
k=2000

6∑
i=1

6∑
j=i+1

∣∣∣∥∥yj,ref,k − yi,ref,k

∥∥− ∥∥yj,k − yi,k

∥∥∣∣∣
= 0.0114 (4.44)

The same simulation is conducted for undirected distance reference inputs, with controller

Krobust and the error formula as defined in (4.42). Not surprisingly, the formation is not

able to take the desired shape, since it is geometrically under-determined. However, it

stabilizes in a random shape with the specified distances between the agents as shown in

Figure 4.25 (b). The formation errors are

εf1 =
2

6(6− 1)1

2001∑
k=2000

6∑
i=1

6∑
j=i+1

∥∥(yj,ref,k − yi,ref,k)− (yj,k − yi,k)
∥∥

= 2.9133 (4.45)

εf2 =
2

6(6− 1)1

2001∑
k=2000

6∑
i=1

6∑
j=i+1

∣∣∣∥∥yj,ref,k − yi,ref,k

∥∥− ∥∥yj,k − yi,k

∥∥∣∣∣
= 1.2336 (4.46)

While for directed vectors, the formation takes its desired shape even for the reduced

communication topology in Figure 4.24, specifying distances does not provide enough

information to define a unique formation for the given communication topology.

To define a communication topology that is suitable for distance reference inputs, the

concept of minimally persistent graphs as explained in Section 2.3.2 is applied. A corre-

sponding communication structure is defined in Figure 4.26.
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Figure 4.26: Delta-formation with six agents, minimally persistent communication topol-

ogy
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Starting with the initial conditions in Figure 4.27 (a), which are the same as for the

previous simulation, the formation with Krobust and distance reference inputs can now take

the desired delta-shape, see Figure 4.27 (c). However, the formation is rotated compared

to the result for directed vector references. This phenomenon illustrates the additional

DoF of minimally persistent formations in the plane. Agent 4 has the role of the first

follower (see Section 2.3.2). It only maintains the distance to agent 2 and can rotate the

whole formation around agent 2 in its second DoF.

The formation errors for this setup after 20 s are

εf1 =
2

6(6− 1)1

2001∑
k=2000

6∑
i=1

6∑
j=i+1

∥∥(yj,ref,k − yi,ref,k)− (yj,k − yi,k)
∥∥

= 3.7655 (4.47)

εf2 =
2

6(6− 1)1

2001∑
k=2000

6∑
i=1

6∑
j=i+1

∣∣∣∥∥yj,ref,k − yi,ref,k

∥∥− ∥∥yj,k − yi,k

∥∥∣∣∣
= 0.1830 (4.48)

Those very different formation errors emphasize that the formation is well maintained

in terms of the inter-agent distances, expressed by εf2, but rotated. Thus, the directed

distances, taken into account by εf1, are not correct, which leads to a high error εf1. A

more detailed comparison of both formation errors is given in Section 4.5.

The same analysis has been carried out with slightly different initial conditions, as depicted

in Figure 4.27 (b). After 20 s, the formation has stabilized in a different shape (Figure

4.27 (d)). The formation errors give

εf1 =
2

6(6− 1)1

2001∑
k=2000

6∑
i=1

6∑
j=i+1

∥∥(yj,ref,k − yi,ref,k)− (yj,k − yi,k)
∥∥

= 2.9833 (4.49)

εf2 =
2

6(6− 1)1

2001∑
k=2000

6∑
i=1

6∑
j=i+1

∣∣∣∥∥yj,ref,k − yi,ref,k

∥∥− ∥∥yj,k − yi,k

∥∥∣∣∣
= 0.6645 (4.50)

εf2 is larger compared to the previous simulation, since the formation does not completely

take its specified shape. Surprisingly, εf1 is smaller. This is due the fact, that some agents

are closer to their desired final position, compared to the previous analysis.
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Figure 4.27: Delta-formation in the x-y-plane, undirected vector as reference input, min-

imal persistent communication, one agent receives the reference input, a) initial positions

1, b) initial positions 2, c) after 20 s with initial conditions 1, d) after 20 s with initial

conditions 2

Comparing the last two simulations illustrates a significant downside of undirected dis-

tance reference inputs. Although the graph in Figure 4.26 is rigid, the formation does not

necessarily take its desired shape for large motions and initial conditions, which are not

close to the specified final positions. Thus, further requirements to the communication

topology have to be formulated to ensure a rigid and unique formation shape.
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4.5 Evaluation of Performance Measures

Several performance measures have been defined in Section 4.1 and were used to evaluate

different simulation results in the previous sections. In the following, these measures are

reviewed and analyzed with respect to their significance and applicability.

Tracking Error The tracking error aims at giving a measurable dimension that in-

dicates how well a formation tracks a moving reference signal, or follows a reference

trajectory respectively.

Both tracking errors defined in Section 4.1 provide equal results for almost every analysis

carried out in this chapter. Slight differences occur for the formations in Section 4.3.3.

εt2 gives a slightly lower error than εt1. Those differences originate from the fact that

εt2 considers the tracking performance of the geometrical center of a formation, while

εt1 compares every agent separately. That is, a distorted formation shape influences εt1,

even if the formation as a whole tracks its reference signal very well. Also rotations of a

formation relative to its reference signal influence εt1, but not εt2.

Hence, εt2 is considered to be a more precise measure, if only the tracking performance,

separated from deformations or rotations of the formation, is to be analyzed. εt1 provides

a measure to incorporate the formation shape and orientation into the tracking error.

Formation Error Independently from a formation’s position, the formation errors

should evaluate how well a formation maintains its specified shape. Thus, they shall

provide a numerical measure to support the visual observation, if a formation holds its

specified configuration.

εf1 and εf2 lead to similar results for very well-shaped formations in Section 4.3.1. For the

formations in Sections 4.3.2 and 4.3.3, the difference between both errors becomes evident.

While εf2 only considers the undirected distance between each two agents, εf1 includes

the difference between the directed vectors of agent positions and reference values. Thus,

if an agent moves orthogonal to another agent, as for example agent 6 compared to agent

2 in Figure 4.20, εf1 accounts for this deviation. εf2 does not consider this orthogonal

movement, as long as the distance between both agents is maintained. Thus, εf2 always

results in a smaller error than εf1.

The different meaning of εf1 and εf2 becomes obvious in Section 4.4. The formation in

Figure 4.27 (c) has its desired shape, but is rotated by a large angle from its original

orientation. εf1 leads to a large error, while εf2 is almost negligible.
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Both εf1 and εf2 provide measures for the formation error, but with significantly different

meaning. While εf1 includes directed vectors, it can be used conveniently to evaluate

a formation’s shape and orientation. If only the shape, independently from any overall

rotation of the formation, should be analyzed, εf2 provides a powerful measure.

Critical-Links Ratio As a measure for the robustness of a communication topology,

the critical-links ratio was defined. Investigating the robustness of a certain communica-

tion structure is an important extension to the performance criteria for formations.

A non-zero critical-links ratio is an indicator that the formation might be at risk, as soon

as one communication link breaks. Also, this ratio illustrates that formations with very

good tracking performance, as the star formation in Figure 4.21, might have a reduced

robustness compared to other constellations. For this example, a critical-links ratio of 1

indicates that any link failure destroys the specified formation shape.

The critical-links ratio is a simple but efficient way to get a first insight into the robustness

of a formation’s communication topology. The ratio could be split into separate measures

for the inter-agent communication and the reference-input communication.

Critical-Agents Ratio Next to communication link failures, real-world formations

might also be exposed to agent failures. The critical-agents ratio indicates how many

agents are critical to the existence of the remaining formation.

Analogously to the critical-links ratio, a non-zero critical-agents ratio indicates that a

formation might be at risk. Simultaneously this means that agents in the formation have

a role as a (partial) leader, that is, they are followed by at least one other agent, which

only receives from this particular agent. However, the formations in Figures 4.16 and 4.20

show that this ratio does not evaluate the fatality of an agent failure. While for the first

formation, the critical-agents ratio is αa = 0.5, most agent failures would only affect one

neighbor. For the star formation, αa = 0.1, the only critical agent is number 6. But since

this agent is a single leader, the whole formation shape would be destroyed by its failure.

The critical-agents ratio serves as a first indicator, saying if failure of one agent might

set the remaining formation at risk. It does not include how severe this impact is, which

would be a valuable future extension.



Chapter 5

Conclusions and Outlook

5.1 Thesis Summary

Simulator In this work, a simulation environment for formation control of MAS has

been developed. The object-oriented design and declarative naming convention provide

a framework that is flexible, intuitively understandable, and easily extendable. Agents

and their dynamics and controllers are implemented as separate classes, which allows for

simulations with different controllers and models within one formation. The GUI provides

a convenient interface to run and visualize simulations. Complex scenarios, including

adding or deleting of agents, changes of the communication topology, communication

obstacles, and time-depending formation reference inputs can be defined by the user in

separate input files.

Simulation and Analysis To validate the simulation environment, various test simu-

lations have been carried out, which illustrate the influence of controller design, structure

and changes of the communication topology, and reference input on formation stability

and performance. The necessity for controllers, which are robust to changes of the com-

munication structure, and which can handle transmission time delays, has been demon-

strated. It was shown that the communication topology has a large influence on tracking

performance, and that performance and robustness can be contradictory attributes that

pose a trade-off in the design of MAS formations in the given framework.

Performance Measures To analyze the tracking capability of formations, several per-

formance measures were introduced. The proposed tracking errors and formation errors
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provide the possibility to measure how well a formation can track a reference trajectory,

and how well it can maintain its formation shape. The two ratios given to measure

robustness are basic indicators to evaluate the reliability of a communication topology.

5.2 Outlook and Future Work

Simulator The proposed simulation environment is meant to be a starting point, with

various possibilities for future extensions. While constant transmission time delays have

already been implemented, real-world agents would experience delays that depend on the

distance between two agents. Thus, distance-depending time delays could be investigated

and included into the simulator.

The formation control framework used to test and validate the simulator uses directed

vectors as reference input. Undirected distances have been implemented as a second

approach to define formations. However, no controllers designed for this case have been

tested yet. A field for future extension would be the derivation of suitable control laws

and their implementation in the simulator.

While all simulations in this thesis analyze linear controllers, the modular structure of

the simulator allows for straightforward implementation of non-linear controllers as well.

Thus, classes for non-linear control laws could be derived and tested.

Performance Measures The performance measures defined in this thesis proved to

be a good support to analyze different scenarios. However, they just represent a limited

selection of possible criteria. Especially for the robustness of communication topologies,

the proposed measures could be extended and more advanced criteria could be derived.
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