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1 Introduction

The FormAtion Simulation Tool - FAST - is a tool for Matlab developed in [Ros09] for the pur-
pose of performing realistic simulations of multi-agent systems (MAS). FAST allows simulating
linear and non-linear discrete-time agents, that communicate with each other. The communica-
tion links can be additionally subject to time-delays, range restrictions and obstacles. FAST is
developed and tested under Matlab 2009a.

1.1 Features

As by now, Feb 2010, FAST provides the following functionality.

• Simulation of MAS with discrete-time dynamics.

• Linear and non-linear agent dynamics (the non-linear will require manually specifying the
dynamics).

• Adding/Removing agents during the simulation - requires pre-specifying the time of change
and the agents to be added/removed.

• Changing the communication topology during the simulation - requires pre-specifying the
time of change and the new topology.

• Defining communication obstacles with ball or parallelogram shape.

• Fixed communication delays with or without delayed own outputs of the agents.

• Specifying communication range, i.e., distance dependent communication.

• Graphical User Interface (GUI) for easy control and visualization.

• Export of the simulation data.

1.2 License

FAST and this user manual are distributed under GNU v.3 license: http://www.gnu.org/licenses/

1.3 Download and Development

FAST can be downloaded by the development repository at
http://bitbucket.org/fcmas/fast/

The latest significant release can be directly downloaded as from the following link
http://bitbucket.org/fcmas/fast/downloads/FAST.zip

If you are interested in providing additional functionality to FAST, improving the code, or
modifying the GUI you are welcomed to do so. Please send a short note to the authors, using
the contact on the second page of this document, so that you can obtain Writer rights to the
repository.

http://www.gnu.org/licenses/
http://bitbucket.org/fcmas/fast/
http://bitbucket.org/fcmas/fast/downloads/FAST.zip
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1.4 Installation

To install FAST add the main folder where you have decompressed the tool to the Matlab path

• Use addpath(’D:\mytoolboxes\FAST’) for a single use of the tool, where you need to
change D:\mytoolboxes\FAST to the correct path on your computer.

• File→Set Path ... if you plan to use the tool often.

2 Toolbox Structure

The toolbox is created using the object-oriented capabilities of Matlab version 2008a and later.
The main objects in the toolbox are:

• Agents - each object agent represents a physical agent and hence includes both a model
of the agent and the local controller. Key properties of the agent are its states, and a key
method is a function that computes the outputs and the states for the next time-step.

• Formation - this agent comprises all agents and serves as a mediator between the simula-
tion environment and the agents. This object takes care of updating the communication
topology when agents get out of range, or an obstacle interrupts a communication channel.

• Simulation environment - that is an object that takes care of the progress of the simulation
(i.e., main simulation loop) and performing any necessary animations.

• Animator - objects used with the graphical user interface (GUI) of the toolbox to allow
easier control of the simulation and visualization of the data.

For more information on programs, please refer to [Ros09].
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3 Graphical User Interface

The easiest way to perform a simulation of a multi-agent system is by using the graphical user
interface of FAST. It is possible to perform a simulation of a MAS from a command line in
Matlab, but is not discussed here, as it requires manually constructing all objects (Agents,
Formation, Simulation Manager, etc.) in the correct order.

To start the GUI of FAST just evoke FAST in Matlab. A snap-shot of the GUI is shown in
Figure 1.

Figure 1: Snap-shot of the GUI of FAST

The GUI is split on 3 main parts. The big window in the upper-left part is where the
formation is visualized. The buttons to the right of it are for controlling the simulation, and
the switches under that window are for adjusting what and how is visualized. As most of the
buttons and switches are self-explanatory they will not be covered here.

The style of the animation, i.e., with what symbols and colors are the agents, trails and
arrows visualized can be adjusted manually via the settings structure in the object Animator.
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4 Tutorial on Defining and Simulating Formations

This tutorial is intended for new users of FAST and aims at giving an overview of the main
steps in defining and performing a simulation of a multi-agent system. The tutorial is written
in a story-like fashion in the hope that this will make it easier to read. The code to this tutorial
can be found subfolder \demo of FAST.

4.1 A simple simulation

Our story starts with Jane, who is a researcher in the area of cooperative control of agents. One
day Jane discovers a rather interesting example of a formation flight of quad-rotor helicopters
(quadrocopters) and decides to perform some simulations. While reading the details, she is at
first taken aback when she learns that the quadrocopters have non-linear and unstable dynamics.
Luckily, she discovers a linearized, discrete-time model P (z) with 12 states, 4 inputs and 15
outputs, and a corresponding controller K(z), and decides to set up a simple simulation in
FAST.

As Jane understands it from [PPW09] the closed-loop of agent and controller has the form,
as shown in Figure 2 – the first 3 outputs of each quadrocopters (yi) are simply the coordinates of
the agent, and the next 12 outputs (φi) are the states. The controller uses the state information
to locally stabilize the quad-rotor, and the other 3 outputs are send to other agents.

K(z) P (z)
ei ui yi

φi

Figure 2: Local feedback of single agent and its controller

Jane is further delighted to understand, that the additional input ei of the controller is the
average error of that particular agent in the multi-agent system, which corresponds to what she
has been using previously:

ei = (ri − yi)−
1

Ji

∑
k∈Ji

(rk − yk),

where Ji is the set of agents from which agent i receives information, and ri are commanded
positions. At this place, Jane makes a mental note, that if she doesn’t include a leader or an
absolute reference to the formation later, the whole multi-agent system will attain the “shape”
specified by ri, but not necessary on the positions ri.

Having understood all that Jane sets upon defining a formation of N = 5 agents in FAST.
First she loads the system model and the controller, and defines the dynamics of the agents. As
she is not a big fan of loops, she decides to do it by hand for now, so that it is easier to make
simple changes. She sets the initial states of all quad-rotors to zero, and positions them on a
distance of 1 unit from each other on the x-axis.
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% 1. Load the agent and controller models

load copter_models P K % plant P and controller K

% 2. Specify the agents init. state init. pos.

models = []; % x y z - coordinate

models{1} = LinearModel( P, K, zeros(12,1), [1 0 0]’ );

models{2} = LinearModel( P, K, zeros(12,1), [2 0 0]’ );

models{3} = LinearModel( P, K, zeros(12,1), [3 0 0]’ );

models{4} = LinearModel( P, K, zeros(12,1), [4 0 0]’ );

models{5} = LinearModel( P, K, zeros(12,1), [5 0 0]’ );

Jane knows, that by specifying the initial position as a 3 dimensional vector, she is actually
specifying the dimension of yi, from which the function LinearModel automatically deduces the
dimension of φi to be the number of outputs of P (z) minus 3, i.e., 12.

Next, Jane specifies which of the signals in yi should be plotted along which coordinate.
As she wants to obtain a 3-dimensional plot and as the signals in yi are already in the correct
sequence (x-y-z), she just defines

% 3. Spatial Coordinates

output2Coordinates = [

1 0 0;

0 1 0;

0 0 1];

Had she wanted to make a 2-d visualization in the x-y plane, she could have defined it as follows.

% 3. Spatial Coordinates

output2Coordinates = [

1 0 0;

0 1 0];

In both cases, Jane knows, that all three elements of yi will be saved from FAST for later
analysis.

In the next step Jane sets upon defining how the agents communicate with one another.
Late she will want to try some changing topologies, but at first she decides to keep it simple.
Keeping in mind, that the adjacency matrix has to be N + 1 × N + 1, since for FAST agent
with number 0 specifies a direct reference input (virtual agent without dynamics), she defines
the topology in Figure 3 by the following 6× 6 matrix.
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0

1

2 3

4 5

Figure 3: Graph representation of the communication topology with N = 5 agents and reference
input (0).

% 4. Adjacency matrix

% agent # 0 1 2 3 4 5

adjacency = [0 0 0 0 0 0; % this is the Reference point

1 0 1 1 0 0; % agent 1: receives from ref. point, agents 2 & 3

1 0 0 0 1 0; % agent 2: receives from ref. point, agent 4

0 1 0 0 1 0; % agent 3: receives from agents 1 & 4

0 0 1 1 0 0; % agent 4: receives from agents 2 & 3

0 0 1 0 1 0];% agent 5: receives from agents 2 & 4

Finally, Jane defines the reference inputs to the 5 agents, compared to the virtual reference
(agent 0 ). For now, Jane does not want to define a reference sequence for the virtual reference
point, but will rather use the manual control available in the GUI of FAST. She knows that
there will be some more information about that subject in Section 4.5.

% 5. Absolute reference input for all agents:

absRefInput = [

0 -1 0; % agent 1

-1 -2 0; % agent 2

1 -2 0;

-1 -3 0;

1 -3 0;]; % agent 5

Finally, she saves all the necessary data in a MAT file named, Janes_init.mat. Jane knows
what actually matters is not the name of the MAT file, but rather the name of the variables.
She always pays attention when saving her data, so that she avoids errors and problems later
on.

save Janes_init.mat models output2Coordinates adjacency absRefInput;

Next she evokes FAST, clicks on New Simulation and selects the file Janes_init.mat. From
now on it is all quite easy. Jane starts the simulation by Start Simulation and lets it run for
several seconds. Then, because she doesn’t want to see the fine details, but the overall behavior
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she types 20 in the Animate every time steps box, which forces FAST to visualize
the position only after every 20 steps. Further, Jane un-checks the Show trails box in the
bottom right corner and uses the small button in the upper-left corner to rotate the view and
see the formation from different points. At about 19th second she pauses the simulation with
Interrupt Simulation, and defines 0 2 1 as a new reference point for the formation, by
typing the tree numbers in the Reference Input box. After some more time Jane decides that
she has seen enough for the time and ends the simulation. Because she is not yet sure, whether
she will use the data later, she decides to saves them by clicking on Save Data and typing in
an appropriate name.

4.2 Communication Delays

Having succeeded with her first simulation of a quad-rotor formation flight Jane decides to
explore the effect of communication delays. For the purpose she selects New Simulation and
loads Janes_init.mat again. Next, she selects the drop-down box under Communication
Time Delay on the right side of the GUI and is somewhat disappointed to find out that the
only two options are none and fixed and equal. She writes to the authors of FAST and
asks why no distance dependent or different delays are supported. By the reply she learns that
actually on their to-do list.

As Jane knows, when the own check-box is marked the own outputs of the agents are also
delayed when computing the error ei. So she sets upon trying different time-delays both with
own and without own delay, and discovers that whereas even several second delay can make the
formation with own-delays unstable, this was not possible in the absence of own-delays... even
for a big ones. Somewhat puzzled she contacts the people who developed the controller she is
using, who inform her that this is a special feature of their controller and is due to a small-gain
condition they have employed [PW09]. This makes Jane wonder if she could use that same
approach for her own simulations later on.

4.3 Communication Range

Jane decides to make the agents communicate only if the distance between them is shorter than 4
units, and easily achieves this by ticking the check-box by Limited Communication Range
and entering 4 in the box. But then she faces a new problem – she cannot give a reference
point far away, since than the communication brakes down and agents 1 and 2 do not receive
the reference signal. She discusses this with a colleague of hers, who has more experience with
FAST, who tells her, that there is a simple solution to this: she simply needs to define the entries
in the adjacency matrix that shouldn’t be distance dependent with a negative sign. Jane gives
it a thought an decides that only the communications between the reference signal and agents 1
and 2 need to be unbreakable for her purposes, so she redefines the adjacency matrix as follows.
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% 4. Adjacency matrix

% agent # 0 1 2 3 4 5

adjacency = [ 0 0 0 0 0 0; % this is the Reference point

-1 0 1 1 0 0; % agent 1: receives from ref. point, agents 2 & 3

-1 0 0 0 1 0; % agent 2: receives from ref. point, agent 4

0 1 0 0 1 0; % agent 3: receives from agents 1 & 4

0 0 1 1 0 0; % agent 4: receives from agents 2 & 3

0 0 1 0 1 0];% agent 5: receives from agents 2 & 4

and does not forget to export the whole settings as a MAT file.

save Janes_init.mat models output2Coordinates adjacency absRefInput;

4.4 Communication Obstacles

Already having some experience with FAST, Jane decides to try and add some communication
obstacles. As she had learned from [Ros09], in FAST the agents do not collide (yet), but the
communication connections can be broken due to obstacles. Jane decides to try out both of the
currently supported obstacles by FAST - balls and walls. She defines them and saves them to
a file named Janes_obstacles.mat. The ball obstacle is intuitive to define, and as Jane is not
primarily interested in great graphics she sets the number of faces visualizing the ball obstacle
to 6. The wall obstacle gives her a bit of a trouble at first, until she realizes that by wall is
meant just a parallelogram, defined by one corner and two offsets, i.e., with corners: corner,
corner+d1, corner+d1+d2 and corner+d2.

% Ball-shaped obstacle, where ’faces’ is used for visualization

obstacles{1} = struct(’type’,’ball’,’center’,[0 1 1],’radius’,0.5,’faces’,6);

% Wall-shaped obstacle

obstacles{2} = struct(’type’,’wall’,’corner’,[4 0 -1],...

’d1’,[0 0 2],’d2’,[0 1 0]);

% Save the obstacles to a MAT file

save Janes_obstacles.mat obstacles

Then, after starting FAST, she ticks the check-box by Communication obstacles and selects
Janes_obstacles.mat, after which she starts the simulation. Later she understands that the
advantage of specifying the multi-agent system and the obstacles separately is that one can load
a new set of obstacles during the simulation.

Using the manual Reference Input Jane tries driving the formation through and around
the obstacles and finds that it works as expected. Her only complaint is that the whole simulation
seems to take longer, but, as she later learns, that is due to the fact that FAST needs to check
for intersection of each communication link with each obstacle, and there seems not to be much
one could do to avoid the slow-down.
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4.5 Reference Input from File

During the last simulations it was tiring for Jane to adjust the reference signal to the virtual
reference agent manually, so she decides to define a reference trajectory through a file. She
decides to make the formation move with a constant speed in y-direction and perform sinusoidal
oscillations in x-direction, while keeping the z-axis (the vertical one) at 1 unit. This she defines
through the following code and saves the reference signal in Janes_reference.mat, where again
the important part is the name of the variable formationRefInput.

t = 0:1000; % time-steps

x = 2 * sin(0.01*t); % x-axis

y = 0.002 * t; % y-movement with speed of 0.002 units per time-step

z = ones(1,length(t)); % constant z-position

formationRefInput.t_step = t;

formationRefInput.refPos = [x; y; z];

save Janes_reference.mat formationRefInput

If Jane has left formationRefInput.t_step empty, then the reference signal will considered as
one starting from the current time moment.

Alternatively Jane could have defined only few key points, like that

%% Specify reference key points

formationRefInput.t_step = [0, 200, 500, 1000]; % ref. pos. at time steps

formationRefInput.refPos = [

0 0 0; % at 0

0 2 0; % at 200

0 5 1; % at 500

0 6 2]’; % at 1000 % note the transpose!

To change the distance between the agents (and not only the position fo the reference point)
Jane moves on to the next section.

4.6 Formation Changes

Communication Topology Change

One last thing that Jane wants to simulate is the behavior of the above quad-rotor formation,
when the communication topology is changing. She decides that she wants to perform only two
changes to the topology at time steps 100 and 200, correspondingly. At the first change she
wants to remove the link from the reference to agent 2 and add a link from agent 1 to agent
2. At the second change time, she wants to switch to complete communication topology, but
leave agent 1 as the only one receiving information from the leader. All this, she defines via the
following changeData cell-array.
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changeData = [];

changeData{1} = struct(...

’type’, ’commTopology’,...

’t_change’, 100, ... % change occurs at this time step

’adjacency’, [

0 0 0 0 0 0;

-1 0 1 1 0 0;

0 1 0 0 1 0;

0 1 0 0 1 0;

0 0 1 1 0 0;

0 0 1 0 1 0]);

changeData{2} = struct(...

’type’, ’commTopology’,...

’t_change’, 200, ... % step at which the change should occur

’adjacency’, [

0 0 0 0 0 0;

-1 0 1 1 1 1;

0 1 0 1 1 1;

0 1 1 0 1 1;

0 1 1 1 0 1;

0 1 1 1 1 0]);

save Janes_changes.mat changeData

She starts FAST, marks the check-box under Formation Changes and chooses Janes_changes.mat
from the menu and waits until steps 100 and 200 to see the desired changes in the topology.

There are 3 other possibilities for types of changes that Jane does not plan on using at the
moment.

Formation Shape Change

For example the following code, changes the reference to the agents in the 250th time step, such
that the agents should arrange themselves at a distance of 0.5 from each other along the y-axis
and at an altitude of 1.

changeData{3} = struct(...

’type’, ’constellation’,...

’t_change’, 250, ...

’AbsRefInput’, [

0 -1 1; % agent 1 [x y z] - coordinates

0 -1.5 1; % agent 2

0 -2 1;

0 -2.5 1;

0 -3 1]);
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Adding Agents

If Jane wanted to add 2 further quad-rotor agents at time-step 300, the first one of which
appears at coordinates

[
−5 0 0

]
and receives information from agent 1 and sends information

to agents 3 and 4, and the second appears at coordinates
[
−6 0 0

]
one receives information

only from agent 5, she should use a code like the following.

load copter_models P K % plant P and controller K

new_agents = [];

new_agents{1} = LinearModel( P, K, zeros(12,1), [-5 0 0]’ );

new_agents{2} = LinearModel( P, K, zeros(12,1), [-6 0 0]’ );

changeData{4} = struct(...

’type’, ’addAgent’,...

’t_change’, 300, ...

’newAbsRefInput’, [-2 -4 1; 2 -4 1],... % with respect to ref.point

’adjacency’, [

0 0 0 0 0 0 0 0;

-1 0 1 1 1 1 0 0;

0 1 0 1 1 1 0 0;

0 1 1 0 1 1 1 0;

0 1 1 1 0 1 1 0;

0 1 1 1 1 0 0 0;

0 1 0 0 0 0 0 0;

0 0 0 0 0 1 0 0], ...

’models’, {new_agents}); % note the {} brackets

Removing Agents

For example, to remove agents 2 and 3 in the 700th step time one would need the following
code.

changeData{5} = struct(...

’type’, ’deleteAgent’,...

’t_change’, 700, ...

’deleteIds’, [2 3]);

Quite happy with her simulations, Jane shows them to her colleague Marta. Marta is im-
pressed when she sees the simulation, but is not quite happy with all those definitions and MAT
files. Jane explains that one could write the definition of the group of agents and the changes
more efficiently using loops or/and another toolbox, named Formation Analysis and Control
Toolbox (FACT), that provides many useful functions. Marta agrees that this would be useful,
but she actually would prefer to by able to make manual changes, so to say on the fly to the
formation. After a lengthy discussion they both agree that the current functionality is useful, if
one wants to define complicated scenarios that can be reproduced, but also some easy changes
by hand would be nice. Since as they learn this is not on the to-do list of the authors of FAST,
they think about contributing to the project themselves.
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4.7 Non-linear agents

As Marta is herself interested in non-linear systems she wants to try out the original non-linear
model of the quad-rotor. In general she would have needed to construct her own non-linear
model, as a child of the object Model, using the object-oriented principle of inheritance. However
this time she is lucky, as the authors of FAST have already implemented the non-linear model of
the quad-rotor helicopters. This turns out to be really helpful weeks later, when she implements
a non-linear model of a walking robot by using the non-linear model of the quad-rotor as a
template. However for the moment all that she needs to do to change from the linear to the
non-linear model is to replace the first code fragment with this one.

% 1. Load the agent and controller models

load copter_models K % load only controller

% 2. Specify the agents init. state init. position

models(1) = QuadrocopterModel( K, zeros(12,1), [1 0 0]’ );

models(2) = QuadrocopterModel( K, zeros(12,1), [2 0 0]’ );

models(3) = QuadrocopterModel( K, zeros(12,1), [3 0 0]’ );

models(4) = QuadrocopterModel( K, zeros(12,1), [4 0 0]’ );

models(5) = QuadrocopterModel( K, zeros(12,1), [5 0 0]’ );
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4.8 A complete scenario

Together Marta and Jane shorten up the definition of the scenario Jane has been working on to
the following one (can be found under \demo\FAST_demo_complete.m in the folder of FAST).

%% Specify Agents and References

% 1. Load the agent and controller models

load copter_models P K % plant P and controller K

models = [];

% 2. Specify the agents init. state init. position

N = 5; % num of agents

Init_Pos = [(1:N)’, zeros(N,1), zeros(N,1)];

for ind = 1:2 % linear models

models{ind} = LinearModel( P, K, zeros(12,1), Init_Pos(ind,:)’ );

end

for ind = 3:N % non-linear models

models{ind} = QuadrocopterModel( K, zeros(12,1), Init_Pos(ind,:)’ );

end

% 3. Spatial Coordinates

output2Coordinates = eye(3); % x-y-z

% 4. Adjacency matrix

% agent # 0 1 2 3 4 5

adjacency = [0 0 0 0 0 0; % this is the Reference point

-1 0 1 1 0 0; % agent 1: receives from ref. point, agents 2 & 3

-1 0 0 0 1 0; % agent 2: receives from ref. point, agent 4

0 1 0 0 1 0; % agent 3: receives from agents 1 & 4

0 0 1 1 0 0; % agent 4: receives from agents 2 & 3

0 0 1 0 1 0];% agent 5: receives from agents 2 & 4

% 5. Absolute reference input for all agents:

absRefInput = [

0 -1 0; % agent 1

-1 -2 0; % agent 2

1 -2 0;

-1 -3 0;

1 -3 0]; % agent 5

%% Specify obstacles

% Ball-shaped obstacle, where ’faces’ is used for visualization

obstacles{1} = struct(’type’,’ball’,’center’,[0 1 1],’radius’,0.5,’faces’,6);

% Wall-shaped obstacle

obstacles{2} = struct(’type’,’wall’,’corner’,[3 0 -1],...

’d1’,[0 0 2],’d2’,[0 2 0]);



FormAtion Simulation Tool (FAST) - user manual 17

%% Specify reference key points

formationRefInput.t_step = [0, 200, 500, 1000]; % ref. pos. at time steps

formationRefInput.refPos = [

0 0 0; % at 0

0 2 0; % at 200

0 5 1; % at 500

0 6 2]’; % at 1000 % note the transpose!

%% Specify topology changes

changeData = [];

% Change topology

adj2 = adjacency;

adj2(1,3) = 0; % remove link 0-->2

adj2(2,3) = 1; % add link 1-->2

changeData{1} = struct(...

’type’, ’commTopology’,...

’t_change’, 100, ... % time step of change

’adjacency’, adj2);

% Change topology

adj3 = adj2;

adj3(2:end,2:end) = ones(N); % make all communications

for i=2:N+1

adj3(i,i) = 0; % set the diagonal of the adj. to 0

end

changeData{2} = struct(...

’type’, ’commTopology’,...

’t_change’, 200, ... % step at which the change should occur

’adjacency’, adj3);

% Chenge formation shape

changeData{3} = struct(...

’type’, ’constellation’,...

’t_change’, 250, ...

’absRefInput’, [

0 -1 1; % agent 1 [x y z] - coordinates

0 -1.5 1; % agent 2

0 -2 1;

0 -2.5 1;

0 -3 1]);

% Add agents

load copter_models P K % plant P and controller K
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new_agents = [];

new_agents{1} = LinearModel( P, K, zeros(12,1), [-5 0 0]’ );

new_agents{2} = LinearModel( P, K, zeros(12,1), [-6 0 0]’ );

% agents 3 & 4 receive from the new agent

adj4 = [adj3, [0 0; 0 0; 0 0; 1 0; 1 0; 0 0];

0 1 0 0 0 0 0 0; % the first new agent receives form agent 1

0 0 0 0 0 1 0 0]; % the second new agent recevies from agent 5

% # 0 1 2 3 4 5 6 7 - agent number

changeData{4} = struct(...

’type’, ’addAgent’,...

’t_change’, 300, ...

’newAbsRefInput’, [-2 -4 1; 2 -4 1],... % with respect to virtual ref.

’adjacency’, adj4, ...

’models’, {new_agents}); % note the {} brackets!

% Remove agents

changeData{5} = struct(...

’type’, ’deleteAgent’,...

’t_change’, 700, ...

’deleteIds’, [2 3]);

% Save everything to Janes_all_sim.mat

save Janes_all_sim.mat

Note that now Janes_all_sim.mat contains all above discussed features of FAST. However, if
she just starts FAST and uses New Simulation then the obstacles, reference signal and changes
will not be loaded. For example to load the changes she needs, as before, to check the box under
Formation Changes and select Janes_all_sim.mat
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