
C++ Support for Stanse

Martin Vejnár

June 29, 2011

Martin Vejnár C++ Support for Stanse

Introduction

I Stanse is a bug-finding tool that is being developed at FI.
I Performs static analyses in the fashion similar to

commercial tools like Coverity.
I Originally designed to support the C99 language, it is now

used to periodically check Linux kernel sources.
I The goal of the thesis was to extend Stanse with the

support for the C++ language.

Martin Vejnár C++ Support for Stanse

Stanse Architecture

Pointer
checker

Automaton
checker

Thread
checker

Lock
checker

Reachability
checker

Internal program representation

Call graph
generator

C language
front-end

Pattern
matching

GUI

Defect
database

Configuration

Error tracing

Core

I A language parser converts the source code to an internal
representation.

I Checkers make use of the IR and the Stanse framework to
detect defects.

Martin Vejnár C++ Support for Stanse

Internal Program Representation

void perform_action()
{

lock(m);
if (prepare() == -1)

return;
finish();
unlock(m);

}

prepare() == -1

lock(m)

finish()

unlock(m)

E

I For each function a control-flow graph is constructed.
I Nodes of the CFG contain XML-encoded C language

statements.
I Most checkers match CFG nodes against user-supplied

patterns rather than interpreting them directly.

Martin Vejnár C++ Support for Stanse

Internal Program Representation

void perform_action()
{

lock(m);
if (prepare() == -1)

return;
finish();
unlock(m);

}

prepare() == -1

lock(m)

finish()

unlock(m)

E

I The function performs an atomic action consisting of two
steps.

I If the preparation step fails, the mutex remains locked.

Martin Vejnár C++ Support for Stanse

Example—Automaton Checker

void perform_action()
{

lock(m);
if (prepare() == -1)

return;
finish();
unlock(m);

}

prepare() == -1

lock(m)

finish()

unlock(m)

E

U[m]

L[m]

L[m]

U[m], L[m]

L[m]

I The user provides two patterns, U[%1] lock(%1)−−−−−−→ L[%1],
and L[%1] unlock(%1)−−−−−−−−→ U[%1]

I The automaton checker then annotates the states and
reports errors.

Martin Vejnár C++ Support for Stanse

New Internal Representation

I Control flow within statements is not explicitly modeled
(short circuit evaluation, ternary condition operator, etc.)

I Interprocedural navigation framework in Stanse can only
handle one function call per CFG node.

I A new internal representation was needed if support for
C++ programs was to be added.

I Stanse Internal Representation (SIR) was designed to
have minimal impact on existing checkers.

I Only pattern-matching and intraprocedural navigation had
to be updated.

I The old and the new representations can coexist.

Martin Vejnár C++ Support for Stanse

Stanse Internal Representation

int fact(int x) {
if (x)

return x * fact(x - 1);
else

return 1;
}

$1: value x | 0 →0 $7
$2: sub x , 1
$3: call fact, $2 |→1 $8
$4: mul x , $3
$5: phi $4, $7
$6 exit 0, $5

$7: value 1 | →0 $5

$8: exit 1

I Each CFG node contains an elementary instruction.
I At most one call per node.
I SIR units are transported between programs using

JSON-encoding.
I Metadata about the source code is passed as well (source

code positions, file names, etc.).

Martin Vejnár C++ Support for Stanse

C++ frontend

I Clang (the LLVM C++ front-end) used to preprocess and
parse C++ programs into ASTs.

I A CFG is generated for each function definition in the AST.
I This includes initialization and tracking of automatic and

temporary variables, generation of destructor calls and
exception paths.

I The tool is written in C++ and runs on Windows and Linux.
I Unit tests and diagnostic tools provided as well.

Martin Vejnár C++ Support for Stanse

Conclusion

I SIR: syntax, formal semantics and JSON-encoding.
I Modifications to Stanse: call-graph generator, pattern

matching, minor changes to the automaton checker.
I C++ frontend: a tool that translates C++ programs to SIR.

Martin Vejnár C++ Support for Stanse

Extra: Late Binding

struct a {
virtual int foo();

};
struct b : a {

virtual int foo();
};

int bar(a & obj) {
return obj.foo();

}

def bar(obj):
$1: call v:a::foo, obj
$2: exit $1

def v:a::foo(this):
$1: none | →0 $3
$2: call a::foo, this | →0 $4

$3: call b::foo, this
$4: phi $2, $3
$5: exit $4

I For each virtual function a dispatch function is created.
I The dispatch function determines the type of the implicit

this parameter and calls the appropriate function.
I Currently, the call is dispatched to one of the functions

non-deterministically.

Martin Vejnár C++ Support for Stanse

