
Masaryk University
Faculty of Informatics

logo.pdf

C++ Support for Stanse

Master’s Thesis

Martin Vejnár

Brno, May 2011

Declaration

I hereby declare that this thesis is original work, which I have written on my own. All
sources, references, and literature used or excerpted during its creation are properly cited
and listed in the bibliography section.

Advisor: Mgr. Jan Obdržálek, PhD.

ii

Acknowledgement

TODO

iii

Abstract

TODO

Keywords: TODO

iv

Contents

Introduction 3

1 Intermediate representation 5
1.1 Syntax . 6
1.2 Semantics . 10
1.3 Multithreaded programs . 19
1.4 JSON encoding of SIR program units . 19
1.5 Tagging . 21
1.6 Merging of SIR units . 22

2 Modelling of C++ features 23
2.1 Naming of program entities . 23
2.2 Fundamental types . 25
2.3 References . 26
2.4 String literals . 26
2.5 Unions . 27
2.6 Raw memory . 27
2.7 Argument passing . 28
2.8 Variadic functions . 29
2.9 Virtual dispatch . 29
2.10 Dynamic allocation . 30
2.11 Exceptions . 32
2.12 Subroutine layout . 35

3 Parsing C++ programs 36
3.1 Sentinel nodes . 38
3.2 Extended operands . 39
3.3 Execution context . 40
3.4 Exception paths . 42

4 Automaton checker 43
4.1 Pattern matching . 44
4.2 Checker description . 46

1

CONTENTS 2

4.3 Propagation and error checking . 47

5 Tools 48
5.1 Translator . 48
5.2 Testing . 49
5.3 Pretty printing . 49

Bibliography 51

Introduction

Stanse is a tool that was designed to perform static analysis on computer programs
written in a variety of programming languages. While it currently supports only the
C99 language[2] together with several GNU extensions,1 its internal structure allows for
inclusion of additional languages. It is the primary goal of this thesis to extend the
tool with the support for the C++ programming language in its ISO/IEC 14882:2003
revision[12].

Stanse achieves language independence by separating the source code parsing from
the actual analysis. The parsing of source files is performed by a set of front-ends, each
of which is designed to handle a specific programming language (or a family thereof).
Front-ends output a language-independent model of the source code behavior, which is
then used by various back-ends to perform analyses and output error traces. Splitting
a tool to front-end and a back-end parts is a common technique employed by major
compiler suites, including gcc[6] and LLVM. In the context of Stanse, we refer to front-
ends as parsers and to back-ends as checkers.

The design of the interface between parsers and checkers—the language-independent
intermediate representation (IR)—is of particular concern as it affects the ability of
parsers to model the features of their respective languages in a way that is convenient to
checkers. We will refer to the interface as the intermediate representation or intermediate
language, even though the representation is in no way intermediate (it is in fact the
representation that checkers perform analyses on and might therefore be considered
final).

Stanse was originally written with only a single parser (for the language C), whose
output naturaly defined the intermediate representation. The C parser outputs an XML
serialization of the abstract syntax tree (AST) that represents the translation unit being
parsed. The parser also constructs, for each function, a control-flow graph whose nodes
refer to elements in the AST. One node is constructed for each expression statement (i.e.
for each full expression).

Unfortunately, the AST of the C language is not an ideal language-independent
representation of programs for several reasons. First, it is difficult to represent certain
programming constructs—notably exception handling—in a manner that would directly
communicate the set of control-flow paths to checkers. Furthermore, as the control-flow
graphs are constructed with granularity of a full-expression, the control-flow within these

1Stanse is being periodically used to scan Linux kernel sources.

3

CONTENTS 4

expressions is not explicitely captured. Note that a very complex behavior may result
from expressions containing the conditional operator or short-circuiting logical operators,
especially when automatic variables or exception handling is involved. Lastly, the C
language AST is unnecessarily redundant, making it difficult to develop both parsers
and checkers.

We have therefore decided to discard the AST-based intermediate language and de-
veloped a new, simpler and extensible one, which we have named the Stanse intermediate
representation or SIR for short. Unfortunately, this change severely breaks all of the
existing checkers. We have therefore modified Stanse in such a way, that program units
represented in the old and the new representation can coexist side by side. All of the
checkers can therefore still be used for the checking of C programs.

We have adapted one of the existing checkers to work with the new representation
in order to ensure that the C++ parser works correctly (the amount of work involved
in fixing all of the existing checkers is considerable). The checker of choice was the
automaton checker, as it relies on the intermediate representation merely to search for
patterns. Its reliance on the actual form of the representation therefore quite low.

In Chapter 1 we discuss the new SIR language in detail. We develop the syntax
and semantics of elementary instructions and discuss the control-flow capabilities that
the language provides. We also provide the reader with formal semantics for SIR, thus
setting up a framework in which checkers can be reasoned about. In Chapter 2, we
show how various features of the C++ language can be modelled in SIR, thus delivering
a general idea of how a translated C++ program looks like. The motivation for some
aspects of SIR semantics also becomes clear in this chapter. In Chapter 3, we reveal some
of the key concepts involved in a the actual process of translating the C++ program
(or more precisely a C++ translation unit) to SIR and describe some of the technical
challenges involved. In Chapter 4 we then give an overview of how a translated program
can be checked using the automaton checker. Finally, in Chapter 5, we discuss the tools
that were created as a part of the thesis and how they can be invoked and used.

TODO: related work?

Chapter 1

Intermediate representation

In this chapter, we describe a new intermediate language that is to be used in Stanse
as the interface between parsers and checkers. This new language replaces the original
C-centric one.

Let us first note that from an engineering perspective, using an existing language—
one that is well-recognized by the compiler community—would be a far better solution
than developing a new one. In fact, the the LLVM assemly language[15] is specifically
designed to serve as a language-independent program representation, yet it simultane-
ously delivers information about the program at a very high level[16]. Utilizing LLVM,
we would immediately be granted support for a variety of languages, including C, C++,
Objective C (all of which are handle by LLVM front-end called known as Clang), Fortran,
Ada and D.

We have, however, found that the LLVM language, while providing all the information
necessary for program optimization and code generation, and in fact providing nearly all
information that we might find useful for static analysis, lacks the ability to represent
some of the aspects of the C++ language, notably nondeterminism,1 and presents some
information in form that is difficult to deal with (virtual calls are performed through
virtual tables; matching a call site to a set of potential callers is in this case non-trivial).
In addition, the LLVM assembly is rather awkward to handle, especially since Stanse is
a student-developed project.

We have therefore developed our own intermediate representation, which we refer to
as the Stanse intermediate representation (SIR). SIR is transported in a JSON-encoded
form—nearly any scripting language can manipulate JSON objects directly.[8] We have
written several scripts in Python that perform tasks ranging from pretty-printing to
merging of SIR program units. In Stanse (which is written in Java), we use a small Java
library to parse the JSON-encoded SIR files.

One of the primary design goals for the new language was that it should be minimal.
The complexity of the intermediate representation directly reflects on the complexity of
checkers and we consider it important to make the process of creating new checkers as
straightforward as possible. We hope that having a simple, yet powerful intermediate

1In C-like languages, the order of evaluation of subexpressions is unspecified.

5

CHAPTER 1. INTERMEDIATE REPRESENTATION 6

language will encourage the development of both parsers and checkers. However, we do
not believe that flexibility should be sacrificed for the sake of simplicity—it should still
be possible to represent features of arbitrary languages accurately.

In light of the goals outlined above, we designed SIR with both simplicity and flexibil-
ity in mind. In our representation, programs are broken into smaller units (corresponding
to procedures and functions in the original programs) called SIR subroutines, each of
which consists of a set of nodes labelled by elementary instructions. The nodes are inter-
connected by conditional edges, forming a control-flow graph. A set of SIR subroutines
then forms a SIR program unit; a set of SIR program units forms a SIR program.

The set of elementary instructions is not fixed and is easily extensible, making it
possible for parsers to adapt SIR to new source languages. This would not be possible
with an intermediate representation targeted at code generation, as the act of extending
the instruction set would cause all existing back-ends to cease functioning. On the other
hand, in the context of static analysis, checkers can often ignore unknown constructs
and still produce useful results.

In this chapter, we first define the abstract syntax of SIR instructions and introduce
the notion of a SIR program. We then give partial semantics to SIR programs. We put
emphasis on control-flow aspects of the representation, while we deliberately stay vague
with respect to data manipulation, defining only a few basic instructions to perform it.
Note that the existing checkers make no use of data values and as such trying to define a
precise data model would be an exercise in futility, and might in fact hinder attpempts
to integrate some more esoteric languages if the model were later found inadequate.

At the end of the chapter, we define a JSON-based concrete encoding of SIR units. We
also show how useful information unrelated to program behavior (e.g. source positions)
can be communicated to checkers.

1.1 Syntax

Syntactically, a SIR subroutine is a control-flow graph, i.e. a graph, whose nodes are la-
belled by program instructions. Instructions modify the state of the program or interact
with the external environment. The edges of the control-flow graph are labelled by con-
ditions, which—based on the state of the program—determine whether a particular edge
is enabled, and therefore restrict and direct the control flow. SIR utilizes control-flow
graphs as they immediately lend themselves to certain types of static analysis.[7]

SIR modifies the notion of a control-flow graph from [7] to include a few necessary
concepts, notably subroutine calls and multiple exit points. Furthermore, SIR allows
edges that lead away from subroutine call nodes to be conditioned on the exact exit
point taken to return from the call. We will later use this particular feature to model
C++ exception paths.

Note that in other publications (with [7] being a notable exception), a node in a
control-flow graph represents a sequence of instructions—called a basic block—as op-
posed to a single one. We have chosen to label each node with a single instruction, so
as to ease the transition from the Stanse’s original intermediate representation.

CHAPTER 1. INTERMEDIATE REPRESENTATION 7

〈inst〉 ::= [〈nodelabel〉 :] 〈opcode〉 [〈operand〉 (, 〈operand〉)∗]

〈operand〉 ::= 〈nodelabel〉 | 〈subroutine〉 | 〈var〉 | & 〈var〉 | 〈const〉
〈const〉 ::= null | 〈number〉 | 〈string〉 | 〈array〉 | 〈object〉
〈array〉 ::= [[〈const〉 (, 〈const〉)∗]]

〈object〉 ::= { [〈objectentry〉 (, 〈objectentry〉)∗] }
〈objectentry〉 ::= 〈string〉 : 〈const〉

Figure 1.1: The EBNF syntax of elementary SIR instructions.

The actual format used to transport SIR units between parsers and checkers is based
on JSON. While JSON is well-suited for machine processing, it is quite difficult to read
by humans, therefore we write instruction down using an alternative syntax, which—
while distinct from the syntax of JSON-encoded instructions—captures their structure
adequately.

1.1.1 Instructions

The Stanse intermediate representation uses the single static assignment form.[9] When
a node of the control-flow graph is executed, the instruction associated with it modifies
the state of the program and yields a value; the value is bound to the node and can be
retrieved (but not modified) by subsequent instructions.

The grammar shown in Figure 1.1 gives the abstract syntax of instructions. An
instruction starts with an optional label (a node identifier) which uniquely identifies the
node in the context of its containing SIR subroutine, and which additionally defines a
handle that can be used to access the value bound to it. In the JSON-encoded form,
instructions are stored in an array and an index into this array serves as the node’s
unique label.

The optional label is followed by an opcode—a name that determines the type of the
instruction—and a sequence of an arbitrary number of operands. We will write opcodes
in bold font. When an instruction is executed, the values of its operands are computed
and passed to the instruction for processing.

An operand is either a name of a subroutine, a value of a variable, a pointer to a
variable, a constant value, or an identifier of a node. As mentioned above, the latter
serves to retrieve the value bound to that node. (Node identifiers are treated specially
by the phi instruction, which is used to select among values when two control-flow
branches merge.) Beyond nodes, SIR also supports the concept of variables—objects
whose address may be taken (lvalues) and whose value may be modified indirectly.

Constant values follow the JSON[8] data model, which can represent four primi-
tive types—strings, numbers, booleans and a special value null—and two structured
types—objects and arrays. The words object and array come from the convention of
JavaScript. We removed booleans from the set of allowed values—having a separate
types for booleans and numbers is rarely useful at this level of abstraction.

CHAPTER 1. INTERMEDIATE REPRESENTATION 8

For the purposes of this text, we differentiate between the various types of operands
using either prefixes or typography as follows.2

• Node labels are non-negative numbers prefixed by the dollar sign (e.g. $1).

• Subroutine names are written in monospace font without any prefixes.

• Variable names are written in italics.

• Constant numbers, arrays, dicts and the null constant are all easily recognized.
Constant strings are enclosed in double quotes and are written using a monospaced
font (e.g. "text").

Figure 1.2 shows an example of four instructions. The first causes the values of
variables x and y to be added together. The result of the addition is bound to the node
$1. The second instruction is passed a pointer to the variable x and a label to the first
node. As the name suggests, the instruction assigns the value of the second operand to
the variable pointed to by the first. In this case, the sum of x and y is stored back to x.

The third instruction takes the new value of x and executes the subroutine named
foo. The program then exits through exit point 0 (exit points are explained below),
forwarding the value returned by foo.

1.1.2 Conditional branches

Every edge of a SIR control-flow graph is labelled by two values—an exit index and a
condition. An exit index is a non-negative integer, while a condition is a constant (i.e.
a product of 〈const〉 nonterminal). Each instruction also yields two values, which are
then matched against the outgoing edge labels. In order for an edge to be enabled, its
exit index and the exit index returned by the instruction must match precisely.

If the condition associated with an edge does not have the value of null, the condition
value and the return value of the instruction must match as well. Furthermore, if any
edge with a non-null condition is enabled, all edges with a null condition are disabled.
The null condition therefore serves as the else part in if-else statements, or the
default label in switch statements.

The notation we use in this text to write SIR programs assumes that there is an
edge between each two successive instructions labelled with the exit index 0 and the

2In JSON-encoded units, operand types are stored explicitely and do not follow any of these conven-
tions.

$1: add x, y
assign &x, $1

$3: call foo, x
exit 0, $3

x += y;

return foo(x);

Figure 1.2: An example of a SIR subroutine and the C++ code used to generate it.

CHAPTER 1. INTERMEDIATE REPRESENTATION 9

def fact(x):
$1: value x | 0→ $4
$2: phi $1, $6

exit 0, $2

$4: sub x, 1
$5: call fact, $4
$6: mul x, $5 |→ $2

int fact(int x) {

if (x)

return x * fact(x - 1);

else

return 1;

}

Figure 1.3: An example of conditional branches in SIR.

null condition. If there is no such edge, we insert vertical space in between the two
instructions.

If there are any additional edges leading from a node, we represent them in the
notation by suffixing the instruction with the list of these additional edges. For each

edge, we write c
i−→ n, where c is the condition, i is the exit index and n is the target

node. We omit c if its value is null and we also omit i if i = 0.
Figure 1.3 shows the representation of a SIR subroutine named fact, which computes

a factorial of its only parameter x. The value instruction, which labels the node $1,
merely returns the value of its only argument, so that it can be matched against edge
conditions. Two edges lead from the first node: the implicit (0,null) edge leading to $2,
and an explicit (0, 0) edge leading to $4. The phi instruction is used to gather results
after the two branches join; it determines which of the nodes passed as arguments were
executed last and returns its value.

1.1.3 Subroutines and program units

A SIR subroutine consists of a SIR graph, a concept described in the previous section.
One of the nodes of the graph is chosen to be the entry node (in our notation, we write
this node first and name it $1). Furthermore, a SIR subroutine has a name, which can
be passed to instructions as an operand. A subroutine also carries along a set of variable
names. Variables in this set are considered local, all other variables are global. Using a
local variable name as an operand to an instruction references an instance of the variable
which is unique to the current subroutine invocation. Finally, a sequence of names from
the local variable set forms the subroutine’s parameter list.

We include the name and the parameter list in the notation (see for example Figure
1.3). We however omit the set of local variable names and assume that whether a variable
is local or global is clear from the context. Additional information is attached to SIR
subroutines when they are JSON-encoded (source code positions for example), but we
do not include it in the human-readable notation.

Formally we define a SIR subroutine f to be a tuple f = (N,→, ι, n0, L, p), where
N ⊆ 〈node〉 is an arbitrary finite set of nodes, →∈ N × N0 × 〈const〉 × N is the set of
labelled edges, ι : N → 〈inst〉 is the labelling of nodes with instructions, n0 ∈ N is the
entry node, L ⊆ 〈var〉 is the set of local variable names, and p ∈ L∗ is the sequence of

CHAPTER 1. INTERMEDIATE REPRESENTATION 10

parameter variable names. We denote the set of all subroutines as F .
A SIR program unit U is then represented as a partial mapping from subroutine

names to subroutines, U : 〈subroutine〉 → F . Again, more information is attached with
SIR units in its JSON-encoded form (notably the initial values of global variables).

A SIR program consists of a (possibly empty) set of SIR program units.

1.2 Semantics

In this section we describe the semantics of SIR program units by demonstrating how
a labelled transition system can be constructed from them. We make use of small-
step semantics[22] as this type of behavioral description reflects in a direct manner the
implementation of a potential simulator.3 Furthermore, there are known techniques to
generate abstract interpretations from small-step semantics.[18].

Note that we define the semantics in order to communicate the desired meaning
of instructions and their operands. It should be stressed that certain aspects of our
semantics, in particular the data model, are specified here merely to accomplish the
aforementioned goal. Checkers and simulators need not adhere strictly to this specifi-
cation. In fact, checkers will most likely operate with a different, more abstracted data
model. Simulators, on the other hand, will find it necessary to extend the semantics to
support additional features like dynamic memory or system objects (e.g. files).

We start the description by defining the domain of values that SIR programs can
manipulate (i.e. values that can be passed as operands to instruction, values that in-
structions may yield, and the values that can be stored in variables). We then precisely
define the state of execution, i.e. the set of states of the small-step transition system.
Finally, we specify how the execution state evolves.

1.2.1 Value domain

We denote the set of all data values, or simply the value domain, as D. The domain
includes the special value ⊥, all real numbers, and the set of all string S. We are content
with defining S informally as the set of objects corresponding to JSON strings. We do
not in any way exploit the internal structure of strings.

In addition to these values, we add subroutine identities to the domain. We define
the set of subroutine identities as

Λ = {λf | f ∈ 〈subroutine〉},

where λf is a unique symbol representing the identity of the subroutine f .
The domain also contains the structured array and object values. Arrays and objects

in D main contain ⊥, reals, strings from S, subroutine identities, variable identities
(described below) and other arrays and objects.

3Although the ability to simulate SIR programs is not the goal, having that ability strenthens our
belief that the SIR language is in a certain sense complete.

CHAPTER 1. INTERMEDIATE REPRESENTATION 11

For variable identities (i.e. pointers to variables), the situation is slightly more com-
plex. Variables are identified by their name and the context in which they were instan-
tiated. Global variables are naturally instantiated in the global context, whereas local
variables are associated with the execution frame in which they were created. We will
discuss execution frames later. Variables cease to exist when their associated context is
destroyed.

We denote global variables simply by their name. On the other hand, local variables
are tuples (i, x) ∈ N0 × 〈var〉, where i is the identifier of the associated execution frame
and x is the variable identifier. We define the set of basic variable identities as

Ω = {ωx | x ∈ 〈var〉} ∪ {ωi,x | i ∈ N0, x ∈ 〈var〉},

where the symbol ωx represents the identity of the global variable x, and ωi,x refers to
the identity of the local variable (i, x). We will write members of Ω simply as ω or ωi.

For variables that hold arrays or object values, we can construct an identity of sub-
object of the variable. To specify a pointer, one therefore must provide the basic identity
of the variable, and the sequence, possibly empty, of member identities.

The set of member identities (pointers to members), is defined as

M = {µz | z ∈ 〈string〉} ∪ {µi | i ∈ N0}.

The values of the form µi refer to members of arrays, whereas µz are used to refer to
members of objects. We will write the members of M simply as m or mi.

Finally, we define the set of qualified variable identities as

Ψ = {ωm | ω ∈ Ω,m ∈M∗},

where the sequence ωm1m2 · · ·mn represents the identity of the subobject m1m2 · · ·mn,
of the variable with the basic identity ω. For instance, consider the local variable x in
the execution frame i, which is assigned the value {"a" : 42}. The qualified identity
ωi,xµa is a pointer to the subobject a of the variable x. Dereferencing such a pointer
yields the value 42. We use the notation ψ or ψi for the members of Ψ.

The domain D is then the smallest set containing

• the special value ⊥, corresponding to the constant null,

• all real numbers x ∈ R,

• all string s ∈ S,

• all qualified variable pointers ψ ∈ Ψ,

• all subroutine identities λ ∈ Λ,

• all arrays [x0, x1, . . . , xn−1], where x1, x2, . . . xn ∈ D, and

• all objects {s1 : x1, s2 : x2, . . . , sn : xn}, where x1, . . . xn ∈ D, and s1, . . . sn ∈ S.

CHAPTER 1. INTERMEDIATE REPRESENTATION 12

Note that the terminal values derived from the 〈const〉 nonterminal all have direct
counterparts in D. For a syntactic constant c ∈ 〈const〉 we denote M(c) ∈ D the
semantic value that is associated with c.

If x ∈ D is an array [x0, x1, . . . , xn−1], then we use the notation µi(x) to access the
i-th element of the array, i.e. µi(x) = xi, if 0 ≤ i < n, µi(x) = ⊥ otherwise. Notice that
arrays are indexed from zero.

Similarly, if x is a dictionary, x = {s1 : x1, s2 : x2, . . . , sn : xn}, then µs(x) = xi if
s = si for some 1 ≤ i ≤ n, and ⊥ otherwise.

1.2.2 Execution state

The semantics of a SIR program are given by a labelled transition system, a tuple
(Σ, 7→, L), where Σ is the (possibly infinite) set of states, L is the set of labels, and
7→∈ Σ× L× Σ is the transition relation. In small-step semantics, all edges are labelled
with the same label, τ . We therefore set L = {τ} and we write α 7→ β instead of
(α, τ, β) ∈7→.

The state of execution of a SIR program consists of a stack of execution frames and a
binding of values to variables and node instances. Execution frames estabilish a context
for local variables and node instances and are always associated with a subroutine.
They are pushed to the stack whenever a subroutine is called; they are popped when the
execution reaches an exit node. Each execution frame is given a unique number from
N0. Once a frame identifier is used, it is never used again.

As mentioned above, besides global and local variables, values can also be bound to
node instances. Akin to a local variable, a node instance is tuple (i, n), where i ∈ N0

is the identifier of the execution frame with which the node instance is associated, and
n ∈ 〈node〉 is the identifier of the node. A SIR program cannot form pointers to node
instances.

The binding of a value to a node instance is a tuple b = (i, n, x), where (i, n) is a
node instance and x ∈ D is a value. We denote the set of all bindings as B.

The state of node instances is described by a binding sequence, B = b1 · · · bk ∈ B∗.
The value bound to a node instance (i, n) according to the binding sequence B = b1 · · · bk
is the value assigned by the rightmost binding corresponding to (i, n). We denote the
value as M(B, i, n),

M(B, i, n) =


⊥, if B = ε,
x, if bk = (i, n, x),
M(b1 · · · bk−1), otherwise.

Formally, we define an execution frame to be a tuple (i, f, n), where i ∈ N0 is the
frame identifier, f ∈ F is a SIR subroutine with the set of nodes N , and n ∈ N is an
identifier of the node of the subroutine that is currently being executed. We denote the
set of all execution frames as χ = N0 × 〈subroutine〉 × 〈node〉.

We then define the state of the execution σ ∈ Σ as a tuple σ = (c, v, B, i), where
c ∈ χ∗ is a stack of execution frames representing the the current control state of the

CHAPTER 1. INTERMEDIATE REPRESENTATION 13

execution, v : Ω→ D is a partial mapping from basic variable identities to their assigned
values, B ∈ B∗ is a sequence of node instance bindings, and i ∈ N0 is the next available
execution frame number.

We extend the function v to qualified identities in a natural manner; the function
v : Ψ→ D is defined as

v(ψ) =

{
v(ω), if ψ = ω for some ω ∈ Ω,
mn(v(ωm1 · · ·mn−1)), if ψ = ωm1m2 · · ·mn for some ω ∈ Ω, mi ∈M .

Note that we maintain the values of node instances as a sequence of bindings instead
of a simple partial map from node instances to their values, as the order in which the
values were bound is significant. The phi instruction uses the order to choose a node
that was bound last. This way, the correct value can be selected after two or more
branches of execution join.

We define the following two operators to simplify the manipulation with node binding
sequences. The operators will be used later to define the semantics of instructions. The
operator unbind: B∗×N0× 〈node〉 → B∗ removes all bindings to a given node instance.
Formally, let B = b1b2 · · · bk. The operator is defined recursively as

unbind(B, i, n) =


ε, if B = ε,
unbind(b2 · · · bk), if b1 = (i, n, x) for some x ∈ D,
b1 unbind(b2 · · · bk), otherwise.

Furthermore, we define the operator unbind′ : B∗×N0 → B∗, which removes all bindings
relating to a specific execution frame, as follows.

unbind′(B, i) =


ε, if B = ε,
unbind′(b2 · · · bk), if b1 = (i, v, x) for some v ∈ 〈var〉 and x ∈ D,
b1 unbind′(b2 · · · bk), otherwise.

Lastly, the operator bind: B∗ × (B ∪ {⊥})→ B∗ is defined by

bind(B, (i, n, x)) =

{
unbind(B, i, n)(i, n, x), if x 6= ⊥,
unbind(B, i, n), otherwise.

1.2.3 Operands

Most instructions (in fact, the only exception to the rule is the phi instruction) when
they are executed, resolve their operands into values they represent in the context of the
current state.

Let σ ∈ Σ be a state, σ = (c, v,B, i) and c = (i0, f0, n0)(i1, f1, n1) · · · (ik, fk, nk). The
active subroutine in the state σ is the subroutine fk = (N,→, ι, n0, L, p). While in state
σ the variable name x ∈ 〈var〉 refers to the local variable (ik, x), if x ∈ L, otherwise it
refers to the global variable x. We denote G = 〈var〉 \L the set of variable names which
refer to global variables in the state σ.

We define the meaning of operands M : 〈operand〉 × Σ → D based on the structure
of the first argument as follows:

CHAPTER 1. INTERMEDIATE REPRESENTATION 14

• for c ∈ 〈const〉, MJcKσ =M(c),

• for f ∈ 〈subroutine〉, MJfKσ = λf ,

• for n ∈ 〈node〉, MJnKσ =M(B, ik, n),

• for x ∈ L, MJxKσ = v(ωik,x),

• for x ∈ L, MJ&xKσ = ωik,x,

• for x ∈ G, MJxKσ = v(ωx), and

• for x ∈ G, MJ&xKσ = ωx.

1.2.4 Instructions

Recall that the semantics of a SIR program are given by a labelled transition system
(Σ, 7→, {τ}). We now define the transition relation 7→, which in other words requires us
to describe all tuples of states σ, σ′ ∈ Σ such that σ 7→ σ′. Let therefore σ = (c, v, B, s)
and σ′ = (c′, v′, B′, s′) be two states of the labelled transition system. Furthermore let
c = c1c2 · · · ck, with ci = (ii, fi, ni). Similarly c′ = c′1c

′
2 · · · c′k′ , with c′i = (i′i, f

′
i , n
′
i). In

the state σ, we say that ck is the active execution frame, and the subroutine fk the active
subroutine. Let fk = (N,→, ι, L, p).

In state σ, we call the node nk the current node. We say that in the state σ, ι(nk)
is the current instruction. We overload the notation and denote the current instruction
in state σ also as ι(σ), or simply ι, if the state is obvious from the context.

We now describe the set of possible transitions from the state σ based on the type of
the current instructions. Instructions call, exit, and assign manipulate the execution
state in a complex manner, and are therefore called complex. All other instructions are
called simple. For every simple instruction ι, we define its meaning MJιKσ ∈ D, which
corresponds to the value the instruction yields.

Simple instructions cause the execution stack to remain unchanged, save for the node
indentifier of the rightmost frame. For such instructions, the current node changes along
an edge in the active subroutine. We define the successor function succ : χ∗ × N0 ×
〈const〉 → 2χ

∗
by c′ ∈ succ(c, j, ϕ) if and only if k′ = k, ci = c′i for all 1 ≤ i < k, ik = i′k,

fk = f ′k, and n′i is reachable from ni via an edge labelled with (j, ϕ), i.e. (ni, j, ϕ, n
′
i) ∈→.

If ι is a simple instruction, then σ 7→ σ′ for all σ′ ∈ Σ such that σ′ = (c′, v, B′, i),
B′ = bind(B, (ik, nk,MJιKσ)), and c′ ∈ succ(c, 0,MJιKσ).

Note that if an instruction is malformed (i.e. the operands or their values are incorrect
for that particular instruction) or its opcode in unknown, we threat the instruction as a
simple instruction with meaning MJιKσ = ⊥.

Arithmetic instructions

Arithmetic instructions are simple instructions which perform basic arithmetic calcula-
tions. The value instruction resolves the value of its only operand and returns it. The

CHAPTER 1. INTERMEDIATE REPRESENTATION 15

instruction is used to bind a value to the current node in order to branch the execution
according to it.

MJvalue αKσ =MJαKσ,

The addition, subtraction, multiplication, divisition, remainder and negation instruc-
tions have obvious meaning and use. All of them require that the meaning of their
operands is a real number.

MJadd α, βKσ =MJαKσ +MJβKσ,
MJsub α, βKσ =MJαKσ −MJβKσ,
MJmul α, βKσ =MJαKσ · MJβKσ,
MJdiv α, βKσ = bMJαKσ/MJβKσc,
MJrem α, βKσ =MJαKσ −MJβKσ(bMJαKσ/MJβKσc),
MJneg αKσ = −MJαKσ,

The following two instructions are arithmetic shift left and arithmetic shift right. As
the value domain contains arbitrary real numbers, rotate and logical shift instructions
would have no meaning.

MJshl α, βKσ =MJαKσ · 2MJβKσ,

MJshr α, βKσ =MJαKσ · 2−MJβKσ,

The equality comparison instruction is a simple instruction which accepts a pair of
operands and yields 1 if their values match and 0 otherwise. Similarly, the less-than and
less-than-or-equal instructions accept a pair of real numbers, compare them and return
0 or 1 accordingly. We do not explicitely support greater-than and greater-than-or-equal
operators, as they can be constructed from other comparison operators and the logical
not operator—which also requires its only argument to be a real number.

MJeq α, βKσ =

{
1, if MJαKσ =MJβKσ,
0, otherwise,

MJless α, βKσ =

{
1, if MJαKσ <MJβKσ,
0, otherwise,

MJleq α, βKσ =

{
1, if MJαKσ ≤MJβKσ,
0, otherwise,

MJnot αKσ =

{
1, if MJαKσ = 0,
0, otherwise,

Lastly, the following logical operators perform the standard bitwise and, or and
exclusive or operations; they operate only on integers.

MJand α, βKσ =MJαKσ and MJβKσ,
MJxor α, βKσ =MJαKσ xor MJβKσ,
MJor α, βKσ =MJαKσ or MJβKσ,

CHAPTER 1. INTERMEDIATE REPRESENTATION 16

Pointer dereference

The deref instruction is similar to arithmetic instructions in that it merely computes a
value which is then bound to a node (i.e. it is a simple instruction).

Let ι(σ) = Jderef αK and let ψ =MJαKσ be the value of the only operand. If ψ ∈ Ψ,
then we can write ψ = ωm1 · · ·mn for some ω ∈ Ω, and m1 · · ·mn ∈M . If either ω /∈ Ω
or v(ω) = ⊥ then the instruction is malformed.

We introduce a function m(x,m1 · · ·mn), which retrieves a member value of an ar-
ray or a dictionary x given a sequence of member identifiers. The function is defined
recursively as follows:

m(x,m1 · · ·mn) =


x, if n = 0,
m(m1(x),m2 · · ·mn), if m1(x) 6= ⊥,
⊥, otherwise.

The meaning of the instruction is then given asMJderef αKσ = m(v(ω),m1 · · ·mn).
In other words, the value of the topmost variable is retrieved and the member qualifiers
are then applied.

Member access

An element of an array or a member of an object is accessed using the member instruc-
tion. The instruction receives two arguments—a pointer to the array or the object whose
member is to be accessed, and either an index into the array or a name of a member.
The instruction yields the pointer to the requested member (the instruction is a simple
instruction).

Let ι = Jmember α, βK and MJαKσ = ψ, where ψ ∈ Ψ. The formal meaning of the
instruction is then defined as

MJmember α, βKσ =


ψµi, if MJβKσ = i ∈ N0,
ψµz, if MJβKσ = z ∈ S,
⊥, otherwise.

Pointer arithmetics

The adjustment operation occurs in languages of the C language family whenever an
addition or subtraction operator is applied to a pointer and an integer. Such a pointer,
if pointing to an element of an array, is then redirected to point to an element with an
index appropriately adjusted.

In SIR, such an operation can be performed using the adjust instruction. Let ι =
Jadjust α, βK, whereMJαKσ = ψµi, with ψ ∈ Ψ, andMJβKσ = j for some j ∈ Z. Then
MJadjust α, βKσ = ψµi+j .

The other form of pointer arithmetics—the retrieval of the distance between two
pointers into the same array— which occurs in C when two pointers are subtracted from
each other, is in SIR performed using the dist instruction.

If ι = Jdist α, βK, MJαKσ = ψµi, and MJβKσ = ψµj , then MJdist α, βKσ = i − j.
Note that if the two pointers point into different arrays, the instruction is malformed.

CHAPTER 1. INTERMEDIATE REPRESENTATION 17

Branch selection instruction

The branch selection instruction, the phony function, or simply the φ function often
pops up in the context of a single static assigment form.[21] The instruction is used to
select a value of one of several nodes, depending on which node was bound the last.
Typically, the instruction is used after two control-flow branches join.

For instance, the program in Figure 1.3 branches based on the value of the parameter
x. Depending on the branch taken, the function returns either the constant 1, or the
value returned by the recursive call multiplied by x. The instruction choses one of the
two nodes based on which one was executed the last. The phi instruction is special in
that it requires all its arguements to be nodes identifiers, and only resolves the meaning
of the selected one.

We define the meaning of the phi instruction Jphi α1, α2, . . . , αnK, where αi ∈ 〈node〉
for all i as MJphi α1, α2, . . . , αkKσ = φ(B, i, {α1, α2, . . . , αn}), where the function φ is
defined as follows.

φ(B, i, A) =


⊥, if B = ε,
x, if bn = (i, α, x), for some α ∈ A, and
φ(b1 · · · bn−1, i, A), otherwise.

As with other instructions, the selected value is then bound to the current node and
the execution continues along one of the enabled edges. Note that the definition of the
instruction is slightly different than what is typically encountered in literature, as SIR
doesn’t have a concept of a basic block, on which the definition is generally based.

Assignment instruction

The assignment instruction assign is the first non-simple instruction—we therefore de-
fine its semantics in full. It takes two operands, a pointer to a variable and the value
to be assigned to that variable. The instruction causes a change in the v mapping; no
change to node value binding is performed.

In formal terms, assume ι(σ) = Jassign α, βK. If MJαKσ /∈ Ψ, then the instruction
is malformed. Otherwise, denoteMJαKσ = ωm1m2 · · ·mn. Let x = v(ω) be the value of
the variable pointed to by ω (again, if v(ω) = ⊥, the state is deadlocked). A new value
x′ will be assigned to the variable.

Formally, σ 7→ σ′ for all σ′ = (c′, v′, B, i) such that c′ ∈ succ(c, 0,⊥) and

v′(ω′) =

{
v(ω′), if ω′ 6= ω,
x′, otherwise.

To calculate the value of x′, we define the function r recursively as follows.

r(x,m1m2 · · ·mn, y) =

{
y, if n = 0,
x[m1/r(m1(x),m2 · · ·mn, y)], otherwise.

We then set x′ = r(x,m1m2 · · ·mn,MJβKσ).

CHAPTER 1. INTERMEDIATE REPRESENTATION 18

Control flow instructions

Since branching in SIR is performed using conditional edges, there are no intraproce-
dural branching instructions. The two instructions that affect the execution flow of the
program are the subroutine call and subroutine exit instructions.

The call instruction is used to trasfer control to the entry point of the specified
subroutine. Let ι(σ) = Jcall α, α1, α2, . . . , αnK. Furthermore let λf = MJαKσ be the
value of the first operand of the instruction and f the subroutine referred to by this
value (if the meaning of the operand is not a subroutine, the instruction is malformed).
Note that the first operand need not be a 〈subroutine〉, it may also be a 〈var〉 or 〈node〉
whose value was assigned a subroutine value. Then σ 7→ σ′ for all σ′ = (c′, v′, B, i + 1)
with the following properties.

Firstly, a new execution frame is created with the identifier i. The execution frame
is pushed onto the execution stack, c′ = c(i, f, n0), where n0 is the entry node of the
subroutine f .

Secondly, the values of the rest of the operands are copied to the parameters of
the subroutine. Let x = x1x2 · · ·xn ∈ D∗ be the sequence values of the operands, i.e.
xi = MJαiKσ for all i. Let p = p1 · · · pn ∈ 〈var〉∗ be the sequence of parameters of the
function f . If the two sequences are of a different lengths, the instruction is malformed.
We set v′ = copy(v, i, p, x), where the function copy returns a variable mapping such,
that all local variables names in p are assigned with the corresponding values in x in the
execution frame i. The function is defined as follows.

copy(v, i, p, x)(ω) =


v(ω), if p = ε,
x0, if ω = ωi,p0 , and
copy(v, i, p2 · · · pn, x2 · · · pn), otherwise.

The exit instruction removes an execution frame from the execution stack and trans-
fers the two values passed as operands back to the caller—the exit index and optionally
a return value. Let ι(σ) = Jexit α, βK. Let e =MJαKσ and r =MJβKσ. If β is missing,
let r = ⊥.

Then σ 7→ σ′ for all σ′ = (c′, v′, B′, i) such that c′ = c1c2 · · · c′k−1, where c′k−1 ∈
succ(ck−1, e, r).

All values stored in node instances and local variables associated with the removed
frame are removed from variable mapping and the node binding sequence. We therefore
set v′ to be the mapping such that

v′(ω) =

{
⊥, if ω = ωik,n for some n ∈ 〈var〉,
v(ω), otherwise.

All node instances in the the removed frame are unbound and the return value is
bound to the calling node, i.e. B′ = bind(unbind′(B, i), nk−1, r).

Note that the next frame number i remains intact—frame numbers are not reused.
This allows us to detect attempts at accessing dangling pointers.

CHAPTER 1. INTERMEDIATE REPRESENTATION 19

1.3 Multithreaded programs

We do not consider multithreaded programs in this thesis. However, the formal semantics
of SIR can be extended to allow multithreading in a straightforward manner.

Let there be a countable set of thread identifiers T . Then we define a set of multi-
threaded variable identities ΩT as containing the symbol ωx for each x ∈ 〈globalvar〉 and
ωt,i,x for each t ∈ T , i ∈ N0 and x ∈ 〈localvar〉.

Then we define a multithreaded program state to be a tuple σ = (c, v, n, i), where
c : T → (N0 ×N)∗ is a partial function mapping thread identifiers to the corresponding
sequence of execution frames, v : T ×ΩT → D is a partial mapping of variable identites
to their corresponding values, n : T ×N0 ×N → D a partial mapping of node instances
to their bound value, and i ∈ N0 to be the lowest unused frame identifier.

The multithreaded semantics would be constructed from standard semantics in an
obvious way. The resulting semantics would allow for thread interleaving. A new oper-
ators can be defined to allow for thread creation and joining. Synchronization can be
achieved similarly—by defining lock and unlock operators.

Bear in mind that, syntactically, program representation would not need to change.

1.4 JSON encoding of SIR program units

To represent SIR program units, we chose to take advantage of JavaScrupt Object Nota-
tion (JSON, [8]), which is a simple data-transfer format based on JavaScript (correctly
referred to as EcmaScript) syntax. We say that SIR program units are encoded or
serialized to JSON.

Note that originally, Stanse used XML as the data interchange format. While XML
schema is easier to amend with new extensions, the nodes forming its data hierarchy are
complex objects and are difficult to manipulate. On the other hand, JSON offers very
simple data nodes—in fact, in many interpreted programming languages, JSON-encoded
objects often map directly to native objects (for example, JSON arrays map directly to
Python lists and JSON objects map to Python dictionaries).

The JSON specification defines the syntax of primitive values (null value, logical
values, numbers and strings), and the recursive syntax of arrays—ordered sequences of
simpler values—and objects—unordered string-value pairs. The null value is represented
by the keyword null. The two logical values are represented by keywords false and
true. Numbers are encoded as a sequence of decimal digits, possibly containing a
decimal point and a minus prefix. A string is an arbitrary sequence of characters except
the character " and \, enclosed in quotes. Special characters can be included in the
string using escape sequences. Arrays are formed by enclosing a comma-delimited list
of values in square brackets. Key-value pairs are constructed by delimiting the key and
the corresponding value by a colon; JSON objects (which we will sometimes refer to as
dictionaries) are then produced by enclosing a comma-delimited list of key-value pairs
in braces.

We start our description of the JSON encoding of SIR program units from the bottom

CHAPTER 1. INTERMEDIATE REPRESENTATION 20

up, describing the encoding of operands, control-flow nodes, subroutines and finally
program units. It should be noted that syntactic constants in SIR (productions of the
〈const〉 nonterminal), are directly modelled after the JSON data model (only logical
values were left out). Names of subroutines and variables are stored as strings. As
we will later see, control-flow nodes are stored in an array; each node can therefore be
referred to by its position in that array. As such, we serialize node identifiers as simple
integers.

Operands are serialized as two-element arrays. The first element describes the type
of the operand; it is a string whose value is either "const", "func", "var", "varptr",
or "node". The second element contains the value of the operand. For "const", it is
an arbitrary JSON value that contains neither true nor false. For "node", the value
must be an integer. For the rest of the node types, the value is a string.

Edges in SIR subroutines are labelled by an exit index (an integer) and a condition
(an arbitrary constant). The serialization of an outgoing edge therefore takes form of
an array containing in sequence the identifier of the target node, the exit index, and the
condition.

As each SIR node is labelled by an instruction and has a set of outgoing edges, SIR
nodes are serialized into four-element arrays. The first element is a string containing the
opcode of the instruction. The opcode is followed by a array of outgoing edges, and an
array of operands.

Optionally, the fourth element containans an array of tag identifiers. Tags are
subroutine-local values which carry additional metadata, e.g. source code positions.
A control-flow node may have one or more of these tags attached. We will discuss tags
in detain in the next section—for now let us note that all tags for the given subroutine
are stored in an array; the nodes refer to them by their position in that array.

An encoding of a SIR subroutine is then a JSON object consisting primarily of the
"nodes" key, which contains an array of encoded SIR nodes, and the "entry" key,
containing an integer—the index of the entry node in the "nodes" array. Additionally,
the list of local variable names is stored as an array of strings (the order is not important)
in the "locals" key. The parameter list is stored in the "params" key. The names stored
in the latter array must all be also contained in the "locals" array. Note that for the
parameter list, the order matters. Lastly, the encoding of a subroutine contains the
array of tags, stored in a key of the same name ("tags").

A SIR program unit is serialized as a JSON object containing the following keys.
Most importantly, the key cfgs contains the dictionary mapping SIR subroutine names
to their corresponding SIR subroutines. The subroutine names are simple strings, the
SIR subroutines are serialized as described above. The globals key contains a mappings
from the names of global variables to their initial values.

The SIR program unit also carries along a list of name aliases—mappings from the
machine-readable names of subroutines and variables to human-readable ones. Typically,
a source language with a support for namespaces or function name overloading will
produce what is called a mangled name for a subroutines (or a variable). The list of
aliases allows the user to use the friendly names instead. Aliases are represented as a

CHAPTER 1. INTERMEDIATE REPRESENTATION 21

JSON object; keys of the object are the machine-readable strings and map to JSON
arrays of human-readable strings. The object is stored a the "aliases" key of the
program unit object.

The filenames key contains and array of source file names encoded as JSON strings.
The array serves as a file name repository and is referenced by source range tags.

Finally, to support dynamic binding, the C++ to SIR translator produces two keys
that are stored in the program unit object—" vfn map" and " vfn params counts".
For more information about virtual dispatch, see Section 2.9. The object " vfn map"

maps the names of the dispatch subroutines to the list of possible main subroutines.
The other object, " vfn params counts", maps the names of the dispatch subroutines
to the number of parameters that these receive. The two arrays are used to generate
the dispatch subroutines as described in the aforementioned Section 2.9. Storing the
dynamic binding information in this manner allows it to be easily merged when two SIR
program units are linked together.

TODO: an example

1.5 Tagging

While SIR units, as described above, offer sufficient functionality to perform static a-
nalysis (and simulation), the result of such analyses would not be very useful, if there
was no way to map SIR nodes back to statements in the original program. While we
could simply add an additional labelling to SIR nodes, we decided to add a more generic
mechanism for adding metadata to SIR units.

To every SIR node, an arbitrary number of tags can be attached. We currently define
only one type of tag, however, in the future there could be several types of tags, each
associated with different kind of data. In JSON, tags are stored as JSON arrays, where
the first element is always a string determining the type of the tag. The format of the
rest of the sequence is dependent on the type.

A source range tag associates a SIR node with a character range in the source code
whose behavior the node models. We represent a location in a file as a pair (l, c), where
l is the line number and c is the column number. The line number of the first line is one.
Similarly, the column number of the first column is one. A source code range is a pair
of locations (s, e), where s represents the start location of the range and accordingly
e represents the end location. The start location always precedes the end location,
i.e. s ≤ e, where the ordering is lexicographic. In case s = e, the range encloses no
characters.

The names of files are not stored in tags directly. Instead, there a single list of
filenames. The source range tags merely refer to the appropriate index in the repository.

In the JSON encoding of source range tags, five numbers are attached to the array
following the source range tag type. The numbers are in order (f, sl, sc, el, ec), where
f is the index into the filename repository and ((sl, sc), (el, ec)) is the source range.
For example, the JSON-encoded tag ["source_range", 1, 64, 5, 64, 12] encodes
a range spanning seven characters, all on a single line.

CHAPTER 1. INTERMEDIATE REPRESENTATION 22

1.6 Merging of SIR units

Many programming languages are designed to produce programs in fragments called
program units, objects files or the like. Accordingly, a SIR program can be fragmented
into several SIR program units. Before static analysis can occur, the fragments must be
merged—or linked—together so that all references to subroutines and global variables
are satisfied. As a part of this thesis we wrote a tool which perfoms unit merging; it is
described in detail in Chapter 5.

When two units are merged, one of the units is called the source and the other is
called the target. The various sections of the JSON object representing the SIR program
unit are merged in the following fashion.

• All subroutines from the source program unit are copied into the target program
unit. It is not an error if the subroutine already exist in the target unit—the
subroutine is simply replaced. In C and especially in C++, functions tend to be
generated multiple times across multiple units. This includes inline functions in C
and additionally function template instantiations in C++.

• The list of global variables and their initial values are merged in the same manner—
in the case of a conflict the old initial value is discarded.

• The alias mapping in the target unit is updated with the alias mapping in the
source. If aliases are assigned to a machine-readable name in both the source and
the target, the resulting set attached to that name is the union of the two original
sets.

• The union of the file name repository is created. Note that source range tags must
be updated to reflect the new positions in the repository.

• Finally, the " vfn map" and " vfn params counts" are merged. The latter is
merged in a straight-forward manner. The former is merged in the same way as
the alias mapping—to each dispatch subroutine name the union of associated main
subroutine names from the source and the target units is assigned.

Note that while merging is associative operation, it is not commutative in general.
For most SIR programs however, multiply defined subroutines and global variables will
be the same accross all program units, making the merging commutative at least in this
case.

Chapter 2

Modelling of C++ features

Before we begin the description of the translation process of C++ statements (and
therefore C++ function bodies) to SIR subroutines, several key considerations must be
made. C++ is a complicated language, designed to be written by humans. On the other
hand, SIR is a machine-generated and machine-consumed language—it does not offer
the same range of features, which make C++ both concise and easy to reason about.
As such, some C++ features do not map to SIR in a straight-forward manner.

In this chapter, we look at the multitude of C++ language specifics and show how
various features of the language can be modelled in SIR.

2.1 Naming of program entities

In SIR, program entities (subroutines and global and static local variables) have unique
names so that instructions can unambiguously refer to them. However, the C++ lan-
guage source code objects (which include variables, namespaces and classes) need not
have unique names. Two distinct objects may have the same name if, for example,

• they are declared in different declaration contexts (e.g. they are members of dif-
ferent namespaces or classes),

• they are defined in different translation units and at least one of them does not
have external linkage (e.g. it is declared as static or it is local to a function), or

• they are functions and differ in the number or types of their parameters (in such
a situation, the functions are said to be overloaded).

Therefore, a unique name must be generated for each C++ object in order for it to be
represented in SIR. This section describes how this unique name is formed.

The first matter to consider is one of compatibility. It is quite common for C++
programs to call functions that are written in programming languages other than C++.
Most often this language will be C—in fact, a large part of the standard library consists
of functions with C linkage. As such, linking translation units written in C and in C++

23

CHAPTER 2. MODELLING OF C++ FEATURES 24

is quite common. Ensuring that SIR units translated from C and from C++ languages
can be merged as easily as they are linked together by object file linkers requires that
the naming scheme for subroutines of our C++ programs be compatible with a naming
scheme that a potential C to SIR translator would use.

As C supports neither namespaces, nor classes, nor function overloading, it is rea-
sonable to conclude that the plain name of the function would serve as the name for the
corresponding SIR subroutine. This conclusion is supported by the fact that popular C
compilers produce unmangled, plain name of the function as the name of the correspond-
ing symbol in the binary object files. In order to be compatible with the name-mangling
schemes employed by popular C++ compilers, our C++ to SIR translation tool therefore
yields the plain function name for functions with C linkage.

As for the functions with C++ linkage, a mangling scheme similar to the one defined
by Itanium ABI[19], sometime referred to as gcc3 mangling, is used. The use of a
standardized scheme enables the use of existing tools to decode the function name.

Functions with internal or no linkage generally produce no names in object files,
since after the compilation step they are no longer necessary. However, for the purposes
of static analysis, the names are in fact required. Note, that these functions can be
defined with exactly the same signature, yet different body, in multiple translation units.
Therefore, names of these functions must include a part specific to a translation unit to
which they belong. We call this unique name the unit identifier. By default, the name
used as the unit identifier is the string " unique", but it can be changed through the
parser’s command line. In practice, the identifier may be derived for example from the
hash of the path to the main file of the translation unit,.

While the method of mangling names of entities with external linkage (i.e. those
whose name may not contain the unit identifier) is well documented, there is—to our
knowledge—no standad manner to mangle names of other types of entities. We therefore
extend the Itanium mangling scheme to support them.

The rules governing the name mangling are rather complex—we will refrain from
explaining them here in detail. Refer to the Itanium ABI specification[19] for thorough
explanation. We will however introduce basic principles of this mangling scheme so as to
provide the basis for our extension. A mangled name consists of three parts: the prefix
Z, the encoded name of the entity, and for functions the type of their parameters. The

prefix is used to distinguish mangled identifiers from unmangled ones. Note that the
C++ standard reserves all names beginning with an underscore followed by an uppercase
letter for use by the implementation[13], therefore, no unmangled name may legally begin
with the Z prefix.

The encoded name of an entity is a sequence of names which together form the
fully qualified name of the entity. Each name in the sequence is encoded as a decimal
number—the length of the name—followed by the name. For example, the name ns::foo
would be encoded as 2ns3foo.

We will use the same method to encode the unit identifier. For entities that do
not have external linkage, or those that have external linkage but are enclosed in an

CHAPTER 2. MODELLING OF C++ FEATURES 25

namespace ns1 {

int f() { // _ZN3ns11fEv

static int var; // _S8__unique_ZZN3ns11fEvE3var

}

void f(int i); // _ZN3ns11fEv

extern "C" g(int); // g

class c {

static int f(); // _ZN3ns11c1fEv

};

}

static void f() {} // _S8__unique_Z1fv

namespace { void f() {} } // _S8__unique_ZN12_GLOBAL__N_11fEv

Figure 2.1: A C++ program containing several named entities, with their mangled
names noted in comments.

anonymous namespace,1 the string derived by mangling the name as if the entity had
external linkage is prefixed with the string S followed by the encoded unit identifier. For
example, a variable named foo would normally be encoded as Z3foo. If such a variable
were made static in a translation unit with the identifier unit, its mangled name would
be changed to S4unit Z3foo. This simple scheme allows the prefix to be manually
stripped by the user and the rest of the name passed to a demangling tool.

Recently, clang developers added an external interface enabling their mangler to be
used outside their code generator. We have opted to use it, as it ensures that our
translator makes immediate use of any bug fixes applied to the mangler. However,
authors of clang do not guarantee that the mangling scheme will remain fixed, in fact
they actively warn about the possibility of it changing. As such, our mangling scheme
may change unexpectedly; in such a case the entire code base would have to be reparsed
with our translator.

Figure 2.1 gives an example of how mangled names of C++ entities are constructed.
Note in particular that the static prefix on member functions does not affect the mangled
name (the function ns1::c::f has external linkage).

2.2 Fundamental types

In C++, the types char, short, int and long, together with their signed and un-
signed variants, the wchar t type, the floating point types and the special type bool are
called fundamental types. Fundamental types can be used to form more complex types
(pointers, references, structures, arrays, etc.).

The fundamental types differ from each other by the values they can hold. Further-
more, the behavior of basic arithmetic operators differ based on the type of its operands.
In particular, the value of a given type is bounded by the minimum and maximum values

1Anonymous namespaces behave as named namespaces with a unique name.

CHAPTER 2. MODELLING OF C++ FEATURES 26

of the type. If an expression yields a value that exceeds these bound, a condition known
as overflow occurs and a value from within the bounds is chosen instead. For unsigned
types, all basic mathematical operators are required to work as if performing modulo
arithmetic. For signed types, the value of an expression in undefined in the case of an
overflow.

The fundamental type of the SIR execution model is currently an arbitrary precision
real number. As such, we naturally model all the integral types as such. The behavior
of arithmetic operators, however, does not match that of C++ operators. We currently
left this imprecision unsolved and do not generate overflow conditions. If we were to add
overflow handling later, we would follow each call to a SIR arithmetic operator with a
call to either the modulo operator (for unsigned types), or some sort of a clamp operator
(for signed types).

The values of bool—false and true—are treated as integers 0 and 1 respectively.
For floating point types, no special treatment is necessary; the C++ language standard
does not define the precise arithmetic rules for floats.

2.3 References

The C++ reference types have no direct counterpart in SIR. In many aspects, references
behave as pointers which are automatically dereferenced whenever used.2 They must be
bound to an object when declared and cannot be rebound later.

In some places references exhibit a somewhat perculiar behavior. First, there are
interactions between references and template deduction algorithms—fortunately, Clang
already provides us with instantiated templates, allowing us to ignore this difficulty.
Second, binding a temporary object to a local variable of reference type will cause the
object’s lifetime to be extended to match the lifetime of the reference (whereas storing
an address of a temporary in a pointer variable will result in a dangling pointer).

We take this into consideration during the generation of a SIR program unit. In
all other cases, we treat references as pointers. In particular, whenever an argument
is passed by reference, a pointer to the object is passed by value in the resulting SIR
program.

2.4 String literals

C++ string literals are arrays of characters. They do not, however, behave as constants
in that it is not only possible to form a pointer to its elements, such use of string literals is
quite common. In fact, most string literals are used in contexts where they immediately
decay to pointers to their first element.

The above observation precludes us from treating string literals as simple SIR string
or SIR array constants. Instead, for each literal a new static variable is created and

2Note that this statement is better not repeated in front of a C++ language lawyer.

CHAPTER 2. MODELLING OF C++ FEATURES 27

statically initialized to have the value of the character array. This way all string literals
are transformed to variables and are treated as such by the translator.

The aforementioned global variables must be assigned a unique name. While it would
be possible to mangle the contents of the string to create this unique name, we failed
to find any standard mangling scheme. As such, we decided to use a simple scheme, in
which the strings are assigned a name of the form Y<n>, where n is a number, which is
incremented on every occurence of a string literal. The unit indentifier is then mangled
into the name as described in Section 2.1.

2.5 Unions

Unions are currently treated as structs. While the behavior of correct programs will
not be affected—a C++ program may only access the member of the union which was
written to last3—no checker will be able to detect incorrect use of unions. We believe
that the best way to convey the nature of a complex object is to pass the information
in the object’s type. We expect that typing information will be added to SIR later, but
it is currently out of the scope of this thesis.

2.6 Raw memory

The C++ language (and the C language from which it was derived) is very low-level
language, in that it allows one to directly access and modify the memory underlying
its otherwise well-abstracted high-level objects. For example, it is quite common to
initialize arrays of scalar objects (i.e. arrays of integers) not with a loop, but with a call
to memset, a C library function which sets the value of each byte in the given chunk of
memory to a given value.

Unfortunately, without knowledge of object’s layout (an extremely platform-depen-
dant property), it is in most cases impossible to model the behavior of the program
precisely. Even with that knowledge, the (untyped) SIR model of a C++ program
would have to be very low-level, to a point where it would only contain a single global
array of bytes. Though such a model would allow precise simulation, it would hinder
any reasonable attempts at static analysis.

As such, we have decided to sacrifice accuracy in favor of retaining the high level
of abstraction in the model. This means that all casts between unrelated pointer types
are ignored—cast expressions have the value of the corresponding castee. Furthermore,
the arguments passed to memcpy, memcmp, memmove, and memset will not convey enough
information for them to be simulated correctly. The problem also affects reading and
writing files. While non-portable, it is a standard practice to pass pointers to whole
structures as arguments to fread and fwrite. Without knowledge of the layout of the

3In particular, the behavior of programs which use unions to reinterpret memory locations is unde-
fined.

CHAPTER 2. MODELLING OF C++ FEATURES 28

objects passed to these functions, correctly simulating the behavior of programs which
call these function is not possible.

Note that adding typing information to SIR and modifying our C++ translator to
emit it would open up the possibility of simulating and statically checking code that
performs calls to afformentioned functions. With some work, even code which performs
access to objects through pointers to type other than the dynamic type of the object
might be simulated. (Recall that some forms of such access are explicitely allowed by the
C++ standard and do not invoke undefined behavior. For example, access through char

or unsigned char pointer, through signed or unsigned version of the pointer, and a few
other types of access are valid. Refer to Section 3.10 paragraph 15 of the standard[14]).

2.7 Argument passing

When the SIR call instruction is used, it is provided with a sequence of operands whose
values are to be passed to the callee. The values are simply copied into variables local
to the called subroutine.

This mode of argument passing is often called “by-value” and it is a mode native to
C++ (assuming that all instances of references are treated as pointers as described in
Section 2.3). The C++ argument passing is therefore directly supported in SIR. How-
ever, in C++, passing objects of a class type may cause a non-trivial copy constructor
to be called. The copy construtor in question receives a reference to the original object
(i.e. to the object being passed).

There are two ways to deal with this kind of copy-passing in SIR. Either a pointer
to the structure gets passed to the callee, which then constructs a its local copy, or the
caller copies the object and passes a pointer to the copy. In both cases only a pointer to
the structure gets passed; this is an inevitable consequence of C++ objects having an
immutable identity—once a C++ object gets constructed, its address will never change.

In case of the former alternative, the caller would have no knowledge of the new
object. Therefore, the callee would also have to be responsible for the object’s destruc-
tion. On the other hand, either of the two functions can be responsible for argument
destruction if the latter alternative was used. Since C++ allows functions to have vari-
able number of arguments, we are forced to relegate the responsibility for argument
destruction to the caller, and as such the caller must also be made responsible for the
copying.

Note that in order to make the passing of structures consistent, we have decided that
even structures with trivial copy-constructors will be passed by pointer, even though
they could easily be passed by value without any side effects.

Returning structures from functions must also be considered. While scalar types
can be returned directly (using the standard SIR mechanism), structures cannot (as the
returned value must either retain its identity, or a copy must be performed). We have
settled on the solution also employed by compilers—a pointer to the variable where the
returned object is to be instantiated is passed as an argument to the callee. An object
is constructed in that variable by the callee. After the function returns, the caller is

CHAPTER 2. MODELLING OF C++ FEATURES 29

responsible for the destruction of the object. Note that the number of return values is
always known in advance (either none or one)—the caller knows if and how the return
value is to be destroyed.

SIR does not offer any object-oriented abstractions. In C++, non-static member
functions, when called, carry along a special value, the so-called this pointer. The
pointer allows access to the object, in whose context the function is executed. On the
other hand, all SIR subroutines behave more akin to C++ free functions. They do not
nest, and they can only access global variables and their (explicit) parameters. Our
translator therefore transforms the signature of non-static member functions by adding
an extra parameter (named this) to the beginning of the parameter list.

2.8 Variadic functions

All SIR subroutines have a fixed number of parameters, whereas C++ functions can be
passed variable number of parameters (this is indicated in the function’s prototype by
the ellipsis at the end of the parameter list; such functions are called variadic and the
arguments without an associated parameter are called optional). Optional arguments
are then retrieved through special library calls (va start, va arg and va end). Our
translator currently does not handle variadic functions, as we haven’t yet settled on an
appropriate way to deal with them. For now, the translator emits the standard non-
variadic SIR subroutine, but all call instructions targeting this subroutine are provided
with all of the arguments. Having a call with optional arguments in a C++ program will
therefore make the SIR program malformed. (Although Stanse will ignore the problem.)

We have considered several approaches to modelling variadic functions. The straight-
forward solution would be to extend SIR to support them directly. In that case, the
number of operands to a call instruction would not be required to match the number
of parameters of the called subroutine. Either an additional instruction or a call to a
library function would be used to retrieve the optional areguments.

Alternatively, we can consider variadic functions as having one additional parameter.
This parameter would be explicitly indicated in the SIR subroutine signature and would
be passed a “magic” list of optional arguments. Elements of the list would be retrieved
with a call to an operator.

We personally incline most to the former solution—the behavior would be consistent
with the current implementation. The translator would only have to recognize calls
to va start and others, and emit the appropriate instructions (or calls to the special
subroutines).

2.9 Virtual dispatch

Virtual dispatch (sometimes called dynamic dispatch) is the ability of programs to call
functions based on a dynamic type of one or more of their arguments (in the case of C++
the dispatch is always made based on the dynamic type of the hidden this argument).
The feature is sometimes called late binding as the association between the caller and the

CHAPTER 2. MODELLING OF C++ FEATURES 30

callee occurs only immediately before the call is executed. There is no direct equivalent
of this feature in SIR.

In practice, C++ compilers achieve late binding by constructing a so-called virtual
table for each dynamic class (the precise definition is rather involved; it is sufficient
to know that all classes containing virtual functions are dynamic). The table contains
pointers to all virtual functions of that class in the order in which they were defined.
Each object of the class carries a pointer to this table. In a way, the dynamic type of
the object is encoded in that pointer. In order to call a virtual function, the program
retrieves the pointer to the virtual table and performs a call through the appropriate
entry.

There are certain complexities associated with virtual table dispatch. For example, if
a class has multiple base classes, any call to a virtual function inherited from the second
or later base involves pointer fixup—this pointer must be adjusted to point to the
correct base subobject. This can be done by thunking—the virtual table entry doesn’t
point directly to the function to be executed, but rather to a thunk, which adjusts this
pointer and forwards the call (thunking is used for example by g++ compiler).

While we could definitely model virtual dispatch in this manner, we feel that such a
data-driven approach would not be handled well by static checkers. It would be difficult
to determine the set of functions that can be called from a given call site (or that set
would consist of all functions in the program, filtered only by function’s signature). We
therefore instead consider a more control-driven approach in which the possible execution
paths are more reasonably exposed.

We translate each virtual function into two SIR subroutines, called the main and
the dispatch subroutines. The main subroutine is generated in the same fashion as a
subroutine for any non-virtual function. The dispatch logic is contained in the dispatch
subroutine. The dispatch subroutine examines the this parameter, and based on its
dynamic type it then calls the appropriate main subroutine.

Of course, the set of functions which override the given function cannot be deter-
mined by looking at a single translation unit—different execution paths of the dispatch
subroutine can be contributed from different units. We therefore generate the dispatch
subroutines only after all program units have been merged. The C++ to SIR translator
only emits the mapping between the dispatch subroutine names and the names of possi-
ble callees. See Sections 1.4 and 1.6 for more detains on how the mapping is represented
and how the program units are merged.

TODO: an example—graphical if possible—of how both mergin and the dispatch are
done in practice.

2.10 Dynamic allocation

The functions malloc and free are used to allocate memory in the C language. Any calls
to these functions can easily be modelled by calls to the appropriate SIR subroutines.

However, the C++ language brings additional—exception-safe and type-safe—ope-
rators new and delete. The former operator performs a call to an allocation function

CHAPTER 2. MODELLING OF C++ FEATURES 31

(called operator new) and in the returned memory it then constructs the new object
(i.e. calls the type’s constructor). If the construction fails, the memory is safely released
through the call to operator delete.

Operator delete is conversly used to dispose of an object previously allocated using
the new operator. The execution of the operator involves the call to the object’s de-
structor (possibly with virtual dispatch) and a call to the deallocation function (whose
identity may depend on the dynamic type of the object).

Note that the new operator may optionally receive arguments that are passed to the
allocation function. For example, the C++ code new(p) int, where p is a pointer,
calls the allocation function with signature void * operator new(size t size, void

* arg). The operator new with arguments is sometimes referred to as placement new.
In addition, the C++ language supports array forms of the two operators, new[] and

delete[]. After allocating memory, the new[] operator constructs all of the objects
in the array, ensuring that if an exception is thrown, all objects that were already
constructed (and only those objects) are released. Again, the new[] operator may receive
optional arguments.

We currently only model the non-array new operator directly. We emit calls to
the special subroutines called sir cpp new array, sir cpp delete, and its ar-
ray counterpart sir cpp delete array to represent operators new[], delete, and
delete[] respectively.

The sir cpp new array subroutine receives the following arguments:

1. the identity of the subroutine representing the allocation function,

2. the size of the type to be allocated,

3. the identity of the subroutine representing the constructor of the constructed type,

4. the identity of the subroutine representing the deallocation function (which is used
in case the construction fails),

5. the integer 1 or 0, indicating whether the operator is to value-initialize the contents
(i.e. whether the invocation of the operator ended with a pair of empty parenthe-
ses), and

6. zero or more arguments to the allocation function.

The two special subroutines that are used to destroy and release the memory receive a
pointer to the object to be destroyed and the identity of the deallocation subroutine.

Figure 2.2 shows how a simple use of new and delete gets translated to SIR. Again,
note that while the former is modelled directly, the latter is modelled by a subroutine
call. It is our goal to eventually represent all allocation scenarios directly, removing the
need for the three special functions.

CHAPTER 2. MODELLING OF C++ FEATURES 32

$1: call operator new

call cls::cls, $1 | 1−→ $5
assign p, $1
call sir cpp delete, p

$5: call operator delete, $1

p = new cls;

delete p;

Figure 2.2: The SIR instructions generated for the new and delete operators.

2.11 Exceptions

As many other modern languages do, C++ supports the concept of exceptions. Excep-
tions allow the developer to free their code of error handling issues and concentrate on
the gist of the algorithm. Only once an error codition occurs, an exception object is
created and the execution stack is unwound in a search for the appropriate exception
handler. During this unwinding, objects with automatic storage duration are destroyed
(notably their destructors are called), thus allowing the necessary cleanup (i.e. freeing
of memory and other resources) to be performed. Once an execution frame with the
exception handler—one that matches the type of the exception object—is found, the
execution continues from that handler.

As SIR strives to be as uncomplicated as possible, it does not natively support
exceptions. We therefore model exceptions and exception handling indirectly. There are
several interesting points to note. One, there is a special exception object created for the
purposes of communicating the error data. The object must exist during unwinding and
during the execution of the exception handler—only then it can be freed. Furthermore,
it must be possible to query the object about its type, in order to determine whether
any given handler is able to process the exception.

Traditionally, compilers create the exception object on the stack and then call regis-
tered handler in the context of the function throwing the exception. The runtime then
crawls execution frames in search of a compatible handler. Once the appropriate handler
is found and executed, the exception object is destroyed and the execution is abruptly
transferred to the statement following the exception handler. Handlers are usually reg-
istered at runtime at the beginning of execution of their containing functions (a method
employed in 32-bit Windows systems), or statically by the compiler. In the latter case,
the generated tables are walked only after an exception is thrown. Note that exception
handlers are created not only by explicit catch statements, but are also generated for
functions that contain automatic objects with non-trivial destructors.

Unfortunately, relying on registration records would make it very difficult for any
static checker to analyze the exception control flow. We therefore chose to model ex-
ceptions in a more checker-friendly manner. As SIR allows subroutines to have multiple
exit points, and allows the caller to detect the exact exit point the callee has taken, we
decided to separate exit points for normal and exception flow. Normal control thus exits
a subroutine through exit point zero; exception paths are directed to exit point one.

Whenever a caller detects that a call returned through exit point one, it then proceeds

CHAPTER 2. MODELLING OF C++ FEATURES 33

to destroy all objects in its execution frame and immediately exits afterwards—also
through exit point one. This way, the information about an existence of a thrown
exception object is propagated through the execution stack. The propagation is stopped
either when the execution stack is empty, or when an exception handler willing to process
the exception is found. Once the handler successfully finishes and releases the exception
object, the handler transfers control to the statement immediately following the enclosing
try block. The execution then continues on a non-exception path.

Originally, we wanted the exception object to be propagated via return values. Un-
fortunately, we found it difficult to model all the features of C++ exception handling
accurately. Notably, a C++ code is allowed to issue an empty throw statement, indicat-
ing that a caught exception is to be rethrown. This rethrow statement, however, need
not be inside a catch block, it can be executed from a subroutine. At that point, the
exception object is unavailable and therefore cannot be returned.

We have therefore decided to model the exception object as residing in a special
thread-local storage, which we hence-forth call an exception object store. Having a store
where exception objects can be freely constructed mirrors the ability of compilers to
store exception object on a store that survives stack unwinding. Note that multiple
exception objects may be active at the same time; an exception may be thrown in the
context of a catch statement while the original exception object is still live. As such,
in our model, exception objects are allocated from the store and freed when they’re no
longer useful.

The exception object store additionally maintains a pointer to the exception object
that was allocated last. We call this particular exception object the current exception
object. The exception object store maintains an additional flag for the current exception
object—it remembers whether the object is in a thrown state.

We define the following special functions which maintain the exception object store.

• New objects are allocated using the sir cpp exc alloc function. The function
expects a single argument—a pointer to the typeinfo object representing the dy-
namic type of the exception. This typeinfo object is associated with newly-created
object and is later used by sir cpp exc catch to decide whether a handler is
entitled to handling the exception. The operator returns the pointer to the new
storage for the exception object. The allocation never fails (the stack-based allo-
cation of exception objects performed by compilers may fail due to stack overflow;
that however rarely happens and cannot be reliably detected).

• Exception objects are freed using the sir cpp exc free function. A pointer to an
exception object is expected as an argument. The state of the object determines the
action performed. New objects are simply removed from the store. Thrown objects
are not acted upon—they must be preserved until they are caught. Caught objects
are first destroyed (which possibly involves calling the object’s destructor), then
removed from the store. We leave the details of retrieving the correct destructor
deliberately vague. Trying to model the retrieval of the destructor directly would
introduce unnecessary complexity while bringing little gain.

CHAPTER 2. MODELLING OF C++ FEATURES 34

try {

foo();

}

catch (cls const &) {

bar();

}

$1: call foo |1→ $0

$2: call sir cpp exc current
$3: call sir cpp exc catch, $2, ti cls |0→

call bar
call sir cpp exc free, $2

Figure 2.3: The SIR code layout for throw and try/catch blocks.

throw cls(42);

$1: call sir cpp exc alloc, ti cls
call cls::cls, $1, 42 |1→ $4
call sir cpp exc throw, $1

$4: call sir cpp exc free, $1

Figure 2.4: The SIR code layout for throw and try/catch blocks.

• sir cpp exc current retrieves a pointer to the current exception object from
the store.

• An exception object in a new or caught state may be thrown (i.e. its state can
be changed to thrown) using the sir cpp exc throw function. Only one object
may be thrown at one time. The operator kills the execution if another object is
already thrown.

• A thrown exception object can be matched against a type and marked a caught
using the sir cpp exc catch function, which accepts as an argument the pointer
to the exception object. Optionally, a pointer to a typeinfo object may be passed
as a second argument. In the latter case, the object is caught only if it matches
the type of the exception object. The operator returns either zero, if the matching
fails, or a pointer to the subobject of the exception object matching the type of
the handler.

Figures 2.3 and 2.4 show the translated throw and try/catch statements. We model
a throw statement that specifies an exception object as follows. First, a new exception
object is allocated using sir cpp exc alloc. An object is then constructed into the re-
turned storage. The construction may involve a call to a constructor and may fail (i.e. an-
other exception can be thrown in the process). In that case, the exception object is freed
using sir cpp exc free. As the exception object was in the new state, no destructors
are called. If on the other hand the construction succeeds, the sir cpp exc throw

operator is called, which transitions the exception object to a thrown state.
Note that if the above process is performed while another exception is already thrown,

the last call (the one to sir cpp exc throw) kills the execution.
When the exception path leads the execution out of a try block, the handler retrieves

the exception object using sir cpp exc current. The object is then matched against
all catch statements corresponding to the handler. For each catch statement, a call to

CHAPTER 2. MODELLING OF C++ FEATURES 35

int f2() {

s a;

return f1();

}

$1: call s::s, &a | 1→ $6
$2: call f1 | 1→ $5
$3: call s::˜s, &a | 1→ $6
$4: exit 0, $2

$5: call s::˜s, &a
$6: exit 1

Figure 2.5: A C++ program and a corresponding SIR subroutine. Note normal and
exception (exit index one) paths.

sir cpp exc catch is made. If the call succeeds, the exception object is automat-
ically transitioned to the caught state, allowing subsequent exceptions to be thrown.
The catch statement body is then normally executed. At the end, the object is freed
using sir cpp exc free. As it is in the caught state, the object’s destructor is called
(assuming the object has a destructor).

A rethrow statement (i.e. a throw statement that does not specify the object to
be thrown) is translated into a call to sir cpp exc current, which retrieves the last
object to be thrown, followed by a call to sir cpp exc throw.

2.12 Subroutine layout

Each SIR subroutine that was constructed from a C++ function has two exit points.
Exit point zero is taken if the function returns normally (i.e. it the execution reaches
a return statement or the end of the outmost compound statement). If the function
throws an exception, exit point one is used to indicate that condition.

Figure 2.5 demonstrates the usage of various exit points. From the figure, we see that
the normal execution path would traverse nodes $1, $2, $3, and $4 in that order. If an ex-
ception occurs in node $1 (during a call to the constructor), the subroutine immediately
exits through exit point one (node $6). If an exception is thrown from function f1, the
object a is first destroyed before the subroutine is exited through node $6. If an excep-
tion is thrown while another exception is causing stack unwinding, the C++ standard[13]
requires that std::terminate be called. We do not model the call to std::terminate,
we assume that the execution is aborted during the call to sir cpp exc throw.

Chapter 3

Parsing C++ programs

In this chapter we briefly describe the process of tranlating the C++ source code to the
Stanse intermediate representation (which is defined in detail in Chapter 1).

The translation process is performed in two phases. The first one consists of pre-
processing and parsing of the C++ source code and turning it into the abstract syntax
tree (AST) form. Preprocessing the source code is a relatively simple task—the C++
preprocessor was inherited from the easy-to-parse C language.

Parsing of C++ language, on the other hand, is a complex process, requiring se-
mantic analysis to be performed in parallel with the syntactic parsing. Contrast this to
other, simpler programming languages (including D, Java or C#), whose grammars are
commonly designed to be context-free, allowing the parser to perform name resolution
and typing analysis in a separate step.

The difficulties arise from the fact that the C++ grammar is not context-free and
classical parsing techniques yield ambigous parse trees. For example, the token sequence
a * b may yield either

• a statement declaring a new variable b to be of type pointer to a, or

• a binary expression multiplying objects a and b.

A C++ parser must differentiate between these two possibilities depending of whether
a is a type name or not. This determination is much more complicated than in the
C language (which shares this particular kind of ambiguity), due to the presence of
template classes and template functions.1

While there are C++ frontends which return the whole parse forest (as they use
parsing methods like GLR[10]), which is only pruned after the parsing completes, most
C++ parsers are hand-written recursive descent parsers[1] and are generally percieved
as difficult to write.

In order to avoid having to write a C++ parser on our own—a task worthy of several
master’s theses—we chose to make use of Clang libraries.[4] Clang is a parser and LLVM

1Template specialization selection and template instantiation are governed by a significant number
of complex language rules and require a full semantic analyzer in order to be performed correctly.

36

CHAPTER 3. PARSING C++ PROGRAMS 37

intermediate code generator used by the LLVM project as a C, C++ and Objective C
front-end. We decided to use Clang, as it is written very cleanly and its parser is very
well documented.2 Thanks to Clang being open source and written in C++—a language
we are most familiar with—we were able to identify and fix several critical issues that
would otherwise prevent us from using Clang as our parser. We have of course provided
the patches back to the Clang community.

The root of the AST produced by Clang represents the whole translation unit, which
contains nested declarations (such AST nodes are referred to as declaration contexts).
Typically, a translation unit would contain declarations of global variables, functions,
function templates, class templates, classes and namespaces. The last four declaration
types are also declaration contexts and therefore contain futher declarations (e.g. classes
may contain declarations of nested classes, member functions, etc.). Those can recur-
sively contain more declarations.

Apart from providing the AST, Clang also performs template instantiations for every
template specialization that was used in the translation unit. The instantiations of class
and function templates (which themselves are classes and functions respectively) do not
appear explicitely in the AST as their declarations do not appear explicitely in the source
code. Instead they are associated with the AST nodes that correspond to the template
declarations from which they were instantiated.

To generate the SIR representation of the translation unit, we scan the AST for both
ordinary functions and instantiations of function templates. Only function declarations
that are also definitions (i.e. they have an associated body) are considered. For each
such function definition we then translate its body into a single SIR subroutine. Note
that virtual functions are also translated in this manner. (However, they are treated
differently when they are called. The handling of virtual dispatch was described earlier
in Chapter 2.) Each SIR subroutine that was constructed in the process is assigned a
unique name and added to the resulting SIR unit.

Apart from functions, all variables whose lifetime is not limited by their scope are also
of concern. This includes global variables, but also static local variables. These variables
are initialized by the execution environment before the execution of the program begins.
The initial values must be captured in the SIR unit, otherwise the description of the
program would be incomplete. Therefore, during the AST scan, the list is constructed
of all the global and local static variables together with their initial values.

Global and local static variables that require dynamic initialization (i.e. those, whose
constructors must be called) are not handled in the current version of the code generator.
Traditionally, this initialization is performed by generating an initialization function for
each translation unit. A list of these functions is then included in the resulting program
and traversed by the program runtime before the main program function is invoked.
Similar solution could be employed to add support for dynamic initialization to SIR.

In the rest of this chapter, we will concentrate on the translation of C++ functions to
SIR subroutines, starting with the translation of elementary expressions and statements.

2We encourage the reader to look over the AST documentation so as to have the necessary context
for the rest of this chapter.

CHAPTER 3. PARSING C++ PROGRAMS 38

We will describe how to connect pieces of a SIR subroutine together, and how to perform
backpatching. We will also describe the main ideas behind exception path generation.

As we will reference classes and functions that form the cpp2sir translation tool, we
strongly suggest that the reader browse the source code while reading this chapter.

3.1 Sentinel nodes

The function responsible for translating a single C++ function to the corresponding SIR
subroutine is called detail::build cfg (it is called from the build program function,
which represents the core of the code generator—it turns a translation unit into the
corresponding SIR unit). The function internally constructs a context object3 and indi-
rectly executes the context::build stmt function on the body of the C++ function to
be translated (i.e. on the compound statement attached to the function).

The context::build stmt function is responsible for translating a single statement
to a SIR subgraph. For statements which internally contain other statements (the al-
ready mentioned compound statement, all control-flow statements, the try statement,
etc.), the function calls itself recursively.

Instead of returning a standalone graph which would then be potentially embedded
by the caller into a larger graph, the function grows new subgraphs into the final graph.
This design allows all data pertaining to the translation process to be stored in one place,
instead of constantly moving it from temporary objects. Note that the data consist not
only of SIR nodes, but of other important structures including execution contexts and
backpatching sentinels (described below).

In order to mark the position where new subgraphs should be grown, the graph may
during translation contain so-called sentinel nodes, which are empty nodes that do not
contain a valid SIR instruction. New node are always added to the graph by filling a
sentinel nodes with data and appending a new sentinel node to it.

The sentinel nodes that mark locations onto which new statements are to be grown
are called heads. The first head is inserted into the (empty) graph before the translation
process is begun on the body of a function. The head is passed as a parameter to the
context::build stmt function. When the statement translation is complete and the
context::build stmt function returns, the excess head is removed.

Sentinel nodes may be split in two (context::duplicate vertex) or joined together
(context::join nodes). This happens for example during the translation of the if

statement, during which the head is split, two branches are grown (corresponding to the
then and else statements), and eventually are joined together.

Sentinel nodes are also used to mark locations in the graph that require further
processing. Break and continue statements, for instance, generate and register sentinel
nodes, which are later joined into the head after the containing loop statement is fin-
ished translating.4 Similarly, label statemets and statements that throw exceptions leave
sentinel nodes behind.

3Perhaps context is not the most expressive name for the class.
4In other words, sentinel nodes are used to mark locations for back-patching.

CHAPTER 3. PARSING C++ PROGRAMS 39

$1: none

(a)

$1: value c
$2: none

(b)

$1: value c | 0→ $3
$2: none

$3: none

(c)

$1: value c | 0→ $3
$2: call f1
$4: none

$3: call f2
$5: none

(d)

$1: value c | 0→ $3
$2: call f1
$4: none

$3: call f2 |→ $4

(e)

Figure 3.1: A simple example of a SIR subroutine and the C code used to generate it.

Figure 3.1 shows the process of translation of the C++ statement if (c) f1();

else f2();. The construction starts with the context::build stmt function receiving
the sentinel node $1 and the AST node for the if statement. We depict the graph
as containing a single node, since all nodes but the sentinel are irrelevant (3.1a). The
condition expression is then evaluated, appending a new node into the graph (3.1b).
Note that the evaluation of the expression resulted in the graph having again only a
single sentinel node. The sentinel node is then split in two and the condition on the
edge connected to the new sentinel is labelled with 0, indicating that the new sentinel
will be used to grow the else statement (3.1c). The two nested statements are then
grown (3.1d). Finally, the two heads are joined together, yielding the final version of the
subgraph (3.1e).

3.2 Extended operands

While translation of statements merely causes new subgraphs to be included in the SIR
subroutine, the translation of expressions additionally yields a value that may be used
as an operand to an instruction. Recall from Chapter 1 that SIR allows for five types
of operands—a subroutine name, a constant, the value of a variable, the pointer to a
variable and the value of a node.

Consider for example the statement f1(a);, which calls the function f1, passing to
it the value of the variable a. The translation of the subexpression a does not yield any
new nodes, it does however return the SIR operand of the variable value type referencing
the variable a. Similarly, the evaluation of the subexpression f1 yields no new nodes in
the graph, but returns the SIR operand of the subroutine name type, referring to the
subroutine f1. Finally, the evaluation of the function call operator then emits a new
node, Jcall f1, aK. The result of this expression is then the operand of node value type
referencing this newly created node. The operand is then discarded.

CHAPTER 3. PARSING C++ PROGRAMS 40

Unfortuntely, this simple scheme fails to work in C++, as certain expression values
may behave as lvalues (i.e. refer to the object itself) or as rvalues (referring to the
value of the object). The behavior is context dependent; direct translation of a C++
expression to a SIR operand is therefore not possible in general.

To solve the abiguity, we always treat expressions as rvalues and promote them to
lvalues only when necessary (when applied to the address-of operator, on the left side
of the assignment or when binding to a reference). Additionally, we extend the set of
SIR operands by extended operand types of target of a variable and target of a node in
order to keep track of the corresponding lvalues. In the sources of the cpp2sir tool,
these operands are represented by the eop type. This is also the return type of the
context::build expr function responsible for the translation of expressions to their
subgraphs and operands.

Three functions are used to deal with extended operands. The context::make addr

promotes operand types from the value of a variable to the address of a variable, the
target of a variable to the value of the variable, and the target of a node to the value
of a node. Similarly, the context::make deref demotes the operands to a lower type.
Additionally, for the target of a variable or the target of a node, it emits the deref
instruction and returns an operand of the node target type referring to its result. Note
that the two aforementioned functions correspond directly to the address-of and the
dereference operators of C++.

The third function, context::make rvalue converts an extended operand to the
standard SIR operand by emitting the deref instruction for node target and variable
target operands, and returning the node value operand referring to the new instruction.
The function is used when it becomes clear that the expression is going to be used as an
rvalue.

Consider for instance the &*p expression. The p subexpression translates to variable
value operand p. The *p yields variable target operand p. If the expression were used
as an rvalue, the deref instruction would be emitted and the value of that node would
be used as an operand. The expression is however used as an lvalue and due to the
address-of operator, the operand is promoted back to the variable value type.

3.3 Execution context

During back-patching, the appropriate sentinel nodes are not merely joined with the
current head. All automatic variables (i.e. the local variables) that cease to exist due
to a return, break, continue or goto statement must have their destructors called. As
sentinel nodes marking the locations to be back-patched are generated long before the
back-patching occurs, additional information (notably the ordered list of variables that
were in scope at the time) must be maintained.

The execution context associated with a SIR node is the list of automatic variables
intermingled with the list of try statements that were in scope during the generation of
that node. The context evolves as the source statements are processed. Whenever an
automatic variable definition is encountered, a new variable registration record is pushed

CHAPTER 3. PARSING C++ PROGRAMS 41

to the top of the current context. When the declaration scope of the variable is left, the
registration is removed. Similarly, an exception handler registration record is pushed
when the scope of the try statement is entered and removed when the processing of that
statement has finished. At the start of the translation, the context is empty.

Execution contexts are maintained in a single context registry, represented by the
class context registry. The class allows new contexts to be created by appending and
removing registration records from existing contexts. The old contexts remain in the reg-
istry. Contexts can be referred to by a descriptor (context registry::context type),
allowing them to be associated with sentinel nodes and used during back-patching.

The two registration records that can be a part of a context are var regrec and
except regdecl, which correspond to automatic variables and try statements, respec-
tively. (There is a third registration record, exc object regrec, which is appended
to the execution context during the translation of the throw statement. This record
ensures that the magic exception memory allocated for the exception object using
sir cpp exc alloc is freed in case the construction of the exception object throws.)

The registry ensures that for each context it contains—with the exception of the
empty context—there is also a parent context consisting of the same set of registration
records save for the topmost one. As such, the contexts stored in the registry form a
tree, with the empty context serving as the root and other contexts being children of
their parent context.

All of return, break and continue statements always cause the execution to jump
into an outer scope. We will call the node to which these statements ultimately transfer
control the target node. The execution context associated with the target node will be
referred to as the target context.

Note that the target node does not exist at the time either of the transfer statements
is processed. We deal with these statements by creating a sentinel node that represents
the source point of the control flow transfer. The node and the descriptor of its associated
context are then registered for further processing. Once the target node is created, the
back-patching is performed—a path is created from the sentined node to the target node,
consisting of nodes which cause calls to the destrustors of automatic variables.

Notice that the target context is always an ancestor of the registered context. We
therefore peform the back-patching by traversing the subtree of the context registry
rooted at the target context. During the traversal, each encountered context is associated
with a graph node (either an existing one or a newly created one). The target context
is associated with the target node. Contexts that add variable registration record are
associated with a newly created node that calls the destructor of the registered variable;
an edge is created leading from the new node to the node associated with the parent
context. Contexts that add exception registrations inherit the node of their parents (i.e.
exception registrations are ignored during backpatching).

This way, a path is created for each context that is a descendant of the target context,
including the contexts of the registered sentinel nodes. Therefore, for each sentinel node,
its associated context is used to lookup a node into which the sentinel should be joined.

While goto statements do not necessarily transfer control to an outer scope, it is

CHAPTER 3. PARSING C++ PROGRAMS 42

guaranteed that the tranfer does not cause a variable with a non-trivial constructor to
be introduced in the new scope. Our translator currently does not generate destructor
chains for goto statements, however, that a technique similar to the one described above
can be used for these statements as well.

3.4 Exception paths

Besides back-patching of transfer statements, context registry is also used to generate
exception paths after the body of the function has finished generating. Exception paths
are not generated during the function body translation, instead, sentinel nodes are left
at places where exception paths begin (which can occur either through an explicit throw
statement, or through a function call). After the translation of the function body is
complete, the registered exception sentinels are back-patched to a newly created exit
node (the exit node 1).

The procedure is similar to the one described in the previous section—the context
tree is traversed from the target context (the empty context in this case) and destructor
call nodes are created whenever a variable registration record is encountered. However,
instead of inheriting their parent’s node, contexts that add exception registrations are
associated with the entry node to the appropriate catch handler.

Chapter 4

Automaton checker

In Chapter 1 an intermediate representation of programs called SIR was introduced.
In this chapter, we show how Stanse—or to be more precise, the automaton checker—
perfoms analyses of these SIR programs. We will refrain from going into too much
detail, as our work on Stanse itself and on its automaton checker is limited to getting
the checker working with SIR.

Ideally, a static checker would compute all states (i.e. pairs of control location and
mapping from variable names to their values) that the program can reach and verify that
none of the states violate any safety properties. Unfortunately, it can be shown that for
any Turing-complete language, determining the set of reachable states is an intractable
problem. (TODO: cite) While in practice the domain of all states of the program is often
finite, it generally remains very large; model checking—as this kind of analysis on finite
domain is called—is therefore mostly performed in a distributed and parallel manner.[3]

In order to decrease the number of states that the analysis tool must process, Stanse
forgoes the tracking of concrete states and instead performs the analysis in the domain
of abstract states. Consider, for example, the function on Figure 4.1, which performs an
action consisting of two steps (prepare and finish), which must be executed atomically.
To ensure that two parallel invocations of the function do not interleave, the function ac-
quires a lock before performing the preparation, and releases it when the action finishes.
Notice that the function fails to release the lock if the preparation fails.

void perform_action ()

{

lock(m);

if (prepare () == -1)

return;

finish ();

unlock(m);

}

(a) The C++ source code

$1: call lock, &m {U[&m]}
$2: call prepare | −1→ $5 {L[&m]}
$3: call finish {L[&m]}
$4: call unlock, &m {L[&m]}
$5: exit 0 {U[&m], L[&m]}

(b) Equivalent SIR program labelled with state sets

Figure 4.1: A faulty program, which fails to release a mutex on some execution paths.

43

CHAPTER 4. AUTOMATON CHECKER 44

〈pattern〉 ::= 〈opcode〉 [〈pattern-operand〉 (, 〈pattern-operand〉)∗]

〈pattern-op〉 ::= 〈subroutine〉 | 〈var〉 | & 〈var〉 | 〈const〉 | 〈placeholder〉 | (〈pattern〉)

〈placeholder〉 ::= %n

Figure 4.2: The EBNF grammar of SIR patterns

To discover this defect, it is sufficient to consider the program’s state at any point
during computation to be in the abstract domain S = {U[&m], L[&m]}, where the ab-
stract state U[&m] signifies that the mutex m is unlocked, whereas the state L[&m] infers
otherwise.

Each node in the control-flow graph of the program (which we write down using SIR,
see Figure 4.1b) is then associated with a context c ∈ C, where C = 2S , which represents
the set of states that the program can be in immediately before executing the node. The
context vector C, C : N → C, where N is the set of nodes in the control-flow graph,
then assigns to each control location the set of reachable states. The context vector is
used directly to detect the error; in this case the defect manifests itself through the state
L[&m] associated with the exit node.

The context vector is computed as described by Cousot et al.[7]. The computation
starts with the least context vector (i.e. the context vector C0 such, that for all n ∈
N , C0(n) = ∅). The context is then refined by repeatedly applying a checker-specific
propagation function, until a fixpoint is reached.

It can be show that such a fixpoint can always be found, as long as the set of
all context vectors forms a complete lattice and the propagation function is order-
preserving.[20] Context vectors with pointwise ordering (C1 ≤ C2 if and only if for
all n ∈ N , C1(n) ⊆ C2(n)) indeed form a complete lattice. Later we will show that
Stanse always induces a propagation function that is order-preserving with respect to
the pointwise ordering.

4.1 Pattern matching

Stanse uses pattern matching to identify nodes in the control-flow graph that are impor-
tant for the analysis, in particular the nodes that cause a change in the abstract state
of the program.

The lock checker, for instance, uses the pattern Jcall lock,%1K to identify all nodes
that cause a mutex to be locked. The pattern contains a placeholder, which identifies
the subexpression that is to be returned if the matching is successful. When applied to
the program in Figure 4.1, the pattern matches the node $2, with %1 = J&mK.

The grammar of SIR patterns, given in Figure 4.2, builds on the grammar of SIR
instructions as given in Figure 1.1. Note that patterns follow the grammar of SIR
instructions, but they allow node labels neither as an instruction label nor as an operand.
The pattern may contain special placeholders %n, with n ∈ N, which match arbitrary
operands and can be used to retrieve the corresponding subexpression after the matching

CHAPTER 4. AUTOMATON CHECKER 45

finishes. Moreover, operands can be matched against nested patterns, allowing the
matching of complex expressions.

We say that a partial function I : N → 〈operand〉 is a variable assignment or inter-
pretation. A pattern operand p ∈ 〈pattern-op〉 matches a SIR operand o ∈ 〈operand〉
with interpretation I if and only if

• p = o,

• p = J%nK, for some n ≥ 1 and I(n) = o, or

• p ∈ 〈pattern〉, o = J$kK, and p matches the node $k with interpretation I.

The pattern p = Jc o1, o2, . . . onK matches the node n = J$k : c′ o′1, o
′
2, . . . o

′
nK with

interpretation I if and only if c = c′ and for all 1 ≤ i ≤ n, the pattern operand oi matches
the operand o′i with interpretation I. We say that an interpretation of a pattern p on a
node n, written as I(p, n), is the least interpretation I such that the pattern p matches
n with I.

The ability of patterns to match across multiple program nodes can be used to lo-
cate complex expressions. Consider, for example, the statement m = create mutex();,
which is translated to the following two-node SIR program.

$1: call create mutex

$2: assign &m, $1

The pattern Jassign %1, (call create mutex)K can be used to locate all nodes in
which a newly created mutex is assigned to a variable, with the placeholder %1 matching
the target variable. In the case of the above SIR program, the pattern matches the node
$2 with %1 = J&mK.

Note that we have developed the above notation for the purposes of this thesis.
The user specifies patterns in the automaton checker definition files using XML syntax.
Figure 4.3 shows an example of such an XML fragment.

<pattern name="create -mutex">

<node type="assign">

<var name="P1"/>

<node type="call">

<function >create_mutex </function >

</node >

</node >

</pattern >

Figure 4.3: XML-serialized pattern Jassign %1, (call create mutex)K

CHAPTER 4. AUTOMATON CHECKER 46

4.2 Checker description

Stanse borrows from Hallem et al.[11] the approach of using finite automata to simplify
for the user the description of the abstract domain. Stanse uses this automata-based
description to automatically induce the propagation function, least fixpoint of which we
seek.

In the automaton-based abstract state representation, the state of the program is
given by a set of bound automaton states. A bound automaton state s is a tuple s =
(q, o1o2 · · · on), where q ∈ Q is an (unbound) automaton state and o1 · · · on ∈ 〈operand〉∗
is the sequence of program objects to which s is bound. We use the symbol S to denote
the set of all bound states. We write states using the notation q[o1 · · · on]. For example,
in Figure 4.1, we set Q = {U, L} and operated on bound states U[&m] and L[&m].

The user defines sets of bound states using state templates. A state template is a
tuple t ∈ Q × (〈operand〉 ∪ 〈placeholder〉)∗, i.e. a bound state in which zero or more
operands are replaced by placeholders. The state template q[p1 · · · pn] matches a bound
state q′[o1 · · · om] with interpretation I (a partial function I : N→ 〈operand〉) if and only
if q = q′, n = m, and for all i ≤ n, either pi = oi or pi = %k and I(k) = oi. Again, the
state template t matches a bound state s if t matches s with some interpretation I. We
denote the least such interpretation I(t, s).

An interpretation I can be used to make a state template more specific, by replacing
all placeholders for which the interpretation is defined. We denote the result of such
replacement by t[I]. For example, the state template t = U[%1], when applied to the
interpretation I such that I(1) = J&mK, becomes the state template t[I] = U[&m]. Keep
in mind that the resulting state template may still contain placeholders.

The user specifies the abstract behavior of program objects by providing a set of
transition rules of the form t1

p−→ t2, where t1, t2 ∈ Q× (〈operand〉 ∪ 〈placeholder〉)∗ are
state templates and p ∈ 〈pattern〉 is a pattern. The rule indicates that if the program
in the state that matches t1 encounters a node that matches p, the state of the program
changes to an instantiation of the state template t2. To illustrate, recall the program in
Figure 4.1. The rule decribing the transition from the state U to the state L, would be
written as

U[%1]
call lock,%1−−−−−−−−→ L[%1] (4.1)

We will denote the set of all rules as R.
We define the transformation function T0 : S ×R×N → S by T0(s, r, n) = t2[Ir][Is],

where r is the rule t1
p−→ t2, Ir = I(r, n), and Is = I(t1, s). If either r does not

match n, s does not match t1, t1 is not a state (i.e. it contains placeholder), or the
two interpretations Ir and Is are incompatible, we set T0(s, r, n) = ⊥. We say that
two interpretations Ir and Is are incompatible if and only if there is a point k ∈ N in
the domain of both Ir and Is such that Ir(k) 6= Is(k), In other words, the function
T0 translates a state into a new state according to the given rule in the context of the
specified node.

We define the function T1 : 2S × 2R ×N → 2S as T1(S,R, n) = {s ∈ S | T0(s, r, n) 6=
⊥ for some r ∈ R}, i.e. the set of states that are acted upon by at least one rule. We

CHAPTER 4. AUTOMATON CHECKER 47

calculate the set of transformed states using the function T2 : 2S×2R×N → 2S , defined
as T2(S,R, n) = {T0(s, r, n) | s ∈ S, r ∈ R, and T0(s, r, n) 6= ⊥}.

Finally, we define the transformation function T : 2S × 2R×N → 2S as T (S,R, n) =
T2(S,R, n) ∪ (S \ T1(S,R, n)). In other words, the transition rules cause the states on
the left-hand side to be removed from the state set, while the states of the right-hand
side are added. The states that are not acted upon remain in the set. A special case
worth mentioning involves nodes that are matches by none of the transtion rules in R.
For such nodes n, the transition function is an identity, T (S,R, n) = S.

In order to initiate the state propagation, special rules apply to start nodes of sub-
routines. Therefore, in addition to the transition rules, the user also specifies the initial
(unbound) state q0 ∈ Q. For each node n, and every rule r that matches the node,
the interpretation I = I(r, n) is used to create a bound state s = q0[o1 · · · ok], where
oi = I(αi) and α1 · · ·αk is the maximal sorted sequence of numbers in the domain of I.
We denote the set of initial states as S0.

4.3 Propagation and error checking

We now construct the propagation function F : CN → CN and show that it is indeed
order-preserving and thus has a least fixpoint. Using the transformation function T , we
define F (C0) = C, where

C(n) = C0(n) ∪
⋃

m∈pred(n)

T (C0(m), R,m),

for all n ∈ N except the start node n0, where pred(n) denotes the set of all predecessors
of the node n, and R the set of all user-supplied transition rules. For the node n0, the
context additionally includes the set S0,

C(n0) = C0(n0) ∪
⋃

m∈pred(n0)

T (C0(m), R,m) ∪ S0.

It can be seen that the transformation function T is order-preserving in its first
parameter, making F order-preserving as well. Therefore, the function F has a least
fixpoint, which can be found (due to the finite nature of the control-flow graph and the
state set) by repeatedly applying the function, starting on a an empty context vector,
until the vector stabilizes. We denote the final context vector as C.

Once the propagation finishes, the user-supplied error rules are checked. Error rules
are tuples (t, p), where t ∈ T is a state template and p ∈ 〈pattern〉 is a pattern. Any
node n that matches p, whose context C(n) contains a state s matching t, and the
interpretations I(p, n) and I(t, s) are compatible, introduces an error.

The error rules additionally contain human-readable description of an error, which
is then shown to the user. An error trace is generated by backtracking from the error
node to either the initial node or to the node where the error state s was produced.

Chapter 5

Tools

In this chapter we shortly discuss how the tools developed in the course of this thesis
can be used. All of the tools are release under the permissive MIT license(TODO: cite?),
which allows others to reuse our source code. First we discuss the main tool, the cpp2sir
translator, then we move to the test framework and SIR pretty-printing tools.

All of the tools mentioned are included on the attached CD, in the source and Win-
dows binary form. The tools are also available in an online repository, the link to which
can be found in the README file in the source code directory on the CD.

5.1 Translator

The main contribution of this thesis is the cpp2sir tool, which translates C++ programs
to the Stanse intermediate representation, allowing its consumption by Stanse static
checking tool.

The tool, as it is based on Clang libraries, accepts the same set of command line
options as the clang parser.[5] Since clang attempts to be a drop-in replacement for
the gcc compiler, the command line options are mostly compatible. Notable options
include -I<dir> to specify directories in which headers files should be searched for,
-D<symbol>=<value> to define the values for preprocessor symbols. Of course, free
arguments are treated as names of source files to be compiled.

Our tool additionally accepts several custom options, which influence the translation
process or change the format of the output. The unit identifier for the source file being
compiled can be set using option --unitid <id>. The mode of output returned by the
tool can be controlled by one of the flags -Jjuac, where

• -J is the default mode in which the JSON-encoded SIR unit is printed to the
standard output. There is no unnecessary whitespace produced in this mode and
as such it is quite unreadable. However, it is well-suited for machine-processing
and it is therefore the mode Stanse uses during checking.

• -j is similar to -J, except that the JSON document is formatted to be human-
readable.

48

CHAPTER 5. TOOLS 49

• -u prints the AST of the translation unit.

• -a prints the AST for each function (including instantiated function templates)
that would be translated to a SIR subroutine.

• Finally, -c prints nothing—it can be used to silently check whether the source code
can be correctly parsed.

Note that if the parsing fails, the mode is ignored and only error messages are pro-
duced (to the standard error output).

5.2 Testing

In order to ensure that the output of the cpp2sir tool remains correct even in the face
of modifications, we have included a batch of tests that can be used verify the output’s
correctness. The tests are located in the tests subdirectory of the cpp2sir project.
Each test case consists of two files, a source code file with the .cpp extension and a
pattern file (which is a JSON-encoded SIR unit) with .cfg extension.

In order for a test case to pass, the cpp2sir tool must parse the source code file
without reporting any errors, and produce a valid JSON-encoded SIR unit. For each
SIR subroutine in the pattern file, there must be a subroutine with the same name in the
parser’s output. Furthermore, the pattern subroutine must be isomorphic to a subgraph
of the corresponding output subroutine.1

5.3 Pretty printing

The tools directory of the cpp2sir project contains several useful tools designed to print
or visualize SIR graphs. All of the tools are written in the Python scripting language,
an interepreter must be installed on the host system in order for the tools to work.

The tool pretty print.py is a filter which accepts a JSON-encoded SIR unit on
input and produces its pretty-printed representation on output. The format of the tool’s
output will be familiar to readers of this thesis, as it is exactly the format we describe
in Chapter 1. The tool accepts no command line arguments.

For graphical visualization of the unit, the tool cfg2dot.py transforms a JSON-
encoded unit to a .dot file, which can be passed to the dot program (part of the
graphviz package). The tool produces the file onto the standard output. If dot is on
the system search path, the tool cfg2pdf.py can be used to transorm a SIR unit directly
to a PDF document.

Throughout the development of cpp2sir tool, it became clear that PDFs are indis-
pensable for diagnosting test fails. Therefore, the tool tests2pdf.py was developed,

1The subgraph isomorphism is an NP-complete problem. However, SIR nodes can often be differ-
entiated by the attached SIR instruction, and therefore the tests run reasonably fast even on large
graphs.

CHAPTER 5. TOOLS 50

which traverses all SIR unit files passed to it on the command line (standard UNIX
wildcards, also known as globs, are allowed) and for each such file it

1. creates a PDF version of that file, storing it under a name constructed by appending
.pdf extension to the unit file, and

2. looks for a file with the same name as the unit file, but with .cpp extension, runs
the cpp2sir parser on it, and generates a PDF file from the output; again the
name of the file is constructed by appending .pdf to the name of the source file.

Using this tool allows one to generate PDFs for all test files (both pattern and source
files) in a single step.

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, tech-
niques, and tools. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1986. isbn: 0-201-10088-6.

[2] American National Standards Institute. ANSI/ISO/IEC 9899-1999: Programming
Languages — C. 1430 Broadway, New York, NY 10018, USA: American National
Standards Institute, 1999, ???? isbn: ???? url: http://webstore.ansi.org/
ansidocstore/product.asp?sku=ANSI%2FISO%2FIEC+9899%2D1999.

[3] Jǐŕı Barnat, Luboš Brim, and Petr Ročkai. “DiVinE 2.0: High-Performance Model
Checking”. In: 2009 International Workshop on High Performance Computational
Systems Biology (HiBi 2009). IEEE Computer Society Press, 2009, pp. 31–32.

[4] Clang contributors. Clang: a C language family frontend for LLVM. Feb. 2011.
url: http://clang.llvm.org/.

[5] Clang contributors. Clang Compiler User’s Manual. May 2011. url: http://

clang.llvm.org/docs/UsersManual.html.

[6] GCC Wiki Contributors. Structure of GCC. Feb. 2011. url: http://gcc.gnu.
org/wiki/StructureOfGCC.

[7] P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction of Approximation of Fixed Points”.
In: Proceedings of the 4th ACM Symposium on Principles of Programming Lan-
guages, Los Angeles. New York, NY: ACM, 1977, pp. 238–252.

[8] D. Crockford. RFC 4627: The application/json Media Type for JavaScript Object
Notation (JSON). Feb. 2011. url: http://www.ietf.org/rfc/rfc4627.txt.

[9] Ron Cytron et al. “Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph”. In: ACM Transactions on Programming Languages
and Systems 13.4 (1991), pp. 451–490. url: http://doi.acm.org/10.1145/

115372.115320.

[10] Dick Grune and Ceriel J. H. Jacobs. Parsing techniques: a practical guide. Upper
Saddle River, NJ, USA: Ellis Horwood, 1990. isbn: 0-13-651431-6.

51

http://webstore.ansi.org/ansidocstore/product.asp?sku=ANSI%2FISO%2FIEC+9899%2D1999
http://webstore.ansi.org/ansidocstore/product.asp?sku=ANSI%2FISO%2FIEC+9899%2D1999
http://clang.llvm.org/
http://clang.llvm.org/docs/UsersManual.html
http://clang.llvm.org/docs/UsersManual.html
http://gcc.gnu.org/wiki/StructureOfGCC
http://gcc.gnu.org/wiki/StructureOfGCC
http://www.ietf.org/rfc/rfc4627.txt
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320

BIBLIOGRAPHY 52

[11] Seth Hallem et al. “A system and language for building system-specific, static anal-
yses”. In: Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation. PLDI ’02. Berlin, Germany: ACM, 2002,
pp. 69–82. isbn: 1-58113-463-0. doi: http://doi.acm.org/10.1145/512529.
512539. url: http://doi.acm.org/10.1145/512529.512539.

[12] ISO. ISO/IEC 14882:1998: Programming languages — C++. Available in elec-
tronic form for online purchase at http://webstore.ansi.org/ and http://www.

cssinfo.com/. Geneva, Switzerland: International Organization for Standardiza-
tion, Sept. 1998, p. 732. isbn: ???? url: http://www.iso.ch/cate/d25845.html;
https://webstore.ansi.org/;http://webstore.ansi.org/ansidocstore/

product.asp?sku=ISO%2FIEC+14882%2D1998;http://webstore.ansi.org/

ansidocstore/product.asp?sku=ISO%2FIEC+14882%3A1998.

[13] ISO. ISO/IEC 14882:2003: Programming languages — C++. Geneva, Switzerland:
International Organization for Standardization, 2003, p. 757. isbn: ???? url: http:
//www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=

38110.

[14] ISO/IEC 14882:2003: Programming languages: C++. 2003. url: http://www.
iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38110.

[15] Chris Lattner. LLVM Language Reference Manual. Feb. 2011. url: http://llvm.
org/docs/LangRef.html.

[16] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation”. In: Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04). Palo Alto, Califor-
nia, 2004.

[17] Steven S. Muchnick. Advanced compiler design and implementation. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1997. isbn: 1-55860-320-4.

[18] David Schmidt. “Abstract interpretation of small-step semantics”. In: Analysis and
Verification of Multiple-Agent Languages. Ed. by Mads Dam. Vol. 1192. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 1997, pp. 76–99.

[19] Code Sourcery. Itanium C++ ABI. Jan. 2011. url: http://www.codesourcery.
com/public/cxx-abi/abi.html.

[20] Alfred Tarski. “A lattice-theoretical fixpoint theorem and its applications.” In:
(1955).

[21] Mark N. Wegman and F. Kenneth Zadeck. “Constant propagation with conditional
branches”. In: ACM Transactions on Programming Languages and Systems 13
(1991), pp. 291–299.

[22] Glynn Winskel. The formal semantics of programming languages: an introduction.
Cambridge, MA, USA: MIT Press, 1993. isbn: 0-262-23169-7.

http://dx.doi.org/http://doi.acm.org/10.1145/512529.512539
http://dx.doi.org/http://doi.acm.org/10.1145/512529.512539
http://doi.acm.org/10.1145/512529.512539
http://www.iso.ch/cate/d25845.html; https://webstore.ansi.org/; http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%2D1998;http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%3A1998
http://www.iso.ch/cate/d25845.html; https://webstore.ansi.org/; http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%2D1998;http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%3A1998
http://www.iso.ch/cate/d25845.html; https://webstore.ansi.org/; http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%2D1998;http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%3A1998
http://www.iso.ch/cate/d25845.html; https://webstore.ansi.org/; http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%2D1998;http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%3A1998
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38110
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38110
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38110
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38110
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38110
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://www.codesourcery.com/public/cxx-abi/abi.html
http://www.codesourcery.com/public/cxx-abi/abi.html

	Introduction
	Intermediate representation
	Syntax
	Semantics
	Multithreaded programs
	JSON encoding of SIR program units
	Tagging
	Merging of SIR units

	Modelling of C++ features
	Naming of program entities
	Fundamental types
	References
	String literals
	Unions
	Raw memory
	Argument passing
	Variadic functions
	Virtual dispatch
	Dynamic allocation
	Exceptions
	Subroutine layout

	Parsing C++ programs
	Sentinel nodes
	Extended operands
	Execution context
	Exception paths

	Automaton checker
	Pattern matching
	Checker description
	Propagation and error checking

	Tools
	Translator
	Testing
	Pretty printing

	Bibliography

