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Many mutualisms involve inter-specific resource exchanges, making consumer–
resource approaches ideal for studying their dynamics. Also in many cases2

these resources are short lived (e.g. flowers) compared with the population
dynamics of their producers and consumers (e.g. plants and insects), which4

justifies a separation of time scales. As a result, we can derive the numer-
ical response of one species with respect to the abundance of another. For6

resource consumers, the numerical responses can account for intra-specific
competition for mutualistic resources (e.g. nectar), thus connecting com-8

petition theory and mutualism mechanistically. For species that depend on
services (e.g. pollination, seed dispersal), the numerical responses display sat-10

uration of benefits, with service handling times related with rates of resource
production (e.g. flower turnover time). In both scenarios, competition and12

saturation have the same underlying cause, which is that resource produc-
tion occurs at a finite velocity per individual, but their consumption tracks14

the much faster rates of population growth characterizing mutualisms. The
resulting models display all the basic features seen in many models of fac-16

ultative and obligate mutualisms, and they can be generalized from species
pairs to larger communities.18

Keywords: mutualism, resources, services, steady-state, functional and nu-
merical response20
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Introduction

- Nous ne notons pas les fleurs, dit le géographe22

- Pourquoi ça! c’est le plus joli!

- Parce que les fleurs sont éphémères24

Le Petit Prince, Chapitre XV – Antoine de Saint-Exupéry

Early attempts to model the dynamics of mutualisms were based on phenomenologi-26

cal descriptions of interactions. The best known example involves changing the signs
of the inter-specific competition coefficients of the Lotka-Volterra model, to reflect the28

positive effects of mutualism (Vandermeer and Boucher, 1978; May, 1981). This simple,
yet insightful approach, predicts several outcomes depending on whether mutualism is30

facultative or obligatory. One example is the existence of population thresholds, where
populations above thresholds will be viable in the long term, but populations below will32

go extinct. The same approach however, reveals an important limitation, that the mutu-
alists can help each other to grow without limits, in an “orgy of mutual benefaction” (sic.34

May, 1981), yet this is never observed in nature. One way to counter this paradox is
to assume that mutualistic benefits have diminishing returns (Vandermeer and Boucher,36

1978; May, 1981), such that negative density dependence (e.g. competition) would catch
up and overcome positive density dependence (mutualism) at higher densities. This38

makes intuitive sense because organisms have a finite nature (e.g. a single mouth, finite
membrane area, minimum handling times, etc), causing saturation by excessive amounts40

of benefits. Other approaches consider cost-benefit balances that change the sign of
inter-specific interactions from positive at low densities (facilitation) to negative at high42

densities (antagonism) (Hernandez, 1998).
Holland and DeAngelis (2010) introduced a general framework to study the dynamics44

of mutualisms. In their scheme two species, 1 and 2, produce respectively two stocks of
resources which are consumed by species 2 and 1, according to Holling’s type II func-46

tional response, and which are converted into numerical responses by means of conver-
sion constants. In addition, they consider costs for the interaction in one or both of the48

mutualists, which are functions of the resources offered to the other species, also with
diminishing returns. In their analyses, the resources that mediate benefits and costs are50

replaced by population abundances as if the species were the resources themselves. This
assumption enables the prediction of a rich variety of outcomes, such as Allee effects,52

alternative states, and transitions between mutualisms and parasitisms.
The work of Holland and DeAngelis (2010) uses concepts of consumer-resource theory54

to study the interplay between mutualism and antagonism at population and commu-
nity levels, but the functional responses are not actually derived from first principles. In56

other words, there is no explicit mechanism that justifies why the resource provided by
species 1, can be replaced by the abundance of species 1 (or some function of it). If the58
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functional responses are considered phenomenologically that is not a problem, consumer-
resource theory makes predictions using phenomenological relationships, like the Monod60

and Droop equations (Grover, 1997). For example, the half-saturation constant for mu-
tualism in species 1 is a trivial concept, it is just the abundance of species 2 that produces62

half of the maximum benefit that species 1 can possibly receive. But things can be con-
ceptually problematic when these saturating responses are rewriten and interpreted in64

the style of Holling’s type II disc equations (Vázquez et al., 2015) because, what is the
handling time of a plant that uses a pollinator or seed disperser? Or at which rate does66

a plant attack a service?
I will show that in some scenarios of mutualism, it is very convenient to consider68

the dynamics of the resources associated with the interaction in a more explicit manner,
before casting them in terms of the abundances of the mutualists. As it turns out in many70

situations, these resources, or the resource providing organs, have life times that are on
average much shorter than the lives of their producers and consumers. For example, the72

life of a tree can be measured in years and that of a small frugivore in months, but many
fruits do not last more than a few weeks. Given their fragility and cost (Primack, 1985;74

McCall and Irwin, 2006), flowers are definitely ephemeral in comparisson with pollinators
like hummingbirds, but certainly not to mayflies1. Processes like diffusion and chemical76

reactions, can remove nutrients faster than the life cycles of their intended consumers.
Taking advantage of this fact, the resources can be assumed to attain a steady-state78

against the backdrop of the population dynamics, and thus be quantified in terms of
the present abundances of the providers and the consumers in a mechanistic manner.80

Using this approach, it is possible not just to derive the numerical responses in terms of
populations abundances, but also to do it in terms of parameters that could be measured,82

such as the rates of resource production, their decay, and consumption. Intra-specific
competition for mutualistic benefits can be related to consumption rates, and concepts84

such as the “handling time” of a plant would make sense, not just intuitively. This in turn
opens the possibility of framing the costs of mutualism by means of trade-offs relating86

vital parameters. The scenarios presented here are meant to promote more thinking in
this direction, that of considering the separation of time scales, in order to tie together88

mutualism, competition, and consumer–resource theories in more mechanistic ways.

Exchanges of resources for resources90

Consider two species i, , j = 1, 2 providing resources to each other. Their population
biomasses (Ni) change in time (t) according to the differential equations:92

dN1

dt
= G1(·)N1 + σ1β1F2N1

dN2

dt
= G2(·)N2 + σ2β2F1N2

(1)

1Mayflies belong to the order Ephemeroptera a word derived from the Greek ephemera meaning short-
lived, and ptera meaning wings. This is a reference to the short lifespan of most adult mayflies.
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where Fi is the amount of resources or food provided by species i, βi is the per-capita
consumption rate per unit resource by species i, and σi its conversion ratio into biomass.94

The function Gi is the per-capita rate of change of species i when it does not interact with
species j by means of the mutualism. The resource dynamics is accounted by a second96

set of differential equations:

dF1

dt
= α1N1 − ω1F1 − β2F1N2

dF2

dt
= α2N2 − ω2F2 − β1F2N1

(2)

Here I assume that the resource is produced in proportion to the biomass of the provider98

with per-capita rate αi, and it is lost or decays with a rate ωi if it is not consumed. I also
assume that the physical act of resource consumption does not have an instantaneous100

negative impact such as damage or death, on the provider (e.g. they don’t constitute
vital body parts). There are costs associated with resource production, but they do not102

affect the derivations that follow here as well as in the next section. Nevertheless, the
potential consequences of different kinds of costs are briefly discussed at the end of this104

work.
As stated in the introduction, the life time of food or resource items can be much106

shorter than the dynamics of the populations; in other words, we can consider a slow
dynamics for the populations and a fast one for the resources (Rinaldi and Scheffer,108

2000). As a consequence, the resources will asymptotically approach a steady-state
or quasi-equilibrium dynamics well before the populations display significative changes.110

Thus, assuming that dFj/dt ≈ 0 in equations (2), the steady-state amount of resources:

Fj ≈
αjNj

ωj + βiNi
(3)

can be substituted in the dynamical equations of the populations (1) using the appropri-112

ate indices:

dN1

dt
=

{
G1(·) +

σ1β1α2N2

ω2 + β1N1

}
N1

dN2

dt
=

{
G2(·) +

σ2β2α1N1

ω1 + β2N2

}
N2

(4)

In model (4), the larger the receiver population, the lower the per-capita rates of114

acquisition of mutualistic benefits. The decrease in returns experienced by receiver i
happens because the resource produced by the provider (αjNj), must be shared among116

an increasing numbers of individuals, each taking a fraction βi/(ωj+βiNi). This in effect
describes intra-specific competition for a finite source of energy or resources, as originally118

modeled by Schoener (1978), with the only difference that in Schoener’s models resource
supply rates are constant. The interaction mechanism can be generalized to multiple120

species, by adding additional consumption terms in equations (1,2). After the steady-
state assumption, the multispecies version of equations (4) for species 1 will be:122
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dN1

dt
=

G1(·) +
∑
j

σj1βj1αjNj

ωj +
∑

k βjkNk

N1 (5)

where the index k belongs to species in the same guild as species 1 (its competitors,
including itself), and index j belongs to the guild of its mutualistic partners. Similar124

equations apply for the other species, with changes in the appropriate indices. Equation
(5) is a multi-resource extension of Schoener (1978) competition models.126

Characterizing the system dynamics requires explicit formulations of the growth rates
in the absence of mutualistic benefits, i.e. the Gi functions. These functions can range128

from very simple to very complicated depending on the biology of the species, alternative
food sources, whether mutualism is obligate or facultative, self-regulation mechanisms,130

interactions with other species, and even the interactions between species 1 and 2 by
means other than mutualism (Holland and DeAngelis, 2010). For illustration, I will132

consider the widespread assumption (Holland and DeAngelis, 2010; Johnson and Ama-
rasekare, 2013) that Gi is linearly decreasing on species i abundance:134

Gi(Ni) = ri − ciNi (6)

where ci > 0 is a coefficient of self-limitation and ri is the intrinsic growth rate of i, which
is positive for facultatives and zero or negative for obligate mutualists. By substituting136

(6) in (4), it turns out that species 1 increases (dN1/dt > 0) if:

N2 >
(c1N1 − r1)(ω2 + β1N1)

σ1β1α2
(7)

and decreases otherwise. With an equal sign (7) is the nullcline of species 1. The nullcline138

is an increasing parabola in the positive part of the N1N2 plane. This nullcline has two
roots in the N1 axis, one at −ω2/β1 which is always negative, and one at r1/c1 which140

is negative or zero if species 1 is an obligate mutualist, or positive if it is a facultative
mutualist. For a facultative mutualist r1/c1 is also its carrying capacity, while for an142

obligate mutualist a negative r1 can be its intrinsic mortality. Species 2 nullcline is
similar with the indices swapped. Figure 1 shows the possible outcomes of the interaction,144

which ranges from having a globally stable mutualistic equilibrium when both species
are facultative mutualists, to a locally stable equilibrium and dependence on the initial146

conditions when one or both species are obligate mutualists. The dynamics under the
steady approximation (4) is quantitatively different that in the original mechanism (1,148

2), but this discrepancy can be very low if the resource dynamics is fast enough, as shown
numerically in the Appendix.150

Note that in this resource–for–resource model, the resources are assumed to be released
in an external pool, which is accessible, in principle, for all members of each population.152

A good example are non-symbiotic bacteria that raise soil nitrogen, which is absorbed
by the plants, which in turn release organic exudates in the soil, which is taken by the154

bacteria (Vadakattu and Paterson, 2006). Another good example is provided by lichens,
where algae provide photosynthetic products to fungi, which in turn provide nutrients to156
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Figure 1: Nullclines in mutualisms with exchange of resources for resources (4), assuming
linear self-limitation for each species. Species 1 (2) has the solid (dashed)
nullcline. Black and white circles represent stable (nodes) and unstable (saddle)
equilibria respectively (also indicated by arrows nearby). A: When both species
are facultative mutualists, their nullclines always cross once giving rise to a
single globally stable mutualistic equilibrium. When species 1 is facultative
and species 2 is an obligate mutualist their nullclines may cross as in B: once,
giving rise to a single globally stable mutualistic equilibrium; or as in C: twice,
giving rise to an unstable and a locally stable mutualistic equilibrium. When
both species are obligate mutualists, their nullclines may cross at two points
(never a single one), an unstable and a locally stable mutualistic equilibrium.
The existence of an unstable mutualism means that the obligate species (species
2 in C, both species in D) may go extinct depending on the initial conditions or
external perturbations. With the exception of case A, the nullclines may also
never cross, leading to the extinction of one or both species (not shown).
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the algae (Holland and DeAngelis, 2010), yet neither algal cells nor fungal hyphae live
inside each other bodies. A very common scenario however, involves one species hosting158

an endosymbiont (Holland and DeAngelis, 2010), like for example legumes (hosts) and
micorrhizal fungi (symbionts). In this case, each plant assimilates the nutrients (e.g.160

nitrogen) provided by its private population of fungi, which in turn can only take the
organic compunds provided by its plant. For this scenario, equations like (1) account for162

the biomass dynamics of an individual plant, instead of all plants, and for their private
micorrhizal populations (a detail seldom considered by generalized models of mutualism).164

Exchanges of resources for services

This time I will consider that only species 1 is the food provider, and species 2 gives a166

service to species 1 as a consequence of food consumption. This situation occurs under
pollination or in frugivorous seed dispersal for example. Thus, let us assume that species168

1 is a plant and species 2 an animal. The dynamical equations for plants and animals
are:170

dN1

dt
= G1(·)N1 + σoβoFNo + σ1βFN2

dN2

dt
= G2(·)N2 + σ2βFN2

(8)

In this scheme F is the number of flowers or fruits produced by the plant, and β is
the rate of pollination or frugivory by the animal. The animal’s equation is not different172

than before (1). The plant’s equation must be changed to reflect that plants do not eat
anything provided by the animals. This is an important detail that makes the conversion174

ratios or yields (σi) very different between plants and animals. For animals it is generally
assumed, in particular when populations are accounted by biomass rather than numbers,176

that conversion ratios are smaller than 1 (σ2 < 1). For plants however, the overall yield
can be smaller or larger than one. This is because each flower or fruit can give rise to a178

potentially large number of new adult plants (a so called “amplification factor” by Fagan
et al., 2014), with upper limits imposed by the number of ovules or seeds, per flower or180

fruit respectively. This is not just valid if populations are accounted by numbers, but
also if we consider biomass: a new generation of plants does not grow out of resources182

taken from the animals, but from resources that are not accounted by the model (e.g.
water, nutrients). Of course, risks associated with the interactions with the animal (e.g.184

pollen eating, seed mastication), means that the yield can end up being smaller than 1.
The additional plant term σoβoFNo acknowledges that pollination or seed dispersal186

could be performed by a different animal than species 2 (species “o”), or by abiotic factors
like wind (then βo, No would be proxies of e.g. wind flux, and σo the corresponding yield).188

Flower or fruit production is proportional to plant’s abundance, and losses occur due to
withering, rotting, pollination or consumption:190

dF

dt
= αN1 − ωF − βoFNo − βFN2 (9)
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The case of flowers deserves particular attention. Whereas a single act of frugivory
denies a fruit to other individuals ipso facto, a single act of pollination will hardly destroy192

a flower. Certainly, each pollination event brings a flower closer to fulfilling its purpose,
to close, and to stop giving away precious resources (nectar). Each pollination event194

also makes a flower less attractive to other pollinators, as it becomes less rewarding or
damaged. This means that the decrease in flower quantity due to pollination (βFN2)196

involves a certain amount of decrease in quality, rendering them useless for plants and
animals, a little bit each time. Thus, the pollination rate in (9) shall rather be cast as198

κβFN2 where 0 < κ ≤ 1 is the probability that a flower stops working as a consequence
of pollination. This complication can be relevant in specific scenarios, but it does not200

affect the generality of the results derived, which is why it is not considered (so κ = 1).
A second important detail concerning flowers is that the visit by an individual pollinator202

may not cause pollination, because that individual has not yet visited a flower for the first
time. Thus, equations (8, 9) are only valid after some pollinators have already visited204

some flowers.
Similar to the previous scenario, assume that acts of pollination or frugivory do not206

entail damage for individual plants, notwithstanding the fact that flowers and fruits are
physically attached to them. Like before, consider that flowers or fruits are ephemeral208

compared with the lives of plants and animals. Thus F will rapidly attain a steady-state
(dF/dt ≈ 0) compared with the much slower demographies. The number of flowers or210

fruits can be cast a function of plant and animal abundances F ≈ αN1/(ω+βoNo+βN2),
and the dynamical system (8) as:212

dN1

dt
=

{
G1(·) +

σoβoαNo + σ1βαN2

ω + βoNo + βN2

}
N1

dN2

dt
=

{
G2(·) +

σ2βαN1

ω + βoNo + βN2

}
N2

(10)

where, not surprisingly, the equation for the animal is practically the same as in the
previous model where both species provide resources to each other. The equation for214

the plant is however very different, because its numerical response saturates with respect
to the abundance of its mutualistic partner, species 2. If No is taken as the population216

abundance of another animal species, we can see that model (10) can be generalized to
account for many species, i.e. the equation for plant 1 (and other plants) will be of the218

form:

dN1

dt
=

{
G1(·) +

α1
∑

j σj1β1jNj

ω1 +
∑

j β1jNj

}
Ni (11)

where multiple benefits are be pooled together as a saturating multi-species numerical220

response using appropriate indices. The equations for the animals will be like in model
(5). Notice that the plants do not experience competition for animal benefits, like animals222

do for plant resources. In principle, plants would compete very indirectly by influencing
animal diets (e.g. βij , where i ∈ plants, j ∈ animals), but this would require more224

elaborate mechanisms (see Discussion).
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Using (6) for Gi, it is straightforward to conclude that species 1 and 2 will respectively226

grow (dNi/dt > 0) if:

N1 <
r1
c1

+
σoβoαNo + σ1βαN2

c1(ω + βoNo + βN2)
(12)

N1 >
(c2N2 − r2)(ω + βoNo + βN2)

σ2βα
(13)

and decrease if the signs of the inequalities are respectively reversed. The nullclines are228

the same as above with “=” signs instead. The animal’s nullcline is a parabola like in
model (4) only that ω becomes ω+ βoNo. The plant’s nullcline differs from the previous230

model, it is a rectangular hyperbola, with a single root on the plant axis: r1
c1
+ σoβoαNo

c1(ω+βoNo)
.

If this root is negative, the plant is an obligate mutualist of species 2 because its intrinsic232

growth rate is negative (r1 < 0), and other means of pollination/seed dispersal (i.e.
βoNo > 0) are insufficient to compensate the losses. On the other hand if this root234

is positive, it may still be that the plant’s intrinsic growth rate is negative or zero,
yet pollination/seed dispersal not involving species 2 is enough to sustain the plant’s236

population. The maximum abundance that the plant could attain thanks to species 2
is limited by the plant’s nullcline asymptote at N1 = (r1 + σ1α)/c1. This means that if238

the plant’s intrinsic growth rate is negative, the rate of flower/fruit production (α) times
the returns (σ1) from the mutualism, must overcome mortality (ασ1 > −r1), otherwise240

the abundance of species 2 will not prevent the extinction of the plant. Figure 2 shows
the graphs of the nullclines. The outcomes are qualitatively the same as in model (4),242

as shown by Figure 2. The numerical discrepancies between the dynamics in the original
model (8, 9) and its steady-state approximation (10) are shown and discussed in the244

Appendix.
The numerical response of the plant in (10) enables mechanistic interpretations for the246

saturation constants, rates and handling times, of species that rely on services rather
than material resources (e.g. food). Let us assume for the moment that the plant relies248

exclusively on species 2 for pollination or dispersal services (or No = 0). Dividing the
numerator and the denominator of the numerical response by β, it can be written in the250

Michaelis–Menten form:

vN2

K +N2
=

αN2

(ω/β) +N2
(14)

where the maximum rate at which a plant acquires benefits v = α is set by the rate252

at which it can produce fruits or flowers, and the half-saturation constant K = ω/β
is the ratio of the rate at which flower or fruits are wasted rather than used by the254

animal, in other words a quantifier of inefficiency. It turns out that in the jargon of
enzyme kinetics where the Michaelis-Menten formula is widely used, the half-saturation256

constants is inverse of the affinity between an enzyme and its substrate. If the analogy
were that of flower or fruits being substrates, and pollinators or frugivores being enzymes258

(i.e. facilitators), then 1/K = β/ω would be the relative affinity of the animal for the
flowers or fruits of the plant. Now, if we decide instead to divide the numerator and the260
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Figure 2: Nullclines (species 1: continuous line, species 2: dashed line) and equilibrium
points in mutualisms with exchange of resources for services (10), with linear
self-limitation for each species (species 1 receive services from species 2 only,
i.e. No = 0). The explanations for A,B,C,D are the same as in Figure 1.
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denominator of the plant’s numerical response by ω, it can be written like Holling’s disc
equation:262

aN2

1 + ahN2
=

(αβ/ω)N2

1 + (αβ/ω) (1/α)N2
(15)

where the rate at which the provider acquires benefits a = αβ/ω, is proportional to fruit
or flower production α, and to the use to waste ratio (β/ω), e.g. the efficiency or affinity264

of the pollination or seed dispersal process. The “handling time” of the plant becomes
h = 1/α, i.e. the average time it takes to create new flowers or fruits.266

Discussion

By using a separation of time scales and the assumption of fast resource dynamics, it is268

possible to derive simple models for mutualistic interactions. In these models, the effect
of one species abundance on the growth rate of another, is mechanistically grounded,270

rather than purely phenomenological. These numerical responses display decrease due
to intra-specific competition, or because of diminishing returns in the acquisition of272

benefits, enhancing the stability of the interaction. I avoid using the term functional
response because it refers to a consumption rate, whereas a numerical response describes274

the effect of resource density on consumer growth rates (Solomon, 1949; Holling, 1961).
While it is still correct to refer to functional responses with regard to the consumption of276

resources provided by a mutualist (e.g. βiFj in equation 2 is a type I functional response),
the models derived (e.g. equation 4) describe the effect of population densities on growth278

rates, not consumption rates. Thus, the term numerical response is more appropriate in
the present context.280

In both of the scenarios considered (resource–for–resource, resource–for–service), intra-
specific competition for mutualistic resources emerges because resource production occurs282

at a finite rate per individual provider, independently of its population size. If the
population of the provider is kept constant, this results in constant amounts of resources284

provided per unit time, that will be partitioned among the members of the other species,
in their role as consumers. If the consumer population is low, then each individual receives286

a constant share, since the resource decay rate is much larger than the consumption rate
(ωi � βjNj). This is no longer true when consumer populations are large, which is when288

competition causes every individual to get a share that decreases with the number of
co-specifics (Schoener, 1978).290

In the case where only one species provides the resource, this occurs in the form of
an organ (e.g. flower, fruit) used by the provider (e.g. plant) to capture a service (e.g.292

pollination, seed dispersal) from the consumer (e.g. pollinator, frugivore). These organs
must be regularly replaced as they are used or decay, but, as in the first scenario, this294

provision happens at a finite rate per individual no matter how large is its population.
If the population of the provider is kept constant, and the population of the consumer296

is low, the rate at which the provider acquires benefits per unit of consumer depends
on the production to decay ratio (αi/ωi), such that doubling the number of consumers298
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doubles the benefits for the plants. When the consumer population is large, providers
cannot regenerate the resource providing organs faster than the rate at which they are300

used. For this reason, the more the provider helps the consumer to grow, the lower its
capacity to benefit from that increase, which explains the diminishing returns. Keep in302

mind however, that diminishing returns or saturating responses are typically not enough
to ensure stability; this requires additional factors such as negative density dependence304

in growth rates (6) or interference among consumers (Johnson and Amarasekare, 2013).
In contrast with the resource–for–resource model, in the resource–for–service model the306

resource provider (e.g. plant) does not experience intra-specific competition for mutu-
alistic services. One step in this direction is the optimal foraging model of Valdovinos308

et al. (2013), in which plants experience lotery-like competition for pollinator visits. This
model explicitly accounts for nectar production and consumption, using equations like310

2, being just one step short of the kind models here proposed.
I assumed that resource consumption follows simple mass action laws. In reality, con-312

sumption likely displays saturating functional responses (here the use of functional rather
than numerical is correct). In an interaction such as frugivory, saturation could follow314

the disc equation mechanism (Holling, 1961), where the searching time of the consumer
decreases with the number of fruits, leading to an hyperbolic function of the number316

of fruits. In pollination however, the fraction of time during which a flower is not vis-
ited, i.e. the “flower waiting time”, would decrease with the number of pollinators which318

increase the “flower working time”. Thus in contrast with frugivory, pollination must
consider simultaneous saturation in plants and animals, and the Beddington-DeAngelis320

function (Beddington, 1975; DeAngelis et al., 1975) would be a reasonable choice de-
scribing flower use. Replacing mass action laws with highly non-linear responses in the322

resource dynamics will make it very difficult to derive simple results as those presented.
The absence of these complexities in the present formulation does not however, diminish324

the approach taken, which stresses the importance of considering the ephemeral nature of
many kinds of resources shared in mutualistic interactions. The fact that these resources326

must be continuously regenerated at rates that are limited at the individual level, causes
dynamical bottlenecks in the acquisition of benefits that ought to be considered, inde-328

pendently of the resource consumption patterns. Another complication not considered is
that flowers and fruits are lost when plants die, but these processes are supposed to be330

very slow.
The parameters in models such as (4) and (10) are very likely related by trade-offs332

(Johnson and Amarasekare, 2013). It is reasonable to assume for example, that the
energy or time used to deliver resources for another species, could be spent to raise the334

provider’s intrinsic growth rate in (6), thus ∂ri/∂αi < 0. Trade-offs could also affect
the resource quality, e.g. fruits or flowers can be cheaper to produce, but at the cost of336

being very fragile or short-lived (∂ωi/∂αi > 0) (Primack, 1985). From the perspective of
a consumer, assimilation ratios (σi) can be inversely related to consumption rates (βi).338

And for generalist consumers with population dynamics described by (5), one typically
assumes that increasing the consumption rate for one resource causes the decrease in340

the consumption rates of others. Although these trade-offs do not change the general
shape of the nullclines shown in Figures (1, 2), they can lead to important changes in the342
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qualitative properties of the mutualism. For example, if the costs of providing benefits
can go as far as changing the sign of ri from positive to negative, a species could turn344

from a facultative mutualist into an obligatory one.
Another kind of cost associated with mutualisms arises because the interaction be-346

tween the species also include antagonisms. These costs are typically experienced at
similar time scales as the population dynamics (e.g. herbivory), thus they were not in348

the scope of this paper. An example are leafcutter ants that provide substrates to fungus,
but they eat them too; or butterflies that pollinate when adults, but are leaf eaters when350

larva (Revilla and Encinas-Viso, 2015). The costs of these interactions increase with the
consumer’s abundance, which is why they are typically substracted as saturating func-352

tional responses in the provider’s biomass dynamics (Holland and DeAngelis, 2010). An
important consequence of such density-dependent costs are changes in nullcline shapes,354

from monotonicaly increasing (i.e. Figures 1,2), into more complex folding curves that
can intersect multiple times, giving rise to alternative states that favor one species over356

another, depending on the initial conditions (Hernandez, 1998; Holland and DeAngelis,
2009, 2010).358

The use of time scale arguments is widespread in the ecological literature. The deriva-
tion of the competitive Lotka-Volterra equations by MacArthur (1970) is a well known360

example. A lesser cited example but the most relevant here, are the competitive mod-
els derived by Schoener (1978), which consider the partition of resource inflows (e.g.362

equation 3). Holling’s (1961) disc equation assumes a predation cycle embedded into
a longer time scale of population dynamics. Fishman and Hadany (2010) derived a364

Beddington-DeAngelis functional response in the specific case of bee pollination, by con-
sidering details such as flower and patch states, and flower–nest traveling times. And for366

protection mutualisms Morales et al. (2008) employed time scale arguments in order to
simplify the study of ant protection mutualisms.368

The scenarios suggested herein are far from exhaustive and the mechanistic details can
be higher. But on the other hand, the models developed are of a general nature, they370

can encompass most plant–frugivore mutualisms in addition to plant–pollinator ones,
when the resources are traded for services. They may not capture all the intricacies of372

plant–mycorrhizae systems, or coral–zooxanthellae, where organic compounds are traded
directly and privately between individuals, but they capture simple facilitation or mutual374

saprophytism of the kind described by Vadakattu and Paterson (2006), or in lichens. One
goal of this work is to see, to what extent, simple time scale assumptions can help unify376

consumer–resource, mutualism and competition theories. Another goal concerns the
mechanistic derivation of generic models, with few complexities, but based on parameters378

that can be potentially measured such as rates of flowering or nectar production and
decay, and consumption rates.380
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Appendix442

From the main text the original model of exchanges of resources for resources reads:

dNi

dt
= (ri − ciNi)Ni + σiβiFjNi

dFj
dt

= αjNj − ωjFj − βiFjNi

(A.1)

in which Gi = ri − ciNi. Following the steady-state approximation (dFj/dt = 0) this444

model becomes:
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Figure A.1: Dynamics of the original mutualistic model (A.1) in the left column, and
of the steady-state model (A.2) in the right column. For each simulation
in the original model a simulation in the steady-state model is done using
the same initial conditions for species abundances. Blue (green) lines are for
species i = 1 (= 2); ri = {0.007, 0.01}, ci = {0.002, 0.001}, σi = {0.5, 0.3},
αi = {0.02, 0.03}, ωi = {0.2, 0.1}, βi = {0.1, 0.15}.

dNi

dt
=

{
ri − ciNi +

σiβiαjNj

ωj + βiNi

}
Ni

Fj =
αjNj

ωj + βiNi

(A.2)

In Figure A.1 we compare the dynamics of both models (A.1,A.2) numerically using ten446

replicates. In these simulations the growth rates ri and self-limitation coefficients ci were
set at very low values compared with resource production αi, decay ωi, and consumption448

βi rates; in some cases the differences are more than two orders of magnitude. This makes
resource dynamics much faster than population dynamics. Both models start with the450

same initial values for the species population abundances.
From the main text the original model of exchanges of resources for services can be452

stated as:
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dN1

dt
= (r1 − c1N1)N1 + σ1βFNo + σ1βFN2

dN2

dt
= (r2 − c2N2)N2 + σ2βFN2

dF

dt
= αN1 − ωF − βFNo − βFN2

(A.3)

in which Gi = ri − ciNi, and σo = σ1, βo = β for simplicity. Following the steady-state454

approximation (dFj/dt = 0) this model becomes:

dN1

dt
=

{
r1 − c1N1 +

σ1βαNo + σ1βαN2

ω + βNo + βN2

}
N1

dN2

dt
=

{
r2 − c2N2 +

σ2βαN1

ω + βNo + βN2

}
N2

F =
αN1

ω + βNo + βN2

(A.4)

In Figure A.2 we compare the dynamics of both models (A.3,A.4) numerically using ten456

replicates. Most of the parameters are similar to those used in the model of exchange of
resources for resources (ri, ci, α, ω, β), in order to make the resource dynamics much faster458

than population dynamics. However, whereas the conversion efficiency of the resource
consumer is less than 1 as before, for the service receiver (species 1) it is larger than 1,460

for the reasons stated in the main text.
For both models the simulations show discrepancies at starting times because for equa-462

tions like (A.1,A.3) the initial values of Fj can be arbitrary, whereas in models like
(A.2,A.4) they are determined by the initial species abundances. After less than 10 time464

units, the transient dynamics are very similar in both models. In fact, the differences
between both models can be chosen to be as little as desired, by widening the time scales466

between population and resource dynamics.
Using again the resource for service model (A.3), one last calculation illustrates the468

large difference between population and resource time scales. When plants and animals
don’t interact, they grow logistically as in dNi/dt = (ri − ciNi)Ni. Thus, their doubling470

times at low population densities, and perturbation half-times around their carrying
capacities, are: τi = loge(2)/ri. Using the parameter values of Figure A.2, these are472

τ1 ≈ 99 and τ2 ≈ 69 time units for plants and animals respectively. Now consider that
they start to interact, with N1, N2 are nearly constant around their carrying capacities.474

During the very short time this constancy holds, the fruit/flower ODE in (A.3) can be
integrated as:476

F (t) =
αN1(0)

ω + βN2(0)
+

[
F (0)− αN1(0)

ω + βN2(0)

]
e−(ω+βN2(0))t (A.5)

were N1(0) = r1/c1 = 1.4, N2(0) = r2/c2 = 10 and F (0) are the initial conditions
(t = 0). As time goes on, the resource asymptoticaly approaches the steady-state value478

αN1(0)/(ω + βN2(0)), but this could be a very long time. Instead, consider the time
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Figure A.2: Dynamics of the original mutualistic model (A.3) in the left column, and of
the steady-state model (A.4) in the right column. For each simulation in the
original model a simulation in the steady-state model is done using the same
initial conditions for species abundances. Blue (green) lines are for species
i = 1 (= 2); ri = {0.007, 0.01}, ci = {0.002, 0.001}, σi = {2, 0.3}, α = 0.02,
ω = 0.2, β = 0.15, and No = 0.1.
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required to halve the difference between the steady-state and the initial condition (the480

square bracket), this can be calculated by setting:

e−(ω+βN2(0))t =
1

2

and solving for t. The result is τF = loge(2)/(ω+βN2(0)) ≈ 0.4 time units, which is two482

orders of magnitude below τ1 and τ2. To put this in perspective, by the time the resources
are halfway from the steady-state originaly set by the producer and the consumer, they484

would have grow or decrease less than 1%.
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