
Solving CSP with CSP

Peter Barth, Michael Duchmann, Agnetha-Kristin Kraus, and Arne Leonhardt

Hochschule RheinMain, Wiesbaden, Germany
bitbucket.org/gofd/gofd

September 5, 2014

Abstract. We propose to solve Constraint Satisfaction Problems (CSP) with a
concurrent finite domain constraint solver (gofd) based on the Communicating
Sequential Processes (CSP) paradigm. A central constraint store manages a col-
lection of independently running propagators that work on copies of the available
finite domains and post domain reductions back to the store. The store itself ac-
counts for all domains and communicates domain reductions back to potentially
affected propagators. The constraint solver is implemented in the Go program-
ming language. The architecture provides for scaling in multiprocessor environ-
ments on the propagator level.

Keywords: constraint satisfaction problems, communicating sequential processes,
finite domain constraints, constraint solving, propagators, parallelism

1 Introduction

Solving widely applicable “Constraint Satisfaction Problems” [11] is notoriously hard.
Fortunately, solvers can benefit from multicore architectures. However, most approaches
focus only on distributing labelling to independent agents [13], which happens after
consistency is achieved. In contrast, we propose to deploy propagators as independent
agents that reduce finite domains to achieve consistency. Thus, parallelisation is also
exercised on the propagator level. The independent agents work on copies of the finite
domains and communicate domain reductions following the “Communicating Sequen-
tial Processes” paradigm [6] as provided in the Go programming language [9]. We use a
selection of “Constraint Satisfaction Problems” to analyse the performance of the gofd
system on single and multicore machines.

First, we introduce constraint satisfaction problems and their modelling with fi-
nite domain constraints. Then we give a broad overview of current solver technologies
focusing on achieving local consistency. We follow the “Communicating Sequential
Processes” paradigm to introduce parallelism to constraint propagation. Then we detail
propagation algorithms that are triggered by and provoke domain reductions follow-
ing an example. Afterwards, the architecture of the developed concurrent finite domain
constraint solver is described. Then, we discuss why sequences of intervals are the pre-
ferred choice of the domain representation and why some form of arc consistency is the
preferred level of consistency of the implemented propagators. Finally, some empirical
results are given followed by the conclusion.

1

2 Existing Work

First, we present constraint satisfaction problems, which are typically modelled and
solved as finite domain problems [11, 12] where sets of possible values of integer vari-
ables are reduced and then a solution is searched by means of enumeration. Then, we
introduce a concurrent programming paradigm based on coroutines [6] that we employ
for the domain reductions.

Solving Constraint Satisfaction Problems Constraint satisfaction problems are used
to model and solve many NP-complete practical problems. They consist of three com-
ponents [11]: variables, domains, and constraints. Variables have finite domains consist-
ing of a finite set of integers such as X and Y that may have the domain {1,2,3,4,5,6},
representing the allowed assignments. Constraints express the relation between their
variables, for example X +Y = 9. A solution to a constraint satisfaction problem is an
assignment of domain values to their variables satisfying all constraints. However, not
all values in a finite domain may occur in a satisfying assignment. The ones that do
not, can be safely removed without changing the solution space. A set of constraints is
consistent, if only values occurring in at least one solution are present and no domain is
empty. In our example the values 1 and 2 can be removed in both X and Y . If more than
one constraint is given, local consistency can be achieved by checking each constraint
separately. Note, that this does not exclude all impossible values. For example, the con-
straints X 6=Y , X 6= Z, Y 6= Z with X ,Y,Z ∈ {0,1} are locally consistent, as individually
each constraint has valid assignments. However, the constraints imply that X ,Y , and Z
must all have different values, which is obviously unsatisfiable as all three domains of
the variables have the same two values.

This failure can be detected by trying to achieve global consistency via enumeration
or labelling. With labelling, each possible combination is tried until a solution is found
or the search space is exhausted resulting in a failure. The search space is implicitly enu-
merated by backtracking with the aim to detect failure as early as possible. The number
of search nodes and therefore the running time is often heavily influenced by the selec-
tion of the variable and the selection of the value for that variable suggesting the use
of heuristics. In addition, at each search node local consistency is ensured, which again
can be strengthened by more sophisticated algorithms or more sophisticated global con-
straints, which typically reduce more values in one go. Despite their name, they are not
achieving global consistency, but they are still running in (low) polynomial time.

Achieving different forms of local consistency is called propagation and is done
with propagators that check in their simplest implementation if every possible value in
the variable’s domain suits the constraint and remove the ones that do not. Note, that
values are only removed from, but never added to domains by propagators. Continually
removing values might cause one domain to become empty, which causes the entire
store be inconsistent and represents failure. In case there remains only one value in
the domain the variable is called fixed or ground. Fixing a variable typically provokes
domain reductions in other variables. In the above example fixing X to 0 removes 0
from Y and from Z via propagation. If only 1 remains as value for Y then Z becomes
empty or vice versa. Thus, propagation results in a failure. Via backtracking, X is then

2

fixed to 1, which forces Y to 0 and Z to have the empty domain. The search space is
exhausted and global inconsistency is shown.

In order to propagate, propagators differentiate between input and output variables.
During propagation the domains of the input variables do not change. In contrast, out-
put variables are affected by domain changes which are normally processed centrally.
Therefore, it is possible to divide the propagator further into one independent agent per
output variable, so that this unit only examines the domain of the output variable and
the resulting changes.

Communicating Sequential Processes As we want to parallelise the propagation pro-
cess, we introduce a concurrent programming paradigm that is well suited for massively
concurrent processing based on coroutines, messaging, and local data [6]. With the prin-
ciples of communicating sequential processes we can get rid of locking at the program
level altogether. To this end, we need to pay the price to copy data and let coroutines
safely work on those local copies. The independent agents running as coroutines com-
municate through a safe message passing primitive. This paradigm together with the
sacrifice of preemptive scheduling provides an environment for massively concurrent
programs [5, 10].

Google developed its programming language Go for solving big problems in large
software landscapes [9]. It is designed for solving those problems in a distributed and
parallelised way with its concept based on the communicating sequential processes
paradigm [4]. Coroutines are called goroutines and are native to the language. By na-
ture, they are more lightweight than threads [5], which can communicate and synchro-
nise their states over a built-in concept named channels. Instead of paying attention on
subtleties required to implement correct access to shared variables, shared values should
be passed around on channels and may never be concurrently shared by different threads
in Go [4]. The principle is placard with Google’s slogan [4]: “Do not communicate by
sharing memory; instead, share memory by communicating.”.

3 Propagation and Messaging

In order to initiate propagation, every propagator has to be executed at least once up-
front. Then, the propagators will be rerun several times which is induced by domain
reduction messages. For example, there could be two different propagators [12], one
for the constraint X +Y = 9 (propagator 1) and one for 2 ·X + 4 ·Y = 24 (propaga-
tor 2). Both propagators are interested in the same two variables X and Y . Therefore,
if one propagator changes the variables’ domains, the other one has to be notified via a
message and propagate again. Every propagator has its own local copy of the domains.

The propagation process is depicted in figure 1: At first, propagator 1 is executed
which results in no changes, since every value of X can be paired with a value of Y
so that the sum is nine and the corresponding constraint is satisfied. In step 2, the sec-
ond propagator is started and values unsuitable for the constraint are removed. These
changes are collected and wrapped up into a message containing the values which have
to be deleted from the variables’ domains. For the propagation step 2 a message could
look like this: [X 6= 1,3,5,7,9,Y 6= 0,1,7,8,9]. Consequently, propagator 1 receives the

3

message and updates its copy of the locally held domain. Propagation is started again
and the values 2,8 are removed from the domain of X and the values 2,4,6 are removed
from the domain of Y . Accordingly, a message with the changes is sent to the interested
propagator 2. Propagator 2 updates its local domain copy, removes values, sends mes-
sages to propagator 1 and vice versa until no more changes are made to the domains
and propagation is finished. In our example there exists only one solution in the end,
being X = 6 and Y = 3.

1 X = {0,1,2,3,4,5,6,7,8,9} Y = {0,1,2,3,4,5,6,7,8,9} [x + y = 9] 2x + 4y = 24

2 X = {0,1,2,3,4,5,6,7,8,9} Y = {0,1,2,3,4,5,6,7,8,9} x + y = 9 [2x + 4y = 24]

3 X = {0,1,2,3,4,5,6,7,8,9} Y = {0,1,2,3,4,5,6,7,8,9} [x + y = 9] 2x + 4y = 24

4 X = {0,1,2,3,4,5,6,7,8,9} Y = {0,1,2,3,4,5,6,7,8,9} x + y = 9 [2x + 4y = 24]

5 X = {0,1,2,3,4,5,6,7,8,9} Y = {0,1,2,3,4,5,6,7,8,9} [x + y = 9] 2x + 4y = 24

6 X = {0,1,2,3,4,5,6,7,8,9} Y = {0,1,2,3,4,5,6,7,8,9} x + y = 9 [2x + 4y = 24]

Domains PropagatorsStep

Fig. 1. Simple propagation example

4 Architecture

The gofd constraint solver consists of two major parts as depicted in figure 2: the store
acting as the central control unit of the solver and the propagators as independent agents
computing domain reductions concurrently. The store manages the master copies of
the finite domain variables containing a unique identifier and a domain representing
a set of possible values. To ensure safe concurrent access, there is a variety of events
and corresponding channels to communicate domain reductions and exchange other
information between store, propagators, and calling application.

The propagators represent the constraints that are imposed on the store and con-
tain the variable identifiers of the employed finite domain variables and local copies of
their domains as well as propagator specific code. This code produces domain reduction
messages by computing local consistency according to the constraint the propagator is
describing. Each propagator holds exactly one output- and one input-channel to send
and receive these domain reduction messages to and from the store. These channels
as well as the local domain copies are retrieved from the store during the propagator’s
registration process. This triggers an initial consistency check executing the propagator
code. Future domain reductions on input variables potentially cause further propagation.
Each propagation signals completion by producing a single event message, which may
contain multiple domain reductions or may be empty, that is sent to the store. There,
the central domains are updated and changes are again distributed to dependent prop-
agators. Only these change events cause updates of the propagators local copy of the
affected domains and subsequently provoke a new consistency check. Note, that even
the source of the domain reduction may not eliminate the domain values from its local

4

copy in advance. An equilibrium is reached if no further domain reductions are pending,
meaning that no messages on the input channel nor output channel of any propagator
remain.

Store

Prop1

Prop2

Prop3

counter

Channel
Change
Entry
Change
Event

x y

x

x y

y

multiplex

multiplex

x

y

Fig. 2. Propagators and Messaging

The store manages all propagators and the global copies of the variables including
their domains. It also is an independent agent with a single coroutine receiving domain
reduction and control events and processes them sequentially. The store listens to a
control channel for control events like registering a new variable or propagator and
requesting internal state and data. Since all those events are processed one at a time in a
central loop no further synchronisation is needed when accessing the stores private data.
Control events implement a callback function, which is called during event processing
inside the stores central coroutine. All actions triggered by control events shall not do
expensive computations as propagation may be hindered otherwise.

The store as the central control unit of propagation receives change events contain-
ing multiple entries of values that have to be deleted from a variable’s domain as seen
in figure 2. These entries are retrieved from the event, the change is made to the stores
central copy of the affected domains. In case the domain is actually reduced, the change
is forwarded to all dependent propagators that are managed by a multiplexer mapping
the variable to propagator input channels. The propagators then update their local copy
of the domain and re-initiate propagation. If an event results in an inconsistent domain,
an equilibrium is reached and all propagators terminate (their input channel closes).

5

Reaching an equilibrium is a distinct event that must be made available to other
components such as labelling. It signals failure by returning false and a consistent idle
state by returning true. The store lapses into idle state as soon as there are no more do-
main reduction messages on the input and output channels. For every outgoing change
entry the store expects exactly one incoming change event. To keep track of pending
change events the store maintains an internal event counter that reaches zero if propa-
gation has ended. Only external stimuli, such as adding further propagators or domain
reductions induced by labelling, may cause further propagation.

For labelling or in order to give the user feedback that propagation has ended, we
have to provide a notification that an equilibrium is reached. We do that by providing a
distinct event on request. Note, that providing this event is by the nature of concurrent
propagation asynchronous. Consequently, after such a notification is requested, several
other messages may be processed before its answer is sent. However, from a consumer
perspective all these control events are blocking. This is done by providing a result
channel for each control event.

5 Domain Representation

A domain such as {1,2,3,4,8,9,10} can be represented as a set of values using hash-
ing, which we support. However, such an explicit representation uses a lot of memory.
As we have to copy domains more often than in classical solvers, a more compact rep-
resentation is useful. We favour the representation of domains as increasing sequence of
consecutive intervals [3, 12]. For example, the domain {1,2,3,4,8,9,10} is represented
as the interval domain [(1,4),(8,10)]. Any set of integers can be represented as a unique
interval domain. Most operations on domains involve set union, difference, or intersec-
tion operations, which can be effectively implemented using interval domains. Even if
there are large number of intervals, triggered by “holes” in the range of values, in an
interval domain, most operations perform faster than with explicit representation and
hashing [3]. Only the containment test of a single value may be faster using the explicit
representation. Therefore, and because explicit representation is also easier to under-
stand, we provide both domain representations in gofd with a clear preference for the
interval representation. Propagator implementations may use the specific advantages of
the different domain representations. However, for all communication with the store we
use an interface for the domain representation. It is the responsibility of the propagator
to check the type of domain representation and convert to a more suitable representa-
tion if necessary or refuse to work with a unsuitable representation. It is recommended
to stick with interval domains and if not, at least model the entire problem using one
other alternative domain representation. Conversion between domain representations is
supported, but due to copying during backtracking not recommended.

6 Propagators

The goal of a propagator is to eliminate values that, given the current domain of the in-
volved variables, may not lead to a solution of the constraint the propagator represents.
To this end, the propagator reacts on changes of the domains and computes possible

6

changes (removals of values) of the domains of the depending variables. Most com-
monly this local consistency is achieved by providing arc consistency. A value may
remain in the domain of a variable only if it is part of a solution assignment. Thus, for
each value it is tested, whether an assignment of all other variables of that constraint
can be found that constitutes a solution. Otherwise, if a value cannot possibly constitute
a valid assignment, the value is eliminated from the domain. For most constraints, we
provide an implementation providing arc consistency.

However, for some constraint satisfaction problems arc consistency is too expensive.
For example, if each domain of a constraint with three variables contains thousands of
values, then billions of combinations may need to be checked. In these cases it may be
more effective to use a weaker form of consistency, bounds consistency [12]. There, we
only check the bounds of the domains and not every value in between. Consequently,
we may eliminate a large chunk of consecutive numbers quickly. Obviously, bounds
consistency makes most sense when used together with the interval representation of
the domains. Some problems such as the crypto-arithmetic puzzles as described in the
next section are only computationally solvable with bounds consistency. Thus, we also
support some propagators for constraints that employ bounds consistency only.

In contrast, other problems greatly benefit from a more compact representation and
providing a stronger propagation than the local consistency of fine grained constraints.
Therefore, we also support global constraints [1]. Global constraints allow to express
in a single constraint dependencies that would normally require many classical con-
straints. The most prominent example is the AllDifferent constraint that expresses that
all variables of the constraint must contain different values. Thus, the example in sec-
tion 2 which states that X 6=Y , X 6= Z, and Y 6= Z can be more compactly represented as
AllDifferent(X ,Y,Z). This representation is not only more compact, it may also provide
for a stronger propagation as it is possible with a set of classical constraints. A prop-
agator may detect inconsistency with the domain constraints X ,Y,Z ∈ {0,1} without
resorting to enumeration. We expect global constraints to be ideally suited for our con-
current approach, as global constraints combine a compact representation with a more
expensive computation agent. Thus, eliminating the need to copy domains as well as
avoiding communication. To this end, we have implemented one global constraint, the
Among constraint [7, 2]. The Among constraint can be used as a basis for many other
global constraints and supports among others all kinds of scheduling problems, where
typically disjunctive instead of conjunctive collections of constraints are needed.

Finally, there are problems, that can be naturally modelled only if one can reason
over the truth value of the constraint itself. Thus, for each constraint Ci, we introduce a
Boolean variable Bi with the domain {0,1} for which Ci⇔ Bi holds. This principle is
called reification [12]. By using the introduced variables Bi in other constraints one can
easily express for example disjunction with the constraint ∑Bi ≥ 1. In order to support
reification we need to support negation and entailment, which is complicated to do in
general. But it works much better for some classical constraints, if their implementation
is based on a standard library of set operations called indexicals [12]. Based on these
primitives and reification also many global constraints can be more easily implemented.
gofd provides for indexicals as well as reification [3].

7

7 Evaluation

In order to avoid style and naming discussions, we follow the style and naming con-
vention of another constraint library that is embedded in a non logic programming lan-
guage, JaCoP [8]. The gofd system is available in source code under

https://bitbucket.org/gofd/gofd

and can be directly installed using standard Go conventions. A simple, complete Go

1 package main
2 import (
3 "bitbucket.org/gofd/gofd/core"
4 "bitbucket.org/gofd/gofd/propagator"
5 "fmt"
6)
7 func main() {
8 store := core.CreateStore()
9 X := core.CreateIntVarFromTo("X", store, 0, 9)

10 Y := core.CreateIntVarFromTo("Y", store, 0, 9)
11 equation1 := propagator.CreateC1XplusC2YeqC3(1, X, 1, Y, 9)
12 equation2 := propagator.CreateC1XplusC2YeqC3(2, X, 4, Y, 24)
13 store.AddPropagator(equation1)
14 store.AddPropagator(equation2)
15 fmt.Printf("consistent: %v\n", store.IsConsistent())
16 fmt.Printf("X: %s, Y: %s\n",
17 store.GetDomain(X), store.GetDomain(Y))
18 }

Listing 1: Example gofd program: two propagators

program using gofd then looks like listing 1 implementing the example in section 3. We
need to instantiate a store, then create finite domain variables and assign an initial do-
main at the same time. Propagators for the respective constraints, in this case providing
local consistency, need to be created and then added to the store. With IsConsistent
we force one consistency round to finish. Afterwards, we print the results of the propa-
gation.

consistent: true
X: [6], Y: [3]

In this example, we have not used labelling yet. But we have already seen one problem
instance in section 2, where we wanted to solve the problem that the variables X , Y , and
Z each having the domain {0,1} must be mutually different. We can solve this problem
with the gofd program in listing 2. Up until line 20, this is similar to listing 1. We create
three variables X , Y , and Z with the domain consisting of the values 0 and 1. Then

8

1 package main
2 import (
3 "bitbucket.org/gofd/gofd/core"
4 "bitbucket.org/gofd/gofd/labeling"
5 "bitbucket.org/gofd/gofd/propagator"
6 "fmt"
7)
8 func main() {
9 store := core.CreateStore()

10 boolVals := []int{0, 1}
11 var X, Y, Z core.VarId
12 core.CreateIntVarsIvValues([]*core.VarId{&X, &Y, &Z},
13 []string{"X", "Y", "Z"}, store, boolVals)
14 equation1 := propagator.CreateXneqY(X, Y)
15 equation2 := propagator.CreateXneqY(X, Z)
16 equation3 := propagator.CreateXneqY(Y, Z)
17 store.AddPropagators(equation1, equation2, equation3)
18 fmt.Printf("consistent: %v\n", store.IsConsistent())
19 fmt.Printf("X: %s, Y: %s, Z: %s\n",
20 store.GetDomain(X), store.GetDomain(Y), store.GetDomain(Y))
21 query := labeling.CreateSearchOneQuery()
22 result := labeling.Labeling(store, query)
23 fmt.Printf("solution found: %v\n", result)
24 }

Listing 2: Example gofd program: mutually different values

we add the three propagators enforcing X 6= Y , X 6= Z, and Y 6= Z, which enforce, that
all three variables have different values. Note, that local consistency does not find out,
that there is no solution. Furthermore, propagation has not reduced any domain. This is
shown by the output of the program.

consistent: true
X: [0..1], Y: [0..1], Z: [0..1]
solution found: false

To solve the problem, we need to enumerate using backtracking, which is performed
with the labeling package. As we just want to check satisfiability – whether at least
one solution exists – we create a query looking for one solution. Its return value tells
us, whether a solution was found, which in this example is as expected not the case.

In order to evaluate the expressiveness as well as the performance of the gofd
system, we have implemented classical examples such as the N-Queens problem, the
crypto-arithmetic puzzle SEND+MORE=MONEY, and the magic series problem among
others in both gofd as well as JaCoP. We have run all examples on a machine with an
i7-2600 @ 3.4 GHz Intel processor with 8 Gigabyte main memory on a 64 Bit Linux
distribution with kernel 3.13. We use Go version go1.2.1 linux/amd64 for gofd. We use

9

Java version 1.7.0 65 OpenJDK and JaCoP-3.2 for JaCoP. The results are provided in
table 1.

gofd JaCoP
Problem #C #V #S #P #N T #N T

Queens-7 3 7 40 1 182 39.56 179 2.63
Queens-8 3 8 92 1 673 63.76 709 12.44
Queens-9 3 9 352 1 2658 370.81 2783 22.69

Queens-10 3 10 724 1 10675 1640.52 11693 76.38
Queens-11 3 11 2680 1 47888 7870.19 52935 375.21
Queens-10 3 10 724 2 10675 1834.99 –
Queens-11 3 11 2680 2 47888 7304.37 –

SEND+MORE=MONEY 3 31 1 1 8 5.28 10 1.11
MagicSeries-9 10 10 1 1 309 145.86 881 6.91

MagicSeries-10 11 11 1 1 434 250.82 1265 8.63
MagicSeries-12 13 13 1 1 784 637.63 2343 15.87
MagicSeries-14 15 15 1 1 1294 1476.24 3899 30.03
MagicSeries-12 13 13 1 2 784 469.36 –
MagicSeries-14 15 15 1 2 1294 1079.50 –
MagicSeries-12 13 13 1 4 784 507.01 –
MagicSeries-14 15 15 1 4 1294 1064.66 –

Table 1. Performance evaluation, #C = number of constraints, #V = number of variables, #S =
number of solutions, #P = number of processors/cores (always 1 for JaCoP), #N = number of
explored nodes, T = run time in milliseconds,

Typically, the run time of gofd varies per run, due to the non-deterministic execution
of all involved agents, which also results in a different number of explored nodes. To
avoid that during benchmarking, we use a fixed variable selection strategy which is the
same for gofd and JaCoP and corresponds to the natural order in which the variables are
created during problem construction. We see that JaCoP is around an order of magni-
tude faster than gofd. For the implementation of the queens problem we use a dedicated
constraint expressing that a set of variables to which an individual offset is added shall
all be mutually different. Such a constraint is not directly available in JaCoP, but has
been implemented manually with by introducing one new variable and constraint per
offset. As JaCoP is for this problem still an order of magnitude faster, this does not
contradict the overall picture. For MagicSeries we use the Among Constraint which
still relies on the much slower domain representation using an enumeration of all val-
ues and storing them using built-in hashing, which may partially explain the increased
performance difference. For all other examples we use an interval representation of the
domains.

We see, that parallelisation does not yet always help and may even hinder perfor-
mance as shown in the queens problems. However, as soon as the propagators decrease
in number and increase in power, parallelisation may make constraint solving faster. In
the magic series examples using the global constraint Among we experience an per-

10

formance improvement using multiple cores. Note, that when using multiple cores the
variance in run time increases significantly. The results vary regularly by a factor of
about three from run to run. For example, magic series with size 14 may as well run
faster using two processor cores and slower using four processor cores compared to the
run time on a single core. Leveraging multiple cores for propagation is at this stage er-
ratic at best regarding performance evaluation. Still, the numbers demonstrate, that gofd
is a reasonable implementation of a finite domain solver. It is about an order of magni-
tude slower than mature implementations, but may serve as test bed for experimenting
with concurrency in finite domain solvers.

8 Conclusion

gofd is a reasonable complete and powerful finite domain constraint solver implementa-
tion, with which it is possible to compactly express a wide range of constraint satisfac-
tion problems. Although a large number of typical problem instances can be solved, the
performance is not yet on a par compared to more mature implementations. However,
gofd provides an innovative architecture for handling constraint satisfaction problems
and a test bed to evaluate concurrent propagation techniques. Fortunately, we see on
some problem instances already the benefits of parallelising work on multicore ma-
chines. And for some problem types and instances, it may already be fast enough.

Besides more efficient implementations of the propagators, there are a number of
ways to improve the current state, of which most focus on reducing copying and re-
ducing communication. Most promising might be to group several propagators into one
agent. All propagators in such a group would work sequentially and thus on the same
instance of the variable domain, which reduces copying and communication. This flex-
ibility may help to balance distribution of work and limit its overhead.

Following the trend to multicore architectures, there is no way to avoid constraint
solvers that exploit that power. Programming environments based on communicating
sequential processes seem to be well suited for constraint satisfaction problems. gofd
not only provides an finite domain constraint solver for the Go programming language
but also an evaluation environment for exploiting parallelism at the propagator level.

References

1. Nicolas Beldiceanu and et al. Global constraint catalogue: Past, present and future, 2006.
2. Christian Bessiere, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, and Toby Walsh.

Among, common and disjoint constraints. In Brahim Hnich, Mats Carlsson, Franois Fages,
and Francesca Rossi, editors, Recent Advances in Constraints, volume 3978 of Lecture Notes
in Computer Science, pages 29–43. Springer Berlin Heidelberg, 2006.

3. Michael Duchmann. Konsistenztechniken für ganzzahlige Probleme in einem nebenläufigen
Constraint Solver. Master’s thesis, Hochschule RheinMain, Wiesbaden, Germany, 2014.

4. Google. Effective Go – the Go programming language.
http://golang.org/doc/effective go.html.

5. Google. Faq – the Go programming language. http://golang.org/doc/faq.
6. C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, aug

1978.

11

7. Agnetha-Kristin Kraus. Das Among-Constraint für einen nebenläufigen Constraint Solver.
Master’s thesis, Hochschule RheinMain, Wiesbaden, Germany, 2014.

8. Krzysztof Kuchcinski and Radoslaw Szymanek. JaCoP - Java Constraint Programming
solver. http://jacop.osolpro.com/, 2001. [letzter Zugriff: 25. August 2014].

9. Rob Pike. Go at Google: Language design in the service of software engineering.
http://talks.golang.org/2012/splash.article.

10. A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and Practice of Concurrency.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.

11. F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming. Elsevier,
2006.

12. Christian Schulte and Mats Carlsson. Finite domain constraint programming systems. In
F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming, chap-
ter 14, pages 493–524. Elsevier, 2006.

13. Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. The distributed
constraint satisfaction problem: Formalization and algorithms. IEEE Trans. on Knowl. and
Data Eng., 10(5):673–685, September 1998.

12

