Conference website Documentation
Release 1.0.1

Ulrich Goertz

October 29, 2011

CONTENTS

Introduction 3
Installing the system 5
2.1 ReqUIrements o v v vt e 5
2.2 Installation of the relevant software packageso ... 5
2.3 Obtaining the source code oL e e e e e e e e e e 6
2.4 Development/quick start e e e 6
2.5 Deploymenton a “real” SEIVEr v v v v i i e e e e e e e e e e e e e e e 7
2.6 Backupo e e e e e e 9
2.7 Listof software packagesused L e 9
Customizing the web pages 11
31 OVEIVIEW . . o ottt it e e e e e e e e e e e 11
3.2 settings_local.py e 12
33 Templates o e e e e e e e e e e e e e e 14
34 Social @VentsS L e e e e e e 15
3.5 MESSAZES & v v o e 15
3.6 Displaying individualized information to participantso 16
37 NEWS . . o e 16
3.8 Hotels. o e e e 16
3.9 HotelFeature e e 16
3.10 Other things o o e e e e e e e e e e e e e 17
Administration 19
4.1 Exploringthetestdata 19
42 ASSUMPLONS & . v v v v e 20
4.3 Adding participants/speakers e e e e e e e e e e e 20
44 Maintenance v vt e 20
4.5 Edit/view participants’ data L L e e e e e e e e e e e 21
4.6 Download CSV e 21
47 tobe confirmed status of speakers e e e e e 21
4.8 Deleting partiCipants i i e 21
4.9 NEWS . o o o e e 22
User functionality 23
5.1 Participants L. e e e e e e e e e e e e 23
5.2 Speakerso e e 23
Sending messages to participants 25
6.1 Bulkmessages e e e e e e e e e e e 25

6.2 Individual messSages it e e e e e e e e e e e e e e e e e e e
6.3 Messages from partiCipants oL e e e e e e e e e e e e e e e e e

7 Licence

8 The source code

8.1 Theconference module e
8.2 Speakerso e e
8.3 MESSAZES « v v e
8.4 NeWS . . o e e e e e

9 Indices and tables

Index

27

29
29
32
33
35

37

39

Conference website Documentation, Release 1.0.1

Contents:

CONTENTS 1

Conference website Documentation, Release 1.0.1

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

A very brief guide to get started:

Learn at least a little bit of Python: Tutorial
Go through the Django tutorial, More tutorials

Install the relevant software, see Installation of the relevant software packages (on your “home pc” - you do not
need a server which is permanently connected to the internet, at this point)

Download and install the cws source code: Obtaining the source code
Go through the Development/quick start section

Go through the Customizing the web pages chapter

Go through Exploring the test data

To go public with your CWS instance, see Deployment on a “real” server

http://docs.python.org/tutorial/
https://docs.djangoproject.com/en/dev/intro/tutorial01/
https://code.djangoproject.com/wiki/Tutorials

Conference website Documentation, Release 1.0.1

4 Chapter 1. Introduction

CHAPTER
TWO

INSTALLING THE SYSTEM

2.1 Requirements

2.1.1 Test server

To test this system, you need a system that runs Django (and some of its extensions), so any common operating system
will do. All tests I did were done on Ubuntu Linux systems, and the documentation is based on a Linux environment,
as well.

2.1.2 Deployment

For real-life deployment, you will need a server connected to the internet which runs your django instance via a web
server (such as Apache), and a mail server (typically running on the same machine as the web server).

2.1.3 User

The users of the web site will need a not-too-outdated web browser (even Internet Explorer 6 should do). Cookies and
JavaScript must be enabled.

2.1.4 Admin

For the admin functionality, much heavier use of JavaScript is made. I tested this only on Firefox, and my recommen-
dation is to use the current version of Firefox, or maybe of Google Chrome.

2.2 Installation of the relevant software packages

If you use pip, you canuse pip install -r requirements.txt after downloading the source of CWS.

Python: The Python programming language. Version 2.7 is recommended. (Currently Django works with the 2.*
branch, not the 3.* branch.)

Django The Django web framework. You need version 1.3.*. Download and then install it using sudo python
setup.py install.

Django easy maps The Django eays maps package. Download and install using sudo python setup.py
install.

Optional:

http://www.djangoproject.com
http://www.djangoproject.com
https://bitbucket.org/kmike/django-easy-maps

Conference website Documentation, Release 1.0.1

Werkzeug, django_extensions Extensions to allow for simple debugging. These are not necessary to run the ap-
plication, but are highly recommended, if you want to dig deeper and make substantial changes to the code.
Once you have installed them, activate them by uncommenting the relevant line in INSTALLED_APPS in
settings_local.py.

IPython provides a better Python shell in combination with the django extensions mentioned above (try
./manage.py shell_plus instead of . /manage.py shell).

Ubuntu package: ipython.

debug_toolbar Another useful tool for debugging and profiling. After installing, activate it by uncommenting the
relevant line in INSTALLED_APPS in settings_local.py.

2.3 Obtaining the source code

2.3.1 Download tar.gz archive

The easiest way is to download the current . tar . gz file from the BitBucket downloads site at
https://bitbucket.org/ugoertz/cws/downloads
(Use the gz link for the fip tag to obtain the newest version.) Extract the archive with:

tar xfz filename.tar.gz

2.3.2 hg repository

If you are familiar with the versioning system Mercurial, you can clone the hg repository via:

hg clone https://bitbucket.org/ugoertz/cws

2.4 Development/quick start

To just set up some working instance of this system, or to do development on it, you can run django on your desktop
computer or laptop. Follow these steps:

Assumption: You can invoke a python interpreter and do import django. You have obtained the source code
of this project (and extracted the archive somewhere). For the purpose of the documentation, the directory with the
source code will be called /home /ug/django/cws/.

Before running the application, you need to adapt some settings. Copy the file examples/settings_local.py
to the root directory of your installation:

ug@x220:~/django/cws$ cp examples/settings_local.py .

and edit the file settings_local.py. For the moment, it should suffice to set correct values for the variables:

SECRET_KEY, STATICFILES_DIRS, WEBSITE_URL, DEFAULT_SENDER,
SEND_MESSAGES_TO, SEND_BACKUPS_TO

(The SECRET_KEY should just be changed to some random string.)

Copy all template snippets from examples/templates to the templates directories:

6 Chapter 2. Installing the system

http://werkzeug.pocoo.org/
http://packages.python.org/django-extensions/
http://ipython.org/
http://pypi.python.org/pypi/django-debug-toolbar
https://bitbucket.org/ugoertz/cws/downloads
http://mercurial.selenic.com/

Conference website Documentation, Release 1.0.1

ug@x220:~/django/cws$ cp examples/templates/* templates/

Synchronize the database:

./manage.py syncdb

(choose no when asked whether you want to create a superuser) and load some example data:

./manage.py loaddata fixtures/testdata.xml

This test data includes a superuser with user name su@test.test and password superuser.
Create a link to the static files used in the django admin interface:

In -s /home/ug/src-django/Django-1.3.1/django/contrib/admin/media static/admin

Finally, run the web server:

./manage.py runserver

If you have the django_extensions installed, you can replace the latter by:

./manage.py runserver_plus

You should now be able to load the main page by pointing your web browser at:

http://localhost:8000/

and you should be able to login using the credentials for the superuser given above. Mail server. The system assumes
that it can send email by delivering it to a mail server running on localhost, listening at port 25 — the usual mail server
setup. This means that if a mail server is running on your machine, you should be prepared that the application will

send out messages on some occasions. On the other hand, for testing purposes, if you do not run a mail server, you
can start a fake mail server in a terminal window:

sudo /usr/lib/python2.7/smtpd.py -n -c DebuggingServer localhost:25

This “server” will accept all email messages delivered to port 25 and simply print them out on the screen. In this way,
you can watch which emails would be sent out.

If a mail server is running on your machine, but you do not want to send out messages, you could run the fake mail
server at a different port and change the port accordingly in settings.py.

To further adapt the application to your conference, see the Chapter Customizing the web pages. For a more detailed
description of the application in terms of the test data, see Exploring the test data.

2.5 Deployment on a “real” server

To deploy the application, you will want to use a real web server, such as Apache (with mod_wsgi to execute Python
code). The relevant ubuntu packages are:

i apache2-mpm-prefork — Apache HTTP Server - traditional non-threa
i A apache2-utils - utility programs for webservers

i A apache2.2-bin — Apache HTTP Server common binary files

i A apache2.2-common — Apache HTTP Server common files

i libapache2-mod-wsgi - Python WSGI adapter module for Apache

There are, of course, other options, see Deploying Django.

2.5. Deployment on a “real” server 7

https://docs.djangoproject.com/en/1.3/howto/deployment/

Conference website Documentation, Release 1.0.1

2.5.1 Apache

Create a directory apache in the main CWS directory, copy the file examples/apache/django.wsgi to the
newly created directory, and edit it to adapt the paths to your setting.

Install Apache 2 and enable mod_wsgi.

An example apache configuration file can be found at. https://docs.djangoproject.com/en/1.3/howto/deployment/modwsgi/
(in our setup, the static files will be found at /home/ug/django/cws/staticroot, and there is not media
directory).

Note that you must call . /manage.py collectstatic to have all the static files copied to staticroot/.
See Managing static files.

Note that you must restart (or at least reload) apache if you make changes to = . py files of the application. Changes
to templates, on the other hand, are effective immediately.

2.5.2 Postgresql

Even if an Sqlite database will be sufficient for most conferences, a postgresql database might be more robust.

Relevant ubuntu packages:

i postgresgl-8.4 - object-relational SQL database, version 8.
i postgresgl-client-8.4 - front-end programs for PostgreSQL 8.4

i A postgresgl-client-common — manager for multiple PostgreSQL client ver
i A postgresgl-common — PostgreSQL database-cluster manager

i python-psycopg?2 — Python module for PostgreSQL

Installing postgresql:

* Install the postgresql packages
 Create a user (and set a password, because django will want to use password authentication):

root@e:~# su - postgres
postgres@e:~$ createuser -P

¢ Create a database:

postgres@e:~$ createdb django_db

» Grant rights to use the database to your user:

postgres@e:~$ psqgl
psgl (8.4.8)
Type "help" for help.

postgres=# GRANT ALL PRIVILEGES ON django_db TO username;

e Allow password authentication to username by adding the following lines at the end of
/etc/postgresqgl/8.4/main/pg_hba.conf:

host django_db username 127.0.0.1 255.255.255.255 password
local django_db username password

¢ and restart the database daemon:

root@e:~# /etc/init.d/postgresqgl-8.4 restart

8 Chapter 2. Installing the system

https://docs.djangoproject.com/en/1.3/howto/deployment/modwsgi/
https://docs.djangoproject.com/en/1.3/howto/static-files/

Conference website Documentation, Release 1.0.1

2.5.3 Setup

Setting up the application is similar to the quick start example above:

ug@x220:~/django/cws$ cp examples/settings_local.py

Edit the file settings_local.py appropriately. In addition to the settings mentioned above, you will also have to
¢ Set DEBUG=False. This is essential for security reasons.

e Set STATIC_URL and ADMIN_MEDIA_ROOT to appropriate values (and arrange some way how static files
should be served).

Create the relevant template files. To get started, you can simply:

ug@x220:~/django/cws$ cp examples/templates/* templates/

See Chapter Customizing the web pages for details.
Synchronize the database:

./manage.py syncdb

do not install the test data, but create a superuser:

./manage.py createsuperuser —--username=joelexample.com —--email=joelexample.com

You will be prompted for a password.
Create a link to the static files used in the django admin interface:

In -s /home/ug/src-django/Django-1.3.1/django/contrib/admin/media static/admin

2.6 Backup

To regularly save a backup of the database, you can use Django’s dumpdata command: Create a directory do—-backup
and a file backup-db:

#!/bin/bash

/home/ug/django/cws/manage.py dumpdata —--format=xml > /home/ug/django/cws/db-backup/db‘date +%$m%d%H

and invoke it regularly by setting up a cron job, e.g.:

39 15,21,3,9 * * * /home/ug/django/cws/backup-db

Another option is to store backups of the database, e.g., using Postgresql:

su postgres —-c "pg_dumpall --clean | gzip > /var/lib/postgresql/pg-backup/backup-‘date +%d%H‘.gz"

(this creates a backup of all databases).

2.7 List of software packages used

The following packages are included in the /static/ directory:
* Jquery
e JqueryUI

2.6. Backup 9

\

http://jquery.com
http://jqueryui.com

Conference website Documentation, Release 1.0.1

e Slickgrid

* Pines notify

* Blueprint CSS

* Silk icon package

10 Chapter 2. Installing the system

https://github.com/mleibman/SlickGrid
http://pines.sourceforge.net/pnotify/
http://www.blueprintcss.org/
http://www.famfamfam.com/lab/icons/silk/

CHAPTER
THREE

CUSTOMIZING THE WEB PAGES

3.1 Overview

The following are the adaptations that are absolutely necessary if you want to set up a new instance of the system.

We assume that you have installed this application and that . /manage.py runserver delivers pages (see the
Chapter Installing the system). If you want to play around with the application in order to get to know how it works,

install the test data by:

./manage.py loaddate fixtures/testdata.xml

As described in loc.cit. If you want to set up the site for your own conference, omit this step. In order to remove
the test data and revert the system to its initial state, you can delete the database (in the case of Sqlite, just delete the

database file), and after:

./manage.py syncdb

create a superuser with:

./manage.py createsuperuser —--username=joelexample.com —--email=joelexample.com

Files to be edited (see below for details):

settings_local.py,

templates/about, templates/base, templates/contact, templates/create,
templates/home, templates/locall, templates/local2,
templates/schedule, templates/talks, templates/title
templates/travel,

for deployment via an Apache web server (see Deployment on a “real” server):

apache/django.wsgi

and optionally:

doc/conf.py

Create static/admin link. (Also: collect static files?!)

Objects to be created/edited in the admin interface (at http://your.url/admin/) (see below for examples):

social events
standard messages
hotels

11

Conference website Documentation, Release 1.0.1

3.2 settings_local.py

Example file for a testing environment:

—%— coding: utf-8 —#-—
import os

Set DEBUG to True while you are testing changes during the development

process, and in any case set it to False as soon as your site is publically
accessible

DEBUG = True

TEMPLATE_DEBUG = DEBUG

ADMINS = (
(’Your name’, ’your@email.test’),

MANAGERS = ADMINS

The database that django should use.
DATABASES = {
default’: {
"ENGINE’ : "django.db.backends.sqglite3’, # Add ’postgresqgl_psycopg2’, ’postgresqgl’, ’'mysq

"NAME’ : ’./django.db’, # Or path to database file if using sglite3.
"USER’: '’, # Not used with sqglite3.
"PASSWORD’ : "', # Not used with sqglite3.
"HOST’': '’", # Set to empty string for localhost. Not used with sqgli
"PORT’: ', # Set to empty string for default. Not used with sglite

}

Make this unique, and don’t share it with anybody.
SECRET_KEY = ’4dr+webXXXX0 (7dh/nk4dsb!8swx+z=f+*0-3m3tSas&S " 1lx#Qr="

Absolute path to the directory that holds media.
Example: "/home/media/media.lawrence.com/"
MEDIA_ROOT = os.path.join(os.path.dirname(__file__), ’'media’)

URL that handles the media served from MEDIA ROOT. Make sure to use a
trailing slash if there is a path component (optional in other cases).
Examples: "http://media.lawrence.com", "http://example.com/media/"
MEDIA_URL = ’/media/’

URL prefix for admin media —-- CSS, JavaScript and images. Make sure to use a
trailing slash.

Examples: "http://foo.com/media/", "/media/".

ADMIN_MEDIA_PREFIX = ' /static/admin/’

Static files,
see https://docs.djangoproject.com/en/1.3/howto/static—files/

STATICFILES_DIRS = ("/home/ug/django/cws/static/",)
STATIC_ROOT = "/home/ug/django/cws/staticroot/"
STATIC_URL = "/static/"

12 Chapter 3. Customizing the web pages

Conference website Documentation, Release 1.0.1

MIDDLEWARE_CLASSES = (
"django.middleware.common.CommonMiddleware’,
"django.contrib.sessions.middleware.SessionMiddleware’,
"django.contrib.messages.middleware.MessageMiddleware’,
"django.contrib.auth.middleware.AuthenticationMiddleware’,
"django.contrib.flatpages.middleware.FlatpageFallbackMiddleware’,
’debug_toolbar.middleware.DebugToolbarMiddleware’,

PROJECT_NAME os.path.split (os.path.dirname(__file_)) [1]

INTERNAL_IPS = ("127.0.0.1",)
DEBUG_TOOLBAR_CONFIG = {’INTERCEPT_REDIRECTS’: False}

INSTALLED_APPS = (
"django.contrib.auth’,
"django.contrib.contenttypes’,
"django.contrib.sessions’,
"django.contrib.sites’,
"django.contrib.admin’,
"django.contrib.flatpages’,
"django.contrib.staticfiles’,
"django.contrib.messages’,
"easy_maps’,

"conference’,

" speaker’,

"news’,

"messages’,

’django_extensions’,
’debug_toolbar’,

WEBSITE_URL = 'http://your.url.goes.here/’

DEFAULT_SENDER = ’sultest.test’
SEND_MESSAGES_TO = [’sultest.test’]
SEND_BACKUPS_TO = [’/sultest.test’]
CONF_NAME = ’Testing 2011’
FULL_CONF_NAME = ’"Test conference, 2011’

START_DAY = "2012-01-02"
END_DAY = "2012-01-08"

START DAY HOTEL and END DAY HOTEL are the dates shown as default arrival and
departure days in the registration form. Typically, STARI DAY HOTEL is one
day before the conference starts, and END_DAY HOTEL is the last day of the
conference. END_DAY HOTEL PLUS_ONE 1is used in the hotel administration page:
departure days before/after this day are colored differently.
START_DAY_HOTEL = "2012-01-01"

END_DAY_HOTEL = "2012-01-08"

END_DAY_HOTEL_PLUS_ONE = "2012-01-09"

S W W R H

Should speakers automatically be registered for the conference dinner? If you
want to use this, then you have to create a SocialEvent tagged "dinner"
before you enter any speakers.

3.2. settings_local.py 13

Conference website Documentation, Release 1.0.1

REGISTER_SPEAKERS_FOR_DINNER = True

The Google API key to be used for the map on the travel page. The key is
bound to an URL, so you have to get your own key at
http://code.google.com/intl/de/apis/maps/signup.html

Usually you will not need one, but in particular for development you might
have to use an API key for "localhost".

EASY MAPS GOOGLE_KEY = '’

FH oW H HFH I W

To display the conference venue on the map, we need its name (including an
address that Google maps can use).
CONFERENCE_VENUE = ’Conference venue,
University Essen’

Before you expose your application to the public, some changes must be made (in particular, you must set
DEBUG=False!), see Setup.

3.3 Templates

As a rule, the files in the examples/templates directory should be copied to templates and then adapted
appropriately. It is no problem, if some of these files are empty, but the files have to be present. Of course, sometimes
you might want to dig deeper and also edit the » . htm1 files or other files in the template directory.

3.3.1 base

This file concerns the links shown in the left hand side column. You can disable some of the links, and you can also
add further links. New links could either show to pages on a different web site, or to pages from your django instance.
In the latter case you have to make sure that django knows how to serve these pages - either you have to edit urls.py
and provide a template (and possibly a view) for your page, or use the django flatpage framework.

3.3.2 Title

The name of your conference. This will be used as the default tit/le in the <head> section of the HTML files.

3.3.3 About

Give some information about the person(s) responsible for the site. Depending on your use case, you might need/want
to put an Impressum according to German regulations here.

3.3.4 Local information
Typically, here you will provide a map, and further local information. Django provides a list of the hotels. For

participants with final hotel reservation (who are logged in), the hotel they stay in is marked. The template file
locall contains the content shown above the list of hotels, the file 1ocal?2 contains the content shown below.

3.3.5 Schedule

To create the table with the schedule, one possibility is the following.

This is currently very awkward.

14 Chapter 3. Customizing the web pages

https://docs.djangoproject.com/en/1.3/ref/contrib/flatpages/

Conference website Documentation, Release 1.0.1

Create a ReST table like this:

e +
| Monday | Tuesday |
o +
| Speaker 1 | Speaker 2 |
o e +

(a more complete example is included as examples/schedule.rst) and use

rst2html.py schedule.rst schedule

to convert the file into a HTML file schedule. Now delete the <head>. . .</head> section of this file, as well
as the <body> tag and the <div class="document"> line, delete the last three lines (</div>, </body>,
</html>), and, in the remaining HTML table, delete all occurrences of the word container (this is necessary
because of a naming conflict with the BlueprintCSS framework).

Finally, copy the file schedule so obtained to the templates directory.

3.3.6 Travel

In the file templates/travel you can put some information on how to reach the location of your conference.
Google map on the *travel* page

A google map will be shown on the travel page. If needed, you can specify a Google maps API key in the
settings_local.py file, see above. If you want to change the list of airports shown (currently Diisseldorf,
Ko6lIn/Bonn, Frankfurt), you have to edit the file templates/map.html.

3.4 Social events

Add your social events (conference dinner, excursions) in the admin interface at http://your.url/admin, e.g.:

Tag: dinner
Title: Conference dinner

Description: This is a html description of the dinner. Images can be included
using the img tag, with a full URL, i.e. you have to upload the image to

a location form where static files are served: either the /static/ or

/media/ directories of your django installation, or some independent web

server.

The dinner tag is special in the sense that all speakers added via the Add speaker link are automatically registered
for the dinner. (This behavior can be changed in settings_local.py.

3.5 Messages

To send standard messages (upon registration, to communicate hotel details, to send further information shortly before
the conference starts, etc.), you need to activate and edit the St dMe ssage objects in the django admin interface. See
Chapter Sending messages to participants

3.4. Social events 15

Conference website Documentation, Release 1.0.1

3.6 Displaying individualized information to participants

To display information (e.g. about hotel details, or your decision about a funding request) to participants in an Impor-
tant information tab on the Edit my data page, activate (and possibly edit) the ParticipantOrgComment objects
in the django admin interface.

3.7 News

To add items to the News list on the home page, create News objects in the django admin interface.

3.8 Hotels

For each hotel that should appear on the site (in the Google map, in the list of hotels on the travel and local info pages,
on the pages for administering the hotel details of each participant)

Create the hotel objects in the django admin interface. Most of the fields should be self explanatory. Some comments:
Address should be written as plain text, without HTML markup

URL including http://

Info Here you can use HTML tags such as bold, <p>paragraph</p>.

Price per night dz dz stands for double room

Price remarks Currently not used, but you could put text here and refer to it in the StdMessages or ParticantOrgCom-
ments.

The application will try to find the latidude/longitude coordinates of the hotel location from the given address using
the Google maps geocoding interface. If this fails, then the hotel will not be shown on the map on the Travel page.
In this case, find the coordinates yourself from http://maps.google.de/ and enter them in the corresponding Address
object in the django admin interface.

3.9 HotelFeature

To get started, you do not have to do anything about this.

HotelFeature objects allow you to collect information from participants concerning details of their hotel reserva-
tion. Typical cases are:

double The participant requests a double room

late Late arrival - the participant will arrive at the hotel after some specified time (default is 6pm). So, if necessary,
you can alert the hotel in advance, or notify the participant about how he can obtain his key.

special A text field for special wishes concerning the hotel reservation.

HotelFeature objects for these three cases are created from the initial data which is automatically loaded upon
./manage.py syncdb. Their values are displayed in the tables on the /adm/hotel/ and /adm/table/

pages.
To explain the general mechanism, we go through the fields of a HotelFeature:

Tag some unique identifier of the feature

16 Chapter 3. Customizing the web pages

http://
http://maps.google.de/

Conference website Documentation, Release 1.0.1

Description The participant is shown this text together with a checkbox (which by default is not checked). In this
way you can collect yes/no information from participants.

Help text If this field is non-empty, then upon selecting the check box, an additional text field is displayed. In this
way, you can collect further information in the yes case. (Example: if late arrival is selected, then the participant
can enter more detailed information, such as at 8pm at the main station.

3.10 Other things

3.10.1 CSS

The project uses the Blueprint CSS framework, with the following modification:

e Line 65 of static/blueprint/blueprint/screen.css was commented out.

3.10.2 Documentation

The documentation was written using Sphinx. To recompile the documentation, install Sphinx,
e run make html and open the index.html file in doc/_build/html in your web browser, or
* runmake latexpdf and open the pdf file in doc/_build/latex

If you want to make changes to the documentation, edit the » . rst files (which use the ReStructured Text format; see
the Sphinx documentation).

3.10. Other things 17

http://www.blueprintcss.org
http://sphinx.pocoo.org/

Conference website Documentation, Release 1.0.1

18 Chapter 3. Customizing the web pages

CHAPTER
FOUR

ADMINISTRATION

There are two places where administrative tasks can be/have to be taken care of:

Django admin interface. You can access the django admin interface at http://www.your.url/admin/ It allows you to
view and edit all the relevant objects in the django database.

Admin interface of the conference site. Some functionality to deal with administrative tasks is offered by CWS.
These pages can be accessed via the links on the left hand side which appear once you login as a superuser.

4.1 Exploring the test data

 Install the test data

./manage.py loaddate fixtures/testdata.xml

and start the web server on localhost with

./manage.py runserver

e Open your browser at http://localhost:8000/ and log in as the administrator: su@test.test, password
superuser.

e Activate the registration Standard Message (tagged reg) in the django admin interface at
http://localhost:8000/admin/messages/standardmessage/ (i.e., select the active check box and save the
object.

* Go to http://localhost:8000/maintenance/. There you will see the pending registration of Leibniz. Select the
accept box and click submit.

* Go to the Messages to be sent tab. You will see one item there (the pending registration message to Leibniz).
Send registration message to Leibniz. You can view and edit the message here (click on the envelope on the
right hand side of the row of icons), and send it, if you like (start a fake email server before). You can also
discard it, or postpone it (either keeping or discarding your edits).

* Look at hotel reservations (click the hotel link). In the table all participants who have requested a hotel reserva-
tion are shown (all participants in the test data set). You can assign hotels to the participants here, and also edit
whether funding for the hotel is granted, or not, and whether the hotel reservation is final, or not. After making
changes to one of these fields, you must ‘“leave” the field (by clicking another field or using the tab key) in
order to save the changes. A message appears in the upper right corner when changes are saved.

* Go to the list of participants. As long as you are logged in as an admin, each name has a small icon left to it.
Click this icon to edit the data of the corresponding participant. (See Edit/view participants’ data below for
details.) Go to the data for Leibniz and choose the Messages tab. Here you see a list of messages that have been
sent to Leibniz - in this case the registration message. Click the message title to show its full text. In this tab,

19

http://www.your.url/admin/
http://localhost:8000/
http://localhost:8000/admin/messages/standardmessage/
http://localhost:8000/maintenance/

Conference website Documentation, Release 1.0.1

you can also send an individual message to the participant (which will be sent by email). Individual messages
sent via the web site will also be listed in the list of messages, so that the participant and admins can later inspect
them again.

* To see how the pages look for participants, log in as one of them. For these test data, each email has the form
first_name@test.test, and the password is first_name,e.g. carl@test.test, password carl:

* Log in as GauB, edit your talk title and abstract. Change registrations for dinner and excursion. Change other
data on the edit my data page. (Note that notifications about such changes are sent by email to the address
specified in settings_local.py - if you have set up a fake email server, you will be able to see this.)

4.2 Assumptions

The application makes the following assumptions. Of course, these could be changed, but changing them would
require changing the core application (template/*.html and/or x/ x . py files).

* Participants can ask for funding (hotel/travel). (No mechanism is implemented for participants to upload doc-
uments supporting their applications, so - if necessary - such documents (letters of recommendation) must be
requested in another way, e.g. by email.)

* Participants can ask for a hotel reservation.

 Hotel and travel costs of the speakers are fully covered.

4.3 Adding participants/speakers

As an admin, you can add participants and speakers via the Add participant and Add speaker links in the left column.

Unlike participants registering themselves via the registration form, participants/speakers added by an admin do not
receive a welcome email message, and their registration is automatically accepted by the system.

Speakers using the web site to register themselves, cannot indicate their speaker status, but first are treated as partici-
pants. To achieve the equivalent of the Add speaker form, you must do the following:

* Accept the registration on the Maintenance page (and send/discard the welcome message generated upon ac-
ceptance).

* Change the status from participant to speaker in the Admin tab of the edit menu.

* The final status of the speaker (i.e., whether he/she will be listed as to be confirmed, or not) can currently only be
changed via the django admin interface at ht tp://your.url/admin/speaker/speaker/. The default
is true.

* Register the speaker for the dinner in the Social tab of the edit menu.
4.4 Maintenance
The maintenance page has several tabs:

4.4.1 Pending registrations

Here you can accept/discard incoming registrations.

20 Chapter 4. Administration

Conference website Documentation, Release 1.0.1

4.4.2 Messages received

Messages sent from participants via the contact page, or as a message upon registration. You can categorize the
messages as new, seen or settled.

4.4.3 Messages to be sent

Here you see a list of Standard Messages that are to be sent out to participants. (See also Chapter Sending messages
to participants.) You can edit those messages, and then send/discard/postpone them.

4.4.4 Cancelling/reactivating registrations
To cancel a registration, go to the participant’s data page (via the list of participant), and set Active to false, cancelled
to true.

To reactivate a cancelled registration, go to the Cancelled reg’s tab on the maintenance page, select the revive box for
those you want to reactivate, and submit the data.

4.5 Edit/view participants’ data

In the list of participants, to the left of each name there is an icon. Click this icon to get to the data edit page for that
participant.

4.6 Download CSV

Clicking the Download CSV button, you can download a CSV file with the data displayed in this table.

There are several choices for the selection of participants to be included in the table. Furthermore, you can choose
to include/exclude a number of data fields for each participant. Submit your choices, ad you will be shown a HTML
table with the data. At the top of that page, there is a Download CSV button which allow you to download the data.

CSV stands for comma separated values and is a very simple spreadsheet format. You can import these files into
LibreOffice or Excel. The separator use is a comma. The character encoding is UTFS.

Depending on your system, it might also be possible to copy-and-paste the HTML table into your spreadsheet program.

4.7 to be confirmed status of speakers

The final status of the speaker (i.e., whether he/she will be listed as to be confirmed, or not) can be changed via the
django admin interface at http://your.url/admin/speaker/speaker/.

4.8 Deleting participants

To delete a participant, delete the corresponding User object in the django admin interface.

4.5. Edit/view participants’ data 21

Conference website Documentation, Release 1.0.1

4.9 News

You can edit and create the news items shown on the home page in the django admin interface.

22 Chapter 4. Administration

CHAPTER
FIVE

USER FUNCTIONALITY

5.1 Participants

5.1.1 Registering

For users who are not logged in, a Register link is displayed on the left, which leads to the registration form.

5.1.2 Edit data

Participants who are logged in can edit their data in the tabs on the Edit my data page.

5.1.3 Information
Personalized information is displayed on the Local information and Travel pages (for participants with a finialized

hotel reservation: their hotel is specially marked), on the Social program page, and of course on the Edit my data
page.

5.2 Speakers

5.2.1 Edit talk

In addition to the things participants can do, to speakers a link Edit my talk is displayed, where they can enter the title
and abstract of their talk.

23

Conference website Documentation, Release 1.0.1

24 Chapter 5. User functionality

CHAPTER
SIX

SENDING MESSAGES TO
PARTICIPANTS

6.1 Bulk messages

Some example St dMessage objects are created by . /manage.py syncdb (from initial_data.xml), and need to
be edited.

The fields defining a St dMe ssage object are

Sender The email address that will be used as the from address.
Slug A short unique identifier of the message.

Subject The subject of the email.

Template The text of the email. As the name of the field indicates, you can use the django template language here
to “individualize” the emails. p is the participant object of the participant who will receive this message. The
URL of your web site (as specified in settings_local.py) is available as WEBSITE_URL.

Use the personal salutation of the participants, make some parts conditional on the status (speaker/participant),
etc.

See the standard messages in the initial and test data for examples.
Active Messages will be sent only, if this is true.

Preview If true (which is the default), messages will be shown in the Messages to be sent tab on the
/maintenance/ page, where you can review (and edit) them. If false, then messages will be sent out auto-
matically.

Filter Here you can define the group of recipients of the message. See the examples for how this works.

Participants Here you can see which participants received the message so far. You should not edit this field yourself,
unless you know what you are doing.

When are Standard Messages sent? There is no built-in mechanism in CWS which checks whether the date in an
acitve Standard Message’s Date field has been reached. Rather, Standard Messages currently are sent when either

* The StandardMessage object is saved (in the django admin), or
* The Participant object is saved.

This means that when a message is marked as active, then it will be sent out to all participants (to whom the filter
criterion applies). It will also be sent to new participants when the Participant object is saved upon registration.

25

Conference website Documentation, Release 1.0.1

6.2 Individual messages

You can send an individual message to a participant in the Messages tab of the edit page for that participant (which
you can reach clicking the icon to the left of the participant’s name in the list of participants).

6.3 Messages from participants

Via the contact page, participants can send messages to you. Those messages are sent via email, but they also appear
in the messages received tab on the maintenance page, and are listed on the participant’s edit page.

26 Chapter 6. Sending messages to participants

CHAPTER
SEVEN

LICENCE

The CWS package is licensed under the MIT License:

Copyright (C) 2008-2011 by Ulrich Goertz

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

In the /static subdirectory, several software packages are included which come under licences of their own:
* Jquery, Jquery license
* JqueryUlI, Jquery license
e Slickgrid, see static/slickgrid/MIT-LICENSE. txt
* Pines notify, licenced under GPL/LGPL/MPL
* Blueprint CSS, see static/blueprint/LICENSE

* Silk icon package by M. James, CC Attribution, see static/icon/readme.txt

27

http://jquery.com
http://jquery.org/license/
http://jqueryui.com
http://jquery.org/license/
https://github.com/mleibman/SlickGrid
http://pines.sourceforge.net/pnotify/
http://www.blueprintcss.org/
http://www.famfamfam.com/lab/icons/silk/

Conference website Documentation, Release 1.0.1

28 Chapter 7. Licence

CHAPTER
EIGHT

THE SOURCE CODE

8.1 The conference module

This is the main part of the system.

class conference.models.ChangeRequestHotel (*args, **kwargs)
ChangeRequestHotel(id, participant_id, author_id, date, arrival, departure, seen, settled, final_comment)

exception ChangeRequestHotel .DoesNotExist

exception ChangeRequestHotel .MultipleObjectsReturned
ChangeRequestHotel.author

ChangeRequestHotel .get_next_by arrival (*moreargs, **morekwargs)
ChangeRequestHotel .get_next_by_date (*moreargs, **morekwargs)
ChangeRequestHotel .get_next_by_departure (*moreargs, **morekwargs)
ChangeRequestHotel.get_previous_by_arrival (*moreargs, **morekwargs)
ChangeRequestHotel .get_previous_by_ date (*moreargs, **morekwargs)
ChangeRequestHotel .get_previous_by_ departure (*moreargs, **morekwargs)
ChangeRequestHotel .hotelfeaturecr_set
ChangeRequestHotel.objects = <django.db.models.manager.Manager object at 0x23bce10>
ChangeRequestHotel .participant

class conference.models.Hotel (*args, **kwargs)
Hotel(id, name, address, contact, url, info, num_reservations, map_address_id, price_per_night,
price_per_night_dz, price_remarks, order_by)

exception Hotel .DoesNotExist

exception Hotel .MultipleObjectsReturned

Hotel .map_address

Hotel.objects = <django.db.models.manager.Manager object at 0x23b77d0>
Hotel .overbooked ()

Hotel.participant_set

Hotel.save ()

29

Conference website Documentation, Release 1.0.1

class conference.models.HotelFeature (*args, **kwargs)
HotelFeature(id, tag, description, help_text)

exception HotelFeature.DoesNotExist

exception HotelFeature.MultipleObjectsReturned
HotelFeature.hotelfeaturecr_ set
HotelFeature.hotelfeaturepart_set

HotelFeature.objects = <django.db.models.manager.Manager object at 0x23c4510>
HotelFeature.participants

class conference.models.HotelFeatureCR (*args, **kwargs)
HotelFeatureCR(id, crequ_id, feature_id, notes)

exception HotelFeatureCR.DoesNotExist

exception HotelFeatureCR.MultipleObjectsReturned

HotelFeatureCR.crequ

HotelFeatureCR. feature

HotelFeatureCR.objects = <django.db.models.manager.Manager object at 0x23c6090>

class conference.models.HotelFeaturePart (*args, **kwargs)
HotelFeaturePart(id, participant_id, feature_id, notes)

exception HotelFeaturePart .DoesNotExist

exception HotelFeaturePart .MultipleObjectsReturned

HotelFeaturePart. feature

HotelFeaturePart .objects = <django.db.models.manager.Manager object at 0x23c4ad0>
HotelFeaturePart .participant

class conference.models.Participant (*args, **kwargs)
Participant(id, user_id, institution, address, country, homepage, password, status, career, arrival, departure,
hotel_reservation, hotel_assigned_id, hotel_final, funding_requested_hotel, funding_requested_travel, fund-
ing_hotel, funding_hotel_complete, funding_travel, funding_final, sponsor, in_participant_list, accepted, can-
celled, time_created, time_lastchanged, added_by_admin, salutation)

Participant .CAREER CHOICES = ((0, ¢*), (1, ‘Student’), (2, ‘Post-Doc’), (3, ‘Professor’))

exception Participant .DoesNotExist

exception Participant .MultipleObjectsReturned

Participant .NONE =0

Participant .POSTDOC =2

Participant .PROFESSOR =3

Participant .SPONSOR_CHOICES = ((‘-¢, ‘None’), (‘E’, ‘ERC’), (‘S’, ‘SFB’), (‘H’, ‘HUM"’), (‘O’, ‘Oth’))
Participant .STATUS_CHOICES = ((‘S’, ‘Speaker’), (‘P’, ‘Participant’))

Participant .STUDENT =1

Participant.arrival_le_14()

Participant.changerequesthotel_set

30 Chapter 8. The source code

Conference website Documentation, Release 1.0.1

Participant.delete ()

Participant .double ()

Participant.funding requested/()
Participant.get_career_display (*moreargs, **morekwargs)
Participant.get_duration_of_stay ()
Participant.get_full name ()
Participant.get_next_by_arrival (*moreargs, **morekwargs)
Participant.get_next_by_ departure (*moreargs, **morekwargs)
Participant.get_next_by_ time_created (*moreargs, **morekwargs)
Participant.get_next_ by time_lastchanged (*moreargs, **morekwargs)
Participant.get_participantorgcomments ()
Participant.get_participantorgcomments_admin ()
Participant.get_participantorgcomments_available ()
Participant.get_previous_by_arrival (*moreargs, **morekwargs)
Participant.get_previous_by_ departure (*moreargs, **morekwargs)
Participant.get_previous_by_ time_created (*moreargs, **morekwargs)
Participant.get_previous_by_ time_lastchanged (*moreargs, **morekwargs)
Participant.get_sponsor_display (*moreargs, **morekwargs)
Participant.get_status_display (*moreargs, **morekwargs)
Participant.hotel_assigned

Participant .hotelfeature_set

Participant .hotelfeaturepart_set

Participant.isspeaker ()

Participant.late()

Participant.objects = <conference.models.ParticipantManager object at 0x23bc190>
Participant.save ()

Participant.select ()

Participant.set_password (password="")
Set a new password. If the empy string is passed as an argument, a random password is chosen. The new
password is saved as clear text as self.password, and the password of the corresponding User object is set
accordingly.

Participant.socialevent_set
Participant.socialeventpart_set
Participant.special ()
Participant.support_granted_as_requested()
Participant.talk_title given()

Participant.tex_address ()

8.1. The conference module 31

Conference website Documentation, Release 1.0.1

Participant .user

class conference.models.ParticipantManager

ParticipantManager.active ()

class conference.models.SocialEvent (*args, **kwargs)

SocialEvent(id, tag, title, description, date)

exception SocialEvent .DoesNotExist

exception SocialEvent .MultipleObjectsReturned
SocialEvent.get_next_by_ date (*moreargs, **morekwargs)

SocialEvent .get_previous_by_date (*moreargs, **morekwargs)

SocialEvent .objects = <django.db.models.manager.Manager object at 0x23c6750>
SocialEvent .participants

SocialEvent.socialeventpart_set

class conference.models.SocialEventPart (*args, **kwargs)

SocialEventPart(id, event_id, participant_id, num_persons)

exception SocialEventPart.DoesNotExist

exception SocialEventPart .MultipleObjectsReturned
SocialEventPart.event

SocialEventPart .objects = <django.db.models.manager.Manager object at 0x23c6cd0>

SocialEventPart.participant

conference.models.changes (self)

8.2 Speakers

class speaker.models.Speaker (*args, **kwargs)

Speaker(id, participant_id, last_name, first_name, plenary, final)

exception Speaker.DoesNotExist

exception Speaker .MultipleObjectsReturned

Speaker.full_name ()

Speaker.objects = <django.db.models.manager.Manager object at 0x2ba0190>
Speaker.participant

Speaker.talk_set

class speaker.models.Talk (*args, **kwargs)

Talk(id, speaker_id, title, abstract, comments_to_organizers, possible_date_from, possible_date_to, date)
exception Talk .DoesNotExist

exception Talk .MultipleObjectsReturned

Talk.get_next_by possible_date_from (*moreargs, **morekwargs)

Talk.get_next_by possible_date_to (*moreargs, **morekwargs)

32

Chapter 8. The source code

Conference website Documentation, Release 1.0.1

Talk.get_previous_by_possible_date_from (*moreargs, **morekwargs)
Talk.get_previous_by_possible_date_to (*moreargs, **morekwargs)
Talk.objects = <django.db.models.manager.Manager object at 0x2ba0610>
Talk.save ()

Talk.speaker

8.3 Messages

class messages.models .Message (*args, **kwargs)
messages to participants

sources: * individual messages from edit_admin page * bulk messages from StandardMessage class

as long as sent==False, they have a preview status (and can be edited & sent/discarded in maintenance mode)
exception Message .DoesNotExist

exception Message .MultipleObjectsReturned

Message.get_next_by_date (*moreargs, **morekwargs)

Message.get_previous_by_ date (*moreargs, **morekwargs)

Message .objects = <messages.models.MessageManager object at 0x2c97b50>
Message.participant

Message.send_and_save ()

Message.stdmsg

class messages.models .MessageManager

MessageManager .preview ()
MessageManager.sent ()
MessageManager.use_for_ related_fields = True

class messages.models.ParticipantComment (*args, **kwargs)
A messages sent from the participant, using the contact page.

exception ParticipantComment .DoesNotExist

exception ParticipantComment .MultipleObjectsReturned

ParticipantComment . TOPIC_CHOICES = ((‘-*, ‘Please choose a topic’), (‘R’, ‘Registration’), (‘H’, ‘Hotel reservation
ParticipantComment .get_next_by_ date (*moreargs, **morekwargs)

ParticipantComment .get_previous_by_date (*moreargs, **morekwargs)

ParticipantComment .get_topic_display (*moreargs, **morekwargs)

ParticipantComment .objects = <django.db.models.manager.Manager object at 0x2c94090>
ParticipantComment .participant

class messages.models.ParticipantInvComment (*args, **kwargs)
ParticipantinvComment(id, author_id, participant_id, text, date)

exception Participant InvComment .DoesNotExist

8.3. Messages 33

Conference website Documentation, Release 1.0.1

exception ParticipantInvComment .MultipleObjectsReturned

ParticipantInvComment .author

ParticipantInvComment .get_next_ by date (*moreargs, **morekwargs)

ParticipantInvComment .get_previous_by_date (*moreargs, **morekwargs)

ParticipantInvComment .objects = <django.db.models.manager.Manager object at 0x2c94610>

ParticipantInvComment .participant

class messages.models.ParticipantOrgComment (*args, **kwargs)
ParticipantOrgComment(id, title, template, filters, active)

exception ParticipantOrgComment .DoesNotExist

exception ParticipantOrgComment .MultipleObjectsReturned

ParticipantOrgComment .objects = <messages.models.ParticipantOrgCommentManager object at 0x2c97510>

ParticipantOrgComment .relevant_f£for (p)

class messages.models.ParticipantOrgCommentManager

ParticipantOrgCommentManager.active ()

class messages.models.StandardMessage (*args, **kwargs)
StandardMessage(id, sender, slug, subject, template, active, preview, filters)

exception StandardMessage .DoesNotExist

exception StandardMessage .MultipleObjectsReturned

StandardMessage
StandardMessage
StandardMessage

StandardMessage

StandardMessage.

StandardMessage.

StandardMessage

.message_set

.objects = <messages.models.StandardMessageManager object at 0x2c94a90>
.participants

.relevant_ps ()

send_all ()

send_p (p)

.show_ex ()

class messages.models.StandardMessageManager

StandardMessageManager.active ()

messages.models.build query filter from_spec (spec, field_mapping=None)
from http://www.djangosnippets.org/snippets/676/ # fixes by ug

Assemble a django “Q” query filter object from a specification that consists of a possibly-nested list of query
filter descriptions. These descriptions themselves specify Django primitive query filters, along with boolean

“and”, “Or”, and “not”

operators. This format can be serialized and deserialized, allowing django queries to be

composed client-side and sent across the wire using JSON.

Each filter description is a list. The first element of the list is always the filter operator name. This name is one
of either django’s filter operators, “eq” (a synonym for “exact”), or the boolean operators “and”, “or”, and “not”.

Primitive query filters have three elements:

[filteroperator, fieldname, queryarg]

34

Chapter 8. The source code

http://www.djangosnippets.org/snippets/676/

Conference website Documentation, Release 1.0.1

ELINT3 LR T3

“filteroperator” is a string name like “in”, “range”, “icontains”, etc. “fieldname” is the django field being
queried. Any name that django accepts is allowed, including references to fields in foreign keys using the “__”
syntax described in the django API reference. “queryarg” is the argument you’d pass to the filter() method in
the Django database API.

“and” and “or” query filters are lists that begin with the appropriate operator name, and include subfilters as
additional list elements:

["or’, [subfilter], ...] ["and’, [subfilter], ...]

“not” query filters consist of exactly two elements:

[’not’, [subfilter]]

As a special case, the empty list “[]” or None return all elements.

If field_mapping is specified, the field name provided in the spec is looked up in the field_mapping dictionary.
If there’s a match, the result is subsitituted. Otherwise, the field name is used unchanged to form the query. This
feature allows client-side programs to use “nice”” names that can be mapped to more complex django names. If
you decide to use this feature, you’ll probably want to do a similar mapping on the field names being returned
to the client.

This function returns a Q object that can be used anywhere you’d like in the django query machinery.

This function raises ValueError in case the query is malformed, or perhaps other errors from the underlying DB
code.

Example queries:

[’and’, ['contains’, ‘name’, ‘Django’], ['range’, ‘apps’, [1, 4]]] ['not’, [’in’, ‘tags’, [’colors’, ‘shapes’, ‘ani-
mals’]]] [or’, ["eq’, ‘id’, 2], ["icontains’, ‘city’, ‘Boston’]]

messages.models.new_msgs (self)
Return queryset with all new messages.

messages.models.on_save_participant (instance, **kwargs)
messages.models.on_save_stdmessage (instance, **kwargs)
messages.models.seen_msgs (self)

messages.models.sent_stdmsgs (self)

8.4 News

class news .models.News (*args, **kwargs)
News(id, title, date, text)

exception News . DoesNotExist

exception News .MultipleObjectsReturned

News .get_next_by_date (*moreargs, **morekwargs)
News .get_previous_by_ date (*moreargs, **morekwargs)

News .objects = <django.db.models.manager.Manager object at 0x2980790>

8.4. News 35

Conference website Documentation, Release 1.0.1

36 Chapter 8. The source code

CHAPTER
NINE

INDICES AND TABLES

37

Conference website Documentation, Release 1.0.1

38 Chapter 9. Indices and tables

A

Active, 25
Address, 16
Administration, 17

B

Blueprint, 17

C

cancelling registrations, 21
CSS, 17

CSV, 21

Customizing the web pages, 10

D

delete participant, 21
Description, 17
dinner, 15
Documentation, 17
double, 16

double room, 16
Download CSV, 21

E

Exploring the system, 19

F

fake mail server, 7
Filter, 25

G

Google map, 15

H

Help text, 17
HotelFeature, 16
Hotels, 16

Info, 16
installation, 3

L

late, 16
late arrival, 16

M

mail server, 7

N

News, 16

P

ParticipantOrgComment, 15
Participants, 25

pending registrations, 20
Preview, 25

Price per night dz, 16

Price remarks, 16

R

reactivating registrations, 21

S

schedule, 14

Sender, 25

Sending messages, 23
Slug, 25

Social events, 15
special, 16

Subject, 25

T

Tag, 16

Template, 25

to be confirmed speakers, 21
travel, 15

U

URL, 16

INDEX

39

	Introduction
	Installing the system
	Requirements
	Installation of the relevant software packages
	Obtaining the source code
	Development/quick start
	Deployment on a ``real'' server
	Backup
	List of software packages used

	Customizing the web pages
	Overview
	settings_local.py
	Templates
	Social events
	Messages
	Displaying individualized information to participants
	News
	Hotels
	HotelFeature
	Other things

	Administration
	Exploring the test data
	Assumptions
	Adding participants/speakers
	Maintenance
	Edit/view participants' data
	Download CSV
	to be confirmed status of speakers
	Deleting participants
	News

	User functionality
	Participants
	Speakers

	Sending messages to participants
	Bulk messages
	Individual messages
	Messages from participants

	Licence
	The source code
	The conference module
	Speakers
	Messages
	News

	Indices and tables
	Index

