
Experiences with using Python in Mercurial

Martin Geisler
〈mg@aragost.com〉

Python Geek Night
November 16th, 2010

aragost Trifork

About the Speaker
Martin Geisler:

I core Mercurial developer:
I reviews patches from the community
I helps users in our IRC channel

I PhD in Computer Science from Aarhus University, DK
I exchange student at ETH Zurich in 2005
I visited IBM Zurich Research Lab in 2008

I now working at aragost Trifork, Zurich
I offers professional Mercurial support
I customization, migration, training
I advice on best practices

2 / 16

aragost Trifork

About the Speaker
Martin Geisler:

I core Mercurial developer:
I reviews patches from the community
I helps users in our IRC channel

I PhD in Computer Science from Aarhus University, DK
I exchange student at ETH Zurich in 2005
I visited IBM Zurich Research Lab in 2008

I now working at aragost Trifork, Zurich
I offers professional Mercurial support
I customization, migration, training
I advice on best practices

2 / 16

aragost Trifork

About the Speaker
Martin Geisler:

I core Mercurial developer:
I reviews patches from the community
I helps users in our IRC channel

I PhD in Computer Science from Aarhus University, DK
I exchange student at ETH Zurich in 2005
I visited IBM Zurich Research Lab in 2008

I now working at aragost Trifork, Zurich
I offers professional Mercurial support
I customization, migration, training
I advice on best practices

2 / 16

aragost Trifork

Outline

Introduction

Python-Specific Tricks

Traditional Techniques

Conclusion

3 / 16

aragost Trifork

Outline

Introduction

Python-Specific Tricks

Traditional Techniques

Conclusion

4 / 16

aragost Trifork

Mercurial in 3 Minutes
Mercurial is a distributed revision control system:

I traditional systems (SVN, ClearCase, . . .) have one server
I newer systems (Mercurial, Git, . . .) have many servers

Alice Bob

hello.c
Makefile

commit

update

push

pull

5 / 16

aragost Trifork

Who is Using it?
Mercurial is used by:

I Oracle for Java, OpenSolaris, NetBeans, OpenOffice, . . .
I Mozilla for Firefox, Thunderbird, . . .
I Google
I many more. . .

6 / 16

aragost Trifork

Who is Using it?
Mercurial is used by:

I Oracle for Java, OpenSolaris, NetBeans, OpenOffice, . . .
I Mozilla for Firefox, Thunderbird, . . .
I Google
I many more. . .Want to know more?

Come to the free Mercurial Kick Start II!
Date: Wednesday, November 24th,
Place: Technopark, Zurich
See http://trifork.ch/

6 / 16

http://trifork.ch/

aragost Trifork

Outline

Introduction

Python-Specific Tricks

Traditional Techniques

Conclusion

7 / 16

aragost Trifork

Advantages of Python
We like Python because of:

I rapid prototyping
I the revlog data structure in a 1 hour train ride

I good cross-platform support
I We want to support Windows, Mac, Linux, . . .

I very clean syntax
I easy to pick up for contributors

8 / 16

aragost Trifork

Making Mercurial Start Fast
When you do import foo, Python does:

I search for foo.py, foo.pyc, and foo.pyo
I see if foo.py is newer than foo.pyc or foo.pyo
I load and execute found module
I do the whole thing recursively. . .

Starting Mercurial with demandimport disabled:
$ time hg version
0.20s user 0.04s system 100% cpu 0.239 total

This delay is already very noticeable!
Starting Mercurial with demandimport enabled:
$ time hg version
0.04s user 0.01s system 100% cpu 0.048 total

9 / 16

aragost Trifork

Making Mercurial Start Fast
When you do import foo, Python does:

I search for foo.py, foo.pyc, and foo.pyo
I see if foo.py is newer than foo.pyc or foo.pyo
I load and execute found module
I do the whole thing recursively. . .

Starting Mercurial with demandimport disabled:
$ time hg version
0.20s user 0.04s system 100% cpu 0.239 total

This delay is already very noticeable!

Starting Mercurial with demandimport enabled:
$ time hg version
0.04s user 0.01s system 100% cpu 0.048 total

9 / 16

aragost Trifork

Making Mercurial Start Fast
When you do import foo, Python does:

I search for foo.py, foo.pyc, and foo.pyo
I see if foo.py is newer than foo.pyc or foo.pyo
I load and execute found module
I do the whole thing recursively. . .

Starting Mercurial with demandimport disabled:
$ time hg version
0.20s user 0.04s system 100% cpu 0.239 total

This delay is already very noticeable!
Starting Mercurial with demandimport enabled:
$ time hg version
0.04s user 0.01s system 100% cpu 0.048 total

9 / 16

aragost Trifork

Imported Modules
Effect of using demandimport on number of modules imported:

System Without With

Python 17 —
Mercurial 305 69

I have enabled 14 typical extensions where:
I convert pulls in Subversion and Bazaar modules
I highlight pulls in Pygments modules
I patchbomb pulls in email modules
I etc. . .

10 / 16

aragost Trifork

Outline

Introduction

Python-Specific Tricks

Traditional Techniques

Conclusion

11 / 16

aragost Trifork

Optimizing Code
Start by profiling, then remove bottlenecks:

I use the right data structures
I add caches for data you reuse often
I rewrite in a faster language

12 / 16

aragost Trifork

Efficient Data Structures
Mercurial avoids seeks since they are expensive:

I any revision can be reconstructed with 1 seek and 1 read:

snapshot ∆∆ ∆ snapshot ∆ ∆ ∆ ∆

1 2 3 4 5 6 7 8 9

revision 8

I directory order is maintained in repository:

bar

baz

foo

.hg/store/data/bar.i

.hg/store/data/baz.i

.hg/store/data/foo.i

13 / 16

aragost Trifork

Efficient Data Structures
Mercurial avoids seeks since they are expensive:

I any revision can be reconstructed with 1 seek and 1 read:

snapshot ∆∆ ∆ snapshot ∆ ∆ ∆ ∆

1 2 3 4 5 6 7 8 9

revision 8

I directory order is maintained in repository:

bar

baz

foo

.hg/store/data/bar.i

.hg/store/data/baz.i

.hg/store/data/foo.i

13 / 16

aragost Trifork

Efficient Data Structures
Mercurial avoids seeks since they are expensive:

I any revision can be reconstructed with 1 seek and 1 read:

snapshot ∆∆ ∆ snapshot ∆ ∆ ∆ ∆

1 2 3 4 5 6 7 8 9

revision 8

I directory order is maintained in repository:

bar

baz

foo

.hg/store/data/bar.i

.hg/store/data/baz.i

.hg/store/data/foo.i
optimizes use of kernel readahead

13 / 16

aragost Trifork

Rewrite in Faster Language
If parts of your program are too slow, rewrite them!

Python

Java

C asm

Python embraces this hybrid approach:
I easy to build C extension modules with distutils
I Mercurial has six such extension modules

14 / 16

aragost Trifork

Outline

Introduction

Python-Specific Tricks

Traditional Techniques

Conclusion

15 / 16

aragost Trifork

Conclusion
Mercurial is almost pure Python code:

Language Lines %

Python 62,205 95%
C 3,474 5%

Python makes it possible to strike a good balance between
I highly maintainable Python code
I performance critical C code

Thank you for the attention!

16 / 16

aragost Trifork

Conclusion
Mercurial is almost pure Python code:

Language Lines %

Python 62,205 95%
C 3,474 5%

Python makes it possible to strike a good balance between
I highly maintainable Python code
I performance critical C code

Thank you for the attention!

16 / 16

aragost Trifork

Conclusion
Mercurial is almost pure Python code:

Language Lines %

Python 62,205 95%
C 3,474 5%

Python makes it possible to strike a good balance between
I highly maintainable Python code
I performance critical C code

Thank you for the attention!

Mercurial
Kick Start II

November 24th
trifork.ch

16 / 16

trifork.ch

aragost Trifork

OpenOffice
Fairly large repository:

I 70,000 files, 2,0 GB of data
I 270,000 changesets, 2,3 GB of history

Mercurial is still fast on a repository of this size:
$ time hg status
0.45s user 0.15s system 99% cpu 0.605 total
$ time hg tip
0.28s user 0.03s system 99% cpu 0.309 total
$ time hg log -r DEV300_m50
0.30s user 0.04s system 99% cpu 0.334 total
$ time hg diff
0.74s user 0.16s system 88% cpu 1.006 total
$ time hg commit -m ’Small change’
1.77s user 0.25s system 98% cpu 2.053 total

17 / 16

aragost Trifork

Demand-Loading Python Modules
Rewiring the import statement is quite easy!
import __builtin__
_origimport = __import__ # save for later

class _demandmod(object):
"""module demand-loader and proxy"""
... one slide away

modules that require immediate ImportErrors
ignore = [’_hashlib’, ’_xmlplus’, ’fcntl’, ...]

def _demandimport(name, globals, locals, fromlist):
"""import name and return _demandmod proxy"""
... two slides away

def enable():
__builtin__.__import__ = _demandimport

18 / 16

aragost Trifork

Proxy Modules
class _demandmod(object):

def __init__(self, n, g, l):
object.__setattr__(self, "_data", (n, g, l))
object.__setattr__(self, "_module", None)

def _loadmodule(self):
if not self._module:

mod = _origimport(*self._data)
object.__setattr__(self, "_module", mod)

return self._module

def __getattribute__(self, attr):
if attr in (’_data’, ’_loadmodule’, ’_module’):

return object.__getattribute__(self, attr)
return getattr(self._loadmodule(), attr)

def __setattr__(self, attr, val):
setattr(self._loadmodule(), attr, val)

19 / 16

aragost Trifork

New Import Function

def _demandimport(name, globals, locals, fromlist):
if name in ignore or fromlist == (’*’,):

ignored module or "from a import *"
return _origimport(name, globals, locals, fromlist)

elif not fromlist:
"import a" or "import a as b"
return _demandmod(name, globals, locals)

else:
"from a import b, c"
mod = _origimport(name, globals, locals)
for x in fromlist:

set requested submodules for demand load
if not hasattr(mod, x):

submod = _demandmod(x, mod.__dict__, locals)
setattr(mod, x, submod)

return mod

20 / 16

	Introduction
	Python-Specific Tricks
	Traditional Techniques
	Conclusion
	Appendix

