
1

NMPB08 – PROPAGATION

Programmer’s Guide

Loiodice Christellle - Van Maercke Dirk

GEOMOD / CSTB Grenoble

19/07/2011

2

3

Table of Contents

1 Getting started ... 4

1.1 Using the PropagationNMPB.dll .. 4

1.2 Create and delete the data structure .. 4

1.3 Passing in the geometry of the propagation path ... 5

1.4 Getting the results ... 6

1.5 Mutlitple sources, receivers and paths ... 7

1.6 Impedance jumps and relief .. 8

1.7 Barriers, screens and buildings .. 10

1.8 Reflections and lateral diffractions ... 12

1.9 Embankments .. 13

1.10 Errors .. 14

1.11 Utility functions .. 14

1.12 Options and advanced use ... 16

2 Worked out examples .. 18

2.1 Example 1: Straight line ... 18

2.2 Example 2: with a thin screen (vertical diffraction) .. 20

2.3 Example 3: with a thick screen .. 22

2.4 Example 4: reflection with a vertical obstacle... 23

2.5 Example 5: embankment ... 24

4

1 Getting started

1.1 Using the PropagationNMPB.dll

In order to use the PropagationNMPB.dll in your software you must:

• include the PropagationNMPB.h header file in your code

• make calls to the functions defined in the header file

• link your application against the PropagationNMPB.dll library

• copy the PropagationNMPB.dll file in a directory where it is accessible from your application

executable code ; the preferred option being to place the DLL file in the same directory as

the executable code.

The first part of this manual provides a short overview of the functionalities implemented in the

library and how to use these. The second part contains the detailed description of all functions,

datastructures and constants that make up the the public programming interface (API) of the

library. The third part contains the reference to all internal functions and data structures used

inside the library; this part is intended to be used by programmers that need to maintain, to

modify, to adapt or to optimise the library.

1.2 Create and delete the data structure

The PropagationNMPB calculation engine maintains an internal data structure in which are

stored a complete description of the acoustical problem, a set of options and all intermediate

and final results.

The first task of the host program is to allocate and to initialize this data structure using the

NMPB08_CreatePath function . When done with the calculation the host program might want

to free the internal data structure using NMPB08_DeletePath .

The functions and arguments for creating and cleaning up the internal data structure are:

void* PathID = NMPB08_CreatePath (void) ;

void NMPB08_DeletePath (void* PathID) ;

The NMPB08_CreatePath function will create and return the address of a new internal data

structure. The calling program should use this value as the first argument in all other calls to

functions in the PropagationNMPB calculation engine. The calling program should treat the

value returned by NMPB08_CreatePath as a “handle” to a hidden data structure and make no

assumptions about the structure or contents of this structure.

As a side effect, a call to NMPB08_CreatePath will initialize default values for:

5

• The frequency range is set to the default range defined in the NF S31-133 standard, i.e. 18

third octave bands, ranging from 100 to 5000 Hz,

• The sound speed is set to c = 340 m/s

• Air absorption is initialised to the predefined values given in the NF S31-133 standard.

Alternatively, the NMPB08_CreatePathEx function can be called to initialize the data structure

with a user-defined frequency (see part 2).

To clean up the memory storage used by the PropagationNMPB module, the host program calls

the NMPB08_DeletePath function. The void* argument must be a valid handle returned by the

NMPB08_CreatePath function. After calling the NMPB08_DeletePath the handle becomes invalid

and the host program must not use the handle in any call to another function inside the library.

Important: in order to keep the relations between frequencies, wavelengths, sound speed and

propagation distances coherent, all input data must use MKS units. All distances, heights and

other geometrical parameters must be entered in meters. If the host program uses different

units (cm, inches, km, mph,…) these must be converted to MKS units before calling the

PropagationNMPB API functions.

1.3 Passing in the geometry of the propagation path

A propation plane is a vertical plane connecting the source position to the receiver. In case of

direct propagation from the source to the receiver, the propagation plane consists of a single

plane. In case of reflections from obstacles or in case of diffraction around vertical edges of

obstacles, the propagation plane consists of a set of connected planes.

Propagation within a propagation plane is entirely defined by the intersection of the (set of)

vertical plane(s) with the ground and with all man-made or natural obstacles. This intersection is

a single, albeit broken, line in 3D.

Your application passes the geometry of the propagation plane by creating an ordered set of

points in the 3D space, using the NMPB08_ExtendPath function call. Each part (segment) of the

intersection of the propagation plane with the underlying 3D model must be assigned an

acoustical property. In the NMPB-2008 method, as in the ISO 9613-2 method, this acoustical

property is coded as an equivalent absorption coefficient "G", i.e. a value between 0

(acoustically hard surfaces) and 1 (acoustically soft surfaces).

Note that in the NMPB-2008 method, the G-value of the first point defined the nature of the

ground below the source and is used to calculate the source-specific correction term for G'trajet.

I.e. G should be equal to 0 in case of a road source and equal to 1 for a railway source on a

ballast bed. For the next points, the G value passed to the call corresponds to the nature of the

segment from the previous position to the new position.

The first point in the propagation plane corresponds to the foot print of the receiver on the

ground (or on a roof in case the receiver is located above a building) and the last point to the

foot point of the source. The height of the source and the receiver are set independently of the

6

segments describing the cross-section by means of the NMPB08_SetSourceHeight and

NMPB08_SetSourceHeight functions.

The simplest propagation plane corresponds to only two points, one ground impedance value

and one source and receiver heights, as illustrated in the following code segment:

#include "PropagationNMPB08.h"
// create the internal data structure
PathID pathNMPB = NMPB08_CreatePath () ;
// footprint of source
Position3D posSource ;
posSource . x = 0;
posSource . y = 0;
posSource . z = 0;
// footprint of receiver
Position3D posReceiver ;
posReceiver . x = 20;
posReceiver . y = 0;
posReceiver . z = 0;

 // clear the interal geometry buffer
NMPB08_ClearPath (pathNMPB) ;

 // pass in source position (hard ground)
 NMPB08_ExtendPath (pathNMPB, &posSource, 0.0);
 // pass in the receiver position (soft ground)
 NMPB08_ExtendPath (pathNMPB, & posReceiver , 1.0);
 // Set source and receiver height :
 NMPB08_SetSourceHeight (pathNMPB, 0.05);
 NMPB08_SetReceiverHeight (pathNMPB, 4.50);
 // Calculate attenuation :
 int err = NMPB08_DoCalculation (pathNMPB);

if(err == 0)
{
 // get results...

 }
 // done, cleanup memory :
 NMPB08_DeletePath (pathNMPB) ;

After completing the definition of the propagation path, your application calls the

NMPB08_DoCalculation function in order to perform the calculations. The function returns 0 if

the calculation was performed without problems or an error code if appropriate.

1.4 Getting the results

To get the result, your application calls the NMPB08_GetAttH and NMPB08_GetAttF functions.

NMPB08_GetAttH returns the calculation results in homogeneous conditions; NMPB08_GetAttF

returns the calculation results for moderate downward-refracting conditions. The results are

expressed in dB. Positive values indicate a decrease in sound level, positive value an increase.

7

The NMPB08_GetAttH and NMPB08_GetAttF functions return pointers to internal arrays of

values. The size of these arrays matches the actual frequency range as setup in the calculation

engine. Your may query the internal frequency range through the NMPB08_GetNbFrequencies

and NMPB08_GetFrequencies functions.

Example:
 int err = NMPB08_DoCalculation (pathNMPB);

if(err == 0)
{
 // Get size of frequency range :
 int nbF req = NMPB08_GetNbFrequencies (pathNMPB);
 // Get frequency range :
 double const * freq = NMPB08_GetFrequencies (pathNMPB);
 // Get homogeneous conditions values :
 double const * attH = NMPB08_GetAttH (pathNMPB);
 // Get favorable conditions values :
 double const * attF = NMPB08_GetAttF (pathNMPB);
 // do something with the attenuation values...
 for (int index = 0 ; index < nbFreq ; index++)
 {
 cout << freq[index] << attH[i] << attF[i]
 }

 }

1.5 Mutlitple sources, receivers and paths

The PropagationNMPB module stores the list of segment points as part of its internal data

structure. In order to reuse the same handle for the calculation of multiple paths, the

NMPB08_ClearPath function must be called to clear this list before the start of a new

propagation plane. The NMPB08_ExtendPath , and NMPB08_ExtendPathExt functions add new

vertex point at the end of the internal list.

The height of the source and the receiver are set independently of the segments describing the

propagation plane. This allows your application to re-use the propagation plane in calculations

that differ only in source and receiver height. Different source heights are required e.g. in case

of a railway source. Multiple receiver heights allow optimised calculation of a set of receivers

located on a single vertical line (i.e. sharing a single foot point).

Example:

 double sourceHeights[3] = { 0.00, 0.50, 2.00 } ;
 double receiverHeights[3] = { 1.50, 4.50, 7.50 } ;
 // loop over receiver heights
 for (int i = 0 ; i < 3 ; i++)
 {
 // set receiver height
 NMPB08_SetReceiverHeight (pathNMPB, receiverHeight[i]);
 // loop over source heights
 for (int j = 0 ; j < 3 ; j++)
 {

8

 // set source height
 NMPB08_SetSourceHeight (pathNMPB, 0.05);
 // do the calculation and get results
 int err = NMPB08_DoCalculation (pathNMPB);

 if(err == 0)
 {
 // Get attenuation values
 double const * attH = NMPB08_GetAttH (pathNMPB);
 double const * attF = NMPB08_GetAttF (pathNMPB);
 // Do something...

 }
 }
 }

1.6 Impedance jumps and relief

In the first example we assumed propagation over a soft surface, but a source on a hard

platform. The transition from hard to soft ground is handled automatically in the NMPB-2008

method through the calculation of the G'trajet correction. It may however be preferable to model

impedance jumps explicitely. This is easily done by introducing a third vertex in the profile of the

propagation path, as shown in the next example.

Position3D pos ;

 // clear the path data
NMPB08_ClearPath () ;

 // pass in footprint of the source position (hard ground)
pos . x = 0;
pos . y = 0;
pos . z = 0;

 NMPB08_ExtendPath (pathNMPB, &pos, 0.0);
// hard surface from source till border of platform
pos . x = 10;
pos . y = 0;
pos . z = 0;

 NMPB08_ExtendPath (pathNMPB, &pos, 0.0);
// soft surface from border to receiver
pos . x = 20;
pos . y = 0;
pos . z = 0;

 NMPB08_ExtendPath (pathNMPB, &pos, 0.0);
 // Set source and receiver height :
 NMPB08_SetSourceHeight (pathNMPB, 0.05);
 NMPB08_SetReceiverHeight (pathNMPB, 4.50);

Similarly, the altitude of the terrain can be passed directly to the NMPB08_ExtendPath function,

as in the case of an elevated road platform:

Position3D pos ;
 // clear the path data

NMPB08_ClearPath () ;
 // pass in footprint of the source position (hard ground)

9

pos . x = 0;
pos . y = 0;
pos . z = 4;

 NMPB08_ExtendPath (pathNMPB, &pos, 0.0);
// hard surface from source till border of platform
pos . x = 10;
pos . y = 0;
pos . z = 4;

 NMPB08_ExtendPath (pathNMPB, &pos, 0.0);
// embankment, slope 2/3, soft ground
pos . x = 6;
pos . y = 0;
pos . z = 0;

 NMPB08_ExtendPath (pathNMPB, &pos, 1.0);
// flat (soft) ground from embankment to receiver
pos . x = 20;
pos . y = 0;
pos . z = 0;

 NMPB08_ExtendPath (pathNMPB, &pos, 1.0);

Different parts of the ground are connected by means of a vertical sustaining wall. This may be

modelled by means of two points in the propagation plane, one exactly above the next:

Position3D pos ;
 // clear the path data

NMPB08_ClearPath () ;
 // footprint of the source position (hard ground)

pos . x = 0;
pos . y = 0;
pos . z = -4;

 NMPB08_ExtendPath (pathNMPB, &pos, 0.0);
// hard surface from source till border of platform
pos . x = 10;
pos . y = 0;
pos . z = -4;

 NMPB08_ExtendPath (pathNMPB, &pos, 0.0);
// vertical wall to natural terrain
pos . x = 10;
pos . y = 0;
pos . z = 0;

 NMPB08_ExtendPath (pathNMPB, &pos, 0.0);
// flat ground from embankment to receiver
pos . x = 20;
pos . y = 0;
pos . z = 0;

 NMPB08_ExtendPath (pathNMPB, &pos, 1.0);

Note that the vertical wall is characterised by a G value that will be ignored by the NMPB-2008

calculation scheme (because of the weighting function applied in the calculation of Gtrajet).

However, if the wall were slightly tilted away from the source, its value would enter the

calculation.

10

1.7 Barriers, screens and buildings

As for the case of relief, man-made obstacles in the propagation plane are defined as segments

that define the intersection of the propagation plane with the volumes created by the obstacles.

As an example, consider the excess attenuation for road, above a flat terrain with a building in

between the source and the receiver. At 10m from the source, there is an 8 m-high building. To

the right of the building, the ground impedance value changes to soft. The receiver is situated at

50m from the source. As above, we will create separare segments for the vertical walls and for

the roof the building.

 Position3D pos ;

// clear the path buffer
NMPB08_ClearPath () ;

 // the source position
 pos . x = 0;
 pos.y = 0;
 pos . z = 0;
 NMPB08_ExtendPath (pathNMPB, & pos , 0.0);
 // hard ground to the building
 pos . x = 10;
 pos.y = 0;
 pos . z = 0;
 NMPB08_ExtendPath (pathNMPB, & pos , 0.0);
 // vertical wall, 8 meter high
 pos . x = 10;
 pos.y = 0;
 pos . z = 8;
 NMPB08_ExtendPath (pathNMPB, & pos , 0.0);
 //roof at z = 8m
 pos . x = 20;
 pos.y = 0;
 pos . z = 8;
 NMPB08_ExtendPath (pathNMPB, & pos , 0.0);
 // vertical wall, down to z = 0
 pos . x = 20;
 pos.y = 0;
 pos . z = 0;
 NMPB08_ExtendPath (pathNMPB, & pos , 0.0);
 // flat soft ground till receiver
 pos . x = 50;
 pos.y = 0;
 pos . z = 0;
 NMPB08_ExtendPath (pathNMPB, & pos , 1.0);

Important note: whether a segment point will give way to the calculation of attenuation due to

diffraction or not is determinded automatically inside the calculation scheme, based on the

geometrical construction of the Fermat path linking the source to the receiver respecting the

constraints imposed by the shape of the boundary. This implies that the geometrical detection

of diffracting eges is entirely automatic and does not require the host software to provide any

11

additional information. As a consequence, the libray does not offer the possibility to avoid

and/or force calculation of a diffraction term from any of the segment points defining the

boundary. Also, there is no means to distinguish diffraction caused by natural and/or man-made

obstacles.

Thin barriers can be created in the same way by means of two vertical segments and no roof

segment in between then. E.g. if the building were replaced by a thin barrier, 3m high, at 10m

from the source, the code would become:

 Position3D pos ;
// clear the path buffer
NMPB08_ClearPath () ;

 // the source position
 pos . x = 0;
 pos.y = 0;
 pos . z = 0;
 NMPB08_ExtendPath (pathNMPB, & pos , 0.0);
 // hard ground to the barrier
 pos . x = 10;
 pos.y = 0;
 pos . z = 0;
 NMPB08_ExtendPath (pathNMPB, & pos , 0.0);
 // the barrier, 3m high, is modelled by means of 3 segments
 // left side of the barrier
 pos . x = 10;
 pos.y = 0;
 pos . z = 3;
 NMPB08_ExtendPath (pathNMPB, & pos , 0.0);
 // right side of the barrier
 pos . x = 10;
 pos.y = 0;
 pos . z = 0;
 NMPB08_ExtendPath (pathNMPB, & pos , 0.0);
 // flat soft ground till receiver
 pos . x = 50;
 pos.y = 0;
 pos . z = 0;
 NMPB08_ExtendPath (pathNMPB, & pos , 1.0);

However, it is equally possible to create the thin barrier by means of an "extension" element.

Extension elements are created using the NMPB08_ExtendPathExt function that allows passing

additional information to the calculation engine. The Propogation library includes many

different extensions and each extension is identified by a unique code. For the creation of a thin

barrier at a specified location, we use the ETScreen_NMPB extension code.

The next example is formally equal the previous one:

NMPB08_ClearPath () ;
 // the source position
 pos . x = 0;
 pos.y = 0;
 pos . z = 0;

12

 NMPB08_ExtendPath (pathNMPB, & pos , 0.0);
 // hard ground to the barrier at x = 10m
 pos . x = 10;
 pos.y = 0;
 pos . z = 0;
 // define the extension record, passing in the type and
 // the height of the barrier

ExtensionNMPB ext ;
 ext . type = ETScreen_NMPB;
 ext . height = 3.0;
 // this call will create both the ground segment fr om z = 0

// to z = 10 (with G = 0.0) and a thin 3m high scre en above
// end point of the segment (i.e. at z = 10m)

 NMPB08_ExtendPathExt (pathNMPB, & pos , 0.0, &ext);
 // flat soft ground till receiver
 pos . x = 50;
 pos.y = 0;
 pos . z = 0;
 NMPB08_ExtendPath (pathNMPB, & pos , 1.0);

Note: the use of the ETScreen_NMPB extension does not imply that a diffraction term will be

accounted for in the calculation of the path (see note above); i.e. the ETScreen_NMPB extension

defines a geometrical feature of the boundary beneath the propagation path whose effects on

the calculations are solely defined by the geometrical (and physical) properties of the extra

segments created by the extension record. As a consequence, both methods for creating a

barrier (i.e. by means of a set of segments or by means of an extension) will lead to strictly

identical acoustical results.

1.8 Reflections and lateral diffractions

Extension records can be used to indicate that the propagation plane contains reflections from

vertical obstacles. The corresponding extension type is ETReflection_NMPB, the information

to be passed to the library includes:

- the height of the reflecting obstacle

- a table of absorption coefficients of the surface (this table should have the same number

of elements as there are frequencies defines in the calculation engine).

The reflecting obstacle is positioned at the end point of the segment that is it attached to.

As an example, consider the same situation as in the previous section but for a path including a

reflection on a screen at the opposite side of the road. Note that the receiver has been moved

to y = 70m and that it is assumed that the barriers are parallel to the (Oy) axis, so that the

propagation plane makes an angle of 45 degrees with both screens.

 // absorption values
double alphaSpec[] =
{0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.5,

13

 0.5, 0.6, 0.6, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9};
// clear the geometry buffer
NMPB08_ClearPath () ;
// data structures
Position3D pos ;
ExtensionNMPB ext ;

 // the source position at x = 0m, y = 0m
 pos . x = 0;
 pos.y = 0;
 pos . z = 0;
 NMPB08_ExtendPath (pathNMPB, & pos , 0.0);
 // reflection from the barrier at x = -10m, y = 10m
 pos . x = -10;
 pos.y = 10;
 pos . z = 0;
 e xt . type = ETReflection_NMPB ;

ext . height = 3.0 ;
 ext . alphaArray = alphaSpec ;
 // diffraction over the barrier at x = 10m, y = 30m
 pos . x = 10;
 pos.y = 30;
 pos . z = 0;

ext . type = ETScreen_NMPB;
 ext . height = 3.0 ;
 ext.alphaArray = 0;
 NMPB08_ExtendPathExt (pathNMPB, & pos , 0.0, &ext);
 // flat soft ground till receiver at x = 50m, y = 7 0m.
 pos . x = 50;
 pos.y = 70;
 pos . z = 0;
 NMPB08_ExtendPath (pathNMPB, & pos , 1.0);

Diffraction around vertical edges is encoded in the same way using the

ETSideDiffraction_NMPB extension type. Note that the following limitations apply to laterally

diffracted paths:

• The path can contain at most one diffracting obstacle, either a the border of a thin barrier or

two borders belonging to the same thick obstacle.

• Any path may not contain either diffraction by a vertical edge or diffraction any number of

top diffractions but combinations of lateral and top diffractions are not allowed.

1.9 Embankments

Optionnaly, the PropagationNMPB calculation engine will apply the corrections for the presence

of embankments as prescribed in the NF S31-133 standard. In order to apply the corrections,

the host software must:

• enable the CHECK_EMBANKMENT option (see below, by default, the option is disabled),

14

• pass extra information about the nature of the source (i.e. the correction only applies to a

road source) and the position of the border of the road platform,

• indicate the segment that will be used as the candidate for the correction,

• indicate the angle of the propagation plane with the line source.

All these informations are passed as extension records. See below for a worked out example.

1.10 Errors

Most of the functions defined in the NMPB-2008 library return error codes. Error codes are of

type ErrorType and enumeration in the header file:

ERRNone = 0 : no error catched

 ERRNullPath = 10 : the PathID is NULL

 ERRNoPoint = 11 : there is no point in the path

 ERROnePoint = 12 : there is only one point in the path

 ERRSideDiff = 13 : There are more than 2 side diffractions in the path

 ERREmbankment = 14 : There are more than 1 embankment in the path

 ERRFrequency = 20 : The frequency equals 0

 ERRAttCoeffFrequency = 21 : frequency not found in array containing

 attenuation coefficient

 ERRAngle = 30 : angle not found in array containing favorable conditions

 probabilities for the angles

 ERRProbability = 40 : probability value > 1

 ERRDivZero = 50 : division by 0

 ERRSqrtNegative = 51 : square root of a negative number

 ERRScreenAbsorption = 60 : screen absorption > 1

 ERRUnknown = 100 : : unknown error catched

1.11 Utility functions

The PropagationNMPB library provides a set of utility functions that can be used outside the

scope of a propagation path. These functions do not require a handle to an internal data

structure and operate solely on application defined data.

The NMPB08_SumLevels function implements the energetic sum of sound levels ; it can be

usefull to sum over frequency bands or to sum levels over different propagation paths. The

function is defined as :

double NMPB08_SumLevels(int n, double const* levels);

The NMPB08_GetFavorableConditionProbability function can be used to obtain the percent

of occurrence of favorable conditions for a given source-receiver direction.

double NMPB08_GetFavorableConditionProbability
 (Position3D const* source,

15

 Position3D const* receiver,
 int nbAngles, double const* fcpAngles,
 double angleNorth);

The calling program must indicate the direction of North in the current coordinate system and

pass a table of percentage of favorable per angular sector. The direction of north is defined as

the angle of the north direction with the X-axis of the local coordinate system and measured

positive in counter-clockwise sense. E.g. if the direction of north coincides with the positive Y

axis, pass in a value of 90 degrees. The table of favorable conditions shall comply with those

given in Annexe B of the NF S31-133 standard : the values in the table correspond to the angles

of 20, 40, 60, … 360 degrees with respect to north and the angles are measured clockwise.

The NMPB08_LTsound function can be used to calculate the long-term sound level from the

given sound levels under homogeneous and favorable conditions and the frequency of

occurrence of favorable probability.

double NMPB08_LTsound(double Lp_h, double Lp_f, dou ble p) ;

The NMPB08_CalculateLeqLT function calculates the specific sound level for a single

propagation path. Given the sound power of the source, the attenuations under downward-

refraction and homogeneous conditions and the frequency of occurrence of favorable

propagation conditions, the function calculates the specific noise levels Leq,H, Leq,F and Leq,LT. All

calculations are done in frequency bands. The calling application is responsible for allocating the

arrays required for the storage of the calculated values.

int NMPB08_CalculateLeqLT (int nbFreq,
 double* Lw,
 double const* attH, double const* attF,
 double fcp,
 double* LeqH, double* LeqF, double* LeqL T);

Example…

 // the direction of north is 20 degrees to the left of the (Oy) axis
 double alphaN = 110;
 // table of frequency of occurrence of favorable co nditions
 int nbAngles = 18;

double angleParray [] =
 {30, 28, 26, 25, 27, 28, 30, 32, 34,
 35, 36, 35, 34, 32, 32, 32, 32, 32};

 // source levels for each frequency in third octave band
 double Lw[] =
 {53.1, 54.1, 56.1, 59.1, 61.1, 64.1,
 66.1, 69.1, 69.1, 72.1, 73.1, 72.1,
 70.1, 67.1, 64.1, 62.1, 59.1, 57.1};
 // allocate memory to store the sound levels
 int nbFrequencies = NMPB08_GetNbFrequencies (pathNMPB);
 double * Leq_H = new double [nbFrequencies];
 double * Leq_ F = new double [nbFrequencies];
 double * Leq_LT = new double [nbFrequencies];
 // loop over paths paths
 for (...)

16

 {
 // create path geometry
 // set source and receiver heights
 // do the calculation and get the results
 NMPB08_DoCalculation (pathNMPB);

 // Get attenuation values
 double const * attH = NMPB08_GetAttH (pathNMPB);
 double const * attF = NMPB08_GetAttF (pathNMPB);

 // get occurrence of favorable conditions
 // for this source and receveiver
 double p fc = NMPB08_GetFavorableConditionProbability
 (& posSource , & posReceiver ,
 nbAngles, angleParray , alphaN);
 // calculate levels
 for (int i = 0 ; i < nbFrequencies ; i ++)
 {
 Leq _H[i] = Lw[i] - attH [i];
 Leq _F[i] = Lw[i] - attF [i];
 Leq_LT[i] = NMPB08_LTsound (Leq_H[i], Leq_F[i], pfc);
 }
 // sum over frequencies in order to obtain dB(A) va lues
 double LeqA_H = NMPB08_SumLevels(nbFrequencies , Leq_H);
 double LeqA_F = NMPB08_SumLevels(nbFrequencies , Leq_F);
 double LeqA_LT = NMPB08_SumLevels(nbFrequencies , Leq_LT);
 // store the results
 // ...
 }

1.12 Options and advanced use

Advanced features of the NMPB08 library can be activated (or inhibited) by means of options.

Options are set or cleared using the NMPB08_SetOption function. The following options can be

set of unset:

- EXCLUDE_ADIV do not include geometrical divergence in the calculated

 attenuation values

- EXCLUDE_AATM do not include atmospheric absorption in the calculated

 attenuation values

- TRACE_DETAILS print out all calculation details on console

- CHECK_EMBANKMENT perform corrections for embankments

NB : EXCLUDE_ADIV and EXCLUDE_AATM shall not be activated in an NMPB2008 compliant

calculation.

As an example, a software developer might decide to use the NMPB-2008 library to calculate

the excess attenuation in the propagation plane without any corrections for air absorption, for

geometrical divergence and for lateral diffraction and reflections, because all these are already

implemented in this software. In this case, the software will most likely use the NMPB08 library

17

in 2D mode (i.e. positions will be given by means of DZ coordinates in a deployed propagation

plane).

Example:

 NMPB08_SetOption(pathNMPB, EXCLUDE_ADIV, true);

 NMPB08_SetOption(pathNMPB, EXCLUDE_AATM, true);

 // assume the host defines the propagation path trh ough
 // an array of "impact" structures containing d, z and g values

 NMPB08_ClearPath (pathNMPB) ;
 for (int i = 0 ; i < impact.size() ; ++i)

{
 Position3D pos ;

pos.x = impact[i].d ;
pos.y = 0 ;
pos.z = impact[i].z ;

 NMPB08_ExtendPath (pathNMPB, & pos , impact[i].g);
 }

Note that DZ coordinates are easily obtained from 3D path coordinates by means of :

impact[0].d = 0 ;
for (int i = 1 ; i < impact.size() ; ++i)
{
 double x = impact[i].x – impact[i-1].x ;
 double y = impact[i].y – impact[i-1].y ;
 impact[i].d = impact[i-1].d + sqrt (x * x + y * y) ;

 }

18

2 Worked out examples

2.1 Example 1: Straight line
In this example we calculate the excess attenuation for road, above a flat terrain. The source is

situated at 5 cm above a road surface (impedance value = 0). After 6 m, the ground impedance

value changes to 1. The receiver is situated at 20m from the source, 5m above local ground.

The code below shows how the problem is solved using the PropagationNMPB module.

// Path filling
PathID pathNMPB = NMPB08_CreatePath () ;
// P1
Position3D posSegment1 ;
posSegment1 . x = 0;
posSegment1 . y = 0;
posSegment1 . z = 0;
// P2
Position3D posSegment2 ;
posSegment2 . x = 6;
posSegment2 . y = 0;
posSegment2 . z = 0;
// P3
Position3D posSegment3 ;

 posSegment3 . x = 20;
 posSegment3 . y = 0;
 posSegment3 . z = 0;

 // Source position
 NMPB08_ExtendPath (pathNMPB, & posSegment1 , 0);

 // Changing impedance position (g = 0 between P1 an d P2)
 NMPB08_ExtendPath (pathNMPB, & posSegment2 , 0);

 // Receiver position (g = 1 between P2 and P3)
 NMPB08_ExtendPath (pathNMPB, & posSegment3 , 1);

 // Set source and receiver height :
 NMPB08_SetSourceHeight (pathNMPB, 0.05);
 NMPB08_SetReceiverHeight (pathNMPB, 5);

 // Calculate attenuation :
 int err = NMPB08_DoCalculation (pathNMPB);

if(err == 0)
{
 // Get homogeneous conditions values :
 double const * attH = NMPB08_GetAttH (pathNMPB);
 // Get favorable conditions values :

19

 double const * attF = NMPB08_GetAttF (pathNMPB);

 // do something with the attenuation values...

 }

 // done, cleanup memory :
 NMPB08_DeletePath (pathNMPB) ;

The attenuation data can be used with utility functions:

Code that can be put in place of the “// do something with the attenuation

values... ” (Must be used before calling NMPB08_DeletePath (pathNMPB))

 // the direction of north is 20 degrees to the left of the (Oy) axis
 double alphaN = 110;
 // favorable conditions probability according to di rections:
 int nbAngles = 18;

double angleParray [] = {30, 28, 26, 25, 27, 28, 30, 32, 34, 35,
36, 35, 34, 32, 32, 32, 32, 32};

 // source sound levels for each frequency in third octave band
 double sourceSoundsArray [] = {53.1, 54.1, 56.1, 59.1, 61.1, 64.1,
 66.1, 69.1, 69.1, 72.1, 73.1, 72.1,
 70.1, 67.1, 64.1, 62.1, 59.1, 57.1};

 // get favorable probability in these conditions :
 double favourableProbability =
NMPB08_GetFavorableConditionProbability(& posSegment1 , & posSegment3 ,
nbAngles, angleParray , alphaN);

 // get receiver sounds for each frequency :
 int nbFrequencies = NMPB08_GetNbFrequencies (pathNMPB);
 double * receiverSounds_h = new double [nbFrequencies];
 double * receiverSounds_f = new double [nbFrequencies];
 double * totalPathSoundLevel = new double [nbFrequencies];
 for (int i = 0 ; i < nbFrequencies ; i ++)
 {
 receiverSounds_h [i] = sourceSoundsArray [i] - attH [i];
 receiverSounds_f [i] = sourceSoundsArray [i] - attF [i];

 totalPathSoundLevel [i] = NMPB08_LTsound(receiverSounds_h [i],
receiverSounds_f [i], favourableProbability);
 }

 // sum on frequencies :
 // get the sound level sum in homogeneous condition s :
 double Leq_h_sum = NMPB08_SumLevels(nbFrequencies , receiverSounds_h);
 // get the sound level sum in favorable conditions :
 double Leq_f_sum = NMPB08_SumLevels(nbFrequencies , receiverSounds_f);
 // get the total sound level sum

20

 double LeqLT_sum = NMPB08_SumLevels(nbFrequencies , totalPathSoundLevel);

 // do something with the sound level values...

2.2 Example 2: with a thin screen (vertical diffrac tion)
In this example we calculate the excess attenuation for road, above a flat terrain with a screen.

The source is situated at 5 cm above a road surface (impedance value = 0). After 6 m, there is a

5m height screen and the ground impedance value changes to 1. The receiver is situated at 20m

from the source, 5m above local ground.

The code below shows how the problem is solved using the PropagationNMPB module. There

are two possibilities to fill the path :

- First possibility :

// Path filling

 PathID pathNMPB = NMPB08_CreatePath () ;
 // P1
 Position3D posSegment1 ;
 posSegment1 . x = 0;
 posSegment1 . y = 0;
 posSegment1 . z = 0;
 // P2
 Position3D posSegment2a ;
 posSegment2a . x = 6;
 posSegment2a . y = 0;
 posSegment2a . z = 0;
 Position3D posSegment2b ;
 posSegment2b . x = 6;
 posSegment2b . y = 0;
 posSegment2b . z = 5;
 Position3D posSegment2c ;
 posSegment2c . x = 6.01;
 posSegment2c . y = 0;
 posSegment2c . z = 0;
 // P3
 Position3D posSegment3 ;
 posSegment3 . x = 20;
 posSegment3 . y = 0;
 posSegment3 . z = 0;

 // Source position
 NMPB08_ExtendPath (pathNMPB, & posSegment1 , 0);

 // Changing impedance position (g = 0 between P1 an d P2) and
screen item
 NMPB08_ExtendPath (pathNMPB, & posSegment2a , 0);
 NMPB08_ExtendPath (pathNMPB, & posSegment2b , 0);
 NMPB08_ExtendPath (pathNMPB, & posSegment2c , 0);

 // Receiver position (g = 1 between P2 and P3)

21

 NMPB08_ExtendPath (pathNMPB, & posSegment3 , 1);

 // Set source and receiver height :
 NMPB08_SetSourceHeight (pathNMPB, 0.05);
 NMPB08_SetReceiverHeight (pathNMPB, 5);

 // Calculate attenuation :
 int err = NMPB08_DoCalculation (pathNMPB);

 if(err == 0)
 {

 // Get homogeneous conditions values :
 double const * attH = NMPB08_GetAttH (pathNMPB);
 // Get favorable conditions values :
 double const * attF = NMPB08_GetAttF (pathNMPB);

// do something with the attenuation values...

}

 // done, cleanup memory :
 NMPB08_DeletePath (pathNMPB) ;

- Second possibility :
// Path filling

 PathID pathNMPB = NMPB08_CreatePath () ;
 // P1
 Position3D posSegment1 ;
 posSegment1 . x = 0;
 posSegment1 . y = 0;
 posSegment1 . z = 0;
 // P2
 Position3D posSegment2a ;
 posSegment2a . x = 6;
 posSegment2a . y = 0;
 posSegment2a . z = 0;
 // P3
 Position3D posSegment3 ;
 posSegment3 . x = 20;
 posSegment3 . y = 0;
 posSegment3 . z = 0;

 // Source position
 NMPB08_ExtendPath (pathNMPB, & posSegment1 , 0);

 // screen item

ExtensionNMPB ext ;
 ext . type = ETScreen_NMPB;
 ext . height = 5;
 NMPB08_ExtendPathExt (pathNMPB, & posSegment2a , 0, &ext);

22

 // Receiver position (g = 1 between P2 and P3)
 NMPB08_ExtendPath (pathNMPB, & posSegment3 , 1);

 // Set source and receiver height :
 NMPB08_SetSourceHeight (pathNMPB, 0.05);
 NMPB08_SetReceiverHeight (pathNMPB, 5);

2.3 Example 3: with a thick screen

In this example we calculate the excess attenuation for road, above a flat terrain with a screen.

The source is situated at 5 cm above a road surface (impedance value = 0). After 10 m, there is

an 8 m-high building and the ground impedance value changes to 1. The receiver is situated at

50m from the source, 5m above local ground.

The code below shows how the problem is solved using the PropagationNMPB module.

// Path filling
 PathID pathNMPB = NMPB08_CreatePath () ;
 // P1
 Position3D posSegment1 ;
 posSegment1 . x = 0;
 posSegment1 . y = 0;
 posSegment1 . z = 0;
 // P2
 Position3D posSegment2a ;
 posSegment2a . x = 10;
 posSegment2a . y = 0;
 posSegment2a . z = 0;
 Position3D posSegment2b ;
 posSegment2b . x = 10;
 posSegment2b . y = 0;
 posSegment2b . z = 8;
 Position3D posSegment2c ;
 posSegment2c . x = 20;
 posSegment2c . y = 0;
 posSegment2c . z = 8;
 Position3D posSegment2d ;
 posSegment2d . x = 20;
 posSegment2d . y = 0;
 posSegment2d . z = 0;
 // P3
 Position3D posSegment3 ;
 posSegment3 . x = 50;
 posSegment3 . y = 0;
 posSegment3 . z = 0;

 // Source position
 NMPB08_ExtendPath (pathNMPB, & posSegment1 , 0);

 // Changing impedance position (g = 0 between P1 an d P2) and
screen item

23

 NMPB08_ExtendPath (pathNMPB, & posSegment2a , 0);
 NMPB08_ExtendPath (pathNMPB, & posSegment2b , 0);
 NMPB08_ExtendPath (pathNMPB, & posSegment2c , 0);
 NMPB08_ExtendPath (pathNMPB, & posSegment2d , 0);

 // Receiver position (g = 1 between P2 and P3)
 NMPB08_ExtendPath (pathNMPB, & posSegment3 , 1);

 // Set source and receiver height :
 NMPB08_SetSourceHeight (pathNMPB, 0.05);
 NMPB08_SetReceiverHeight (pathNMPB, 5);

 // Calculate attenuation :
 int err = NMPB08_DoCalculation (pathNMPB);

 if(err == 0)
 {

 // Get homogeneous conditions values :
 double const * attH = NMPB08_GetAttH (pathNMPB);
 // Get favorable conditions values :
 double const * attF = NMPB08_GetAttF (pathNMPB);

// do something with the attenuation values...

}

 // done, cleanup memory :
 NMPB08_DeletePath (pathNMPB) ;

2.4 Example 4: reflection with a vertical obstacle
In this example we calculate the excess attenuation for road, above a flat terrain, with a vertical

obstacle. The source is situated at 5m above a road surface (impedance value = 0). After 25 m,

on the left, there is a reflection on a vertical obstacle. The receiver is situated at 50m from the

source, 5m above local ground.

The code below shows how the problem is solved using the PropagationNMPB module.

// Path filling

 PathID pathNMPB = NMPB08_CreatePath () ;
 // P1
 Position3D posSegment1 ;
 posSegment1 . x = 0;
 posSegment1 . y = 10;
 posSegment1 . z = 0;
 // P2
 Position3D posSegment2 ;
 posSegment2 . x = 25;
 posSegment2 . y = 15;
 posSegment2 . z = 0;
 // P3

24

 Position3D posSegment3 ;
 posSegment3 . x = 50;
 posSegment3 . y = 10;
 posSegment3 . z = 0;

 // Source position
 NMPB08_ExtendPath (pathNMPB, & posSegment1 , 0);

 // Reflection
 ExtensionNMPB ext ;
 Ext . type = ETReflection_NMPB ;

Ext . height = 5;
double alphaSpec[] = {0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4,
0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9};

 Ext . alphaArray = alphaSpec ;

 NMPB08_ExtendPathExt (pathNMPB, & posSegment2 , 0, & ext);

 // Receiver position
 NMPB08_ExtendPath (pathNMPB, & posSegment3 , 0);

 // Set source and receiver height :
 NMPB08_SetSourceHeight (pathNMPB, 5);
 NMPB08_SetReceiverHeight (pathNMPB, 5);

 int err = NMPB08_DoCalculation (pathNMPB);

 if(err == 0)
 {

 // Get homogeneous conditions values :
 double const * attH = NMPB08_GetAttH (pathNMPB);
 // Get favorable conditions values :
 double const * attF = NMPB08_GetAttF (pathNMPB);

// do something with the attenuation values...

}

 // done, cleanup memory :
 NMPB08_DeletePath (pathNMPB) ;

2.5 Example 5: embankment
In this example we calculate the excess attenuation for road, above a terrain with embankment.

The source is situated at 0.05m above a road surface (impedance value = 0). Until 6 m, there is a

hard platform; then an embankment slope, 6m width, 4m high. The receiver is situated at 40m

from the source, 5m above local ground.

The code below shows how the problem is solved using the PropagationNMPB module.

25

// Path filling
 PathID pathNMPB = NMPB08_CreatePath () ;

// set embankment option
 NMPB08_SetOption(pathNMPB, CHECK_EMBANKMENT, true);

 // P1
 Position3D posSegment1 ;
 posSegment1 . x = 0;
 posSegment1 . y = 10;
 posSegment1 . z = 0;
 // P2
 Position3D posSegment2 ;
 posSegment2 . x = 6;
 posSegment2 . y = 10;
 posSegment2 . z = 0;
 // P3
 Position3D posSegment3 ;
 posSegment3 . x = 12;
 posSegment3 . y = 10;
 posSegment3 . z = 4;

// P4
 Position3D posSegment4 ;
 posSegment4 . x = 40;
 posSegment4 . y = 10;
 posSegment4 . z = 4;

 // Source position

ExtensionNMPB ext1;
ext1.Type = ETRoadSource_NMPB ;
ext1. cosTheta = 1;

 NMPB08_ExtendPathEx (pathNMPB, & posSegment1 , 0, &ext1);

 // Hard platform

ExtensionNMPB* ext2;
ext2.Type = ETPlatform_NMPB;
ext2. cosTheta = 1;

 NMPB08_ExtendPathEx (pathNMPB, & posSegment2 , 0, &ext2);

// Embankment
ExtensionNMPB ext3;
ext3.Type = ETEmbankment_NMPB;
ext3. cosTheta = 1;

 NMPB08_ExtendPathEx (pathNMPB, & posSegment3 , 0, &ext3);

 // Receiver position
 NMPB08_ExtendPath (pathNMPB, & posSegment4 , 0);

 // Set source and receiver height :
 NMPB08_SetSourceHeight (pathNMPB, 0.05);
 NMPB08_SetReceiverHeight (pathNMPB, 5);

26

 int err = NMPB08_DoCalculation (pathNMPB);

 if(err == 0)
 {

 // Get homogeneous conditions values :
 double const * attH = NMPB08_GetAttH (pathNMPB);
 // Get favorable conditions values :
 double const * attF = NMPB08_GetAttF (pathNMPB);

// do something with the attenuation values...

}

 // done, cleanup memory :
 NMPB08_DeletePath (pathNMPB) ;

