

Winter School in Marine
Environmental Prediction

Code Automation
6 Mar 2017

Doug Latornell
dlatornell@eoas.ubc.ca

Links

● Slide Deck:
https://bitbucket.org/douglatornell/uqar-winter-school/downloads/slides.pdf

● Repository:
https://bitbucket.org/douglatornell/uqar-winter-school

https://bitbucket.org/douglatornell/uqar-winter-school

Session Plan

● Definition
● Software Tools
● Organizing Your Modeling Research Life
● Exercise #1
● Writing Automation Tools
● Exercise #2
● NEMO command processor

Code Automation - Definition

Use software tools to automate tasks that are:
● tedious
● error-prone
● complicated
● repeated often

To document the story of your research

To make it more likely to be well organized, reproducible,
traceable

Code Automation - Definition

Use software tools to automate tasks that are:
● tedious
● error-prone
● complicated
● repeated often

To document the story of your research

To make it more likely to be well organized, reproducible, traceable

Your most important collaborators are your past and future selves

Be kind to them!

Software Tools

● Version Control
● Backups
● Model Runs Management
● Results Visualization

Version Control

The most important automation tool you'll learn
about this week!

Version Control All The Things!
(Almost...)

● Code
● Manuscripts of proposals, papers
● Research notes, work log
● Course work assignments
● Pre- and Post-processing techniques and code
● ...

Version Control

If you are not using version control already, start! Today!

● Find a local expert and use the version control tool that they use
if it is:
– Git

– Mercurial (hg)

– Subversion (maybe)

● But probably not if they have a grey beard like mine (or even if
they don't) and say "We don't use traditional version control, per
se", or "I have this system of shell scripts that I wrote that does
that..."

Assignment

● Create a repository for notes from this week
● Add and commit something about each session
● Bonus points for putting it on GitLab or another

web hosting service
● More bonus points for making it public and

sharing the URL

Version Control

● Commit early, commit often
● Version control can be used as a time machine,

but you can’t revert back to something that you
didn’t commit

● Use your commit messages to tell a story to
your future self

What Not to Version Control

Ephemeral files that are products of compilation,
LaTeX, etc.
● Fortran: .o, .mod, and executables
● Python: .pyc (in __pycache__ since Python 3)
● LaTeX: .aux, .log, .nav, .out, .snm, .toc

What Not to Version Control

Most large binary files:
● Run results
● Animation movies
● Maybe images, PDFs, etc.

Binary Files and Version Control

Issues:
● They require lots of memory to manage; on the

order of 2x their size
● A full copy is stored on every commit, rather

than a diff. So frequently changed binary files
can make a repository grow rapidly. That affects
performance, and hosting services have size
limits.

Binary Files and Version Control

Less of an issue for "hard won" binary files that
aren't changed often:
● bathymetry, coordinates, mesh masks,

initialization fields, climatology
– Consider using a separate repository as you are

developing these, and then commit the "final" versions
in your working model configuration repository

● Finished products (like the .odp and PDF of this
slide deck) in a single purpose repository

Binary Files and Version Control

If they aren’t under version control, they need to
be backed up, redundantly

Backups

● Hard drives and SSD drives fail
● Computers get lost and stolen
● Bad things happen
● Your files and data needs to be stored in multiple,

geographically separate places
● If you don't feel that you can recover in less than a

day to the point where you can do research again,
you should be worried, and you should take action to
get less worried

Backups

● Every clone of a Git or Mercurial repository is a
full backup of the repository and its history

● Repositories that have been pushed to hosting
services like Gitlab, Bitbucket, Github
automatically have at least one backup

Backups For Your Laptop

● Get at least one portable USB drive
● Use a tool to back up to it regularly
● Keep the drive separate from your laptop as

much as possible
● Even better to have 2 portable drives stored in

different locations
● Better still, use a cloud backup service in

addition to at least one portable drive

Backup Tools

Mac:
● Time Machine: www.support.apple.com/kb/ht1427
● SuperDuper: www.shirt-pocket.com/SuperDuper
● Silverkeeper: www.lacie.com/silverkeeper
● ArRsync: www.arrsync.sourceforge.net

Windows:
● Syncback: www.2brightsparks.com/syncback/syncback-hub.html
● Fbackup: www.fbackup.com
● AOMEI Backupper: www.backup-utility.com
● EaseUS Todo: www.todo-backup.com

Linux:
● Déjà-dup: https://launchpad.net/deja-dup

This is a list, not recommendations. Read the docs and choose a tool you like and understand.

http://www.support.apple.com/kb/ht1427
http://www.fbackup.com/
http://www.backup-utility.com/
https://launchpad.net/deja-dup

Model Runs Management

● Model configurations
● Files for:

– Initialization

– Boundary conditions

– Forcing

● Executing model runs
● Run results files
● Analysis and visualization

Custom Model Code

● Most models have a mechanism to let you provide
modified or extra code modules without changing
the shipped model code:
– MY_SRC directory in NEMO

– ln3 tool in WaveWatch

● You should be able to keep your custom code in a
version control repository that you control
– Create a repository inside MY_SRC/

– Symlink files into place from an external repository

Executing Model Runs

● Try to use tools that other people create and
maintain
– NEMO-Cmd

– WaveWatch run_tests ??

– Avoiding "not invented here" is hard

● If the tools are open-source on GitLab, Github,
Bitbucket, etc. learn how to look at their
repositories to judge their maturity, quality, and
how well maintained they are

Model Runs Management Tools

● Sooner or later, though, you will have to write
your own tools

● If you don't or can't script it, write
notes/documentation about the exact steps

● Put those notes/docs under version control, of
course!

Results Visualization

● Try to use tools that let you write code to create and
adjust figures and animations rather than using a GUI
tool to make adjustments:
– Python and matplotlib, panda, xarray

– Matlab scripts

– R and ggplot2

● If you don't or can't script it, write notes/documentation
about the exact steps

● Put those notes/docs under version control, of course!

Session Plan

● Definition
● Software Tools
● Organizing Your Modeling Research Life
● Exercise #1
● Writing Automation Tools
● Exercise #2
● NEMO command processor

Organizing Your Modeling
Research Life

● Why?
● What?
● How?

Why Does Directory and File
Organization Matter?

A well structured directory tree with meaningful,
consistent directory and file names is:
● Easier for humans (future you!, your supervisor)

to understand
● Easier to write automation scripts against
● A step towards reproducibility

What Needs to be Organized?

● Model source code and executables
● Model configurations
● Files for:

– Initialization

– Boundary conditions

– Forcing

● Directories for executing model runs
● Run results directories and files
● Analysis and visualization code and products

Exercise #1a

● Create a list of the things that you need to
organize for your model research

Idalia Machuca – Mackenzie
Canyon Circulation & Upwelling

“My research is, in short, looking at the
circulation around Mackenzie Canyon,
in particular the upwelling dynamics. To
that goal, I'm using the NEMO model to
simulate the circulation and comparing
the results between idealized and
realistic cases. The idealized
bathymetry is constantly being modified
to represent the realistic bathymetry
more accurately. What's great about
keeping my files organized is that it
helps me keep track of the constantly
changing bathymetry files - which in
turn sometimes require new
coordinates and initial conditions files.”

Link to figures showing Idalia’s idealized and realistic bathymetries

https://nbviewer.jupyter.org/urls/bitbucket.org/canyonsubc/mackenzie_canyon/raw/7f5a9cb06f2e1017d98e7ab847197a7ed82da11f/bathymetry/notebooks/Rimouski.ipynb

Directories and Repositories

● Choose a top level project name; e.g.
CANYONS

● Be consistent across platforms when you set up
your file space:
– /home/doug/Documents/CANYONS/ on my laptop

– /ocean/dlatorne/CANYONS/ on our dev compute
server

– /home/dlatorne/CANYONS/ on HPC

Model Code and Executables

● One or more directories:
● Cloned or checked out from upstream

repositories if possible
– NEMO-3.6/, XIOS-2.0/ by svn checkout

– wwatch3-5.16/ by unpacking downloaded tarball

Naming Things

Don't use spaces, parentheses, or other special
characters in file or directory names:
● They won’t tab-complete well
● They can be hard to handle in automation scripts

Instead use:
● CamelCase
● snake_case
● separate-words-with-hyphens

Directories and Repositories

Model configuration repository:
● Coordinates, bathymetry, namelists, output file

definitions, etc.
● Automation scripts might live here, or in a

separate repository
● Absolutely a version control repository
● Example path:

– mackenzie_canyon/

Directories and Repositories

results/ directory:
● Tree of systematically named directories that

hold run results
● Not a version control repository
● Example path:

– results/idealized/237x177grid/lat_visc_sensitivity/10m2ps/

Directories and Repositories

analysis/ directory:
● Code and Jupyter Notebooks for analysis and

visualization of results
● Absolutely a version control repository

Directories and Repositories

forcing/ directory:
● A tree of systematically named directories that hold initialization and/or

forcing files; e.g.
– atmospheric/

– init_fields/

– open_boundaries/

– runoff/

● You might not need all of these, any of them, or you might need
different forcing files

● Not a version control repository, but the code that produces these files
should be under version control in the model configuration repository,
or a separate tools repository

Model Configuration Repository

● Coordinates, bathymetry, namelists, output file
definitions, etc.

● Automation scripts might live here, or in a
separate repository

● Absolutely a version control repository
● Example:

– Idalia’s mackenzie_canyon/ repository for NEMO-3.6

Exercise #1b

Create a diagram of repositories and directories
for your model research

Temporary Run Directories

Execute each model run in a directory that you set
up for that run only. Move the run results and the
run configuration files to results storage.
● Provides checks on run intent and ready-to-run

status
● Helps ensure reproducibility
● Well-suited to automation

Temporary Run Directories

● Create a specific, temporary directory for each model
run

● Assemble the files needed for the run by copying or
symbolic linking

● Configure the run so that its output goes into the
directory

● Execute the run
● Do routine post-processing of model output
● Move the run results to a directory in the results/ tree
● Delete the symbolic links and the temporary directory

Directories and Repositories

● It will probably take you a few iterations to get a
structure that works well for you, your research,
and your automation

● Don't be afraid to change the structure if you
need to, but think about your changes to make
sure that they are an improvement, then
commit to them

Session Plan

● Definition
● Software Tools
● Organizing Your Modeling Research Life
● Exercise #1
● Writing Automation Tools
● Exercise #2
● NEMO command processor

Writing Automation Tools

● Shell scripts
● Python

Shell Scripts
● bash on Linux, cmd.exe on Windows
● Good starting point for repeated commands

Shell Scripts
NEMO=${HOME}/CANYONS/NEMO-3.6/CONFIG/MackenzieCanyon
CONFIG=${HOME}/CANYONS/mackenzie_canyon
RUN=${CONFIG}/runs/idealized/237x177grid/lat_visc_tuning
TMP_RUN=${HOME}/CANYONS/tmp_run_dir
cd ${TMP_RUN}
ln -s ${NEMO}/EXP00/opa nemo.exe
ln -s ${NEMO}/EXP00/xios_server.exe
ln -s ${CONFIG}/bathymetry/ideal_bathy.nc bathy_meter.nc
...
cp ${CONFIG}/output/field_def.xml ./
cp ${RUN}/iodef.xml ./
cp ${RUN}/namelist_cfg ./

$ mkdir -p ${HOME}/CANYONS/tmp_run_dir
$ bash prep_run_dir.sh

Shell Scripts

Fairly easy to accept arguments from command-
line:

NEMO=${HOME}/CANYONS/NEMO-3.6/CONFIG/MackenzieCanyon
CONFIG=${HOME}/CANYONS/mackenzie_canyon
RUN=${CONFIG}/runs/${1}
TMP_RUN=${2}
cd ${TMP_RUN}
ln -s ${NEMO}/EXP00/opa nemo.exe
ln -s ${NEMO}/EXP00/xios_server.exe
ln -s ${CONFIG}/bathymetry/ideal_bathy.nc bathy_meter.nc
...
cp ${CONFIG}/output/field_def.xml ./
cp ${RUN}/iodef.xml ./
cp ${RUN}/namelist_cfg ./

$ TMP_RUN=${HOME}/CANYONS/tmp_run_dir
$ mkdir -p ${TMP_RUN}
$ bash prep_run_dir.sh idealized/237x177grid/lat_visc_tuning ${TMP_RUN}

Shell Scripts

Easy to loop over collections of files, sequences
of numbers:
for d in {15..21}
do
 python -m nowcast.workers.download_PSY4 \
 ${NOWCAST_YAML} --run-date 2017-02-${d}
done

$ for d in {15..21}; do python -m nowcast.workers.download_PSY4 $NOWCAST_YAML
--run-date 2017-02-$d; done

Shell Scripts

● Syntax is somewhat clunky and dated
● Processing options from command-line is

verbose and painful

Python

● General purpose programming language
● Choose Python 3
● “Code is more often read than written”
● Core language: https://docs.python.org/3/

● Standard library: https://docs.python.org/3/library/

● 3rd party packages: https://pypi.python.org/pypi

● Anaconda distribution: https://www.continuum.io/downloads

https://docs.python.org/3/
https://docs.python.org/3/library/
https://pypi.python.org/pypi
https://www.continuum.io/downloads

Exercise #2

Managing Ariane output

Create a Python tool to run in an Ariane run directory that takes 2 arguments:
● a model run date
● a results directory parent

The tool will:
● Create a new results directory under the results directory parent
● The name of the directory will be derived from the model run date argument
● Move the input and output files from Ariane into the new results directory
● Rename the files to include the model run date; e.g. traj_20160417.txt

Intro to Python for Code Automation

Jupyter Notebook link on nbviewer
● Boilerplate for a Python module to run from the

command-line
● Handling command-line arguments
● Working with dates and times
● Working with files and directories

https://nbviewer.jupyter.org/urls/bitbucket.org/douglatornell/uqar-winter-school/raw/tip/python_automation.ipynb

Ariane Particle Tracking Tool

http://stockage.univ-brest.fr/~grima/Ariane/
● Offline calculation of 3D streamlines in the

output velocity field of ocean models
● NEMO, ROMS, Symphonie, MIT-GCM

http://stockage.univ-brest.fr/~grima/Ariane/

Ariane Runs

Input files:
● namlist, initial_positions.txt

Output files:
● traj.txt, log.txt

Exercise #2

Managing Ariane output

Create a Python tool to run in an Ariane run directory that takes 2 arguments:
● a model run date
● a results directory parent

The tool will:
● Create a new results directory under the results directory parent
● The name of the directory will be derived from the model run date argument
● Move the input and output files from Ariane into the new results directory
● Rename the files to include the model run date; e.g. traj_20160417.txt

Exercise #2
ssh -XY djl@mingan.uqar.ca

$ module load python/3.6

$ wget https://bitbucket.org/douglatornell/uqar-winter-school/downloads/particle_tracking.tar.gz
$ tar -xvzf particle_tracking.tar.gz

particle_tracking/
├── ariane_run/
│ ├── initial_positions.txt
│ ├── log.txt
│ ├── namelist
│ └── traj.txt
└── move_ariane_results.py

If your favourite editor isn’t available, try gedit or nano. (Minimal, but almost always
available on Linux.)

$ cd ariane_run
$ python3 ../move_ariane_results.py 2017-03-06 ../results

$ rsync -a particle_tracking/ particle_tracking_test

Other Packages

Standard llibrary:
● glob
● pathlib
● subprocess

3rd party:
● arrow
● pytz
● python-dateutil

3rd Party Python Packages

Package managers:
– conda

– pip

● If you’re using Anaconda, try conda first; pip
may trigger compilation of C extensions

● Both have search, install, list, uninstall, etc.
sub-commands

Session Plan

● Definition
● Software Tools
● Organizing Your Modeling Research Life
● Exercise #1
● Writing Automation Tools
● Exercise #2
● NEMO command processor

NEMO Command Processor

Example of building out automation tools over
time to the point of executing a complete NEMO
run from one file with one command
● Documentation:

https://nemo-cmd.readthedocs.io/en/latest/
● Code Repository:

https://bitbucket.org/salishsea/nemo-cmd

https://nemo-cmd.readthedocs.io/en/latest/
https://bitbucket.org/salishsea/nemo-cmd

nemo run Command
$ nemo run vert_eddy_diff.yaml
/ocean/dlatorne/CANYONS/results/realistic/237x177grid/vert_eddy_diff_1e-5/

nemo_cmd.prepare WARNING: There are uncommitted changes in /results/nowcast-
sys/NEMO-3.6-code/

nemo_cmd.run INFO: Created run directory
/ocean/dlatorne/CANYONS/tmp_run_dirs/a8b899de-01be-11e7-ba4b-0025909a8460

Temporary Run Directory

● Copies of run configuration files
● Symbolic links to executables, bathymetry, etc.
● Version control system revision records
● Shell script to execute run

Run Description YAML File

● YAML is easily readable by humans and
computers

● Fully described the run
● Used by NEMO command processor to prepare

the temporary run directory and the run shell
script

Run Shell Script

● PBS directives
● Set up variables
● Create results directory
● Launch run
● Do routine results post-processing
● Move run and results files to results directory
● Delete temporary run directory

Wrap-Up

● Software Tools
– Version Control and Backups

– Model Run Automation and Visualization Scripting

● Organizing Your Modeling Research Life
– Reproducibility and Automatability

● Writing Automation Tools
– Shell and Python

– Shift focus from details of running model to gaining research
insights into model run results

● NEMO command processor

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

