Python Scripting for Spatial Data

Processing.

Pete Bunting and Daniel Clewley

Teaching notes on the MSc’s in Remote Sensing and GIS.
January 31, 2015

Aberystwyth University

Department of Geography and Earth Sciences.

PRIFYSGOL

EHABERYSTWYTH

— —— UNIVERSITY

Copyright (©) Pete Bunting and Daniel Clewley 2013.

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0
Unported License. To view a copy of this license, visit http://creativecommons.

©N0le

org/licenses/by-sa/3.0/.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Acknowledgements

The authors would like to acknowledge to the supports of others but specifically
(and in no particular order) Prof. Richard Lucas, Sam Gillingham (developer of
RIOS and TuiView) and Neil Flood (developer of RIOS) for their support and

time.

i

Authors

Peter Bunting

Dr Pete Bunting joined the Department of Geography and Earth Sciences (DGES),
Aberystwyth University, in September 2004 for his Ph.D. where upon completion
in the summer of 2007 he received a lectureship in remote sensing and GIS. Prior
to joining the department, Peter received a BEng(Hons) in software engineering
from the department of Computer Science at Aberystwyth University. Pete also
spent a year working for Landcare Research in New Zealand before rejoining IGES
in 2012 as a senior lecturer in remote sensing.

Contact Detalils
EMail: pfb@aber.ac.uk

Senior Lecturer in Remote Sensing
Institute of Geography and Earth Sciences
Aberystwyth University

Aberystwyth

Ceredigion

SY23 3DB

United Kingdom

111

Daniel Clewley

Dr Dan Clewley joined DGES in 2006 undertaking an MSc in Remote Sensing
and GIS, following his MSc Dan undertook a Ph.D. entitled “Retrieval of Forest
Biomass and Structure from Radar Data using Backscatter Modelling and Inver-
sion” under the supervision of Prof. Lucas, Dr. Bunting and Prof. Mahta Moghad-
dam. Prior to joining the department Dan completed his BSc(Hons) in Physics
within Aberystwyth University. Dan is currently an Airborne Remote Sensing
Data Analyst at Plymouth Marine Laboratory. He writes a blog on open source
software in GIS and Remote Sensing (http://spectraldifferences.wordpress.
com/)

Contact Detalils

Email: daniel.clewley@gmail.com

http://spectraldifferences.wordpress.com/
http://spectraldifferences.wordpress.com/

Table of Contents

1__Introduction|
(1.1 Background|

(1.1.1 What is Python?|

(1.1.3 A word of warning|

(1.2 Example of Python imwusef

[1.2.1 Software in Python|

(1.3 Python Libraries|

(1.4 Installing Python|

[1.5.4 Going between Windows and UNIX|.

(1.6 Starting Python|. 0oL

(1.6.2 Keywords|

(1.6.3 File Naming|

TABLE OF CONTENTS

[1.6.4 Case Sensitivity|

[1.6.5 File paths in examples|

[1.6.6 Independent Development of Scripts|

(1.6.7 Getting Help[.

(1.7 Further Reading]

2 The Basics|

[2.5.1 Logic Statements| L.

2.6 Looping|

[2.6.1 while Loop|.o

[2.6.2 for Loop|

[3 Text Processing|

vi

10
10
11
12
12
12
13
14
18
18
20
21
21
22
22
23
24
25

26

TABLE OF CONTENTS vii

B.1 Reada Text Filel oo oo 26
3.2 Write toa Text Filel o oo 29
[3.3 Programming Styles| oo 29
[3.3.1 Procedural Programming — File Outlinel 30
[3.3.2 Object Orientated Programming — File Outline] 31

[3.4 Object Oriented Script| 32
[3.4.1 Object Oriented Script for Text File Processingl 32
BE_Exercisd oo 39
[3.6 Further Reading., 40
[4 Plotting - Matplotlib| 41
M1 Introductionlo 41
(4.2 Simple Script| oo 41
M43 Bar Chartlo 42
44 Pie Chartl 44
Mb Scatter Plotlo 45
M6 Line Plotl. o oo 48
M7 Exercised o1
(4.8 Further Reading/. 51
[5 Statistics (SciPy / NumPy)) 52
b1 Introductionlo 52
[5.2 Simple Statistics] 53
b.2.1 PExercises. o o 56

.3 Calculate Biomass o000 56

b.3.1 Exercisel 63

TABLE OF CONTENTS

[>.4 Linear Fitting|

[5.5 Further Reading|.

Batch Processing Command Line Tools|

6.2 Merging ESRI Shapefiles)

[6.3 Convert Images to Geol'lFF using GDAL

Image Processing using GDAL and RIOS|

[7.1 Reading and Updating Header Intormation|.

[7.1.1 Reading Image Headers|

[7.1.2 Read image header example.|

[7.1.3 No Data Valuesl

[7.2 Raster Input / Output Simplification (RIOS) Library|

[7.2.1 Getting Help — Reminder|.

[7.2.5 Calculate NDVI Using Multiple Images[.

[7.3 Filtering Images|. oo

viil

64
71
71

72
72
73
75
75
76
7

80
82

TABLE OF CONTENTS ix

[7.4 Apply a rule based classification| 104
(5 Exercises 108
[7.6 Further Reading. 108

|8 Raster Attribute Tables (RAT)| 109
8.1 Reading Columns|, 109
8.2 Writing Columns| 111
[8.2.1 Calculating New Columns| 111

822 Add Class Namelo 0. 113

8.3 Adding a colour tablel. 0000000 115

[8.4 Further Reading|. oo 118

List of Figures

4.1 A simple plot using matplotlib.] 43
4.2 A simple bar chart using matplothb.| 44
[4.3 A simple pie chart using matplothib.f. 46
[4.4 A simple scatter plot using matplotlib.| 47
4.0 Rainfall data for summer and winter on the same axis’™ 50
4.6 Rainfall data for summer and winter on different axis’] 51
[>.1 A simple plot using matplothb.| 66

List of Tables

(1.1 Keywords within the Python language| 7
[2.1 'The mathematical functions available within python. 13
[2.2 Logic statements available within python| 22
[3.1 Options when opening afile.| 28

[>.1 Coefhicients for estimating volume and the specific gravity required |

for estimating the biomass by species.|. o7

Chapter 1

Introduction

1.1 Background

1.1.1 What is Python?

Python is a high level scripting language which is interpreted, interactive and
object-oriented. A key attribute of python is its clear and understandable syntax
which should allow you to quickly get up to speed and develop useful applica-
tion, while the syntax is similar enough to lower level languages, for example
C/C++ and Java, to provide a background from which you can grow your ex-
pertise. Python is also a so called memory managed language, meaning that you
the developer are not directly in control of the memory usage within your ap-
plication, making development much simpler. That is not saying that memory
usage does not need to be considered and you, the developer, cannot influence
the memory footprint of your scripts but these details are out of the scope of this
course. Python is cross-platform with support for Windows, Linux, Mac OS X
and most other UNIX platforms. In addition, many libraries (e.g., purpose built
and external C++ libraries) are available to python and it has become a very pop-
ular language for many applications, including on the internet and within remote

sensing and GIS.

CHAPTER 1. INTRODUCTION 2

1.1.2 What can it be used for?

Python can be used for almost any task from simple file operations and text
manipulation to image processing. It may also be used to extend the functionality

of other, larger applications.

1.1.3 A word of warning

There are number of different versions of python and these are not always com-
patible. For these worksheets we will be using version 3.X (at the time of writing
the latest version is 3.3.0). With the exception of the quiz in Chapter 2, where
raw_input must be used instead of input, the examples will also work python 2.7.
One of the most noticeable differences between python 2 and python 3 is that the

print statement is now a function. So whilst:

print

will work under python 2, scripts using it won’t run under python 3 and must
use:

print()

instead. As the second is backwards compatible with python 2 it is good practice

to use this, even if you are working with python 2.

It is possible to have both python 2 and python 3 installed, in this case python 3
will be called using python3, if you're system is set up like this remember to use

python3 wherever you see python in this tutorial.

1.2 Example of Python in use

1.2.1 Software in Python

Many applications have been built in python and a quick search of the web
will reveal the extent of this range. Commonly, applications solely developed

in python are web applications, run from within a web server (e.g., Apache; http:

http://httpd.apache.org

CHAPTER 1. INTRODUCTION 3

//httpd.apache.org with http://www.modpython.org) but Desktop applica-
tions and data processing software such as TuiView (https://bitbucket.org/
chchrsc/tuiview) and RIOS (https://bitbucket.org/chchrsc/rios) have also

been developed.

In large standalone applications Python is often used to facilitate the development
of plugins or extensions to application. Examples of python used in this form
include ArcMap and SPSS.

For a list of applications supporting or written in python refer to the following

website http://en.wikipedia.org/wiki/Python_software.

1.3 Python Libraries

Many libraries are available to python. Libraries are collections of functions
which can be called from your script(s). Python provides extensive libraries
(http://docs.python.org/lib/1lib.html) but third parties have also developed
additional libraries to provide specific functionality (e.g., plotting). A list of avail-
able libraries is available from http://wiki.python.org/moin/UsefulModules
and by following the links provides on the page.

The following sites provide links to libraries and packages specific to remote sensing
and GIS, many of which are open source with freely available software packages

and libraries for use with python.
e http://freegis.org
e http://opensourcegis.org

e http://www.osgeo.org

1.4 Installing Python

For this tutorial Python alongside the libraries GDAL (http://www.gdal.org),
numpy (http://www.numpy.org), scipy (http://www.scipy.org), RIOS (https:

http://httpd.apache.org
http://httpd.apache.org
http://www.modpython.org
https://bitbucket.org/chchrsc/tuiview
https://bitbucket.org/chchrsc/tuiview
https://bitbucket.org/chchrsc/rios
http://en.wikipedia.org/wiki/Python_software
http://docs.python.org/lib/lib.html
http://wiki.python.org/moin/UsefulModules
http://freegis.org
http://opensourcegis.org
http://www.osgeo.org
http://www.gdal.org
http://www.numpy.org
http://www.scipy.org
https://bitbucket.org/chchrsc/rios

CHAPTER 1. INTRODUCTION 4

//bitbucket.org/chchrsc/rios) and matplotlib (http://matplotlib.sourceforge.
net) are required, built against the version of Python you are using. There are
a number of ways of installing these packages, the recomended option is through the
Anaconda Python Distribution (http://docs.continuum.io/anaconda/install.
html)), versions are available for Linux, OS X and Windows. Once Anaconda has

been installed, the additional packages required can be installed using:

conda install -c osgeo gdal rios

1.5 Text Editors

To write your Python scripts a text editor is required. A simple text editor such
as Microsoft’s Notepad will do but it is recommended that you use a syntax aware
editor that will colour, and in some cases format, your code automatically. There
are many text editors available for each operating system and it is up to you
to choose one to use. The recommend editor for this course is Spyder which is
installed with Anaconda. From within Spyder you can directly run your Python
scripts (using the run button), additionally it will alert you to errors within your

scripts before you run them.

1.5.1 Windows

Under Windows, the notepad++ (http://notepad-plus.sourceforge.net) text
editor can also be used. Notepad++ is a free to use open source text editor and
can therefore be downloaded and installed onto any Windows PC. If you use this
editor it is recommended you change the settings for Python to use spaces instead

of tabs using the following steps:
1. Go to Setting — Preferences
2. Select ‘Language Menu / Tab Settings’

3. Under ‘Tab Settings’ for python tick ‘Replace by space’

https://bitbucket.org/chchrsc/rios
https://bitbucket.org/chchrsc/rios
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://docs.continuum.io/anaconda/install.html
http://docs.continuum.io/anaconda/install.html
http://notepad-plus.sourceforge.net

CHAPTER 1. INTRODUCTION)

1.5.2 Linux

Under Linux either the command line editor ne (nice editor), vim or its graphic
interface equivalent gvim is recommend but kdeveloper, gedit and many others are

also good choices.

1.5.3 Mac OS X

Under Mac OS X either BBEdit, SubEthaEdit or TextMate are recommended,
while the freely available TextWrangler is also a good choice. The command line

editors ne and vi are also available under OS X.

1.5.4 Going between Windows and UNIX

If you are writing your scripts on Windows and transferring them to a UNIX /Linux
machine to be executed (e.g., a High Performance Computing (HPC) environment)
then you need to be careful with the line ending (the invisible symbol defining the
end of a line within a file) as these are different between the various operating
systems. Using notepad++ line ending can be defined as UNIX and this is recom-

mended where scripts are being composed under Windows.

Alternatively, if RSGISLib is installed then the command flip can be used to

convert the line ending, the example below converts to UNIX line endings.

flip —u InputFile.py

1.6 Starting Python

Python may be started by opening a command window and typing:

python

(Alternatively select python(x,y) — Command Prompts — Python interpreter from

the windows start menu).

CHAPTER 1. INTRODUCTION 6

This opens python in interactive mode. It is possible to perform some basic maths
try:

>>> 1 + 1
2

To exit type:

>>>exit ()

To perform more complex tasks in python often a large number of commands
are required, it is therefore more convenient to create a text file containing the

commands, referred to as a ‘script’

1.6.1 Indentation

There are several basic rules and syntax which you need to know to develop scripts
within Python. The first of which is code layout. To provide the structure of the
script Python uses indentation. Indentation can be in the form of tabs or spaces
but which ever is used needs to be consistent throughout the script. The most
common and recommend is to use 4 spaces for each indentation. The example
given below shows an if-else statement where you can see that after the if part
the statement which is executed if the if-statement is true is indented from rest of
the script as with the corresponding else part of the statement. You will see this
indentation as you go through the examples and it is important that you follow
the indentation shown in the examples or your scripts will not execute.

if x ==l

LuLuXo=uXotol

else:

LuuuXu=uxu—ul

1.6.2 Keywords

As with all scripting and programming languages python has a set of keywords,
which have special meanings to the compiler or interpreter when the code is exe-

cuted. As with all python code, these keywords are case sensitive i.e., ‘else’ is a

CHAPTER 1. INTRODUCTION

keyword but ‘Else’ is not. A list of pythons keywords is given below:

Table 1.1: Keywords within the Python language

and
class
elif
finally
if
lambda
print
while

as
continue
else
for
import
not
raise
with

assert
def
exec
from
in
or
return
yield

break
del
except
global
is
pass
try

1.6.3 File Naming

It is important that you use sensible and identifiable names for all the files you

generate throughout these tutorial worksheets otherwise you will not be able to

identify the script at a later date. Additionally, it is highly recommended that you

do not included spaces in file names or in the directory path you use to store the

files generated during this tutorial.

1.6.4 Case Sensitivity

Something else to remember when using python, is that the language is case sen-

sitivity therefore if a name is in lowercase then it needs to remain in lowercase

everywhere it is used.

For example:

VariableName is not the same as variablename

1.6.5 File paths in examples

In the examples provided (in the text) file paths are given as ‘. /PythonCourse/Tutorial X /File.xxx’.

)

When writing these scripts out for yourself you will need to update these paths to

the location on your machine where the files are located (e.g., /home/pete.bunting

CHAPTER 1. INTRODUCTION 8

or C:\). Please note that it is recommended that you do not have any spaces within
your file paths. In the example (answer) scripts provided no file path has been
written and you will therefore need to either save input and output files in the
same directory as the script or provide the path to the file. Please note that under
Windows you need to insert a double slash (i.e., \\) within the file path as a single

slash is an escape character (e.g., \n for new line) within strings.

1.6.6 Independent Development of Scripts

There is a significant step to be made from working your way through notes and
examples, such as those provided in this tutorial, and independently developing
your own scripts from scratch. Our recommendation for this, and when undertak-
ing the exercises from this tutorial, is to take it slowly and think through the steps

you need to undertake to perform the operation(s) you need.

I would commonly first ‘write’ the script using comments or on paper breaking the
process down into the major steps required. For example, if I were asked to write
a script to uncompress a directory of files into another directory I might write the
following outline, where I use indentation to indicate where a process is part of

the parent:

By writing the process out in this form it makes translating this into python much
simpler as you only need to think of how to do small individual elements in python

and not how to do the whole process in one step.

CHAPTER 1. INTRODUCTION 9

1.6.7 Getting Help

Python provides a very useful help system through the command line. To get

access to the help run python from the terminal

’> python ‘

Then import the library want to get help on

’>>> import math

and then run the help tool on the whole module

>>> import math
>>> (math)

or on individual classes or functions within the module

>>> import rsgislib.imageutils

>>> (rsgislib.imageutils.subset)

Note, you can us the as keyword to shorten long imports, which can also make your

code more readable and save typing long module paths a number of times.

>>> import rsgislib.imageutils as imgutil
>>> (imgutil.subset)

To exit the help system just press the ‘q’ key on the keyboard.

1.7 Further Reading

An Introduction to Python, G. van Rossum, F.L. Drake, Jr. Network Theory
ISBN 0-95-416176-9 (Also available online - http://docs.python.org/3/
tutorial/)). Chapters 1 — 3

Python FAQ —http://docs.python.org/faq/general .html

Python on Windows — http://docs.python.org/fag/windows

How to think Like a Computer Scientist: Python Edition — http://www.
greenteapress.com/thinkpython/

http://docs.python.org/3/tutorial/
http://docs.python.org/3/tutorial/
http://docs.python.org/faq/general.html
http://docs.python.org/faq/windows
http://www.greenteapress.com/thinkpython/
http://www.greenteapress.com/thinkpython/

10

11

Chapter 2

The Basics

2.1 Hello World Script

To create your first python script, create a new text file using your preferred text

editor and enter the text below:

print()

Save your script to file (e.g., helloworld.py) and then run it either using a command

prompt (Windows) or Terminal (UNIX), using the following command:

> python helloworld.py
Hello World

10

CHAPTER 2. THE BASICS 11

To get a command prompt under Windows type ‘cmd’ from the run dialog box
in the start menu (Start — run), further hints for using the command prompt are
given below. Under OS X, terminal is located in within the ‘Utilities’ folder in
‘Applications’. If you are using Spyder to create your Python scripts you can run

by clicking the run button.

Hints for using the Windows command line

‘cd’ allows you to change directory, e.g.,

cd directoryl\directory?2

‘dir” allows you to list the contents of a directory, e.g.,
dir
To change drives, type the drive letter followed by a colon, e.g.,

D:

If a file path has spaces, you need to use quote, e.g, to change directory:

cd "Directory with spaces in namelanother directory\"

2.2 Comments

In the above script there is a heading detailing the script function, author, and
version. These lines are preceded by a hash (#), this tells the interpreter they
are comments and are not part of the code. Any line starting with a hash is a
comment. Comments are used to annotate the code, all examples in this tutorial
use comments to describe the code. It is recommended you use comments in your

own code.

CHAPTER 2. THE BASICS 12

2.3 Variables

The key building blocks within all programming languages are variables. Variables
allow data to be stored either temperately for use in a single operation or through-
out the whole program (global variables). Within python the variable data type
does not need to be specified and will be defined by the first assignment. Therefore,
if the first assignment to a variable is an integer (i.e., whole number) then that
variable will be an integer for the remained of the program. Examples defining
variables are provided below:

name = ’Pete’

age = 25

height = 6.2

2.3.1 Numbers

There are three types of numbers within python:

Integers are the most basic form of number, contain only whole numbers where

calculation are automatically rounded to provide whole number answers.

Decimal or floating point numbers provide support for storing all those number

which do not form a whole number.

Complex provide support for complex numbers and are defined as a + b5 where
a is the real part and b the imaginary part, e.g., 4.5 + 2.55 or 4.5 — 2.55 or
—4.5+2.5j

The syntax for defining variables to store these data types is always the same as
python resolves the suitable type for the variable. Python allows a mathematical

operations to be applied to numbers, listed in Table reftab:maths

2.3.2 Boolean

The boolean data type is the simplest and just stores a true or false value, an

example of the syntax is given below:

CHAPTER 2. THE BASICS

Table 2.1: The mathematical functions available within python.

13

Function Operation
X+y x plus y
X-y X minus y
x*y x multiplied by y
x/y x divided by y
x **y X to the power of y
int(obj) convert string to int
long(obj) convert string to long
float(obj) convert string to float
complex(obj) convert string to complex
complex(real, imag) | create complex from real and imaginary components
abs(num) returns absolute value
pow(numl, num?2) raises numl to num2 power
round(float, ndig=0) rounds float to ndig places

moveForwards =

moveBackwards =

2.3.3 Text (Strings)

To store text the string data type is used. Although not a base data type like

a float or int a string can be used in the same way. The difference lies in the

functions available to manipulate a string are similar to those of an object. A

comprehensive list of functions is available for a string is given in the python

documentation http://docs.python.org/lib/string-methods.html.

To access these functions the string modules needs to be imported as shown in the

example below. Copy this example out and save it as StringExamples.py. When

you run this script observe the change in the printed output and using the python

documentation to identify what each of the functions Istrip(), rstrip() and strip()

do.

http://docs.python.org/lib/string-methods.html

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

CHAPTER 2. THE BASICS 14

import string

stringVariable =

print(+ stringVariable +)

stringVariable_lstrip = stringVariable.lstrip()

print(+ stringVariable_lstrip +)

stringVariable_rstrip = stringVariable.rstrip()

print(+ stringVariable_rstrip +)

stringVariable_strip = stringVariable.strip()

print(+ stringVariable_strip +)

2.3.4 Example using Variables

An example script illustrating the use of variables is provided below. It is recom-
mend you copy this script and execute making sure you understand each line. In

addition, try making the following changes to the script:
1. Adding your own questions.
2. Including the persons name within the questions.

3. Remove the negative marking.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

CHAPTER 2. THE BASICS

Ema<: <YOUR EMAIL>

Date: DD/MM/YYYY

Verston: 1.1

#

Added helper function for 2/3 compatibiltity
HARAH AR B RRRRRAARRAAA AR BB R R RRRRAAAAAH

Compatibility function for 2/3
import sys
def getInput(question):
""" Python 2/3 helper function
for getting input.
win
if sys.version[0] == ’3’:
answer = input(question)
else:
answer = raw_input(question)

return(answer)
score = 0 # A variable to store the ongoing score

print 1s used to ’print’ the text to the command line

print O ##H R 0)
print (’Sample Python program which asks the user a few ’> \

’simple questions.’)
print O #HHH)

input 1s used to retrieve user input from the
command line

name = getInput(’What is your name?\n’)

print(’Hello ’ + name + ’. You will now be asked a series’ \

> of questions please answer \’y\’ for YES and \’n\’ for ’> \

’NO unless otherwise stated.’)

print (’Question 1:7)

answer = getInput(’ALOS PALSAR is a L band spaceborne SAR.\n’)

if answer == ’y’: # test whether the value returned was equal to y

print (’Well done’)
score = score + 1 # Add 1 to the score

else: # if not then the anser must be incorrect

15

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

CHAPTER 2. THE BASICS 16

print (’Bad Luck’)

score = score - 1 # Remove 1 from the score

print (’Question 2:7)
answer = getInput(’CASI provides hyperspectral data in 7 \
’the Blue to NIR part of the spectrum.\n’)
if answer == ’y’:
print (’Well done’)
score = score + 1
else:
print (’Bad Luck’)

score = score - 1

print (’Question 3:7)
answer = getInput(’HyMap also only provides data in the 7 \
’Blue to NIR part of the spectrum.\n’)
if answer == ’y’:
print (’Bad Luck’)
score = score - 1
else:
print (’Well done’)

score = score + 1

print (’Question 4:7)
answer = getInput(’Landsat is a spaceborne sensor.\n’)
if answer == ’y’:
print (’Well done’)
score = score + 1
else:
print(’Bad Luck’)

score = score - 1

print (’Question 5:7)
answer = getInput(’ADS-40 is a high resolution aerial ’ \
’sensor capturing RGB-NIR wavelengths.\n’)
if answer == ’y’:
print (’Well done’)
score = score + 1
else:
print (’Bad Luck’)

score = score - 1

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

CHAPTER 2. THE BASICS 17

print (’Question 6:7)
answer = getInput(’eCognition is an object oriented ’ \
’image analysis software package.\n’)
if answer == ’y’:
print (’Well done’)
score = score + 1
else:
print (’Bad Luck’)
score = score - 1

print (’Question 7:7)
answer = getInput(’Adobe Photoshop provides the same ’ \
>functionality as eCognition.\n’)
if answer == ’y’:
print (’Bad Luck’)
score = score - 1
else:
print (’Well done’)

score = score + 1

print (’Question 8:7)
answer = getInput(’Python can be executed within 7 \
’the a java virtual machine.\n’)
if answer == ’y’:
print (’Well done’)
score = score + 1
else:
print (’Bad Luck’)

score = score - 1

print (’Question 9:7)
answer = getInput(’Python is a scripting language ° \
’not a programming language.\n’)
if answer == ’y’:
print (’Well done’)
score = score + 1
else:
print(’Bad Luck’)

score = score - 1

CHAPTER 2. THE BASICS 18

130 print(’Question 10:7)

131 answer = getInput(’Aberystwyth is within Mid Wales.\n’)

132 1f answer == ’y’:

133 print (’Well done’)

134 score = score + 1

135 else:

136 print (’Bad Luck’)

137 score = score - 1

138

139

140 print(name + ’° you got a score of 7 + (score))

Note, due to differences between Python 2 and Python 3 a function is defined
called ’getInput’, which determines uses the appropriate function depending on
the version of python being used with input used for Python 3 and raw_input
used for Python 2.

2.4 Lists

Each of the data types outlined above only store a single value at anyone time, to
store multiple values in a single variable a sequence data type is required. Python
offers the List class, which allows any data type to be stored in a sequence and even
supports the storage of objects of different types within one list. The string data

type is a sequence data type and therefore the same operations are available.

List are very flexible structures and support a number of ways to create, append
and remove content from the list, as shown below. Items in the list are numbered

consecutively from 0-n, where n is one less than the length of the list.

Additional functions are available for List data types (e.g., len(aList), aList.sort(),
aList.reverse()) and these are described in http://docs.python.org/lib/typesseq.
html and http://docs.python.org/lib/typesseq-mutable.htmll

2.4.1 List Examples

http://docs.python.org/lib/typesseq.html
http://docs.python.org/lib/typesseq.html
http://docs.python.org/lib/typesseq-mutable.html

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

CHAPTER 2. THE BASICS

#! /usr/bin/env python

e
Example with lists

Author: <YOUR NAME>

Emat: <YOUR EMAIL>

Date: DD/MM/YYYY

Verston: 1.0
i

Create List:
alist = 1istQ)
anotherList = [1, 2, 3, 4]
emptyList = []

print(alist)
print (anotherList)
print (emptyList)

Adding data into a List
alist.append(’Pete’)
alist.append(’Dan’)
print(alist)

Updating data in the List

anotherList[2] = ’three’
anotherList[0] = ’one’
print(anotherList)

Accessing data in the List
print(alist[0])
print(anotherList[0:2])
print(anotherList[2:3])

Removing data from the List
del anotherList[1]
print(anotherList)

alist.remove(’Pete’)

print(alist)

19

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

CHAPTER 2. THE BASICS 20

2.4.2 n-dimensional list

Additionally, n-dimensional lists can be created by inserting lists into a list, a
simple example of a 2-d structure is given below. This type of structure can be
used to store images (e.g., the example given below would form a grey scale image)

and additions list dimensions could be added for additional image bands.

#! /usr/bin/env python

B
Example with n-lists

Author: <YOUR NAME>

Emat: <YOUR EMAIL>

Date: DD/MM/YYYY

Version: 1.0

e

Create List:

alist = [
[1,1,1,1,1,1,1,1,1,1,1,1,1,1],
(+,1,0,0,1,1,1,1,1,0,0,1,1,17,
(+,1,0,0,1,1,1,1,1,0,0,1,1,17,
[1,1,1,1,1,1,1,1,1,1,1,1,1,17,
[+t,1,1,1,1,1,0,1,1,1,1,1,1,171,
(1,1,1,1,1,1,0,1,1,1,1,1,1,1]7,
(+,1,1,1,1,0,0,0,1,1,1,1,1,17,
(1,0,1,1,1,1,1,1,1,1,1,1,0,1],
[(1,0,1,1,1,1,1,1,1,1,1,1,0,11,
(+,1,0,0,0,0,0,0,0,0,0,0,1,11,
[(1,1,1,1,1,1,1,1,1,1,1,1,1,1]
]

print(alist)

CHAPTER 2. THE BASICS 21

2.5 IF-ELSE Statements

As already illustrated in the earlier quiz example the ability to make a decision is
key to any software. The basic construct for decision making in most programming
and scripting languages are if-else statements. Python uses the following syntax

for if-else statements.

if <logic statement>:
do this if

else:
do this

if <logic statement>:
do this if

elif <logic statement>:
do this if

elif <logic statement>:
do this if

else
do this

Logic statements result in a true or false value being returned where if a value of
true is returned the contents of the if statement will be executed and remaining
parts of the statement will be ignored. If a false value is returned then the if part
of the statement will be ignored and the next logic statement will be analysis until

either one returns a true value or an else statement is reached.

2.5.1 Logic Statements

Table outlines the main logic statements used within python in addition to
these statements functions which return a boolean value can also be used to for

decision making, although these will be described in later worksheets.

CHAPTER 2. THE BASICS 22

Table 2.2: Logic statements available within python

Function Operation Example
== equals exprl == expr2
> greater than exprl > expr2
< less than exprl < expr2
>= greater than and equal to | exprl > expr2
<= less than and equal to exprl < expr2
not logical not not expr
and logical and exprl and expr2
or logical or exprl or expr2
is is the same object exprl is expr2

2.6 Looping

In addition to the if-else statements for decision making loops provide another key
component to writing any program or script. Python offers two forms of loops,
while and for. Each can be used interchangeably given the developers preference

and available information. Both types are outlined below.

2.6.1 while Loop

The basic syntax of the while loop is very simple (shown below) where a logic

statement is used to terminate the loop, when false is returned.

while <logic statement> :

statements

Therefore, during the loop a variable in the logic statement needs to be altered
allowing the loop to terminate. Below provides an example of a while loop to

count from 0 to 10.

10

11

12

13

14

10

11

12

13

14

CHAPTER 2. THE BASICS 23

Verston: 1.0
B R R

count = 0
while count <= 10:
print (count)

count = count + 1

2.6.2 for Loop

A for loop provides similar functionality to that of a while loop but it provides the

counter for termination. The syntax of the for loop is provided below:

for <iter_variable> in <iterable>:

statements

The common application of a for loop is for the iteration of a list and an example

if this is given below:

#! /usr/bin/env python

i
A sitmple example of a for loop

Author: <YOUR NAME>

Emat: <YOUR EMAIL>

Date: DD/MM/YYYY

Version: 1.0

HARHHA AR RRRRRAARAAAA AR RRRRRHHHAAAAH

alist = [’Pete’, ’Richard’, ’Johanna’, ’Philippa’, ’Sam’, ’Dan’, ’Alex’]

for name in alList:

print (’Current name is: ’ + name)

A more advance example is given below where two for loops are used to iterate

through a list of lists.

#! /usr/bin/env python

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

CHAPTER 2. THE BASICS 24

B
Example with for loop and n-lists

Author: <YOUR NAME>

Emat: <YOUR EMAIL>

Date: DD/MM/YYYY

Version: 1.0

HAHRHHA AR AR RRRRAAARAAA AR AR RRRRRARHRAA A

Create List:

alist = [
[1,1,1,1,1,1,1,1,1,1,1,1,1,1],
(+,1,0,0,1,1,1,1,1,0,0,1,1,17,
(+,1,0,0,1,1,1,1,1,0,0,1,1,17,
[1,1,1,1,1,1,1,1,1,1,1,1,1,17,
[+1,1,1,1,1,1,0,1,1,1,1,1,1,171,
[(1,1,1,1,1,1,0,1,1,1,1,1,1,1],
(+,1,1,1,1,0,0,0,1,1,1,1,1,17,
(1,0,1,1,1,1,1,1,1,1,1,1,0,1],
[1,0,1,1,1,1,1,1,1,1,1,1,0,11,
(+,+,0,0,0,0,0,0,0,0,0,0,1,11,
[(1,1,1,1,1,1,1,1,1,1,1,1,1,1]
]

for clList in alist:
for number in cList:
Print with a space at the end
rather than a new line
print (number,end=" ")

print ()

2.7 Exercises

During this tutorial you should have followed through each of the examples and
experimented with the code to understand each of components outlined. To test
your understanding of all the material, you will now be asked to complete a series
of tasks:

1. Update the quiz so the questions and answers are stored in lists which are

CHAPTER 2. THE BASICS 25

iterated through as the script is executed.

2. Create a script that loops through the smiling face 2-d list of lists flipping it

so the face is up side down.

2.8 Further Reading

e An Introduction to Python, G. van Rossum, F.L. Drake, Jr. Network Theory
ISBN 0-95-416176-9 (Also available online - http://docs.python.org/3/
tutorial/)) - Chapters 4 and 5.

e Spyder Documentation — http://packages.python.org/spyder/
e Python Documentation — http://www.python.org/doc/

e Core Python Programming (Second Edition), W.J. Chun. Prentice Hall
ISBN 0-13-226993-7

e How to think Like a Computer Scientist: Python Edition — http://www.
greenteapress.com/thinkpython/

e Learn UNIXin 10 minutes —http://freeengineer.org/learnUNIXinlOminutes.
html (Optional, but recommended if running on OS X / Linux)

http://docs.python.org/3/tutorial/
http://docs.python.org/3/tutorial/
http://packages.python.org/spyder/
http://www.python.org/doc/
http://www.greenteapress.com/thinkpython/
http://www.greenteapress.com/thinkpython/
http://freeengineer.org/learnUNIXin10minutes.html
http://freeengineer.org/learnUNIXin10minutes.html

Chapter 3

Text Processing

3.1 Read a Text File

An example of a script to read a text file is given below, copy this example out
and use the numbers.txt file to test your script. Note, that the numbers.txt file

needs to be within the same directory as your python script.

10

11

12

13

14

15

16

#! /usr/bin/env python

i
A sitmple example reading in a text file
two versions of the script are provided
to illustrate that there is not just one
correct solution to a problem.
Author: <YOUR NAME>

Email: <YOUR EMAIL>

Date: DD/MM/YYYY

Version: 1.0
e

HOH OB R W R W

import string

1) Splits the text file into individual characters

to identify the commas and parsing the individual

tokens.

26

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

CHAPTER 3. TEXT PROCESSING 27

numbers = O

dataFile = (’numbers.txt’, ’r’)

for eachlLine in dataFile:

tmpStr = 7’

for char in eachlLine:

if char.isdigit():
tmpStr += char
elif char == ’,’ and tmpStr !'= ’’:
numbers . append (int (tmpStr))
tmpStr = 7’
if tmpStr.isdigit():
numbers.append (int (tmpStr))

print (numbers)
dataFile.close()

numbers = O

dataFile = (’numbers.txt’, ’r’)
for eachlLine in dataFile:
substrs = eachLine.split(’,’,eachLine.count(’,’))
for strVar in substrs:
if strVar.isdigit():

numbers . append (int (strVar))

print (numbers)
dataFile.close()

As you can see reading a text file from within python is a simple proces{!] The
first step is to open the file for reading, option r is used as the file is only going to
be read, the other options are available in Table If the file is a text file then

f your data are in tabular format (e.g., CSV) the csv module in the Python Standard Library
and the genfromtxt from NumPy provide even simpler ways of reading data.

CHAPTER 3. TEXT PROCESSING

28

the contents can then be read a line at a time, if a binary file (e.g., tiff or doc)

then reading is more complicated and not covered in this tutorial.

Table 3.1: Options when opening a file.

File Mode

Operations

r
w
a
r+
W+
a+
rb
wb
ab
rb-+
wb-+
ab+

Open for read
Open for write (truncate)
Open for write (append)
Open for read/write
Open for read/write (truncate)
Open for read/write (append)
Open for binary read
Open for binary write (truncate)
Open for binary write (append)
Open for read/write
Open for read/write (truncate)
Open for read/write (append)

Now your need to adapt the one of the methods given in the script above to allow

numbers and words to be split into separate lists. To do this you will need to use
the isalpha() function alongside the isdigit() function. Adapt the numbers.txt file

to match the input shown below and then run your script and you should receive

the output shown below:

Input:

1,

2,pete,

3,

4,dan,b5,
6,7,8,richard,10,11,12,13

Output:

>python simplereadsplit.py

[1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13]

L , ,]

10

11

12

13

14

15

16

17

18

19

20

21

CHAPTER 3. TEXT PROCESSING 29

3.2 Write to a Text File

Writing to a text file is similar to reading from the file. When opening the file
two choices are available either to append or truncate the file. Appending to the
file leaves any content already within the file untouched while truncating the file
removes any content already within the file. An example of writing a list to a file

with each list item on a new line is given below.

alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
b s’ ’ E]

dataFile = (,)

for eachitem in aList:

dataFile.write((eachitem)+)

dataFile.close()

3.3 Programming Styles

There are two main programming styles, both of which are supported by python,
and these are procedural and object oriented programming. Procedural program-
ming preceded object oriented programming and procedural scripts provide lists

of commands which are run through sequentially.

10

11

12

13

14

16

17

CHAPTER 3. TEXT PROCESSING 30

Object oriented programming differs from procedural programming in that the
program is split into a series of objects, usually representing really world objects
or functionality, generally referred to as a ‘class’. Objects support the concepts
of inheritance where functionality can be used in many sub-objects. For example,
a Person class maybe written with functions such as eat, drink, beat heart etc.
and specialist sub-objects may then be created with Person as a super-object, for
example child, adult, male and female. These objects all require the functionality
of Person but it is inefficient to duplicate the functionality they share individual

rather then group this functionality into the Person class.

This course will concentrate on basic object oriented programming but below are

the basic python file outlines for both procedural and object oriented scripts.

3.3.1 Procedural Programming — File Outline

When creating a procedural python script each of your files will have the same

basic format outlined below:

print()

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

CHAPTER 3. TEXT PROCESSING 31

3.3.2 Object Orientated Programming — File Outline

When creating an object oriented script each python file you create will have the

same basic format outlined below:

#! /usr/bin/env python

B
Comment ezxzplaining scripts purpose

Author: <Author Name>

Emat: <Author’s Email>

Date: <Date Last Editor>

Verston: <Version Number>
v e

IMPORTS

import os

CLASS EXPRESSION - In thts case class mame ©s Person
class Person (object): # Object is the superclass

CLASS ATTRIBUTES

name = '’

INITIALISE THE CLASS (OFTEN EMPTY)
def __init__(self):

self.name = ’Dan’

METHOD TO PRINT PERSON NAME
def printName(self):
print(’Name: ’ + self.name)

METHOD TO SET PERSON NAME
def setName(self, inputName):

self.name = inputName

METHOD TO GET PERSON NAME
def getName(self):

return self.name

36

37

38

39

40

41

42

43

44

45

46

47

CHAPTER 3. TEXT PROCESSING 32

def run()
.printName ()
.setName()

.printName ()

if __name__ ==

obj = Person()

obj.run()

3.4 Object Oriented Script

For simple scripts like those demonstrated so far simple procedural scripts are all
that have been required. When creating more complex scripts the introduction
of more structured and reusable designs are preferable. To support this design

Python supports object oriented program design.

3.4.1 Object Oriented Script for Text File Processing

To illustrate the difference in implementation an example is given and explained
below. The example reads a comma separated text file (randfloats.txt) of random
floating point numbers from which the mean and standard deviation is calculated.

Create a new python script and copy the script below:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

CHAPTER 3. TEXT PROCESSING

Author: <YOUR NAME>

Email: <YOUR EMAIL>

Date: DD/MM/YYYY

Verston: 1.0
HHRAHRBAARRAARRARARBAARBAARRHRAARHBARBHA

import the squareroot function from python math

from math import sqrt

Define a nmew class called CalcMeanStdDev
class CalcMeanStdDev (object):

Define a function which parses a comma

separated file - you should understand

the contents of this script from the

previous examples.

Note: the file 1s passed into the

function.

def parseCommaFile(self, file):
floatingNumbers = 1list()

for eachLine in file:

substrs = eachLine.split(’,’,eachLine.count(’,’))

for strVar in substrs:
floatingNumbers.append(float(strVar))

return floatingNumbers

Define a function to calculate the mean
value from a list of numbers.
Note. The list of numbers ts passed into
the function.
def calcMean(self, numbers):
A variable to sum all the numbers
sum = 0.0
Iterate through the numbers list
for number in numbers:
add each number to the sum
sum += number
Divide the sum by the number of
values within the numbers list
(i.e., its length)

mean = sum/len(numbers)

33

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

CHAPTER 3. TEXT PROCESSING 34

return the mean wvalue calculated

return mean

Define a function which calculates the
standard deviation of a list of numbers
Note. The list of numbers ts passed into
the function alongside a previously
calculated mean value for the list.
def calcStdDev(self, numbers, mean):
Varible for total deviation
deviation = 0.0
Vartable for a single deviation
singleDev = 0.0
Iterate through the list of numbers.
for number in numbers:
Calculate a single Deviation
singleDev = number-mean
Add the squared single deviation to
to the on going total.
deviation += (singleDev**2)
Calcate the standard devatition
stddev = sqrt(deviation/(len(numbers)-1))
return the standard deviation

return stddev

The main thread of processing. A function
which defines the order of processing.
Note. The filename is passed in.
def run(self, filename):
Open the input file
inFile = open(filename, ’r’)
Parse the file to retrieve a list of
numbers

numbers = self.parseCommaFile(inFile)

Calculate the mean value of the list
mean = self.calcMean(numbers)

Calculate the standard deviation of the
list.

stddev = self.calcStdDev(numbers, mean)

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

CHAPTER 3. TEXT PROCESSING 35

Print the results to screen
print(’Mean: ’ + str(mean))
print(’Stddev: ’ + str(stddev))

Close the input file

inFile.close()

When python %s executed python executes

the code with the lowest indentation first.

We can identify when python is executed from

the command line using the following tf statment.

When ezecuted we want the run() function to be
eczecuted therefore we create a CalcMeanStdDev

object and call run on that object - passing

HORH OB R OB OH W KR W R

tn the file name of the file to be processed.
if __name__ == ’__main__
obj = CalcMeanStdDev ()

obj.run(’randfloats.txt’) # Update with full file path.

J .

NOTE:

nhame

and

_main__

each have TWO underscores either side (i.e., -).

Although, an object oriented design has been introduced making the above code,
potentially, more reusable the design does not separate more general functionality
from the application. To do this the code will be split into two files the first, named
MyMaths.py, will contain the mathematical operations calcMean and calcStdDev
while the second, named FileSummary, contains the functions run, which controls
the flow of the script, and parseCommakFile(). The code for these files is given

below but first try and split the code into the two files yourself.

#! /usr/bin/env python

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

10

CHAPTER 3. TEXT PROCESSING

e
An python class to hold maths operations

#
#

Author:

Emazl:

<YOUR NAME>
<YOUR EMAIL>

Date: DD/MM/YYYY
Verston: 1.0
B B B E R

from math import sqrt

class MyMathsClass (object):

def calcMean(self, numbers):

sum = 0.0

for number in numbers:

sum += number

mean = sum/len(numbers)

return mean

def calcStdDev(self, numbers, mean):

deviation = 0.0

singleDev = 0.0

for number in numbers:

singleDev = number-mean

deviation += (singleDev**2)

stddev = sqrt(deviation/(len(numbers)-1))

return stddev

36

#! /usr/bin/env python

HARAARBAARRAARRAAARBAARBARRRRAARBAARRHA

An python class to parse a comma

HOH OB R OB OB W

separates text file to calculate

the mean and standard deviation

of the

tnputted floating point

numbers.

Author:

Emazl:

<YOUR NAME>
<YOUR EMAIL>

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

CHAPTER 3. TEXT PROCESSING

Date: DD/MM/YYYY
Version: 1.0
B B B R

To import the class you have created
you need to define the file within
which the class ©s held. In this
case MyMaths.py and the nmame of the

H R OB R

class to be imported (i.e., MyMathsClass)
from MyMaths import MyMathsClass

class FileSummary (object):

def parseCommaFile(self, file):
floatingNumbers = 1list()
for eachline in file:
substrs = eachLine.split(’,’,eachLine.count(’,’))
for strVar in substrs:
floatingNumbers.append(float(strVar))

return floatingNumbers

def run(self, filename):
inFile = open(filename, ’r’)

numbers = self.parseCommaFile(inFile)

mathsObj = MyMathsClass()
mean = mathsObj.calcMean(numbers)

stddev = mathsObj.calcStdDev(numbers, mean)

print(’Mean: ° + str(mean))
print (’Stddev: ’ + str(stddev))

if __name__ == ’_ _main__

J .

obj = FileSummary()
obj.run(’randfloats.txt’)

37

To allow the script to be used as a command line tool the path to the file needs

be passed into the script at runtime therefore the following changes are made to

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

CHAPTER 3. TEXT PROCESSING 38

the FileSummary script:

#! /usr/bin/env python

HAHRAH AR AR R AR RRAAAAAA AR AR RRRRRAAAAAA A
An python class to parse a comma
separates text file to calculate

the mean and standard deviation

of the inputted floating point
numbers.

Author: <YOUR NAME>

Email: <YOUR EMAIL>

Date: DD/MM/YYYY

Version: 1.0
B

R S T T

from MyMaths import MyMathsClass

To allow command line options to be

retrieved the sys python library needs
to be imported

import sys

class FileSummary (object):

def parseCommaFile(self, file):
floatingNumbers = 1list()
for eachline in file:
substrs = eachLine.split(’,’,eachlLine.count(’,’))
for strVar in substrs:
floatingNumbers.append(float(strVar))

return floatingNumbers

def run(self):
To retrieve the command line arguments
the sys.argu[X] is used where X refers to
the argument. The argument number starts
at 1 and is the index of a list.
filename = sys.argv[1]
inFile = open(filename, ’'r’)

numbers = self.parseCommaFile(inFile)

40

41

42

43

44

45

46

47

48

49

50

CHAPTER 3. TEXT PROCESSING

maths0bj = MyMathsClass()

mean = mathsObj.calcMean(numbers)

39

stddev = mathsObj.calcStdDev(numbers, mean)

print(+ (mean))
print(+ (stddev))

if __name__ ==

obj = FileSummary()
obj.run()

To read the new script the following command needs to be run from the command

prompt:

python fileSummary_commandline.py randfloats.txt

3.5 Exercise

Calculate the mean and standard deviation from only the first column of data

Hint:

You will need to replace:

substrs = eachLine.split(,eachLine. count())
for strVar in substrs:

floatingNumbers.append((strVar))
With:
substrs = eachLine.split(,eachLine.count())
columnl = substrs[0]
floatingNumbers.append(float(columnl))

CHAPTER 3. TEXT PROCESSING 40

3.6 Further Reading

e An Introduction to Python, G. van Rossum, F.L. Drake, Jr. Network Theory
ISBN 0-95-416176-9 (Also available online - http://docs.python.org/3/
tutorial/) - Chapter 7.

e Python Documentation — http://www.python.org/doc/

e Core Python Programming (Second Edition), W.J. Chun. Prentice Hall
ISBN 0-13-226993-7

http://docs.python.org/3/tutorial/
http://docs.python.org/3/tutorial/
http://www.python.org/doc/

Chapter 4

Plotting - Matplotlib

4.1 Introduction

Many open source libraries are available from within python. These significantly
increase the available functionality, decreasing your development time. One such
library is matplotlib (http://matplotlib.sourceforge.net), which provides a
plotting library with a similar interface to those available within Matlab. The mat-
plotlib website provides a detailed tutorial and documentation for all the different
options available within the library but this worksheet provides some examples of
the common plot types and a more complex example continuing on from previous

examples.

4.2 Simple Script

Below is your first script using the matplotlib library. The script demonstrates
the plotting of a mathematical function, in this case a sine function. The plot
function requires two lists of numbers to be provided, which provides the x and
y locations of the points which go to create the displayed function. The axis can
be labelled using the xlabel() and ylabel() functions while the title is set using

the title() function. Finally, the show() function is used to reveal the interface

41

http://matplotlib.sourceforge.net

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

CHAPTER 4. PLOTTING - MATPLOTLIB 42

displaying the plot.

#! /usr/bin/env python

HAHRHH AR B R RRRRAAARAAA AR R AR BB RRRHHHAAAAH
A simple python script to display a

sine function

Author: <YOUR NAME>

Ematl: <YOUR EMAIL>

Date: DD/MM/YYYY

Version: 1.0
i

tmport the matplotlib libraries
from matplotlib import pylab as plt

Create a list with values from
0 to 3 with 0.01 intervals

t = arange(0.0, 3, 0.01)

Calculate the sin curve for

the values within t

s = sin(pix*t)

Plot the wvalues in s and t

plt.plot(t, s)

plt.xlabel ("X Axis’)

plt.ylabel(’Y Axis’)

plt.title(’Simple Plot’)

save plot to disk.

plt.savefig(’simpleplot.pdf’, dpi=200, format=’PDF’)

4.3 Bar Chart

The creation of a bar chart is equally simply where two lists are provided, the
first contains the locations on the X axis at which the bars start and the second
the heights of the bars. The width of the bars can also be specified and their

colour. More options are available in the documentation (http://matplotlib.

http://matplotlib.sourceforge.net/matplotlib.pylab.html#-bar

10

11

12

13

14

15

16

17

CHAPTER 4. PLOTTING - MATPLOTLIB

imple Plot
1.0 S ple Flo
0.5} E

0
Z o.of \
>

_0.57 n

~1485% 0.5 1.0 1.5 2.0 2.5

X Axis

Figure 4.1: A simple plot using matplotlib.

sourceforge.net/matplotlib.pylab.html#-bar)

3.0

43

#! /usr/bin/env python

B
A simple python script to display a

bar chart.

Author: <YOUR NAME>

Ematl: <YOUR EMAIL>

Date: DD/MM/YYYY

Version: 1.0

B
from matplotlib import pylab as plt

Values for the Y azis (i.e., hetght of bars)
height = [56, 6, 7, 8, 12, 13, 9, 5, 7, 4, 3, 1]
Values for the = azis

x=1[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

http://matplotlib.sourceforge.net/matplotlib.pylab.html#-bar
http://matplotlib.sourceforge.net/matplotlib.pylab.html#-bar

18

19

20

21

22

CHAPTER 4. PLOTTING - MATPLOTLIB 44

create plot with colour grey

plt.bar(x, height, width=1, color=’gray’)

save plot to disk.

plt.savefig(’simplebar.pdf’, dpi=200, format=’PDF’)

14

Figure 4.2: A simple bar chart using matplotlib.

4.4 Pie Chart

A pie chart is similar to the previous scripts where a list of the fractions making
up the pie chart is given alongside a list of labels and if required a list of frac-

tions to explode the pie chart. Other options including colour and shadow are

available and outlined in the documentation (http://matplotlib.sourceforge.

net/matplotlib.pylab.html#-pie) This script also demonstrates the use of the

savefig() function allowing the plot to be saved to file rather than simply displayed

on screen.

http://matplotlib.sourceforge.net/matplotlib.pylab.html#-pie
http://matplotlib.sourceforge.net/matplotlib.pylab.html#-pie

10

11

12

13

14

15

16

17

18

19

20

21

22

23

CHAPTER 4. PLOTTING - MATPLOTLIB

45

#! /usr/bin/env python

HARAHA AR B RRRRAAARHRAAA AR RRRRRHHRAAA A
A simple python script to display a

pie chart.

Author: <YOUR NAME>

Ematl: <YOUR EMAIL>

Date: DD/MM/YYYY

Verston: 1.0
B

from matplotlib import pylab as plt

frac = [25, 33, 17, 10, 15]
labels = [’25°, ’337, ’17’, 2107, ’15°]
explode = [0, 0.25, 0, 0, 0]

Create pte chart

plt.pie(frac, explode, labels, shadow=True)
Give 1t a title

plt.title(’A Sample Pie Chart’)

save the plot to a PDF file

plt.savefig(’pichart.pdf’, dpi=200, format=’PDF’)

4.5 Scatter Plot

The following script demonstrates the production of a scatter plot (http://matplotlib.

sourceforge.net/matplotlib.pylab.html#-scatter) where the lists x and y

provide the locations of the points in the X and Y axis and Z provides the third

dimension used to colour the points.

#! /usr/bin/env python

HAHRHH AR AR RRRRRAAAHAAA AR AR BB RRRHHAAAAAH
A simple python script to display a

scatter plot.

Author: <YOUR NAME>

http://matplotlib.sourceforge.net/matplotlib.pylab.html#-scatter
http://matplotlib.sourceforge.net/matplotlib.pylab.html#-scatter

CHAPTER 4. PLOTTING - MATPLOTLIB 46

A Sample Pie Chart

Figure 4.3: A simple pie chart using matplotlib.

7 # Email: <YOUR EMAIL>

8 # Date: DD/MM/YYYY

9 # Verston: 1.0

I e e
11

12 from matplotlib import pylab as plt

13 # Import a random number generator

14 from random import random

15

]
d
td

16

17

18 Z
19

20 # Create data values for X, Y, Z axts’
21 for i in range(5000):

22 x.append (random() * 100)

23 y.append(random() * 100)

24 z.append(x[i]-y[i])

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

CHAPTER 4. PLOTTING - MATPLOTLIB 47

plt.figure()

plt.scatter(x, y, c=z, marker=’0’, cmap=cm.jet, vmin=-100, vmax=100)
colorbar ()

plt.axis(’tight’)

plt.xlabel ("X Axis’)

plt.ylabel(’Y Axis’)

plt.title(’Simple Scatter Plot’)

plt.savefig(’simplescatter.pdf’, dpi=200, format=’PDF’)

Simple Scatter Plot

, , , , 100
100F o °® 0 %8 8
80
[)
[/ 8
® s &S
% 9B 88 60
80f - o3 3 a1
B H40
Qog0
i o | {20
i 60 & 3 s [:3
< O o]
< ¥, o 10
N B %
40 : Fx v 1 {-20
Q% 00 o A —40
20} 6 1
> -60
90
° —-80
o SBRIEE S s e o gl |
0 20 40 60 80 100 —100
X Axis

Figure 4.4: A simple scatter plot using matplotlib.

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

CHAPTER 4. PLOTTING - MATPLOTLIB 48

4.6 Line Plot

A more complicated example is now given building on the previous tutorial where
the data is read in from a text file before being plotted. In this case data was down-
loaded from the Environment Agency and converted from columns to rows. The
dataset provides the five year average rainfall for the summer (June - August) and
winter (December - February) from 1766 to 2006. Two examples of plotting this
data are given where the first plots the two datasets onto the same axis (Figure
while the second plots them onto individual axis (Figure [£.6). Information on the
use of the subplot() function can be found in the matplotlib documentation (http:
//matplotlib.sourceforge.net/matplotlib.pylab.html#-subplot).

from matplotlib import pylab as plt
import os.path

import sys

class PlotRainfall ():

def parseDataFile(, dataFile, year, summer, winter):
line = 0
for eachlLine in dataFile:
commaSplit = eachLine.split(’,’, eachLine.count(’,’))
first =
for token in commaSplit:
if first:
first =

else:

http://matplotlib.sourceforge.net/matplotlib.pylab.html#-subplot
http://matplotlib.sourceforge.net/matplotlib.pylab.html#-subplot

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

CHAPTER 4. PLOTTING - MATPLOTLIB

if line ==
year.append(int (token))
elif line ==
summer . append (f loat (token))
elif line ==
winter.append(float(token))
line += 1

Plot data onto the same axis’

def plotData(self, year, summer, winter, outFile):

plt
plt
plt

plt.
.xlabel(’Year’)
.ylabel(’Rainfall (5 Year Mean)’)

.title(’Summer and Winter rainfall across the UK’)

plt
plt
plt

.figure()
.plot(year, summer)

.plot(year, winter)

legend ([’ Summer’, ’Winter’])

save plot to disk.

plt.

savefig(outFile, dpi=200, format=’PDF’)

Plot the data onto separate axts, using subplot.

def plotDataSeparate(self, year, summer, winter, outFile):

def

plt

plt.

plt
plt
plt

plt.

plt.

plt
plt
plt
plt

.figure()

subplot(2,1,1)

.plot(year, summer)

.ylabel(’Rainfall (5 Year Mean)’)
.title(’Summer rainfall across the UK’)
axis(’tight’)

subplot(2,1,2)

.plot(year, winter)

.xlabel(’Year’)

.ylabel(’Rainfall (5 Year Mean)’)
.title(’Winter rainfall across the UK’)
plt.

axis(’tight’)

save plot to disk.

plt.savefig(outFile, dpi=200, format=’PDF’)
run(self):
filename = ’ukweatheraverage.csv’

if os.path.exists(filename):

49

CHAPTER 4. PLOTTING - MATPLOTLIB 50

68 year = list()

69 summer = list()

70 winter = list()

71 try:

72 dataFile = open(filename, ’r’)

73 except IOError as e:

74 print (’\nCould not open file:\n’, e)

75 return

76 self.parseDataFile(dataFile, year, summer, winter)

77 dataFile.close()

78 self.plotData(year, summer, winter, "Rainfall_SinglePlot.pdf")
79 self.plotDataSeparate(year, summer, winter, "Rainfall MultiplePlots.pdf'")
80 else:

81 print(’File \’’ + filename + ’\’ does not exist.’)

82

g3 1f __name__ == ’__main__’:

84 obj = PlotRainfall()

85 obj.run()

Summer and Winter rainfall across the UK

350
— Summer
— Winter
300} .
= 250} | .
g | ‘1
= I\ ' L |
2] ' \(:,
8 200} 1
C
T
o
150} .
14955 1800 1850 1900 1950 2000 2050

Year

Figure 4.5: Rainfall data for summer and winter on the same axis’.

CHAPTER 4. PLOTTING - MATPLOTLIB 51

Summer rainfall across the UK

c 3001
I

200
180
160t

Rainfall (5 Ye

1800 1850 1900 1950 2000
Winter rainfall across the UK

300

250

200

Rainfall (5 Year Mean)

[y

U

o
T

1800 1850 1900 1950 2000
Year

Figure 4.6: Rainfall data for summer and winter on different axis’.

4.7 Exercise:

Based on the available data is there a correlation between summer and winter rain-
fall? Use the lists read in of summer and winter rainfall and produce a scatterplot

to answer this question.

4.8 Further Reading

e Matplotlib — http://matplotlib.sourceforge.net
e Python Documentation — http://www.python.org/doc/

e Core Python Programming (Second Edition), W.J. Chun. Prentice Hall
ISBN 0-13-226993-7

http://matplotlib.sourceforge.net
http://www.python.org/doc/

Chapter 5

Statistics (SciPy / NumPy)

5.1 Introduction

NumPy is a library for storing and manipulating multi-dimensional arrays. NumPy
arrays are similar to lists, however they have a lot more functionality and allow
faster operations. SciPy is a library for maths and science using NumPy arrays and
includes routines for statistics, optimisation and numerical integration. A compre-
hensive list is available from the SciPy website (http://docs.scipy.org/doc/
scipy/reference). The combination of NumPy, SciPy and MatPlotLib provides
similar functionality to that available in packages such as MatLab and Mathemat-

ica and allows for complex numerical analysis.

This tutorial will introduce some of the statistical functionality of NumPy / SciPy
by calculating statistics from forest inventory data, read in from a text file. Lin-
ear regression will also be used to calculate derive relationships between parame-

ters.

There are a number of ways to create NumPy arrays, one of the easiest (and
the method that will be used in this tutorial) is to convert a python list to an

array:

import numpy
pythonList = [1 , 4 , 2 , 5, 3]
numpyArray = numpy.array(pythonList)

52

http://docs.scipy.org/doc/scipy/reference
http://docs.scipy.org/doc/scipy/reference

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

29

30

CHAPTER 5. STATISTICS (SCIPY / NUMPY) 53

5.2 Simple Statistics

Forest inventory data have been collected for a number of plots within Penglais
woods (Aberystwyth, Wales). For each tree, the diameter, species height, crown
size and position have been recorded. An example script is provided to read the
diameters into a separate list for each species. The lists are then converted to
NumPy arrays, from which statistics are calculated and written out to a text
file.

#! /usr/bin/env python

HARHHARRBRRRRRRAARAAAA AR BB RRRRHRRAAAH
A script to calculate statistics from
a text file using NumPy

Author: <YOUR NAME>

Ematl: <YOUR EMAIL>

Date: DD/MM/YYYY

Version: 1.0
B

import numpy
import scipy
Import scipy stats functions we need

import scipy.stats as spstats
class CalculateStatistics (object):

def run(self):
Set up lists to hold input diameters
A seperate list is used for each species
beechDiameter = 1list()
ashDiameter = 1list()
birchDiameter = 1list()
oakDiameter = list()
sycamoreDiameter = 1list()

otherDiameter = list()

Open input and output files

inFileName = ’PenglaisWoodsData.csv’

CHAPTER 5. STATISTICS (SCIPY / NUMPY)

outFileName = ’PenglaisWoodsStats.csv’
inFile = (inFileName, ’r’)
outFile = (outFileName, 'w’)

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

ashDiameter

oakDiameter

headerLine

for eachLine in inFile:
if header:

print (’Skipping header row’)

header =

substrs = eachLine.split(’,’,eachLine.count(’,’))

species = substrs[3]
if substrs[4].isdigit:
(substrs([4])

diameter =

if species == ’BEECH’:

beechDiameter.append(diameter)

elif species ==
ashDiameter

elif species ==

birchDiameter.append(diameter)
elif species == "0OAK’:

oakDiameter

elif species ==

sycamoreDiameter.append(diameter)

else:

otherDiameter.append(diameter)

beechDiameter = numpy.array(beechDiameter)

birchDiameter = numpy.array(birchDiameter)

sycamoreDiameter = numpy.array(sycamoreDiameter)

otherDiameter = numpy.array(otherDiameter)

’species, meanDiameter, medianDiameter, stDevDiameter\n’

.append (diameter)

.append (diameter)

numpy . array (ashDiameter)

= numpy.array (oakDiameter)

72

73

74

75

76

77

78

79

80

81

82

83

84

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

CHAPTER 5. STATISTICS (SCIPY / NUMPY) 55

outFile.write(headerLine)

outLine = ’Beech,’ + .createStatsLine(beechDiameter) + ’\n’
outFile.write(outLine)

outLine = ’Ash,’ + .createStatsLine(ashDiameter) + ’\n’
outFile.write(outLine)

outLine = ’Birch,’ + .createStatsLine(birchDiameter) + ’\n’
outFile.write(outLine)

outLine = ’0Oak,’ + .createStatsLine (oakDiameter) + ’\n’
outFile.write(outLine)

outLine = ’Sycamore,’ + .createStatsLine(sycamoreDiameter) + ’\n’
outFile.write(outLine)

outLine = ’Other,’ + .createStatsLine (otherDiameter) + ’\n’

outFile.write(outLine)

print (’Statistics written to: ’ + outFileName)

def createStatsLine(, inArray):

meanArray = numpy.mean(inArray)
medianArray = numpy.median(inArray)
stDevArray = numpy.std(inArray)

skewArray = spstats.skew(inArray)

statsLine = (meanArray) + ’,’ + (medianArray) + 7.’ + (stDevArray)
return statsLine

if __name__ == ’_ _main__’:
obj = CalculateStatistics()
obj.run()

Note in tutorial three, functions were written to calculate the mean and standard
deviation a list, in this tutorial the same result is accomplished using the built in

functionality of NumPy.

CHAPTER 5. STATISTICS (SCIPY / NUMPY) 56

5.2.1 Exercises
1. Based on the example script also calculate mean, median and standard de-
viation for tree heights and add to the output file.

2. Look at other statistics functions available in SciPy and calculate for height

and density.

5.3 Calculate Biomass

One of the features of NumPy arrays is the ability to perform mathematical oper-

ation on all elements of an array.

For example, for NumPy array a:

’a = numpy.array([1,2,3,4]) ‘

Performing

b=2xa |

Gives

’b = array([2,4,6,8]) ‘

Some special versions of functions are available to work on arrays. To calculate
the natural log of a single number log may be used, to perform the natural log of

an array np.log may be used (where NumPy has been imported as np).

Tree volume may be calculated from height and stem diameter using:

Volume = a + bD*h*™ (5.1)

Where D is diameter and h is height. The coefficients a and b vary according
to species (see Table . From volume, it is possible to calculate biomass by
multiplying by the specific gravity.

10

11

12

CHAPTER 5. STATISTICS (SCIPY / NUMPY) 57

Biomass = Volume x SpecificGravity (5.2)

The specific gravity also varies by species, values for each species are given in
Table B.11

Table 5.1: Coeflicients for estimating volume and the specific gravity required for
estimating the biomass by species.

Species | a-coefficient | b-coefficient | Specific gravity
Beech 0.014306 0.0000748 0.56
Ash 0.012107 0.0000777 0.54
Beech 0.009184 0.0000673 0.53
Oak 0.011724 0.0000765 0.56
Sycamore | 0.012668 0.0000737 0.54

The following function takes two arrays containing height and density, and a string

for species. From these biomass is calculated.

def calcBiomass(, inDiameterArray, inHeightArray, inSpecies):
if inSpecies == ’BEECH’:
a = 0.014306

b = 0.0000748

specificGravity = 0.56

volume = a + ((b*(inDiameterArray / 100)**2) * (inHeightArray#**0.75))

biomass = volume * specificGravity

return biomass

Note only the coefficients for ‘BEECH’ have been included therefore, if a different
species is passed in, the program will produce an error (try to think about what
the error would be). A neater way of dealing with the error would be to throw an
exception if the species was not recognised. Exceptions form the basis of controlling
errors in a number of programming languages (including C++ and Java) the simple
concept is that as a program is running, if an error occurs an exception is thrown,

at which point processing stops until the exception is caught and dealt with. If the

10

11

12

13

14

CHAPTER 5. STATISTICS (SCIPY / NUMPY) 58

exception is never caught, then the software crashes and stops. Python provides

the following syntax for exception programming,

try:
< Perform operations during which
an error is likely to occur >
except <ExceptionName>:

< If error occurs do something

appropriate >

where the code you wish to run is written inside the ‘try’ statement and the ‘except’
statement is executed only when a named exception (within the except statement)
is produced within the ‘try’ block. It is good practise you use exceptions where
possible as when used properly they provide more robust code which can provide

more feedback to the user.

The function to calculate biomass may be rewritten to throw an exception if the

species is not recognised.

def calcBiomass(, inDiameterArray, inHeightArray, inSpecies):
if inSpecies == ’BEECH’:
a = 0.014306

b = 0.0000748
specificGravity = 0.56
else:
raise Exception(’Species not recognised’)
volume = a + ((b*(inDiameterArray / 100)**2) * (inHeightArray#**0.75))

biomass = volume * specificGravity

return biomass

The function below, calls ‘calcBiomass’ to calculate biomass for an array. From
this mean, median and standard deviation are calculated and an output array is
returned. By calling the function from within a ‘try and except’ block if the species
is not recognised, it will not try to calculate stats and will return the string ‘na’

(not available) for all values in the output line.

10

11

12

13

15

16

17

18

19

20

10

11

12

13

14

15

16

17

18

CHAPTER 5. STATISTICS (SCIPY / NUMPY) 59

def calcBiomassStatsLine(self, inDiameterArray, inHeightArray, inSpecies):

Calculates biomass, calculates stats from biomass and returns output line

biomassStatsLine = 7’

try:

Calculate biomass

biomass = self.calcBiomass(inDiameterArray, inHeightArray, inSpecies)
Calculate stats from biomass

meanBiomass = numpy.mean(biomass)

medianBiomass = numpy.median(biomass)

stDevBiomass = numpy.std(biomass)

Create output line

biomassStatsLine = str(meanBiomass) + ’,’ + str(medianBiomass) + ’,’ + \

str(stDevBiomass)

except Exception:

Catch exception and write ’na’ for all values

biomassStatsLine = ’na,na,na’

return biomassStatsLine

Therefore, the final script should result in the following:

#! /usr/bin/env python

e

A script
a text fi

to calculate statistics from

le using NumPy

Author: <YOUR NAME>
Email: <YOUR EMAIL>
Date: DD/MM/YYYY

Version:

1.0

e

import numpy

import scipy

Import scipy stats functions we need

import scipy.stats as spstats

class CalculateStatistics (object):

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

CHAPTER 5. STATISTICS (SCIPY / NUMPY)

def run(self):
Set up lists to hold input diameters and heights
A seperate list is used for each species
beechDiameter = list()
beechHeight = list()
ashDiameter = 1list()
ashHeight = list()

birchDiameter = list()
birchHeight = list()
oakDiameter = 1list()
oakHeight = list()
sycamoreDiameter = 1list()
sycamoreHeight = 1ist()
otherDiameter = list()
otherHeight = 1ist()

Open input and output files
inFileName = ’PenglaisWoodsData.csv’
outFileName = ’PenglaisWoodsStats.csv’
inFile = open(inFileName, ’r’)

outFile = open(outFileName, 'w’)

Iterate through the input file and save diameter and height

into lists, based on species
header = True
for eachlLine in inFile:
if header: # Skip header row
print (’Skipping header row’)
header = False

else:

substrs = eachLine.split(’,’,eachLine.count(’,’))

species = substrs[3]

if substrs[4].isdigit: # Check diameter is a number

diameter = float(substrs[4])
height = float(substrs[10])

if species == ’BEECH’:
beechDiameter.append(diameter)
beechHeight . append (height)
elif species == ’ASH’:

60

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

CHAPTER 5. STATISTICS (SCIPY / NUMPY) 61

ashDiameter.append(diameter)
ashHeight .append (height)

elif species == ’BIRCH’:
birchDiameter.append(diameter)
birchHeight.append (height)

elif species == ’0AK’:
oakDiameter.append(diameter)
oakHeight .append (height)

elif species == ’SYC’:
sycamoreDiameter.append(diameter)
sycamoreHeight .append (height)

else:
otherDiameter.append(diameter)

otherHeight . append (height)

beechDiameter = numpy.array(beechDiameter)
ashDiameter = numpy.array(ashDiameter)
birchDiameter = numpy.array(birchDiameter)
oakDiameter = numpy.array(oakDiameter)
sycamoreDiameter = numpy.array(sycamoreDiameter)

otherDiameter = numpy.array(otherDiameter)

beechHeight = numpy.array(beechHeight)
ashHeight = numpy.array(ashHeight)
birchHeight = numpy.array(birchHeight)
oakHeight = numpy.array(oakHeight)
sycamoreHeight = numpy.array(sycamoreHeight)
otherHeight = numpy.array(otherHeight)

headerLine = ’species,meanDiameter,medianDiameter,stDevDiameter,\
meanHeight ,medianHeight,stDevHeight, \
meanBiomass,medianBiomass,stDevBiomass\n’

outFile.write(headerLine)

outLine = ’Beech,’ + .createStatsLine(beechDiameter) + ’,’ + \
.createStatsLine(beechHeight) + ’,’ + \
.calcBiomassStatsLine (beechDiameter, beechHeight, ’BEECH’) + ’\n’

outFile.write(outLine)

CHAPTER 5. STATISTICS (SCIPY / NUMPY) 62

101 outLine = ’Ash,’ + .createStatsLine(ashDiameter) + ’,’ + \

102 .createStatsLine(ashHeight) + 7.’ + \

103 .calcBiomassStatsLine (ashDiameter, ashHeight, ’ASH’) + ’\n’

104 outFile.write(outLine)

105 outLine = ’Birch,’ + .createStatsLine(birchDiameter) + ’,’ + \

106 .createStatsLine(birchHeight) + ’,” + \

107 .calcBiomassStatsLine(birchDiameter, birchHeight, ’BIRCH’) + ’\n’

108 outFile.write(outLine)

109 outLine = ’0Oak,’ + .createStatsLine(oakDiameter) + ’,’ + \

110 .createStatsLine(oakHeight) + 7, + \

111 .calcBiomassStatsLine (oakDiameter, oakHeight, ’0AK’) + ’\n’

112 outFile.write(outLine)

113 outLine = ’Sycamore,’ + .createStatsLine(sycamoreDiameter) + 7,7 + \
114 .createStatsLine(sycamoreHeight) + ’,’ + \

115 .calcBiomassStatsLine(sycamoreDiameter, sycamoreHeight, ’SYC’) + ’\n’

116 outFile.write(outLine)

117 outLine = ’Other,’ + .createStatsLine(otherDiameter) + ’,’ + \
118 .createStatsLine(otherHeight) + ’,’ + \

119 .calcBiomassStatsLine (otherDiameter, otherHeight, ’Other’) + ’\n’

120 outFile.write(outLine)

121

122 print(’Statistics written to: ’ + outFileName)

123

124 def createStatsLine(, inArray):

125

126 meanArray = numpy.mean(inArray)

127 medianArray = numpy.median(inArray)

128 stDevArray = numpy.std(inArray)

129

130

131 statsLine = (meanArray) + °,’ + (medianArray) + 7,7 + (stDevArray)
132 return statsLine

133

134 def calcBiomassStatsLine(, inDiameterArray, inHeightArray, inSpecies):
135

136 biomassStatsLine = 7’

137 try:

138

139 biomass = .calcBiomass(inDiameterArray, inHeightArray, inSpecies)

140

141 meanBiomass = numpy.mean(biomass)

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

160

161

162

163

164

165

166

167

168

169

170

171

172

CHAPTER 5. STATISTICS (SCIPY / NUMPY) 63

medianBiomass = numpy.median(biomass)

stDevBiomass = numpy.std(biomass)

biomassStatsLine (meanBiomass) + 7, + (medianBiomass) + ’,’ + \

(stDevBiomass)

except Exception:

biomassStatsLine = ’na,na,na’

return biomassStatsLine

def calcBiomass(, inDiameterArray, inHeightArray, inSpecies):
if inSpecies == ’BEECH’:
a = 0.014306
b = 0.0000748
specificGravity = 0.56
else:

raise Exception(’Species not recognised’)

volume = a + ((b*(inDiameterArray)**2) * (inHeightArray**0.75))

biomass = volume * specificGravity

return biomass

if __name__ == ’__main__’:
obj = CalculateStatistics()
obj.run()

5.3.1 Exercise

1. Add in the coefficients to calculate biomass for the other species

2. Write the statistics for biomass out to the text file. Remember to change the

header line.

CHAPTER 5. STATISTICS (SCIPY / NUMPY) 64

5.4 Linear Fitting

One of the built in feature of SciPy is the ability to perform fits. Using the linear

regression function (linregress) it is possible to fit equations of the form:

y=axr+b (5.3)

to two NumPy arrays (z and y) using:

(aCoeff,bCoeff,rVal,pVal,stdError) = linregress(x, y)

Where aCoeff and bCoeff are the coefficients rVal is the r value (r**2 gives R?),

pVal is the p value and stdError is the standard error.

It is possible to fit the following equation to the collected data expressing height

as a function of diameter.

height = alog (diameter) + b (5.4)

To fit an equation of this form an array must be created containing log diameter

. Linear regression may then be performed using:
linregress(np.log(inDiameterArray), inHeightArray)
To test the fit it may be plotted against the original data using MatPlotLib. The

following code first performs the linear regression then creates a plot showing the

fit against the original data.

def plotLinearRegression(, inDiameterArray, inHeightArray, outPlotName) :

(aCoeff ,bCoeff,rVal,pVal,stdError) = linregress(np.log(inDiameterArray), \

inHeightArray)

testDiameter = arange(min(inDiameterArray), (inDiameterArray), 1)

predictHeight = (aCoeff * np.log(testDiameter)) + bCoeff

11

12

13

14

15

16

17

18

19

20

21

22

23

24

10

11

CHAPTER 5. STATISTICS (SCIPY / NUMPY)

and T squared value

Coefficients are rounded to two decimal places.

65

equation = str(round(aCoeff,2)) + ’log(D) + > + str(round(bCoeff,2)) + \

7 (r$72% = 7 + str(round(rVal*x2,2)) + 7)’

Plot fit against origional data
plt.plot(inDiameterArray, inHeightArray,’.’)
plt.plot(testDiameter, predictHeight)
plt.xlabel(’Diameter (cm)’)
plt.ylabel("Height (m)’)
plt.legend([’measured data’,equation])

Save plot
plt.savefig(outPlotName, dpi=200, format=’PDF’)

The coefficients and r? of the fit are displayed in the legend. To display the

superscript ‘2’ in the data it is possible to use LaTeX syntax. So r? is written as:

r$A28$.

The function may be called using:

Set output directory for plots
outDIR = ’./output/directory/’

self.plotLinearRegression(beechDiameter, beechHeight, outDIR + ’beech.pdf’)

Produce a plot similar to the one shown in Figure 6.1 and save as a PDF.

The final script should result in the following:

#! /usr/bin/env python

HAHRHH AR AR RRR AR AR BB R R RRHHAARAA A
A script to calculate statistics from
a text file using NumPy

Author: <YOUR NAME>

Ematl: <YOUR EMAIL>

Date: DD/MM/YYYY

Version: 1.0
e

12

13

14

15

16

17

18

19

20

22

23

24

25

26

27

28

29

30

CHAPTER 5. STATISTICS (SCIPY / NUMPY)

45 T T T
» + measured data

40 — 5.54log(D) -3.7 (r* = 0.37) |

35f b

30f b

251 b

201

Height (m)

15¢

101

0 20 40 60 80 100
Diameter (cm)

Figure 5.1: A simple plot using matplotlib.

import numpy

import scipy

Import scipy stats functions we need
import scipy.stats as spstats

Import plotting library as plt
import matplotlib.pyplot as plt

class CalculateStatistics (object):

def run(self):
Set up lists to hold input diameters and heights
A seperate list 1s used for each species
beechDiameter = list()
beechHeight = 1list()
ashDiameter = 1list()
ashHeight = list()
birchDiameter = list()
birchHeight = 1ist()
1ist Q)

oakDiameter

66

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

CHAPTER 5. STATISTICS (SCIPY / NUMPY)

oakHeight = O

sycamoreDiameter = O
sycamoreHeight = O

otherDiameter = O

otherHeight = O

inFileName = ’PenglaisWoodsData.csv’
outFileName = ’PenglaisWoodsStats.csv’
inFile = (inFileName, ’r’)

outFile = (outFileName, ’w’)
header =

for eachLine in inFile:
if header:
print (’Skipping header row’)
header =
else:

substrs = eachLine.split(’,’,eachLine.count(’,’))

species = substrs[3]

if substrs[4].isdigit:

diameter = (substrs[4])
height = (substrs[10])
if species == ’BEECH’:

beechDiameter.append(diameter)
beechHeight . append (height)

elif species == ’ASH’:
ashDiameter.append(diameter)
ashHeight .append (height)

elif species == ’BIRCH’:
birchDiameter.append(diameter)
birchHeight.append (height)

elif species == ’0AK’:
oakDiameter.append(diameter)
oakHeight .append (height)

elif species == ’SYC’:

sycamoreDiameter.append(diameter)

67

CHAPTER 5. STATISTICS (SCIPY / NUMPY)

72 sycamoreHeight . append (height)

73 else:

74 otherDiameter.append(diameter)

75 otherHeight .append (height)

76

77

78 beechDiameter = numpy.array(beechDiameter)

79 ashDiameter = numpy.array(ashDiameter)

80 birchDiameter = numpy.array(birchDiameter)

81 oakDiameter = numpy.array(oakDiameter)

82 sycamoreDiameter = numpy.array(sycamoreDiameter)

83 otherDiameter = numpy.array(otherDiameter)

84

85 beechHeight = numpy.array(beechHeight)

86 ashHeight = numpy.array(ashHeight)

87 birchHeight = numpy.array(birchHeight)

88 oakHeight = numpy.array(oakHeight)

89 sycamoreHeight = numpy.array(sycamoreHeight)

90 otherHeight = numpy.array(otherHeight)

91

92

93 headerLine = ’species, meanDiameter, medianDiameter, stDevDiameter\n’
94 outFile.write(headerLine)

95

96

97 outLine = ’Beech,’ + .createStatsLine (beechDiameter) + ’\n’
98 outFile.write(outLine)

99 outLine = ’Ash,’ + .createStatsLine(ashDiameter) + ’\n’

100 outFile.write(outLine)

101 outLine = ’Birch,’ + .createStatsLine(birchDiameter) + ’\n’
102 outFile.write(outLine)

103 outLine = ’0Oak,’ + .createStatsLine (oakDiameter) + ’\n’

104 outFile.write(outLine)

105 outLine = ’Sycamore,’ + .createStatsLine(sycamoreDiameter) + ’\n’
106 outFile.write(outLine)

107 outLine = ’Other,’ + .createStatsLine (otherDiameter) + ’\n’
108 outFile.write(outLine)

109
110 print(’Statistics written to: ’° + outFileName)
111

112

CHAPTER 5. STATISTICS (SCIPY / NUMPY) 69

113

114 # Set output directory for plots

115 outDIR = ’ ./’

116

117 # Plot linear regression for Beech

118 print (’Generating plot:’)

119 self.plotLinearRegression(beechDiameter, beechHeight, outDIR + ’beech.pdf’)
120

121 def plotLinearRegression(self, inDiameterArray, inHeightArray, outPlotName):
122 # Perform fit

123 (aCoeff ,bCoeff,rVal,pVal,stdError) = spstats.linregress(numpy.log(inDiameterArray), inHei
124

125 # Use fits to predict height for a range of diameters

126 testDiameter = numpy.arange(min(inDiameterArray), max(inDiameterArray), 1)
127 predictHeight = (aCoeff * numpy.log(testDiameter)) + bCoeff

128

129 # Create a string, showing the form of the equation (with fitted coefficients)
130 # and r squared value

131 # Coefficients are rounded to two decimal places.

132 equation = str(round(aCoeff,2)) + ’log(D) ’ + str(round(bCoeff,2)) + \

133 7 (r$72% = 7+ str(round(xrVal*¥2,2)) +)’

134

135 # Plot fit against origional data

136 plt.plot(inDiameterArray, inHeightArray,’.’)

137 plt.plot(testDiameter, predictHeight)

138 plt.xlabel (’Diameter (cm)’)

139 plt.ylabel (’Height (m)’)

140 plt.legend([’measured data’,equation])

141

142 # Save plot

143 plt.savefig(outPlotName, dpi=200, format=’PDF’)

144

145

146 def createStatsLine(self, inArray):

147 # Calculate statsistics for array and return output line.

148 meanArray = numpy.mean(inArray)

149 medianArray = numpy.median(inArray)

150 stDevArray = numpy.std(inArray)

151

152 # Create output line with stats

153 statsLine = str(meanArray) + ’,’ + str(medianArray) + ’,’ + str(stDevArray)

CHAPTER 5. STATISTICS (SCIPY / NUMPY) 70

154 return statsLine

155

156 def calcBiomassStatsLine(self, inDiameterArray, inHeightArray, inSpecies):
157 # Calculates biomass, calculates stats from biomass and returns output line
158 biomassStatsLine = 7’

159 try:

160 # Calculate biomass

161 biomass = self.calcBiomass(inDiameterArray, inHeightArray, inSpecies)
162 # Calculate stats from biomass

163 meanBiomass = numpy.mean(biomass)

164 medianBiomass = numpy.median(biomass)

165 stDevBiomass = numpy.std(biomass)

166

167 # Create output line

168 biomassStatsLine = str(meanBiomass) + ’,’ + str(medianBiomass) + ’,’\
169 + str(stDevBiomass)

170

171 except Exception:

172 # Catch exzception and write ’na’ for all values

173 biomassStatsLine = ’na,na,na’

174

175 return biomassStatsLine

176

177 def calcBiomass(self, inDiameterArray, inHeightArray, inSpecies):

178 if inSpecies == ’BEECH’:

179 a = 0.014306

180 b = 0.0000748

181 specificGravity = 0.56

182 else: # Raise exception ©s species 1S not recognised

183 raise Exception(’Species not recognised’)

184

185 # Calcualte volume

186 volume = a + ((b*(inDiameterArray)**2) * (inHeightArray**0.75))

187 # Calculate biomass

188 biomass = volume * specificGravity

189 # Return biomass

190 return biomass

191

192 if __name__ == ’__main__’:

193 obj = CalculateStatistics()

194 obj.run()

CHAPTER 5. STATISTICS (SCIPY / NUMPY) 71

5.4.1 Exercise

Produce plots, showing linear regression fits, for the other species.

5.5 Further Reading

SciPy — http://www.scipy.org/SciPy

NumPy — http://numpy.scipy.org

An Introduction to Python, G. van Rossum, F.L. Drake, Jr. Network Theory
ISBN 0-95-416176-9 (Also available online — http://docs.python.org/3/
tutorial/)) - Chapter 8.

Python Documentation — http://www.python.org/doc/

Matplotlib — http://matplotlib.sourceforge.net

http://www.scipy.org/SciPy
http://numpy.scipy.org
http://docs.python.org/3/tutorial/
http://docs.python.org/3/tutorial/
http://www.python.org/doc/
http://matplotlib.sourceforge.net

Chapter 6

Batch Processing Command Line
Tools

6.1 Introduction

There are many command line tools and utilities available for all platforms (e.g.,
Windows, Linux, Mac OSX), these tools are extremely useful and range from
simple tasks such as renaming a file to more complex tasks such as merging ESRI
shapefiles. One problem with these tools is that if you have a large number of files,
which need to be processed in the same way, it is time consuming and error prone
to manual run the command for each file. Therefore, if we can write scripts to do
this work for us then processing large number of individual files becomes a much

simpler and quicker task.

For this worksheet you will need to have the command line tools which come with
the GDAL/OGR (http://www.gdal.org) open source software library installed
and available with your path. With the installation of python(x,y) the python
libraries for GDAL/OGR have been installed but not the command line utilities
which go along with these libraries. If you do not already have them installed

therefore details on the GDAL website for your respective platform.

72

http://www.gdal.org

CHAPTER 6. BATCH PROCESSING COMMAND LINE TOOLS 73

6.2 Merging ESRI Shapefiles

The first example illustrates how the ‘ogr2ogr’ command can be used to merge
shapefiles and a how a python script can be used to turn this command into a

batch process where a whole directory of shapefiles can be merged.

To perform this operation two commands are required. The first makes a copy of

the first shapefile within the list of files into a new file, shown below:

’> ogr2ogr <inputfile> <outputfile> ‘

While the second command appends the contents of the inputted shapefile onto

the end of an existing shapefile (i.e., the one just copied).

’> ogr2ogr -update -append <inputfile> <outputfile> -nln <outputfilename> ‘

For both these commands the shapefiles all need to be of the same type (point,
polyline or polygon) and contain the same attributes. Therefore, your first exercise
is to understand the use of the ogr2ogr command and try them from the command
line with the data provided. Hint, running ogr2ogr without any options the help
file will be displayed.

The second stage is to develop a python script to call the appropriate com-
mands to perform the required operation, where the following processes will be

required:
1. Get the user inputs.
2. Get the list of input shapefiles.
3. Iterate through the files and run the required commands.

Look through the following script and see how the glob module (https://docs.
python.org/3/library/glob.html) is used to easily retrieve the list of input
shapefiles.

https://docs.python.org/3/library/glob.html
https://docs.python.org/3/library/glob.html

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

CHAPTER 6. BATCH PROCESSING COMMAND LINE TOOLS

A python script to merge shapefiles

Author: <YOUR NAME>

Ema<l: <YOUR EMAIL>

Date: DD/MM/YYYY

Verston: 1.0
e et g

import os.path
import subprocess

import glob

Define the input directory
inputShpFiles = ’./TreeCrowns/*.shp’
Define the output file

newSHPFile = ’Merged_TreeCrowns.shp’

ogr2ogr requires that the layer name is provided, for
a shapefile this 1s the file name without the path or
extention. The following commands use the os.path

module to remove those if present.

Remove the directory path from the output file.
newSHPFileBaseName = os.path.basename(newSHPFile)
Remove the file extention from the output file.
newSHPFileBaseName = os.path.splitext(newSHPFileBaseName) [0]

Get list of input shapefiles using glob module.
fileList = glob.glob(inputShpFiles)

Variable used to tdentify the first file
first = True
A string for the command to be built
command = ’’
Iterate through the files.
for file in filelist:

if first:

If the first file make a copy to create the output file

command = ’ogr2ogr ’ + newSHPFile + ’ ’ + file
first = False

else:

Otherwise append the current shapefile to the output file

74

46

47

48

49

CHAPTER 6. BATCH PROCESSING COMMAND LINE TOOLS 75

command = + newSHPFile + +\
+ + newSHPFileBaseName

print (command)

subprocess.call(command,shell=)

6.3 Convert Images to GeoTIFF using GDAL.

The next example will require you to use the script developed above as the basis
for a new script using the command below to convert a directory of images to

GeoTIFF using the command given:

’gdal_translate -of <OutputFormat> <InputFile> <QOutputFile> ‘

A useful step is to first run the command from the command line manually to

make sure you understand how this command is working.
The two main things you need to think about are:

1. What file extension will the input files have? This should be user selectable
alongside the file paths.

2. What output file name should be provided? The script should generate this.

Four test images have been provided in ENVI format within the directory ENVI_Images,

you can use these for testing your script. If you are struggling then an exam-
ple script with a solution to this task has been provided within the code direc-

tory.

6.4 Passing Inputs from the Command Line into
your script
It is often convenient to provide the inputs the scripts requires (e.g., input and

output file locations) as arguments to the script rather than needing to the edit

the script each time a different set of parameters are required (i.e., changing the

10

11

12

CHAPTER 6. BATCH PROCESSING COMMAND LINE TOOLS 76

files paths in the scripts above). This is easy within python and just requires
the following changes to your run function (in this case for the merge shapefiles

script).

if numArgs ==

inputShpFiles = sys.argv[1] + "*.shp"

newSHPFile = sys.argv[2]

else:
print (’ERROR. Command should have the form:’)
print (’python MergeSHPfiles_cmd.py <Input File Path> <Output File>’)

In addition, to these changes you need to import the system library into your

script to access these arguments.

import sys

Please note that the list of user provided inputs starts at index 1 and not 0. If you
call sys.argv[0] then the name of the script being executed will be returned. When
retrieving values from the user in this form it is highly advisable to check whether

the inputs provided are valid and that all required inputs have been provided.

Create a copy of the script you created earlier and edit the run function to be as

shown above, making note of the lines which require editing.

6.5 Exercises

1. Using ogr2ogr develop a script that will convert the attribute table of a
shapefile to a CSV file which can be opened within Microsoft FExcel. Note,
that the outputted CSV will be put into a separate directory.

CHAPTER 6. BATCH PROCESSING COMMAND LINE TOOLS 7

2. Create a script which calls the gdal_translate command and converts all the

images within a directory to a byte data type (i.e., with a range of 0 to 255).

6.6 Further Reading

e GDAL - http://www.gdal.org
e OGR - http://www.gdal.org/ogr
e Python Documentation - http://www.python.org/doc

e Core Python Programming (Second Edition), W.J. Chun. Prentice Hall
ISBN 0-13-226993-7

e Learn UNIX in 10 minutes - http://freeengineer.org/learnUNIXinlOminutes.
html

e The Linux Command Line. W. E. Shotts. No Starch Press. ISBN 978-1-
59327-389-7 (Available to download from http://linuxcommand.org/tlcl.

php)

http://www.gdal.org
http://www.gdal.org/ogr
http://www.python.org/doc
http://freeengineer.org/learnUNIXin10minutes.html
http://freeengineer.org/learnUNIXin10minutes.html
http://linuxcommand.org/tlcl.php
http://linuxcommand.org/tlcl.php

Chapter 7

Image Processing using GDAL
and RIOS

7.1 Reading and Updating Header Information

Image files used within spatial data processing (i.e., remote sensing and GIS)
require the addition of a spatial header to the files which provides the origin
(usually from the top left corner of the image), the pixel resolution of the image and
a definition of the coordinate system and projection of the dataset. Additionally,
most formats also allow a rotation to be defined. Using these fields the geographic

position on the Earth’s surface can be defined for each pixel within the scene.

Images can also contain other information in the header of the file including no

data values, image statistics and band names/descriptions.

7.1.1 Reading Image Headers

The GDAL software library provides a python interface to the C++ library, such
that when the python functions are called is it the C++ implementation which is
executed. These model has significant advantages for operations such as reading
and writing to and from image files as in pure python these operations would be

slow but they as very fast within C++. Although, python is an easier language

78

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 79

for people to learn and use, therefore allows software to be more quickly developed
so combing C++ and python in this way is a very productive way for software to

be developed.

Argparser

Up until this point we have read parameters from the system by just using the
sys.argv list where the user is required to enter the values in a given pre-defined
order. The problem with this is that it is not very helpful to the user as no
help is provided or error messages given if the wrong parameters are entered. For
command line tools it is generally accepted that when providing command line
options they will use switches such as -i or —input where the user specifies with a

switch what the input they are providing is.

Fortunately, python provides a library to simplify the implementation of this type
of interface. An example of this is shown below, where first the argparse library
is imported. The parser is then created and the arguments added to the parser
so the parser knows what to expect from the user. Finally, the parser is called to

parse the arguments. Examples will be shown in all the following scripts.

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("-i", "--input", = , help="Specify the input image file.")

parser.add_argument("-o", "--output', = , help="Specify the output text file.")

args = parser.parse_args()

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 80

7.1.2 Read image header example.

The follow example demonstrates how to import the GDAL library into python
and to read the image header information and print it to the console - similar to
the functionality within the gdalinfo command. Read the comments within the

code and ensure you understand the steps involved.

#!/usr/bin/env python

Import the GDAL python library
import osgeo.gdal as gdal

Import the python Argument parser
import argparse

Import the System library

import sys

Define a function to read and print the images
header information.
def printImageHeader (inputFile):
Open the dataset in Read Only mode
dataset = gdal.Open(inputFile, gdal.GA_ReadOnly)
Check that the dataset has correctly opened
if not dataset is lone:
Print out the image file path.
print (inputFile)
Print out the number of image bands.
print("The image has ", dataset.RasterCount, " bands.")
Loop through all the image bands and print out the band name
for n in range(dataset.RasterCount):
print("\t", n+l, ":\t", dataset.GetRasterBand(n+1).GetDescription(), "\t")

Print out the image size in pizrels

print("Image Size [", dataset.RasterXSize, ",", dataset.RasterYSize, "]")
Get the geographic header

geotransform[0] = TL X Coordinate

geotransform[1] = X Pizel Resolution

geotransform[2] = X Rotation

geotransform[3] = TL Y Coordinate

geotransform[4{] = Y Rotation

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS

geotransform[5] = Y Pizel Resolution
geotransform = dataset.GetGeoTransform()
Check that the tranformation has been correctly read.
if not geotransform is None:
Print out the Origin, Pizel Size and Rotation.
print(’Origin = (’,geotransform[0], ’,’,geotransform[3],’)’)
print(’Pixel Size = (’,geotransform[1], ’,’,geotransform[5],’)’)
print (’Rotation = (’,geotransform[2], ’,’,geotransform[4],’)’)
else:
Provide an error message ©s the transform has not been
correctly read.
print("Could not find a geotransform for image file ", inputFile)
else:
Provide an error message tf the input image file
could not be opened.

print("Could not open the input image file: ", inputFile)

This 1s the first part of the script to
be ezxecuted.
if __name__ == ’__main__’:
Create the command line options
parser.
parser = argparse.ArgumentParser()
Define the argument for spectifying the input file.
parser.add_argument ("-i", "--input', type=str,
help="Specify the input image file.")
Call the parser to parse the arguments.

args = parser.parse_args()

Check that the input parameter has been specified.
if args.input == None:
Print an error message if not and exit.
print("Error: No input image file provided.")
sys.exit()
Otherwise, run the function to print out the image header information.

printImageHeader(args.input)

81

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 82

Running the script

Run the script as you have done others within these worksheets and as shown
below, you need to provide the full path to the image file or copy the image file
into the same directory as your script. This should result in an output like the

one shown below:

> python ReadImageHeader.py -i LSTOA_Tanz_2000Wet.img
LSTOA_Tanz_2000Wet.img
The image has 6 Dbands.

1 Band 1
2 : Band 2
3 : Band 3
4 : Band 4
5 : Band 5
6 : Band 6

Image Size [1776 , 1871]

Origin = (35.2128071515 , -3.05897460167)

Pixel Size = (0.000271352299023 , -0.000271352299023)
Rotation = (0.0 , 0.0)

7.1.3 No Data Values

GDAL also allows us to edit the image header values, therefore the following
example provides an example of how to edit the no data value for image band.
Note that when opening the image file the gdal. GA_Update option is used rather
than gdal. GA_ReadOnly.

A no data value is useful for defining regions of the image which are not valid (i.e.,

outside of the image boundaries) and can be ignored during processing.

Running the script

For the file provided (LSTOA_Tanz_2000Wet.img) the no data value for all the

bands should be 0. Therefore, run the following command:

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 83

> python setnodata.py -i LSTOA_Tanz_2000Wet.img -n 0.0
Setting No data (0.0) for band 1

Setting No data (0.0) for band
Setting No data (0.0) for band
Setting No data (0.0) for band
Setting No data (0.0) for band
Setting No data (0.0) for band

D O W N

To check that command successfully edited the input file use the gdalinfo com-

mand, as shown below:

gdalinfo -norat LSTOA_Tanz_2000Wet.img

#!/usr/bin/env python

Import the GDAL python library
import osgeo.gdal as gdal

Import the python Argument parser
import argparse

Import the System library

import sys

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

A function to set the mo data value

for each image band.

def setNoData(inputFile, noDataVal):
Upen the <mage file,
so that the image can be edited.
dataset = gdal.Open(inputFile, gdal.GA_Update)
Check that the image

if not dataset is lNone:

Iterate throught he image bands

Note.

Print information to the user on what s

7 starts at 0 while the
band count in GDAL starts at 1.

for i in range(dataset.RasterCount):

being set.

print("Setting No data (" + str(noDataVal) + ") for band " + str(i+l))
Get the image band
the 2+1 ©s because GDAL bands

in update mode

has been opened.

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 84

start with 1.
band = dataset.GetRasterBand(i+1)
Set the no data value.
band.SetNoDataValue (noDataVal)
else:

Print an error message i1f the file

could not be opened.

print("Could not open the input image file: ", inputFile)

This 1s the first part of the script to
be ezxecuted.

if __name__ == ’_ _main__’:

Create the command line options
parser.
parser = argparse.ArgumentParser()
Define the argument for spectifying the input file.
parser.add_argument ("-i", "--input', type=str,
help="Specify the input image file.")
Define the argument for spectfying the no data value.
parser.add_argument("-n", "--nodata', type=float, default=0,
help="Specify the no data value to be set.")
Call the parser to parse the arguments.

args = parser.parse_args()

Check that the input parameter has been specified.

if args.input == lNone:
Print an error message if mot and ezxit.
print("Error: not input image file provided.")
sys.exit ()

Otherwise, run the function to set the no

data value.

setNoData(args.input, args.nodata)

7.1.4 Band Name

Band names are useful for a user to understand a data set more easily. Therefore,
naming the image bands, such as Blue, Green, Red, NIR and SWIR, is very
useful. The following example illustrates how to edit the band name description

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS

using GDAL.

85

#!/usr/bin/env python

Import the GDAL python library
import osgeo.gdal as gdal

Import the python Argument parser
import argparse

Import the System library

import sys

A function to set the mo data value
for each image band.
def setBandName(inputFile, band, name):
Open the image file, in update mode
so that the image can be edited.
dataset = gdal.Open(inputFile, gdal.GA_Update)
Check that the image has been opened.
if not dataset is lNone:
Get the image band
imgBand = dataset.GetRasterBand(band)
Check the image band was avatlable.
if not imgBand is None:
Set the image band mame.
imgBand. SetDescription(name)
else:
Print out an error message.
print("Could not open the image band: ", band)
else:
Print an error message 1f the file
could not be opened.

print("Could not open the input image file: ", inputFile)

This 1s the first part of the script to
be executed.

if __name__ == ’_ _main__

Create the command line options

parser.

parser = argparse.ArgumentParser ()

Define the argument for spectifying the input file.

parser.add_argument ("-i", "--input", type=str,

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS

help="Specify the input image file.")
Define the argument for spectfying image band.
parser.add_argument ("-b", "--band", type=int,
help="Specify image band.")
Define the argument for specifying band name.
parser.add_argument("-n", "--name", type=str,
help="Specify the band name.")
Call the parser to parse the arguments.

args = parser.parse_args()

Check that the input parameter has been specified.
if args.input == lNone:

Print an error message if mot and exit.

print ("Error: No input image file provided.")

sys.exit ()

Check that the band parameter has been spectified.
if args.band == lNone:
Print an error message if not and exit.
print("Error: the band was not specified.")

sys.exit()

Check that the name parameter has been specified.
if args.name == None:

Print an error message if not and exit.

print ("Error: the band name was not specified.")

sys.exit()

Otherwise, rTun the function to set the band
name.

setBandName (args.input, args.band, args.name)

86

Running the script

The file provided (LSTOA_Tanz_2000Wet.img) just has some default band names
defined (i.e., Band 1) but use you script to change them to something more useful.

Therefore, run the following commands:

10

11

12

13

14

15

16

17

18

19

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS

python
python
python
python
python
python

setbandname
setbandname
setbandname
setbandname
setbandname

setbandname

-Py
-PY
-PY
-Py
-Py
-PY

LSTOA_Tanz_2000Wet.
LSTOA_Tanz_2000Wet.
LSTOA_Tanz_2000Wet.
LSTOA_Tanz_2000Wet.
LSTOA_Tanz_2000Wet.
LSTOA_Tanz_2000Wet.

img
img
img
img
img

img

D O W N -

-n

-n

-n

-n

-n

-n

Blue
Green
Red
NIR
SWIR1
SWIR2

87

Use you script for reading the image header values and printing them to the screen
to find out whether it worked.

7.1.5 GDAL Meta-Data

GDAL supports the concept of meta-data on both the image bands and the whole

image. The meta-data allows any other data to be stored within the image file as

a string.

The following example shows how to read the meta-data values and to list all the

meta-data variables available on both the image bands and the image.

import osgeo.gdal as gdal

import

import

def readBandMetaData(inputFile, band, name):

argparse

sys

dataset = gdal.Open(inputFile, gdal.GA_ReadOnly)

if not dataset is

imgBand = dataset.GetRasterBand(band)

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

60

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS

if not imgBand is None:
Get the meta-data value specified.
metaData = imgBand.GetMetadataltem(name)
Check that it is present
if metaData == lone:
If not present, print error.
print("Could not find \’", name, "\’ item.")
else:
Else print out the metaData wvalue.
print(name, " = \’", metaData, "\’")
else:
Print out an error message.
print("Could not open the image band: ", band)
else:
Print an error message i1f the file
could not be opened.
print("Could not open the input image file: ", inputFile)

A function to read a meta-data item
from a image
def readImageMetaData(inputFile, name):
Upen the dataset in Read Only mode
dataset = gdal.Open(inputFile, gdal.GA_ReadOnly)
Check that the tmage has been opened.
if not dataset is lNone:
Get the meta-data value specified.
metaData = dataset.GetMetadataItem(name)
Check that it %s present
if metaData == lNone:
If not present, print error.
print("Could not find \’", name, "\’ item.")
else:
Else print out the metaData wvalue.
print (name, " = \’", metaData, "\’")
else:
Print an error message 1f the file
could not be opened.

print("Could not open the input image file: ", inputFile)

A function to read a meta-data item

from a image band

88

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

94

95

96

97

98

99

100

101

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS

def listBandMetaData(inputFile, band):
Open the dataset in Read Only mode
dataset = gdal.Open(inputFile, gdal.GA_ReadOnly)
Check that the image has been opened.
if not dataset is lone:
Get the image band
imgBand = dataset.GetRasterBand(band)
Check the image band was available.
if not imgBand is lNone:
Get the meta-data dictionary
metaData = imgBand.GetMetadata_Dict()
Check tt has entries.
if len(metaData) ==
If 4t has mno entries return
error message.
print("There is no image meta-data.")
else:
Otherwise, print out the
meta-data.
Loop through each entry.
for metaltem in metaData:
print (metaltem)
else:
Print out an error message.
print("Could not open the image band: ", band)
else:
Print an error message 1f the file
could nmot be opened.

print("Could not open the input image file: ", inputFile)

A function to read a meta-data item
from a image
def listImageMetaData(inputFile):
Open the dataset in Read Only mode
dataset = gdal.Open(inputFile, gdal.GA_ReadOnly)
Check that the image has been opened.
if not dataset is lone:
Get the meta-data dictionary
metaData = dataset.GetMetadata_Dict()
Check it has entries.

if len(metaData) ==

89

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS

If 2t has no entries return

error message.

print("There is no image meta-data.")
else:

Otherwise, print out the

meta-data.

Loop through each entry.

for metaltem in metaData:

print (metaltem)
else:

Print an error message i1f the file
could not be opened.

n

print ("Could not open the input image file: ", inputFile)

This 1s the first part of the script to

be ezxecuted.

if

__name__ == ’__main__

) J .

Create the command line options

parser.

parser = argparse.ArgumentParser()

Define the argument for spectifying the input file.

parser.add_argument("-i", "--input', type=str,
help="Specify the input image file.")

Define the argument for spectfying image band.

parser.add_argument(”—b”, "--band", type=int, default=0,
help="Specify image band.")

Define the argument for specifying meta-data mname.

parser.add_argument("-n", "--name", type=str,
help="Specify the meta-data name.")

Define the argument for spectfying whether the

meta-data field should be just listed.

parser.add_argument ("-1", "--list", action="store_true", default=False,

90

help="Specify that meta data items should be listed.")

Call the parser to parse the arguments.

args = parser.parse_args()

Check that the input parameter has been specified.
if args.input == None:

Print an error message if mot and exit.

print ("Error: No input image file provided.")

sys.exit()

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 91

Check that the name parameter has been specified.

If 2t has been specified then run functions to

read band meta-data.

if

not args.name == None:

Check whether the image band has been specified.

the default was set at 0 (to indicate that tt)

hasn’t been specified as GDAL band count starts

at 1. This also means the user cannot type in

a value of 0 and get an error.

if args.band ==
Run the function to print out the image meta-data value.
readImageMetaData(args.input, args.name)

else:
Otherwise, rTun the function to print out the band meta-data value.

readBandMetaData(args.input, args.band, args.name)

elif args.list:

if args.band == O:
Run the function to list image meta-data.
listImageMetaData(args.input)

else:
Otherwise, run the function to list band meta-data.

listBandMetaData(args.input, args.band)

else:

Print an error message if not and exit.
print ("Error: the meta-data name or list option" + \
" need to be specified was not specified.")

sys.exit ()

Running the script

This script has a number of options. Have a play with these options on the image

provided, an example shown below.

python
python
python
python
python

ReadGDALMetaData.py -h

ReadGDALMetaData.py -i LSTOA_Tanz_2000Wet.img -1

ReadGDALMetaData.py -i LSTOA_Tanz_2000Wet.img -b 1 -1
ReadGDALMetaData.py -i LSTOA_Tanz_2000Wet.img -b 1 -n LAYER_TYPE
ReadGDALMetaData.py -i LSTOA_Tanz_2000Wet.img -b 3 -n STATISTICS_MEAN

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 92

7.2 Raster Input / Output Simplification (RIOS)
Library

The raster input and output (I/O) simplification (RIOS) library is a set of python
modules which makes it easier to write raster processing code in Python. Built
on top of GDAL, it handles the details of opening and closing files, checking
alignment of projections and raster grid, stepping through the raster in small
blocks, etc., allowing the programmer to concentrate on implementing the solution
to the problem rather than on how to access the raster data and detail with the

spatial header.

Also, GDAL provides access to the image data through python RIOS makes it
much more user friendly and easier to use. RIOS is available for as a free download

from https://bitbucket.org/chchrsc/rios/overview

7.2.1 Getting Help — Reminder

Python provides a very useful help system through the command line. To get

access to the help run python from the terminal

’> python ‘

Then import the library want to get help on

’>>> import osgeo.gdal

and then run the help tool on the whole module

>>> import osgeo.gdal

>>> (osgeo.gdal)

or on individual classes within the module

>>> import osgeo.gdal

>>> (osgeo.gdal.Dataset)

https://bitbucket.org/chchrsc/rios/overview

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 93

To exit the help system just press the ‘q’ key on the keyboard.

7.2.2 Band Maths

Being able to apply equations to combine image bands, images or scale single bands
is a key tool for remote sensing, for example to calibrate Landsat to radiance. The

following examples demonstrate how to do this within the RIOS framework.

7.2.3 Multiply by a constant

The first example just multiples all the image bands by a constant (provided by
the user). The first part of the code reads the users parameters (input file, output
file and scale factor). To use the applier interface within RIOS you need to first
setup the input and output file associations and then any other options required,
in this case the constant for multiplication. Also, the controls object should be

defined to set any other parameters

All processing within RIOS is undertaken on blocks, by default 200 x 200 pixels
in size. To process the block a applier function needs to be defined (e.g., mutli-
plyByValue) where the inputs and outputs are passed to the function (these are
the pixel values) and the other arguments object previously defined. The pixel
values are represented as a numpy array, the dimensions are (n,y,x) where n is

the number of image bands, y is the number of rows and x the number of columns

in the block.

Because numpy will iterate through the array for us to multiply the whole array
by a constant (e.g., 2) then we can just need the syntax shown below, which makes

it very simple.

import sys

import argparse

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS

from rios import applier

from rios import cuiprogress

Define the applier function
def mutliplyByValue(info, inputs, outputs, otherargs):
Multiple the imagel by the scale factor

outputs.outimage = inputs.imagel * otherargs.scale

This 1s the first part of the script to
be ezxecuted.
if __name__ == ’__main__’:
Create the command line options
parser.
parser = argparse.ArgumentParser ()
Define the argument for spectifying the input file.
parser.add_argument("-i", "--input', type=str,
help="Specify the input image file.")
Define the argument for specifying the output file.
parser.add_argument("-o", "--output', type=str,
help="Specify the output image file.")
Define the argument for multiply the image by.
parser.add_argument ("-m", "--multiply", default=1.0, type=float,
help="Multiple the image by.")
Call the parser to parse the arguments.

args = parser.parse_args()

Check that the input parameter has been specified.
if args.input == None:
Print an error message tf not and exit.
print("Error: No input image file provided.")

sys.exit()

Check that the output parameter has been specified.
if args.output == lNone:

Print an error message if mot and exit.

print ("Error: No output image file provided.")

sys.exit ()

Create input files file names associations
infiles = applier.FilenameAssociations()

Set imagel to the input image specified

94

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

66

67

68

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS

infiles.imagel = args.input
outfiles = applier.FilenameAssociations()
outfiles.outimage = args.output
otherargs = applier.OtherInputs()
otherargs.scale = args.multiply
aControls = applier.ApplierControls()
aControls.progress = cuiprogress.CUIProgressBar ()
applier.apply(mutliplyByValue,

infiles,

outfiles,

otherargs,

controls=aControls)

95

Run the Script

Run the script using the following command, the input image is a Landsat scene

and all the pixel values will be multiplied by 2.

python MultiplyRIOSExample.py -i LSTOA_Tanz_2000Wet.img
-o LSTOA_Tanz_2000Wet_Multiby2.img -m 2

7.2.4 Calculate NDVI

To use the image bands independently to calculate a new value, usually indices
such as the NDVI

NIR — RED
NDVI= SR+ RED (7.1)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 96

requires that the bands are referenced independently within the input data. Using
numpy to calculate the index, as shown below, results in a single output block with
the dimensions of the block but does not have the third dimension (i.e., the band)
which is required for RIOS to identify how to create the output image. Therefore,
as you will see in the example below an extra dimension needs to be added before
outputting the data to the file. Within the example given the input pixel values
are converted to floating point values (rather than whatever they were inputted as
from the input) because the output will be a floating point number (i.e., an NDVI

have a range of —1 to 1).

#1/usr/bin/env python

Import the python Argument parser
import argparse

Import the RIUS applier interface
from rios import applier

from rios import cuiprogress

#

import numpy

Define the applier function

def mutliplyByValue(info, inputs, outputs, otherargs):
Convert the input data to Float32
This 1s because the output s a float due to the
divide within the NDVI calculation.
inputs.imagel = inputs.imagel.astype (numpy.float32)
Calculate the NDVI for the block.
Note. Numpy will deal with the image iterating

to all the individual pizels wvalues.
within python this ts wvery important
as python loops are slow.

out = ((inputs.imagel[otherargs.nirband]-
inputs.imagel [otherargs.redband])
/
(inputs.imagel [otherargs.nirband]+
inputs.imagel [otherargs.redband]))
Add an extra dimension to the output array.
The output array needs to have 3 dimenstions
(No Bands, Y Pizels(Rows), X Pizels(Cols)

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS

In this case an extra dimenstion representing
the single image band is rTequired.

outputs.outimage = numpy.expand_dims(out, axis=0)

This 1s the first part of the script to
be ezxecuted.
if __name__ == ’__main__’:
Create the command line options
parser.
parser = argparse.ArgumentParser()
Define the argument for spectifying the input file.
parser.add_argument("-i", "--input', type=str,
help="Specify the input image file.")
Define the argument for specifying the output file.
parser.add_argument("-o", "--output", type=str,
help="Specify the output image file.")
Define the argument for specifying the red image band
parser.add_argument ("-r", "--red", type=int,
help="Specifiy red band.")
Define the argument for spectfying the NIR image band
parser.add_argument("-n", "--nir", type=int,
help="Specifiy NIR band.")
Call the parser to parse the arguments.

args = parser.parse_args()

Check that the input parameter has been specified.
if args.input == lone:
Print an error message if not and exit.
print ("Error: No input image file provided.")
sys.exit()

Check that the output parameter has been specified.
if args.output == lone:

Print an error message if not and exit.

print ("Error: No output image file provided.")

sys.exit()

Create wnput files file mames associations
infiles = applier.FilenameAssociations()
Set imagel to the imput image specified

infiles.imagel = args.input

97

71

72

73

74

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 98

outfiles = applier.FilenameAssociations()

outfiles.outimage = args.output

otherargs = applier.OtherInputs()

otherargs.redband = args.red-1

otherargs.nirband = args.nir-1
aControls = applier.ApplierControls()
aControls.progress = cuiprogress.CUIProgressBar ()
applier.apply(mutliplyByValue,

infiles,

outfiles,

otherargs,

controls=aControls)

Run the Script

Run the script using the following command, the input image is a Landsat scene
so the red band is therefore band 3 and then NIR band is band 4.

python RIOSExampleNDVI.py -i LSTOA_Tanz_2000Wet.img
-o LSTOA_Tanz_2000Wet_NDVI.img -r 3 -n 4

7.2.5 Calculate NDVI Using Multiple Images

Where multiple input files are required, in this case the NIR and Red bands are
represented by different image files, the input files need to be specified in the input

files association as imagel, image2 etc. and the pixel values within the applier

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 99

function are therefore referenced in the same way. Because, in this example the

images only have a single image band the input images has the same dimensions

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

as the output so no extra dimensions need to be added.

#!/usr/bin/env python

Import the system library

import sys

Import the python Argument parser
import argparse

Import the RIOUS applier interface
from rios import applier

Import the RIOS progress feedback
from rios import cuiprogress

Import the numpy library

import numpy

Define the applier function
def mutliplyByValue(info, inputs, outputs):
Convert the input data to Float32
This 1s because the output is a float due to the
divide within the NDVI calculation.
inputs.imagel = inputs.imagel.astype (numpy.float32)

inputs.image2 = inputs.image2.astype (numpy.float32)
Calculate the NDVI for the block.
Note. Numpy will deal with the image iterating

to all the individual pizels wvalues.
within python this ©s very important
as python loops are slow.

outputs.outimage = ((inputs.image2-inputs.imagel)
/

(inputs.image2+inputs.imagel))

This 1s the first part of the script to
be ezxecuted.
if __name__ == ’__main__’:

Create the command line options

parser.

parser = argparse.ArgumentParser()

Define the argument for specifying the output file.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS

parser.add_argument("-o", "--output", type=str,

help="Specify the output image file.")
Define the argument for spectfying the red image band
parser.add_argument ("-r", "--red", type=str,

help="Specifiy red input image file.")
Define the argument for spectifying the NIR image band
parser.add_argument("-n", "--nir'", type=str,

help="Specifiy NIR input image file.")
Call the parser to parse the arguments.

args = parser.parse_args()

Check that the red input parameter has been specified.
if args.red == lNone:
Print an error message if not and exit.
print("Error: No red input image file provided.")

sys.exit()

Check that the NIR input parameter has been specified.
if args.red == lNone:
Print an error message tf not and exit.
print ("Error: No NIR input image file provided.")
sys.exit()

Check that the output parameter has been specified.
if args.output == lNone:

Print an error message if mot and exit.

print ("Error: No output image file provided.")

sys.exit ()

Create input files file names associations
infiles = applier.FilenameAssociations()

Set images to the input image specified
infiles.imagel = args.red

infiles.image2 = args.nir

Create output files file names associations
outfiles = applier.FilenameAssociations()

Set outImage to the output image specified
outfiles.outimage = args.output

Create a controls objects

aControls = applier.ApplierControls()

Set the progress object.

100

78

79

80

81

82

83

84

85

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 101

aControls.progress = cuiprogress.CUIProgressBar ()

applier.apply(mutliplyByValue,
infiles,
outfiles,

controls=aControls)

Run the Script

Run the script using the following command, the input image is a Landsat scene
so the red band is therefore band 3 and then NIR band is band 4.

python RIOSExampleMultiFileNDVI.py -o LSTOA_Tanz_2000Wet_MultiIn_NDVI.img
-r LSTOA_Tanz_2000Wet_Red.img -n LSTOA_Tanz_2000Wet_NIR.img

7.3 Filtering Images

To filtering an image is done through a windowing operation where the windows
of pixels, such as a 3 x 3 or 5 x 5 (it needs to be an odd number), are selected and
a new value for the centre pixel is calculated using all the pixel values within the
window. In this example a median filter will be used so the middle pixel value will

be replaced with the median value of the window.

Scipy (http://www.scipy.org) is another library of python functions, which is
paired with numpy, and provides many useful functions we can use when processing
the images or other datasets within python. The ndimage module (http://docs.
scipy.org/doc/scipy/reference/tutorial/ndimage.html) provides many use-
ful functions, which can be applied to images in the same way as the median filter
has been used in the example below — I strongly recommend you look through
the documentation of scipy to get an idea of the types of functions which are

available.

http://www.scipy.org
http://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html
http://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS

#!/usr/bin/env python

import sys

Import the python Argument parser
import argparse

Import the scipy filters.

from scipy import ndimage

#Import the numpy library

import numpy

Import the RIOS image reader

from rios.imagereader import ImageReader
Import the RIOS image writer

from rios.imagewriter import ImageWriter

Define the function to iterate through
the image.
def applyMedianFilter(inputFile, outputFile, fSize):
Get half the filter size, overlap between blocks
hSize = (fSize-1)/2
Create the image reader for the input file
and set the overlap to be half the image
filter size.
reader = ImageReader(inputFile, overlap=hSize)
Define the image writer but cannot create
untel within the loop as this need the
tnformation within the info object.
writer = None
Loop through all the image blocks within
the reader.
for (info, block) in reader:
Create an output block of
the same size as the input
out = numpy.zeros_like(block)
Iterate through the image bands
for i in range(len(out)):
Use scipy to run a median filter
on the image band data. The image

bands are filtered in turn

ndimage.median_filter(block[i],size=fSize,output=out[i])

If 2t 1s the first time through the loop

(i.e., writer has a value of None) then

102

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS

create the loop.
if writer is lNone:
Create the writer for output image.
writer = ImageWriter(outputFile,
info=info,
firstblock=out,
drivername=’HFA’)
else:
If the writer 1s created write the
output block to the file.
writer.write(out)
Close the writer and calculate
the image statistics.

writer.close(calcStats=True)

This ts the first part of the script to
be ezxecuted.
if __name__ == ’__main__’:
Create the command line options
parser.
parser = argparse.ArgumentParser ()
Define the argument for specifying the input file.
parser.add_argument("-i", "--input', type=str,
help="Specify the input image file.")
Define the argument for spectifying the output file.
parser.add_argument("-o", "--output", type=str,
help="Specify the output image file.")
Define the argument for the stze of the image filter.
parser.add_argument("-s", "--size", default=3, type=int,
help="Filter size.")
Call the parser to parse the arguments.

args = parser.parse_args()

Check that the input parameter has been specified.
if args.input == lNone:

Print an error message if mot and exit.

print ("Error: No input image file provided.")

sys.exit ()

Check that the output parameter has been specified.

if args.output == lNone:

103

83

84

85

86

87

88

89

90

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 104

print()
sys.exit ()

applyMedianFilter(args.input, args.output, args.size)

Run the Script

python MedianFilterRIOSExample.py -i LSTOA_Tanz_2000Wet.img
-o LSTOA_Tanz_2000Wet_median7.img -s 7

After you have run this command open the images in TuiView and flick between

them to observe the change in the image, what do you notice?

7.4 Apply a rule based classification

Another option we have is to use the ‘where’ function within numpy to select
pixel corresponding to certain criteria (i.e., pixels with an NDVI < 0.2 is not
vegetation) and classify them accordingly where a pixel values are used to indicate
the corresponding class (e.g., 1 = Forest, 2 = Water, 3 = Grass, etc). These images
where pixel values are not continuous but categories are referred to as thematic
images and there is a header value that can be set to indicate this type of image.
Therefore, in the script below there is a function for setting the image band meta-
data field ‘LAYER_TYPE’ to be ‘thematic’. Setting an image as thematic means
that the nearest neighbour algorithm will be used when calculating pyramids and
histograms needs to be binned with single whole values. It also means that a
colour table (See Chapter [§]) can also be added.

To build the rule base the output pixel values need to be created, here using the

numpy function zeros (http://docs.scipy.org/doc/numpy/reference/generatad/

numpy . zeros.html). The function zeros creates a numpy array of the requested

http://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 105

shape (in this case the shape is taken from the inputted image) where all the pixels

have a value of zero.

Using the ‘where’ function (http://docs.scipy.org/doc/numpy/reference/generated/
numpy .where.html) a logic statement can be applied to an array or set of arrays
(which must be of the same size) to select the pixels for which the statement is
true. The where function returns an array of indexes which can be used to address
another array (i.e., the output array) and set a suitable output value (i.e., the

classification code).

#!/usr/bin/env python

Import the system library

import sys

Import the python Argument parser
import argparse

Import the RIOS applier interface
from rios import applier

Import the RIOS progress feedback
from rios import cuiprogress

Import the numpy library

import numpy

Import the GDAL library

from osgeo import gdal

Define the applier functiion
def rulebaseClassifier(info, inputs, outputs):
Create an output array with the same dims
as a single band of the input file.
out = numpy.zeros(inputs.imagel[0] .shape)
Use where statements to select the
pizels to be classified. Give them a
integer value (i.e., 1, 2, 3, 4) to
specify the class.

out [numpy .where ((inputs.imagel[0] > 0.4)&(inputs.imagel[0] < 0.7))] = 1
out [numpy .where (inputs.imagel[0] < 0.1)] = 2
out [numpy . where ((inputs.imagel[0] > 0.1)&(inputs.imagel[0] < 0.4))] = 3

out [numpy .where (inputs.imagel[0] > 0.7)] = 4
Expand the output array to include a single

image band and set as the output dataset.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS

outputs.outimage = numpy.expand_dims(out, axis=0)

A function to define the image as thematic

def setThematic(imageFile):

Use GDAL to open the dataset
ds = gdal.Open(imageFile, gdal.GA_Update)
Iterate through the image bands
for bandnum in range(ds.RasterCount) :
Get the image band
band = ds.GetRasterBand(bandnum + 1)
Define the meta-data for the LAYER_TYPE
band.SetMetadataltem(’LAYER_TYPE’, ’thematic’)

This ©s the first part of the script to

be executed.

if

__name__ == ’_ _main__’:
Create the command line options
parser.
parser = argparse.ArgumentParser()
Define the argument for specifying the input file.
parser.add_argument("-i", "--input', type=str,
help="Specify the input image file.")
Define the argument for specifying the output file.
parser.add_argument("-o", "--output", type=str,
help="Specify the output image file.")
Call the parser to parse the arguments.

args = parser.parse_args()

Check that the inpul parameter has been specified.
if args.input == lNone:

Print an error message if mot and exit.

print ("Error: No input image file provided.")

sys.exit ()

Check that the output parameter has been specified.
if args.output == lNone:
Print an error message if not and exit.
print("Error: No output image file provided.")

sys.exit()

Create input files file nmames associations

106

72

73

74

75

76

77

78

79

80

81

82

83

84

86

87

88

89

90

91

92

93

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 107

infiles = applier.FilenameAssociations()
infiles.imagel = args.input
outfiles = applier.FilenameAssociations()
outfiles.outimage = args.output
aControls = applier.ApplierControls()
aControls.calcStats =
aControls.progress = cuiprogress.CUIProgressBar ()
applier.apply(rulebaseClassifier,

infiles,

outfiles,

controls=aControls)

setThematic (args.output)

Run the Script

Run the script with one of the NDVI layers you previously calculated. To see the
result then it is recommended that a colour table is added (see next worksheet), the

easiest way to do that is to use the gdalcalcstats command, as shown below.

python RuleBaseClassification.py -i LSTOA_Tanz_2000Wet_NDVI.img
-0 LSTOA_Tanz_2000Wet_classification.img

gdalcalcstats LSTOA_Tanz_2000Wet_classification.img

CHAPTER 7. IMAGE PROCESSING USING GDAL AND RIOS 108
7.5 Exercises

1. Create rule based classification using multiple image bands.

2. Create a rule based classification using image bands from different input

images.

3. Using the previous work sheet as a basis create a script which calls the
gdalwarp command to resample an input image to the same pixel resolution

as another image, where the header is read as shown in this work sheet.

7.6 Further Reading

e GDAL - http://www.gdal.org
e Python Documentation - http://www.python.org/doc

e Core Python Programming (Second Edition), W.J. Chun. Prentice Hall
ISBN 0-13-226993-7

e Learn UNIX in 10 minutes - http://freeengineer.org/learnUNIXinlOminutes.

html
e SciPy —http://www.scipy.org/SciPy
e NumPy — http://numpy.scipy.org

e RIOS —https://bitbucket.org/chchrsc/rios/wiki/Home

http://www.gdal.org
http://www.python.org/doc
http://freeengineer.org/learnUNIXin10minutes.html
http://freeengineer.org/learnUNIXin10minutes.html
http://www.scipy.org/SciPy
http://numpy.scipy.org
https://bitbucket.org/chchrsc/rios/wiki/Home

Chapter 8

Raster Attribute Tables (RAT)

The RIOS software also allows raster attribute tables to be read and written
through GDAL. Raster attribute tables (RAT) are similar the the attribute tables
which are present on a vector (e.g., shapefile). Each row of the attribute table
refers to a pixel value within the image (e.g., row 0 refers to all pixels with a value
of 0). Therefore, RATs are used within thematic datasets were pixels values are
integers and refer to a category, such as a class from a classification, or a spatial
region, such as a segment from a segmentation. The columns of the RAT therefore
refer to variables, which correspond to information associated with the spatial
region cover by the image pixels of the clump(s) relating to the row within the
attribute table.

8.1 Reading Columns

To access the RAT using RIOS, you need to import the rat module. The RAT
module provides a simple interface for reading and writing columns. When a
column is read it is returned as a numpy array where the size is n x 1 (i.e., the

number of rows in the attribute table).

As shown in the example below, a reading a column is just a single function call

specifying the input image file and the column name.

109

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

CHAPTER 8. RASTER ATTRIBUTE TABLES (RAT)

#!/usr/bin/env python

Import the system library

import sys
Import the RIOS rat library.

from rios import rat

Import the python Argument parser

import argparse

A function for reading the RAT
def readRatCol(imageFile, colName):

Use RIOS to read the column name
The contents of the column are
printed to the console for the
user to see.

print(rat.readColumn(imageFile, colName))

This 1s the first part of the script to

be executed.

if

__name__ == ’_ _main__’:
Create the command line options
parser.
parser = argparse.ArgumentParser()
Define the argument for spectifying the input file.
parser.add_argument("-i", "--input', type=str,
help="Specify the input image file.")
Define the argument for specifying the column name.
parser.add_argument("-n", "--name", type=str,
help="Specify the column name.")
Call the parser to parse the arguments.

args = parser.parse_args()

Check that the input parameter has been specified.
if args.input == None:
Print an error message if mot and exit.
print ("Error: No input image file provided.")
sys.exit ()
Check that the input parameter has been specified.
if args.name == lone:
Print an error message if mot and exit.

print ("Error: No RAT column name provided.")

110

42

43

44

45

46

CHAPTER 8. RASTER ATTRIBUTE TABLES (RAT) 111

sys.exit ()

readRatCol(args.input, args.name)

Run the Script

Run the script as follow, the example below prints the Histogram but use TuiView

to see what other columns are within the attribute table.

python ReadRATColumn.py -i WV2_525N040W_2m_segments.kea -n Histogram

8.2 Writing Columns

Writing a column is also quite straight forward just requiring a n x 1 numpy array
with the the data to be written to the output file, the image file path and the

name of the column to be written to.

8.2.1 Calculating New Columns

The first example reads a column from the input image and just multiples it by 2

and writes it to the image file as a new column.

import sys

from rios import rat

import argparse

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

CHAPTER 8. RASTER ATTRIBUTE TABLES (RAT)

column by 2.

def multiplyRATCol(imageFile, inColName, outColName) :

Read the input column

col = rat.readColumn(imageFile, inColName)
Muliply the column by 2.

col = col * 2

Write the output column to the file.

rat.writeColumn(imageFile, outColName, col)

This ts the first part of the script to

be executed.

if

_name__ == ’__main__’:

Create the command line options

parser.

parser = argparse.ArgumentParser()

Define the argument for spectfying the input file.

parser.add_argument ("-i", "--input', type=str,
help="Specify the input image file.")

Define the argument for spectfying the input column name.

parser.add_argument("-c", "--inname", type=str,
help="Specify the input column name.")

Define the argument for specifying the output column name.

parser.add_argument('-o", "--outname", type=str,
help="Specify the output column name.")
Call the parser to parse the arguments.

args = parser.parse_args()

Check that the input parameter has been specified.
if args.input == None:
Print an error message if not and exit.
print ("Error: No input image file provided.")
sys.exit ()
Check that the input parameter has been specified.
if args.inname == lone:
Print an error message if mot and exit.
print ("Error: No input RAT column name provided.")
sys.exit ()
Check that the input parameter has been specified.
if args.outname == None:
Print an error message if mot and exit.

print ("Error: No output RAT column name provided.")

112

52

53

54

55

CHAPTER 8. RASTER ATTRIBUTE TABLES (RAT) 113

sys.exit ()

multiplyRATCol(args.input, args.inname, args.outname)

Run the Script

Run the script as follows, in this simple case the histogram will be multiplied by

2 and saved as a new column.

python MultiplyColumn.py -i WV2_525N040W_2m_segments.kea -c Histogram -o HistoMulti2

8.2.2 Add Class Name

A useful column to have within the attribute table, where a classification has been
undertaken, is class names. This allows a user to click on the image and rather
than having to remember which codes correspond to which class they will be shown

a class name.

To add class names to the attribute table a new column needs to be created, where
the data type is set to be ASCII (string). To do this a copy of the histogram column
is made where the new numpy array is empty, of type string and the same length

at the histogram.

The following line using the ... syntax within the array index to specify all elements

of the array, such that they are all set to a value of “NA”.

Once the new column has been created then the class names can be simply defined

through referencing the appropriate array index.

import sys

from rios import rat

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

CHAPTER 8. RASTER ATTRIBUTE TABLES (RAT)

Import the python Argument parser

import argparse

Import the numpy library

import numpy

A function to add a colour table.

def addClassNames(imageFile):

histo = rat.readColumn(imageFile, "Histogram")
className = numpy.empty_like(histo, dtype=numpy.dtype(’a2557’))
className[...] = "NA"

className [0]

"Other Vegetation"

className [1] "Low Woody Vegetation"

"Water"

className [2]

className [3] "Sparse Vegetation"

className [4]
Write the output column to the file.

rat.writeColumn(imageFile, "ClassNames", className)

"Tall Woody Vegetation"

This ts the first part of the script to

be ezxecuted.

if

_name__ == ’__main__

).

Create the command line options

parser.

parser = argparse.ArgumentParser()

Define the argument for spectifying the input file.

parser.add_argument("-i", "--input', type=str,
help="Specify the input image file.")

Call the parser to parse the arguments.

args = parser.parse_args()

Check that the input parameter has been specified.
if args.input == None:
Print an error message if not and exit.
print("Error: No input image file provided.")

sys.exit()

Run the add class names function

addClassNames (args.input)

114

CHAPTER 8. RASTER ATTRIBUTE TABLES (RAT) 115

Run the Script

Run the script as follows, use the classification you did at the end of work-
sheet [7

python AddClassNames.py -i LSTOA_Tanz_2000Wet_classification.img

8.3 Adding a colour table

Another useful tool is being able to add a colour table to an image, such that classes
are displayed in colours appropriate to make interpretation easier. To colour up
the per pixel classification undertake at the end of the previous exercise and given
class names using the previous scripts the following script is used to add a colour
table.

The colour table is represented as an n x 5 dimensional array, where n is the

number of colours which are to be present within the colour table.
The 5 values associated with each colour are

1. Image Pixel Value

2. Red (0 — 255)

3. Green (0 — 255)

4. Blue (0 — 255)

5. Opacity (0 — 255)

Where an opacity of 0 means completely transparent and 255 means solid with
no transparency (opacity is something also referred to as alpha or alpha chan-

nel).

import sys

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

CHAPTER 8. RASTER ATTRIBUTE TABLES (RAT)

Import the RIOS rat library.

from rios import rat

Import the python Argument parser
import argparse

Import the numpy library

import numpy

A function to add a colour table.
def addColourTable(imageFile):
Create a colour table (n,5) where
n 1s the number of classes to be
coloured. The data type must be
of type integer.
ct = numpy.zeros([5,5], dtype=numpy.int)

Set 0 to be Dark Mustard Yellow.

ct[01[0] = 0 # Pizel Val
ct[0][1] = 139 # Red
ct[0]1[2] = 139 # Green
ct[01[3] = 0 # Blue
ct[01[4] = 255 # Opacity

Set 1 to be Dark Olive Green.

ct[11[0] = 1 # Pizel Val
ct[1]1[1] = 162 # Red
ct[1][2] = 205 # Green
ct[1]1[3] = 90 # Blue
ct[1]1[4] = 255 # Opacity

Set 2 to be Royal Blue.

ct[2][0] = 2 # Pizel Val
ct[2]1[1] = 72 # Red
ct[2]1[2] = 118 # Green
ct[2]1[3] = 255 # Blue
ct[2]1[4] = 255 # Opacity

Set 3 to be Dark Sea Green.

ct[31[0] = 3 # Pizel Val
ct[3]1[1] = 180 # Red
ct[3][2] = 238 # Green
ct[31[3] = 180 # Blue

116

46

47

48

49

50

51

52

53

54

55

56

57

58

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

CHAPTER 8. RASTER ATTRIBUTE TABLES (RAT)

ct[3]1[4] = 255 # Opacity

Set 4 to be Forest Green.

ct[4]1[0] = 4 # Pizel Val
ct[41[1] = 34 # Red
ct[4]1[2] = 139 # Green
ct[4]1[3] = 34 # Blue
ct[4]1[4] = 255 # Opacity

rat.setColorTable(imageFile, ct)

This 1s the first part of the script to

be executed.

if

__name__ == ’_ _main__’:

Create the command line options

parser.

parser = argparse.ArgumentParser()

Define the argument for spectifying the input file.
parser.add_argument("-i", "--input', type=str,

help="Specify the input image file.")

Call the parser to parse the arguments.

args = parser.parse_args()

Check that the input parameter has been specified.
if args.input == lone:
Print an error message if not and exit.
print ("Error: No input image file provided.")
sys.exit()

Run the add colour table function

addColourTable (args.input)

117

Run the Script

Run the script as follows, use the classification you did at the end of work-
sheet [7

CHAPTER 8. RASTER ATTRIBUTE TABLES (RAT) 118

python AddClassNames.py -i LSTOA_Tanz_2000Wet_classification.img

To find the Red, Green and Blue (RGB) values to use with the colour table there
are many websites available only that provide lists of these colours (e.g., http:

//cloford.com/resources/colours/500col.htm).

8.4 Further Reading

e GDAL - http://www.gdal.org
e Python Documentation - http://www.python.org/doc

e Core Python Programming (Second Edition), W.J. Chun. Prentice Hall
ISBN 0-13-226993-7

e Learn UNIX in 10 minutes - http://freeengineer.org/learnUNIXinlOminutes.
html

e SciPy — http://www.scipy.org/SciPy
e NumPy — http://numpy.scipy.org

e RIOS —https://bitbucket.org/chchrsc/rios/wiki/Home

http://cloford.com/resources/colours/500col.htm
http://cloford.com/resources/colours/500col.htm
http://www.gdal.org
http://www.python.org/doc
http://freeengineer.org/learnUNIXin10minutes.html
http://freeengineer.org/learnUNIXin10minutes.html
http://www.scipy.org/SciPy
http://numpy.scipy.org
https://bitbucket.org/chchrsc/rios/wiki/Home

	Introduction
	Background
	What is Python?
	What can it be used for?
	A word of warning

	Example of Python in use
	Software in Python

	Python Libraries
	Installing Python
	Text Editors
	Windows
	Linux
	Mac OS X
	Going between Windows and UNIX

	Starting Python
	Indentation
	Keywords
	File Naming
	Case Sensitivity
	File paths in examples
	Independent Development of Scripts
	Getting Help

	Further Reading

	The Basics
	Hello World Script
	Comments
	Variables
	Numbers
	Boolean
	Text (Strings)
	Example using Variables

	Lists
	List Examples
	n-dimensional list

	IF-ELSE Statements
	Logic Statements

	Looping
	while Loop
	for Loop

	Exercises
	Further Reading

	Text Processing
	Read a Text File
	Write to a Text File
	Programming Styles
	Procedural Programming – File Outline
	Object Orientated Programming – File Outline

	Object Oriented Script
	Object Oriented Script for Text File Processing

	Exercise
	Further Reading

	Plotting - Matplotlib
	Introduction
	Simple Script
	Bar Chart
	Pie Chart
	Scatter Plot
	Line Plot
	Exercise:
	Further Reading

	Statistics (SciPy / NumPy)
	Introduction
	Simple Statistics
	Exercises

	Calculate Biomass
	Exercise

	Linear Fitting
	Exercise

	Further Reading

	Batch Processing Command Line Tools
	Introduction
	Merging ESRI Shapefiles
	Convert Images to GeoTIFF using GDAL.
	Passing Inputs from the Command Line into your script
	Exercises
	Further Reading

	Image Processing using GDAL and RIOS
	Reading and Updating Header Information
	Reading Image Headers
	Read image header example.
	No Data Values
	Band Name
	GDAL Meta-Data

	Raster Input / Output Simplification (RIOS) Library
	Getting Help – Reminder
	Band Maths
	Multiply by a constant
	Calculate NDVI
	Calculate NDVI Using Multiple Images

	Filtering Images
	Apply a rule based classification
	Exercises
	Further Reading

	Raster Attribute Tables (RAT)
	Reading Columns
	Writing Columns
	Calculating New Columns
	Add Class Name

	Adding a colour table
	Further Reading

