Mercurial 7[‘2@?5]?@

Ed.

Mercurial A48 &

wiF B 42fcf90045be (2011-03-15)

Ed. 1

Mercurial YIS

Ed.

ii

Copyright © 2006, 2007, 2008, 2009 Bryan O'Sullivan

Ed. 1
Mercurial YIS

iii

COLLABORATORS
TITLE :
Mercurial ilﬁ&#glﬁ
ACTION NAME DATE SIGNATURE
WRITTEN BY Bryan O'Sullivan March 15, 2011

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Ed. 1

Mercurial F@ifEaF .
1iv

Contents

1 GAERTH 2
1.1 A2 FRBCRES]? AR Mercurial? L L L Lo e e 2
1.1.1 R AMERRRATER? - . o o o e 2
1.1.2 FRARFSHEIFIRIZ . . o o o e e e e e 2
1.2 ZRPBAMFIT . . o o o e e e s 3
1.3 FRARESHIBIARBEES e e e 3
1.4 SFRRRESEIIIA © .« o o o e 3
1.4.1 FFBEIAHBITE . o o o o e e e s e s 3
1.4.1.1 FARRBE . . o o o e e 3
1.4.2 BWIAHEBICE . . o o e e e e 4
1.5 AP AERE Mercurial? . . o . L L oL e e e 4
1.6 Mercurial SGEETERIES o o o o o e e e 4
1.6.1 SUBVErsion . . . v v v i u e e e e e e e e e e e 4
1.6.2 GIt v v v v o e e e e e e e e e e e e 5
1.6.3 CVS . v v v v i e e e e e e e e e e e 5
1.6.4 ML E . L e e 5
1.6.5 EFMATEFITE . . . o e e e 5
1.7 METTEIME] Mercurial o o o v v e e e e e e e e 5
1.8 RUARTSHITERE . . o o o e 6
2 Mercurial #(f2: FEAENIH 7
2.1 ZEE Mercurial L. o e e e e 7
2.1.1 WANdOWS .« « v v v e e e e e e e e e e e e e 7
2.1.2 Mac 0S X+ v v v e e e e e e e e e e e 7
2.1.3 LANUX . v v v v v e e e e e e e e e e e e e 7
2.1.4 S0laris . . v v v e e e e e e e e e e e e e e e e 8
2.2 FFUR . . . o o e s 8
2.2.1 NEEBRY e 8
2.3 (ERRMUARE . .« . .« . o e e 8
2.3.1 QIEMAREMTIERIA o e 9

Ed.

Mercurial YIS

2.3.2 fPARRRASEE? .« . o o e e e e e e e e e e e 9

2.4 [EHTEE © . . e e e e e s e e 9
2.4.1 WHEE WA, SEHEHEFRTE . . . o e e e e s 10
2.4.2 BEIETHS . . . o e e e s 11
2.4.3 FHAEE . . . e e e e e 12

2.5 FEAIEIN e 12
2.6 OUEFIE ST 13
2.7 TEFBMETIDRBI 14
P O T) 4 14
2.7.1.1 g Mercurial FECESCHE o L L e 15

2.7.1.2 PR . . o e e e e e e 15

2.7.2 BIETHE . . . e e s 15
2.7.3 EEBERMETHE e 15
2.7.4 BIFETE . ., 16
2.7.5 TREBATHORIRE . - . . o o e e 16

2.8 EABEL e e 16
2.8.1 METIAERIEZEE e e e e e s 16
2.8.2 FEHTAEETE .« o o o o e e 17
2.8.3 RMABMBIETIAE e e e 18
2.8.4 BRIMIE e s 19
2.8.5 EIERBEETIERL e 19

2.9 FFIEETHHE o e e e 20
Mercurial ##F2: &HITIE 21
3.1 AFFRIRER . . . e e e e e 21
3.1.1 THAMBEIEE o e 22
3.1.2 HUTETE . . o e e s s 23
3.1.3 FBAEFLEER . L e e 24

3.2 AIBMEIIESTE . . . L 25
3.2.1 FARABEEAFIE . . o o e 26
3.2.2 BFELE . L e e s 26

3.3 BMFI-EH-IRTIEET . . . - . e 28
3.4 HEML, BEHISGEF . . . o e s 29
Mercurial A% 30
4.1 Mercurial BUJTHEIESR -« « o v o o e e e e e e e e e 30
4.1.1 BEE—ERITE . . o e e e 30
4.1.2 BHIRERISUE . . 31
4.1.3 IBFRBMEEE . . . 31

Ed. 1

Mercurial FUEFEE .
Vi

4.1.4 RRARZIERIFRR . o o o o e e e e 31

4.2 TE, BEREIERE o e e e e 32
4.2.1 BRAFEME . . . o e e e 32
4.2.2 TEBE . .. L e e 32
4.2.3 REREZE . . L e s 33
4.2.3.1 FBE: MFEBIEIT 33

4.2.4 ERIFIBRSZELME . . L L 34

4.3 AT, D563 . . . o e e 34
4.4 THEETE © o o e e e e 35
4.4.1 BRI RERZEE o e e e e e e e e 36
4.4.2 BIESFTIIE . .« . . L o e e 37
4.4.3 BB 38
4.4.4 BFSEWE o e s 39

4.5 HEHEBIITENE 39
4.5.1 FEEELE o e e 40
4.5.1.1 WETIELE . . . o o o e 40

4.5.2 EEIMFSETHE e 40
4.5.3 FHRIFE .« o o oo e e e e e e 40
4.5.3.1 ZEMBEFREAR .« .« . o 41

4.5.4 FEREIL . . . e s 41
4.5.5 BEIRESHETAR . . . o e e s 41
Mercurial FJH % f# o
5.1 Eiff Mercurial BEREEWFEESTAE . 0 0 L L Lo L 43
5.1.1 BABRSEESERIZ . . . e e e e e e e e e e e e e 43
5.1.2 Mercurial HEREECH:, AEEEF o o e 44

5.2 WHAMEIREREESCH: .« . . o o e e e 44
5.2.1 MHBRSCEAFEIREE . . . L e e e e e e e e e 44
5.2.2 FERAUMHEE L L L e s 45
5.2.3 3B N ABEHABEF Mercurial BHERSCHE? . . L o L L L L 45
5.2.4 BRI ——NFBEmAERScE . . L L o 45

5.3 BEUISIEE . . o o e e e e 45
5.3.1 AFEEICUHRINA . . . o o e e 46
5.3.2 WAABEMLBATTE? . . . L o e e e e e e e e 47
5.3.3 QAMAZEIRASTEEER? . L L L L Lo oo e 47
5.3.4 @i&hg copyHIATIH - - . . L L o e 47

5.4 EMAHE . . . o e e e 48
5.4.1 EWAXHSEITE . . L L e e 48
5.4.2 DEBHIEZSEI . . . o o e e e e e e e e 48

Mercurial YIS

vii
5.4.3 WELEMBSEH - - .« . o e e e e 49
5.4.4 HEZMMHFFMEE o e s 49

5.5 MEBIRIRE o e e 50

5.6 AFERIFITT . . L L e 50
5.6.1 SUHERRUMEERIRGS . L L e s 51
5.6.2 fRIRSTHEETE . . . o e 51

5.7 ERIUEZITT . .. oL e e e e e e 52

5.8 WREESHREREA L BPEERTEE . L L L L L e e 52

5.9 BWMEBB e e e 53

EifzNyN(S 54

6.1 Mercurial HY web IELD o e 54

6.2 BMERREL . . . L e e e e 55
6.2.1 BEAICHIEE 55
6.2.2 TCBURPIRZE . . o o e e e 55
6.2.3 BH—mHQLRRAREE . . L L L Lo e e e e e e 55
6.2.4 FEERIPRIARARZE o o e e e e e e 56
6.2.5 S MITIAE . . . o o 56
6.2.6 FRMETL . o e e 58
6.2.7 BAHNZE . . e e e s 58
6.2.8 Linux NAZEEEL L L e e 59
6.2.9 HIESHEEGIE Lo 59
6.2.10MMESIEH e e e e e e 60

6.3 HERFARREZE« e e 60

6.4 fHF hg serve FATIFIERILTE . . . L L L L 60
6.4.1 BEIEIFHITLEETE e s 60

6.5 fFEF ssh WM o e e 61
6.5.1 WMA[BEE ssh BRIZ o o e e s 61
6.5.2 WIRHIRGETF ssh BFUR . .« o o o v o o e e e e e e e e e e 62
6.5.3 FEAEBFEART 62
6.5.4 fERIMERIE . . L e 62
6.5.5 IFFAECEARSSERIRE« o o o e e e 63
6.5.6 BT ssh EHELE . - e e 64

6.6 fHF CGI j@iT HTTP 3EHLARSS o o e 65
6.6.1 Web IRGESIEREIR« « o o e 65
6.6.2 FA CGT EIE e e 65

6.6.2.1 fFARRESHEE? e e 66
6.6.2.2 BB 1ighttpd« .« . o 0 o e e e e e 67

6.6.3 fHH— CGI BIARXZELZMRARZE e 67

Ed. 1
Mercurial YIS

viii
6.6.3.1 BAFAFEH BERAARIRRARE - .« « . . o e e 68

6.6.4 FEHREMAEREEM L e 68
6.6.5 Web FLEIRIT o . o e e e e 69
6.6.5.1 FEWTEEANRRAREREIN s 70

6.6.5.2 & hg serve BUIET oL L oL Lo 70

6.6.5.3 EFEIERART ~/.herc STEFBEINE] web 5B L Lo oL oL oL 70

6.7 ERELE . . . e s, 70
6.7.1 ik Mercurial FER{E e e e 71
AR S IL AT 72
O T =< g L 2 72
7.2 REEESCHLFRIHITES .« 72
7.3 ERIRIETERUT A -« o o 73
7.4 ERERESERRSOEE . . . 74
T.4.1 ANFERAERY glob RIC . . L L oL o 74
T.4.1.1 F D o e e 75

7.4.2 fFH re BRAGIEMZFEIARUCAD o L e 75
75 GHESTHE .. o e e e 75
7.6 TRERBEEREENSCHERIET e 76
7.7 KUNBBUBE . . o L e e 77
7.7.1 A, ARBMERAREZRE . . . s 77
7.7.2 FMIA/ANGMEE L Lo e e 77
7.7.3 BIEFR/NBIZE . . L 78
RAEHE 57 XK 79
8.1 BRUARTEE —MNAKABIGIR . « o o o o e e 79
8.1.1 fEAFEAMBIMBEAREZSIHEE e s 81
8.1.2 MREGTEFE . . . o e e 81
8.1.3 HKANRERZRIBIME« o e 82
8.2 MBEABE—ZEMEHIL e e e 82
8.3 TERUAREFEIST e e e e e 82
8.4 ANEEETH):. EAZEIEHH . - - - o o e 83
8.5 WRARFEFMIMIAITT « o« o o o e e e e 84
8.6 TEMUAREFMIRLZ NAIT « o o o o o e e e e e e 85
8.7 MEEMEGEI . - - .« o e e e e e 87

8.8 X AWIEEEARGH 88

Ed. 1

Mercurial FUEN+&ERE
ix
9 EFFBEUEER 89
9.1 EMERRHBITISE 89
9.1.1 EAMIRAT .« .« L o e e e 89
9.1.2 EVE—TEES e e e e e e e e e e e e 89
9.1.3 BHRAGITEL 90
9.1.4 YUSERES, BEVEERTLTRHT o o e e 90
9.1.5 ARHEBEENE—IK . . . o o e e e s 91
9.2 RUEMEERMUMEEL 91
9.2.1 HEHEAR e e 92
9.3 MEBEZEAHUMEI 93
9.3.1 ME—AMBIE e 93
9.3.2 METRABIE e e 93
9.3.3 MEIAETARIMBEL« o e e e e e e 94
9.3.3.1 TREAMERIEIN ——merge o . e e e e e e 96
9.3.4 TEMEMWMEAREELZEES e e 96
9.3.5 hg backout HUNEE« « o o e e e e e e e 98
9.4 REZEEIBIN e e e 99
9.4.1 HEE—"TEIE . . . e e e 99
9.4.2 {FH BE BHECEEFIREDT o o e 104
9.4.3 MFEUREBEMIRIIATE e e e 105
9.5 EEIAIHAIARIE s, 105
9.5.1 fEAM4 hg bisecto e 106
9.5.2 HZEEANEE e 109
9.6 ARBEIRINITAIFITT L e e e e 109
9.6.1 AH—FIHIHIN .« o o e e e 109
9.6.2 REHTBN e e e 109
9.6.3 RBMIIEER e e e 110
9.6.4 ERFRIEZ BIATITEE . . L . e e e 110
9.6.5 WMRIVETLTAE e e e 110
10 i FH B b B R A 2R S A 111
10.1 Mercurial BRI 111
0.2 B FH5EEME © .« o o e e e 112
10. 2. V9 FDUMRBVERSUEAT . .« . o o o 112
0. 2. 280 FASEIE .« o o L e 112
10.2. 38 F AT LI D . . . o o o e e e e e e e 112
10. 2. 4 TR FROHUT o e 113
0.3 R TRIFIZETERE - - - -« . o o o e e e e 113
10.3. 1 B PNEHHATEZ MEE o o e e e 113

Ed. 1
Mercurial YIS

X

103 2 FFIANFRAITEDN .« .« . . e e e e e e e e 114

104 WEEITF e s 114
10.4. 1B FRIHATAT . . o o e 115

10 4. 280FBIZEL e s 115

10. 4. 3 FHRREMESTESHER] o o e 115

10 4. 4 REAMEBEIF . . . e e s 115
10.4.51F Mercurial fFAFEREREIT o e e 116

10. 4.6 WEHIRNEITF o e e s 116
05 ETFRER . . . L e e e 116
10.5.1REE B YRR HE . . . o s 116
10.5.2RETREEE .« o o o e e e e e e e e 116
10.6 TNERIETT . . . o o e s 118
10.6.1acl—RROARFERIUFRIFSE] o o o e e e 119
10.6.1.1F0F acl B97F 119

10.6. 1.2 S RIEHARER e e e e e e 120
10.6.2bugzilla—45 Bugzilla FUEERL oo 120
10.6.2. 108 bugzilla 97 e 120
10.6.2. 2 BT ELMS Bugzilla FHFAZMRANBEST L Lo 121

10.6. 2. 3FREWINBIRIBFAIIEST . o o o e e e 122
10.6.2. 4B S AERANEE . . . L L 122
10.6.3notify—HPESEE] e o e e e e 123
10.6.3. 1008 notify B4F e 123
10.6.3. 2R S R TR L L e e 124

10.7T WEEIFRIER . . . e e 125
10.7. 1B FRIHIT o 125

10. 7. 2MEBEFHOHIT o e s 125
10.7.3RBEBMEREMA e e e e e e 125
10.7. 3. MEEREERISRIRE L e e 126

10.7.3. 2B BE R B —mARpR A b . . . L L 126

10.8 T2 e e e e e e e e e e e e e e 126
10.8.1 changegroup— ¥4I ARBEIREZSE o . o 126
10.8.2commit— BB INEEZ S e 127
10.8.3 incoming—HIEFRBINEZ G .« - . .« . o e e 127
10.8.4outgoing—fEIBIEIELE o 127
10.8.5prechangegroup— M PIEAEMBELEZRT . - . .« o . o o e e 128
10.8.6 precommit—iR2AAEIMEEZ R e 128
10.8.7preoutgoing—fEIBMBINEZ R e 128
10.8.8 pretag— AR ZHT -« « « o o e e e e 129
10.8.9 pretxnchangegroup—Se IR MENEZ BT . . . -o 129
10.8. 10retxncommit— SRR Z BT« « « « v e e e e e e e 129
10.8.1preupdate— BB A H TAEBFEZE] . .« -« o v v v v e e e e e 130
10.8. 12ag—AIEMEZ/G - -« « o o e e e e e e e e e 130
10.8.1apdate— B A TIEEFEZIE - - - - o o o o o e e 130

Ed. 1
Mercurial FUEFEE .

X1

11 EH] Mercurial FYEH 131
11 ERTIENBIETEFETC . . o o e e 131
I TEBRIMERS - o . o e 132

11.2 TEREERFEERAORT S . .« o o o 132
1.3 RRERRILTE o s 132
LA RERRFREET . . . o o e e e s 133
115 EEXTTH .« . o o o s 134
1.6 BT EE B TR HEER 135
1.6 THATTIBRS . . . o o o e e 137
11.7 MEERRBIEETS © 0 o o e 137
L7 U BREIEBAEERCSOE . - o o e 137

1.7 2BESOHETE . . . e e e e e 138

1.8 BESUSUHEITF . . o o o o e e e 138
11.8. 1 TERERSTHE R REAIEEIR . . o o o 138

1.8 2ARAFERIME—FRIR .« o o o o o o e 139
1.8 3FTAIHE—D3CE . . . e e e 140
11.8.4 45 Subversion FBTHE L L Lo 140

12 {fif MQ BHBH 142
121 FNTHIEBRRIER e e 142
12.2MQ HUFTEE . . e s 142
12.2.1A patchwork quilt . . . o . v v v v e e e e e e e e e e 143
12.2.2)\ patchwork quilt 2 MQ e e 143
12.3MQ BB RMETE . .« o e e 143
2.4 FHMREN T . o o o e e 144
12.5 FFEEME A MQ . . . o e s 145
12. 5. 1 BTN T . o o e e 145
12.5. 2N T . o o o e 146

12. 5.3 HEBFIIREEAN T« o o e 147

125 48ERNTHERR L Lo 148
12.5. 5 R ABRBRHL 2NN T 0 L o e e 149
12.5.6 ZRMIRE, IRGBEETNT . . .« o o e 149
12.5. 7T RIRFAERZNHFNT o L o o e e e e e 149

12.6 T THIEZER © .« . o e e e e 150
12,6 1BBIHEL L e 150
12.6 2 WAHFNTHISREE e e s 150
12.6.3 N THI—LEEERIE . . o L e s 151
12.6. 4 0FBH . . L e e e e e e 151
I2.6.5Z0FRAELE . . L L e e e e e e 151

Mercurial YIS

xii

2.7 FNTRHFRY e e e e e 152
12. 7. 1 HBRAREZLAIFN T . o o o e e e e e 152
12.7.2 58 AL s 152
12.8MQ HUTEBE . . . o e e e e e e e e e e e 153
12.9 YERMAMEEASE,, FHHNTHIAEE © o o e 153
12 10RIRAN T o o o e e 154
12 1EHEEETEIERET o e e e 155
I2VIZEERRASEE S FEAN T« o o o o e e e e e e e e e e e 156
12.12.MQ FEFFNTRRAEE e 156
1212, ZBFEERIERE e e e e e 156
I2ABERNTHIEZH TR © . . o o 157
12 BERN THUEE OB © o o o o o o e e e e e e 157
12.131Q F . . . L e e e e e e e 158
12,15 B “BRRED AT . . e e e e 158
12,15 ZHARIPHIEN T o o o o 159
1215 354N THI A INARIE TR T . . o o o e 159
12.1681Q 5 quilt FURHE] . . .« o o e e e e e e e e e e e e 160
13 MQ HYEZR AL 161
3.1 ZAEMBIRER . . . o o e e e e e e e 161
13.1.1 TAERIFHIBEATTEE . . o o e 161

13. 2 BRI HINT © o o o e e e 162
B3 EHIRNTHIR S .« .« o o o o o e e e e e e e 162
ISARBFERIISE: © . o o o e e e e e e e 163
13.5MQ REFFNTHIEIN o o e 164
3.6 BBITAEIREE o e 164
LT APZRANT RA « o v o o e e e e e e e e e e e e e e e e e e 165
ISL8ZEIFHN T RAN .« v v o o e e e e e e e e e e e e e e 165
B8 1 REREBEINTHIEAR . . o e 166
1I3.9FF MQ FFABIFETT e e 166
L9 AN THEIJLBE R - o o o o o e e e e e e e 166
13.9.2ZEFETHITE . o e e e e e e e 166

14 Y REII6E 168
4.1 AT E inotify DUREMEBE e 168
4.2 TR extdiff UV RBERTE« o s e 171
14.2. 1 EMXMTRHIFNG . o e e e 172

14. 3 Y B transplant DAPGERIEER« . . e 172
14.4 AT E patchbomb JFIT email KIEMBEL e 172

14.4. 1B patchbomb FIFTR . .« . o o o e 173

Mercurial YIS

Ed. 1

xiii

A 1 F#%| Mercurial 175
Al MNETHABEHZRGESATIE .« . o o 175
AT BB DT L o e e e e 176
A1.2 BREFFH P ZEE . . o e e e e e 176
AL FBEEREZFEFT . . L L e 176
A.1.4 Bdk Subversion HUREHRMERE L L L L L 177

A.2 M Subversion ITHE e e 178
A2.1 FREIER L L e e e e e 178
A2 SEAERNE L . . L e 178

A2.1.2 ZHPIEESEE s e e s 178

A.2.1.3 BEMIIBHREGARBIC 179

A2.2 TRIESZ . . L e e e e e e 179

A3 R FEETHAETT . . . e e 179
B Mercurial FAFI|Z# 181
B.1 MQ fIEZE e e e e e e e e e 181
B.1.1 qapplied— S RENHABIENT . o o o o s e e 181
B.1.2 qeommit—3ERPAFIFRBIEEL 181
B.1.3 qdelete— M\ series HFMHBRANT oL oL 181
B.1.4 qdiff—EREFNEINTRIZER . . . o o o e 181
B.1.5 qfold—¥ NN TIERRZZEAZE o o e 181
B.1.6 qfold—BZMNTEHCTTE OM—1« . . . 182
B.1.7 gheader— @ meNT3LEBHE0E L o 182
B.1.8 qimport—¥E=7%T AT o 182
B.1.9 qinit—RfFEMA MQ ELERMURE 182
B.1.10qnew—AEEFTANT e 182
B.1.11gnext—&/R PN THIZHFR -« .« « o o o o o 183
B.1.12 qpop—HIBRMERRTIERRORN T . .« « o o o 183
B.1.13qprev— TR EMNHNTHIZHR .« .« o o o 183
B.1.14qpush—#AMFN TEIMERR« o 183
B.1.15qrefresh—BEIEFHIEN T« . o o o o o e e e e 184
B.1.16qrename— G FNT L . e e e e e 184
B.1.17gseries— @R N T FA .« . . o o o o e 185
B.1.18qtop— B RMEIFNTHIZFE . . . o o o e 185
B.1.19qunapplied—E/RMARNMARIEN T . .« .« « o oo 185
B.1.20hg strip—MHBE—MRARLEES L 185

B.2 MQ STHEZZE . . . L L e e e 185
B.2.1 FFAISIHE . o o o e e e 185
B.2.2 ARSI . L e e e 185

Ed. 1
Mercurial YIS

xiv

C MIBRREZAEE Mercurial 186
C.1 2R Unix BEL e se
C.2 Windows B . . .« v . e s s ss

D FFBUH AR 187
D.1 Requirements on both unmodified and modified versions 187
D.2 Copyright« . e o e s e e e
D.3 Scope of license o 0 0 e
D.4 Requirements on modified works . e o o o o 188
D.5 Good-practice recommendations v e e v d e e e e e s s s 188

D.6 License options o 0 e e e e e e e e e e e e e e e e s e e e e e .88

Ed. 1

Mercurial YIS

List of Figures
2.1 FURIE hello BUTTHEE . . o o o o o oo 10
3.1 my-hello 5 my-new-hello HIFHIFFE DX . . .« © o v v o e e 22
3.2 M my-hello $7%| my-new-hello ZJGhRRANEMNA« « o o« o o v v v o e 23
3.3 EEHNE, AT ZENIEERSMAE . .« o o o oo 25
3.4 PRBMBI . .« - . o o e e e e 25
3.5 fHH kdiff3 §FH IR . .« . o o e e 26
4.1 TAEEHFHHSUESMAEFRSUEAEZRRR - . o o o o oo 31
4.2 JEEFRZEIIRE .« . . o o e e e e e e e e e e 32
4.3 RURHERIMRER, DINEZESR e e e e e e 33
4.4 BRARBERREITER 35
4.5 TEEFEULUBERDALE . - o o o e e s s 36
4.6 |XZIE, TEBFRIAEBMMEET « .« o o o o s e e 36
4.7 FEFBIEBHRERTIEET e e e e e e e 37
4.8 WERIFBEIHBBEMTERFRZZIE « -« -« « o o o o e e e e e 38
4.9 EFWDTIE . . o v o e e 38
6.1 FRMESE . L L o e e e 58
9.1 ffH hg backout KE—MMEH L L 94
9.2 {#H hg backout BEIKEIETHSHMERo 95
9.3 {fH hg backout RE—MEEo 97
9.4 FETAIMEMBI . . .« o o 98
9.5 BHEAIATE e e e 100
9.6 PFEREF, KIE—DPAIFE . . . e s 101
9.7 PREEEI, RFEETAE . . . e e e e e 102
9.8 AFHRER e e 103
9.9 AFHRER e e e 104

121 7F MQ #NTHER AR FFIEHN T . . o o o o 148

Ed. 1
Mercurial YIS .
xvi

List of Tables
A.1 Subversion 45 Mercurial FTHREZE L Lo L 179

Ed. 1
Mercurial YIS

xvii

U\\\:

5

BREF

BEEZal, HRIEWR N ABAMIE 2 ARA R IEF EERIRHR, X DSEEAES T, LA AT RIS EEATZ
BREIADEE, O S ercurial AR EAE T —LERf[A], 3T 5X AT /2 E B AR ILX Al GE A B 5 1 3 2 AT F
— AR T RARIBROZAPFACE R XEMEARE? It AFEE? E2EHERIY WEAEHE? 2S5+, &

B X FF Mercurial

B ISR, ARSCRR T TR H AR St A RRATE T, FpAlJEMercurial © 0'Reilly MediafIFREA B HIHATBRRZAS
Freedom Conservancy (http://www.sof twarefreedom.org/) ,iXMALR FMercurial FIEAL—LEH & S AHE R TR T0 E

s

B Matt Mackall, MercuriallfiH P& FE TS T, XAB NIRRT o M35 T 2RI AT EEZE R -
M FCianflRuairi B UG 1E T 5510 55 AR AT W HIIRAE /N B FL R o 3[Rt B RGH F A B ZEShannon U5 BY
TR EMAR R LEF 7 SRR T REBIAN S 85, X B2 BIEH A4 Stephen Hahn, Karyn Ritter, Bonnie Cor-

win, James Vasile, Matt Norwood, Eben Moglen, Bradley Kuhn, Robert Walsh, Jeremy Fitzhardinge, Rachel
Chalmers.

HUTFBB TR T AF, AREHAENERE, BURFHEEE TR L o 30538 7T DUE BT Z 00— 1> B FR A R -
PR FEIGRLIT AR, T AR T i S8 =0 2 —89iFe o BRI TR ORES), 1=REETHRA £ 340

Martin Geisler, Damien Cassou, Alexey Bakhirkin, Till Plewe, Dan Himes, Paul Sargent, Gokberk Hamurcu,
Matthijs van der Vleuten, Michael Chermside, John Mulligan, Jordi Fita, Jon Parise.

TR BRI 278 B B AR S T A BRI -

Jeremy W. Sherman, Brian Mearns, Vincent Furia, Iwan Luijks, Billy Edwards, Andreas Sliwka, Pawet
Sotyga, Eric Hanchrow, Steve Nicolai, Michat Mastowski, Kevin Fitch, Johan Holmberg, Hal Wine, Volker
Simonis, Thomas P Jakobsen, Ted Stresen—-Reuter, Stephen Rasku, Raphael Das Gupta, Ned Batchelder, Lou
Keeble, Li Linxiao, Kao Cardoso Félix, Joseph Wecker, Jon Prescot, Jon Maken, John Yeary, Jason Harris,
Geoffrey Zheng, Fredrik Jonson, Ed Davies, David Zumbrunnen, David Mercer, David Cabana, Ben Karel,
Alan Franzoni, Yousry Abdallah, Whitney Young, Vinay Sajip, Tom Towle, Tim Ottinger, Thomas Schraitle,
Tero Saarni, Ted Mielczarek, Svetoslav Agafonkin, Shaun Rowland, Rocco Rutte, Polo-Francois Poli, Philip
Jenvey, Petr Tesaték, Peter R. Annema, Paul Bonser, Olivier Scherler, Olivier Fournier, Nick Parker,
Nick Fabry, Nicholas Guarracino, Mike Driscoll, Mike Coleman, Mietek Bak, Michael Maloney, Lasz16 Nagy,
Kent Johnson, Julio Nobrega, Jord Fita, Jonathan March, Jonas Nockert, Jim Tittsler, Jeduan Cornegjo
Legorreta, Jan Larres, James Murphy, Henri Wiechers, Hagen M&bius, Gabor Farkas, Fabien Engels, Evert
Rol, Evan Willms, Eduardo Felipe Castegnaro, Dennis Decker Jensen, Deniz Dogan, David Smith, Daed Lee,
Christine Slotty, Charles Merriam, Guillaume Catto, Brian Dorsey, Bob Nystrom, Benoit Boissinot, Avi
Rosenschein, Andrew Watts, Andrew Donkin, Alexey Rodriguez, Ahmed Chaudhary.

http://www.softwarefreedom.org/

Ed. 1
Mercurial fﬂﬁifﬁﬁﬁ

xviii

AFHBH T

AFE A AT BRI RE -

B FRABIARE, RL, EFERAHILE, SUHEERST RS o

T ATREFIIER, ULBENIIHRERFTE, fINZE - WEE - R - BdaRi ML E - FRHMCRT -
SR PR < B8E HE P RIZE T HA RSO -

FRAE PRRRIZHH PR B ESE BUR T BN ST E L SOK -

X

Tip
BEAREATRT B RFEF GG ERE o

Caution
B RTEL o

1%) #A5] AR A

AFEE PR RTE R AR » #A L, IR LR A0 A TIRIRRFP B0 » TREUSIATIIVER, BRAFREZEE H
ROMIWFREEVF] o 5 FIAH A RYBUR R G U A B RETE TV AT o KB R R B & FF BRI S SO AP N T2 v Al

BIRTATHAZERIET | AP RIRHMESARSUIE F B, (BUSRARAEM T, AT IEE B o MORT &8 /5 B B S i,
“HA BN o RRAUFFA 2008 0° Reilly Media, Inc., 978-0-596-xxxx-x°

AARAR AR B R GUCHER B L TIEREE, sE A TG U BT, RE R B FERFRBN TR permissi

Safari® 4 &

Note
do BRAERGIEAKE B4 @ LFE NSafari® Books Onlinefy B Az » X & FARART A8 L0 'Reilly Network Sa-
fari Bookshelf £ R b4 B st 4 o

Safarif@fft T — LR T BEHRFERT R - R —FEMESE, IR UE EHRERER ETHIRAERBEE, 5791

Bk A & A

KT AR BRI (A EG TR 1E & HRA 28 H R

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

Mercurial YIS

Ed.

Xix

0’ Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

707 829-0104 (fax)

FATRRME— DR TARBIED, L mEEENRRE ~ R LU HE B IE R
http://www.oreilly.com/catalog/<catalogpage>

KT ARFRVEFHE A B E1E & RPELE 1R -
bookquestions@oreilly.com

RIS T R TFRATHIES ~ 20~ WIEFOLULO Reilly NetworkiyH S5,

http://www.oreilly.com

o AR AT LI B 5 [R] £ e

AT LA ST LU ot 5

http://www.oreilly.com/catalog/<catalog page>
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Ed. 1

Mercurial FUEIETE /
1 189

P H 42fcf90045be (2011-03-15)

Ed. 1

Mercurial YIS
2 / 189

Chapter 1
5 f£ Al @

1.1 A x4 A AIE®? A4+ 2448 H Mercurial?

AR HREE — 25 B2 D RRUARIEEE - ERFENERFET T BRIFEN—1XFRHERTARE, XHa+TE
IR, FLEBRIEE — DSR2 RS R IR 5 i EERY, BT UR Pl B LR X M TR E ML - &FRIEBIL
AT S S A4 ML, (B2 BT AMEERRHES, BinX—Filc 258 T REMAZ R

HE XA KT o A FRRA T B B2 N FARE XD SURL%E — MEF o HkfENercurial & KN ERAEX M2 >] 5

1.1.1 At x4 AR Rz

it AAREE UREIEIA RTRE R ZEAE I E 6 A B SRR IE B TRIE? AIRZHEH -

- FOERBICFARAIIHE B0 LANELL, FrUMR AL BG SN ERICKHE, WEME; T A DIEEG A mH R
o HRMEA A TIERIRR, MRS THRALREERER S filin. 22 A2 s bR R TA /] BE R R

B BIRBEIERHR o WARIRE T —MER, (HRERRILE MR, IREEWE B — e 243U DRI RRA © 5EF
EREWBIIRFEIN TIETHHMZ A, HEHREMNRESR -

REHOXLEH AR TR — 2 AEER E—AEIRE— D AMIA L2 LE DA -

IRAERIEAEARRUZ L ("BARE M —DRIEA) LR — KR AR ERITEN L E AR o — MRIEEE
IR R B TRAERE, — DR E AT R RRBL AT R B QRS » EXMER T, BAERIINEAR EARE
H—TE, — AR CPREGE BRI FAES AR TR, FOER — MR T BRI E R
Mercurial FVHURFZ AL HEE BRI SCFREX RN UL IT & o AR LML B2 N2 2 EARMER, BEOIRNMRADN, IRATLARY
BB — D RRARTE B TR GBI — MERERI I E , (2T H iR TR S RRIRERCE, ERTRERLE, LufH

1.1.2 mAIEH 67 2

AT SE— D& BB, UETHERS ZRAMENE, T 2R B2 e —LHE ARARE:

- WA (RCS)
- PFECEEE (SO, L EE

Ed. 1

Mercurial YIS
3/ 189

- R E
- RS, BRI
- WA (VeS)

AENFRIEAREGANFER S, HEREENNEXRES T, RARE 81, B2 FORKHIENT -

1.2 KF654]F

AFRAT —PAERS HEHIROIRIE T % - BO0IFEE TR —8— DRBIEE — D she LIHIATUTIIERRGER, XM
XFOTERIE AR TR AGEAE IR, EN A B EE ki Nercur ial AR SEFRBATEER o AR H T ik
XM ITERANIIER, SR IRE R G E R B AR R B48 T, BERX SR ARMAR o ARARER—
BRI, RO L ESRR A RE R R K E TR R Z N o /R LifEbisect R EE il TSection 9.5

Pt LA ARBF 0I5 RO, AN ZERTE R a4 i 8 H AR [A] » (B ARIERE 2RSSR —BHIATA] LR -

1.3 WRAIES 8 R FeAs ¥

R ERII 4, FEE AN TBRGEEGE AR T RAIEE I RIRS], TF A ML FRCAS T] TR M3 T B ss -

BRI R TESAEL, AMTRXERAEEEADN I - BRXE T AT TEHERAS T BRI CER » H20m8
B ARE RO T X SRR, N EATRA T AN i Ofgsr, H BRey — S A - fETE K, AT
H— RBRRATZ B TR AB LR O R o BT X R ST AR 76k B A LIRSS AR AOMKHSE, Ao iF AP R A T T O RO 2

1.4 - iR AFEH] 6945 &

SEMNNE—REREML, BRDAARAER TRLZERCERIBEMEA T, HEHNTREMERE LA TE T #
WFPMNTFEE, SN TRILFOEHEF N TARNZ - [KRRES:. SEFXTAENRSBIEFTENLLE, FAHE
AR TEIRIRS A NEE , Bt R TR E R EIRE T o MRIRIEFXNATARRSAE KT,
WL R R] FETERT o0 X T B A SoRe Bmin N TR AP T, o AR BE M IRIRARREE AR T TR, BT EUL IR

1.4.1 JFR\ B &4 &

AARARER— IR H H BAREHE IR E, FIRX DI E 6 0 A FARATE B T RS, IRIZZ0 AT DU H Al A —F

1.4.1.1 4 X ARZPFAR

AN AR S T BLG TR E H R 7 RN, ROvEE A RSP RESHI o3 - SAFEENTFAZA
A, AE D SHIREE RE DR M 12 BB o WERGEM T 8 A SR R ST BOR_ LR RRE L AR IR R,
AR LR TR TFZRIE—H 3 o BB ERERAEN D A o ZIMTENERNEBET, oA
AR FTA B NAE T RA UL T TARERECE R &ML, BRARTHRIE A, 50 SR Tt 2 F
- HBR T BHP A TEMRIESI:. ANEAR (RIR) FSNEAR GRAERER) 25 -
© RSO ZRREZD R, FO A B TR B R X MU — UG &I e -

ALENIEL A T E R TR RFF I H 0], A IARE R TR TR A MR o R IMEE, FiRRcy

Ed. 1

Mercurial YIS
4 / 189

1.4.2 TR B 8948 A

AT EERAY A IEAEEAT VR Z i LI E o S SR IR S5 ar i TTRRE & R BT A S ARG RIS AN B A AT 58 o RV AIRRA T
S ARRATZE B R TR RIEAN R - REAZHIFHTHFHVAE S BT DL — D B SR PR AR S E RS - [IRE,
AR R LR BRI RRORAE, A M2 2 8 T s hA S - TR A0 ER RIS, EAAMIIAZR

1.5 At 4% Mercurial?

Mercurialig—PMEH AR RS, HAVEERSM—T A -

WMRFRBRIRAER RGE, IRTEER B2 N A BEBL A LUE FAMercurial TAET o BIEMRREGE, RS REEZMELo 8 o Mer
FEARNTE L, R EBUAT DL Mercurial JFIR TAE » BUESFRIE SN 3, BIAc#Eel (RNEANLL EdEid ML)
UM E AT LLE FMercurial: ARH ETRITIHACE I E HAEFME, XL HE 8 MEE L3S LE RIS -
IR FMercurial RO DIHEERRER R Z K, IRRAZEMAEM EIFAX © Mercurial EFE S THIAMLS, ENRLMETE

1.6 Mercurial S5H v T E& iz
TEVRIREE L 2 B, BEAATE2 R T RN AR, M8, MmE () o NEIIE S RAES T EREFH

1.6.1 Subversion

SubversionfE—MRATHIRRCAIZ R TH,, ZMHRENRCSH), ERAREEFXIE/IRSGaR4EH o
SubversionflMercurial AHFEIIRIERT AR LA AT 4 EAERARDL, FrLVNRIFEGE -1, REZEEHI—, WL A LT
TE1.SRRZ B, Subversionti & IFHISIIFHFAEF « R EARFHNRE, ENEFE T HRERIIIRE, HAMEIANE S HEE -

TEF I & ok BB RS BIHRAE EMercurial #HSubversion B R AHITEREML S o ZBE MM EE BB M ERAE, F
1.4.38ra_local LHFFHET 3, X EMIRRIFROTT « FEEPRHIEE T RE ML, B ASubversionf55 55 H 7

74b, Subversion NEZ P f# M T B L AFMEZ MR TIE, HBEERIL N HIRER M e, flanEResodrscrr (s-
tatus) FUERA T HETRRAEEL (diff) e 455RSubversionf TAERIALZH MMercurial FIAZEM TIER F—HK, &

SubversionHREZHIE =T THIHF o Mercurial BIFEFEIX Ty ERETCER o AT ZEEIEAEZ /), Ehr L —2HMNercurial
SubversionFFANFER FURAFMEMA 2, B IEARE & B HEAME A RS KRR it HISCFIE o AR RN — AR EY§H 10MB
AN, BFARRAR) ZH SRR R, BAE, A EAARE o SubversionfR it THIELIAE, AP AT LIBTE — 3L
Mercurial®] DL A SubversionfJhRAE 5 A7 R A o ‘B] LLajSubversion A RUAS S Hi 7 SRR AN © X FETE R EFEHL 2 F

http://svnbook.red-bean.com/nightly/en/svn.branchmerge.advanced.html#svn.branchmerge.advanced.finalword

Ed. 1

Mercurial YIS
5/ 189

1.6.2 Git

Gi RN T HHLinux A% RTTHF & B — P43 SRR A2 TR o B fNercurial —HE7ER T 1% T Monotone IS o
GitHIEH RIS, 1.5 ORUARME T 139 M BMAT 4 o B LU E 2 T o 56ithik, Mercurial 1R o
BRI, GitdEHbL - FERE WU T B iercuriall, EARELinux b, {AMercurial FEHEIRIE LA RS MLV
Mercurial FRRABERFELES, (HGi tHAIRA BRI ERNT LA, FHITEE repacks’ | WIRAXHEM, MEREHST
GItHIRDHCEERE . FEGitir S & Mshel 18 H per IMIARSEIING, UL R B2 HIRA o REEHIF LUGI RO
Mercurial A] DAGE tHRRAR EE A S A RRAS 7 52

1.6.3 CVS

CVSHIREH B AF & Z AR TR - RNE R Ko EMNESLERIEEL, VF 2 FREA TSI -

CVSK AT K F/IRF a4 o EASRMHERASUF R E—BIENE TR, IE/ERES BIAmE . —PA
CVSHY 73 LR HIE S SEAE R KIRAL T, ARG RN o« AT M B RE R4 XFERRAEIRE A S
Mercurial A LS ACVSINRRART 58« SRTT, X B AREZ RS S HMAES TARICVSS A2 —F o EhCcvsHiJf
Mercurial A] DL CVSHRUAS ZE St ARRASF 52 o

1.6.4 BT E

Perforce Rk MRS FHE /MRS 4EM, B AR MEDE o« MEMARIAZEH TEARR, SUEEGRER— D3
KT/ NIRRT S, Perforcef 2y, {HEHM A EBEBIE A MLUG, TERESREI TR o F &R/ Perforce LR BEE I

1.6.5 #HHFRAIEH AL

Brrcvsz4h, DLESIHMFTE TEMERK, 8 — MRAEH TEE&aRHE
et ROk A ARSI AR SUHBRE, Subversion 8 E S UIE 4 it HSIFRIS & -
HELFEMAMercurial REET, PANNEHERE, "B, RENEHFFESRA -

1.7 MHEEIEIr#H Mercurial

Mercurial @3F—"Mconvertf¥ &, TR LUEMAIMN L HMAR A H TES AR E - “WE AEEEIR LA
convert NRFAIRRAIEH T HA

- Subversion
- CVS
- Git

+ Darcs

%ﬁl\convertﬂy\})\l\lercurial[’EﬂSubver‘sionﬁE‘—Hj}ﬁf, iﬁ_fﬂI)J\‘ltfﬂ(@fﬂﬁ%ZEﬁitMercurial?lFDSubversionﬁﬁ?lﬁi, mAE3
convertfg LIEH A B o H B HIRMURERURLECE B812, 44 B ER&TR (RE) |, BB TAET « ik

Ed. 1

Mercurial YIS
6 / 189

1.8 RRAIEH| | £

A 4 ERTHIROR E THZ&sces (JRARSIEHIRSE) | B &HMarc Rochkind T-H-H8RFE TUR SEI8 2 SERUY © SCCSH e
Walter TichyfE/\-TERFEHAFF L T —MFFIRIISCCSEME M MR ZRCS (MUARIEHIRST) o FISCCS—HE, RCSELKHAK A
JNFERJGIA, Dick Grune7ERCSHIEAM EFF & T —EMA, MIFERZ Hemt, JFRILARCVS (HITHRASRSGE) © CVSHY:
Brian Berliner$%#% T GrunefIIA, FICEE T —il, HIE1989F KA TiX g, BITERICVSHEE MAPIT &1 & BALAH)
OFEMEH, SunARIFE T — RIS MARAEH RYE, W TeamVeare o TeamWaref) TAEZS B35 B [5 #5284 74
FEOOEMR A, MEERARRMT, CVSEERBERMREAM o BX LN R ZENZFE AR —RIDTE, FREBEREHES
20014F, JERAEI S CVSHIT AN IF & 3 Jim BlandyfilKarl Fogel, FFUET —NEWH, HEFREBRCVS, Hrogui5 5 E1

REEAHFI], Graydon HoareJF4R T — N LEFIRI D A AMATEHIIIE , flIFRZ Fydonotone © MonotonefffiR TR Z CVSIEL
EET B

Mercurial#E 4 F20054F o BT JT M 5Z T Monotone) —2E20, MercurialfHIRES M, BIEEE, XREVTIHE M RIFY R

Ed. 1

Mercurial YIS
7 / 189

Chapter 2

Mercurial ZX#2: A AEkZeiz

2.1 4% Mercurial
STEMRITIIRIERS, #6 B EN R o XIEERIITENL EFBER Mercurial ZRREAS o

2.1.1 Windows

Windows HIEIFH] Mercurial RRANETortoiseHg, BERIFETHbERE http://bitbucket.org/tortoisehg/stable/-
wiki/Home o 3IX/NEREEVE BN, ErILL "M TAE | FRET S TAmEEHE PR -

2.1.2 Mac 0S X

Lee Cantey JJj Mac OS X FE http://mercurial.berkwood.com &KFF | Mercurial ZIEFEF o

2.1.3 Linux

HT8M Linux RATHREE B CRVEEBE TR, FAKRIBAERE, MMRMELS HZHE Mercurial Zi#FHIEH2E YA o /R%
Mercurial AN, FEARAREEE _BARET IR B ZATAREY Mercurial 4EI73EHITRERFZSE -

NTIFEEE S, BB THATERIRITH Linux ZITARH, W7 Mercurial (YJ51% o X RAThRER &ML T K
Mercurial; FIHBE LR mercurial o

- Ubuntu 5 Debian:

apt—-get install mercurial

- Fedora:

yum install mercurial

+ OpenSUSE:

zypper install mercurial

+ Gentoo:

emerge mercurial

http://bitbucket.org/tortoisehg/stable/wiki/Home
http://bitbucket.org/tortoisehg/stable/wiki/Home
http://mercurial.berkwood.com

Ed. 1

Mercurial YIS
8 / 189

2.1.4 Solaris

7T http://www.sunfreeware.com FY SunFreeWare ¥EftT Mercurial A " FFME|ZEEA], o

2.2 J¥

v

ot

B, BAER hg version fp @ fEE Mercurial & A IEMZEE o EITEIH KA SEFRMURE BEHAEE, AT RO

$ hg version
Mercurial Distributed SCM (version 1.6.4)

Copyright (C) 2005-2010 Matt Mackall <mpm@selenic.com> and others

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

2.2.1 HNEH

Mercurial NE THIIARLG o HIRNERFMAHIT M Lh, EXBIREZENHE) - RIRTEEEE L%, BEZslT
hg help; EXHHLIEMESIER, Sl TE N wLRIER - MRFFERABGLSHIHE (Vi) , Ex% HEFARNE L

$ hg help init
hg init [-e CMD]| [--remotecmd CMD] [DEST]

create a new repository in the given directory

Initialize a new repository in the given directory. If the given directory
does not exist, it will be created.

If no directory is given, the current directory is used.

It is possible to specify an "ssh://" URL as the destination. See "hg help
urls" for more information.

Returns 0O on success.
options:

-e —--ssh CMD specify ssh command to use
-—-remotecmd CMD specify hg command to run on the remote side

use "hg -v help init" to show global options

BRI FEZAEMER GEEAFE) , TLIHUT hg help -veo %Il -v & --verbose AYFMEZ, 51F Mercurial
EFTEEEAFENELER

2.3 & RMmAE

FEMercurial 1, FTA HOBRVERRAERRAS B AT o T H HORRCAS 2 6135 T I8 T H AU BTA U AT ZE SRR I S0 5% ©
FRORPEIRA T AR T, (UGRIRRGEHF I — DB FM, Mercurial 25BN RFIRACEE o IR AT DIE AL B XA 58 H o

http://www.sunfreeware.com

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
9 / 189

2.3.1 RIEMRAEITIES K

B DU R sARFIR o BRVRE] U R SCIFTE DL an R B il — A, B if2 FiMercurial W ERY A< o 1X P& Ml
hg clone, FNVERIE T —MEARMAERIFE

$ hg clone http://hg.serpentine.com/tutorial/hello

destination directory: hello

requesting all changes

adding changesets

adding manifests

adding file changes

added 5 changesets with 5 changes to 2 files

updating to branch default

2 files updated, 0 files merged, O files removed, O files unresolved

WEFTR, {#Hhe clonefYIF AL T ERESLLVRIE L LS FRERRASE © 50— NP IR E SICFX MR R B SR Y
IMARBAVEERT, HAISBE— DA EF, M hello o XA HEREEFE L -

$ 1s -1

total O

drwxr-xr-x 3 oracle dba 120 Mar 15 14:16 hello
$ 1s hello

Makefile hello.c

IX RS 28 F 8 ST RN AT TR 4 S o 4 R B9 ST IR B PR RRRCAR T 52
B M Mercurial IRAERETEHR, BEEH, MILH - EEE TIHEXUER—hF A 7 A2 2 - Ff 14 B a8,
RXERE, T UBEERERANABRAE P, FEZE, HhEZ— AR P&, AEfmEA -

2.3.2 HAREZRRAKE?
BIAMFHEMERRAE AT, 1S ZMER— 1Y . hefJ B K o Xl EMercurial HRRAZERGE A TEIRIIHT -
$ cd hello

$ 1s -a
.hg Makefile hello.c

H 3 hg PN AFIH T B S @Mercurial FAVE Y o RRACZE FHHAREAT SO B SRARHES AT LIRS HRAE -

IR —R/ARE, heAFGE CHEIER MAE, BrEHEARISCHER B SR TR F— R X 3 5 AR A ZE A
TAR B SRMZTE H— 5 E I 5 s EAERIR -

2.4 W#HRHE

KT — Y, FATABCEARCARE, FA A E — e TRRERI S © frdhe Tog i) DILEFA T ST ARAS 2 A Y I 52

$ hg log

changeset: 4:2278160e78d4

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:16:53 2008 +0200
summary : Trim comments.

changeset: 3:0272e0d5a517

user : Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:08:02 2008 +0200

summary : Get make to generate the final binary from a .o file.

Ed. 1

Mercurial YIS

10 / 189

changeset:

user :
date:
summary :

changeset:

user :
date:
summary :

changeset:

user :
date:
summary :

BRETET,

2:fef857204a0c

Bryan O'Sullivan <bos@serpentine.com>
Sat Aug 16 22:05:04 2008 +0200
Introduce a typo into hello.c.

1:82e55d328c8c
mpm@selenic.com

Fri Aug 26 01:21:28 2005 -0700

Create a makefile

0:0a04b987beba

mpm@selenic.com

Fri Aug 26 01:20:50 2005 -0700

Create a standard "hello, world" program

XA XTI H LKA B R E A H —BUR /Y, fEMercurialfIAREF, HATRXEACRKAY SN E RS

hg loghii LAY FBHIE AT ©

changeset: XPNFERUEFE-ITNT, HE—-1ES, RELE—DTANEHTHE XX NEERIFRAF o +752tH

user: XD FBARMAEERE TIX P HE SR o XN FEAE AT LLE B E L,
date: IXZAFHEAEBIEERT H AT A, LARFX -

B ARSI L R Rk
(SNBSS (AL RARN TS KR A1 oR T B 2 AR H AR |

summary: BIEE LA FHEAHIRE 1T XAFE ©

HLBHEE, R EENE -, - MRETE - RERXSZERNHI—MTE, BE-IEHILRET

(e

IDHIPRE R RIAR S SRR MR ZE BB -)

BREEIT,
Figure 2. 1DIEIFEALTT B R THRAFEhe 110/ 52, SXHARAE B H SR s’

he logfUfHH (UOCRMME, BAFEFRANGES -
o EAEM T EMETF, Hil2Z

4: 2278 (newest)
4: 2278
| 3: 0272 f \
revision changeset
2: fefs number identifier
| 1: 82es
0: 0al04d {oldest)

Figure 2.1: HﬁZKE? hello E@fﬁEEEﬂ

2.4.1 TR 5HLCHAPRE
TEE—MAEEREERES TTENLE B R DURELAIAIE HoE (e W AMA A 2B —NB?) |, Bt S &
SCRR b, AR ARG (AR ARSI EE, EEAYEIA AFRRS RN MR ERAEE o [FfZ—The

logfn @HIHIH, changesetF BLE Fl—MNEUFH— 7N Bl FAF EpRARIA— A HEE -

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ

11 / 189

AR — DT ERIPRIR, B OUE S BT E A -
TN T ERRAK AR, NERIVRR, EIEZRRARZERFTA TS DL AR R — DA AR

XX AREE o ARGRETERAFIRAGTIE RRAR33" , ARA ATREMATTARICAR 3SR R AN —HE o J5 RIFE TR 5 i T 41
b cHE— PR R HIRFZ0. 1.2, T AIN— A AR R0, 2.1

Mercurial fEFIRRAS AR T H LR E, WMRIREMGPATHLLELE, BiE B TREFEFR A — N EERMEICT (4

2.4.2 LTABEMRA

R HAE A he

$ hg log
changeset:
user :
date:
summary :

-r

$ hg log -r
changeset:
user :

date:
summary :

$ hg log -r
changeset:
user :

date:
summary :

changeset:
tag:

user :
date:
summary :

ARARAE R R LR 52, (BREAE— RIS, FTLLER JEENE; B2 Entffabofidet,

$ hg log
changeset:
user :
date:
summary :

-r

changeset:
user :
date:
summary :

changeset:
tag:

user :
date:
summary :

log R —MRAWHEMEM -+ (& -—rev) 1EIT o AT+ HPRRFFE AT LORTEEMAS, AT LL—k3:

8
3:0272e0d5a517
Bryan O'Sullivan <bos@serpentine.com>
Sat Aug 16 22:08:02 2008 +0200
Get make to generate the final binary from a .o file.

0272e0d5a517
3:0272e0d5a517
Bryan O'Sullivan <bos@serpentine.com>
Sat Aug 16 22:08:02 2008 +0200
Get make to generate the final binary from a .o file.

1 -r 4
1:82e55d328c8c
mpm@selenic.com
Fri Aug 26 01:21:28 2005

Create a makefile

-0700

4:2278160e78d4

tip

Bryan O'Sullivan <bos@serpentine.com>
Sat Aug 16 22:16:53 2008 +0200

Trim comments.

PUCEATZ BB

2:4

2:1tef857204a0c

Bryan O'Sullivan <bos@serpentine.com>
Sat Aug 16 22:05:04 2008 +0200
Introduce a typo into hello.c.

3:0272e0d5a517

Bryan O'Sullivan <bos@serpentine.com>
Sat Aug 16 22:08:02 2008 +0200

Get make to generate the final binary from a .o file.
4:2278160e78d4

tip

Bryan O'Sullivan <bos@serpentine.com>

Sat Aug 16 22:16:53 2008 +0200

Trim comments.

Mercuriali&F] LIFR ARV T, fihe log —r 2:4%ji2, 3, 4 Tihe log —r 4:2M%iHH4, 3, 2-

Mercurial YIS

Ed. 1

12 / 189

2.4.3 FiEmigiz 8

HUREAEVRAE AL DRI, he Toghiy AT ELRARH A AR, (EABMRIFAFIEZHI MRAS, (RAEE 2128 R 25

logfF @ HJ-v (—-verbose) JEIZ4 HHIFAIAIE R

$ hg log -v -r 3

changeset: 3:0272e0d5a517

user : Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:08:02 2008 +0200

files: Makefile

description:
Get make to generate the final binary from a .o file.

WERARAE RIS B 2 25 B AN N 2, #n-p (——patch) 3307 o
diff, 1% #Section 12.4 o

$ hg log -v -p -r 2

changeset: 2:fef857204a0c

user : Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:05:04 2008 +0200

files: hello.c

description:
Introduce a typo into hello.c.

diff -r 82e55d328c8c -r fef857204a0c hello.c
--- a/hello.c Fri Aug 26 01:21:28 2005 -0700
+++ b/hello.c Sat Aug 16 22:05:04 2008 +0200
e -11,6 +11,6 @@

int main(int argc, char **argv)

{
- printf ("hello, world!\n"):;
+ printf ("hello, world!\");
return O;

}
-pIIEAEE A, BTl —EEALfE -

2.5 @A

X FEERIANZ unified dif fRIRENER (AIRIRAH

HAKE—T, JefitibMercurialm & T, TREKEECNT LIEMER; XX LURRIZE ZAEE AR -
Mercurial SbER £i825 B R AT LRI T TR B — 2 o 2 NIURL inuxAlUn x50 R A AL B >) 48

BMETE — A o fl, HANEEER T, he logi @ -——revihf -
REFOETOEE RS, BT ER--rev, FALERUA-r - (FEETHA E AR EZ IR HE -)

Long options start with two dashes (e.g. --rev), while short options start with one (e.g. -r).

Option naming and usage is consistent across commands. For example, every command that lets you

specify a changeset ID or revision number accepts both

-r and --rev arguments.

QARAE DRI, (R R] DSEENTHE— LI Fla0, fi<he log -v -p —r 2 AJLIGRL hg log -vpr2 e

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
13 / 189

FEABRIGFH, FoBH FREED, RORAKED o XOGER D ARSI, (RA—EZXHE -

Most commands that print output of some kind will print more output when passed a -v (or --verbose)
option, and less when passed —q (or -—-quiet).

B L b — B

Almost always, Mercurial commands use consistent option names to refer to the same concepts. For
instance, if a command deals with changesets, you'll always identify them with —-rev or -r. This
consistent use of option names makes it easier to remember what options a particular command takes.

2.6 QIEREFTE

WAERNE LN BB Mercurial IR S8 T —8TH, MAERNTFEHSEEOF BREX LB -

The first thing we'll do is isolate our experiment in a repository of its own. We use the hg clone
command, but we don't need to clone a copy of the remote repository. Since we already have a copy of it
locally, we can just clone that instead. This is much faster than cloning over the network, and cloning
a local repository uses less disk space in most cases, too!l.

$ cd

$ hg clone hello my-hello

updating to branch default

2 files updated, 0 files merged, O files removed, O files unresolved
$ cd my-hello

UAIESNE, RETEMAERN— JRIE B — MRS, XFEIRELAT LU RS E AR Im I P e R E AT &
BESE AL, AR LAFEAT TAE o AP SEFER T (8, TR AIIH3 BRI B e — 1 AN FE 3 R B AR /N
EFA Ty -hellofR A S, H—"1Mhello.cHYf, BEEETEHA “hello, world” EF o

$ cat hello.c

/*

* Placed in the public domain by Bryan O0'Sullivan. This program is
*

*/

not covered by patents in the United States or other countries.

#include <stdio.h>

int main(int argc, char **argv)

{
printf ("hello, world!\");
return O;

TN VIRELX A S, LLEATENSE A7kt -

7 ... edit edit edit
$ cat hello.c
/*
* Placed in the public domain by Bryan 0'Sullivan. This program is

FY

*/

not covered by patents in the United States or other countries.

#include <stdio.h>

VIR AR EEROIRAN B ARERAE R — MRS L, B TEREER

o

XHEILT, Mercurial 2 (FIBERERAY T RAKZNETHIE, FHEA GRS

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
14 / 189

int main(int argc, char **argv)
{
printf ("hello, world!\"):;
printf ("hello again!\n");
return O;

}
Mercurialfhg statusip @ BEEIFRATERN RAEF RIS E LT -
$ 1s

Makefile hello.c
$ hg status
M hello.c

he status@r X E LA REES, ERN Chello.c, H—F0L W HIFKAHIH o RIERIEREIRE, f4he
status REHIHF LB BB IS B -

W ENercurial BLAZ IR MER T hello.c » B IRBEAEBCIZ AT, SETEEREL B Nercurial i T H O
ST e o, BB T IRA I, (BAR RIA ARAIRE AL T 4 BEROIBEE « X0, TROTROZMEA he diftdid -

$ hg diff
diff -r 2278160e78d4 hello.c
-—- a/hello.c Sat Aug 16 22:16:53 2008 +0200
+++ b/hello.c Tue Mar 15 14:16:19 2011 +0000
@@ -8,5 +8,6 0@

int main(int argc, char **argv)

{

printf ("hello, world!\"):
+ printf ("hello again!\n");

return O;

}

HEEAT
o RAR RSl do T BRI 45 8 0 5 5 # Section 12.4 o

2.7 H#FEREPIREIFK

HATRT LMERCTE, QP TRIE R, M <he statusHlhg diffEH B, BEIRATERHE, R A2 T -
HATH S he commitBIFEFIVLH R, FTATEBFILX MY H—xise” 8E '’

2.7.1 BEMRP LR

YRR E— RGBT The commit@ R, R—ES M) o MFRIEZHE N, Mercurial FEIERIRAI G FHRERAHILE,
1. W5RAR%he commit@F &0 LT -uik i, BEER— NG, Mercurial RFFX MNP, X2RREEIMLLER -

- BETORMNAAR 2T RE T HGUSERIME AR & o

. WMRREFEROET BF A hercHISCHE, Hi@fEusernamest B, EAE MMRBHEX N UHEIBER, ES%

- IRARIE TEMAILIME S &, AT -

5. Mercurial XEWIRIIARSGL, HHENARRMAF &, RERMIIGE—HPS - XENAPERELER, Ll

WNARPE X EEALHIERRICT , Mercurial RPUTARMGEH, THIH —FKERERZIMELT, AEIRLETHF2ZEAE
2R B R s ercur ialBRE R I, AT LU [BHGUSEREME A B Allhg commi t A7 H)-wikIl o IEH EMAEIT, SEHESL

= W N

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
15 / 189

2.7.1.1 4% Mercurial #fe B L

BOEM P AR, (8RR AR B AR TE IRAYE B SR B — D48 9 . her cBYSCHF © Mercurial:Rf & MaX S SCHF A E AR

Windows b 89 £ B %
3E AR BWindows 8 £ B F 38 F £ C:\Documents andSettings TIREGA P LA L o w R ER BIRG T B Fo9 501,

C:\> echo %UserProfile%

This is a Mercurial configuration file.

[ui]
username = Firstname Lastname <email.address@example.net>
LB “[ui]’ SZATHRRE — 1 FERIFLR, “username = ..." XITHIEEETEui FE % EDlusername {H o 24 Hi I

2.7.1.2 #IFRA P LA

usernamefit B IAHME /] U IR ERHMER T, BONXIE R EE2 A HAM IR, FrilMercurial RARBRE - K2

Note
Mercurial M B &9 M &R % 35 S A WAk > k33 3% diAF & 28 R 69 oR 4 R PR ER T B AR 3B 3R BUAR 69 dn R 33k o 2 4R deMe

2.7.2 BRxAE

?*/2111%@—/[\ SRR, Mercurial &F]FF— M gmiEas, LI THI A —Lo(5 B 20 5 B M B o X232 H 7
log & Ha X EE(E R -

$ hg commit

hg commitfg 2FTH ISR EIE—M 21T, BELD 16" FIREYTT
This is where I type my commit comment.

HG: Enter commit message. Lines beginning with 'HG:' are removed.
HG: --

HG: user: Bryan O0'Sullivan <bos@serpentine.com>

HG: branch 'default'
HG: changed hello.c

Mercurial& ZHBELL “HG:" NFFIRAILT; BIOUNHRE RN IX 22 R EH O FEMLE S 4 o kel & MBRIX 1T (LA 520
2.7.3 BRI E

R Jhg login @AEBREEOL TN K HIRIC HERE —17, Ll HEE T2 BMI—T » FEZE—DHERSEH,

changeset: 73:584af0e231be
user : Censored Person <censored.person@example.org>
date: Tue Sep 26 21:37:07 2006 -0700

summary : include buildmeister/commondefs. Add exports.

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
16 / 189

Z2THEREMISHINE, BATREEFLE o Mercurial AR EE O HERNE, BARIRIIIE fT8eH F s #
BNNAENEE, MYXEEERVHELE, TEIFE SR AGE T EN Hhe log ——patchff H MARIRIEE °
RN TZ1The commi tig L AIRMER B TEE X, ESRCEAMAOTE B, She statusFlhg diffiXH <A H —

Subversion/fl P & A ; & 2
Fo BT A #9Mercurial 44— » 4o R HK A1 A A48 hhg commit @ A FR L IHL » ©AEBANMRAE T B F EHATHE

2.7.4 #%ERK

IR H SRR R E A FEIR A, R ZNR HYw A R AR SCHFBURT LT o 336 RRCA 2R =5 1 B SRR IH (AT S

2.7.5 FRF RN RF

RAERUE, BA AT LU he tipis < ERMINI QIR TR < X M4 Mhe LoghYRH —FE, {H& R BRmARZE H &k

$ hg tip -vp

changeset: 5:ba91lbfa85ba3

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:19 2011 +0000

files: hello.c

description:
Added an extra line of output

diff -r 2278160e78d4 -r ba9lbfa85ba3 hello.c
--- a/hello.c Sat Aug 16 22:16:53 2008 +0200
+++ b/hello.c Tue Mar 15 14:16:19 2011 +0000
@@ -8,5 +8,6 0@

int main(int argc, char **argv)

{

printf ("hello, world!\");
+ printf ("hello again!\n");

return O;

}

HA 138 B FERRA 2R P B BT AR AN PR L AN B TR o tip

JRFESE— T, he tipan< A LURZRE Mhe loghn @ —FEANIETA - 41-vik R R AR AR - -oMIBERZ "HheT’
pl T & B A TR R 2 — BRI A ST o

2.8 S FFK
BTEFA] 8 Z 45 Mercur ial FURRAEE 2 B A 410 o SR E BRI QI 6025 B (AR FH A THmy—he 1 1ofUAREE H ©

2.8.1 MECHRAERIGTE

B, BARERIBA R he 1 LofUAZE, BN ERNTNIMERAZHIZER o Jel THRHX NGRS R yhello ©

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
17 / 189

$ cd

$ hg clone hello hello-pull

updating to branch default

2 files updated, 0 files merged, O files removed, O files unresolved

HA'1Hhe pullap & HF 2 B Mmy-helloffiflhello-pull * SRT, AE =L+ AT HIVEEHIERAE B LA Z T - M
incomingfi 4, BEXEHIFHMhe pul G XALHLER FHEGERRAZE, EASEIERNHIT

$ cd hello-pull

$ hg incoming ../my-hello
comparing with ../my-hello
searching for changes

changeset: 5:ba91bfa85ba3

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:19 2011 +0000
summary : Added an extra line of output

121The pull AR 2L FHEPERRASEEIEH " 8, IR AT LLFERE WA I RAS S 2R B

$ hg tip

changeset: 4:2278160e78d4

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:16:53 2008 +0200
summary : Trim comments.

$ hg pull ../my-hello

pulling from ../my-hello

searching for changes

adding changesets

adding manifests

adding file changes

added 1 changesets with 1 changes to 1 files
(run 'hg update' to get a working copy)

$ hg tip

changeset: 5:ba91lbfa85ba3

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:19 2011 +0000
summary : Added an extra line of output

METERIhe tipUHH rT DB, AT R 28 Bt T AT THIRRAE © SRTM, MercurialREHi 28 5 AN H = B L{E H X0 B

FBLAG & 895 7

B 7 {2 3% 4Thg incomingfrhg pullX 8] 7T #8674 £ 2L B, AR T 46 A A BN AR R E P 09 BT S A k69 % £ & o R4 fRES
incoming#g %l » TAAHZ LT FHHE » HMAGEAMRAERZTT —REAG o X ERARTER R ILE Ahg
incoming & W& 49T & o

Yo RARALA 2 Y6 hg incoming@ &I R T Btk » AW THUEREAFLZFRN T EH—NTE > B2RT ARG LT
pull -r7e95bb °

2.8.2 @#HIAER %

BAERN X RAERER TIEHSRZERIRRA T T # © 3l [#ESection 2.8.1—Ti2{THIhg pullii L R FFE R
pul 1T @ FFANE M LAER 3 » SEPR L, FA17F Zhe updatefi LARTEHGX D LAE -

Ed. 1

Mercurial YIS
18 / 189

$ grep printf hello.c
printf ("hello, world!\"):
$ hg update tip
files updated, O files merged, O files removed, 0O files unresolved
$ grep printf hello.c
printf ("hello, world!\"):;
printf ("hello again!\n");

—

hg pulliFQFHAZ HENE B TIEE R, XEERA R A5 o EXR LXHEMER RER: /R LU he update R BT TAEHS
pullfii 4 o B BB LIER FEHFEIFRRA, XATHEH N IREELER -

[l AR ST R 8 PR IR RIS, Mercurial RAFIRKGXM MBIFEATE -, HEAhg pul 1A 40 LI
HRESection 2.8.1—3, RABEThe pul 1T LA E-u 0, (RITRES R BTHIM T —&RERIER, RATE
AR T B REONUR, T LUEihe parentsdird o

$ hg parents

changeset: 5:ba91bfa85ba3

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:19 2011 +0000
summary : Added an extra line of output

R ERFigure 21—, (REBEHEELEEE N EHE FLETTIIT R A, Sk miE A o TAEE R
W TFEER TAEH FUME] — MFERA, %Ahe updatefir N FIUAS 5 80E 28 ERIAM AT LT o

$ hg update 2
2 files updated, 0 files merged, O files removed, O files unresolved
$ hg parents

changeset: 2:fef857204a0c

user : Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:05:04 2008 +0200
summary : Introduce a typo into hello.c.

$ hg update
2 files updated, 0 files merged, O files removed, O files unresolved
$ hg parents

changeset: 5:ba91bfa85ba3

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:19 2011 +0000
summary : Added an extra line of output

IRIE IR AR, he update X BEHENtiphR, BLR LEIF]Fhe updatetf “RHUTHIGE R —FE

2.8.3 RAEHIECIRAE

FATRT LUK 28 BN 2 B BT RORRCAS A K BORRA T © 5 BT A hgpul LB 5~—HE, FATT AT DLOITEE — Mim i A RR A 22 A7 5

$ cd

$ hg clone hello hello-push

updating to branch default

2 files updated, 0 files merged, O files removed, O files unresolved

hg outgoingdy <& Al LLE R HA THRLL 28 BRE SR 55 Sh— DA

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
19 / 189

$ cd my-hello

$ hg outgoing ../hello-push
comparing with ../hello-push
searching for changes

changeset: 5:ba91bfa85ba3

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:19 2011 +0000
summary : Added an extra line of output

Mg pushfiy &N &HITE IERERRAE -

$ hg push ../hello-push

pushing to ../hello-push

searching for changes

adding changesets

adding manifests

adding file changes

added 1 changesets with 1 changes to 1 files

She pull—H¢, HERFHRLZ G, he pushiT @IFANZFFMAZEN LIER S, She pull@g<AfE, he pushFFAfEHt-
uiE IR BT H AR R LA B 5% o X— AW H BIRY: FA TR W g — Mmimi iR 5 ds, H BRE AHE

WRENE—PEEEE T XU ERRAFEREASNE X T E R R BN AEFR? ot iarst -

$ hg push ../hello-push
pushing to ../hello-push
searching for changes

no changes found

2.8.4 KL E

EFAT TR AR, Mercurial SEFAURZSZER . he/herc XXAE R0 U ERIAL S, TR FATH he pul 1IETERE:
push ETEE BFR, L XEHLHMEHFHARENE © he incomingfllhg outgoingfg S AL ©

ANRAR I SOR G AR TT TR Y - he/her e XA, IRZBEIAT N NE ©

[paths]
default = http://www.selenic.com/repo/hg

B fe—H HE#H1RE H—he pushflhg outgoingAUBE NI B She pullflthg incomingfIfL B AR[F] o FA 1A LIZA . he/
hgrc XA [paths | i _Fdefault-pushsc B, WIFFIR o

[paths]
default = http://www.selenic.com/repo/hg
default-push = http://hg.example.com/hg

2.8.5 Al M % Z5K

i L BT I aR a2 AT LU T AR Az, B/ LA T4 R BRI S BOAA B 2 2 BURLEL AT LA T

$ hg outgoing http://hg.serpentine.com/tutorial/hello
comparing with http://hg.serpentine.com/tutorial/hello
searching for changes

changeset: 5:ba91lbfa85ba3

tag: tip

Ed. 1

Mercurial YIS
20 / 189

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:19 2011 +0000
summary : Added an extra line of output

FEAGIF, FATTR LG B AR AR R TR 2R B, (ELR A AN L vr B 4 A P s

$ hg push http://hg.serpentine.com/tutorial/hello
pushing to http://hg.serpentine.com/tutorial/hello
searching for changes

remote: ssl required

2.9 JHEIE

IR — MBI HAER — P ERTH &8 - he initar <A DIEEE— MY, ZH9Mercurial fRASE

$ hg init myproject

£ 2B H SR B — 44 amyprodec t AR AN BRI 2K 4 Tl B o

$ 1s -1

total 8

-rw-r—--r—-—- 1 oracle dba 47 Mar 15 14:15 goodbye.c
-rw-r--r-—- 1 oracle dba 45 Mar 15 14:15 hello.c
drwxr -xr-x 3 oracle dba 72 Mar 15 14:15 myproject

AN Amyproject&— Mercurial lRAZE, HEAEEET .heHXE °

$ 1s -al myproject

total O
drwxr -xr-x 3 oracle dba 72 Mar 15 14:15
glirex ====== 3 oracle dba 184 Mar 15 14:15

drwxr -xr-x 3 oracle dba 128 Mar 15 14:15 .hg

AARARRF — L DA RS IR, JATA LR eI IR AT, RJEHIThs addins, &ifMercurial IR EEA] -

$ cd myproject

$ cp ../hello.c

$ cp ../goodbye.c
$ hg add

adding goodbye.c
adding hello.c

$ hg status

A goodbye.c

A hello.c

LN E RPIROUR R, BTSSR -

$ hg commit -m 'Initial commit'

B EJL #] LAE— D0 H L fMercurial, iXIFERIRE N Z — o BAEMAEBIBGEARAER 5, 37 LIER/]

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
21 / 189

Chapter 3

Mercurial Z#F2: &7+ L1k

A DB BT SRR AR, AT, M— AR B A — A B s B A o - R TN B 2
3.1 &HeAf

R ARRAES TEF, GIFRIFFEREN - LTRJLMFERTEHIIEE -

- EDEIERTE T, AliceMBobEE — NIIH MR ERIFLA UL © Alicel@E T AEMIAYZEFHI— T bug; BoblIIFEMHIRR
+ Cynthia[fIFE—PIH LT LD ARIIES, B MESTEILE o DuXFr X TIEBRE A H 7 2R A F R

RABMNEEFEEI, Mercurial fFHX MERRREE o THANER— T EHANIRE o TAMIRMNTE RIS —MRAET

$ cd ..

$ hg clone hello my-new-hello

updating to branch default

2 files updated, 0 files merged, O files removed, O files unresolved
cd my-new-hello

Make some simple edits to hello.c.

my-text-editor hello.c

hg commit -m '"A new hello for a new day.'

P I

WAEhello. B TNEARMREIF DI o AR ZER T IR, BiBfEFigure 3. 15 BoRAVHBEE o T U

$ cat hello.c

/*
* Placed in the public domain by Bryan 0'Sullivan. This program is
* not covered by patents in the United States or other countries.

*/
#include <stdio.h>

int main(int argc, char **argv)
{
printf ("once more, hello.\n");
printf ("hello, world!\");
printf ("hello again!\n");
return 0O;

}

N IR OSCRE 5A Sh— RRCAS A R TN R HIRRCAR

Mercurial FEFEFE

Ed. 1

22 / 189

$ cat ../my-hello/hello.c

/*
* Placed in the public domain by Bryan 0'Sullivan. This program is
* not covered by patents in the United States or other countries.

*/
#include <stdio.h>

int main(int argc, char **argv)

{
printf ("hello, world!\"):
printf ("hello again!\n"):
return O;

}
my-hello my-new-hello
newest changes head revision
differ (has no children)

————mm— =

common history
A

Figure 3.1: my-hello 5 my-new-hello FTHIA 549X

HATCLEHE, MFATHImy-hel 1A FEAEA 2R B TAE B SR H (TR -

$ hg pull ../my-hello

pulling from ../my-hello

searching for changes

adding changesets

adding manifests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)

B, hg pull @B 2HH T —2KT ‘heads’ BEE -

3.1.1 TEF&E

iCfEMercurialik TE N ERRA R —DEFEERA, HATRZ WEARANZ T 2E 5w

SR RRAS e —

Mercurial YIS

Ed. 1

23 / 189

tip (and head)

head I3

4; 2278

3: 0272

2: fefd

1: 82e5

0: 0=z04

Figure 3.2: M my-hello ¥/ 2| my-new-hello ZJGRRANERNE

feFigure 3.271, {RA]LIE EIRF 28 B Mmy-helloffiElmy-new-helloZ JEHJRIR © my-new-hellom EAHIRRAS SiA A 41
EFEE—A], XA BIFARGF AR T oA AFERT IR EEERIBHERRA S @A Z 2/ » FA 1A LU#E fhe headsfit & EH A

$ hg heads

changeset: 6:ba91bfa85bai3

tag: tip

parent: 4:2278160e78d4

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:19 2011 +0000
summary : Added an extra line of output
changeset: 5:815d85ac4f31

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:30 2011 +0000
summary : A new hello for a new day.

3.1.2 #iTé&H#

AR AT FIRUhe update i SRFEFEIFHITUG, 2K EMH A FHBR?

$ hg update
abort: crosses branches (use 'hg merge' or use 'hg update -c')

Mercurial 51 The update NEEFHIT A IE; HEIN T BETR Z k1T & FHEAIRHE,

update ~CAr 4TI BT FH4 3 B RIHHIDE -)
FAEM he merge AnKAFEMMAELICA o

$ hg merge

merging hello.c

0 files updated, 1 files merged, O files removed, O files unresolved
(branch merge, don't forget to commit)

ENEELIEER - BRIEFATERFIE:

Ed. 1

Mercurial YIS
24 / 189

%Wﬁ%ﬂ%db£%W@°ﬁ4ﬁ¢%ﬁ71¢ﬁi,ﬁﬁ@@?ﬁﬁ%%%ﬁ%ﬁﬁ,ﬁﬁ%EMDmmmﬁﬁﬁﬂmt
cHINE L o

$ hg parents

changeset: 5:815d85ac4f31

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:30 2011 +0000
summary : A new hello for a new day.

changeset: 6:ba91bfa85ba3

tag: tip

parent: 4:2278160e78d4

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:19 2011 +0000
summary : Added an extra line of output

$ cat hello.c
/*
-

Placed in the public domain by Bryan O'Sullivan. This program is
not covered by patents in the United States or other countries.

*/
#include <stdio.h>

int main(int argc, char **argv)

{

printf ("once more, hello.\n"):
printf ("hello, world!\"):;
printf ("hello again!\n");
return O;

3.1.3 BRLEHLEE

HRAVERMEFE, FHifEiThe commi tiRA A HMILERZ BT, he parentsiy HPE R M BIKUAR BN SRR ©

$ hg commit -m 'Merged changes'

BAERNTE T —DE DU (ERSCRI I SUCKRASER 2 ERISCRAS < 5XANAIA AT he parents BRAIMRA—EL ©

$ hg tip

changeset: 7:b4e519531764

tag: tip

parent: 5:815d85ac4f31

parent: 6:ba91bfa85ba3

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:31 2011 +0000
summary : Merged changes

WFigure 3.3 R THEAHFIREF, TIEERFAETH 4, BFSRTRENRE, ERAMFAENIRAER © £4 22

Ed. 1
Mercurial YIS

25 / 189
Working directory during merge Repository after merge committed
:'....;n:e.r.:ié """ 1 :;vor_king ({ircctorj,r tip
....... N uring merge
tip (and head) | 6: I

head 5L =

4: 2278 4: 2278

Figure 8.3: YEGFFHANR, LLRIRIZJEHTAEH RS MAE
HAVERHER AT AN Al fEhg parentsir SHIHHYE — MCARA, HLZHE =4 o W EFIFTR, MREEFFHIRAS:
3.2 EHAFRHTE

REBEFHERE R, HAENRIRE XN HRANFEZEGS T F—XHEROMRRTS - BRIFEEEE—8, SNEH 2

Greatings! Greetings!
I am Shefur Musa I am Aty Abba
Abacha, cousin to the Abacha, son of the
Our r;:hﬂnge_t; former Migerian former Nigerian Their changes
dictator Sani Abacha. | dictator Sani Abacha. 1
am conlacling you in am contacting you in
confidence, and as a confidence, and a3 a
means of developing means of developing
Greetings!

I am Mariam Abacha,
the wife of former

Nigenan dictator Sani Base version
Abacha. I am

contacting vou in
confidence, and as 1

means of developing V

Figure 3.4: YEF%E/‘JT%E&

Figure 3.4@— U FAMAHEIMRIAIERF] o TATM SR —DMRAT R, T —2B; BRI hAEMRRHTE T A
MercurialiZ A R TEALEMR - 5, E2BiT/NIRER, @5 & — e IR R M RIE: SREBILT, M
AN A AS B HGMERGESG 2 URAURESF, 38 AT LLikMercurialiZ4THF EHIRR P BE AR o

Ed. 1

Mercurial YIS
26 / 189

3.2.1 #RAMESHFITL
RHRER BT &3 TERKA 13 o 2 A EANRETR AL 436 TEM—RHE » (KT LUTEFisure .58 B IEZEE
TIEEHITHX A FH M= EF o B ATATESLBE SR = MR o BT LUE RS DAY B9 H 3k o
- EEARSCHRERRA, WL A TA FHEOB R SR AR AR ©

R AR AR, ERNAEDERA B -

FHiiZ MATRT RRAR, EEENFAN TR T AR R -
TATTHERATEEAEHIOEIIER - BAMESHEBMENLA T, ENREERBRIINR, BATLIFE Tl 10’
X VU ER & R BRRY, WRBATEEFTEE N EESKFERS), BRI S T N SR RS 551 R o

...fletter.txt~base.C8-rvc <-> .../letter.txt.orig.2182927874 <-= .../lettertxt~otherladxFb - KDiff3

File Edit Directory Movement Diffview Merge Window Settings Help

EdEld e = 223230 cl0E-===

[]
A (Basa):|jtmpj\etter.txt~base‘CB—r\rc ” . |Top line 1 B:|jhomefbusfscamj\etter.txt.orlg.2182927874 ” . |Top line 1 C:|jtmpj\etter.txt~uther‘\adbu ” o |Topline 1| |
Greetings! Greetings! Greetings!
. | I am Mariam Abacha, the_wife_of former . | I am chehu_Musa Abacha, cousin_to_the former . | I am alhaji_sbba Abacha, son_of_the former
Nigerian dictator Sani Abacha. Nigerian dictator Sani Abacha. Nigerian dictator Sani Abacha.

S

[2] [«[]

Output : fhome/bos/scam/letter.txt
Greetings!

7 J|<Merge Conflict=
]Nigerlan dictator Sani Abacha.

=

[«

[*] s [»

Number of remaining unselved conflicts: 1 {of which 0 are whitespace)

i

Figure 3.5: {fif kdiff3 A3 CHHIRERRA

REFICRR RS, FATTAT DURZRRRAR, AT THORRCAR B3 T THORRCAR D — 28305 B B R R 2 o -t A DUFEAE TR 8 57
AW Z A LLEZRENEF TR, REFR, ZERASZNAT - ITENTARKFE, SEELAMEE o REEEIFHE

3.2.2 LS4

ARG, Bl EEFigure 3. 4RVEET L o TN A SCHERRARIRRA BT 46

cat > letter.txt <<EOF

Greetings'!

I am Mariam Abacha, the wife of former
Nigerian dictator Sani Abacha.

EOF

hg add letter.txt

hg commit -m '419 scam, first draft'

L PA NV VvV V VA

Ed. 1

Mercurial YIS
27 / 189

HA TR A LA O -

$ cd

$ hg clone scam scam-cousin

updating to branch default

1 files updated, 0 files merged, O files removed, O files unresolved
cd scam-cousin

cat > letter.txt <<EOF

Greetings'!

I am Shehu Musa Abacha, cousin to the former
Nigerian dictator Sani Abacha.

EOF

hg commit -m '419 scam, with cousin'

»w VvV vV V VAL

RS TEE R NBEOUE (XERE ZRA A FRRAE LB A RESHR R, HERFEMEBC A&, Ehrt

$ cd

$ hg clone scam scam-son

updating to branch default

1 files updated, O files merged, O files removed, 0O files unresolved
$ cd scam-son

$ cat > letter.txt <<EOF

> Greetings!

> I am Alhaji Abba Abacha, son of the former
> Nigerian dictator Sani Abacha.

> EOF

$ hg commit -m '419 scam, with son'

XN CEE T ARBRA, FARZEEGHTEHIIAE
$ cd

$ hg clone scam-cousin scam-merge

updating to branch default

1 files updated, O files merged, O files removed, O files unresolved
$ cd scam-merge

$ hg pull -u ../scam-son

pulling from ../scam-son

searching for changes

adding changesets

adding manifests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
not updating, since new heads added

(run 'hg heads' to see heads, 'hg merge' to merge)

ARG, Pl T EHGMERGE S JRMERCURIAL F IERX BRI & H 4 o FZ R UnixREEH X MIIEE (AR IRAEHE M L
GMERGE, H I FHGUISHIT)

$ export HGMERGE=merge

$ hg merge

merging letter.txt

merge: warning: conflicts during merge

merging letter.txt failed!

0 files updated, 0 files merged, O files removed, 1 files unresolved
use 'hg resolve' to retry unresolved file merges or 'hg update -C' to abandon
$ cat letter.txt

Greetings'!

<<<<<<< /tmp/tour -merge-conflictsKo7n7/scam-merge/letter.txt

I am Shehu Musa Abacha, cousin to the former

I am Alhaji Abba Abacha, son of the former
>>>>>>> /tmp/letter.txt~other.prZ NW
Nigerian dictator Sani Abacha.

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
28 / 189

HFAFBRAT PRI, LIRS 2AIRD, RTINS, Mf 10 B HA TS S 2 RS0
Mercurial AR Emerge iy & HUIR HARZFIWT H A FF RN, FrLlE & S IRFNTARFAN VB EH T & H RIERRHRTR 2z ir i
WRBESEEEFHEHRW, BLFNAGED BE LS, RIFRICEFHHIGER -

$ cat > letter.txt <<EOF

> Greetings!

> | am Bryan O0'Sullivan, no relation of the former
> Nigerian dictator Sani Abacha.

> EOF

$ hg resolve -m letter.txt

$ hg commit -m 'Send me your money'

$ hg tip

changeset: 3:58e7d85d25e7

tag: tip

parent: 1:7efd6lalb731

parent: 2:7934bc2489ca

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:33 2011 +0000
summary : Send me your money

IR E K P hg resolve G442
Mercurial 1.18R-T2008F & A » IIX AMHR AT 44 5] X T hg resolved 4 o 4o FARE AR B H 9 AR (T A& 4Thg
versionr 4 & E) » AN LSERHBAE o wR R GMercurial R AL 128 » IBARBAZBRAE 2R R T L0945

3.3 fibii-SH-RxAERF

EEHEEFEERNI AR AR, (HREFERRIT Rir = 1w

hg pull -u
hg merge
hg commit -m 'Merged remote changes'

FERJEIRHIBR, (RFREMA—FRLELR, XEEHFNELEB -
WMRE RIS, RIFAES O TFEABIE o« SLPRLE, Mercurial R ARIBHER — M R fetchf] LLIFEEGX A TAE ©
Mercurialfgflt T RIEHIT RALE, AMTATUAHES REMIIGE, R RifMercurial IOR/INIF ARG EH - HLEY R

fetchy RN T —DHRYATS, ZIEEN, B fhe fetch o XY RAYLIEEGRhe pull -u. hg mergefllhg com-
mitfIEE o EE SN H AR ZE R 2 HE A S BTRRCAZE o QRE A AL H MR BEGRIN THRIACK AR, &2 R EH-

fEffetch RIEH A S o HIRIIR B RAY . herc SR, BT RBEGE B — M RE - RRIEIN—1T fetch=’

[extensions]
fetch =

(BT, =" BAINZFRMAHEY R, (EREAfetchl REEIMERAZMRRF, Mercurial HEW HEEHE]

Ed. 1

Mercurial YIS
29 / 189

3.4 Ewt o AH5Het

FE-PUHMEWE, HNEEFEELCHRICEMEROMRE XARMRE R, OGRS, SEFEER, B

Mercurial WX E 2RI B SCRAVIREF, REREIREIRETHAB AT LT » ARIRAAES — P30 iFei s, HE Alhe
rename RER AP AT LT, FELUGTHEGFFHINRE, Mercurial HEZ/E AR -

HAPRFESection 5.3 IFEMNEIXLE AT LHIER] -

HIRR R Unix R, REIRE A& Blhe rename] LUR S Hhg mv o

Ed. 1

Mercurial YIS
30 / 189

Chapter 4

Mercurial W #&

Unlike many revision control systems, the concepts upon which Mercurial is built are simple enough that
it's easy to understand how the software really works. Knowing these details certainly isn't necessary,
so it is certainly safe to skip this chapter. However, I think you will get more out of the software
with a ‘mental model’ of what's going on.

Being able to understand what's going on behind the scenes gives me confidence that Mercurial has been
carefully designed to be both safe and efficient. And just as importantly, if it's easy for me to retain
a good idea of what the software is doing when I perform a revision control task, I'm less likely to be
surprised by its behavior.

In this chapter, we'll initially cover the core concepts behind Mercurial's design, then continue to
discuss some of the interesting details of its implementation.

4.1 Mercurial 8 12 E

4.1.1 RB\EF-IHGH L

When Mercurial tracks modifications to a file, it stores the history of that file in a metadata obJject
called a filelog. Each entry in the filelog contains enough information to reconstruct one revision of
the file that is being tracked. Filelogs are stored as files in the .hg/store/data directory. A filelog
contains two kinds of information: revision data, and an index to help Mercurial to find a revision
efficiently.

A file that is large, or has a lot of history, has its filelog stored in separate data (‘.d’ suffix)
and index (‘.1’ suffix) files. For small files without much history, the revision data and index are
combined in a single ‘.i’ file. The correspondence between a file in the working directory and the
filelog that tracks its history in the repository is illustrated in Figure 4.1.

Ed. 1
Mercurial AYEfEEE
31 / 189

Figure 4.1: TAEHSRA ISR F RIS H S Z FHR A

4.1.2 BRI 4

Mercurial uses a structure called a manifest to collect together information about the files that it
tracks. Each entry in the manifest contains information about the files present in a single changeset.
An entry records which files are present in the changeset, the revision of each file, and a few other
pieces of file metadata.

4.1.3 w2FERESRE

(mr

The changelog contains information about each changeset. Each revision records who committed a change,
the changeset comment, other pieces of changeset-related information, and the revision of the manifest
to use.

4.1.4 MRAZIRE XA

Within a changelog, a manifest, or a filelog, each revision stores a pointer to its immediate parent
(or to its two parents, if it's a merge revision). As I mentioned above, there are also relationships
between revisions across these structures, and they are hierarchical in nature.

For every changeset in a repository, there is exactly one revision stored in the changelog. Each revision
of the changelog contains a pointer to a single revision of the manifest. A revision of the manifest
stores a pointer to a single revision of each filelog tracked when that changeset was created. These
relationships are illustrated in Figure 4.2.

Ed. 1

Mercurial YIS
32 / 189

Changelog

Manifest

=

i
ﬁ

-
-

o
I

Filelogs ¥

-

P SP———
-

J e o N

Figure 4.2: JUEM#EZ [EIAYR AR

As the illustration shows, there is not a ‘one to one’ relationship between revisions in the changelog,
manifest, or filelog. If a file that Mercurial tracks hasn't changed between two changesets, the entry
for that file in the two revisions of the manifest will point to the same revision of its filelog!.

S

4.2 ®E S ZE B

g

The underpinnings of changelogs, manifests, and filelogs are provided by a single structure called the
revlog.

4.2.1 ZGE

The revlog provides efficient storage of revisions using a delta mechanism. Instead of storing a complete
copy of a file for each revision, it stores the changes needed to transform an older revision into the
new revision. For many kinds of file data, these deltas are typically a fraction of a percent of the
size of a full copy of a file.

Some obsolete revision control systems can only work with deltas of text files. They must either store
binary files as complete snapshots or encoded into a text representation, both of which are wasteful
approaches. Mercurial can efficiently handle deltas of files with arbitrary binary contents; it doesn't
need to treat text as special.

4.2.2 ZhARAE

Mercurial only ever appends data to the end of a revlog file. It never modifies a section of a file
after it has written it. This is both more robust and efficient than schemes that need to modify or
rewrite data.

In addition, Mercurial treats every write as part of a transaction that can span a number of files. A
transaction is atomic: either the entire transaction succeeds and its effects are all visible to readers
in one go, or the whole thing is undone. This guarantee of atomicity means that if you're running

Tt is possible (though unusual) for the manifest to remain the same between two changesets, in which case the changelog
entries for those changesets will point to the same revision of the manifest.

Ed. 1

Mercurial FEFEFE /
33 189

two copies of Mercurial, where one is reading data and one is writing it, the reader will never see a
partially written result that might confuse it.

The fact that Mercurial only appends to files makes it easier to provide this transactional guarantee.
The easier it is to do stuff 1like this, the more confident you should be that it's done correctly.

4.2.3 bk

Mercurial cleverly avoids a pitfall common to all earlier revision control systems: the problem of
inefficient retrieval. Most revision control systems store the contents of a revision as an incremental
series of modifications against a ‘snapshot’ . (Some base the snapshot on the oldest revision, others
on the newest.) To reconstruct a specific revision, you must first read the snapshot, and then every one
of the revisions between the snapshot and your target revision. The more history that a file accumulates,
the more revisions you must read, hence the longer it takes to reconstruct a particular revision.

Revlog index (.1 file) Revlog data (.d file)

Figure 4.3: WAHERHRE, DMHEEER

The innovation that Mercurial applies to this problem is simple but effective. Once the cumulative
amount of delta information stored since the last snapshot exceeds a fixed threshold, it stores a new
snapshot (compressed, of course), instead of another delta. This makes it possible to reconstruct any
revision of a file quickly. This approach works so well that it has since been copied by several other
revision control systems.

Figure 4.3 illustrates the idea. In an entry in a revlog's index file, Mercurial stores the range of
entries from the data file that it must read to reconstruct a particular revision.

4.2.3.1 F&: WHEHAOHR

If you're familiar with video compression or have ever watched a TV feed through a digital cable or
satellite service, you may know that most video compression schemes store each frame of video as a delta
against its predecessor frame.

Mercurial borrows this idea to make it possible to reconstruct a revision from a snapshot and a small
number of deltas.

Ed. 1

Mercurial YIS
34 / 189

4.2.4 %S9\ Fesk M

Along with delta or snapshot information, a revlog entry contains a cryptographic hash of the data that
it represents. This makes it difficult to forge the contents of a revision, and easy to detect accidental
corruption.

Hashes provide more than a mere check against corruption; they are used as the identifiers for revisions.
The changeset identification hashes that you see as an end user are from revisions of the changelog.
Although filelogs and the manifest also use hashes, Mercurial only uses these behind the scenes.

Mercurial verifies that hashes are correct when it retrieves file revisions and when it pulls changes
from another repository. If it encounters an integrity problem, it will complain and stop whatever it's
doing.

In addition to the effect it has on retrieval efficiency, Mercurial's use of periodic snapshots makes
it more robust against partial data corruption. If a revlog becomes partly corrupted due to a hardware
error or system bug, it's often possible to reconstruct some or most revisions from the uncorrupted
sections of the revlog, both before and after the corrupted section. This would not be possible with a
delta-only storage model.

4.3 BTt 567+

Every entry in a Mercurial revlog knows the identity of its immediate ancestor revision, usually referred
to as its parent. In fact, a revision contains room for not one parent, but two. Mercurial uses a
special hash, called the ‘null ID’ ., to represent the idea ‘there is no parent here’ . This hash is
simply a string of zeroes.

In Figure 4.4, you can see an example of the conceptual structure of a revlog. Filelogs, manifests, and
changelogs all have this same structure; they differ only in the kind of data stored in each delta or
snapshot.

The first revision in a revlog (at the bottom of the image) has the null ID in both of its parent slots.
For a ‘normal’ revision, its first parent slot contains the ID of its parent revision, and its second
contains the null ID, indicating that the revision has only one real parent. Any two revisions that have
the same parent ID are branches. A revision that represents a merge between branches has two normal
revision IDs in its parent slots.

Ed. 1

Mercurial FEFEFE y
35 189

Head revision
{no chaldren)

Merge revision
{two parents})

Branches
{bWO revisions, ----=
same parent)

First revision
(both parents null)

Figure 4.4: RRAHEHANLITEEH

4.4 IAER E

In the working directory, Mercurial stores a snapshot of the files from the repository as of a particular
changeset.

The working directory ‘knows’ which changeset it contains. When you update the working directory to
contain a particular changeset, Mercurial looks up the appropriate revision of the manifest to find out
which files it was tracking at the time that changeset was committed, and which revision of each file
was then current. It then recreates a copy of each of those files, with the same contents it had when
the changeset was committed.

The dirstate is a special structure that contains Mercurial's knowledge of the working directory. It
is maintained as a file named .hg/dirstate inside a repository. The dirstate details which changeset
the working directory is updated to, and all of the files that Mercurial is tracking in the working
directory. It also lets Mercurial quickly notice changed files, by recording their checkout times and
sizes.

Just as a revision of a revlog has room for two parents, so that it can represent either a normal revision

Ed. 1

Mercurial FEFEFE y
36 189

(with one parent) or a merge of two earlier revisions, the dirstate has slots for two parents. When you
use the hg update command, the changeset that you update to is stored in the ‘first parent’ slot, and
the null ID in the second. When you hg merge with another changeset, the first parent remains unchanged,
and the second parent is filled in with the changeset you're merging with. The hg parents command tells
you what the parents of the dirstate are.

4.4.1 SRR REGER

The dirstate stores parent information for more than Jjust book—-keeping purposes. Mercurial uses the
parents of the dirstate as the parents of a new changeset when you perform a commit.

History in repository Parents of working directory

e7639888bb2f

e7639888bb2f

Tble4d8bache

000000000000

000000000000

Figure 4.5: TAEHFRAILLEW MNLHE

Figure 4.5 shows the normal state of the working directory, where it has a single changeset as parent.
That changeset is the tip, the newest changeset in the repository that has no children.

History in repository Parents of working directory

New
changeset

dfbbb33f3fa3

e7639588bb2f

Tbl64d8bacse

P e T
00Q000000000

Figure 4.6: 222 J5, TAEHFAICEBBET

Ed. 1

Mercurial FEFEFE /
37 189

It's useful to think of the working directory as ‘the changeset ['m about to commit’ . Any files that
you tell Mercurial that you've added, removed, renamed, or copied will be reflected in that changeset,
as will modifications to any files that Mercurial is already tracking; the new changeset will have the
parents of the working directory as its parents.

After a commit, Mercurial will update the parents of the working directory, so that the first parent
is the ID of the new changeset, and the second is the null ID. This is shown in Figure 4.6. Mercurial
doesn't touch any of the files in the working directory when you commit; it just modifies the dirstate
to note its new parents.

4.4.2 RIEFHN A

It's perfectly normal to update the working directory to a changeset other than the current tip. For
example, you might want to know what your project looked like last Tuesday, or you could be looking
through changesets to see which one introduced a bug. In cases like this, the natural thing to do is
update the working directory to the changeset you're interested in, and then examine the files in the
working directory directly to see their contents as they were when you committed that changeset. The
effect of this is shown in Figure 4.7.

History in repository Parents of working directory
First parent
e7639888Bbb2f
Tbl064dBbacse

7bl064d8bacSe

Figure 4.7: [AZ 2 HEHEERN TIEH R

Having updated the working directory to an older changeset, what happens if you make some changes, and
then commit? Mercurial behaves in the same way as I outlined above. The parents of the working directory
become the parents of the new changeset. This new changeset has no children, so it becomes the new tip.
And the repository now contains two changesets that have no children; we call these heads. You can see
the structure that this creates in Figure 4.8.

Ed. 1
Mercurial FEFEFE

38 / 189
Pre-existing head Newly created head (and tip) Parents of working directory
|
e7639888bb2f
ffb20el70lea
Tbled4d8bache
aoo000000000
goo000000000
Figure 4.8: MR HBERN TIEEREZTZE
Note
If you're new to Mercurial, you should keep in mind a common ‘error , which is to use the hg pull

command without any options. By default, the hg pull command does not update the working directory,
so you'll bring new changesets into your repository, but the working directory will stay synced at
the same changeset as before the pull. If you make some changes and commit afterwards, you'll thus
create a new head, because your working directory isn't synced to whatever the current tip is. To
combine the operation of a pull, followed by an update, run hg pull -u.

I put the word ‘error in quotes because all that you need to do to rectify the situation where you
created a new head by accident is hg merge, then hg commit. In other words, this almost never has
negative consequences; it's Jjust something of a surprise for newcomers. 1'll discuss other ways to
avoid this behavior, and why Mercurial behaves in this initially surprising way, later on.

4.4.3 A%

When you run the hg merge command, Mercurial leaves the first parent of the working directory unchanged,
and sets the second parent to the changeset you're merging with, as shown in Figure 4.9.

Pre-existing head Newly created head (and tip) Parents of working directory
|

ent (unchanged)

e7639888bb2f
ffh20el70lea

Tbl64d8bacse

e7639888bb2f

Figure 4.9: /E.\#W\j/]\:[)ﬁ)ﬁ

Ed. 1

Mercurial YIS
39 / 189

Mercurial also has to modify the working directory, to merge the files managed in the two changesets.
Simplified a 1little, the merging process goes like this, for every file in the manifests of both
changesets.

+ If neither changeset has modified a file, do nothing with that file.

+ If one changeset has modified a file, and the other hasn't, create the modified copy of the file in
the working directory.

- If one changeset has removed a file, and the other hasn't (or has also deleted it), delete the file
from the working directory.

If one changeset has removed a file, but the other has modified the file, ask the user what to do:
keep the modified file, or remove it?

If both changesets have modified a file, invoke an external merge program to choose the new contents
for the merged file. This may require input from the user.

If one changeset has modified a file, and the other has renamed or copied the file, make sure that
the changes follow the new name of the file.

There are more details—merging has plenty of corner cases—but these are the most common choices that
are involved in a merge. As you can see, most cases are completely automatic, and indeed most merges
finish automatically, without requiring your input to resolve any conflicts.

When you're thinking about what happens when you commit after a merge, once again the working directory
is ‘the changeset I'm about to commit’ . After the hg merge command completes, the working directory
has two parents; these will become the parents of the new changeset.

Mercurial lets you perform multiple merges, but you must commit the results of each individual merge as
you go. This is necessary because Mercurial only tracks two parents for both revisions and the working
directory. While it would be technically feasible to merge multiple changesets at once, Mercurial avoids
this for simplicity. With multi-way merges, the risks of user confusion, nasty conflict resolution, and
making a terrible mess of a merge would grow intolerable.

4.4.4 SH5EGFL

A surprising number of revision control systems pay little or no attention to a file's name over time.
For instance, it used to be common that if a file got renamed on one side of a merge, the changes from
the other side would be silently dropped.

Mercurial records metadata when you tell it to perform a rename or copy. It uses this metadata during a
merge to do the right thing in the case of a merge. For instance, if I rename a file, and you edit it
without renaming it, when we merge our work the file will be renamed and have your edits applied.

4.5 HEAHMEGF TN

In the sections above, 1've tried to highlight some of the most important aspects of Mercurial's design,
to illustrate that it pays careful attention to reliability and performance. However, the attention
to detail doesn't stop there. There are a number of other aspects of Mercurial's construction that 1
personally find interesting. 1['11 detail a few of them here, separate from the ‘big ticket’ items
above, so that if you're interested, you can gain a better idea of the amount of thinking that goes into
a well-designed system.

Ed. 1

Mercurial YIS
40 / 189

4.5.1 TR

)

When appropriate, Mercurial will store both snapshots and deltas in compressed form. It does this by
always trying to compress a snapshot or delta, but only storing the compressed version if it's smaller
than the uncompressed version.

This means that Mercurial does ‘the right thing’ when storing a file whose native form is compressed,
such as a zip archive or a JPEG image. When these types of files are compressed a second time, the
resulting file is usually bigger than the once-compressed form, and so Mercurial will store the plain
zip or JPEG.

Deltas between revisions of a compressed file are usually larger than snapshots of the file, and Mercurial
again does ‘the right thing’ 1in these cases. It finds that such a delta exceeds the threshold at which
it should store a complete snapshot of the file, so it stores the snapshot, again saving space compared
to a naive delta-only approach.

4.5.1.1 M%ETHE%

When storing revisions on disk, Mercurial uses the ‘deflate’ compression algorithm (the same one used
by the popular zip archive format), which balances good speed with a respectable compression ratio.
However, when transmitting revision data over a network connection, Mercurial uncompresses the compressed
revision data.

If the connection is over HITP, Mercurial recompresses the entire stream of data using a compression
algorithm that gives a better compression ratio (the Burrows-Wheeler algorithm from the widely used
bzip2 compression package). This combination of algorithm and compression of the entire stream (instead
of a revision at a time) substantially reduces the number of bytes to be transferred, yielding better
network performance over most kinds of network.

If the connection is over ssh, Mercurial doesn't recompress the stream, because ssh can already do this
itself. You can tell Mercurial to always use ssh's compression feature by editing the .hgrc file in your
home directory as follows.

[ui]
ssh = ssh -C

4.5.2 HBIWF5FETH

Appending to files isn't the whole story when it comes to guaranteeing that a reader won't see a partial
write. If you recall Figure 4.2, revisions in the changelog point to revisions in the manifest, and
revisions in the manifest point to revisions in filelogs. This hierarchy is deliberate.

A writer starts a transaction by writing filelog and manifest data, and doesn't write any changelog data
until those are finished. A reader starts by reading changelog data, then manifest data, followed by
filelog data.

Since the writer has always finished writing filelog and manifest data before it writes to the changelog,
a reader will never read a pointer to a partially written manifest revision from the changelog, and it
will never read a pointer to a partially written filelog revision from the manifest.

4.5.3 HKX5M

The read/write ordering and atomicity guarantees mean that Mercurial never needs to lock a repository
when it's reading data, even if the repository is being written to while the read is occurring. This

Ed. 1

Mercurial YIS
41 / 189

has a big effect on scalability: you can have an arbitrary number of Mercurial processes safely reading
data from a repository all at once, no matter whether it's being written to or not.

The lockless nature of reading means that if you're sharing a repository on a multi-user system, you
don't need to grant other local users permission to write to your repository in order for them to be
able to clone it or pull changes from it; they only need read permission. (This is not a common feature
among revision control systems, so don't take it for granted! Most require readers to be able to lock a
repository to access it safely, and this requires write permission on at least one directory, which of
course makes for all kinds of nasty and annoying security and administrative problems.)

Mercurial uses locks to ensure that only one process can write to a repository at a time (the locking
mechanism is safe even over filesystems that are notoriously hostile to locking, such as NFS). If a
repository is locked, a writer will wait for a while to retry if the repository becomes unlocked, but
if the repository remains locked for too long, the process attempting to write will time out after a
while. This means that your daily automated scripts won't get stuck forever and pile up if a system
crashes unnoticed, for example. (Yes, the timeout is configurable, from zero to infinity.)

4.5.3.1 ZAYAZRAFR

As with revision data, Mercurial doesn't take a lock to read the dirstate file:; it does acquire a lock to
write it. To avoid the possibility of reading a partially written copy of the dirstate file, Mercurial
writes to a file with a unique name in the same directory as the dirstate file, then renames the temporary
file atomically to dirstate. The file named dirstate is thus guaranteed to be complete, not partially
written.

4.5.4 #RERK

Critical to Mercurial's performance is the avoidance of seeks of the disk head, since any seek is far
more expensive than even a comparatively large read operation.

This is why, for example, the dirstate is stored in a single file. If there were a dirstate file per
directory that Mercurial tracked, the disk would seek once per directory. Instead, Mercurial reads the
entire single dirstate file in one step.

Mercurial also uses a ‘copy on write scheme when cloning a repository on local storage. Instead of
copying every revlog file from the old repository into the new repository, it makes a ‘hard link’
which is a shorthand way to say ‘these two names point to the same file’ . When Mercurial is about
to write to one of a revlog's files, it checks to see if the number of names pointing at the file is
greater than one. If it is, more than one repository is using the file, so Mercurial makes a new copy
of the file that is private to this repository.

A few revision control developers have pointed out that this idea of making a complete private copy of a
file is not very efficient in its use of storage. While this is true, storage is cheap, and this method
gives the highest performance while deferring most book-keeping to the operating system. An alternative
scheme would most likely reduce performance and increase the complexity of the software, but speed and
simplicity are key to the ‘feel’ of day-to-day use.

4.5.5 BEZFKAINEECARE

Because Mercurial doesn't force you to tell it when you're modifying a file, it uses the dirstate to
store some extra information so it can determine efficiently whether you have modified a file. For each
file in the working directory, it stores the time that it last modified the file itself, and the size
of the file at that time.

When you explicitly hg add, hg remove, hg rename or hg copy files, Mercurial updates the dirstate so
that it knows what to do with those files when you commit.

The dirstate helps Mercurial to efficiently check the status of files in a repository.

Ed. 1
Mercurial YIS

42 / 189

When Mercurial checks the state of a file in the working directory, it first checks a file's
modification time against the time in the dirstate that records when Mercurial last wrote the file.
If the last modified time is the same as the time when Mercurial wrote the file, the file must not
have been modified, so Mercurial does not need to check any further.

If the file's size has changed, the file must have been modified. If the modification time has
changed, but the size has not, only then does Mercurial need to actually read the contents of the
file to see if it has changed.

Storing the modification time and size dramatically reduces the number of read operations that Mercurial
needs to perform when we run commands like hg status. This results in large performance improvements.

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
43 / 189

Chapter 5

Mercurial &) B % 1{¢ JH

5.1 %75 Mercurial Z3RIZPETH

Mercurial does not work with files in your repository unless you tell it to manage them. The hg status
command will tell you which files Mercurial doesn't know about; it uses a ‘?’° to display such files.

i Fhg addig & KilbMercurial lREE— 30 o — BN T —A 308 %X RYhe statusPOB RN 27 ZBELT ‘A7

hg init add-example

cd add-example

echo a > myfile.txt

hg status

myfile.txt

hg add myfile.txt

hg status

myfile.txt

hg commit -m 'Added one file'
hg status

(S I e N R N A I

T34 The commitZ J5, 1’]’%’“%@2HJP’%JJHE’JY#%W/\EﬁI)thg statusiFRYHEIH F o JRAET, ESREHIT, he
status{UUEIFRARESAR AT RE “ROGER" BUSCIF—BREEIRESE (Fban) BB, MR, S@msert o AR RIS E a5 L

BIN— 325, Mercurial 7 iANE B EXFEMUEMBRAE - M, £ TRIFRCHEE , ERAIX D E— R - I

5.1.1 G5B A 4%

Mercurial —ME AL R URIRE — P ERAERE — DS, ET—Mlercurial i EMN MEHE " HREAXH

mkdir b

echo b > b/somefile.txt

echo ¢ > b/source.cpp

mkdir b/d

echo d > b/d/test.h

hg add b

adding b/d/test.h

adding b/somefile.txt

adding b/source.cpp

$ hg commit -m 'Added all files in subdirectory'

P hH PP DB P

ERAAEXD EEXANMTF, Mercurial i TEARIIRISCIFRIA T, SRTUAERTE BOF] o S FA AN Fmy file . txt R
FESCRIEIAR M, AR < TP IFRYZE T ZASINA SO © XML, Mercurial BORHATAERAEM T 4, B
SR, HHATED B REE & AR SRR, Mercurial 2R HBMER BN ORI H R o SXEER BT, [RIHE

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
44 / 189

5.1.2 Mercurial RREXH » FREA Z

Mercurial HAIRELHXEE » R, ERIRESUFRIBRRE - IR — P UEZRT, EE LS QIEZ T BE s/ H 3
SHREAR LA AR, TR DUHEABR 55X B AHRIAVRCR o BRlMercurial (9IF & FINN B HEZ B F i RH E 707

WRIFERFEERAT S ES AT, AU - H—20 &1 HE%, R5EHhe addin QB FHEHRM—1 "FE#E S
TE KBS RS SC o iX P IEIT

$ hg init hidden-example

$ cd hidden-example

$ mkdir empty

$ touch empty/.hidden

$ hg add empty/.hidden

$ hg commit -m 'Manage an empty-looking directory'
$ 1s empty

$ cd ..

$ hg clone hidden-example tmp

updating to branch default

1 files updated, O files merged, O files removed, O files unresolved
$ 1s tmp

empty

$ 1s tmp/empty

FIN—FITERAE A B oL BIERIA, EFET H R R A

5.2 defTiz ok IRER U

— ELRPRSE B — A S A FE R, (2] he removerid o & 2RI, FFHEANercurial BILBRERE (TUR
statusfyEIH FLL ‘R™ FRiH o

hg init remove-example
cd remove-example

echo a > a

mkdir b

echo b > b/b

hg add a b

adding b/b

$ hg commit -m 'Small example for file removal'
$ hg remove a

$ hg status

R a

$ hg remove b

removing b/b

P BH PP DB P

FEVRAE i hg remove iR — P SCFZJE, Mercurial NEHRESX DM ICIFRIZRM, RIGEIRAE TAE R S LARFER 2 FEH AR T —
addiFINERATLL T © Mercurial SAIELIX MEINRISCIF BARFI LLRTHI SR 2 F A, (B2 KA

5.2.1 MM FHohm

SRR — D SO AN T IR, X IEF B -

SR BA TR e -
+ WFUHRATFA, Mercurial B S 7EMBRE L HEOASL -

FHIER— D SCHEAN 2 DUE 5 B BOX D SRR 5 o
UARARAERE —ROAS AR — D SRR, 055 DA B SR LRI RO R SRR, BB XA SO B a Bt bR, A 4aX i

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
45 / 189

5.2.2 F ke

IR —DIEMBR T, (HEAEHhe removeim SMIERAY, Mercurial WHEERT o ERAIU F{Ehe statushfir it # L

hg init missing-example

cd missing-example

echo a > a

hg add a

hg commit -m 'File about to be missing'
rm a

hg status

a

— AP DL B P DL

UtRhg statusiR ERRAEFHI—PXFRRT, WERFEATEINXET, IRF] LIEDUSHIEME FZ1The re-

move ——afterfif%, HiffMercurial {/R7 BEMI BRI S0 -

$ hg remove --after a
$ hg status
R a
— T, WERIRERNOIEIA MR, T e revertfn 20N EBERE FISCHES o BB STk E B RS S BT Y

7
$ hg revert a
3
a
3

hg status

5.2.3 #8: A ZREZAALEUF Mercurial M| U2

IRATREAME A A Mercur 1al ZRURBABGERY & F B ZMIBR— D30 » fEMercurial FFARI R, HEREX L] DA E ST
commi t{IHE, B A LIRESX S o LR L, XRFEBCAEEEIRRM -

5.2.4 K RHEIF—— /T B hada Bl s T4

Mercurialfgft—PHEM S, hg addremove, ERINIIARIRERHIICIE, RIKHFFEKREISCFERE I MIER -

hg init addremove —example
cd addremove —example

echo a > a

echo b > b

hg addremove

PP BH PP

adding a
adding b

hg commi tiF 2 FIFEHIRHE— D -AET, 7E3RAC 2 JEdEATHH IR RO MRS o
$ echo ¢ > ¢

$ hg commit -A -m 'Commit with addremove'
adding c

5.3 ¥

Mercurialfgft T — hg copyin4, R LA DS o« SARMIX D58 IUOCFRS, Mercurialiosk N iX 302 H K

Ed. 1

Mercurial YIS
46 / 189

5.3.1 AHEBEHENIHGAE

EEHFIEF, ZES R BN - hTEFNEEE, AT o BTN DR & — ST/ A

hg init my-copy

cd my-copy

echo line > file

hg add file

hg commit -m 'Added a file'

P BhHPHL P

HANFEIATIOLANE, PrOARNTZEHATAIF o B DA TR A ZE Tl

$ cd ..

$ hg clone my-copy your-copy

updating to branch default

1 files updated, 0 files merged, O files removed, O files unresolved

BIZIFDIGHIRRCAE, A 1Hhe copyp & IR A T IR B SLASCAFRIFE DL -

$ cd my-copy
$ hg copy file new-file

RIFUIRHANTE — The statusHYRIH, K I DA SCHFE R BB BAVFR IS -

$ hg status
A new-file

HEF AR AN A he statushl E-CETL, BRI AT FSIIHI SO R MBS S DUTTRHY

$ hg status -C
A new-file
file
$ hg commit -m 'Copied file'

BUE, BRI AR, BAIHFATRIE—SBE), ARSI R OIRA SR —1T

$ cd ../your-copy
$ echo 'new contents' >> file
$ hg commit -m 'Changed file'

DUERRAS I LT T B ROL A0 © BTN — MR, B AFM D TIARCKR, Mercurial &R 28 NFA BRI

$ hg pull ../my-copy

pulling from ../my-copy

searching for changes

adding changesets

adding manifests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)

$ hg merge

merging file and new-file to new-file

0 files updated, 1 files merged, O files removed, O files unresolved
(branch merge, don't forget to commit)

$ cat new-file

line

new contents

Ed. 1

Mercurial YIS
47 / 189

5.3.2 A2 &iEHTE?

RX—ATH— R E SR R N F— AREERELIERE, EERSHEELT, ERZH -
EIREALEX P E R UL AR A TR o B DUNRAR Fng copy# T — 30, UJETE TARE AR R SUF#EAT TIBRK,
HRE TR, AR A IRERHFRIZE LA EELX NP8 WRIRHE, (ER0r 2 78 DT 3% -

MercurialiIZFEBTAEEANT o BN EIRABSFIBIE T — D EEAbug, RIFHRCTEHE » SHFER, (RRE Mhs
copy A & TEARAIRRA E th#8 TUX AN S0, ABARIFAFIELX Mous X B LA IMNECEWBEE T, H BARCEFIRTEIRIIPE I Fy;

IR VHERMZ A RIF B A, (BEMercurial N R EERGEI, AR R IAE S M bue, BRIEIR
Mercurial FHEE T bughyZ8 B MRS B BhRYEIREIFE DL, TS T IXAERIFIRR © $ 3 T/, Mercurial EME—HIRIXH:
— BRI LA T DR S R & 05, 8 FUCR 22 3 IR SRR 8 P8 DU, X pi@Mercurial (AL -

5.3.3 defTZi T @40

IR THMERE, ARG B sh e DR 2 Z HA T RE SR, AR LUER R RRIE N S (FERUnixRE
add FEHAINTE DLASCH: o FEARIX AMEZ T, TEEFESection 5.3.2, HAX—EERPEAEMNNEEIRIIEN, RIG1E

5.3.4 +44hg copyfiTHA

TEf# Fihg copyin @RI &, Mercurial B Hl TAEHE FH HRIAIICHE » hghEid, AR SUHEET B, HFHERERT,
copy A AIFTHI SR B & X LB - (BB XA SNEHHE, X ERE—T <)

hg copy g L MUnixHcpAT LTHEERMBL (ANRIFEIX, AL A he colEAERIHIG) © Tl LBAERMEM P EE P LLESE,
Hega—Mh AR, HAMBAER

WRAIRAG 2ahe copy—NICHFENIR, T B PRSUEANERE, B0 -

$ mkdir k

$ hg copy a k
$ 1s k

a

IR BIRE— DA, Mercurial 2K BT A RIS LB HARE %

$ mkdir d
$ hg copy a b d
$ 1s d

a b

FSRPE VU@ ARy, PREF IR B SR ASEH

$ hg copy z e
copying z/a/c to e/a/c

IR B AR H 3, IR E R 2 HIRE X ERE -

$ hg copy z d
copying z/a/c to d/z/a/c

Fihg removeti —HFE, WRIRFBhEE N T —P30HI A B ercurial FLEREE L T3X 304, AT A% he copy &N L~
—afteri&I o

$ cp an
$ hg copy -—after a n

Ed. 1

Mercurial FUEIETE /
48 189

5.4 #|HL LA

ST A, B SRR AR R o BAE TS E a4 S Z BT 18 he copy & /& [l AMercur ial Xt F-9% TURIE -
FERIETThe renamefp @HIAF (R, Mercurial FIeW B MECIFEM—mIBE I, REMERE, FRHERRIIMER o

$ hg rename a b

he statusiy < BRI SCHFRIRAS RN, 78 DURIHR D SCFIR S 2 MR -

$ hg status
A b
R a

Flhg copyfi MR —KE, A1V T %4he statusiy I _E-CEITTAGEE EMercurial 2 5N SR BAE R R IG SO HE I

$ hg status -C
A Db

a
R a

hg removefllhg copyfi & —HE, VRTESEG AT LA A ——af teriBi & ifMercurial 244 o REZEHUIFHM T, hg renamefilhg
copy AT A L TR 2 A LAY

IRFFEUnixAF 1T, BAERE—DFHEE, ATL A he mvE{Chg rename

5.4.1 ETHELIMSLEHATE

R JMercurial BB A 45 /& DAFE DURIBREV T ZUSEERRY, QiR T — D 30HF, RIEXCRHEGS, B HEILE S MFEARIIF
WRFBER T — A, FRRCHERES, RERNEIFHRERE, BARERIA I TR BECR & R ERATHIC

KT SIREEEIUX N IhEE, RATREALUVE I IR, XS ER XEZEE R FIREEm AR ER -
WREARX NI, AL Em R LG, ZERESDWELR -

5.4.2 iR L5467+

SIS A R RITE L, BRI A& IR A — S — 3L 4% foo

$ hg clone orig anne

updating to branch default

1 files updated, 0 files merged, O files removed, O files unresolved
$ hg clone orig bob

updating to branch default

1 files updated, 0 files merged, O files removed, O files unresolved

Anne B4 Jybar

$ cd anne
$ hg rename foo bar
$ hg ci -m 'Rename foo to bar'

FIES, BobB B4 Faquux o (iffFhg mvithg renamefH]4 o)

$ cd ../bob
$ hg mv foo quux
$ hg ci -m 'Rename foo to quux'

Ed. 1

Mercurial YIS
49 / 189

I TNXRE— NN, FRTFRE XA R Z A ar 4 A T AFEKER -
IRBEAFAAN & FFRIRF R & AT ADEY AR ETEE AL ERRINE, Mercurial LPR EREP D ICFERE o

See http://www.selenic.com/mercurial/bts/issued55

$ cd ../orig
$ hg pull -u ../anne
pulling from ../anne
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files
1 files updated, 0 files merged, 1 files removed, O files unresolved
$ hg pull ../bob
pulling from ../bob
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)
$ hg merge
warning: detected divergent renames of foo to:
bar
quux
1 files updated, 0 files merged, O files removed, O files unresolved
(branch merge, don't forget to commit)
$ 1s
bar quux

ER R RMercurial RXF A A ES, (B2 HIRARRETE & FF 5 g 3 15 -

5.4.3 M EFEGFLELHA

TR 2 R SE P R R IR SO o MR B BRSO o IXFPEOL T, Mercurial RPUTIEWRIATFERE, RJEILS

5.4.4 R v L4 X948

Mercurial—HHH —bug, WREHEMTEFNEMRELI —AF -3, WAS—DE - MHREGHRIER, A
29 o

$ hg init issue29

$ cd issue29

$ echo a > a

$ hg ci -Ama

adding a

$ echo b > b

$ hg ci -Amb

adding b

$ hg up O

0 files updated, O files merged, 1 files removed, O files unresolved
$ mkdir b

$ echo b > b/b

$ hg ci -Amc

adding b/b

created new head

$ hg merge

abort: Is a directory: /tmp/issue29aulOstu/issue29/b

http://www.selenic.com/mercurial/bts/issue29
http://www.selenic.com/mercurial/bts/issue29

Ed. 1

Mercurial YIS
50 / 189

5.5 MEEIREE

Mercurialfgflt T —EA MRS, ENTA LI BI/R N —LH IR IR E o

A blhg revertir S TUNA TIEEFMATEE « LAl (50 fihs addfr QM T — 30k, RIEEThs reverthl LI
rever tINBRR AR HOSRATTE Y -

it fEhg revert & X OGE H TR LA R ACHIB & - —BARRRZ TR, RIFRKILXE TR, ROREISELE
FKThg revertm SMELEE, AWML ELRCIERE, §5 % Chapter 9 e

5.6 & H09HET

ERRT HEZRNEE T, WAZHEENEIFHEE LA o Bixa RXROIECHE, AFFMIAERIETRZB: XA
BATH— A B FFE B AT X FE I o FATRA & — D SUHRIRRA ST FE R IR o
$ hg init conflict

$ cd conflict

$ echo first > myfile.txt

$ hg ci -A -m first

adding myfile.txt

$ cd

$ hg clone conflict left

updating to branch default

1 files updated, 0 files merged, O files removed, O files unresolved

$ hg clone conflict right

updating to branch default

1 files updated, 0 files merged, O files removed, O files unresolved

EE—NTES, BAPRE B BGXFE
cd left

$
$ echo left >> myfile.txt
$ hg ci -m left

FERI—PTEET, BAIHEENRE -

$ cd ../right
$ echo right >> myfile.txt
$ hg ci -m right

BT, AR A2 AR R AR AR ©

$ cd ../conflict

$ hg pull -u ../left

pulling from ../left

searching for changes

adding changesets

adding manifests

adding file changes

added 1 changesets with 1 changes to 1 files

1 files updated, 0 files merged, O files removed, O files unresolved
$ hg pull -u ../right

pulling from ../right

searching for changes

adding changesets

adding manifests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
not updating, since new heads added

(run 'hg heads' to see heads, 'hg merge' to merge)

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
51 / 189

Fol I BRAR FEIRAE R PSSR

$ hg heads

changeset: 2:66921ba8fbed

tag: tip

parent: O0:ffdlcfdba953

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:15:38 2011 +0000
summary : right

changeset: 1:c20457881453

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:15:38 2011 +0000
summary : left

EHEIT, RXNENTZThe nerge « ERBIT—1GUIRRF, LA Ry Cile. txt B o (B, N T EHX HAE

$ export HGMERGE=false

AT Mercurial FIAFRIRSHL, IR TRMEIREE B CRAFRIE, #iafTirdfalse (RIRATHEN—FE, SLEIE
WMRIMFEFA T2 The merge, MME{F LBITRIEHRE —FFEE% -

$ hg merge

merging myfile.txt

merging myfile.txt failed!

0 files updated, 0 files merged, O files removed, 1 files unresolved

use 'hg resolve' to retry unresolved file merges or 'hg update -C' to abandon

BIERA I AEBRI A IR, Mercurialtt 20 1EFATEIMIAR IS R & FFLER -

$ hg commit -m 'Attempt to commit a failed merge'
abort: unresolved merge conflicts (see hg resolve)

XFEGL T, hg commi t RMAVETEE, BN FA1#FEAREAR hg resolvefp4 o FILAFI—FE, hg help resolvesHiH # BAYT

5.6.1 LA RRA

BHEER, REECTHEEEEMZML o Mercurial i TB M EEHTHRIER S, HSREEIPRES -
resolved /R E LRI AT, K%%MercurialEiﬂﬁﬁﬂiﬂ"]ﬂ‘%iiﬁﬂﬁﬁﬁiﬂ"] °
unresolvedF /R A B &, FFANEE o

iR Mercurial £ & FF /5 752%1:?17?(#&?%%@(%4%@ ERWINIREFFRM 200, FMTAT ZERN LI Rt
hg resolvefJ--1istElE -LIRWI&ATEHI M B D& I B SUFRPIRE

$ hg resolve -1
U myfile.txt

ql
N\

fehg resolvelHIH ', CEMRIISTIFIRAAR, TIARMRITIFFRHAU o R ETSFEARIAU, IBARATBAFESE

5.6.2 MRS H

BN TR T VER S MRS RARTSZE B AIRTE o 2408 Ih & W B &2 E#TiE1The resolve o AR PRS2 53
—al1BE - R AT, WA CSEHEGIHITERIARMHRIE -
Mercurial also lets us modify the resolution state of a file directly. We can manually mark a file as

resolved using the --mark option, or as unresolved using the —--unmark option. This allows us to clean
up a particularly messy merge by hand, and to keep track of our progress with each file as we go.

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
52 / 189

5.7 AR P %7

BBHEIT . he di00d SR S M £ ST, B RERAT B -
WABFA 1 A he rename fdsRE A LM o

$ hg rename a b

$ hg diff

diff -r 986c22e90a4d45 a

--- a/a Tue Mar 15 14:15:36 2011 +0000

+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
e -1,1 +0,0 @@

-a

diff -r 986c22e90a45 b

--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/b Tue Mar 15 14:15:37 2011 +0000

eo -0,0 +1,1 @

+a

BATVA— A%, Tihe diftRUHIHEEIHE R T 5L o he diffap S A LI ET —ei tal & -, B2 FA% LU I w]

$ hg diff -g

diff --git a/a b/b
rename from a
rename to b

XMETELLNER N +0EH, SRS AR — PSR Mhe statusEE, SRAPIRESEPBSR T, ERMAA
diffRRE, AT AKIHBECE » MRFAMER T XAFRIHIT BB & HILXFE L -

$ chmod +x a
$ hg st

M a

$ hg diff

The normal diff command pays no attention to file permissions, which is why hg diff prints nothing by
default. If we supply it with the -g option, it tells us what really happened.

$ hg diff -g

diff --git a/a b/a
old mode 100644
new mode 100755

5.8 MEIHFREE REREFR

RATE B A ST B R E AN B ERSORICE, FlaniRAE, ARBIBAR SRS AR R » S sz H R S L
fan, — P EREEEETT R FAA BRI B R S0P E BRACRS, (R HE Rl ™ (Bonssds, W5E, EfGRE

R — AN BEE FF P I R RE b 50, S AP RS0l F IR USRI AR LI R - ERF— TR
HEME—R RO I -

MEFXRGML, AR ER RS, UE BE A SUEANE A B HNTE S BB A & T2 -

i, FEARRLE, — oA RS RER B BUEILH - 1508 AEERIALET AT ABA Lk BT A — D e SR ERE
TEAFRE SR A, MercurialilH R & RS BRI E— MR Z FIRZE SR ST REEOORETE, X R
BT AR SERREI I R A SoRE B iR iR FMercurial B — P OpenOf fice I © OpenOffice(f 2 i pEE4aRIHE TUFE(#E L
FOFERERDE, AR IRAIH M AR AE G — D OpenOffice R, AT AINESIFIRINIAE « EFrL, A INESIFIFA
N RLZ/AN DAL R LR IR SR L S — R

Ed. 1

Mercurial YIS
53 / 189

B KT HABEESERISCH:, AN1SO CD-ROMBRR, 2 (ERRAS R/ INA T 819 S BUl T 48 se R A H 4R 18 -
RNEIAR AR, iR B SRR R E 20, R AT S E i RAR AR S -

5.9 &ir5414%

B Mercurial FEREDFORE AN A S B 2B UL, FTUE—PIIR F, 8D EAMercurialiBATIMERI KR] LI SO A

It is simple to use Mercurial to perform off-site backups and remote mirrors. Set up a periodic Jjob
(e.g. via the cron command) on a remote server to pull changes from your master repositories every hour.
This will only be tricky in the unlikely case that the number of master repositories you maintain changes
frequently, in which case you'll need to do a little scripting to refresh the list of repositories to
back up.

If you perform traditional backups of your master repositories to tape or disk, and you want to back
up a repository named myrepo, use hg clone -U myrepo myrepo.bak to create a clone of myrepo before you
start your backups. The -U option doesn't check out a working directory after the clone completes, since
that would be superfluous and make the backup take longer.

If you then back up myrepo.bak instead of myrepo, you will be guaranteed to have a consistent snapshot
of your repository that won't be pushed to by an insomniac developer in mid-backup.

Ed. 1

Mercurial YIS
54 / 189

Chapter 6

R AE

As a completely decentralised tool, Mercurial doesn't impose any policy on how people ought to work with
each other. However, if you're new to distributed revision control, it helps to have some tools and
examples in mind when you're thinking about possible workflow models.

6.1 Mercurial & web 0

Mercurial has a powerful web interface that provides several useful capabilities.

For interactive use, the web interface lets you browse a single repository or a collection of repositories.
You can view the history of a repository, examine each change (comments and diffs), and view the contents
of each directory and file. You can even get a view of history that gives a graphical view of the
relationships between individual changes and merges.

Also for human consumption, the web interface provides Atom and RSS feeds of the changes in a repository.
This lets you ‘subscribe’ to a repository using your favorite feed reader, and be automatically notified
of activity in that repository as soon as it happens. I find this capability much more convenient than
the model of subscribing to a mailing list to which notifications are sent, as it requires no additional
configuration on the part of whoever is serving the repository.

The web interface also lets remote users clone a repository, pull changes from it, and (when the server
is configured to permit it) push changes back to it. Mercurial's HTTP tunneling protocol aggressively
compresses data, so that it works efficiently even over low-bandwidth network connections.

The easiest way to get started with the web interface is to use your web browser to visit an existing
repository, such as the master Mercurial repository at http://www.selenic.com/repo/hg.

If you're interested in providing a web interface to your own repositories, there are several good ways
to do this.

The easiest and fastest way to get started in an informal environment is to use the hg serve command,
which is best suited to short-term ‘lightweight’ serving. See Section 6.4 below for details of how to
use this command.

For longer-lived repositories that you'd like to have permanently available, there are several public host-
ing services available. Some are free to open source projects, while others offer paid commercial hosting.
An up-to-date list is available at http://www.selenic.com/mercurial/wiki/index.cgi/MercurialHosting.

If you would prefer to host your own repositories, Mercurial has built-in support for several popular
hosting technologies, most notably CGI (Common Gateway Interface), and WSGI (Web Services Gateway
Interface). See Section 6.6 for details of CGI and WSGI configuration.

http://www.selenic.com/repo/hg
http://www.selenic.com/mercurial/wiki/index.cgi/MercurialHosting

Ed. 1

Mercurial YIS
55 / 189

6.2 AEAER

With a suitably flexible tool, making decisions about workflow is much more of a social engineering
challenge than a technical one. Mercurial imposes few limitations on how you can structure the flow of
work in a project, so it's up to you and your group to set up and live with a model that matches your
own particular needs.

6.2.1 ZEiLHRHE

The most important aspect of any model that you must keep in mind is how well it matches the needs and
capabilities of the people who will be using it. This might seem self-evident; even so, you still can't
afford to forget it for a moment.

I once put together a workflow model that seemed to make perfect sense to me, but that caused a
considerable amount of consternation and strife within my development team. In spite of my attempts
to explain why we needed a complex set of branches, and how changes ought to flow between them, a few
team members revolted. Even though they were smart people, they didn't want to pay attention to the
constraints we were operating under, or face the consequences of those constraints in the details of the
model that I was advocating.

Don't sweep foreseeable social or technical problems under the rug. Whatever scheme you put into effect,
you should plan for mistakes and problem scenarios. Consider adding automated machinery to prevent, or
quickly recover from, trouble that you can anticipate. As an example, if you intend to have a branch
with not-for-release changes in it, you'd do well to think early about the possibility that someone
might accidentally merge those changes into a release branch. You could avoid this particular problem
by writing a hook that prevents changes from being merged from an inappropriate branch.

6.2.2 RBUFKA

T wouldn't suggest an ‘anything goes’ approach as something sustainable, but it's a model that's easy
to grasp, and it works perfectly well in a few unusual situations.

As one example, many projects have a loose-knit group of collaborators who rarely physically meet each
other. Some groups like to overcome the isolation of working at a distance by organizing occasional

‘sprints’ . In a sprint, a number of people get together in a single location (a company's conference
room, a hotel meeting room, that kind of place) and spend several days more or less locked in there,
hacking intensely on a handful of projects.

A sprint or a hacking session in a coffee shop are the perfect places to use the hg serve command, since
hg serve does not require any fancy server infrastructure. You can get started with hg serve in moments,
by reading Section 6.4 below. Then simply tell the person next to you that you're running a server, send
the URL to them in an instant message, and you immediately have a quick-turnaround way to work together.
They can type your URL into their web browser and quickly review your changes; or they can pull a bugfix
from you and verify it; or they can clone a branch containing a new feature and try it out.

The charm, and the problem, with doing things in an ad hoc fashion like this is that only people who
know about your changes, and where they are, can see them. Such an informal approach simply doesn't
scale beyond a handful people, because each individual needs to know about n different repositories to
pull from.

6.2.3 F—FRRAE

For smaller projects migrating from a centralised revision control tool, perhaps the easiest way to get
started is to have changes flow through a single shared central repository. This is also the most common

Ed. 1

Mercurial YIS
56 / 189

‘building block’ for more ambitious workflow schemes.

Contributors start by cloning a copy of this repository. They can pull changes from it whenever they
need to, and some (perhaps all) developers have permission to push a change back when they're ready for
other people to see it.

Under this model, it can still often make sense for people to pull changes directly from each other,
without going through the central repository. Consider a case in which I have a tentative bug fix, but I
am worried that if I were to publish it to the central repository, it might subsequently break everyone
else's trees as they pull it. To reduce the potential for damage, I can ask you to clone my repository
into a temporary repository of your own and test it. This lets us put off publishing the potentially
unsafe change until it has had a little testing.

If a team is hosting its own repository in this kind of scenario, people will usually use the ssh protocol
to securely push changes to the central repository, as documented in Section 6.5. It's also usual to
publish a read-only copy of the repository over HTTP, as in Section 6.6. Publishing over HTTP satisfies
the needs of people who don't have push access, and those who want to use web browsers to browse the
repository's history.

6.2.4 TP IR ANE

A wonderful thing about public hosting services like Bitbucket is that not only do they handle the fiddly
server configuration details, such as user accounts, authentication, and secure wire protocols, they
provide additional infrastructure to make this model work well.

For instance, a well-engineered hosting service will let people clone their own copies of a repository
with a single click. This lets people work in separate spaces and share their changes when they're
ready.

In addition, a good hosting service will let people communicate with each other, for instance to say
‘there are changes ready for you to review in this tree’

6.2.5 1A% A9 ITH

Projects of any significant size naturally tend to make progress on several fronts simultaneously. In
the case of software, it's common for a project to go through periodic official releases. A release
might then go into ‘maintenance mode’ for a while after its first publication; maintenance releases
tend to contain only bug fixes, not new features. In parallel with these maintenance releases, one or
more future releases may be under development. People normally use the word ‘branch’ to refer to one
of these many slightly different directions in which development is proceeding.

Mercurial is particularly well suited to managing a number of simultaneous, but not identical, branches.
Each ‘development direction’ can live in its own central repository. and you can merge changes from
one to another as the need arises. Because repositories are independent of each other, unstable changes
in a development branch will never affect a stable branch unless someone explicitly merges those changes
into the stable branch.

" . . . fl ‘ . ’
Here's an example of how this can work in practice. Let's say you have one main branch on a central
server.

$ hg init main

$ cd main

$ echo 'This is a boring feature. > myfile

$ hg commit -A -m 'We have reached an important milestone!'
adding myfile

People clone it, make changes locally, test them, and push them back.

Once the main branch reaches a release milestone, you can use the hg tag command to give a permanent
name to the milestone revision.

http://bitbucket.org/

Ed. 1

Mercurial YIS
57 / 189

$ hg tag v1.0

$ hg tip

changeset: 1:d9a9c78c4753

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:15:34 2011 +0000

summary : Added tag v1.0 for changeset ebf8060f1f60
$ hg tags

tip 1:d9a9c78c4753

vl.0 0:ebf8060f1f60

Let's say some ongoing development occurs on the main branch.

$ cd ../main

$ echo 'This is exciting and new!' >> myfile
$ hg commit -m 'Add a new feature'

$ cat myfile

This is a boring feature.

This is exciting and new!

Using the tag that was recorded at the milestone, people who clone that repository at any time in the
future can use hg update to get a copy of the working directory exactly as it was when that tagged
revision was committed.

cd

hg clone -U main main-old

cd main-old

hg update v1.0

files updated, 0 files merged, O files removed, O files unresolved
cat myfile

This is a boring feature.

h = P PhBH P

In addition, immediately after the main branch is tagged, we can then clone the main branch on the server
to a new ‘stable’ branch, also on the server.

$ cd

$ hg clone -rvl.0 main stable

requesting all changes

adding changesets

adding manifests

adding file changes

added 1 changesets with 1 changes to 1 files

updating to branch default

1 files updated, 0 files merged, O files removed, O files unresolved

If we need to make a change to the stable branch, we can then clone that repository, make our changes,
commit, and push our changes back there.

$ hg clone stable stable-fix

updating to branch default

1 files updated, O files merged, O files removed, O files unresolved
$ cd stable-fix

$ echo 'This is a fix to a boring feature.
$ hg commit -m 'Fix a bug'

$ hg push

pushing to /tmp/branchingCbOEQf/stable
searching for changes

adding changesets

'

> myfile

adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files

Ed. 1

Mercurial YIS
58 / 189

Because Mercurial repositories are independent, and Mercurial doesn't move changes around automatically,
the stable and main branches are isolated from each other. The changes that we made on the main branch
don't ‘leak’ to the stable branch, and vice versa.

We'll often want all of our bugfixes on the stable branch to show up on the main branch, too. Rather
than rewrite a bugfix on the main branch, we can simply pull and merge changes from the stable to the
main branch, and Mercurial will bring those bugfixes in for us.

$ cd ../main

$ hg pull ../stable

pulling from ../stable

searching for changes

adding changesets

adding manifests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)

$ hg merge

merging myfile

0 files updated, 1 files merged, O files removed, O files unresolved
(branch merge, don't forget to commit)

$ hg commit -m 'Bring in bugfix from stable branch'

$ cat myfile

This is a fix to a boring feature.

This is exciting and new!

The main branch will still contain changes that are not on the stable branch, but it will also contain

all of the bugfixes from the stable branch. The stable branch remains unaffected by these changes, since
changes are only flowing from the stable to the main branch, and not the other way.

6.2.6 HFHH X
For larger projects, an effective way to manage change is to break up a team into smaller groups. Each

group has a shared branch of its own, cloned from a single ‘master’ branch used by the entire project.
People working on an individual branch are typically quite isolated from developments on other branches.

Figure 6.1: ##ﬁtﬁ}?i

When a particular feature is deemed to be in suitable shape, someone on that feature team pulls and
merges from the master branch into the feature branch, then pushes back up to the master branch.

6.2.7 KAHIE

Some projects are organized on a ‘train’ basis: a release is scheduled to happen every few months,
and whatever features are ready when the ‘train’ 1is ready to leave are allowed in.

This model resembles working with feature branches. The difference is that when a feature branch misses
a train, someone on the feature team pulls and merges the changes that went out on that train release

Ed. 1

Mercurial YIS
59 / 189

into the feature branch, and the team continues its work on top of that release so that their feature
can make the next release.

6.2.8 Linux WAZEER

The development of the Linux kernel has a shallow hierarchical structure, surrounded by a cloud of apparent
chaos. Because most Linux developers use git, a distributed revision control tool with capabilities
similar to Mercurial, it's useful to describe the way work flows in that environment:; if you like the
ideas, the approach translates well across tools.

At the center of the community sits Linus Torvalds, the creator of Linux. He publishes a single source
repository that is considered the ‘authoritative’ current tree by the entire developer community.
Anyone can clone Linus's tree, but he is very choosy about whose trees he pulls from.

Linus has a number of ‘trusted lieutenants’ . As a general rule, he pulls whatever changes they publish,
in most cases without even reviewing those changes. Some of those lieutenants are generally agreed to
be ‘maintainers’ , responsible for specific subsystems within the kernel. If a random kernel hacker
wants to make a change to a subsystem that they want to end up in Linus's tree, they must find out who
the subsystem's maintainer is, and ask that maintainer to take their change. If the maintainer reviews
their changes and agrees to take them, they'll pass them along to Linus in due course.

Individual lieutenants have their own approaches to reviewing, accepting, and publishing changes; and
for deciding when to feed them to Linus. In addition, there are several well known branches that people
use for different purposes. For example, a few people maintain ‘stable’ repositories of older versions
of the kernel, to which they apply critical fixes as needed. Some maintainers publish multiple trees:
one for experimental changes: one for changes that they are about to feed upstream; and so on. Others
just publish a single tree.

This model has two notable features. The first is that it's ‘pull only’ . You have to ask, convince,
or beg another developer to take a change from you, because there are almost no trees to which more than
one person can push, and there's no way to push changes into a tree that someone else controls.

The second is that it's based on reputation and acclaim. If you're an unknown, Linus will probably
ignore changes from you without even responding. But a subsystem maintainer will probably review them,
and will likely take them if they pass their criteria for suitability. The more ‘good’ changes you
contribute to a maintainer, the more likely they are to trust your judgment and accept your changes. If
you're well-known and maintain a long-lived branch for something Linus hasn't yet accepted, people with
similar interests may pull your changes regularly to keep up with your work.

Reputation and acclaim don't necessarily cross subsystem or ‘people’ boundaries. If you're a respected
but specialised storage hacker, and you try to fix a networking bug, that change will receive a level
of scrutiny from a network maintainer comparable to a change from a complete stranger.

To people who come from more orderly project backgrounds, the comparatively chaotic Linux Kkernel
development process often seems completely insane. It's subject to the whims of individuals: people
make sweeping changes whenever they deem it appropriate; and the pace of development is astounding. And
yet Linux is a highly successful, well-regarded piece of software.

6.2.9 RiE5£FEWMH%

A perpetual source of heat in the open source community is whether a development model in which people
only ever pull changes from others is ‘better than’ one in which multiple people can push changes to
a shared repository.

Typically, the backers of the shared-push model use tools that actively enforce this approach. If you're
using a centralised revision control tool such as Subversion, there's no way to make a choice over which

Ed. 1

Mercurial YIS
60 / 189

model you'll use: the tool gives you shared-push, and if you want to do anything else, you'll have to
roll your own approach on top (such as applying a patch by hand).

A good distributed revision control tool will support both models. You and your collaborators can then
structure how you work together based on your own needs and preferences, not on what contortions your
tools force you into.

6.2.10 WG9 X% HE

Once you and your team set up some shared repositories and start propagating changes back and forth
between local and shared repos, you begin to face a related, but slightly different challenge: that of
managing the multiple directions in which your team may be moving at once. Even though this subject is
intimately related to how your team collaborates, it's dense enough to merit treatment of its own, in
Chapter 8.

6.3 RXFHHRARE

The remainder of this chapter is devoted to the question of sharing changes with your collaborators.

6.4 4] hg serve HATIEXNEZ

Mercurial's hg serve command is wonderfully suited to small, tight-knit, and fast-paced group environ-
ments. It also provides a great way to get a feel for using Mercurial commands over a network.

Run hg serve inside a repository, and in under a second it will bring up a specialised HTTP server: this
will accept connections from any client, and serve up data for that repository until you terminate it.
Anyone who knows the URL of the server you Jjust started, and can talk to your computer over the network,
can then use a web browser or Mercurial to read data from that repository. A URL for a hg serve instance
running on a laptop is likely to look something like http://my-laptop.local:8000/.

The hg serve command is not a general-purpose web server. It can do only two things:

Allow people to browse the history of the repository it's serving, from their normal web browsers.

Speak Mercurial's wire protocol, so that people can hg clone or hg pull changes from that repository.

In particular, hg serve won't allow remote users to modify your repository. It's intended for read-only
use.

If you're getting started with Mercurial, there's nothing to prevent you from using hg serve to serve
up a repository on your own computer, then use commands like hg clone, hg incoming, and so on to talk to
that server as if the repository was hosted remotely. This can help you to quickly get acquainted with
using commands on network-hosted repositories.

6.4.1 Z®RigHILHBFE

Because it provides unauthenticated read access to all clients, you should only use hg serve in an
environment where you either don't care, or have complete control over, who can access your network and
pull data from your repository.

The hg serve command knows nothing about any firewall software you might have installed on your system
or network. It cannot detect or control your firewall software. If other people are unable to talk to

Ed. 1
Mercurial YIS
61 / 189

a running hg serve instance, the second thing you should do (after you make sure that they're using the
correct URL) is check your firewall configuration.

By default, hg serve listens for incoming connections on port 8000. If another process is already
listening on the port you want to use, you can specify a different port to listen on using the -p option.

Normally, when hg serve starts, it prints no output, which can be a bit unnerving. If you'd like to
confirm that it is indeed running correctly, and find out what URL you should send to your collaborators,
start it with the -v option.

6.5 1£M ssh thil

You can pull and push changes securely over a network connection using the Secure Shell (ssh) protocol.
To use this successfully, you may have to do a little bit of configuration on the client or server sides.

If you're not familiar with ssh, it's the name of both a command and a network protocol that let you
securely communicate with another computer. To use it with Mercurial, you'll be setting up one or more
user accounts on a server so that remote users can log in and execute commands.

(If you are familiar with ssh, you'll probably find some of the material that follows to be elementary
in nature.)

6.5.1 4ef1%E ssh #&4%

An ssh URL tends to look like this:

ssh://bosehg.serpentine.com:22/hg/hgbook

1. The °‘ssh://’ part tells Mercurial to use the ssh protocol.

‘ 9’
2. The bos@ component indicates what username to log into the server as. You can leave this out
if the remote username is the same as your local username.

3. The ‘hg.serpentine.com’ gives the hostname of the server to log into.

4. The ‘:22° identifies the port number to connect to the server on. The default port is 22, so you
only need to specify a colon and port number if you're not using port 22.

5. The remainder of the URL is the local path to the repository on the server.

There's plenty of scope for confusion with the path component of ssh URLs, as there is no standard
way for tools to interpret it. Some programs behave differently than others when dealing with these
paths. This isn't an ideal situation, but it's unlikely to change. Please read the following paragraphs
carefully.

Mercurial treats the path to a repository on the server as relative to the remote user's home directory.
For example, if user foo on the server has a home directory of /home/foo, then an ssh URL that contains
a path component of bar really refers to the directory /home/foo/bar.

If you want to specify a path relative to another user's home directory, you can use a path that starts
with a tilde character followed by the user's name (let's call them otheruser), like this.

ssh://server/~otheruser/hg/repo

And if you really want to specify an absolute path on the server, begin the path component with two
slashes, as in this example.

ssh://server//absolute/path

Ed. 1

Mercurial YIS
62 / 189

6.5.2 ARG AE%FHK ssh B P

Almost every Unix-like system comes with OpenSSH preinstalled. If you're using such a system, run which
ssh to find out if the ssh command is installed (it's usually in /usr/bin). In the unlikely event that
it isn't present, take a look at your system documentation to figure out how to install it.

On Windows, the TortoiseHg package is bundled with a version of Simon Tatham's excellent plink command,
and you should not need to do any further configuration.

6.5.3 A%t

To avoid the need to repetitively type a password every time you need to use your ssh client, I recommend
generating a key pair.

Key pairs are not mandatory
Mercurial knows nothing about ssh authentication or key pairs. You can, if you like, safely ignore
this section and the one that follows until you grow tired of repeatedly typing ssh passwords.

+ On a Unix-like system, the ssh-keygen command will do the trick.

On Windows, if you're using TortoiseHg, you may need to download a command named puttygen from the
PuTTY web site to generate a key pair. See the puttygen documentation for details of how use the
command.

When you generate a key pair, it's usually highly advisable to protect it with a passphrase. (The only
time that you might not want to do this is when you're using the ssh protocol for automated tasks on a
secure network.)

Simply generating a key pair isn't enough, however. You'll need to add the public key to the set of
authorised keys for whatever user you're logging in remotely as. For servers using OpenSSH (the vast
majority)., this will mean adding the public key to a list in a file called authorized keys in their .ssh
directory.

On a Unix-like system, your public key will have a .pub extension. If you're using puttygen on Windows,
you can save the public key to a file of your choosing, or paste it from the window it's displayed in
straight into the authorized keys file.

6.5.4 & RINERIE

An authentication agent is a daemon that stores passphrases in memory (so it will forget passphrases
if you log out and log back in again). An ssh client will notice if it's running, and query it for
a passphrase. If there's no authentication agent running, or the agent doesn't store the necessary
passphrase, you'll have to type your passphrase every time Mercurial tries to communicate with a server
on your behalf (e.g. whenever you pull or push changes).

The downside of storing passphrases in an agent is that it's possible for a well-prepared attacker to
recover the plain text of your passphrases, in some cases even if your system has been power-cycled.
You should make your own judgment as to whether this is an acceptable risk. It certainly saves a lot of
repeated typing.

+ On Unix-like systems, the agent is called ssh-agent, and it's often run automatically for you when
you log in. You'll need to use the ssh-add command to add passphrases to the agent's store.

+ On Windows, if you're using TortoiseHg, the pageant command acts as the agent. As with puttygen,
you'll need to download pageant from the PuTTY web site and read its documentation. The pageant
command adds an icon to your system tray that will let you manage stored passphrases.

http://www.chiark.greenend.org.uk/~sgtatham/putty
http://www.chiark.greenend.org.uk/~sgtatham/putty
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter8.html#pubkey-puttygen
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter9.html#pageant

Ed. 1

Mercurial YIS
63 / 189

6.5.5 JEFELE IR % 55K

Because ssh can be fiddly to set up if you're new to it, a variety of things can go wrong. Add Mercurial
on top, and there's plenty more scope for head-scratching. Most of these potential problems occur on
the server side, not the client side. The good news is that once you've gotten a configuration working,
it will usually continue to work indefinitely.

Before you try using Mercurial to talk to an ssh server, it's best to make sure that you can use the
normal ssh or putty command to talk to the server first. If you run into problems with using these
commands directly, Mercurial surely won't work. Worse, it will obscure the underlying problem. Any time
you want to debug ssh-related Mercurial problems, you should drop back to making sure that plain ssh
client commands work first, before you worry about whether there's a problem with Mercurial.

The first thing to be sure of on the server side is that you can actually log in from another machine
at all. If you can't use ssh or putty to log in, the error message you get may give you a few hints as
to what's wrong. The most common problems are as follows.

- If you get a ‘connection refused’ error, either there isn't an SSH daemon running on the server at
all, or it's inaccessible due to firewall configuration.

- If you get a ‘no route to host’ error, you either have an incorrect address for the server or a
seriously locked down firewall that won't admit its existence at all.

If you get a ‘permission denied’ error, you may have mistyped the username on the server, or you
could have mistyped your key's passphrase or the remote user's password.

In summary, if you're having trouble talking to the server's ssh daemon, first make sure that one is
running at all. On many systems it will be installed, but disabled, by default. Once you're done with
this step, you should then check that the server's firewall is configured to allow incoming connections
on the port the ssh daemon is listening on (usually 22). Don't worry about more exotic possibilities
for misconfiguration until you've checked these two first.

If you're using an authentication agent on the client side to store passphrases for your keys, you ought
to be able to log into the server without being prompted for a passphrase or a password. If you're
prompted for a passphrase, there are a few possible culprits.

+ You might have forgotten to use ssh—add or pageant to store the passphrase.

* You might have stored the passphrase for the wrong key.

If you're being prompted for the remote user's password, there are another few possible problems to
check.

Either the user's home directory or their .ssh directory might have excessively liberal permissions.
As a result, the ssh daemon will not trust or read their authorized keys file. For example, a
group-writable home or .ssh directory will often cause this symptom.

The user's authorized keys file may have a problem. If anyone other than the user owns or can write
to that file, the ssh daemon will not trust or read it.

In the ideal world, you should be able to run the following command successfully, and it should print
exactly one line of output, the current date and time.

ssh myserver date

If, on your server, you have login scripts that print banners or other junk even when running non-
interactive commands like this, you should fix them before you continue, so that they only print output
if they're run interactively. Otherwise these banners will at least clutter up Mercurial's output.
Worse, they could potentially cause problems with running Mercurial commands remotely. Mercurial tries

Ed. 1

Mercurial YIS
64 / 189

to detect and ignore banners in non-interactive ssh sessions, but it is not foolproof. (If you're editing
your login scripts on your server, the usual way to see if a login script is running in an interactive
shell is to check the return code from the command tty -s.)

Once you've verified that plain old ssh is working with your server, the next step is to ensure that
Mercurial runs on the server. The following command should run successfully:

ssh myserver hg version

If you see an error message instead of normal hg version output, this is usually because you haven't
installed Mercurial to /usr/bin. Don't worry if this is the case; you don't need to do that. But you
should check for a few possible problems.

+ Is Mercurial really installed on the server at all? I know this sounds trivial, but it's worth
checking!

Maybe your shell's search path (usually set via the PATH environment variable) is simply misconfigured.

Perhaps your PATH environment variable is only being set to point to the location of the hg executable
if the login session is interactive. This can happen if you're setting the path in the wrong shell
login script. See your shell's documentation for details.

The PYTHONPATH environment variable may need to contain the path to the Mercurial Python modules. It
might not be set at all; it could be incorrect; or it may be set only if the login is interactive.

If you can run hg version over an ssh connection, well done! You've got the server and client sorted
out. You should now be able to use Mercurial to access repositories hosted by that username on that
server. If you run into problems with Mercurial and ssh at this point, try using the —--debug option to
get a clearer picture of what's going on.

6.5.6 il ssh 1 H &4

Mercurial does not compress data when it uses the ssh protocol, because the ssh protocol can transparently
compress data. However, the default behavior of ssh clients is not to request compression.

Over any network other than a fast LAN (even a wireless network), using compression is likely to
significantly speed up Mercurial's network operations. For example, over a WAN, someone measured
compression as reducing the amount of time required to clone a particularly large repository from 51
minutes to 17 minutes.

Both ssh and plink accept a -C option which turns on compression. You can easily edit your ~/.hgrc to
enable compression for all of Mercurial's uses of the ssh protocol. Here is how to do so for regular
ssh on Unix-like systems, for example.

[ui]
ssh = ssh -C

If you use ssh on a Unix-like system, you can configure it to always use compression when talking to
your server. To do this, edit your .ssh/config file (which may not yet exist), as follows.

Host hg
Compression yes
HostName hg.example.com

This defines a hostname alias, hg. When you use that hostname on the ssh command line or in a Mercurial
ssh-protocol URL, it will cause ssh to connect to hg.example.com and use compression. This gives you
both a shorter name to type and compression, each of which is a good thing in its own right.

Ed. 1

Mercurial YIS
65 / 189

6.6 4R CGI @i HITP RA4ER %

The simplest way to host one or more repositories in a permanent way is to use a web server and Mercurial's
CGI support.

Depending on how ambitious you are, configuring Mercurial's CGI interface can take anything from a few
moments to several hours.

We'll begin with the simplest of examples, and work our way towards a more complex configuration. Even
for the most basic case, you're almost certainly going to need to read and modify your web server's
configuration.

High pain tolerance required

Configuring a web server is a complex, fiddly, and highly system-dependent activity. I can't possibly
give you instructions that will cover anything like all of the cases you will encounter. Please use
your discretion and judgment in following the sections below. Be prepared to make plenty of mistakes,
and to spend a lot of time reading your server's error logs.

If you don't have a strong stomach for tweaking configurations over and over, or a compelling need
to host your own services, you might want to try one of the public hosting services that I mentioned
earlier.

6.6.1 Web JREZFHHEIELE R
Before you continue, do take a few moments to check a few aspects of your system's setup.

1. Do you have a web server installed at all? Mac OS X and some Linux distributions ship with Apache,
but many other systems may not have a web server installed.

2. If you have a web server installed, is it actually running? On most systems, even if one is present,
it will be disabled by default.

3. Is your server configured to allow you to run CGI programs in the directory where you plan to do
so? Most servers default to explicitly disabling the ability to run CGI programs.

If you don't have a web server installed, and don't have substantial experience configuring Apache, you
should consider using the lighttpd web server instead of Apache. Apache has a well-deserved reputation
for baroque and confusing configuration. While lighttpd is less capable in some ways than Apache, most
of these capabilities are not relevant to serving Mercurial repositories. And lighttpd is undeniably
much easier to get started with than Apache.

6.6.2 K CGI BE

On Unix-like systems, it's common for users to have a subdirectory named something like public_html in
their home directory, from which they can serve up web pages. A file named foo in this directory will
be accessible at a URL of the form http://www.example.com/username/foo.

To get started, find the hgweb.cgi script that should be present in your Mercurial installation. If you
can't quickly find a local copy on your system, simply download one from the master Mercurial repository
at http://www.selenic.com/repo/hg/raw—-file/tip/hgweb.cgi.

You'1ll need to copy this script into your public html directory, and ensure that it's executable.

cp .../hgweb.cgi ~“/public_html
chmod 755 ~/public7html/hgweb.cgi

http://www.selenic.com/repo/hg/raw-file/tip/hgweb.cgi

Ed. 1

Mercurial YIS
66 / 189

The 755 argument to chmod is a little more general than just making the script executable: it ensures
that the script is executable by anyone, and that ‘group’ and ‘other’ write permissions are not set.
If you were to leave those write permissions enabled, Apache's suexec subsystem would likely refuse to
execute the script. In fact, suexec also insists that the directory in which the script resides must
not be writable by others.

chmod 755 ~/public_html

6.6.2.1 A2 TaEe s

Once you've copied the CGI script into place, go into a web browser, and try to open the URL http://-
myhostname/~myuser/hgweb.cgi, but brace yourself for instant failure. There's a high probability that
trying to visit this URL will fail, and there are many possible reasons for this. In fact, you're likely
to stumble over almost every one of the possible errors below, so please read carefully. The following
are all of the problems I ran into on a system running Fedora 7, with a fresh installation of Apache,
and a user account that I created specially to perform this exercise.

Your web server may have per-user directories disabled. If you're using Apache, search your config
file for a UserDir directive. If there's none present, per-user directories will be disabled. If one
exists, but its value is disabled, then per-user directories will be disabled. Otherwise, the string
after UserDir gives the name of the subdirectory that Apache will look in under your home directory, for
example public_html.

Your file access permissions may be too restrictive. The web server must be able to traverse your home
directory and directories under your public_html directory, and read files under the latter too. Here's
a quick recipe to help you to make your permissions more appropriate.

chmod 755
find ~/public_html -type d -print0 | xargs -Or chmod 755
find ~/public_html -type f -print0 | xargs -Or chmod 644

The other possibility with permissions is that you might get a completely empty window when you try to
load the script. In this case, it's likely that your access permissions are too permissive. Apache's
suexec subsystem won't execute a script that's group- or world-writable, for example.

Your web server may be configured to disallow execution of CGI programs in your per-user web directory.
Here's Apache's default per—-user configuration from my Fedora system.

<Directory /home/*/public_html>
AllowOverride FilelInfo AuthConfig Limit
Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
<Limit GET POST OPTIONS>
Order allow,deny
Allow from all
</Limit>
<LimitExcept GET POST OPTIONS>
Order deny,allow Deny from all
</LimitExcept>
</Directory>

If you find a similar-looking Directory group in your Apache configuration, the directive to look at
inside it is Options. Add ExecCGI to the end of this list if it's missing, and restart the web server.

If you find that Apache serves you the text of the CGI script instead of executing it, you may need to
either uncomment (if already present) or add a directive like this.

AddHandler cgi-script .cgi

The next possibility is that you might be served with a colourful Python backtrace claiming that it
can't import a mercurial-related module. This is actually progress! The server is now capable of

Ed. 1

Mercurial YIS
67 / 189

executing your CGI script. This error is only likely to occur if you're running a private installation
of Mercurial, instead of a system—wide version. Remember that the web server runs the CGI program
without any of the environment variables that you take for granted in an interactive session. If this
error happens to you, edit your copy of hgweb.cgi and follow the directions inside it to correctly set
your PYTHONPATH environment variable.

Finally, you are certain to be served with another colourful Python backtrace: this one will complain
that it can't find /path/to/repository. Edit your hgweb.cgi script and replace the /path/to/repository
string with the complete path to the repository you want to serve up.

At this point, when you try to reload the page, you should be presented with a nice HIML view of your
repository's history. Whew!

6.6.2.2 B E lighttpd

To be exhaustive in my experiments, I tried configuring the increasingly popular lighttpd web server to
serve the same repository as I described with Apache above. I had already overcome all of the problems
I outlined with Apache, many of which are not server-specific. As a result, I was fairly sure that my
file and directory permissions were good, and that my hgweb.cgi script was properly edited.

Once I had Apache running, getting lighttpd to serve the repository was a snap (in other words, even if
you're trying to use lighttpd, you should read the Apache section). I first had to edit the mod_access
section of its config file to enable mod cgi and mod userdir, both of which were disabled by default on
my system. I then added a few lines to the end of the config file, to configure these modules.

userdir.path

= "public_html"
cgi.assign = (".cgi

- "o)

With this done, lighttpd ran immediately for me. If I had configured lighttpd before Apache, 1'd almost
certainly have run into many of the same system—level configuration problems as I did with Apache.
However, I found lighttpd to be noticeably easier to configure than Apache, even though I've used Apache
for over a decade, and this was my first exposure to lighttpd.

6.6.3 1EF—A CGI W AXZ S ANRAE

The hgweb.cgi script only lets you publish a single repository, which is an annoying restriction. If
you want to publish more than one without wracking yourself with multiple copies of the same script,
each with different names, a better choice is to use the hgwebdir.cgi script.

The procedure to configure hgwebdir.cgi is only a little more involved than for hgweb.cgi. First, you
must obtain a copy of the script. If you don't have one handy, you can download a copy from the master
Mercurial repository at http://www.selenic.com/repo/hg/raw—file/tip/hgwebdir.cgi.

You'1ll need to copy this script into your public html directory, and ensure that it's executable.

cp .../hgwebdir.cgi ~/public_html
chmod 755 ~/public_html ~/public _html/hgwebdir.cgi

With basic configuration out of the way, try to visit http://myhostname/~myuser/hgwebdir.cgi in your
browser. It should display an empty list of repositories. If you get a blank window or error message,
try walking through the list of potential problems in Section 6.6.2.1.

The hgwebdir.cgi script relies on an external configuration file. By default, it searches for a file
named hgweb.config in the same directory as itself. You'll need to create this file, and make it
world-readable. The format of the file is similar to a Windows ‘ini’ file, as understood by Python's
ConfigParser [?] module.

The easiest way to configure hgwebdir.cgi is with a section named collections. This will automatically
publish every repository under the directories you name. The section should look like this:

http://www.selenic.com/repo/hg/raw-file/tip/hgwebdir.cgi

Ed. 1
Mercurial YIS

68 / 189
[collections]
/my/root = /my/root
Mercurial interprets this by looking at the directory name on the right hand side of the ‘=’ sign;

finding repositories in that directory hierarchy; and using the text on the left to strip off matching
text from the names it will actually list in the web interface. The remaining component of a path after
this stripping has occurred is called a ‘virtual path’

Given the example above, if we have a repository whose local path is /my/root/this/repo, the CGI script
will strip the leading /my/root from the name, and publish the repository with a virtual path of
this/repo. If the base URL for our CGI script is http://myhostname/~myuser/hgwebdir.cgi, the complete
URL for that repository will be http://myhostname/~myuser/hgwebdir.cgi/this/repo.

If we replace /my/root on the left hand side of this example with /my, then hgwebdir.cgi will only strip
off /my from the repository name, and will give us a virtual path of root/this/repo instead of this/repo.

The hgwebdir.cgi script will recursively search each directory listed in the collections section of its
configuration file, but it will not recurse into the repositories it finds.

The collections mechanism makes it easy to publish many repositories in a ‘fire and forget’ manner.
You only need to set up the CGI script and configuration file one time. Afterwards, you can publish or
unpublish a repository at any time by simply moving it into, or out of, the directory hierarchy in which
you've configured hgwebdir.cgi to look.

6.6.3.1 BAFAIE b 2R A B9 R AR

In addition to the collections mechanism, the hgwebdir.cgi script allows you to publish a specific list
of repositories. To do so, create a paths section, with contents of the following form.

[paths]
repol = /my/path/to/some/repo
repo2 = /some/path/to/another

In this case, the virtual path (the component that will appear in a URL) is on the left hand side of each
definition, while the path to the repository is on the right. Notice that there does not need to be any
relationship between the virtual path you choose and the location of a repository in your filesystem.

If you wish, you can use both the collections and paths mechanisms simultaneously in a single configuration
file.

Beware duplicate virtual paths
If several repositories have the same virtual path, hgwebdir.cgi will not report an error. Instead,
it will behave unpredictably.

6.6.4 THRBRARMLIEZE

Mercurial's web interface lets users download an archive of any revision. This archive will contain a
snapshot of the working directory as of that revision, but it will not contain a copy of the repository
data.

By default, this feature is not enabled. To enable it, you'll need to add an allow _archive item to the
web section of your ~/.hgrc; see below for details.

Ed. 1

Mercurial YIS
69 / 189

6.6.5 Web A E L

Mercurial's web interfaces (the hg serve command, and the hgweb.cgi and hgwebdir.cgi scripts) have a
number of configuration options that you can set. These belong in a section named web.

allow_archive: Determines which (if any) archive download mechanisms Mercurial supports. If you
enable this feature, users of the web interface will be able to download an archive of whatever
revision of a repository they are viewing. To enable the archive feature, this item must take the
form of a sequence of words drawn from the 1ist below.

— bz2: A tar archive, compressed using bzip2 compression. This has the best compression ratio, but
uses the most CPU time on the server.

— gz: A tar archive, compressed using gzip compression.

— zip: A zip archive, compressed using LZW compression. This format has the worst compression ratio,

but is widely used in the Windows world.

If you provide an empty 1list, or don't have an allow archive entry at all, this feature will be
disabled. Here is an example of how to enable all three supported formats.

[web]
allow_archive = bz2 gz zip

+ allowpull: Boolean. Determines whether the web interface allows remote users to hg pull and hg clone
this repository over HITP. If set to no or false, only the ‘human-oriented’ portion of the web
interface is available.

contact: String. A free—-form (but preferably brief) string identifying the person or group in charge
of the repository. This often contains the name and email address of a person or mailing list. It
often makes sense to place this entry in a repository's own .hg/hgrc file, but it can make sense to
use in a global ~/.hgrc if every repository has a single maintainer.

+ maxchanges: Integer. The default maximum number of changesets to display in a single page of output.

- maxfiles: Integer. The default maximum number of modified files to display in a single page of
output.

stripes: Integer. If the web interface displays alternating ‘stripes’ to make it easier to visually
align rows when you are looking at a table, this number controls the number of rows in each stripe.

style: Controls the template Mercurial uses to display the web interface. Mercurial ships with
several web templates.

— coal is monochromatic.

— gitweb emulates the visual style of git's web interface.

— monoblue uses solid blues and greys.

— paper is the default.

— spartan was the default for a long time.

You can also specify a custom template of your own: see Chapter 11 for details. Here, you can see
how to enable the gitweb style.

[web]
style = gitweb

+ templates: Path. The directory in which to search for template files. By default, Mercurial searches
in the directory in which it was installed.

If you are using hgwebdir.cgi, you can place a few configuration items in a web section of the hgweb.config
file instead of a ~/.hgrc file, for convenience. These items are motd and style.

Ed. 1

Mercurial YIS
70 / 189

6.6.5.1 #HatEARRAE 69 3R

A few web configuration items ought to be placed in a repository's local .hg/hgrc, rather than a user's
or global ~/.hgrc.

description: String. A free-form (but preferably brief) string that describes the contents or purpose
of the repository.

name: String. The name to use for the repository in the web interface. This overrides the default
name, which is the last component of the repository's path.

6.6.5.2 44 hg serve #JiLMN
Some of the items in the web section of a ~/.hgrc file are only for use with the hg serve command.

accesslog: Path. The name of a file into which to write an access log. By default, the hg serve
command writes this information to standard output, not to a file. Log entries are written in the
standard ‘combined’ file format used by almost all web servers.

address: String. The local address on which the server should listen for incoming connections. By
default, the server listens on all addresses.

errorlog: Path. The name of a file into which to write an error log. By default, the hg serve command
writes this information to standard error, not to a file.

ipv6: Boolean. Whether to use the IPv6 protocol. By default, IPv6 is not used.

port: Integer. The TCP port number on which the server should listen. The default port number used
is 8000.

6.6.5.3 HPFEHME ~/.hgrc X3P web K H

It is important to remember that a web server like Apache or lighttpd will run under a user ID that is
different to yours. CGI scripts run by your server, such as hgweb.cgi, will usually also run under that
user 1D.

If you add web items to your own personal ~/.hgrc file, CGI scripts won't read that ~/.hgrc file. Those
settings will thus only affect the behavior of the hg serve command when you run it. To cause CGI scripts
to see your settings, either create a ~/.hgrc file in the home directory of the user ID that runs your
web server, or add those settings to a system—wide hgrc file.

6.7 ABEE

On Unix-like systems shared by multiple users (such as a server to which people publish changes), it
often makes sense to set up some global default behaviors, such as what theme to use in web interfaces.

If a file named /etc/mercurial/hgrc exists, Mercurial will read it at startup time and apply any
configuration settings it finds in that file. It will also look for files ending in a .rc extension in
a directory named /etc/mercurial/hgrc.d, and apply any configuration settings it finds in each of those
files.

Ed. 1
Mercurial YIS

71 / 189

6.7.1 1k Mercurial ¥ 974%

One situation in which a global hgrc can be useful is if users are pulling changes owned by other
users. By default, Mercurial will not trust most of the configuration items in a .hg/hgrc file inside
a repository that is owned by a different user. If we clone or pull changes from such a repository,
Mercurial will print a warning stating that it does not trust their .hg/hgrc.

If everyone in a particular Unix group is on the same team and should trust each other's configuration
settings, or we want to trust particular users, we can override Mercurial's skeptical defaults by creating
a system—wide hgrc file such as the following:

Save this as e.g. /etc/mercurial/hgrc.d/trust.rc

[trusted]

Trust all entries in any hgrc file owned by the "editors" or
"www-data" groups.

groups = editors, www-data

Trust entries in hgrc files owned by the following users.
users = apache, bobo

Ed. 1

Mercurial YIS
72 / 189

Chapter 7

A AR 5 A2 5 Ik e

Mercurial provides mechanisms that let you work with file names in a consistent and expressive way.

7.1 @RI LAR

Mercurial uses a unified piece of machinery ‘under the hood’ to handle file names. Every command
behaves uniformly with respect to file names. The way in which commands work with file names is as
follows.

If you explicitly name real files on the command line, Mercurial works with exactly those files, as you
would expect.

$ hg add COPYING README examples/simple.py

When you provide a directory name, Mercurial will interpret this as ‘operate on every file in this
directory and its subdirectories’ . Mercurial traverses the files and subdirectories in a directory
in alphabetical order. When it encounters a subdirectory, it will traverse that subdirectory before
continuing with the current directory.

$ hg status src
src/main.py
src/watcher/_watcher.c
src/watcher/watcher .py

S N S I

src/xyzzy.txt

7.2 TAE L AR PHAT A

Mercurial's commands that work with file names have useful default behaviors when you invoke them without
providing any file names or patterns. What kind of behavior you should expect depends on what the command
does. Here are a few rules of thumb you can use to predict what a command is likely to do if you don't
give it any names to work with.

Most commands will operate on the entire working directory. This is what the hg add command does,
for example.

If the command has effects that are difficult or impossible to reverse, it will force you to explicitly
provide at least one name or pattern (see below). This protects you from accidentally deleting files
by running hg remove with no arguments, for example.

Ed. 1

Mercurial YIS
73 / 189

It's easy to work around these default behaviors if they don't suit you. If a command normally operates
on the whole working directory, you can invoke it on Jjust the current directory and its subdirectories
by giving it the name

$ cd src

$ hg add -n

adding ../MANIFEST.in
adding ../examples/performant.py
adding ../setup.py

adding main.py

adding watcher/iwatcher.c
adding watcher/watcher.py
adding xyzzy.txt

$ hg add -n

adding main.py

adding watcher/_watcher.c
adding watcher/watcher.py
adding xyzzy.txt

Along the same lines, some commands normally print file names relative to the root of the repository,
even if you're invoking them from a subdirectory. Such a command will print file names relative to your
subdirectory if you give it explicit names. Here, we're going to run hg status from a subdirectory, and
get it to operate on the entire working directory while printing file names relative to our subdirectory,
by passing it the output of the hg root command.

hg status
COPYING
README
examples/simple.py
MANIFEST.in
examples/performant.py
setup.py
src/main.py
src/watcher/ watcher.c
src/watcher/watcher .py
src/xyzzy.txt
hg status ‘“hg root"®
../COPYING

./README

= A D D D D) 0 0 B B B P

../examples/simple.py
./MANIFEST. in
./examples/performant.py
./setup.py

? main.py

? watcher/ watcher.c

? watcher/watcher.py

? Xyzzy.txt

[ECEEECIEEN]

7.3 HURAREAMA A

The hg add example in the preceding section illustrates something else that's helpful about Mercurial
commands. If a command operates on a file that you didn't name explicitly on the command line, it will
usually print the name of the file, so that you will not be surprised what's going on.

The principle here is of least surprise. If you've exactly named a file on the command line, there's
no point in repeating it back at you. If Mercurial is acting on a file implicitly, e.g. because you
provided no names, or a directory. or a pattern (see below), it is safest to tell you what files it's

Ed. 1

Mercurial YIS
74 / 189

operating on.

For commands that behave this way, you can silence them using the -q option. You can also get them to
print the name of every file, even those you've named explicitly, using the -v option.

7.4 AF A X ARIR M

In addition to working with file and directory names, Mercurial lets you use patterns to identify files.
Mercurial's pattern handling is expressive.

On Unix-like systems (Linux, MacOS, etc.), the job of matching file names to patterns normally falls to
the shell. On these systems, you must explicitly tell Mercurial that a name is a pattern. On Windows,
the shell does not expand patterns, so Mercurial will automatically identify names that are patterns,
and expand them for you.

To provide a pattern in place of a regular name on the command line, the mechanism is simple:

syntax:patternbody

That is, a pattern is identified by a short text string that says what kind of pattern this is, followed
by a colon, followed by the actual pattern.

Mercurial supports two kinds of pattern syntax. The most frequently used is called glob; this is the
same kind of pattern matching used by the Unix shell, and should be familiar to Windows command prompt
users, too.

When Mercurial does automatic pattern matching on Windows, it uses glob syntax. You can thus omit the
‘glob:’ prefix on Windows, but it's safe to use it, too.

The re syntax is more powerful; it lets you specify patterns using regular expressions, also known as
regexps.

By the way, in the examples that follow, notice that I'm careful to wrap all of my patterns in quote
characters, so that they won't get expanded by the shell before Mercurial sees them.

7.4.1 9pERMEE glob B X

This is an overview of the kinds of patterns you can use when you're matching on glob patterns.
The ‘*’ character matches any string, within a single directory.

$ hg add 'glob:*.py'
adding main.py

The ‘**’ pattern matches any string, and crosses directory boundaries. It's not a standard Unix glob
token, but it's accepted by several popular Unix shells, and is very useful.

cd

hg status 'glob:*™.py'
examples/simple.py
src/main.py
examples/performant.py
? setup.py
src/watcher/watcher .py

DB > AP

o9

The ‘?° pattern matches any single character.

$ hg status 'glob:**.?'
? src/watcher/ watcher.c

Ed. 1

Mercurial YIS
75 / 189

The ‘[’ character begins a character class. This matches any single character within the class. The
class ends with a ‘]’ character. A class may contain multiple ranges of the form ‘a-f’ , which is
shorthand for ‘abedef’

$ hg status 'glob:**[nr-t]'
? MANIFEST.in
? src/xyzzy.txt

If the first character after the ‘[’ in a character class is a ‘!’ , it negates the class, making it
match any single character not in the class.

A “{’ begins a group of subpatterns, where the whole group matches if any subpattern in the group
matches. The ‘, character separates subpatterns, and ‘}’ ends the group.

$ hg status 'glob:*.{in,py}'
? MANIFEST.in
? setup.py

7.4.1.1 FHP]

Don't forget that if you want to match a pattern in any directory, you should not be using the ‘*’

match-any token, as this will only match within one directory. Instead, use the ‘**’ token. This
small example illustrates the difference between the two.

hg status 'glob:™.py'
setup.py

hg status 'glob:*™.py'
examples/simple.py
src/main.py
examples/performant.py
setup.py
src/watcher/watcher .py

S I I e " -]

7.4.2 AER re X AYEN &K X LA

Mercurial accepts the same regular expression syntax as the Python programming language (it uses Python's
regexp engine internally). This is based on the Perl language's regexp syntax, which is the most popular
dialect in use (it's also used in Java, for example).

I won't discuss Mercurial's regexp dialect in any detail here, as regexps are not often used. Perl-style
regexps are in any case already exhaustively documented on a multitude of web sites, and in many books.
Instead, I will focus here on a few things you should know if you find yourself needing to use regexps
with Mercurial.

A regexp is matched against an entire file name, relative to the root of the repository. In other
words, even if you're already in subbdirectory foo, if you want to match files under this directory,
your pattern must start with ‘foo/’ .

One thing to note, if you're familiar with Perl-style regexps, is that Mercurial's are rooted. That is,
a regexp starts matching against the beginning of a string; it doesn't look for a match anywhere within

the string. To match anywhere in a string, start your pattern with cLE

7.5 iR

Not only does Mercurial give you a variety of ways to specify files: it lets you further winnow those
files using filters. Commands that work with file names accept two filtering options.

Ed. 1

Mercurial YIS
76 / 189

-1, or —-—include, lets you specify a pattern that file names must match in order to be processed.

-X, or —-—exclude, gives you a way to avoid processing files, if they match this pattern.

You can provide multiple -1 and —-X options on the command line, and intermix them as you please. Mercurial
interprets the patterns you provide using glob syntax by default (but you can use regexps if you need
to) .

You can read a -1 filter as ‘process only the files that match this filter’

$ hg status -1 '*.in'
? MANIFEST.in

The -X filter is best read as ‘process only the files that don't match this pattern’

$ hg status -X '**.py' src
? src/watcher/ watcher.c
? src/xyzzy.txt

7.6 WHABEREFEZG A K

When you create a new repository, the chances are that over time it will grow to contain files that ought
to not be managed by Mercurial, but which you don't want to see listed every time you run hg status.
For instance, ‘build products’ are files that are created as part of a build but which should not
be managed by a revision control system. The most common build products are output files produced by
software tools such as compilers. As another example, many text editors litter a directory with lock
files, temporary working files, and backup files, which it also makes no sense to manage.

To have Mercurial permanently ignore such files, create a file named .hgignore in the root of vyour
repository. You should hg add this file so that it gets tracked with the rest of your repository
contents, since your collaborators will probably find it useful too.

By default, the .hgignore file should contain a list of regular expressions, one per line. Empty lines
are skipped. Most people prefer to describe the files they want to ignore using the ‘glob’ syntax that
we described above, so a typical .hgignore file will start with this directive:

syntax: glob

This tells Mercurial to interpret the lines that follow as glob patterns, not regular expressions.
Here is a typical-looking .hgignore file.

syntax: glob
This line is a comment, and will be skipped.
Empty lines are skipped too.

Backup files left behind by the Emacs editor.

e~

Lock files used by the Emacs editor.
Notice that the "#" character is quoted with a backslash.
This prevents it from being interpreted as starting a comment.

AR

Temporary files used by the vim editor.

Y

. SWD

A hidden file created by the Mac 0S X Finder.
.DS_Store

Ed. 1

Mercurial YIS
77 / 189

If you're working in a mixed development environment that contains both Linux (or other Unix) systems
and Macs or Windows systems, you should keep in the back of your mind the knowledge that they treat the
case (‘N’ versus ‘n’) of file names in incompatible ways. This is not very likely to affect you,
and it's easy to deal with if it does, but it could surprise you if you don't know about it.

Operating systems and filesystems differ in the way they handle the case of characters in file and
directory names. There are three common ways to handle case in names.

+ Completely case insensitive. Uppercase and lowercase versions of a letter are treated as identical,
both when creating a file and during subsequent accesses. This is common on older DOS-based systems.

Case preserving, but insensitive. When a file or directory is created, the case of its name is stored,
and can be retrieved and displayed by the operating system. When an existing file is being looked
up, its case is ignored. This is the standard arrangement on Windows and MacOS. The names foo and
FoO identify the same file. This treatment of uppercase and lowercase letters as interchangeable is
also referred to as case folding.

+ Case sensitive. The case of a name is significant at all times. The names foo and FoO identify
different files. This is the way Linux and Unix systems normally work.

On Unix-like systems, it is possible to have any or all of the above ways of handling case in action at
once. For example, if you use a USB thumb drive formatted with a FAT32 filesystem on a Linux system,
Linux will handle names on that filesystem in a case preserving, but insensitive, way.

7.7.1 A THMYRRANE G

Mercurial's repository storage mechanism is case safe. It translates file names so that they can be
safely stored on both case sensitive and case insensitive filesystems. This means that you can use
normal file copying tools to transfer a Mercurial repository onto, for example, a USB thumb drive, and
safely move that drive and repository back and forth between a Mac, a PC running Windows, and a Linux
box.

7.7.2 BMRIFFR

When operating in the working directory, Mercurial honours the naming policy of the filesystem where
the working directory is located. If the filesystem is case preserving, but insensitive, Mercurial will
treat names that differ only in case as the same.

An important aspect of this approach is that it is possible to commit a changeset on a case sensitive
(typically Linux or Unix) filesystem that will cause trouble for users on case insensitive (usually
Windows and MacOS) users. If a Linux user commits changes to two files, one named myfile.c and the other
named MyFile.C, they will be stored correctly in the repository. And in the working directories of other
Linux users, they will be correctly represented as separate files.

If a Windows or Mac user pulls this change, they will not initially have a problem, because Mercurial's
repository storage mechanism is case safe. However, once they try to hg update the working directory to
that changeset, or hg merge with that changeset, Mercurial will spot the conflict between the two file
names that the filesystem would treat as the same, and forbid the update or merge from occurring.

Ed. 1

Mercurial YIS
78 / 189

7.7.3 WHEXIPIFHRR

If you are using Windows or a Mac in a mixed environment where some of your collaborators are using
Linux or Unix, and Mercurial reports a case folding conflict when you try to hg update or hg merge, the
procedure to fix the problem is simple.

Just find a nearby Linux or Unix box, clone the problem repository onto it, and use Mercurial's hg rename
command to change the names of any offending files or directories so that they will no longer cause case
folding conflicts. Commit this change, hg pull or hg push it across to your Windows or MacOS system,
and hg update to the revision with the non-conflicting names.

The changeset with case-conflicting names will remain in your project's history, and you still won't be
able to hg update your working directory to that changeset on a Windows or MacOS system, but you can
continue development unimpeded.

Ed. 1

Mercurial YIS
79 / 189

Chapter 8
AR EEG S IR

Mercurial provides several mechanisms for you to manage a project that is making progress on multiple
fronts at once. To understand these mechanisms, let's first take a brief look at a fairly normal software
project structure.

Many software projects issue periodic ‘major’ releases that contain substantial new features. In
parallel, they may issue ‘minor releases. These are usually identical to the major releases off which
they're based, but with a few bugs fixed.

In this chapter, we'll start by talking about how to keep records of project milestones such as releases.
We'll then continue on to talk about the flow of work between different phases of a project, and how
Mercurial can help you to isolate and manage this work.

8.1 ZRAYE L — KRR L AR

Once you decide that you'd like to call a particular revision a ‘release’ , it's a good idea to record
the identity of that revision. This will let you reproduce that release at a later date, for whatever
purpose you might need at the time (reproducing a bug, porting to a new platform, etc).

$ hg init mytag

$ cd mytag

$ echo hello > myfile

$ hg commit -A -m 'Initial commit'
adding myfile

Mercurial lets you give a permanent name to any revision using the hg tag command. Not surprisingly,

these names are called ‘tags’

$ hg tag v1.0

A tag is nothing more than a ‘symbolic name’ for a revision. Tags exist purely for your convenience,
so that you have a handy permanent way to refer to a revision; Mercurial doesn't interpret the tag names
you use in any way. Neither does Mercurial place any restrictions on the name of a tag, beyond a few
that are necessary to ensure that a tag can be parsed unambiguously. A tag name cannot contain any of
the following characters:

- Colon (ASCII 58, ‘:’)
- Carriage return (ASCII 13, ‘\r’)

- Newline (ASCII 10, ‘\n’)

Ed. 1

Mercurial YIS
80 / 189

You can use the hg tags command to display the tags present in your repository. In the output, each
tagged revision is identified first by its name, then by revision number, and finally by the unique hash
of the revision.

$ hg tags
tip 1:e9290d4c3da9
vl.0 0:38268b1d38a9

Notice that tip is listed in the output of hg tags. The tip tag is a special ‘floating’ tag, which
always identifies the newest revision in the repository.

In the output of the hg tags command, tags are listed in reverse order, by revision number. This usually
means that recent tags are listed before older tags. It also means that tip is always going to be the
first tag listed in the output of hg tags.

When you run hg log, if it displays a revision that has tags associated with it, it will print those
tags.

$ hg log

changeset: 1:e9290d4c3da9

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:08 2011 +0000
summary : Added tag v1.0 for changeset 38268b1d38a9
changeset: 0:38268b1d38a9

tag: vl.O

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:08 2011 +0000
summary : Initial commit

Any time you need to provide a revision ID to a Mercurial command, the command will accept a tag name in
its place. Internally, Mercurial will translate your tag name into the corresponding revision ID, then
use that.

$ echo goodbye > myfile2

$ hg commit -A -m 'Second commit'
adding myfile2

$ hg log -r v1.0

changeset: 0:38268b1d38a9

tag: v1.0

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:08 2011 +0000
summary : Initial commit

There's no 1imit on the number of tags you can have in a repository, or on the number of tags that a
single revision can have. As a practical matter, it's not a great idea to have ‘too many’ (a number
which will vary from project to project), simply because tags are supposed to help you to find revisions.
If you have lots of tags, the ease of using them to identify revisions diminishes rapidly.

For example, if your project has milestones as frequent as every few days, it's perfectly reasonable to
tag each one of those. But if you have a continuous build system that makes sure every revision can
be built cleanly, you'd be introducing a lot of noise if you were to tag every clean build. Instead,
you could tag failed builds (on the assumption that they're rare!), or simply not use tags to track
buildability.

If you want to remove a tag that you no longer want, use hg tag —-remove.

$ hg tag --remove v1.0
$ hg tags
tip 3:badf62094b60

Ed. 1

Mercurial YIS
81 / 189

You can also modify a tag at any time, so that it identifies a different revision, by simply issuing a
new hg tag command. You'll have to use the -f option to tell Mercurial that you really want to update
the tag.

$ hg tag -r 1 vl.1

$ hg tags
tip 4:22d66ed4f5bef
vl.1 1:e9290d4c3da9

$ hg tag -r 2 vl.l1
abort: tag 'vl.l' already exists (use -f to force)
$ hg tag -f -r 2 vl.1

$ hg tags
tip 5:a6cbcbl0e24e
vl.1 2:87900c4bc4dbb

There will still be a permanent record of the previous identity of the tag, but Mercurial will no longer
use it. There's thus no penalty to tagging the wrong revision; all you have to do is turn around and
tag the correct revision once you discover your error.

Mercurial stores tags in a normal revision-controlled file in your repository. If you've created any
tags, you'll find them in a file in the root of your repository named .hgtags. When you run the hg tag
command, Mercurial modifies this file, then automatically commits the change to it. This means that
every time you run hg tag, you'll see a corresponding changeset in the output of hg log.

$ hg tip

changeset: 5:a6cbcbl0e24e

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:09 2011 +0000

summary : Added tag vl1.1 for changeset 87900c4bc4dbb

8.1.1 kLA HAIMRANEREFR

You won't often need to care about the .hgtags file, but it sometimes makes its presence known during
a merge. The format of the file is simple: it consists of a series of lines. Each line starts with a
changeset hash, followed by a space, followed by the name of a tag.

If you're resolving a conflict in the .hgtags file during a merge, there's one twist to modifying the
.hgtags file: when Mercurial is parsing the tags in a repository, it never reads the working copy of
the .hgtags file. Instead, it reads the most recently committed revision of the file.

An unfortunate consequence of this design is that you can't actually verify that your merged .hgtags
file is correct until after you've committed a change. So if you find yourself resolving a conflict on
.hgtags during a merge, be sure to run hg tags after you commit. If it finds an error in the .hgtags
file, it will report the location of the error, which you can then fix and commit. You should then run
hg tags again, Jjust to be sure that your fix is correct.

8.1.2 W& 5 4%

You may have noticed that the hg clone command has a -r option that lets you clone an exact copy of the
repository as of a particular changeset. The new clone will not contain any project history that comes
after the revision you specified. This has an interaction with tags that can surprise the unwary.

Recall that a tag is stored as a revision to the .hgtags file. When you create a tag, the changeset in
which its recorded refers to an older changeset. When you run hg clone -r foo to clone a repository as
of tag foo, the new clone will not contain any revision newer than the one the tag refers to, including
the revision where the tag was created. The result is that you'll get exactly the right subset of the
project's history in the new repository, but not the tag you might have expected.

Ed. 1

Mercurial YIS
82 / 189

8.1.3 HRAIFEKZ gtk

Since Mercurial's tags are revision controlled and carried around with a project's history, everyone you
work with will see the tags you create. But giving names to revisions has uses beyond simply noting that
revision 4237e45506ee is really v2.0.2. If you're trying to track down a subtle bug, you might want a
tag to remind you of something like ‘Anne saw the symptoms with this revision’

For cases like this, what you might want to use are local tags. You can create a local tag with the -1
option to the hg tag command. This will store the tag in a file called .hg/localtags. Unlike .hgtags,
.hg/localtags is not revision controlled. Any tags you create using -1 remain strictly local to the
repository you're currently working in.

8.2 MFEUARE—Z NG M

To return to the outline I sketched at the beginning of the chapter, let's think about a project that
has multiple concurrent pieces of work under development at once.

. . ’ . . .
There might be a push for a new ‘main release; a new minor bugfix release to the last main release;
3 . 9 . . .
and an unexpected hot fix to an old release that is now in maintenance mode.

The usual way people refer to these different concurrent directions of development is as ‘branches’
However, we've already seen numerous times that Mercurial treats all of history as a series of branches
and merges. Really, what we have here is two ideas that are peripherally related, but which happen to
share a name.

‘Big picture’ branches represent the sweep of a project's evolution; people give them names, and
talk about them in conversation.

‘Little picture’ branches are artefacts of the day-to-day activity of developing and merging changes.
They expose the narrative of how the code was developed.

8.3 EMAETEES L

The easiest way to isolate a ‘big picture’ branch in Mercurial is in a dedicated repository. If you
have an existing shared repository—let's call it myproject—that reaches a ‘1.0° milestone, you can
start to prepare for future maintenance releases on top of version 1.0 by tagging the revision from
which you prepared the 1.0 release.

$ cd myproject
$ hg tag v1.0

You can then clone a new shared myproject-1.0.1 repository as of that tag.

$ cd

$ hg clone myproject myproject-1.0.1

updating to branch default

2 files updated, 0 files merged, O files removed, O files unresolved

Afterwards, if someone needs to work on a bug fix that ought to go into an upcoming 1.0.1 minor release,
they clone the myproject-1.0.1 repository, make their changes, and push them back.

$ hg clone myproject-1.0.1 my-1.0.1-bugfix

updating to branch default

2 files updated, 0 files merged, O files removed, O files unresolved
$ cd my-1.0.1-bugfix

$ echo 'I fixed a bug using only echo!' >> myfile

Ed. 1

Mercurial YIS
83 / 189

$ hg commit -m 'Important fix for 1.0.1°"

$ hg push

pushing to /tmp/branch-repo7po613/myproject-1.0.1
searching for changes

adding changesets

adding manifests

adding file changes

added 1 changesets with 1 changes to 1 files

Meanwhile, development for the next major release can continue, isolated and unabated, in the myproject
repository.

$ cd

$ hg clone myproject my-feature

updating to branch default

2 files updated, 0 files merged, O files removed, O files unresolved
$ cd my-feature

$ echo 'This sure is an exciting new feature!' > mynewfile
$ hg commit -A -m 'New feature'

adding mynewfile

$ hg push

pushing to /tmp/branch-repo7po613/myproject

searching for changes

adding changesets

adding manifests

adding file changes

added 1 changesets with 1 changes to 1 files

8.4 TEBEFTEHH : Ay X AAH

In many cases, if you have a bug to fix on a maintenance branch, the chances are good that the bug exists
on your project's main branch (and possibly other maintenance branches, too). It's a rare developer who
wants to fix the same bug multiple times, so let's look at a few ways that Mercurial can help you to
manage these bugfixes without duplicating your work.

In the simplest instance, all you need to do is pull changes from your maintenance branch into your
local clone of the target branch.

$ cd

$ hg clone myproject myproject-merge

updating to branch default

3 files updated, 0 files merged, O files removed, O files unresolved
$ cd myproject-merge

$ hg pull ../myproject-1.0.1

pulling from ../myproject-1.0.1

searching for changes

adding changesets

adding manifests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)

You'1ll then need to merge the heads of the two branches, and push back to the main branch.

$ hg merge

1 files updated, 0 files merged, O files removed, O files unresolved
(branch merge, don't forget to commit)

$ hg commit -m 'Merge bugfix from 1.0.1 branch'

$ hg push

Ed. 1

Mercurial YIS
84 / 189

pushing to /tmp/branch-repo7po613/myproject
searching for changes

adding changesets

adding manifests

adding file changes

added 2 changesets with 1 changes to 1 files

8.5 MAEFEGL G I

In most instances, isolating branches in repositories is the right approach. Its simplicity makes it easy
to understand; and so it's hard to make mistakes. There's a one-to-one relationship between branches
you're working in and directories on your system. This lets you use normal (non-Mercurial-aware) tools
to work on files within a branch/repository.

If you're more in the ‘power user’ category (and your collaborators are too), there is an alternative
way of handling branches that you can consider. 1've already mentioned the human-level distinction
between ‘small picture’ and ‘big picture’ branches. While Mercurial works with multiple ‘small
picture’ branches in a repository all the time (for example after you pull changes in, but before you
merge them)., it can also work with multiple ‘big picture’ branches.

The key to working this way is that Mercurial lets you assign a persistent name to a branch. There always
exists a branch named default. Even before you start naming branches yourself, you can find traces of
the default branch if you look for them.

As an example, when you run the hg commit command, and it pops up your editor so that you can enter a
commit message, look for a line that contains the text ‘HG: branch default’ at the bottom. This is
telling you that your commit will occur on the branch named default.

To start working with named branches, use the hg branches command. This command lists the named branches
already present in your repository, telling you which changeset is the tip of each.

$ hg tip

changeset: 0:6c2b0ca4dl2df

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:15:30 2011 +0000
summary : Initial commit

$ hg branches
default 0:6c2b0ca4dl12df

Since you haven't created any named branches yet, the only one that exists is default.

To find out what the ‘current’ branch is, run the hg branch command, giving it no arguments. This
tells you what branch the parent of the current changeset is on.

$ hg branch
default

To create a new branch, run the hg branch command again. This time, give it one argument: the name of
the branch you want to create.

$ hg branch foo

marked working directory as branch foo
$ hg branch

foo

After you've created a branch, you might wonder what effect the hg branch command has had. What do the
hg status and hg tip commands report?

Ed. 1

Mercurial YIS
85 / 189

$ hg status

$ hg tip

changeset: 0:6c2b0ca4dl12df

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:15:30 2011 +0000
summary : Initial commit

Nothing has changed in the working directory, and there's been no new history created. As this suggests,
running the hg branch command has no permanent effect; it only tells Mercurial what branch name to use
the next time you commit a changeset.

When you commit a change, Mercurial records the name of the branch on which you committed. Once you've
switched from the default branch to another and committed, you'll see the name of the new branch show
up in the output of hg log, hg tip, and other commands that display the same kind of output.

$ echo 'hello again' >> myfile
$ hg commit -m 'Second commit'

$ hg tip

changeset: 1:c6ab27a20c27

branch: foo

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:15:31 2011 +0000
summary : Second commit

The hg log-like commands will print the branch name of every changeset that's not on the default branch.
As a result, if you never use named branches, you'll never see this information.

Once you've named a branch and committed a change with that name, every subsequent commit that descends
from that change will inherit the same branch name. You can change the name of a branch at any time,
using the hg branch command.

$ hg branch

foo

$ hg branch bar

marked working directory as branch bar
$ echo new file > newfile

$ hg commit -A -m 'Third commit'
adding newfile

$ hg tip

changeset: 2:9a3fd3f3ba’7e

branch: bar

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:15:31 2011 +0000
summary : Third commit

In practice, this is something you won't do very often, as branch names tend to have fairly long
lifetimes. (This isn't a rule, Jjust an observation.)

8.6 FMRAEFLRIELANGLoy L

If you have more than one named branch in a repository, Mercurial will remember the branch that your
working directory is on when you start a command 1like hg update or hg pull —-u. It will update the working

Mercurial YIS

Ed. 1

86 / 189

directory to the tip of this branch,

no matter what the ‘repo-wide’ tip is. To update to a revision

that's on a different named branch, you may need to use the -C option to hg update.

This behavior is a little subtle,

so let's see it in action. First, let's remind ourselves what branch

we're currently on, and what branches are in our repository.

$ hg parents
changeset:
branch:

tag:

user :

date:
summary :

$ hg branches

bar
foo
default

2:9a3fd3f3ba7e

bar

tip

Bryan O'Sullivan <bos@serpentine
Tue Mar 15 14:15:31 2011 +0000
Third commit

2:9a3fd3f3ba7e
1:c6ab27a20c27
0:6c2b0ca4dl12df

.com>

(inactive)
(inactive)

We're on the bar branch, but there also exists an older hg foo branch.

We can hg update back and forth between the tips of the foo and bar branches without needing to use the
-C option, because this only involves going backwards and forwards linearly through our change history.

$ hg update foo
0 files updated, 0 files merged, 1 files removed, O files unresolved

$ hg parents
changeset:
branch:
user :

date:
summary :

1:c6ab27a20c27

foo

Bryan O'Sullivan <bos@serpentine
Tue Mar 15 14:15:31 2011 +0000
Second commit

$ hg update bar
1 files updated, O files merged, O files removed, O files unresolved

$ hg parents
changeset:
branch:

tag:

user :

date:
summary :

2:9a3fd3f3ba7e

bar

tip

Bryan O'Sullivan <bos@serpentine
Tue Mar 15 14:15:31 2011 +0000
Third commit

.com>

.com>

If we go back to the foo branch and then run hg update, it will keep us on foo, not move us to the tip

of bar.

hg update

O P O

hg update foo

files updated, 0O files merged, 1 files removed, O files unresolved

files updated, O files merged, O files removed, 0O files unresolved

Committing a new change on the foo branch introduces a new head.

$ echo something > somefile

$ hg commit

-A -m 'New file'

adding somefile

$ hg heads
changeset:
branch:
tag:
parent:

user :

3:bec5021cc83d

foo

tip

1:c6ab27a20c27

Bryan O'Sullivan <bos@serpentine

.com>

Ed. 1

Mercurial YIS
87 / 189

date: Tue Mar 15 14:15:32 2011 +0000
summary : New file

changeset: 2:9a3fd3f3ba7e

branch: bar

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:15:31 2011 +0000
summary : Third commit

changeset: 0:6c2b0cadl2df

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:15:30 2011 +0000
summary : Initial commit

8.7 NI LMGLSH

As you've probably noticed, merges in Mercurial are not symmetrical. Let's say our repository has two
heads, 17 and 23. If I hg update to 17 and then hg merge with 23, Mercurial records 17 as the first
parent of the merge, and 23 as the second. Whereas if I hg update to 23 and then hg merge with 17, it
records 23 as the first parent, and 17 as the second.

This affects Mercurial's choice of branch name when you merge. After a merge, Mercurial will retain the
branch name of the first parent when you commit the result of the merge. If your first parent's branch
name is foo, and you merge with bar, the branch name will still be foo after you merge.

It's not unusual for a repository to contain multiple heads, each with the same branch name. Let's say
I'm working on the foo branch, and so are you. We commit different changes; I pull your changes; I now
have two heads, each claiming to be on the foo branch. The result of a merge will be a single head on
the foo branch, as you might hope.

But if I'm working on the bar branch, and I merge work from the foo branch, the result will remain on
the bar branch.

$ hg branch

bar

$ hg merge foo

1 files updated, 0 files merged, O files removed, O files unresolved
(branch merge, don't forget to commit)

$ hg commit -m 'Merge'

$ hg tip

changeset: 4:3dd48a3f0b4d4

branch: bar

tag: tip

parent: 2:9a3fd3f3ba’7e

parent: 3:bec5021cc883d

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:15:32 2011 +0000
summary : Merge

To give a more concrete example, if I'm working on the bleeding-edge branch, and I want to bring in the
latest fixes from the stable branch, Mercurial will choose the ‘right’ (bleeding-edge) branch name
when I pull and merge from stable.

Ed. 1
Mercurial YIS
88 / 189

8.8 4 X & T ARRA

You shouldn't think of named branches as applicable only to situations where you have multiple long-1lived
branches cohabiting in a single repository. They're very useful even in the one-branch-per-repository
case.

In the simplest case, giving a name to each branch gives you a permanent record of which branch a
changeset originated on. This gives you more context when you're trying to follow the history of a
long-1lived branchy project.

If you're working with shared repositories, you can set up a pretxnchangegroup hook on each that will
block incoming changes that have the ‘wrong’ branch name. This provides a simple, but effective,
defence against people accidentally pushing changes from a ‘bleeding edge’ branch to a ‘stable’
branch. Such a hook might look like this inside the shared repo's /.hgrc.

[hooks]
pretxnchangegroup.branch = hg heads --template '{branches} ' | grep mybranch

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
89 / 189

Chapter 9

& R A5 S 1R

To err might be human, but to really handle the consequences well takes a top-notch revision control
system. In this chapter, we'll discuss some of the techniques you can use when you find that a problem
has crept into your project. Mercurial has some highly capable features that will help you to isolate
the sources of problems, and to handle them appropriately.

9.1 45% AL

9.1.1 ZIhR R

I have the occasional but persistent problem of typing rather more quickly than I can think, which
sometimes results in me committing a changeset that is either incomplete or plain wrong. In my case,
the usual kind of incomplete changeset is one in which I've created a new source file, but forgotten to
hg add it. A ‘plain wrong’ changeset is not as common, but no less annoying.

9.1.2 WAER—4I F%

In Section 4.2.2, I mentioned that Mercurial treats each modification of a repository as a transaction.
Every time you commit a changeset or pull changes from another repository, Mercurial remembers what you
did. You can undo, or roll back, exactly one of these actions using the hg rollback command. (See
Section 9.1.4 for an important caveat about the use of this command.)

Here's a mistake that I often find myself making: committing a change in which 1've created a new file,
but forgotten to hg add it.

$ hg status

M a

$ echo b > b

$ hg commit -m 'Add file b’

Looking at the output of hg status after the commit immediately confirms the error.

$ hg status

? b

$ hg tip

changeset: l:ealcadd488a5

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:07 2011 +0000

summary : Add file b

Ed. 1

Mercurial YIS
90 / 189

The commit captured the changes to the file a, but not the new file b. If I were to push this changeset
to a repository that I shared with a colleague, the chances are high that something in a would refer to
b, which would not be present in their repository when they pulled my changes. I would thus become the
object of some indignation.

However, luck is with me—1I've caught my error before I pushed the changeset. 1 use the hg rollback
command, and Mercurial makes that last changeset vanish.

$ hg rollback
rolling back to revision 0 (undo commit)

$ hg tip

changeset: 0:2778353al0be

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:07 2011 +0000
summary : First commit

$ hg status
M a
? b

Notice that the changeset is no longer present in the repository's history, and the working directory
once again thinks that the file a is modified. The commit and rollback have left the working directory
exactly as it was prior to the commit; the changeset has been completely erased. 1 can now safely hg
add the file b, and rerun my commit.

$ hg add b
$ hg commit -m 'Add file b, this time for real'

9.1.3 4RI

It's common practice with Mercurial to maintain separate development branches of a project in different
repositories. Your development team might have one shared repository for your project's ‘0.9° release,
and another, containing different changes, for the ‘1.0’ release.

Given this, you can imagine that the consequences could be messy if you had a local ‘0.9’ repository,
and accidentally pulled changes from the shared ‘1.0’ repository into it. At worst, you could be paying
insufficient attention, and push those changes into the shared ‘0.9° tree, confusing your entire team
(but don't worry, we'll return to this horror scenario later). However, it's more likely that you'll
notice immediately, because Mercurial will display the URL it's pulling from, or you will see it pull a
suspiciously large number of changes into the repository.

The hg rollback command will work nicely to expunge all of the changesets that you just pulled. Mercurial
groups all changes from one hg pull into a single transaction, so one hg rollback is all you need to
undo this mistake.

9.1.4 37 RIMEEE > FEL LK

The value of the hg rollback command drops to zero once you've pushed your changes to another repository.
Rolling back a change makes it disappear entirely, but only in the repository in which you perform the
hg rollback. Because a rollback eliminates history, there's no way for the disappearance of a change to
propagate between repositories.

If you've pushed a change to another repository—particularly if it's a shared repository—it has
essentially ‘escaped into the wild,” and you'll have to recover from your mistake in a different way.
If you push a changeset somewhere, then roll it back, then pull from the repository you pushed to, the
changeset you thought you'd gotten rid of will simply reappear in your repository.

(If you absolutely know for sure that the change you want to roll back is the most recent change in the
repository that you pushed to, and you know that nobody else could have pulled it from that repository,

Ed. 1

Mercurial YIS
91 / 189

you can roll back the changeset there, too, but you really should not expect this to work reliably.
Sooner or later a change really will make it into a repository that you don't directly control (or have
forgotten about), and come back to bite you.)

9.1.5 MHAREE—R

Mercurial stores exactly one transaction in its transaction log; that transaction is the most recent one
that occurred in the repository. This means that you can only roll back one transaction. If you expect
to be able to roll back one transaction, then its predecessor, this is not the behavior you will get.

$ hg rollback

rolling back to revision 0 (undo commit)
$ hg rollback

no rollback information available

Once you've rolled back one transaction in a repository, you can't roll back again in that repository
until you perform another commit or pull.

0.2 R 15K

If you make a modification to a file, and decide that you really didn't want to change the file at all,
and you haven't yet committed your changes, the hg revert command is the one you'll need. It looks at
the changeset that's the parent of the working directory, and restores the contents of the file to their
state as of that changeset. (That's a long-winded way of saying that, in the normal case, it undoes
your modifications.)

Let's illustrate how the hg revert command works with yet another small example. We'll begin by modifying
a file that Mercurial is already tracking.

$ cat file
original content
$ echo unwanted change >> file
$ hg diff file
diff -r b756b1611351 file
--—— a/file Tue Mar 15 14:15:49 2011 +0000
+++ b/file Tue Mar 15 14:15:49 2011 +0000
ee@ -1,1 +1,2 @@
original content
+unwanted change

If we don't want that change, we can simply hg revert the file.

$ hg status

M file

$ hg revert file
$ cat file
original content

The hg revert command provides us with an extra degree of safety by saving our modified file with a
.orig extension.

$ hg status

? file.orig

$ cat file.orig
original content
unwanted change

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
92 / 189

oS Lorig X

It's extremely unlikely that you are either using Mercurial to manage files with .orig extensions or
that you even care about the contents of such files. Just in case, though, it's useful to remember
that hg revert will unconditionally overwrite an existing file with a .orig extension. For instance,
if you already have a file named foo.orig when you revert foo, the contents of foo.orig will be
clobbered.

Here is a summary of the cases that the hg revert command can deal with. We will describe each of these
in more detail in the section that follows.

If you modify a file, it will restore the file to its unmodified state.

If you hg add a file, it will undo the ‘added’ state of the file, but leave the file itself
untouched.

+ If you delete a file without telling Mercurial, it will restore the file to its unmodified contents.

- If you use the hg remove command to remove a file, it will undo the ‘removed’ state of the file,
and restore the file to its unmodified contents.

9.2.1 XHEMEEF

The hg revert command is useful for more than just modified files. It lets you reverse the results of
all of Mercurial's file management commands—hg add, hg remove, and so on.

If you hg add a file, then decide that in fact you don't want Mercurial to track it, use hg revert to
undo the add. Don't worry; Mercurial will not modify the file in any way. It will just ‘unmark’ the
file.

echo oops > oops
hg add oops

hg status oops
oops

hg revert oops
hg status

I e e R R)

oops

Similarly, if you ask Mercurial to hg remove a file, you can use hg revert to restore it to the contents
it had as of the parent of the working directory.

$ hg remove file
$ hg status

R file

$ hg revert file
$ hg status

$ 1s file

file

This works Jjust as well for a file that you deleted by hand, without telling Mercurial (recall that in
Mercurial terminology, this kind of file is called ‘missing’).

$ rm file

$ hg status

I file

$ hg revert file
$ 1s file

f

Ed. 1

Mercurial YIS
93 / 189

If you revert a hg copy, the copied-to file remains in your working directory afterwards, untracked.
Since a copy doesn't affect the copied-from file in any way, Mercurial doesn't do anything with the
copied-from file.

$ hg copy file new-file
$ hg revert new-file

$ hg status

? new—-file

9.3 & LEREILGK

Consider a case where you have committed a change a, and another change b on top of it:; you then realise
that change a was incorrect. Mercurial lets you ‘back out’ an entire changeset automatically, and
building blocks that let you reverse part of a changeset by hand.

Before you read this section, here's something to keep in mind: the hg backout command undoes the effect
of a change by adding to your repository's history, not by modifying or erasing it. It's the right
tool to use if you're fixing bugs, but not if you're trying to undo some change that has catastrophic
consequences. To deal with those, see Section 9.4.

9.3.1 %kE—MEEE

The hg backout command lets you ‘undo’ the effects of an entire changeset in an automated fashion.
Because Mercurial's history is immutable, this command does not get rid of the changeset you want to
undo. Instead, it creates a new changeset that reverses the effect of the to-be-undone changeset.

The operation of the hg backout command is a little intricate, so let's illustrate it with some examples.
First, we'll create a repository with some simple changes.

hg init myrepo

cd myrepo

echo first change >> myfile

hg add myfile

hg commit -m 'first change'

echo second change >> myfile

PP DB PP DB P

hg commit -m 'second change'

The hg backout command takes a single changeset ID as its argument; this is the changeset to back out.
Normally, hg backout will drop you into a text editor to write a commit message, so you can record why
you're backing the change out. In this example, we provide a commit message on the command line using
the -m option.

9.3.2 WHRETEEKE

We're going to start by backing out the last changeset we committed.

$ hg backout -m 'back out second change' tip

reverting myfile

changeset 2:9db4d4d7364d backs out changeset 1:05cb3d082585
$ cat myfile

first change

You can see that the second line from myfile is no longer present. Taking a look at the output of hg
log gives us an idea of what the hg backout command has done.

Ed. 1
Mercurial YIS
94 / 189

$ hg log --style compact
2[tip] 9db4d4d7364d 2011-03-15 14:15 +0000 bos
back out second change

1 05¢cb3d082585 2011-03-15 14:15 +0000 bos
second change

0 c4c33c1228b3 2011-03-15 14:15 +0000 bos
first change

Notice that the new changeset that hg backout has created is a child of the changeset we backed out.
It's easier to see this in Figure 9.1, which presents a graphical view of the change history. As you
can see, the history is nice and linear.

second change

back out
second change

Figure 9.1: f#F hg backout kB —MEK

9.3.3 W®E M EMIFK

If you want to back out a change other than the last one you committed, pass the ——merge option to the
hg backout command.

$ cd

$ hg clone -rl myrepo non-tip-repo

requesting all changes

adding changesets

adding manifests

adding file changes

added 2 changesets with 2 changes to 1 files

updating to branch default

1 files updated, O files merged, O files removed, O files unresolved
$ cd non-tip-repo

This makes backing out any changeset a ‘one-shot’ operation that's usually simple and fast.

$ echo third change >> myfile
$ hg commit -m 'third change'

Ed. 1

Mercurial YIS
95 / 189

$ hg backout --merge -m 'back out second change' 1

reverting myfile

created new head

changeset 3:9db4d4d7364d backs out changeset 1:05cb3d082585

merging with changeset 3:9db4d4d7364d

merging myfile

0 files updated, 1 files merged, O files removed, O files unresolved
(branch merge, don't forget to commit)

If you take a look at the contents of myfile after the backout finishes, you'll see that the first and
third changes are present, but not the second.

$ cat myfile
first change
third change

As the graphical history in Figure 9.2 illustrates, Mercurial still commits one change in this kind
of situation (the box-shaped node is the ones that Mercurial commits automatically)., but the revision
graph now looks different. Before Mercurial begins the backout process, it first remembers what the
current parent of the working directory is. It then backs out the target changeset, and commits that
as a changeset. Finally, it merges back to the previous parent of the working directory, but notice
that it does not commit the result of the merge. The repository now contains two heads, and the working
directory is in a merge state.

second change

back out
second change

third change

automated
merge

Figure 9.2: {#H hg backout HIHNMKEIETISANELL

The result is that you end up ‘back where you were’ , only with some extra history that undoes the
effect of the changeset you wanted to back out.

You might wonder why Mercurial does not commit the result of the merge that it performed. The reason lies
in Mercurial behaving conservatively: a merge naturally has more scope for error than simply undoing
the effect of the tip changeset, so your work will be safest if you first inspect (and test!) the result
of the merge, then commit it.

Ed. 1

Mercurial YIS
96 / 189

9.3.3.1 #& F %0 —-merge

In fact, since the —-merge option will do the ‘right thing whether or not the changeset you're backing
out is the tip (i.e. it won't try to merge if it's backing out the tip, since there's no need), you
should always use this option when you run the hg backout command.

9.3.4 AMEREFHRIFE S Irh

While I've recommended that you always use the —-—merge option when backing out a change, the hg backout
command lets you decide how to merge a backout changeset. Taking control of the backout process by hand
is something you will rarely need to do, but it can be useful to understand what the hg backout command
is doing for you automatically. To illustrate this, let's clone our first repository, but omit the
backout change that it contains.

$ cd

$ hg clone -rl myrepo newrepo

requesting all changes

adding changesets

adding manifests

adding file changes

added 2 changesets with 2 changes to 1 files

updating to branch default

1 files updated, 0 files merged, O files removed, O files unresolved
$ cd newrepo

As with our earlier example, We'll commit a third changeset, then back out its parent, and see what
happens.

$ echo third change >> myfile

$ hg commit -m 'third change'

$ hg backout -m 'back out second change' 1

reverting myfile

created new head

changeset 3:b23314dc3128 backs out changeset 1:05cb3d082585
the backout changeset is a new head - do not forget to merge
(use "backout --merge'

"

if you want to auto-merge)

Our new changeset is again a descendant of the changeset we backout out:; it's thus a new head, not a
descendant of the changeset that was the tip. The hg backout command was quite explicit in telling us
this.

$ hg log --style compact
3[tip]:1 b23314dc3128 2011-03-15 14:15 +0000 bos
back out second change

2 a0e805900700 2011-03-15 14:15 +0000 bos
third change

1 05¢cb3d082585 2011-03-15 14:15 +0000 bos
second change

0 c4c33c1228b3 2011-03-15 14:15 +0000 bos
first change

Again, it's easier to see what has happened by looking at a graph of the revision history, in Figure 9.3.
This makes it clear that when we use hg backout to back out a change other than the tip, Mercurial adds
a new head to the repository (the change it committed is box-shaped) .

Ed. 1

Mercurial YIS
97 / 189

second change

back out

third change second change

Figure 9.3: f#F] hg backout &E—MEK

After the hg backout command has completed, it leaves the new ‘backout’ changeset as the parent of the
working directory.

$ hg parents

changeset: 2:a0e805900700

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:15:24 2011 +0000
summary : third change

Now we have two isolated sets of changes.

$ hg heads

changeset: 3:b23314dc3128

tag: tip

parent: 1:05¢cb3d082585

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:15:25 2011 +0000
summary : back out second change

changeset: 2:a0e805900700

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:15:24 2011 +0000
summary : third change

Let's think about what we expect to see as the contents of myfile now. The first change should be
present, because we've never backed it out. The second change should be missing, as that's the change
we backed out. Since the history graph shows the third change as a separate head, we don't expect to
see the third change present in myfile.

$ cat myfile
first change

To get the third change back into the file, we just do a normal merge of our two heads.

$ hg merge
abort: outstanding uncommitted changes (use 'hg status' to list changes)
$ hg commit -m 'merged backout with previous tip'

Ed. 1
Mercurial YIS

98 / 189

$ cat myfile
first change

Afterwards, the graphical history of our repository looks like Figure 9.4.

second change

back out

third change second change

manual
merge

Figure 9.4: FT & MEBHK

9.3.5 hg backout #JR #H
Here's a brief description of how the hg backout command works.

1. It ensures that the working directory is ‘clean’
empty.

, i.e. that the output of hg status would be

2. It remembers the current parent of the working directory. Let's call this changeset orig.

3. It does the equivalent of a hg update to sync the working directory to the changeset you want to
back out. Let's call this changeset backout.

4. It finds the parent of that changeset. Let's call that changeset parent.

5. For each file that the backout changeset affected, it does the equivalent of a hg revert -r parent
on that file, to restore it to the contents it had before that changeset was committed.

6. It commits the result as a new changeset. This changeset has backout as its parent.

7. If you specify --merge on the command line, it merges with orig, and commits the result of the
merge.

Ed. 1

Mercurial YIS
99 / 189

An alternative way to implement the hg backout command would be to hg export the to-be-backed-out
changeset as a diff, then use the —--reverse option to the patch command to reverse the effect of the
change without fiddling with the working directory. This sounds much simpler, but it would not work
nearly as well.

The reason that hg backout does an update, a commit, a merge, and another commit is to give the merge
machinery the best chance to do a good job when dealing with all the changes between the change you're
backing out and the current tip.

If you're backing out a changeset that's 100 revisions back in your project's history, the chances that
the patch command will be able to apply a reverse diff cleanly are not good, because intervening changes
are likely to have ‘broken the context’ that patch uses to determine whether it can apply a patch (if
this sounds like gibberish, see Section 12.4 for a discussion of the patch command). Also, Mercurial's
merge machinery will handle files and directories being renamed, permission changes, and modifications
to binary files, none of which patch can deal with.

9.4 RZEAGEK

Most of the time, the hg backout command is exactly what you need if you want to undo the effects of
a change. It leaves a permanent record of exactly what you did, both when committing the original
changeset and when you cleaned up after it.

On rare occasions, though, you may find that you've committed a change that really should not be present
in the repository at all. For example, it would be very unusual, and usually considered a mistake,
to commit a software project's object files as well as its source files. Object files have almost no
intrinsic value, and they're big, so they increase the size of the repository and the amount of time it
takes to clone or pull changes.

Before I discuss the options that you have if you commit a ‘brown paper bag’ change (the kind that's
so bad that you want to pull a brown paper bag over your head), let me first discuss some approaches
that probably won't work.

Since Mercurial treats history as accumulative—every change builds on top of all changes that preceded
it—you generally can't just make disastrous changes disappear. The one exception is when you've Jjust
committed a change, and it hasn't been pushed or pulled into another repository. That's when you can
safely use the hg rollback command, as I detailed in Section 9.1.2.

After you've pushed a bad change to another repository, you could still use hg rollback to make your
local copy of the change disappear, but it won't have the consequences you want. The change will still
be present in the remote repository, so it will reappear in your local repository the next time you pull.

If a situation like this arises, and you know which repositories your bad change has propagated into,

you can try to get rid of the change from every one of those repositories. This is, of course, not a

satisfactory solution: if you miss even a single repository while you're expunging, the change is still
‘in the wild’ , and could propagate further.

If you've committed one or more changes after the change that you'd like to see disappear, your options
are further reduced. Mercurial doesn't provide a way to ‘punch a hole’ 1in history, leaving changesets
intact.

9.4.1 #4E— /145

Since merges are often complicated, it is not unheard of for a merge to be mangled badly, but committed
erroneously. Mercurial provides an important safeguard against bad merges by refusing to commit unresolved
files, but human ingenuity guarantees that it is still possible to mess a merge up and commit it.

Given a bad merge that has been committed, usually the best way to approach it is to simply try to repair
the damage by hand. A complete disaster that cannot be easily fixed up by hand ought to be very rare,

Ed. 1

Mercurial FUEIETE /
100 189

but the hg backout command may help in making the cleanup easier. It offers a —-parent option, which
lets you specify which parent to revert to when backing out a merge.

3: your change

4: bad merge

Figure 9.5: (HEHIEH

Suppose we have a revision graph like that in Figure 9.5. What we'd like is to redo the merge of
revisions 2 and 3.

One way to do so would be as follows.
1. Call hg backout --rev=4 —-—parent=2. This tells hg backout to back out revision 4, which is the bad

merge, and to when deciding which revision to prefer, to choose parent 2, one of the parents of the
merge. The effect can be seen in Figure 9.6.

Ed. 1
Mercurial AYEfEEE

101 / 189

3: your change

--parent=2 4: bad merge

Y
6: backout 1 of
bad merge

5: new change

Figure 9.6: ﬂ%@%é%;?, FVE—MACE

2. Call hg backout --rev=4 —--parent=3. This tells hg backout to back out revision 4 again, but this

time to choose parent 3, the other parent of the merge. The result is visible in Figure 9.7,

in
which the repository now contains three heads.

Ed. 1
Mercurial YIS

102 / 189
--parent=2 --parent=3
Y 1
6: backout 1 of 8: backout 2 of
bad merge bad merge

Figure 9.7: &I, RIFHEAE

3. Redo the bad merge by merging the two backout heads, which reduces the number of heads in the
repository to two, as can be seen in Figure 9.8.

Ed. 1
Mercurial FEFEFE

103 / 189
:--parent=2 " --parent=3
v 4
6: backout 1 of 7: backout 2 of
bad merge bad merge

T

Figure 9.8: &3 ¥rkx

8: merge
of backouts

4. Merge with the commit that was made after the bad merge, as shown in Figure 9.9.

Ed. 1

Mercurial FUEIETE /
104 189

5: new change

8: merge
of backouts

9: merge with
new change

Figure 9.9: &3 ¥rkR

9.4.2 &R ‘BRI HriKFifrac

If you've committed some changes to your local repository and they've been pushed or pulled somewhere
else, this isn't necessarily a disaster. You can protect yourself ahead of time against some classes of
bad changeset. This is particularly easy if your team usually pulls changes from a central repository.

By configuring some hooks on that repository to validate incoming changesets (see chapter Chapter 10),
you can automatically prevent some kinds of bad changeset from being pushed to the central repository
at all. With such a configuration in place, some kinds of bad changeset will naturally tend to ‘die
out’ because they can't propagate into the central repository. Better vet, this happens without any
need for explicit intervention.

For instance, an incoming change hook that verifies that a changeset will actually compile can prevent

Ed. 1

Mercurial FUEIETE /
105 189

people from inadvertently ‘breaking the build’

9.4.3 KAEERBAT BMFRGF X

Even a carefully run project can suffer an unfortunate event such as the committing and uncontrolled
propagation of a file that contains important passwords.

If something like this happens to you, and the information that gets accidentally propagated is truly
sensitive, your first step should be to mitigate the effect of the leak without trying to control the
leak itself. If you are not 100% certain that you know exactly who could have seen the changes, you
should immediately change passwords, cancel credit cards, or find some other way to make sure that the
information that has leaked is no longer useful. In other words, assume that the change has propagated
far and wide, and that there's nothing more you can do.

You might hope that there would be mechanisms you could use to either figure out who has seen a change
or to erase the change permanently everywhere, but there are good reasons why these are not possible.

Mercurial does not provide an audit trail of who has pulled changes from a repository, because it is
usually either impossible to record such information or trivial to spoof it. In a multi-user or networked
environment, you should thus be extremely skeptical of yourself if you think that you have identified
every place that a sensitive changeset has propagated to. Don't forget that people can and will send
bundles by email, have their backup software save data offsite, carry repositories on USB sticks, and
find other completely innocent ways to confound your attempts to track down every copy of a problematic
change.

Mercurial also does not provide a way to make a file or changeset completely disappear from history,
because there is no way to enforce its disappearance; someone could easily modify their copy of Mercurial
to ignore such directives. In addition, even if Mercurial provided such a capability, someone who simply
hadn't pulled a ‘make this file disappear’ changeset wouldn't be affected by it, nor would web crawlers
visiting at the wrong time, disk backups, or other mechanisms. Indeed, no distributed revision control
system can make data reliably vanish. Providing the illusion of such control could easily give a false
sense of security, and be worse than not providing it at all.

9.5 &k PR AR IR

While it's all very well to be able to back out a changeset that introduced a bug, this requires that
you know which changeset to back out. Mercurial provides an invaluable command, called hg bisect, that
helps you to automate this process and accomplish it very efficiently.

The idea behind the hg bisect command is that a changeset has introduced some change of behavior that
you can identify with a simple pass/fail test. You don't know which piece of code introduced the change,
but you know how to test for the presence of the bug. The hg bisect command uses your test to direct
its search for the changeset that introduced the code that caused the bug.

Here are a few scenarios to help you understand how you might apply this command.

The most recent version of your software has a bug that you remember wasn't present a few weeks ago,
but you don't know when it was introduced. Here, your binary test checks for the presence of that
bug.

* You fixed a bug in a rush, and now it's time to close the entry in your team's bug database. The bug
database requires a changeset ID when you close an entry, but you don't remember which changeset you
fixed the bug in. Once again, your binary test checks for the presence of the bug.

Your software works correctly, but runs 15% slower than the last time you measured it. You want to
know which changeset introduced the performance regression. In this case, your binary test measures
the performance of your software, to see whether it's ‘fast’ or ‘slow’

Ed. 1

Mercurial FUEIETE /
106 189

The sizes of the components of your project that you ship exploded recently, and you suspect that
something changed in the way you build your proJject.

From these examples, it should be clear that the hg bisect command is not useful only for finding the
sources of bugs. You can use it to find any ‘emergent property’ of a repository (anything that you
can't find from a simple text search of the files in the tree) for which you can write a binary test.

We'll introduce a little bit of terminology here, just to make it clear which parts of the search process
are your responsibility, and which are Mercurial's. A test is something that you run when hg bisect
chooses a changeset. A probe is what hg bisect runs to tell whether a revision is good. Finally, we'll
use the word ‘bisect’ ., as both a noun and a verb, to stand in for the phrase ‘search using the hg
bisect command’

One simple way to automate the searching process would be simply to probe every changeset. However, this
scales poorly. If it took ten minutes to test a single changeset, and you had 10,000 changesets in your
repository, the exhaustive approach would take on average 35 days to find the changeset that introduced
a bug. Even if you knew that the bug was introduced by one of the last 500 changesets, and limited your
search to those, you'd still be looking at over 40 hours to find the changeset that introduced your bug.

What the hg bisect command does is use its knowledge of the ‘shape’ of your project's revision history
to perform a search in time proportional to the logarithm of the number of changesets to check (the
kind of search it performs is called a dichotomic search). With this approach, searching through 10,000
changesets will take less than three hours, even at ten minutes per test (the search will require about
14 tests). Limit your search to the last hundred changesets, and it will take only about an hour (roughly
seven tests).

The hg bisect command is aware of the ‘branchy’ nature of a Mercurial project's revision history, so
it has no problems dealing with branches, merges, or multiple heads in a repository. It can prune entire
branches of history with a single probe, which is how it operates so efficiently.

9.5.1 {#JA4 4 hg bisect

Here's an example of hg bisect in action.

Note
In versions 0.9.5 and earlier of Mercurial, hg bisect was not a core command: it was distributed with
Mercurial as an extension. This section describes the built-in command, not the old extension.

Now let's create a repository, so that we can try out the hg bisect command in isolation.

$ hg init mybug
$ cd mybug

We'll simulate a project that has a bug in it in a simple-minded way: create trivial changes in a loop,
and nominate one specific change that will have the ‘bug’ This loop creates 35 changesets, each
adding a single file to the repository. We'll represent our ‘bug’ with a file that contains the text

‘i have a gub’

$ buggy change=22

$ for ((i = 0; i < 35; i++)); do

> if [[$i = S$buggy change |]; then

> echo 'i have a gub' > myfileS$i

> hg commit -q -A -m 'buggy changeset'

> else

> echo 'nothing to see here, move along' > myfile$i
> hg commit -q -A -m 'normal changeset'

> fi

> done

Ed. 1

Mercurial FUEIETE /
107 189

The next thing that we'd like to do is figure out how to use the hg bisect command. We can use Mercurial's
normal built-in help mechanism for this.

$ hg help bisect
hg bisect [-gbsr] [-U] [-c CMD] [REV]

subdivision search of changesets

This command helps to find changesets which introduce problems. To use,
mark the earliest changeset you know exhibits the problem as bad, then
mark the latest changeset which is free from the problem as good. Bisect
will update your working directory to a revision for testing (unless the
-U/--noupdate option is specified). Once you have performed tests, mark
the working directory as good or bad, and bisect will either update to
another candidate changeset or announce that it has found the bad
revision.

As a shortcut, you can also use the revision argument to mark a revision
as good or bad without checking it out first.

If you supply a command, it will be used for automatic bisection. Its exit
status will be used to mark revisions as good or bad: status O means good,
125 means to skip the revision, 127 (command not found) will abort the
bisection, and any other non-zero exit status means the revision is bad.

Returns O on success.

options:

-r —-reset reset bisect state

-g --good mark changeset good

-b --bad mark changeset bad

-s --skip skip testing changeset

-c¢ —--command CMD use command to check changeset state
-U --noupdate do not update to target

use "hg -v help bisect" to show global options

The hg bisect command works in steps. Each step proceeds as follows.

1. You run your binary test.

HMEAA NS, FH hg bisect ——good & 4if hg bisect #i& ©
WRKM, $UUT heg bisect ——bad AF< °

2. The command uses your information to decide which changeset to test next.

3. It updates the working directory to that changeset, and the process begins again.
The process ends when hg bisect identifies a unique changeset that marks the point where your test
transitioned from ‘succeeding’ to ‘failing’
To start the search, we must run the hg bisect —--reset command.

$ hg bisect --reset

In our case, the binary test we use is simple: we check to see if any file in the repository contains

the string ‘i have a gub’ . If it does, this changeset contains the change that ‘caused the bug’ . By

convention, a changeset that has the property we're searching for is ‘bad’ , while one that doesn't is
‘good’

Most of the time, the revision to which the working directory is synced (usually the tip) already exhibits
the problem introduced by the buggy change, so we'll mark it as ‘bad’

Ed. 1

Mercurial FUEIETE /
108 189

$ hg bisect --bad

Our next task is to nominate a changeset that we know doesn't have the bug; the hg bisect command will

‘bracket’ its search between the first pair of good and bad changesets. In our case, we know that
revision 10 didn't have the bug. (I'll have more words about choosing the first ‘good’ changeset
later.)

$ hg bisect --good 10
Testing changeset 22:0500bec9e8ab6 (24 changesets remaining, ~4 tests)
0 files updated, 0 files merged, 12 files removed, 0 files unresolved

Notice that this command printed some output.

+ It told us how many changesets it must consider before it can identify the one that introduced the
bug, and how many tests that will require.

It updated the working directory to the next changeset to test, and told us which changeset it's
testing.

We now run our test in the working directory. We use the grep command to see if our ‘bad’ file is
present in the working directory. If it is, this revision is bad; if not, this revision is good.

if grep -q 'i have a gub' *
then

result=bad
else

result=good
fi
echo this revision is S$result

LV V V V VA

this revision is bad
$ hg bisect —--S$result
Testing changeset 16:d98bcel19579 (12 changesets remaining, ~3 tests)
0 files updated, 0 files merged, 6 files removed, O files unresolved

This test looks like a perfect candidate for automation, so let's turn it into a shell function.

$ mytest () {

> if grep -q 'i have a gub' *

> then

> result=bad

> else

> result=good

> fi

> echo this revision is Sresult
> hg bisect --$result

>}

We can now run an entire test step with a single command, mytest.

$ mytest

this revision is good

Testing changeset 19:5b7d1a3db408 (6 changesets remaining, ~2 tests)
3 files updated, 0 files merged, O files removed, O files unresolved

A few more invocations of our canned test step command, and we're done.

$ mytest

this revision is good

Testing changeset 20:b76bf1d1895d (3 changesets remaining, ~1 tests)
1 files updated, O files merged, O files removed, O files unresolved

Ed. 1

Mercurial FUEIETE /
109 189

$ mytest

this revision is good

Testing changeset 21:c¢529e6bf102d (2 changesets remaining, ~1 tests)
1 files updated, O files merged, O files removed, O files unresolved
$ mytest

this revision is good

The first bad revision is:

changeset: 22:0500bec9e8ab

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:15:28 2011 +0000
summary : buggy changeset

Even though we had 40 changesets to search through, the hg bisect command let us find the changeset that
introduced our ‘bug’ with only five tests. Because the number of tests that the hg bisect command
performs grows logarithmically with the number of changesets to search, the advantage that it has over
the ‘brute force’ search approach increases with every changeset you add.

9.5.2 HELiEnmFEHE

When you're finished using the hg bisect command in a repository, you can use the hg bisect --reset
command to drop the information it was using to drive your search. The command doesn't use much space,
so it doesn't matter if you forget to run this command. However, hg bisect won't let you start a new
search in that repository until you do a hg bisect —-reset.

$ hg bisect --reset

9.6 AXERFAYGHE

9.6.1 #4dH—%89Hm A

The hg bisect command requires that you correctly report the result of every test you perform. If you
tell it that a test failed when it really succeeded, it might be able to detect the inconsistency. If
it can identify an inconsistency in your reports, it will tell you that a particular changeset is both
good and bad. However, it can't do this perfectly; it's about as likely to report the wrong changeset
as the source of the bug.

9.6.2 REAH

When I started using the hg bisect command, I tried a few times to run my tests by hand, on the command
line. This is an approach that I, at least, am not suited to. After a few tries, I found that I was
making enough mistakes that I was having to restart my searches several times before finally getting
correct results.

My initial problems with driving the hg bisect command by hand occurred even with simple searches on
small repositories; if the problem you're looking for is more subtle, or the number of tests that hg
bisect must perform increases, the likelihood of operator error ruining the search is much higher. Once
I started automating my tests, I had much better results.

The key to automated testing is twofold:

always test for the same symptom, and

always feed consistent input to the hg bisect command.

Ed. 1

Mercurial FUEIETE /
110 189

In my tutorial example above, the grep command tests for the symptom, and the if statement takes the
result of this check and ensures that we always feed the same input to the hg bisect command. The mytest
function marries these together in a reproducible way, so that every test is uniform and consistent.

9.6.3 Ry R

Because the output of a hg bisect search is only as good as the input you give it, don't take the
changeset it reports as the absolute truth. A simple way to cross-check its report is to manually run
your test at each of the following changesets:

The changeset that it reports as the first bad revision. Your test should still report this as bad.

The parent of that changeset (either parent, if it's a merge). Your test should report this changeset
as good.

A child of that changeset. Your test should report this changeset as bad.

9.6.4 £y EAZ 8¢ R

It's possible that your search for one bug could be disrupted by the presence of another. For example,
let's say your software crashes at revision 100, and worked correctly at revision 50. Unknown to you,
someone else introduced a different crashing bug at revision 60, and fixed it at revision 80. This could
distort your results in one of several ways.

It is possible that this other bug completely ‘masks’ vyours, which is to say that it occurs before
your bug has a chance to manifest itself. If you can't avoid that other bug (for example, it prevents
your project from building), and so can't tell whether your bug is present in a particular changeset,
the hg bisect command cannot help you directly. Instead, you can mark a changeset as untested by running
hg bisect —-skip.

A different problem could arise if your test for a bug's presence is not specific enough. If you check
for ‘my program crashes’ , then both your crashing bug and an unrelated crashing bug that masks it will
look like the same thing, and mislead hg bisect.

Another useful situation in which to use hg bisect --skip is if you can't test a revision because your
project was in a broken and hence untestable state at that revision, perhaps because someone checked in
a change that prevented the project from building.

9.6.5 I ikegERIAE

Choosing the first ‘good’ and ‘bad’ changesets that will mark the end points of your search is often
easy, but it bears a little discussion nevertheless. From the perspective of hg bisect, the ‘newest’

changeset is conventionally ‘bad’ , and the older changeset is ‘good’

If you're having trouble remembering when a suitable ‘good’ change was, so that you can tell hg bisect,
you could do worse than testing changesets at random. Just remember to eliminate contenders that can't
possibly exhibit the bug (perhaps because the feature with the bug isn't present yet) and those where
another problem masks the bug (as I discussed above) .

Even if you end up ‘early’ by thousands of changesets or months of history, you will only add a handful
of tests to the total number that hg bisect must perform, thanks to its logarithmic behavior.

Ed. 1

Mercurial FUEIETE /
111 189

Chapter 10

1% 4 T2 P AR N R F A

Mercurial offers a powerful mechanism to let you perform automated actions in response to events that
occur in a repository. In some cases, you can even control Mercurial's response to those events.

The name Mercurial uses for one of these actions is a hook. Hooks are called ‘triggers’ 1in some
revision control systems, but the two names refer to the same idea.

10.1 Mercurial 49-F#Lik

Here is a brief list of the hooks that Mercurial supports. We will revisit each of these hooks in more
detail later, in Section 10.7.

Each of the hooks whose description begins with the word ‘Controlling’ has the ability to determine
whether an activity can proceed. If the hook succeeds, the activity may proceed; if it fails, the
activity is either not permitted or undone, depending on the hook.

+ changegroup: This is run after a group of changesets has been brought into the repository from
elsewhere.

+ commit: This is run after a new changeset has been created in the local repository.

+ dincoming: This is run once for each new changeset that is brought into the repository from elsewhere.
Notice the difference from changegroup, which is run once per group of changesets brought in.

+ outgoing: This is run after a group of changesets has been transmitted from this repository.
+ prechangegroup: This is run before starting to bring a group of changesets into the repository.
+ precommit: Controlling. This is run before starting a commit.

+ preoutgoing: Controlling. This is run before starting to transmit a group of changesets from this
repository.

+ pretag: Controlling. This is run before creating a tag.

+ pretxnchangegroup: Controlling. This is run after a group of changesets has been brought into
the local repository from another, but before the transaction completes that will make the changes
permanent in the repository.

pretxncommit: Controlling. This is run after a new changeset has been created in the local repository,
but before the transaction completes that will make it permanent.

preupdate: Controlling. This is run before starting an update or merge of the working directory.
tag: This is run after a tag is created.

update: This is run after an update or merge of the working directory has finished.

Ed. 1

Mercurial FUEIETE /
112 189

10.2 #TF5%4MH%

10.2.1 4 F A4k 89 45 AT

When you run a Mercurial command in a repository, and the command causes a hook to run, that hook runs
on your system, under your user account, with your privilege level. Since hooks are arbitrary pieces
of executable code, you should treat them with an appropriate level of suspicion. Do not install a hook
unless you are confident that you know who created it and what it does.

In some cases, you may be exposed to hooks that you did not install yourself. If you work with Mercurial
on an unfamiliar system, Mercurial will run hooks defined in that system's global ~/.hgrc file.

If you are working with a repository owned by another user, Mercurial can run hooks defined in that user's
repository, but it will still run them as ‘you’ . For example, if you hg pull from that repository,
and its .hg/hgrc defines a local outgoing hook, that hook will run under your user account, even though
you don't own that repository.

Note

This only applies if you are pulling from a repository on a local or network filesystem. If you're
pulling over http or ssh, any outgoing hook will run under whatever account is executing the server
process, on the server.

To see what hooks are defined in a repository, use the hg showconfig hooks command. If you are working
in one repository, but talking to another that you do not own (e.g. using hg pull or hg incoming).
remember that it is the other repository's hooks you should be checking, not your own.

10.2.2 AT &4E4%

In Mercurial, hooks are not revision controlled, and do not propagate when you clone, or pull from, a
repository. The reason for this is simple: a hook is a completely arbitrary piece of executable code.
It runs under your user identity, with your privilege level, on your machine.

It would be extremely reckless for any distributed revision control system to implement revision-
controlled hooks, as this would offer an easily exploitable way to subvert the accounts of users of the
revision control system.

Since Mercurial does not propagate hooks, if you are collaborating with other people on a common project,
you should not assume that they are using the same Mercurial hooks as you are, or that theirs are
correctly configured. You should document the hooks you expect people to use.

In a corporate intranet, this is somewhat easier to control, as you can for example provide a ‘standard’
installation of Mercurial on an NFS filesystem, and use a site-wide ~/.hgrc file to define hooks that
all users will see. However, this too has its limits; see below.

10.2.3 4T TUAHEE &

Mercurial allows you to override a hook definition by redefining the hook. You can disable it by setting
its value to the empty string, or change its behavior as you wish.

If you deploy a system— or site-wide ~/.hgrc file that defines some hooks, you should thus understand
that your users can disable or override those hooks.

Ed. 1

Mercurial FUEIETE /
113 189

10.2.4 R X424 -F o9 AT

Sometimes you may want to enforce a policy that you do not want others to be able to work around. For
example, you may have a requirement that every changeset must pass a rigorous set of tests. Defining
this requirement via a hook in a site-wide ~/.hgrc won't work for remote users on laptops, and of course
local users can subvert it at will by overriding the hook.

Instead, you can set up your policies for use of Mercurial so that people are expected to propagate
changes through a well-known ‘canonical’ server that you have locked down and configured appropriately.

One way to do this is via a combination of social engineering and technology. Set up a restricted-access
account; users can push changes over the network to repositories managed by this account, but they cannot
log into the account and run normal shell commands. In this scenario, a user can commit a changeset
that contains any old garbage they want.

When someone pushes a changeset to the server that everyone pulls from, the server will test the changeset
before it accepts it as permanent, and reject it if it fails to pass the test suite. If people only
pull changes from this filtering server, it will serve to ensure that all changes that people pull have
been automatically vetted.

10.3 AR MH TR HER S

It is easy to write a Mercurial hook. Let's start with a hook that runs when you finish a hg commit,
and simply prints the hash of the changeset you just created. The hook is called commit.

A1l hooks follow the pattern in this example.

hg init hook-test

cd hook-test

echo '[hooks]' >> .hg/hgrc

echo 'commit = echo committed $HG_NODE' >> .hg/hgrc
cat .hg/hgrc

[hooks]

commit = echo committed SHG_NODE

$ echo a > a

$ hg add a

$ hg commit -m 'testing commit hook'

committed 16d39b503922948333f8d02968d7c0c23e130741

PP h PP

You add an entry to the hooks section of your ~/.hgrc. On the left is the name of the event to trigger
on; on the right is the action to take. As you can see, you can run an arbitrary shell command in a
hook. Mercurial passes extra information to the hook using environment variables (look for HG NODE in
the example).

10.3.1 HANFHIAT S MRtk

Quite often, you will want to define more than one hook for a particular kind of event, as shown below.

$ echo 'commit.when = echo -n "date of commit: "; date' >> .hg/hgrc
$ echo a >> a

$ hg commit -m 'i have two hooks'

committed f8ae29ec862feaabf3a4a7el1485ff87306c9dfd5

date of commit: Tue Mar 15 14:15:55 GMT 2011

Mercurial lets you do this by adding an extension to the end of a hook's name. You extend a hook's name

by giving the name of the hook, followed by a full stop (the ‘.’ character), followed by some more

Ed. 1

Mercurial FUEIETE /
114 189

text of your choosing. For example, Mercurial will run both commit.foo and commit.bar when the commit
event occurs.

To give a well-defined order of execution when there are multiple hooks defined for an event, Mercurial
sorts hooks by extension, and executes the hook commands in this sorted order. In the above example, it
will execute commit.bar before commit.foo, and commit before both.

It is a good idea to use a somewhat descriptive extension when you define a new hook. This will help
you to remember what the hook was for. If the hook fails, you'll get an error message that contains the
hook name and extension, so using a descriptive extension could give you an immediate hint as to why the
hook failed (see Section 10.3.2 for an example).

10.3.2 =& EaEH)

In our earlier examples, we used the commit hook, which is run after a commit has completed. This is one
of several Mercurial hooks that run after an activity finishes. Such hooks have no way of influencing
the activity itself.

Mercurial defines a number of events that occur before an activity starts; or after it starts, but before
it finishes. Hooks that trigger on these events have the added ability to choose whether the activity
can continue, or will abort.

The pretxncommit hook runs after a commit has all but completed. In other words, the metadata representing
the changeset has been written out to disk, but the transaction has not yet been allowed to complete.
The pretxncommit hook has the ability to decide whether the transaction can complete, or must be rolled
back.

If the pretxncommit hook exits with a status code of zero, the transaction is allowed to complete; the
commit finishes; and the commit hook is run. If the pretxncommit hook exits with a non-zero status code,
the transaction is rolled back: the metadata representing the changeset is erased; and the commit hook
is not run.

$ cat check bug_id

#!/bin/sh

check that a commit comment mentions a numeric bug id

hg log -r $1 --template {desc} | grep -q "\<bug *[0-9]"

$ echo 'pretxncommit.bug id_required = ./check_bug id SHG_NODE' >> .hg/hgrc
$ echo a >> a

$ hg commit -m 'i am not mentioning a bug id'

transaction abort!

rollback completed

abort: pretxncommit.bug id required hook exited with status 1
$ hg commit -m 'i refer you to bug 666"

committed 6d0a7f3d2373917e636251a8f46abd8e8523516b

date of commit: Tue Mar 15 14:15:56 GMT 2011

The hook in the example above checks that a commit comment contains a bug ID. If it does, the commit can
complete. If not, the commit is rolled back.

10.4 %54 F

When you are writing a hook, you might find it useful to run Mercurial either with the -v option, or
the verbose config item set to ‘true’ . When you do so, Mercurial will print a message before it calls
each hook.

Ed. 1

Mercurial FUEIETE /
115 189

10.4.1 #EHFHHITH X

You can write a hook either as a normal program—typically a shell script—or as a Python function that
is executed within the Mercurial process.

Writing a hook as an external program has the advantage that it requires no knowledge of Mercurial's
internals. You can call normal Mercurial commands to get any added information you need. The trade-off
is that external hooks are slower than in-process hooks.

An in-process Python hook has complete access to the Mercurial API, and does not ‘shell out’ to another
process, so it is inherently faster than an external hook. It is also easier to obtain much of the
information that a hook requires by using the Mercurial API than by running Mercurial commands.

If you are comfortable with Python, or require high performance, writing your hooks in Python may be a
good choice. However, when you have a straightforward hook to write and you don't need to care about
performance (probably the majority of hooks), a shell script is perfectly fine.

10.4.2 4T 8954

Mercurial calls each hook with a set of well-defined parameters. In Python, a parameter is passed as a
keyword argument to your hook function. For an external program, a parameter is passed as an environment
variable.

Whether your hook is written in Python or as a shell script, the hook-specific parameter names and
values will be the same. A boolean parameter will be represented as a boolean value in Python, but as
the number 1 (for ‘true’) or 0 (for ‘false’) as an environment variable for an external hook. If a
hook parameter is named foo, the keyword argument for a Python hook will also be named foo, while the
environment variable for an external hook will be named HG FOO.

10.4.3 44 -F 8938 ©E 5 & #h 424

A hook that executes successfully must exit with a status of zero if external, or return boolean ‘false’
if in-process. Failure is indicated with a non-zero exit status from an external hook, or an in-process
hook returning boolean ‘true’ . If an in-process hook raises an exception, the hook is considered to
have failed.

For a hook that controls whether an activity can proceed, zero/false means ‘allow’ , while non-—
zero/true/exception means ‘deny’

10.4.4 %R B INH4H T

When you define an external hook in your ~/.hgrc and the hook is run, its value is passed to your shell,
which interprets it. This means that you can use normal shell constructs in the body of the hook.

An executable hook is always run with its current directory set to a repository's root directory.

Each hook parameter is passed in as an environment variable; the name is upper-cased, and prefixed with
the string ‘HG '

With the exception of hook parameters, Mercurial does not set or modify any environment variables when
running a hook. This is useful to remember if you are writing a site-wide hook that may be run by a
number of different users with differing environment variables set. In multi-user situations, you should
not rely on environment variables being set to the values you have in your environment when testing the
hook.

Ed. 1

Mercurial FUEIETE /
116 189

10.4.5 1k Mercurial {& A #42 N4 F

The ~/.hgrc syntax for defining an in-process hook is slightly different than for an executable hook.
The value of the hook must start with the text ‘python:’ , and continue with the fully-qualified name
of a callable object to use as the hook's value.

The module in which a hook lives is automatically imported when a hook is run. So long as you have the
module name and PYTHONPATH right, it should ‘just work’

The following ~/.hgrc example snippet illustrates the syntax and meaning of the notions we just described.

[hooks |
commit.example = python:mymodule.submodule.myhook

When Mercurial runs the commit.example hook, it imports mymodule.submodule, looks for the callable object
named myhook, and calls it.

10.4.6 %R/EBE#HFEZANHT

The simplest in-process hook does nothing, but illustrates the basic shape of the hook API:

def myhook (ui, repo, **kwargs):
pass

The first argument to a Python hook is always a ui object. The second is a repository object:; at the
moment, it is always an instance of localrepository. Following these two arguments are other keyword
arguments. Which ones are passed in depends on the hook being called, but a hook can ignore arguments
it doesn't care about by dropping them into a keyword argument dict, as with **kwargs above.

10.5 49 -F4£47]

10.5.1 %#%EBAZLNRXAE

It's hard to imagine a useful commit message being very short. The simple pretxncommit hook of the
example below will prevent you from committing a changeset with a message that is less than ten bytes
long.

$ cat .hg/hgrc

[hooks]

pretxncommit.msglen = test “hg tip --template {desc} | wc -c’ -ge 10
$ echo a > a

$ hg add a

$ hg commit -A -m 'too short'

transaction abort!

rollback completed

abort: pretxncommit.msglen hook exited with status 1

$ hg commit -A -m 'long enough'

10.5.2 BBITREHK

An interesting use of a commit-related hook is to help you to write cleaner code. A simple example of
‘cleaner code’ is the dictum that a change should not add any new lines of text that contain ‘trailing
whitespace’ . Trailing whitespace is a series of space and tab characters at the end of a line of text.

Ed. 1

Mercurial FUEIETE /
117 189

In most cases, trailing whitespace is unnecessary, invisible noise, but it is occasionally problematic,
and people often prefer to get rid of it.

You can use either the precommit or pretxncommit hook to tell whether you have a trailing whitespace
problem. If you use the precommit hook, the hook will not know which files you are committing, so
it will have to check every modified file in the repository for trailing white space. If you want to
commit a change to Jjust the file foo, but the file bar contains trailing whitespace, doing a check in
the precommit hook will prevent you from committing foo due to the problem with bar. This doesn't seem
right.

Should you choose the pretxncommit hook, the check won't occur until Jjust before the transaction for
the commit completes. This will allow you to check for problems only the exact files that are being
committed. However, if you entered the commit message interactively and the hook fails, the transaction
will roll back; you'll have to re—enter the commit message after you fix the trailing whitespace and run
hg commit again.

$ cat .hg/hgrc

[hooks |
pretxncommit.whitespace = hg export tip | (! egrep -q 'A\+.*[\t]$')
$ echo 'a ' > a

'

$ hg commit -A -m 'test with trailing whitespace
adding a

transaction abort!

rollback completed

abort: pretxncommit.whitespace hook exited with status 1

$ echo 'a' > a

$ hg commit -A -m 'drop trailing whitespace and try again'

In this example, we introduce a simple pretxncommit hook that checks for trailing whitespace. This hook
is short, but not very helpful. It exits with an error status if a change adds a line with trailing
whitespace to any file, but does not print any information that might help us to identify the offending
file or line. It also has the nice property of not paying attention to unmodified lines; only lines
that introduce new trailing whitespace cause problems.

#!/usr/bin/env python
7

save as .hg/check_whitespace.py and make executable
import re

def trailing whitespace (difflines):
#

linenum, header = 0, False

for line in difflines:
if header:
remember the name of the file that this diff affects
m = re.match(r' (?2:=---|\+\+\+) (["\t]+)"', 1line)
if m and m.group (1) !'= '/dev/null':
filename = m.group (1) .split(' /', 1)[-1]
if line.startswith ('+++ '):
header = False
continue
if line.startswith('diff '):

header = True

continue
hunk header - save the line number
m = re.match(r'ee -\d+,\d+ \+(\d+),', line)
if m:

linenum = int(m.group (1))

continue
% hunk body - check for an added line with trailing whitespace

Ed. 1

Mercurial YIS

118 / 189

if

__name_

m = re.match(r'\+.*\s$', line)
if m:
yield filename, linenum
if line and 1line[0] in ' +':
linenum += 1

== ' main__

import os, sys

added = 0

for filename, linenum in trailing whitespace (os.popen('hg export tip')):
print >> sys.stderr, ('%s, line %d: trailing whitespace added' %

(filename, linenum))

added += 1

if added:
% save the commit message so we don't need to retype it
os.system('hg tip --template "{desc}" > .hg/commit.save')
print >> sys.stderr, 'commit message saved to .hg/commit.save'
sys.exit (1)

The above version is much more complex, but also more useful. It parses a unified diff to see if any lines

add trailing whitespace, and prints the name of the file and the line number of each such occurrence.

Even
name

better, if the change adds trailing whitespace, this hook saves the commit comment and prints the
of the save file before exiting and telling Mercurial to roll the transaction back, so you can use

the -1 filename option to hg commit to reuse the saved commit message once you've corrected the problem.

$ cat .hg/hgrc

[hooks |
pretxncommit.whitespace = .hg/check whitespace.py
$ echo 'a ' >> a

$ hg commit -A -m 'add new line with trailing whitespace'

a, line 2: trailing whitespace added

commit message saved to .hg/commit.save
transaction abort!
rollback completed

abort: pretxncommit.whitespace hook exited with status 1
$ sed -i 's, *S$,,' a

$ hg

commit -A -m 'trimmed trailing whitespace'

a, line 2: trailing whitespace added

commit message saved to .hg/commit.save

transaction abort!
rollback completed

abort: pretxncommit.whitespace hook exited with status 1

As a

final aside, note in the example above the use of sed's in-place editing feature to get rid of

trailing whitespace from a file. This is concise and useful enough that I will reproduce it here (using

perl

perl

for good measure) .

-pi -e 's,\s+$,,' filename

10.6 M E 4T

Mercurial ships with several bundled hooks. You can find them in the hgext directory of a Mercurial

source tree. If you are using a Mercurial binary package, the hooks will be located in the hgext

directory of wherever your package installer put Mercurial.

Ed. 1
Mercurial YIS
119 / 189

10.6.1 acl—hAR A 6915 7] 32 4

The acl extension lets you control which remote users are allowed to push changesets to a networked
server. You can protect any portion of a repository (including the entire repo)., so that a specific
remote user can push changes that do not affect the protected portion.

This extension implements access control based on the identity of the user performing a push, not on who
committed the changesets they're pushing. It makes sense to use this hook only if you have a locked-down
server environment that authenticates remote users, and you want to be sure that only specific users are
allowed to push changes to that server.

10.6.1.1 K& acl ¥F

In order to manage incoming changesets, the acl hook must be used as a pretxnchangegroup hook. This lets
it see which files are modified by each incoming changeset, and roll back a group of changesets if they
modify ‘forbidden’ files. Example:

[hooks]
pretxnchangegroup.acl = python:hgext.acl.hook

The acl extension is configured using three sections.

The acl section has only one entry, sources, which lists the sources of incoming changesets that the
hook should pay attention to. You don't normally need to configure this section.

+ serve: Control incoming changesets that are arriving from a remote repository over http or ssh. This
is the default value of sources, and usually the only setting you'll need for this configuration item.

pull: Control incoming changesets that are arriving via a pull from a local repository.
push: Control incoming changesets that are arriving via a push from a local repository.

bundle: Control incoming changesets that are arriving from another repository via a bundle.

The acl.allow section controls the users that are allowed to add changesets to the repository. If
this section is not present, all users that are not explicitly denied are allowed. If this section is
present, all users that are not explicitly allowed are denied (so an empty section means that all users
are denied).

The acl.deny section determines which users are denied from adding changesets to the repository. If this
section is not present or is empty, no users are denied.

The syntaxes for the acl.allow and acl.deny sections are identical. On the left of each entry is a glob
pattern that matches files or directories, relative to the root of the repository; on the right, a user
name .

In the following example, the user docwriter can only push changes to the docs subtree of the repository,
while intern can push changes to any file or directory except source/sensitive.

[acl.allow]

docs/** = docwriter
[acl.deny]
source/sensitive/** = intern

Ed. 1

Mercurial FUEIETE /
120 189

10.6.1.2 MR 5 9] A4 3¢

If you want to test the acl hook, run it with Mercurial's debugging output enabled. Since you'll probably
be running it on a server where it's not convenient (or sometimes possible) to pass in the —-debug option,
don't forget that you can enable debugging output in your ~/.hgrc:

[ui]

debug = true

With this enabled, the acl hook will print enough information to let you figure out why it is allowing
or forbidding pushes from specific users.

10.6.2 bugzilla—% Bugzilla #%& &

The bugzilla extension adds a comment to a Bugzilla bug whenever it finds a reference to that bug ID in
a commit comment. You can install this hook on a shared server, so that any time a remote user pushes
changes to this server, the hook gets run.

It adds a comment to the bug that looks like this (you can configure the contents of the comment—see
below) :

Changeset aad8b264143a, made by Joe User
<joe.user@domain.com> in the frobnitz repository, refers
to this bug. For complete details, see
http://hg.domain.com/frobnitz?cmd=changeset;node=aad8b264143a
Changeset description: Fix bug 10483 by guarding against some
NULL pointers

The value of this hook is that it automates the process of updating a bug any time a changeset refers to
it. If you configure the hook properly, it makes it easy for people to browse straight from a Bugzilla
bug to a changeset that refers to that bug.

You can use the code in this hook as a starting point for some more exotic Bugzilla integration recipes.
Here are a few possibilities:

+ Require that every changeset pushed to the server have a valid bug ID in its commit comment. In this
case, you'd want to configure the hook as a pretxncommit hook. This would allow the hook to reject
changes that didn't contain bug IDs.

Allow incoming changesets to automatically modify the state of a bug, as well as simply adding a
comment. For example, the hook could recognise the string ‘fixed bug 31337° as indicating that it
should update the state of bug 31337 to ‘requires testing’

10.6.2.1 & F bugzilla #-F

You should configure this hook in your server's ~/.hgrc as an incoming hook, for example as follows:

[hooks |
incoming.bugzilla = python:hgext.bugzilla.hook

Because of the specialised nature of this hook, and because Bugzilla was not written with this kind of
integration in mind, configuring this hook is a somewhat involved process.

Before you begin, you must install the MySQL bindings for Python on the host(s) where you'll be running
the hook. If this is not available as a binary package for your system, you can download it from [?].

Configuration information for this hook lives in the bugzilla section of your ~/.hgrc.

Ed. 1

Mercurial FUEIETE /
121 189

version: The version of Bugzilla installed on the server. The database schema that Bugzilla uses
changes occasionally, so this hook has to know exactly which schema to use.

+ host: The hostname of the MySQL server that stores your Bugzilla data. The database must be configured
to allow connections from whatever host you are running the bugzilla hook on.

+ user: The username with which to connect to the MySQL server. The database must be configured to
allow this user to connect from whatever host you are running the bugzilla hook on. This user must
be able to access and modify Bugzilla tables. The default value of this item is bugs, which is the
standard name of the Bugzilla user in a MySQL database.

password: The MySQL password for the user you configured above. This is stored as plain text,
so you should make sure that unauthorised users cannot read the ~/.hgrc file where you store this
information.

+ db: The name of the Bugzilla database on the MySQL server. The default value of this item is bugs,
which is the standard name of the MySQL database where Bugzilla stores its data.

+ notify: If you want Bugzilla to send out a notification email to subscribers after this hook has
added a comment to a bug, you will need this hook to run a command whenever it updates the database.
The command to run depends on where you have installed Bugzilla, but it will typically look something
like this, if you have Bugzilla installed in /var/www/html/bugzilla:

cd /var/www/html/bugzilla &&
./processmail %s nobody@nowhere.com

- The Bugzilla processmail program expects to be given a bug ID (the hook replaces ‘%s’ with the bug
ID) and an email address. It also expects to be able to write to some files in the directory that it
runs in. If Bugzilla and this hook are not installed on the same machine, you will need to find a
way to run processmail on the server where Bugzilla is installed.

10.6.2.2 RXF W LEAARE Bugzilla A P & AR6GB4

By default, the bugzilla hook tries to use the email address of a changeset's committer as the Bugzilla
user name with which to update a bug. If this does not suit your needs, you can map committer email
addresses to Bugzilla user names using a usermap section.

Each item in the usermap section contains an email address on the left, and a Bugzilla user name on the
right.

[usermap |
jane.user@example.com = Jane

You can either keep the usermap data in a normal ~/.hgrc, or tell the bugzilla hook to read the information
from an external usermap file. In the latter case, you can store usermap data by itself in (for example)
a user-modifiable repository. This makes it possible to let your users maintain their own usermap
entries. The main ~/.hgrc file might look like this:

regular hgrc file refers to external usermap file
[bugzilla]
usermap = /home/hg/repos/userdata/bugzilla-usermap.conf

While the usermap file that it refers to might look like this:

bugzilla-usermap.conf - inside a hg repository
[usermap] stephanie@example.com = steph

Ed. 1
Mercurial YIS
122 / 189

10.6.2.3 5B 3% ha B 7] #1 P 49 5E L

You can configure the text that this hook adds as a comment; you specify it in the form of a Mercurial
template. Several ~/.hgrc entries (still in the bugzilla section) control this behavior.

strip: The number of leading path elements to strip from a repository's path name to construct a
partial path for a URL. For example, if the repositories on your server live under /home/hg/repos,
and you have a repository whose path is /home/hg/repos/app/tests, then setting strip to 4 will give a
partial path of app/tests. The hook will make this partial path available when expanding a template,
as webroot.

+ template: The text of the template to use. In addition to the usual changeset-related variables,
this template can use hgweb (the value of the hgweb configuration item above) and webroot (the path
constructed using strip above).

In addition, you can add a baseurl item to the web section of your ~/.hgrc. The bugzilla hook will make
this available when expanding a template, as the base string to use when constructing a URL that will
let users browse from a Bugzilla comment to view a changeset. Example:

[web]
baseurl = http://hg.domain.com/

Here is an example set of bugzilla hook config information.

[bugzilla]
host = bugzilla.example.com
password = mypassword version = 2.16

server-side repos live in /home/hg/repos, so strip 4 leading
7 separators
strip = 4
hgweb = http://hg.example.com/
usermap = /home/hg/repos/notify/bugzilla.conf
template = Changeset {node|short}, made by {author} in the {webroot}
repo, refers to this bug.\n
For complete details, see
{hgweb} {webroot}?cmd=changeset;node={node|short}\n
Changeset description:\n
\t{desc|tabindent}

10.6.2.4 MR 5 9] A 4 3

The most common problems with configuring the bugzilla hook relate to running Bugzilla's processmail
script and mapping committer names to user names.

Recall from Section 10.6.2.1 above that the user that runs the Mercurial process on the server is also
the one that will run the processmail script. The processmail script sometimes causes Bugzilla to write
to files in its configuration directory, and Bugzilla's configuration files are usually owned by the
user that your web server runs under.

You can cause processmail to be run with the suitable user's identity using the sudo command. Here is
an example entry for a sudoers file.

hg user = (httpd user)
NOPASSWD: /var/www/html/bugzilla/processmail —wrapper %s

This allows the hg user user to run a processmail-wrapper program under the identity of httpd user.

This indirection through a wrapper script is necessary, because processmail expects to be run with its
current directory set to wherever you installed Bugzilla; you can't specify that kind of constraint in
a sudoers file. The contents of the wrapper script are simple:

Ed. 1

Mercurial FUEIETE /
123 189

#!/bin/sh

cd “dirname $0° && ./processmail "S$1" nobody@example.com

It doesn't seem to matter what email address you pass to processmail.

If your usermap is not set up correctly, users will see an error message from the bugzilla hook when
they push changes to the server. The error message will look like this:

cannot find bugzilla user id for john.q.public@example.com

What this means is that the committer's address, john.q.public@example.com, is not a valid Bugzilla user
name, nor does it have an entry in your usermap that maps it to a valid Bugzilla user name.

10.6.3 notify—®R4F3d 4

Although Mercurial's built-in web server provides RSS feeds of changes in every repository, many people
prefer to receive change notifications via email. The notify hook lets you send out notifications to a
set of email addresses whenever changesets arrive that those subscribers are interested in.

As with the bugzilla hook, the notify hook is template-driven, so you can customise the contents of the
notification messages that it sends.

By default, the notify hook includes a diff of every changeset that it sends out; you can 1limit the size
of the diff, or turn this feature off entirely. It is useful for letting subscribers review changes
immediately, rather than clicking to follow a URL.

10.6.3.1 FL & notify 49-F

You can set up the notify hook to send one email message per incoming changeset, or one per incoming
group of changesets (all those that arrived in a single pull or push).

[hooks]

send one email per group of changes
changegroup.notify = python:hgext.notify.hook
send one email per change

incoming.notify = python:hgext.notify.hook

Configuration information for this hook lives in the notify section of a ~/.hgrc file.

test: By default, this hook does not send out email at all; instead, it prints the message that it
would send. Set this item to false to allow email to be sent. The reason that sending of email is
turned off by default is that it takes several tries to configure this extension exactly as you would
like, and it would be bad form to spam subscribers with a number of ‘broken’ notifications while
you debug your configuration.

config: The path to a configuration file that contains subscription information. This is kept
separate from the main ~/.hgrc so that you can maintain it in a repository of its own. People can
then clone that repository, update their subscriptions, and push the changes back to your server.

+ strip: The number of leading path separator characters to strip from a repository's path, when
deciding whether a repository has subscribers. For example, if the repositories on your server live
in /home/hg/repos, and notify is considering a repository named /home/hg/repos/shared/test, setting
strip to 4 will cause notify to trim the path it considers down to shared/test, and it will match
subscribers against that.

template: The template text to use when sending messages. This specifies both the contents of the
message header and its body.

Ed. 1

Mercurial FUEIETE /
124 189

maxdiff: The maximum number of lines of diff data to append to the end of a message. If a diff is
longer than this, it is truncated. By default, this is set to 300. Set this to O to omit diffs from
notification emails.

sources: A 1list of sources of changesets to consider. This lets you limit notify to only sending
out email about changes that remote users pushed into this repository via a server, for example. See
Section 10.7.3.1 for the sources you can specify here.

If you set the baseurl item in the web section, you can use it in a template; it will be available as
webroot.

Here is an example set of notify configuration information.

[
#
t
#
©
#
S
t

[
b
h

notify]

really send email
est = false

subscriber data lives in the notify repo
onfig = /home/hg/repos/notify/notify.conf

repos live in /home/hg/repos on server, so strip 4 "/" chars
trip = 4
emplate = X-Hg-Repo: {webroot}\n

Subject: {webroot}: {desc|firstline|strip}\n

From: {author}

\n\n

changeset {node|short} in {root}

\n\ndetails:
{baseurl}{webroot}?cmd=changeset;node={node|short}
description: {desc|tabindent|strip}

web |
aseurl =
ttp://hg.example.com/

This will produce a message that looks like the following:

X
S

-Hg-Repo: tests/slave

ubject: tests/slave: Handle error case when slave has no buffers

Date: Wed, 2 Aug 2006 15:25:46 -0700 (PDT)

C

d

hangeset 3cba9bfe74b5 in /home/hg/repos/tests/slave

etails:

http://hg.example.com/tests/slave?cmd=changeset;node=3cbad9bfe74b5

d

d

escription: Handle error case when slave has no buffers

iffs (54 lines):

diff -r 9d95df7cf2ad -r 3cba9bfe74b5 include/tests.h
--- a/include/tests.h Wed Aug 02 15:19:52 2006 -0700
+++ b/include/tests.h Wed Aug 02 15:25:26 2006 -0700

@@ -212,6 +212,15 @@ static _ inline
void test_headers (void *h)

[..

.snip...]

10.6.3.2 MR 5 o] A4 32

Do not forget that by default, the notify extension will not send any mail until you explicitly configure
it to do so, by setting test to false. Until you do that, it simply prints the message it would send.

Ed. 1

Mercurial FUEIETE /
125 189

10.7 % B4 -FH1E 8

10.7.1 #AEAHTMAT

An in-process hook is called with arguments of the following form:

def myhook (ui, repo, **kwargs): pass

The ui parameter is a ui object. The repo parameter is a localrepository object. The names and values
of the **kwargs parameters depend on the hook being invoked, with the following common features:

If a parameter is named node or parentN, it will contain a hexadecimal changeset ID. The empty string
is used to represent ‘null changeset ID’ instead of a string of zeroes.

If a parameter is named url, it will contain the URL of a remote repository, if that can be determined.

Boolean-valued parameters are represented as Python bool objects.

An in-process hook is called without a change to the process's working directory (unlike external hooks,
which are run in the root of the repository). It must not change the process's working directory, or it
will cause any calls it makes into the Mercurial API to fail.

If a hook returns a boolean ‘false’ value, it is considered to have succeeded. If it returns a boolean
‘true’ value or raises an exception, it is considered to have failed. A useful way to think of the
calling convention is ‘tell me if you fail’

Note that changeset IDs are passed into Python hooks as hexadecimal strings, not the binary hashes that
Mercurial's APIs normally use. To convert a hash from hex to binary, use the bin function.

10.7.2 $MER4 T8 34T

An external hook is passed to the shell of the user running Mercurial. Features of that shell, such as
variable substitution and command redirection, are available. The hook is run in the root directory of
the repository (unlike in-process hooks, which are run in the same directory that Mercurial was run in).

Hook parameters are passed to the hook as environment variables. Each environment variable's name is
converted in upper case and prefixed with the string ‘HG_’ . For example, if the name of a parameter
is ‘node’ , the name of the environment variable representing that parameter will be ‘HG_NODE’

‘

A boolean parameter is represented as the string ‘17 for ‘true’ , 0 for ‘false’ . If an
environment variable is named HG_NODE, HG_PARENT1 or HG_PARENTZ2, it contains a changeset ID represented
as a hexadecimal string. The empty string is used to represent ‘null changeset ID’ instead of a string

’

of zeroes. If an environment variable is named HG URL, it will contain the URL of a remote repository,
if that can be determined.

If a hook exits with a status of zero, it is considered to have succeeded. If it exits with a non-zero
status, it is considered to have failed.

10.7.3 #B15E R AITR

A hook that involves the transfer of changesets between a local repository and another may be able to
find out information about the ‘far side’ . Mercurial knows how changes are being transferred, and in
many cases where they are being transferred to or from.

Ed. 1

Mercurial FUEIETE /
126 189

10.7.3.1 15 EMRER

Mercurial will tell a hook what means are, or were, used to transfer changesets between repositories.
This is provided by Mercurial in a Python parameter named source, or an environment variable named
HG_SOURCE.

serve: Changesets are transferred to or from a remote repository over http or ssh.

pull: Changesets are being transferred via a pull from one repository into another.

push: Changesets are being transferred via a push from one repository into another.

bundle: Changesets are being transferred to or from a bundle.

10.7.3.2 M5B BB E S f AR A JE 6G 3 ak

When possible, Mercurial will tell a hook the location of the ‘far side’ of an activity that transfers
changeset data between repositories. This is provided by Mercurial in a Python parameter named url, or
an environment variable named HG_URL.

This information is not always known. If a hook is invoked in a repository that is being served via
http or ssh, Mercurial cannot tell where the remote repository is, but it may know where the client is
connecting from. In such cases, the URL will take one of the following forms:

remote:ssh:1.2.3.4—remote ssh client, at the IP address 1.2.3.4.

remote:http:1.2.3.4—remote http client, at the IP address 1.2.3.4. If the client is using SSL, this
will be of the form remote:https:1.2.3.4.

Empty—no information could be discovered about the remote client.

10.8 #T 4%

10.8.1 changegroup—3¥ i 215K £ &

This hook is run after a group of pre-existing changesets has been added to the repository, for example
via a hg pull or hg unbundle. This hook is run once per operation that added one or more changesets.
This is in contrast to the incoming hook, which is run once per changeset, regardless of whether the
changesets arrive in a group.

Some possible uses for this hook include kicking off an automated build or test of the added changesets,
updating a bug database, or notifying subscribers that a repository contains new changes.

Parameters to this hook:

node: A changeset ID. The changeset ID of the first changeset in the group that was added. All
changesets between this and tip, inclusive, were added by a single hg pull, hg push or hg unbundle.

source: A string. The source of these changes. See Section 10.7.3.1 for details.

url: A URL. The location of the remote repository, if known. See Section 10.7.3.2 for more information.

See also: incoming (Section 10.8.3), prechangegroup (Section 10.8.5), pretxnchangegroup (Section 10.8.9)

Ed. 1
Mercurial YIS
127 / 189

10.8.2 commit—&|E#HIEKEZ S

This hook is run after a new changeset has been created.

Parameters to this hook:

node: A changeset ID. The changeset ID of the newly committed changeset.
parentl: A changeset ID. The changeset ID of the first parent of the newly committed changeset.

parent2: A changeset ID. The changeset ID of the second parent of the newly committed changeset.

See also: precommit (Section 10.8.6), pretxncommit (Section 10.8.10)

10.8.3 incoming—3¢ iz RIS K EZ B

This hook is run after a pre-existing changeset has been added to the repository, for example via a hg
push. If a group of changesets was added in a single operation, this hook is called once for each added
changeset.

You can use this hook for the same purposes as the changegroup hook (Section 10.8.1); it's simply more
convenient sometimes to run a hook once per group of changesets, while other times it's handier once per
changeset.

Parameters to this hook:

node: A changeset ID. The ID of the newly added changeset.
source: A string. The source of these changes. See Section 10.7.3.1 for details.

url: A URL. The location of the remote repository, if known. See Section 10.7.3.2 for more information.

See also: changegroup (Section 10.8.1) prechangegroup (Section 10.8.5), pretxnchangegroup (Section 10.8.9)

10.8.4 outgoing— 3K EZ B

This hook is run after a group of changesets has been propagated out of this repository, for example by
a hg push or hg bundle command.

One possible use for this hook is to notify administrators that changes have been pulled.

Parameters to this hook:

node: A changeset ID. The changeset ID of the first changeset of the group that was sent.

source: A string. The source of the of the operation (see Section 10.7.3.1). If a remote client
pulled changes from this repository, source will be serve. If the client that obtained changes from
this repository was local, source will be bundle, pull, or push, depending on the operation the client
performed.

url: A URL. The location of the remote repository, if known. See Section 10.7.3.2 for more information.

See also: preoutgoing (Section 10.8.7)

Ed. 1

Mercurial FUEIETE /
128 189

10.8.5 prechangegroup—3¥ ho A2 15 i B Z AT

This controlling hook is run before Mercurial begins to add a group of changesets from another repository.

This hook does not have any information about the changesets to be added, because it is run before
transmission of those changesets is allowed to begin. If this hook fails, the changesets will not be
transmitted.

One use for this hook is to prevent external changes from being added to a repository. For example, you
could use this to ‘freeze’ a server-hosted branch temporarily or permanently so that users cannot push
to it, while still allowing a local administrator to modify the repository.

Parameters to this hook:

source: A string. The source of these changes. See Section 10.7.3.1 for details.

url: A URL. The location of the remote repository, if known. See Section 10.7.3.2 for more information.

See also: changegroup (Section 10.8.1), incoming (Section 10.8.3), pretxnchangegroup (Section 10.8.9)

10.8.6 precommit—4& A5 %(W

This hook is run before Mercurial begins to commit a new changeset. It is run before Mercurial has any
of the metadata for the commit, such as the files to be committed, the commit message, or the commit
date.

One use for this hook is to disable the ability to commit new changesets, while still allowing incoming
changesets. Another is to run a build or test, and only allow the commit to begin if the build or test
succeeds.

Parameters to this hook:

parentl: A changeset ID. The changeset ID of the first parent of the working directory.

parent2: A changeset ID. The changeset ID of the second parent of the working directory.

If the commit proceeds, the parents of the working directory will become the parents of the new changeset.

See also: commit (Section 10.8.2), pretxncommit (Section 10.8.10)

10.8.7 preoutgoing— 5315 £ AT

This hook is invoked before Mercurial knows the identities of the changesets to be transmitted.
One use for this hook is to prevent changes from being transmitted to another repository.

Parameters to this hook:

source: A string. The source of the operation that is attempting to obtain changes from this
repository (see Section 10.7.3.1). See the documentation for the source parameter to the outgoing
hook, in Section 10.8.4, for possible values of this parameter.

url: A URL. The location of the remote repository, if known. See Section 10.7.3.2 for more information.

See also: outgoing (Section 10.8.4)

Ed. 1
Mercurial YIS
129 / 189

10.8.8 pretag—4A|E 4z B Z AT
This controlling hook is run before a tag is created. If the hook succeeds, creation of the tag proceeds.
If the hook fails, the tag is not created.

Parameters to this hook:

local: A boolean. Whether the tag is local to this repository instance (i.e. stored in .hg/localtags)
or managed by Mercurial (stored in .hgtags).

node: A changeset ID. The ID of the changeset to be tagged.

tag: A string. The name of the tag to be created.

If the tag to be created is revision—controlled, the precommit and pretxncommit hooks (Section 10.8.2
and Section 10.8.10) will also be run.

See also: tag (Section 10.8.12)

10.8.9 pretxnchangegroup— 7 i3 Ao m A5 I £ 2 AT

This controlling hook is run before a transaction—that manages the addition of a group of new changesets
from outside the repository—completes. If the hook succeeds, the transaction completes, and all of the
changesets become permanent within this repository. If the hook fails, the transaction is rolled back,
and the data for the changesets is erased.

This hook can access the metadata associated with the almost-added changesets, but it should not do
anything permanent with this data. It must also not modify the working directory.

While this hook is running, if other Mercurial processes access this repository, they will be able to
see the almost-added changesets as if they are permanent. This may lead to race conditions if you do
not take steps to avoid them.

This hook can be used to automatically vet a group of changesets. If the hook fails, all of the changesets
are ‘rejected’ when the transaction rolls back.

Parameters to this hook:

node: A changeset ID. The changeset ID of the first changeset in the group that was added. All
changesets between this and tip, inclusive, were added by a single hg pull, hg push or hg unbundle.

source: A string. The source of these changes. See Section 10.7.3.1 for details.

url: A URL. The location of the remote repository, if known. See Section 10.7.3.2 for more information.

See also: changegroup (Section 10.8.1), incoming (Section 10.8.3), prechangegroup (Section 10.8.5)

10.8.10 pretxncommit— 7 3% X Z A

This controlling hook is run before a transaction—that manages a new commit—completes. If the hook
succeeds, the transaction completes and the changeset becomes permanent within this repository. If the
hook fails, the transaction is rolled back, and the commit data is erased.

This hook can access the metadata associated with the almost-new changeset, but it should not do anything
permanent with this data. It must also not modify the working directory.

While this hook is running, if other Mercurial processes access this repository, they will be able to
see the almost-new changeset as if it is permanent. This may lead to race conditions if you do not take
steps to avoid them.

Parameters to this hook:

Ed. 1

Mercurial FUEIETE /
130 189

node: A changeset ID. The changeset ID of the newly committed changeset.
parentl: A changeset ID. The changeset ID of the first parent of the newly committed changeset.

parent2: A changeset ID. The changeset ID of the second parent of the newly committed changeset.

4

%l : precommit (Section 10.8.6)

N

10.8.11 preupdate— E #H XA F TE B FZ AT

This controlling hook is run before an update or merge of the working directory begins. It is run only
if Mercurial's normal pre-update checks determine that the update or merge can proceed. If the hook
succeeds, the update or merge may proceed; if it fails, the update or merge does not start.

Parameters to this hook:
parentl: A changeset ID. The ID of the parent that the working directory is to be updated to. If the
working directory is being merged, it will not change this parent.
parent2: A changeset ID. Only set if the working directory is being merged. The ID of the revision

that the working directory is being merged with.

See also: update (Section 10.8.13)

10.8.12 tag—R|EREZZ 5

This hook is run after a tag has been created.

Parameters to this hook:
local: A boolean. Whether the new tag is local to this repository instance (i.e. stored in
.hg/localtags) or managed by Mercurial (stored in .hgtags).
node: A changeset ID. The ID of the changeset that was tagged.
tag: A string. The name of the tag that was created.

If the created tag is revision-controlled, the commit hook (section Section 10.8.2) is run before this
hook.

Z,: pretag (Section 10.8.8)

10.8.13 update— Z#H RXESHIEH FZ2)5

This hook is run after an update or merge of the working directory completes. Since a merge can fail
(if the external hgmerge command fails to resolve conflicts in a file), this hook communicates whether
the update or merge completed cleanly.

error: A boolean. Indicates whether the update or merge completed successfully.

parentl: A changeset ID. The ID of the parent that the working directory was updated to. If the
working directory was merged, it will not have changed this parent.

parent2: A changeset ID. Only set if the working directory was merged. The ID of the revision that
the working directory was merged with.

See also: preupdate (Section 10.8.11)

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
131 / 189

Chapter 11

T 4] Mercurial 9% &

Mercurial provides a powerful mechanism to let you control how it displays information. The mechanism
is based on templates. You can use templates to generate specific output for a single command, or to
customize the entire appearance of the built-in web interface.

11.1 A48 BT E U89 5y b A4 X

Packaged with Mercurial are some output styles that you can use immediately. A style is simply a
precanned template that someone wrote and installed somewhere that Mercurial can find.

Before we take a look at Mercurial's bundled styles, let's review its normal output.

$ hg log -rl

changeset: 1:55d2044eab6la

tag: mytag

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:09 2011 +0000
summary : added 1line to end of <<hello>> file.

This is somewhat informative, but it takes up a lot of space—five lines of output per changeset. The
compact style reduces this to three lines, presented in a sparse manner.

$ hg log --style compact
3[tip] 00el015abe9e 2011-03-15 14:16 +0000 bos
Added tag v0.1 for changeset 2a72454elfbf

2[v0.1] 2a72454elfbf 2011-03-15 14:16 +0000 bos
Added tag mytag for changeset 55d2044eab6la

1[mytag] 55d2044eabla 2011-03-15 14:16 +0000 bos
added line to end of <<hello>> file.

0 00ed8fdoz4ff 2011-03-15 14:16 +0000 bos
added hello

The changelog style hints at the expressive power of Mercurial's templating engine. This style attempts
to follow the GNU Project's changelog guidelines[?].

$ hg log --style changelog
2011-03-15 Bryan O'Sullivan <bos@serpentine.com>

Ed. 1
Mercurial YIS
132 / 189

s

.hgtags:
Added tag v0.1 for changeset 2a72454elfbf
[00e1015abe9e]| [tip]

£

.hgtags:
Added tag mytag for changeset 55d2044eabla
[2a72454el1fbf] [v0.1]

*

goodbye, hello:
added 1line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope
that some might consider it so) of goodbye.
[55d2044ecabla] [mytag]

* hello:
added hello
[00e48fd924ff |

You will not be shocked to learn that Mercurial's default output style is named default.

11.1.1 % B ZF A4 X

You can modify the output style that Mercurial will use for every command by editing your ~/.hgrc file,
naming the style you would prefer to use.

[ui]

style = compact

If you write a style of your own, you can use it by either providing the path to your style file, or
copying your style file into a location where Mercurial can find it (typically the templates subdirectory
of your Mercurial install directory) .

1.2 LM XA BALH &4

All of Mercurial's ‘log-like’ commands let you use styles and templates: hg incoming, hg log, hg
outgoing, and hg tip.

As 1 write this manual, these are so far the only commands that support styles and templates. Since
these are the most important commands that need customizable output, there has been little pressure from
the Mercurial user community to add style and template support to other commands.

11.3 AR el

At its simplest, a Mercurial template is a piece of text. Some of the text never changes, while other
parts are expanded, or replaced with new text, when necessary.

Before we continue, let's look again at a simple example of Mercurial's normal output.

$ hg log -rl

changeset: 1:55d2044ea6la

tag: mytag

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:09 2011 +0000

summary : added 1line to end of <<hello>> file.

Ed. 1

Mercurial FUEIETE /
133 189

Now, let's run the same command, but using a template to change its output.

$ hg log -rl --template 'i saw a changeset\n'
i saw a changeset

The example above illustrates the simplest possible template; it's Jjust a piece of static text, printed
once for each changeset. The —-—-template option to the hg log command tells Mercurial to use the given
text as the template when printing each changeset.

Notice that the template string above ends with the text ‘\n’ . This is an escape sequence, telling
Mercurial to print a newline at the end of each template item. If you omit this newline, Mercurial will
run each piece of output together. See Section 11.5 for more details of escape sequences.

A template that prints a fixed string of text all the time isn't very useful; let's try something a bit
more complex.

$ hg log --template 'i saw a changeset: {desc}\n'

i saw a changeset: Added tag vO.1 for changeset 2a72454elfbf
i saw a changeset: Added tag mytag for changeset 55d2044eatla
i saw a changeset: added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some might consider <
it so) of goodbye.
i saw a changeset: added hello

As you can see, the string ‘{desc}’ in the template has been replaced in the output with the description
of each changeset. Every time Mercurial finds text enclosed in curly braces (‘{’ and ‘}’), it will
try to replace the braces and text with the expansion of whatever is inside. To print a literal curly
brace, you must escape it, as described in Section 11.5.

11.4 #EpRE4EF

You can start writing simple templates immediately using the keywords below.

+ author: String. The unmodified author of the changeset.

+ branches: String. The name of the branch on which the changeset was committed. Will be empty if the
branch name was default.

+ date: Date information. The date when the changeset was committed. This is not human-readable; you
must pass it through a filter that will render it appropriately. See Section 11.6 for more information
on filters. The date is expressed as a pair of numbers. The first number is a Unix UTC timestamp
(seconds since January 1, 1970); the second is the offset of the committer's timezone from UTC, in
seconds.

desc: String. The text of the changeset description.

files: List of strings. All files modified, added, or removed by this changeset.

file adds: List of strings. Files added by this changeset.

file dels: List of strings. Files removed by this changeset.

node: String. The changeset identification hash, as a 40-character hexadecimal string.
parents: List of strings. The parents of the changeset.

rev: Integer. The repository-local changeset revision number.

tags: List of strings. Any tags associated with the changeset.

Ed. 1

Mercurial FUEIETE /
134 189

A few simple experiments will show us what to expect when we use these keywords; you can see the results
below.

$ hg log -rl --template 'author: {author}\n'
author: Bryan O'Sullivan <bos@serpentine.com>
$ hg log -rl --template 'desc:\n{desc}\n'
desc:

added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some might consider <o
it so) of goodbye.

$ hg log -rl --template 'files: {files}\n'

files: goodbye hello

$ hg log -rl --template 'file adds: {file adds}\n'

file_adds: goodbye

$ hg log -rl --template 'file dels: {file dels}\n'

file dels:

$ hg log -rl --template 'node: {node}\n'

node: 55d2044ea6labb7534fdc5446a748838adceb02c

$ hg log -rl --template 'parents: {parents}\n'

parents:

$ hg log -rl --template 'rev: {rev}\n'
rev: 1

$ hg log -rl --template 'tags: {tags}\n'
tags: mytag

As we noted above, the date keyword does not produce human-readable output, so we must treat it specially.
This involves using a filter, about which more in Section 11.6.

$ hg log -rl --template 'date: {date}\n'

date: 1300198569.00

$ hg log -rl --template 'date: {date|isodate}\n'
date: 2011-03-15 14:16 +0000

11.5 %5357

Mercurial's templating engine recognises the most commonly used escape sequences in strings. When it sees
a backslash (‘\’) character, it looks at the following character and substitutes the two characters
with a single replacement, as described below.

\: Backslash, ‘\’ , ASCII 134.

\n: Newline, ASCII 12.

\r: Carriage return, ASCII 15.

\t: Tab, ASCII 11.

\v: Vertical tab, ASCII 13.

\{: Open curly brace, ‘{ , ASCII 173.

\}: Close curly brace, ‘} , ASCII 175.

As indicated above, if you want the expansion of a template to contain a literal ‘\’ s ‘{’ , or ‘{’
character, you must escape it.

Ed. 1

Mercurial FUEIETE /
135 189

11.6 @RI REEFEEIHELER

Some of the results of template expansion are not immediately easy to use. Mercurial lets you specify
an optional chain of filters to modify the result of expanding a keyword. You have already seen a common
filter, isodate, in action above, to make a date readable.

Below is a list of the most commonly used filters that Mercurial supports. While some filters can be
applied to any text, others can only be used in specific circumstances. The name of each filter is
followed first by an indication of where it can be used, then a description of its effect.

addbreaks: Any text. Add an XHTML ‘
’ tag before the end of every line except the last. For
example, ‘foo\nbar’ becomes ‘foo
\nbar’

age: date keyword. Render the age of the date, relative to the current time. Yields a string like
‘10 minutes’

basename: Any text, but most useful for the files keyword and its relatives. Treat the text as a

path, and return the basename. For example, ‘foo/bar/baz’ becomes ‘baz’

date: date keyword. Render a date in a similar format to the Unix date command, but with timezone
included. Yields a string like ‘Mon Sep 04 15:13:13 2006 -0700’

domain: Any text, but most useful for the author keyword. Finds the first string that looks like an
email address, and extract Jjust the domain component. For example, ‘Bryan 0'Sullivan <bos@serpent-
ine.com>" becomes ‘serpentine.com’

email: Any text, but most useful for the author keyword. Extract the first string that looks like an
email address. For example, ‘Bryan 0'Sullivan <bos@serpentine.com>" becomes ‘bos@serpentine.com’

’

escape: Any text. Replace the special XML/XHIML characters ‘& , ‘<’ and ‘>’ with XML entities.

fi1168: Any text. Wrap the text to fit in 68 columns. This is useful before you pass text through
the tabindent filter, and still want it to fit in an 80-column fixed-font window.

fi1176: Any text. Wrap the text to fit in 76 columns.
firstline: Any text. Yield the first line of text, without any trailing newlines.

hgdate: date keyword. Render the date as a pair of readable numbers. Yields a string like ‘1157407993
25200’

isodate: date keyword. Render the date as a text string in ISO 8601 format. Yields a string like
£2006-09-04 15:13:13 -0700’

obfuscate: Any text, but most useful for the author keyword. Yield the input text rendered as
a sequence of XML entities. This helps to defeat some particularly stupid screen-scraping email
harvesting spambots.

person: Any text, but most useful for the author keyword. Yield the text before an email address.
For example, ‘Bryan O'Sullivan <bos@serpentine.com> becomes ‘Bryan O'Sullivan’

rfc822date: date keyword. Render a date using the same format used in email headers. Yields a string
like ‘Mon, 04 Sep 2006 15:13:13 -0700’

short: Changeset hash. Yield the short form of a changeset hash, i.e. a 12-character hexadecimal
string.

shortdate: date keyword. Render the year, month, and day of the date. Yields a string like
£2006-09-04"

strip: Any text. Strip all leading and trailing whitespace from the string.

tabindent: Any text. Yield the text, with every line except the first starting with a tab character.

Ed. 1

Mercurial FUEIETE /
136 189

urlescape: Any text. Escape all characters that are considered ‘special’ by URL parsers. For
example, foo bar becomes foo%20bar.

user: Any text, but most useful for the author keyword. Return the ‘user’ portion of an email
address. For example, ‘Bryan 0'Sullivan <bos@serpentine.com>" becomes ‘bos’

$ hg log -rl --template '{author}\n'

Bryan O0'Sullivan <bos@serpentine.com>

$ hg log -rl --template '{author |domain}\n'

serpentine.com

$ hg log -rl --template '{author|email}\n"'
bos@serpentine.com

$ hg log -rl --template '{author|obfuscate}\n' | cut -c-76
&H66;r&7121;&%97;&7#110; &779;&H39;&783;:&%117;&%#108;l&7105;&711
$ hg log -rl --template '{author |person}\n'

Bryan O'Sullivan

$ hg log -rl --template '{author |user}\n'

bos

$ hg log -rl --template 'looks almost right, but actually garbage: {date}\n'
looks almost right, but actually garbage: 1300198569.00

$ hg log -rl --template '{datel|age}\n'

3 seconds ago

$ hg log -rl --template '{date|date}\n'

Tue Mar 15 14:16:09 2011 +0000

$ hg log -rl --template '{date]|hgdate}\n'

1300198569 0

$ hg log -rl --template '{datel|isodate}\n"'

2011-03-15 14:16 +0000

$ hg log -rl --template '{datel|rfc822date}\n'

Tue, 15 Mar 2011 14:16:09 +0000

$ hg log -rl --template '{date]|shortdate}\n'

2011-03-15

$ hg log -rl --template '{desc}\n' | cut -c-76

added 1line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some m

$ hg log -rl --template '{desc|addbreaks}\n' | cut -c-76

added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some m
$ hg log -rl --template '{desc|escape}\n' | cut -c-76

added line to end of <<:hello>> file.

in addition, added a file with the helpful name (at least i hope that some m
$ hg log -rl --template '{desc|fil168}\n'
added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope
that some might consider it so) of goodbye.

$ hg log -rl --template '{desc|fill76}\n'

added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some
might consider it so) of goodbye.

$ hg log -rl --template '{desc|firstline}\n'

added line to end of <<hello>> file.

$ hg log -rl --template '{desc|strip}\n' | cut -c-76

added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some m
$ hg log -rl --template '{desc|tabindent}\n' | expand | cut -c-76
added line to end of <<hello>> file.

Ed. 1

Mercurial FUEIETE /
137 189

in addition, added a file with the helpful name (at least i hope tha
$ hg log -rl --template '{node}\n'
55d2044ea61abb7534fdc5446a748838ad4ceb02c
$ hg log -rl --template '{node|short}\n'
55d2044eabla

Note

If you try to apply a filter to a piece of data that it cannot process, Mercurial will fail and print
a Python exception. For example, trying to run the output of the desc keyword into the isodate filter
is not a good idea.

11.6.1 A45TRE

It is easy to combine filters to yield output in the form you would like. The following chain of filters
tidies up a description, then makes sure that it fits cleanly into 68 columns, then indents it by a
further 8 characters (at least on Unix-like systems, where a tab is conventionally 8 characters wide).

$ hg log -rl --template 'description:\n\t{desc|strip|fill68]|tabindent}\n"
description:
added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope
that some might consider it so) of goodbye.

Note the use of ‘\t’ (a tab character) in the template to force the first line to be indented; this
is necessary since tabindent indents all lines except the first.

Keep in mind that the order of filters in a chain is significant. The first filter is applied to the
result of the keyword:; the second to the result of the first filter:; and so on. For example, using
f£i1168]|tabindent gives very different results from tabindent|fill168.

11.7 MAERRF| 4 X,

A command line template provides a quick and simple way to format some output. Templates can become
verbose, though, and it's useful to be able to give a template a name. A style file is a template with
a name, stored in a file.

More than that, using a style file unlocks the power of Mercurial's templating engine in ways that are
not possible using the command line —-—-template option.

11.7.1 i a4 XU

Our simple style file contains just one line:

$ echo 'changeset = "rev: {rev}\n"' > rev
$ hg log -11 --style ./rev
rev: 3

This tells Mercurial, ‘if you're printing a changeset, use the text on the right as the template’

Ed. 1
Mercurial YIS
138 / 189

11.7.2 #F# X XHE*
The syntax rules for a style file are simple.

The file is processed one line at a time.
+ Leading and trailing white space are ignored.

+ Empty lines are skipped.

- If a line starts with either of the characters ‘# or ‘;’ , the entire line is treated as a comment,

and skipped as if empty.

A line starts with a keyword. This must start with an alphabetic character or underscore, and can
subsequently contain any alphanumeric character or underscore. (In regexp notation, a keyword must
match [A-Za-z_][A-Za-z0-9]*.)

The next element must be an ‘=" character, which can be preceded or followed by an arbitrary amount
of white space.

- If the rest of the line starts and ends with matching quote characters (either single or double
quote), it is treated as a template body.

+ If the rest of the line does not start with a quote character, it is treated as the name of a file;
the contents of this file will be read and used as a template body.

11.8 A X LH#F

To illustrate how to write a style file, we will construct a few by example. Rather than provide a
complete style file and walk through it, we'll mirror the usual process of developing a style file by
starting with something very simple, and walking through a series of successively more complete examples.

11.8.1 A#HEXNLHT 48412

If Mercurial encounters a problem in a style file you are working on, it prints a terse error message
that, once you figure out what it means, is actually quite useful.

$ cat broken.style
changeset =

Notice that broken.style attempts to define a changeset keyword, but forgets to give any content for it.
When instructed to use this style file, Mercurial promptly complains.

$ hg log -rl --style broken.style
** unknown exception encountered, details follow
report bug details to http://mercurial.selenic.com/bts/
or mercurial@selenic.com
** Python 2.6.6 (r266:84292, Dec 27 2010, 00:02:40) [GCC 4.4.5]
** Mercurial Distributed SCM (version 1.6.4)
** Extensions loaded:
Traceback (most recent call last):
File "/usr/bin/hg", line 27, in <module>
mercurial.dispatch.run ()
File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py"., line 16, in run
sys.exit (dispatch(sys.argv[1l:]))
File "/usr/1lib/pymodules/python2.6/mercurial/dispatch.py", line 34, in dispatch
return _runcatch(u, args)
File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 54, in _runcatch

s s

L

Mercurial YIS

Ed. 1

139 / 189

return _dispatch(ui, args)

File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 494, in _dispatch
cmdpats, cmdoptions)

File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 355, in runcommand
ret = _runcommand (ui, options, cmd, d)

File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 545, in _runcommand
return checkargs ()

File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 499, in checkargs
return cmdfunc ()

File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 492, in <lambda>
d = lambda: util.checksignature (func) (ui, *args., **cmdoptions)

File "/usr/lib/pymodules/python2.6/mercurial/util.py", line 420, in check
return func (*args, **kwargs)

File "/usr/1lib/pymodules/python2.6/mercurial/commands.py", line 2501, in log
displayer = cmdutil.show changeset (ui, repo, opts, True)

File "/usr/lib/pymodules/python2.6/mercurial/cmdutil.py", line 981, in show_changeset
t = changeset_templater (ui, repo, patch, opts, mapfile, buffered)

File "/usr/lib/pymodules/python2.6/mercurial/cmdutil.py", line 850, in __init_ _
cache=defaulttempl)

File "/usr/lib/pymodules/python2.6/mercurial/templater.py", line 194, in __init_ _
if val[0] in "'\"":

IndexError: string index out of range

This error message looks intimidating, but it is not too hard to follow.

The first component is simply Mercurial's way of saying ‘I am giving up’

___abort___: broken.style:l: parse error

Next comes the name of the style file that contains the error.

abort: _ broken.style __:1: parse error

Following the file name is the line number where the error was encountered.

abort: broken.style: 1 . parse error

+ Finally, a description of what went wrong.

abort: broken.style:1l: __ parse error__

- The description of the problem is not always clear (as in this case), but even when it is cryptic,

it is almost always trivial to visually inspect the offending line in the style file and see what is

wrong.

11.8.2 MRAEOE—I712

If you would like to be able to identify a Mercurial repository ‘fairly uniquely’ using a short string

as an identifier, you can use the first revision in the repository.

$ hg log -r0 --template '{node}'
5e3ca99079ad8ce8d57a9f678a88a39faal345cbha

This is likely to be unique, and so it is useful in many cases. There are a few caveats.

+ It will not work in a completely empty repository, because such a repository does not have a revision

Zero.

Ed. 1
Mercurial YIS
140 / 189

Neither will it work in the (extremely rare) case where a repository is a merge of two or more formerly
independent repositories, and you still have those repositories around.

Here are some uses to which you could put this identifier:

+ As a key into a table for a database that manages repositories on a server.

+ As half of a {repository ID, revision ID} tuple. Save this information away when you run an automated
build or other activity, so that you can ‘replay’ the build later if necessary.

11.8.3 #HATH| h— A4

Suppose we want to list the files changed by a changeset, one per line, with a little indentation before
each file name.

$ cat > multiline << EOF
> changeset = "Changed in {node|short}:\n{files}"
> file = " {file}\n"
> EOF
$ hg log --style multiline
Changed in e2bbc28f2aeb:
.bashrc
.hgrc
test.c

11.8.4 #%£4% Subversion #3yih

Let's try to emulate the default output format used by another revision control tool, Subversion.

$ svn log -r9653

r9653 | sean.hefty | 2006-09-27 14:39:55 -0700 (Wed, 27 Sep 2006) | 5 lines

On reporting a route error, also include the status for the error,
rather than indicating a status of 0O when an error has occurred.

Signed-off-by: Sean Hefty <sean.heftye@intel.com>

Since Subversion's output style is fairly simple, it is easy to copy-and-paste a hunk of its output into
a file, and replace the text produced above by Subversion with the template values we'd like to see
expanded.

$ cat svn.template
r{rev} | {author|user} | {date|isodate} ({date|rfc822date})

{desc|strip|fil176}
There are a few small ways in which this template deviates from the output produced by Subversion.

Subversion prints a ‘readable’ date (the ‘Wed, 27 Sep 2006° in the example output above) in
parentheses. Mercurial's templating engine does not provide a way to display a date in this format
without also printing the time and time zone.

Ed. 1

Mercurial FUEIETE /
141 189

We emulate Subversion's printing of ‘separator’ lines full of ‘-’ characters by ending the template
with such a line. We use the templating engine's header keyword to print a separator line as the
first line of output (see below), thus achieving similar output to Subversion.

+ Subversion's output includes a count in the header of the number of lines in the commit message. We
cannot replicate this in Mercurial; the templating engine does not currently provide a filter that
counts the number of lines the template generates.

It took me no more than a minute or two of work to replace literal text from an example of Subversion's
output with some keywords and filters to give the template above. The style file simply refers to the
template.

$ cat svn.style
header = '—— oo oo \n\n'
changeset = svn.template

We could have included the text of the template file directly in the style file by enclosing it in quotes
and replacing the newlines with ‘\n’ sequences, but it would have made the style file too difficult
to read. Readability is a good guide when you're trying to decide whether some text belongs in a style
file, or in a template file that the style file points to. If the style file will look too big or
cluttered if you insert a literal piece of text, drop it into a template instead.

Ed. 1

Mercurial FUEIETE /
142 189

Chapter 12

1] MQ & A5 7%

12.1 ApT 8% 32 B4

Here is a common scenario: you need to install a software package from source, but you find a bug that
you must fix in the source before you can start using the package. You make your changes, forget about
the package for a while, and a few months later you need to upgrade to a newer version of the package.
If the newer version of the package still has the bug, you must extract your fix from the older source
tree and apply it against the newer version. This is a tedious task, and it's easy to make mistakes.

This is a simple case of the ‘patch management’ problem. You have an ‘upstream’ source tree that you
can't change; you need to make some local changes on top of the upstream tree; and you'd like to be able
to keep those changes separate, so that you can apply them to newer versions of the upstream source.

The patch management problem arises in many situations. Probably the most visible is that a user of an
open source software project will contribute a bug fix or new feature to the project's maintainers in
the form of a patch.

Distributors of operating systems that include open source software often need to make changes to the
packages they distribute so that they will build properly in their environments.

When you have few changes to maintain, it is easy to manage a single patch using the standard diff and
patch programs (see Section 12.4 for a discussion of these tools). Once the number of changes grows, it
starts to make sense to maintain patches as discrete ‘chunks of work,’ so that for example a single
patch will contain only one bug fix (the patch might modify several files, but it's doing ‘only one
thing’), and you may have a number of such patches for different bugs you need fixed and local changes
you require. In this situation, if you submit a bug fix patch to the upstream maintainers of a package
and they include your fix in a subsequent release, you can simply drop that single patch when you're
updating to the newer release.

Maintaining a single patch against an upstream tree is a little tedious and error-prone, but not
difficult. However, the complexity of the problem grows rapidly as the number of patches you have to
maintain increases. With more than a tiny number of patches in hand, understanding which ones you have
applied and maintaining them moves from messy to overwhelming.

Fortunately, Mercurial includes a powerful extension, Mercurial Queues (or simply ‘MQ’), that massively
simplifies the patch management problem.

12.2 MQ 8)7n &£

During the late 1990s, several Linux kernel developers started to maintain ‘patch series’ that modified
the behavior of the Linux kernel. Some of these series were focused on stability, some on feature coverage,

Ed. 1

Mercurial FUEIETE /
143 189

and others were more speculative.

The sizes of these patch series grew rapidly. In 2002, Andrew Morton published some shell scripts he
had been using to automate the task of managing his patch queues. Andrew was successfully using these
scripts to manage hundreds (sometimes thousands) of patches on top of the Linux kernel.

12.2.1 A patchwork quilt

In early 2003, Andreas Gruenbacher and Martin Quinson borrowed the approach of Andrew's scripts and
published a tool called ‘patchwork quilt’ [?], or simply ‘quilt’ (see [?] for a paper describing
it) . Because quilt substantially automated patch management, it rapidly gained a large following among
open source software developers.

Quilt manages a stack of patches on top of a directory tree. To begin, you tell quilt to manage a
directory tree, and tell it which files you want to manage; it stores away the names and contents of
those files. To fix a bug, you create a new patch (using a single command), edit the files you need to
fix, then ‘refresh’ the patch.

The refresh step causes quilt to scan the directory tree; it updates the patch with all of the changes
you have made. You can create another patch on top of the first, which will track the changes required
to modify the tree from ‘tree with one patch applied’ to ‘tree with two patches applied’

You can change which patches are applied to the tree. If you ‘pop’ a patch, the changes made by that
patch will vanish from the directory tree. Quilt remembers which patches you have popped, though, so you
can ‘push’ a popped patch again, and the directory tree will be restored to contain the modifications
in the patch. Most importantly, you can run the ‘refresh’ command at any time, and the topmost applied
patch will be updated. This means that you can, at any time, change both which patches are applied and
what modifications those patches make.

Quilt knows nothing about revision control tools, so it works equally well on top of an unpacked tarball
or a Subversion working copy.

12.2.2 M patchwork quilt %| MQ

In mid-2005, Chris Mason took the features of quilt and wrote an extension that he called Mercurial
Queues, which added quilt-like behavior to Mercurial.

The key difference between quilt and MQ is that quilt knows nothing about revision control systems, while
MQ is integrated into Mercurial. Each patch that you push is represented as a Mercurial changeset. Pop
a patch, and the changeset goes away.

Because quilt does not care about revision control tools, it is still a tremendously useful piece of
software to know about for situations where you cannot use Mercurial and MQ.

12.3 MQ & E KL%

I cannot overstate the value that MQ offers through the unification of patches and revision control.

A major reason that patches have persisted in the free software and open source world—in spite of the
availability of increasingly capable revision control tools over the years—is the agility they offer.

Traditional revision control tools make a permanent, irreversible record of everything that you do.
While this has great value, it's also somewhat stifling. If you want to perform a wild-eyed experiment,
you have to be careful in how you go about it, or you risk leaving unneeded—or worse, misleading or
destabilising—traces of your missteps and errors in the permanent revision record.

By contrast, MQ's marriage of distributed revision control with patches makes it much easier to isolate
your work. Your patches live on top of normal revision history, and you can make them disappear or

Ed. 1

Mercurial FUEIETE /
144 189

reappear at will. If you don't like a patch, you can drop it. If a patch isn't quite as you want it to
be, simply fix it—as many times as you need to, until you have refined it into the form you desire.

As an example, the integration of patches with revision control makes understanding patches and debugging
their effects—and their interplay with the code they're based on—enormously easier. Since every applied
patch has an associated changeset, you can give hg log a file name to see which changesets and patches
affected the file. You can use the hg bisect command to binary-search through all changesets and applied
patches to see where a bug got introduced or fixed. You can use the hg annotate command to see which
changeset or patch modified a particular line of a source file. And so on.

12.4 EMEAT

Because MQ doesn't hide its patch-oriented nature, it is helpful to understand what patches are, and a
little about the tools that work with them.

The traditional Unix diff command compares two files, and prints a list of differences between them.
The patch command understands these differences as modifications to make to a file. Take a look below
for a simple example of these commands in action.

$ echo 'this is my original thought' > oldfile
$ echo 'i have changed my mind' > newfile

$ diff -u oldfile newfile > tiny.patch

$ cat tiny.patch

--- oldfile 2011-03-15 14:15:56.000000000 +0000
+++ newfile 2011-03-15 14:15:56.000000000 +0000
e@ -1 +1 o@

-this is my original thought

+i have changed my mind

$ patch < tiny.patch

patching file oldfile

$ cat oldfile

i have changed my mind

The type of file that diff generates (and patch takes as input) is called a ‘patch’ or a ‘diff’ ;
there is no difference between a patch and a diff. (We'll use the term ‘patch’ , since it's more
commonly used.)

A patch file can start with arbitrary text; the patch command ignores this text, but MQ uses it as the
commit message when creating changesets. To find the beginning of the patch content, patch searches for
the first line that starts with the string ‘diff -’

MQ works with unified diffs (patch can accept several other diff formats, but MQ doesn't). A unified
diff contains two kinds of header. The file header describes the file being modified:; it contains the
name of the file to modify. When patch sees a new file header, it looks for a file with that name to
start modifying.

After the file header comes a series of hunks. Each hunk starts with a header: this identifies the range
of line numbers within the file that the hunk should modify. Following the header, a hunk starts and
ends with a few (usually three) lines of text from the unmodified file; these are called the context for
the hunk. If there's only a small amount of context between successive hunks, diff doesn't print a new
hunk header; it just runs the hunks together, with a few lines of context between modifications.

Each line of context begins with a space character. Within the hunk, a line that begins with ‘-’ means
‘remove this line, while a line that begins with ‘+’ means ‘insert this line. For example, a
line that is modified is represented by one deletion and one insertion.

We will return to some of the more subtle aspects of patches later (in Section 12.6), but you should
have enough information now to use MQ.

Ed. 1

Mercurial FUEIETE /
145 189

12.5 F4&1EH MQ

Because MQ is implemented as an extension, you must explicitly enable before you can use it. (You don't
need to download anything; MQ ships with the standard Mercurial distribution.) To enable MQ, edit your
~/.hgrc file, and add the lines below.

[extensions]
hgext.mq =

Once the extension is enabled, it will make a number of new commands available. To verify that the
extension is working, you can use hg help to see if the qinit command is now available.

$ hg help qinit
hg qinit [—c]

init a new queue repository (DEPRECATED)

The queue repository is unversioned by default. If -c/--create-repo is
specified, qinit will create a separate nested repository for patches
(ginit -c may also be run later to convert an unversioned patch repository
into a versioned one). You can use qcommit to commit changes to this queue
repository.

This command is deprecated. Without -c, it's implied by other relevant

commands. With -c, use "hg init --mq" instead.
options:
-c ——create-repo create queue repository

use "hg -v help qinit" to show global options

You can use MQ with any Mercurial repository, and its commands only operate within that repository. To
get started, simply prepare the repository using the qinit command.

$ hg init mg-sandbox

$ cd mg-sandbox

$ echo 'line 1' > filel

$ echo 'another line 1' > file2
$ hg add filel file2

$ hg commit -m'first change'

$ hg qinit

This command creates an empty directory called .hg/patches, where MQ will keep its metadata. As with
many Mercurial commands, the qinit command prints nothing if it succeeds.

12.5.1 BlZEHAT

To begin work on a new patch, use the gnew command. This command takes one argument, the name of the
patch to create.

MQ will use this as the name of an actual file in the .hg/patches directory, as you can see below.

$ hg tip

changeset: 0:0ee75bf88d8T

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:03 2011 +0000

summary : first change

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
146 / 189

$ hg qnew first.patch

$ hg tip

changeset: 1:305f3ae0302f

tag: first.patch

tag: gbase

tag: qtip

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:03 2011 +0000
summary : [mq]: first.patch

$ 1s .hg/patches
first.patch series status

Also newly present in the .hg/patches directory are two other files, series and status. The series file
lists all of the patches that MQ knows about for this repository, with one patch per line. Mercurial
uses the status file for internal book-keeping; it tracks all of the patches that MQ has applied in this
repository.

Note

You may sometimes want to edit the series file by hand; for example, to change the sequence in which
some patches are applied. However, manually editing the status file is almost always a bad idea, as
it's easy to corrupt MQ's idea of what is happening.

Once you have created your new patch, you can edit files in the working directory as you usually would.
A1l of the normal Mercurial commands, such as hg diff and hg annotate, work exactly as they did before.

12.5.2 RI#HAT

When you reach a point where you want to save your work, use the qrefresh command to update the patch
you are working on.

$ echo 'line 2' >> filel
$ hg diff
diff -r 305f3ae0302f filel
--— a/filel Tue Mar 15 14:16:03 2011 +0000
+++ b/filel Tue Mar 15 14:16:03 2011 +0000
e@ -1,1 +1,2 oe@
line 1
+line 2
$ hg qrefresh
$ hg diff
$ hg tip --style=compact --patch
1[first.patch,qgbase,qtip,tip] 85d8eac09dbb 2011-03-15 14:16 +0000 bos
[mq]: first.patch

diff -r 0ee75bf88d8f -r 85d8eac09dbb filel
--—— a/filel Tue Mar 15 14:16:03 2011 +0000
+++ b/filel Tue Mar 15 14:16:03 2011 +0000
ee -1,1 +1,2 @@

line 1
+1line 2

Ed. 1

Mercurial FUEIETE /
147 189

This command folds the changes you have made in the working directory into your patch, and updates its
corresponding changeset to contain those changes.

You can run grefresh as often as you like, so it's a good way to ‘checkpoint’ your work. Refresh your
patch at an opportune time; try an experiment; and if the experiment doesn't work out, hg revert your
modifications back to the last time you refreshed.

$ echo 'line 3' >> filel

$ hg status

M filel

$ hg qrefresh

$ hg tip --style=compact --patch

1[first.patch,qgbase,qtip,tip] ca6890979ed9 2011-03-15 14:16 +0000 bos
[mg]: first.patch

diff -r 0ee75bf88d8f -r ca6890979ed9 filel
--—— a/filel Tue Mar 15 14:16:03 2011 +0000
+++ b/filel Tue Mar 15 14:16:04 2011 +0000
e@ -1,1 +1,3 @@

line 1
+line 2
+1line 3

12.5.3 fE&EFRIFAT

Once you have finished working on a patch, or need to work on another, you can use the qnew command
again to create a new patch. Mercurial will apply this patch on top of your existing patch.

$ hg qnew second.patch

$ hg log --style=compact --1imit=2

2[qtip,second.patch, tip] 98bbcT77adat7 2011-03-15 14:16 +0000 bos
[mq]: second.patch

1[first.patch, gbase] ca6890979ed9 2011-03-15 14:16 +0000 bos
[mg]: first.patch

$ echo 'line 4' >> filel

$ hg qrefresh

$ hg tip --style=compact --patch

2[qtip,second.patch, tip] bd46ac06bf95 2011-03-15 14:16 +0000 bos
[mq]: second.patch

diff -r ca6890979ed9 -r bd46ac06bf95 filel
-—— a/filel Tue Mar 15 14:16:04 2011 +0000
+++ b/filel Tue Mar 15 14:16:04 2011 +0000
e@ -1,3 +1,4 oo

line 1

line 2

line 3
+1line 4

$ hg annotate filel
0: line 1
1: line 2
1: 1line 3
2: line 4

Ed. 1
Mercurial YIS

148 / 189

Notice that the patch contains the changes in our prior patch as part of its context (you can see this
more clearly in the output of hg annotate).

So far, with the exception of qnew and qrefresh, we've been careful to only use regular Mercurial
commands. However, MQ provides many commands that are easier to use when you are thinking about patches,
as illustrated below.

$ hg qgseries
first.patch
second.patch
$ hg qapplied
first.patch
second.patch

The gseries command lists every patch that MQ knows about in this repository, from oldest to newest
(most recently created).

The qapplied command lists every patch that MQ has applied in this repository, again from oldest to
newest (most recently applied).

12.5.4 #{AEA T A

The previous discussion implied that there must be a difference between ‘known’ and ‘applied’ patches,
and there is. MQ can manage a patch without it being applied in the repository.

An applied patch has a corresponding changeset in the repository, and the effects of the patch and
changeset are visible in the working directory. You can undo the application of a patch using the qpop
command. MQ still knows about, or manages, a popped patch, but the patch no longer has a corresponding
changeset in the repository, and the working directory does not contain the changes made by the patch.
Figure 12.1 illustrates the difference between applied and tracked patches.

present in series, forbid-illegal-params.patch

but not applied

fix-memory-leak.patch

t t
noesets present) [EONSIBCHORTRES PRI +055¢2115
changesets present ab55dafl5409

Figure 12.1: JE MQ #p T HERR - R A AIRUER#N T

You can reapply an unapplied, or popped, patch using the gpush command. This creates a new changeset
to correspond to the patch, and the patch's changes once again become present in the working directory.
See below for examples of gpop and gqpush in action.

$ hg qapplied
first.patch
second.patch

$ hg qpop

popping second.patch
now at: first.patch

Ed. 1

Mercurial FUEIETE /
149 189

$ hg gseries
first.patch
second.patch
$ hg qapplied
first.patch

$ cat filel
line 1

line 2

line 3

Notice that once we have popped a patch or two patches, the output of gseries remains the same, while
that of gapplied has changed.

12.5.5 EAXRE S AT

While gpush and gpop each operate on a single patch at a time by default, you can push and pop many
patches in one go. The —a option to qpush causes it to push all unapplied patches, while the -a option
to gpop causes it to pop all applied patches. (For some more ways to push and pop many patches, see
Section 12.8 below.)

$ hg qpush -a
applying second.patch
now at: second.patch
$ cat filel

line
line
line

= w N =

line

12.5.6 =A&MkhE REE & EN

Several MQ commands check the working directory before they do anything, and fail if they find any
modifications. They do this to ensure that you won't lose any changes that you have made, but not yet
incorporated into a patch. The example below illustrates this:; the qnew command will not create a new
patch if there are outstanding changes, caused in this case by the hg add of file3.

$ echo 'file 3, line 1' >> file3

$ hg qnew add-file3.patch

$ hg qnew -f add-file3.patch

abort: patch "add-file3.patch" already exists

Commands that check the working directory all take an ‘I know what I'm doing’ option, which is always
named —-f. The exact meaning of -f depends on the command. For example, hg qnew -f will incorporate any
outstanding changes into the new patch it creates, but hg qpop —-f will revert modifications to any files
affected by the patch that it is popping. Be sure to read the documentation for a command's —-f option
before you use it!

12.5.7 RKZE S AT

The qrefresh command always refreshes the topmost applied patch. This means that you can suspend work
on one patch (by refreshing it). pop or push to make a different patch the top, and work on that patch
for a while.

Here's an example that illustrates how you can use this ability. Let's say you're developing a new
feature as two patches. The first is a change to the core of your software, and the second—layered on

Ed. 1

Mercurial FUEIETE /
150 189

top of the first—changes the user interface to use the code you just added to the core. If you notice
a bug in the core while you're working on the UI patch, it's easy to fix the core. Simply qrefresh the
Ul patch to save your in-progress changes, and qpop down to the core patch. Fix the core bug, qrefresh
the core patch, and gpush back to the Ul patch to continue where you left off.

12.6 %2 TATHE %4z 8

MQ uses the GNU patch command to apply patches, so it's helpful to know a few more detailed aspects of
how patch works, and about patches themselves.

12.6.1 15313k

If you look at the file headers in a patch, you will notice that the pathnames usually have an extra
component on the front that isn't present in the actual path name. This is a holdover from the way
that people used to generate patches (people still do this, but it's somewhat rare with modern revision
control tools).

Alice would unpack a tarball, edit her files, then decide that she wanted to create a patch. So she'd
rename her working directory, unpack the tarball again (hence the need for the rename), and use the -r
and -N options to diff to recursively generate a patch between the unmodified directory and the modified
one. The result would be that the name of the unmodified directory would be at the front of the left-hand
path in every file header, and the name of the modified directory would be at the front of the right-hand
path.

Since someone receiving a patch from the Alices of the net would be unlikely to have unmodified and
modified directories with exactly the same names, the patch command has a -p option that indicates the
number of leading path name components to strip when trying to apply a patch. This number is called the
strip count.

An option of ‘-pl’ means ‘use a strip count of one’ . If patch sees a file name foo/bar/baz in a file
header, it will strip foo and try to patch a file named bar/baz. (Strictly speaking, the strip count
refers to the number of path separators (and the components that go with them) to strip. A strip count
of one will turn foo/bar into bar, but /foo/bar (notice the extra leading slash) into foo/bar.)

The ‘standard’ strip count for patches is one; almost all patches contain one leading path name
component that needs to be stripped. Mercurial's hg diff command generates path names in this form, and
the hg import command and MQ expect patches to have a strip count of one.

If you receive a patch from someone that you want to add to your patch queue, and the patch needs a strip
count other than one, you cannot just gimport the patch, because qimport does not yet have a —p option
(see issue 311). Your best bet is to gnew a patch of your own, then use patch —pN to apply their patch,
followed by hg addremove to pick up any files added or removed by the patch, followed by hg qrefresh.
This complexity may become unnecessary; see issue 311 for details.

12.6.2 AT 89 Rk

When patch applies a hunk, it tries a handful of successively less accurate strategies to try to make
the hunk apply. This falling-back technique often makes it possible to take a patch that was generated
against an old version of a file, and apply it against a newer version of that file.

First, patch tries an exact match, where the line numbers, the context, and the text to be modified
must apply exactly. If it cannot make an exact match, it tries to find an exact match for the context,
without honouring the line numbering information. If this succeeds, it prints a line of output saying
that the hunk was applied, but at some offset from the original line number.

If a context-only match fails, patch removes the first and last lines of the context, and tries a reduced
context-only match. If the hunk with reduced context succeeds, it prints a message saying that it applied

http://www.selenic.com/mercurial/bts/issue311
http://www.selenic.com/mercurial/bts/issue311

Ed. 1

Mercurial FUEIETE /
151 189

the hunk with a fuzz factor (the number after the fuzz factor indicates how many lines of context patch
had to trim before the patch applied).

When neither of these techniques works, patch prints a message saying that the hunk in question was
rejected. It saves rejected hunks (also simply called ‘rejects’) to a file with the same name, and
an added .rej extension. It also saves an unmodified copy of the file with a .orig extension:; the copy
of the file without any extensions will contain any changes made by hunks that did apply cleanly. If
you have a patch that modifies foo with six hunks, and one of them fails to apply, you will have: an
unmodified foo.orig, a foo.rej containing one hunk, and foo, containing the changes made by the five
successful hunks.

12.6.3 AT oy—4H

There are a few useful things to know about how patch works with files.

This should already be obvious, but patch cannot handle binary files.
Neither does it care about the executable bit; it creates new files as readable, but not executable.

patch treats the removal of a file as a diff between the file to be removed and the empty file. So
your idea of ‘I deleted this file’ 1looks like ‘every line of this file was deleted’ in a patch.

It treats the addition of a file as a diff between the empty file and the file to be added. So in a
patch, your idea of ‘I added this file’ 1looks like ‘every line of this file was added’

It treats a renamed file as the removal of the old name, and the addition of the new name. This means
that renamed files have a big footprint in patches. (Note also that Mercurial does not currently try
to infer when files have been renamed or copied in a patch.)

patch cannot represent empty files, so you cannot use a patch to represent the notion ‘I added this
empty file to the tree’

12.6.4 %.0FH)

While applying a hunk at an offset, or with a fuzz factor, will often be completely successful, these
inexact techniques naturally leave open the possibility of corrupting the patched file. The most common
cases typically involve applying a patch twice, or at an incorrect location in the file. If patch or
gpush ever mentions an offset or fuzz factor, you should make sure that the modified files are correct
afterwards.

It's often a good idea to refresh a patch that has applied with an offset or fuzz factor; refreshing
the patch generates new context information that will make it apply cleanly. I say ‘often,’ not

‘always,’ because sometimes refreshing a patch will make it fail to apply against a different revision
of the underlying files. In some cases, such as when you're maintaining a patch that must sit on top
of multiple versions of a source tree, it's acceptable to have a patch apply with some fuzz, provided
you've verified the results of the patching process in such cases.

12.6.5 X3 Ip%

If qpush fails to apply a patch, it will print an error message and exit. If it has left .rej files
behind, it is usually best to fix up the rejected hunks before you push more patches or do any further
work.

If your patch used to apply cleanly, and no longer does because you've changed the underlying code that
your patches are based on, Mercurial Queues can help:; see Section 12.9 for details.

Unfortunately, there aren't any great techniques for dealing with rejected hunks. Most often, you'll
need to view the .rej file and edit the target file, applying the rejected hunks by hand.

A Linux kernel hacker, Chris Mason (the author of Mercurial Queues), wrote a tool called mpatch
(http://oss.oracle.com/“mason/mpatch/), which takes a simple approach to automating the application of

http://oss.oracle.com/~mason/mpatch/

Ed. 1

Mercurial FUEIETE /
152 189

hunks rejected by patch. The mpatch command can help with four common reasons that a hunk may be
rejected:

+ The context in the middle of a hunk has changed.
+ A hunk is missing some context at the beginning or end.
+ A large hunk might apply better—either entirely or in part—if it was broken up into smaller hunks.

+ A hunk removes lines with slightly different content than those currently present in the file.

If you use mpatch, you should be doubly careful to check your results when you're done. In fact, mpatch
enforces this method of double-checking the tool's output, by automatically dropping you into a merge
program when it has done its job, so that you can verify its work and finish off any remaining merges.

12.7 AT EE#H

As you grow familiar with MQ, you will find yourself wanting to perform other kinds of patch management
operations.

12.7.1 MR EZGAT

If you want to get rid of a patch, use the hg qdelete command to delete the patch file and remove its
entry from the patch series. If you try to delete a patch that is still applied, hg gqdelete will refuse.

hg init myrepo

cd myrepo

hg qinit

hg qnew bad.patch
echo a > a

hg add a

hg qrefresh

hg gqdelete bad.patch
abort: cannot delete applied patch bad.patch
$ hg apop

popping bad.patch
patch queue now empty
$ hg qdelete bad.patch

PP BH PP DO PP

12.7.2 S5HF XA LR

Once you're done working on a patch and want to turn it into a permanent changeset, use the hg gqfinish
command. Pass a revision to the command to identify the patch that you want to turn into a regular
changeset:; this patch must already be applied.

$ hg gnew good.patch

$ echo a > a

$ hg add a

$ hg qrefresh -m 'Good change'

$ hg qfinish tip

$ hg qapplied

$ hg tip --style=compact

O[tip] 31d6dbbb60fa 2011-03-15 14:15 +0000 bos
Good change

Ed. 1

Mercurial FUEIETE /
153 189

The hg qfinish command accepts an --all or -a option, which turns all applied patches into regular
changesets.

It is also possible to turn an existing changeset into a patch, by passing the -r option to hg gimport.

$ hg gimport -r tip
$ hg qapplied
0.diff

Note that it only makes sense to convert a changeset into a patch if you have not propagated that
changeset into any other repositories. The imported changeset's ID will change every time you refresh
the patch, which will make Mercurial treat it as unrelated to the original changeset if you have pushed
it somewhere else.

12.8 MQ #gM4t

MQ is very efficient at handling a large number of patches. 1 ran some performance experiments in
mid-2006 for a talk that 1 gave at the 2006 EuroPython conference (on modern hardware, you should expect
better performance than you'll see below). I used as my data set the Linux 2.6.17-mml patch series,
which consists of 1,738 patches. 1 applied these on top of a Linux kernel repository containing all
27,472 revisions between Linux 2.6.12-rc2 and Linux 2.6.17.

On my old, slow laptop, I was able to hg qpush -a all 1,738 patches in 3.5 minutes, and hg gqpop —a them
all in 30 seconds. (On a newer laptop, the time to push all patches dropped to two minutes.) I could
qrefresh one of the biggest patches (which made 22,779 lines of changes to 287 files) in 6.6 seconds.

Clearly, MQ is well suited to working in large trees, but there are a few tricks you can use to get the
best performance of it.

First of all, try to ‘batch’ operations together. Every time you run gpush or gpop, these commands
scan the working directory once to make sure you haven't made some changes and then forgotten to run
qrefresh. On a small tree, the time that this scan takes is unnoticeable. However, on a medium-sized
tree (containing tens of thousands of files), it can take a second or more.

The gpush and gpop commands allow you to push and pop multiple patches at a time. You can identify the

‘destination patch’ that you want to end up at. When you gpush with a destination specified, it will
push patches until that patch is at the top of the applied stack. When you gpop to a destination, MQ
will pop patches until the destination patch is at the top.

You can identify a destination patch using either the name of the patch, or by number. If you use numeric
addressing, patches are counted from zero; this means that the first patch is zero, the second is one,
and so on.

12.9 S AR KT » EHATHF %

It's common to have a stack of patches on top of an underlying repository that you don't modify directly.
If you're working on changes to third-party code, or on a feature that is taking longer to develop than
the rate of change of the code beneath, you will often need to sync up with the underlying code, and fix
up any hunks in your patches that no longer apply. This is called rebasing your patch series.

The simplest way to do this is to hg gpop hg —a your patches, then hg pull changes into the underlying
repository, and finally hg qpush -a your patches again. MQ will stop pushing any time it runs across a
patch that fails to apply during conflicts, allowing you to fix your conflicts, qrefresh the affected
patch, and continue pushing until you have fixed your entire stack.

This approach is easy to use and works well if you don't expect changes to the underlying code to affect
how well your patches apply. If your patch stack touches code that is modified frequently or invasively

Ed. 1

Mercurial FUEIETE /
154 189

in the underlying repository, however, fixing up rejected hunks by hand quickly becomes tiresome.

It's possible to partially automate the rebasing process. If your patches apply cleanly against some
revision of the underlying repo, MQ can use this information to help you to resolve conflicts between
your patches and a different revision.

The process is a little involved.

1. To begin, hg gpush -a all of your patches on top of the revision where you know that they apply
cleanly.

2. Save a backup copy of your patch directory using hg gsave hg -e hg -c. This prints the name of
the directory that it has saved the patches in. It will save the patches to a directory called
.hg/patches.N, where N is a small integer. It also commits a ‘save changeset’ on top of your
applied patches; this is for internal book-keeping, and records the states of the series and status
files.

3. Use hg pull to bring new changes into the underlying repository. (Don't run hg pull -u; see below
for why.)

4. Update to the new tip revision, using hg update -C to override the patches you have pushed.

5. Merge all patches using hg qpush -m -a. The -m option to gpush tells MQ to perform a three-way
merge if the patch fails to apply.

During the hg qpush hg -m, each patch in the series file is applied normally. If a patch applies with
fuzz or rejects, MQ looks at the queue you gsaved, and performs a three-way merge with the corresponding
changeset. This merge uses Mercurial's normal merge machinery, so it may pop up a GUI merge tool to
help you to resolve problems.

When you finish resolving the effects of a patch, MQ refreshes your patch based on the result of the
merge.

At the end of this process, your repository will have one extra head from the old patch queue, and a
copy of the old patch queue will be in .hg/patches.N. You can remove the extra head using hg qpop -a -n
patches.N or hg strip. You can delete .hg/patches.N once you are sure that you no longer need it as a
backup.

12.10 A&124FT

MQ commands that work with patches let you refer to a patch either by using its name or by a number. By
name is obvious enough: pass the name foo.patch to qpush, for example, and it will push patches until
foo.patch is applied.

As a shortcut, you can refer to a patch using both a name and a numeric offset; foo.patch-2 means ‘two
patches before foo.patch’ , while bar.patch+4 means ‘four patches after bar.patch’

Referring to a patch by index isn't much different. The first patch printed in the output of gseries is
patch zero (yes, it's one of those start-at-zero counting systems); the second is patch one; and so on.

MQ also makes it easy to work with patches when you are using normal Mercurial commands. Every command
that accepts a changeset ID will also accept the name of an applied patch. MQ augments the tags normally
in the repository with an eponymous one for each applied patch. In addition, the special tags gbase and
gtip identify the ‘bottom-most’ and topmost applied patches, respectively.

These additions to Mercurial's normal tagging capabilities make dealing with patches even more of a
breeze.
+ Want to patchbomb a mailing list with your latest series of changes?

hg email gbase:qtip

Ed. 1

Mercurial FUEIETE /
155 189

(Don't know what ‘patchbombing’ is? See Section 14.4.)

Need to see all of the patches since foo.patch that have touched files in a subdirectory of your tree?

hg log -r foo.patch:qtip subdir

Because MQ makes the names of patches available to the rest of Mercurial through its normal internal tag
machinery, you don't need to type in the entire name of a patch when you want to identify it by name.

Another nice consequence of representing patch names as tags is that when you run the hg log command,
it will display a patch's name as a tag, simply as part of its normal output. This makes it easy to
visually distinguish applied patches from underlying ‘normal’ revisions. The following example shows
a few normal Mercurial commands in use with applied patches.

$ hg qapplied
first.patch
second.patch

$ hg log -r gbase:qtip

changeset: 1:51320a18c615

tag: first.patch

tag: gbase

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:00 2011 +0000
summary : [mq]: first.patch

changeset: 2:2b7339ab7017

tag: qtip

tag: second.patch

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>
date: Tue Mar 15 14:16:00 2011 +0000
summary : [mq]: second.patch

$ hg export second.patch

HG changeset patch

User Bryan 0'Sullivan <bos@serpentine.com>

Date 1300198560 0

Node ID 2b7339ab70176d2d7db36f67ec28ddedc0882e1d
Parent 51320al18c6150ec560eel31dacd6db0410562228
[mg]: second.patch

diff -r 51320al18c615 -r 2b7339ab7017 other.c
--— /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/other.c Tue Mar 15 14:16:00 2011 +0000
e@ -0,0 +1,1 @@

+double u;

12.11 HEeEFLTHOEAT

There are a number of aspects of MQ usage that don't fit tidily into sections of their own, but that are
good to know. Here they are, in one place.

Normally, when you gpop a patch and gpush it again, the changeset that represents the patch after the
pop/push will have a different identity than the changeset that represented the hash beforehand. See
Section B.1.14 for information as to why this is.

+ It's not a good idea to hg merge changes from another branch with a patch changeset, at least if you
want to maintain the ‘patchiness’ of that changeset and changesets below it on the patch stack. If
you try to do this, it will appear to succeed, but MQ will become confused.

Ed. 1

Mercurial FUEIETE /
156 189

12.12 ERAEEEAGT

Because MQ's .hg/patches directory resides outside a Mercurial repository's working directory, the
‘underlying’ Mercurial repository knows nothing about the management or presence of patches.

This presents the interesting possibility of managing the contents of the patch directory as a Mercurial
repository in its own right. This can be a useful way to work. For example, you can work on a patch
for a while, qrefresh it, then hg commit the current state of the patch. This lets you ‘roll back’ to
that version of the patch later on.

You can then share different versions of the same patch stack among multiple underlying repositories. 1
use this when I am developing a Linux kernel feature. 1 have a pristine copy of my kernel sources for
each of several CPU architectures, and a cloned repository under each that contains the patches I am
working on. When I want to test a change on a different architecture, I push my current patches to the
patch repository associated with that kernel tree, pop and push all of my patches, and build and test
that kernel.

Managing patches in a repository makes it possible for multiple developers to work on the same patch
series without colliding with each other, all on top of an underlying source base that they may or may
not control.

12.12.1 MQ X ¥4t ThRRAE

MQ helps you to work with the .hg/patches directory as a repository; when you prepare a repository for
working with patches using qinit, you can pass the hg -c option to create the .hg/patches directory as
a Mercurial repository.

Note

If you forget to use the hg -c option, you can simply go into the .hg/patches directory at any time
and run hg init. Don't forget to add an entry for the status file to the .hgignore file, though

(hg qinit hg -c does this for you automatically); you really don't want to manage the status file.

As a convenience, if MQ notices that the .hg/patches directory is a repository, it will automatically
hg add every patch that you create and import.

MQ provides a shortcut command, qcommit, that runs hg commit in the .hg/patches directory. This saves
some bothersome typing.

Finally, as a convenience to manage the patch directory, you can define the alias mq on Unix systems. For
example, on Linux systems using the bash shell, you can include the following snippet in your ~/.bashrc.

alias mq="hg -R $(hg root)/.hg/patches'

You can then issue commands of the form mg pull from the main repository.

12.12.2 FHEENFN

MQ's support for working with a repository full of patches is limited in a few small respects.

MQ cannot automatically detect changes that you make to the patch directory. If you hg pull, manually
edit, or hg update changes to patches or the series file, you will have to hg gpop —a and then hg qpush
—a in the underlying repository to see those changes show up there. If you forget to do this, you can
confuse MQ's idea of which patches are applied.

Ed. 1

Mercurial FUEIETE /
157 189

12.13 BHEATHE=57 1L

Once you've been working with patches for a while, you'll find yourself hungry for tools that will help
you to understand and manipulate the patches you're dealing with.

The diffstat command [?] generates a histogram of the modifications made to each file in a patch. It
provides a good way to ‘get a sense of a patch—which files it affects, and how much change it
introduces to each file and as a whole. (I find that it's a good idea to use diffstat's -p option
as a matter of course, as otherwise it will try to do clever things with prefixes of file names that
inevitably confuse at least me.)

$ diffstat -pl remove-redundant-null-checks.patch
drivers/char/agp/sgi*agp.c 5 #h===
drivers/char/hvcs.c
drivers/message/fusion/mptfc.c

|
| 11 +++++-——————
| 6 ++————
drivers/message/fusion/mptsas.c | & ==
drivers/net/fs_enet/fs enet-mii.c | 3 +——
drivers/net/wireless/ipw2200.c | 22 e sssesssso=a=
drivers/scsi/libata-scsi.c | 4 +---
drivers/video/aull00fb.c | 3 +——
8 files changed, 19 insertions(+), 38 deletions (-)
$ filterdiff -i '*/video/*' remove-redundant-null-checks.patch
--- a/drivers/video/aull00fb.c remove -redundant -null-checks-before-free-in-drivers
+++ a/drivers/video/aull00fb.c
@@ -743,8 +743,7 @@ void __exit aull00fb_cleanup (void)
{

driver unregister (&aull100fb_driver) ;

- if (drv_info.opt_mode)
- kfree (drv_info.opt_mode) ;
+ kfree (drv_info.opt_mode) ;

}

module init (aull00fb_init);

The patchutils package [?] is invaluable. It provides a set of small utilities that follow the ‘Unix
philosophy;’ each does one useful thing with a patch. The patchutils command I use most is filterdiff,
which extracts subsets from a patch file. For example, given a patch that modifies hundreds of files
across dozens of directories, a single invocation of filterdiff can generate a smaller patch that only
touches files whose names match a particular glob pattern. See Section 13.9.2 for another example.

12.14 #BAEAPT 89453 1

Whether you are working on a patch series to submit to a free software or open source project, or a
series that you intend to treat as a sequence of regular changesets when you're done, you can use some
simple techniques to keep your work well organized.

Give your patches descriptive names. A good name for a patch might be rework-device-alloc.patch, because
it will immediately give you a hint what the purpose of the patch is. Long names shouldn't be a problem;
you won't be typing the names often, but you will be running commands like gapplied and gqtop over and
over. Good naming becomes especially important when you have a number of patches to work with, or if
you are Jjuggling a number of different tasks and your patches only get a fraction of your attention.

Be aware of what patch you're working on. Use the qtop command and skim over the text of your patches
frequently—for example, using hg tip -p) —to be sure of where you stand. I have several times worked
on and gqrefreshed a patch other than the one 1 intended, and it's often tricky to migrate changes into
the right patch after making them in the wrong one.

For this reason, it is very much worth investing a little time to learn how to use some of the third-
party tools I described in Section 12.13, particularly diffstat and filterdiff. The former will give

Ed. 1

Mercurial FUEIETE /
158 189

you a quick idea of what changes your patch is making, while the latter makes it easy to splice hunks
selectively out of one patch and into another.

12.15 MQ F#

12.15.1 %3 36y’ T

Because the overhead of dropping files into a new Mercurial repository is so low, it makes a lot of
sense to manage patches this way even if you simply want to make a few changes to a source tarball that
you downloaded.

Begin by downloading and unpacking the source tarball, and turning it into a Mercurial repository.

$ download netplug-1.2.5.tar.bz2

$ tar jxf netplug-1.2.5.tar.bz2

$ cd netplug-1.2.5

$ hg init

$ hg commit -q --addremove --message netplug-1.2.5
$ cd

$ hg clone netplug-1.2.5 netplug
updating to branch default
18 files updated, O files merged, 0 files removed, 0 files unresolved

Continue by creating a patch stack and making your changes.

$ cd netplug

$ hg qinit

$ hg qnew -m 'fix build problem with gcc 4' build-fix.patch
$ perl -pi -e 's/int addr_len/socklen_t addr_len/' netlink.c
$ hg qrefresh

$ hg tip -p

changeset: 1:d6feaf4c2061

tag: build-fix.patch

tag: gbase

tag: qtip

tag: tip

user : Bryan O'Sullivan <bos@serpentine.com>

date: Tue Mar 15 14:16:01 2011 +0000

summary : fix build problem with gcc 4

diff -r ffaleb6eb4dl5e -r d6feafdc2061 netlink.c
-—— a/netlink.c Tue Mar 15 14:16:01 2011 +0000
+++ b/netlink.c Tue Mar 15 14:16:01 2011 +0000
@@ -275,7 +275,7 @@

exit (1) ;
}
- int addr_len = sizeof (addr):
+ socklen_t addr_len = sizeof (addr);
if (getsockname (fd, (struct sockaddr *) &addr, &addr_len) == -1) {

do_log (LOG_ERR, "Could not get socket details: %m");

Let's say a few weeks or months pass, and your package author releases a new version. First, bring their
changes into the repository.

$ hg gpop -a
popping build-fix.patch

Ed. 1

Mercurial FUEIETE /
159 189

patch queue now empty

$ cd

$ download netplug-1.2.8.tar.bz2

$ hg clone netplug-1.2.5 netplug-1.2.8

updating to branch default

18 files updated, O files merged, 0 files removed, 0 files unresolved
$ cd netplug-1.2.8

hg locate -0 \ xargs -0 rm

cd

tar Jjxf netplug-1.2.8.tar.bz2

cd netplug-1.2.8

hg commit --addremove --message netplug-1.2.8

PP BH PP

The pipeline starting with hg locate above deletes all files in the working directory, so that hg commit's
——addremove option can actually tell which files have really been removed in the newer version of the
source.

Finally, you can apply your patches on top of the new tree.

$ cd ../netplug

$ hg pull ../netplug-1.2.8

pulling from ../netplug-1.2.8

searching for changes

adding changesets

adding manifests

adding file changes

added 1 changesets with 12 changes to 12 files
(run 'hg update' to get a working copy)
$ hg gqpush -a

(working directory not at a head)
applying build-fix.patch

now at: build-fix.patch

12.15.2 A543 4T

MQ provides a command, qfold that lets you combine entire patches. This ‘folds’ the patches you name,
in the order you name them, into the topmost applied patch, and concatenates their descriptions onto the
end of its description. The patches that you fold must be unapplied before you fold them.

The order in which you fold patches matters. If your topmost applied patch is foo, and you qfold bar
and quux into it, you will end up with a patch that has the same effect as if you applied first foo,
then bar, followed by quux.

12.15.3 & HATHIR;RAEIN L BT

Merging part of one patch into another is more difficult than combining entire patches.

If you want to move changes to entire files, you can use filterdiff's -i and -x options to choose the
modifications to snip out of one patch, concatenating its output onto the end of the patch you want to
merge into. You usually won't need to modify the patch you've merged the changes from. Instead, MQ will
report some rejected hunks when you gpush it (from the hunks you moved into the other patch)., and you
can simply gqrefresh the patch to drop the duplicate hunks.

If you have a patch that has multiple hunks modifying a file, and you only want to move a few of those
hunks, the job becomes more messy, but you can still partly automate it. Use 1lsdiff -nvv to print some
metadata about the patch.

Mercurial YIS

Ed. 1

160 / 189

$ 1sdiff -nvv
22 File F#1
24 Hunk #1
37 File #2
39 Hunk #1
53 Hunk #2
69 File #3
71 Hunk #1

85 File #4
87 Hunk #1
98 File #5

100 Hunk #1
111 File #6
113 Hunk #1
126 Hunk #2
140 Hunk #3
150 Hunk #4
164 File #7
166 Hunk #1
178 File #8
180 Hunk #1

remove ~-redundant —null-checks.patch
a/drivers/char/agp/sgi-agp.c

static int _ devinit agp sgi_init (void)
a/drivers/char/hvcs.c

static struct tty_operations hvcs_ops =
static int hvcs alloc _index list(int n)
a/drivers/message/fusion/mptfc.c
mptfc_GetFcDevPageO (MPT_ADAPTER *ioc, in
a/drivers/message/fusion/mptsas.c
mptsas_probe_hba phys (MPT_ADAPTER *ioc)
a/drivers/net/fs_enet/fs _enet-mii.c
static struct fs enet mii_bus *create_ bu
a/drivers/net/wireless/ipw2200.c

static struct ipw_fw_error "ipw_alloc_er
static ssize t clear_error (struct device
static void ipw_irq_tasklet (struct ipw_p
static void ipw_pci_remove(struct pci_de
a/drivers/scsi/libata-scsi.c

int ata_cmd_ioctl (struct scsi_device *sc
a/drivers/video/aull00fb.c

void __exit aull00fb_cleanup (void)
This command prints three different kinds of number:

+ (in the first column) a file number to identify each file modified in the patch;
- (on the next line, indented) the line number within a modified file where a hunk starts; and

- (on the same line) a hunk number to identify that hunk.

You'll have to use some visual inspection, and reading of the patch, to identify the file and hunk
numbers you'1ll want, but you can then pass them to to filterdiff's —-files and —-—hunks options, to select
exactly the file and hunk you want to extract.

Once you have this hunk, you can concatenate it onto the end of your destination patch and continue with
the remainder of Section 12.15.2.

12.16 MQ &5 quilt &R 7|

If you are already familiar with quilt, MQ provides a similar command set. There are a few differences
in the way that it works.
You will already have noticed that most quilt commands have MQ counterparts that simply begin with a

q . The exceptions are quilt's add and remove commands, the counterparts for which are the normal
Mercurial hg add and hg remove commands. There is no MQ equivalent of the quilt edit command.

Ed. 1

Mercurial FUEIETE /
161 189

Chapter 13

MQ &9 5% A ik

While it's easy to pick up straightforward uses of Mercurial Queues, use of a little discipline and
some of MQ's less frequently used capabilities makes it possible to work in complicated development
environments.

In this chapter, I will use as an example a technique I have used to manage the development of an
Infiniband device driver for the Linux kernel. The driver in question is large (at least as drivers go),
with 25,000 lines of code spread across 35 source files. It is maintained by a small team of developers.

While much of the material in this chapter is specific to Linux, the same principles apply to any code
base for which you're not the primary owner, and upon which you need to do a lot of development.

13.1 %A~ B 769 7] &

The Linux kernel changes rapidly, and has never been internally stable; developers frequently make
drastic changes between releases. This means that a version of the driver that works well with a
particular released version of the kernel will not even compile correctly against, typically, any other
version.

To maintain a driver, we have to keep a number of distinct versions of Linux in mind.

One target is the main Linux kernel development tree. Maintenance of the code is in this case partly
shared by other developers in the kernel community, who make ‘drive-by’ modifications to the driver
as they develop and refine kernel subsystems.

We also maintain a number of ‘backports’ to older versions of the Linux kernel, to support the
needs of customers who are running older Linux distributions that do not incorporate our drivers.
(To backport a piece of code is to modify it to work in an older version of its target environment
than the version it was developed for.)

+ Finally, we make software releases on a schedule that is necessarily not aligned with those used by
Linux distributors and kernel developers, so that we can deliver new features to customers without
forcing them to upgrade their entire kernels or distributions.

13.1.1 IAERIFHEAT &

There are two ‘standard’ ways to maintain a piece of software that has to target many different
environments.

The first is to maintain a number of branches, each intended for a single target. The trouble with this
approach is that you must maintain iron discipline in the flow of changes between repositories. A new

Ed. 1

Mercurial FUEIETE /
162 189

feature or bug fix must start life in a ‘pristine’ repository, then percolate out to every backport
repository. Backport changes are more limited in the branches they should propagate to; a backport
change that is applied to a branch where it doesn't belong will probably stop the driver from compiling.

The second is to maintain a single source tree filled with conditional statements that turn chunks of
code on or off depending on the intended target. Because these ‘ifdefs’ are not allowed in the Linux
kernel tree, a manual or automatic process must be followed to strip them out and yield a clean tree.
A code base maintained in this fashion rapidly becomes a rat's nest of conditional blocks that are
difficult to understand and maintain.

Neither of these approaches is well suited to a situation where you don't ‘own’ the canonical copy of
a source tree. In the case of a Linux driver that is distributed with the standard kernel, Linus's tree
contains the copy of the code that will be treated by the world as canonical. The upstream version of

‘my’ driver can be modified by people I don't know, without me even finding out about it until after
the changes show up in Linus's tree.

These approaches have the added weakness of making it difficult to generate well-formed patches to submit
upstream.

In principle, Mercurial Queues seems like a good candidate to manage a development scenario such as the
above. While this is indeed the case, MQ contains a few added features that make the job more pleasant.

13.2 A &M AT

Perhaps the best way to maintain sanity with so many targets is to be able to choose specific patches
to apply for a given situation. MQ provides a feature called ‘guards’ (which originates with quilt's
guards command) that does Jjust this. To start off, let's create a simple repository for experimenting
in.

hg qinit

hg gnew hello.patch
echo hello > hello

hg add hello

hg qrefresh

hg gnew goodbye.patch
echo goodbye > goodbye
hg add goodbye

hg qrefresh

P BH PP DB PP DB PR

This gives us a tiny repository that contains two patches that don't have any dependencies on each other,
because they touch different files.

The idea behind conditional application is that you can ‘tag’ a patch with a guard, which is simply a
text string of your choosing, then tell MQ to select specific guards to use when applying patches. MQ
will then either apply., or skip over, a guarded patch, depending on the guards that you have selected.

A patch can have an arbitrary number of guards; each one is positive (‘apply this patch if this guard
is selected’) or negative (‘skip this patch if this guard is selected’). A patch with no guards is
always applied.

13.3 AEH|ANT 692 F & HF

The qguard command lets you determine which guards should apply to a patch, or display the guards that
are already in effect. Without any arguments, it displays the guards on the current topmost patch.

$ hg qguard
goodbye.patch: unguarded

Ed. 1
Mercurial fﬂﬁifﬁﬁﬁ
163 / 189

To set a positive guard on a patch, prefix the name of the guard with a ‘+

$ hg qguard +foo
$ hg qguard
goodbye.patch: +foo

To set a negative guard on a patch, prefix the name of the guard with a ‘-

$ hg qguard -- hello.patch -quux
$ hg qguard hello.patch
hello.patch: —-quux

Notice that we prefixed the arguments to the hg qguard command with a —-- here, so that Mercurial would
not interpret the text —-quux as an option.

Setting vs. modifying
The qguard command sets the guards on a patch; it doesn't modify them. What this means is that if you

run hg qguard +a +b on a patch, then hg qguard +c on the same patch, the only guard that will be set
on it afterwards is +c.

Mercurial stores guards in the series file; the form in which they are stored is easy both to understand
and to edit by hand. (In other words, you don't have to use the qguard command if you don't want to;
it's okay to simply edit the series file.)

$ cat .hg/patches/series
hello.patch #-quux
goodbye.patch #F+foo

13.4 3¢ R 69 &4

The gselect command determines which guards are active at a given time. The effect of this is to determine
which patches MQ will apply the next time you run gpush. It has no other effect; in particular, it
doesn't do anything to patches that are already applied.

With no arguments, the gselect command lists the guards currently in effect, one per line of output.
Each argument is treated as the name of a guard to apply.

$ hg gpop -a

popping goodbye.patch

popping hello.patch

patch queue now empty

$ hg gselect

no active guards

$ hg gselect foo

number of unguarded, unapplied patches has changed from 1 to 2
$ hg gselect

foo

In case you're interested, the currently selected guards are stored in the guards file.
$ cat .hg/patches/guards

foo

We can see the effect the selected guards have when we run gpush.

Ed. 1
Mercurial YIS

164 / 189
$ hg qpush -a
applying hello.patch
applying goodbye.patch
now at: goodbye.patch
A guard cannot start with a ‘+ or ‘-’ character. The name of a guard must not contain white space,

but most other characters are acceptable. If you try to use a guard with an invalid name, MQ will
complain:

$ hg gselect +foo
abort: guard '+foo' starts with invalid character: '+'

Changing the selected guards changes the patches that are applied.

$ hg gselect quux

number of guarded, applied patches has changed from O to 2
$ hg qpop -a

popping goodbye.patch

popping hello.patch

patch queue now empty

$ hg qpush -a

skipping goodbye.patch - guarded by ['+foo']

You can see in the example below that negative guards take precedence over positive guards.

$ hg gselect foo bar

number of unguarded, unapplied patches has changed from 0 to 2
$ hg qpop -a

no patches applied

$ hg qpush -a

applying hello.patch

applying goodbye.patch

now at: goodbye.patch

13.5 MQ & H AT 6930

The rules that MQ uses when deciding whether to apply a patch are as follows.

+ A patch that has no guards is always applied.
If the patch has any negative guard that matches any currently selected guard, the patch is skipped.
+ If the patch has any positive guard that matches any currently selected guard, the patch is applied.

If the patch has positive or negative guards, but none matches any currently selected guard, the
patch is skipped.

13.6 153 TAEI 3%

In working on the device driver I mentioned earlier, I don't apply the patches to a normal Linux kernel
tree. Instead, I use a repository that contains only a snapshot of the source files and headers that
are relevant to Infiniband development. This repository is 1% the size of a kernel repository, so it's
easier to work with.

I then choose a ‘base’ version on top of which the patches are applied. This is a snapshot of the
Linux kernel tree as of a revision of my choosing. When I take the snapshot, I record the changeset 1D

Ed. 1

Mercurial FUEIETE /
165 189

from the kernel repository in the commit message. Since the snapshot preserves the ‘shape’ and content
of the relevant parts of the kernel tree, I can apply my patches on top of either my tiny repository or
a normal kernel tree.

Normally, the base tree atop which the patches apply should be a snapshot of a very recent upstream
tree. This best facilitates the development of patches that can easily be submitted upstream with few
or no modifications.

13.7 R AT RS

I categorise the patches in the series file into a number of logical groups. Each section of like patches
begins with a block of comments that describes the purpose of the patches that follow.

The sequence of patch groups that I maintain follows. The ordering of these groups is important; 1'11
describe why after 1 introduce the groups.

The ‘accepted’ group. Patches that the development team has submitted to the maintainer of the
Infiniband subsystem, and which he has accepted, but which are not present in the snapshot that the
tiny repository is based on. These are ‘read only’ patches, present only to transform the tree into
a similar state as it is in the upstream maintainer's repository.

- The ‘rework’ group. Patches that I have submitted, but that the upstream maintainer has requested
modifications to before he will accept them.

- The ‘pending’ sgroup. Patches that I have not yet submitted to the upstream maintainer, but which
we have finished working on. These will be ‘read only’ for a while. If the upstream maintainer
accepts them upon submission, I['l1l move them to the end of the ‘accepted’ group. If he requests
that I modify any, 1'11 move them to the beginning of the ‘rework’ group.

The ‘in progress’ group. Patches that are actively being developed, and should not be submitted
anywhere yet.

The ‘backport’ group. Patches that adapt the source tree to older versions of the kernel tree.

The ‘do not ship’ sgroup. Patches that for some reason should never be submitted upstream. For
example, one such patch might change embedded driver identification strings to make it easier to
distinguish, in the field, between an out-of-tree version of the driver and a version shipped by a
distribution vendor.

Now to return to the reasons for ordering groups of patches in this way. We would like the lowest
patches in the stack to be as stable as possible, so that we will not need to rework higher patches due
to changes in context. Putting patches that will never be changed first in the series file serves this
purpose.

We would also like the patches that we know we'll need to modify to be applied on top of a source tree
that resembles the upstream tree as closely as possible. This is why we keep accepted patches around
for a while.

The ‘backport’ and ‘do not ship’ patches float at the end of the series file. The backport patches
must be applied on top of all other patches, and the ‘do not ship patches might as well stay out of
harm's way.

13.8 4P 4T A 7

In my work, I use a number of guards to control which patches are to be applied.

Ed. 1

Mercurial FUEIETE /
166 189

‘Accepted’ patches are guarded with accepted. 1 enable this guard most of the time. When ['m
applying the patches on top of a tree where the patches are already present, I can turn this patch
off, and the patches that follow it will apply cleanly.

Patches that are ‘finished’ , but not yet submitted, have no guards. If I'm applying the patch stack
to a copy of the upstream tree, I don't need to enable any guards in order to get a reasonably safe
source tree.

Those patches that need reworking before being resubmitted are guarded with rework.
For those patches that are still under development, I use devel.

A backport patch may have several guards, one for each version of the kernel to which it applies.
For example, a patch that backports a piece of code to 2.6.9 will have a 2.6.9 guard.

This variety of guards gives me considerable flexibility in determining what kind of source tree I want
to end up with. For most situations, the selection of appropriate guards is automated during the build
process, but I can manually tune the guards to use for less common circumstances.

13.8.1 %®EBeEHHEiTHER

Using MQ, writing a backport patch is a simple process. All such a patch has to do is modify a piece
of code that uses a kernel feature not present in the older version of the kernel, so that the driver
continues to work correctly under that older version.

A useful goal when writing a good backport patch is to make your code look as if it was written for the
older version of the kernel you're targeting. The less obtrusive the patch, the easier it will be to
understand and maintain. If you're writing a collection of backport patches to avoid the ‘rat's nest’
effect of lots of #ifdefs (hunks of source code that are only used conditionally) in your code, don't
introduce version-dependent #ifdefs into the patches. Instead, write several patches, each of which
makes unconditional changes, and control their application using guards.

There are two reasons to divide backport patches into a distinct group, away from the ‘regular’ patches
whose effects they modify. The first is that intermingling the two makes it more difficult to use
a tool like the patchbomb extension to automate the process of submitting the patches to an upstream
maintainer. The second is that a backport patch could perturb the context in which a subsequent regular
patch is applied, making it impossible to apply the regular patch cleanly without the earlier backport
patch already being applied.

13.9 4 M MQ AR

13.9.1 KA T#HBJLANAE EF
If you're working on a substantial project with MQ, it's not difficult to accumulate a large number of

patches. For example, I have one patch repository that contains over 250 patches.

If you can group these patches into separate logical categories, you can if you like store them in
different directories: MQ has no problems with patch names that contain path separators.

13.9.2 REAEAT®H L

If you're developing a set of patches over a long time, it's a good idea to maintain them in a repository,
as discussed in Section 12.12. If you do so, you'll quickly discover that using the hg diff command to
look at the history of changes to a patch is unworkable. This is in part because you're looking at the

Ed. 1

Mercurial FUEIETE /
167 189

second derivative of the real code (a diff of a diff), but also because MQ adds noise to the process by
modifying time stamps and directory names when it updates a patch.

However, you can use the extdiff extension, which is bundled with Mercurial, to turn a diff of two
versions of a patch into something readable. To do this, you will need a third-party package called
patchutils [?]. This provides a command named interdiff, which shows the differences between two diffs
as a diff. Used on two versions of the same diff, it generates a diff that represents the diff from the
first to the second version.

You can enable the extdiff extension in the usual way, by adding a line to the extensions section of
your ~/.hgrc.

[extensions |
extdiff =

The interdiff command expects to be passed the names of two files, but the extdiff extension passes the
program it runs a pair of directories, each of which can contain an arbitrary number of files. We thus
need a small program that will run interdiff on each pair of files in these two directories. This program
is available as hg-interdiff in the examples directory of the source code repository that accompanies
this book.

With the hg-interdiff program in your shell's search path, you can run it as follows, from inside an MQ
patch directory:

hg extdiff -p hg-interdiff -r A:B my-change.patch

Since you'll probably want to use this long-winded command a lot, you can get hgext to make it available
as a normal Mercurial command, again by editing your ~/.hgrc.

[extdiff]
cmd.interdiff = hg-interdiff

This directs hgext to make an interdiff command available, so you can now shorten the previous invocation
of extdiff to something a little more wieldy.

hg interdiff -r A:B my-change.patch

Note

The interdiff command works well only if the underlying files against which versions of a patch are
generated remain the same. If you create a patch, modify the underlying files, and then regenerate
the patch, interdiff may not produce useful output.

The extdiff extension is useful for more than merely improving the presentation of MQ patches. To read
more about it, go to Section 14.2.

Ed. 1

Mercurial FUEIETE /
168 189

Chapter 14

12 3 B 3g Jm 2 ik

While the core of Mercurial is quite complete from a functionality standpoint, it's deliberately shorn
of fancy features. This approach of preserving simplicity keeps the software easy to deal with for both
maintainers and users.

However, Mercurial doesn't box you in with an inflexible command set: you can add features to it as
extensions (sometimes known as plugins). We've already discussed a few of these extensions in earlier
chapters.

+ Section 3.3 covers the fetch extension; this combines pulling new changes and merging them with local
changes into a single command, fetch.

+ In Chapter 10, we covered several extensions that are useful for hook-related functionality: acl adds
access control lists:; bugzilla adds integration with the Bugzilla bug tracking system; and notify
sends notification emails on new changes.

The Mercurial Queues patch management extension is so invaluable that it merits two chapters and
an appendix all to itself. Chapter 12 covers the basics; Chapter 13 discusses advanced topics; and
Appendix B goes into detail on each command.

In this chapter, we'll cover some of the other extensions that are available for Mercurial, and briefly
touch on some of the machinery you'll need to know about if you want to write an extension of your own.

+ In Section 14.1, we'll discuss the possibility of huge performance improvements using the inotify
extension.

14.1 4 AT R inotify VAIE ZHEAe

Are you interested in having some of the most common Mercurial operations run as much as a hundred times
faster? Read on!

Mercurial has great performance under normal circumstances. For example, when you run the hg status
command, Mercurial has to scan almost every directory and file in your repository so that it can display
file status. Many other Mercurial commands need to do the same work behind the scenes:; for example, the
hg diff command uses the status machinery to avoid doing an expensive comparison operation on files that
obviously haven't changed.

Because obtaining file status is crucial to good performance, the authors of Mercurial have optimised
this code to within an inch of its 1life. However, there's no avoiding the fact that when you run
hg status, Mercurial is going to have to perform at least one expensive system call for each managed

Ed. 1

Mercurial FUEIETE /
169 189

file to determine whether it's changed since the last time Mercurial checked. For a sufficiently large
repository, this can take a long time.

To put a number on the magnitude of this effect, I created a repository containing 150,000 managed files.
I timed hg status as taking ten seconds to run, even when none of those files had been modified.

Many modern operating systems contain a file notification facility. If a program signs up to an
appropriate service, the operating system will notify it every time a file of interest is created,
modified, or deleted. On Linux systems, the kernel component that does this is called inotify.

Mercurial's inotify extension talks to the kernel's inotify component to optimise hg status commands.
The extension has two components. A daemon sits in the background and receives notifications from the
inotify subsystem. It also listens for connections from a regular Mercurial command. The extension
modifies Mercurial's behavior so that instead of scanning the filesystem, it queries the daemon. Since
the daemon has perfect information about the state of the repository, it can respond with a result
instantaneously, avoiding the need to scan every directory and file in the repository.

Recall the ten seconds that I measured plain Mercurial as taking to run hg status on a 150,000 file
repository. With the inotify extension enabled, the time dropped to 0.1 seconds, a factor of one hundred
faster.

Before we continue, please pay attention to some caveats.

+ The inotify extension is Linux-specific. Because it interfaces directly to the Linux kernel's inotify
subsystem, it does not work on other operating systems.

It should work on any Linux distribution that was released after early 2005. Older distributions are
likely to have a kernel that lacks inotify, or a version of glibc that does not have the necessary
interfacing support.

Not all filesystems are suitable for use with the inotify extension. Network filesystems such as
NFS are a non-starter, for example, particularly if you're running Mercurial on several systems, all
mounting the same network filesystem. The kernel's inotify system has no way of knowing about changes
made on another system. Most local filesystems (e.g. ext3, XFS, ReiserFS) should work fine.

The inotify extension is not yet shipped with Mercurial as of May 2007, so it's a little more involved
to set up than other extensions. But the performance improvement is worth it!

The extension currently comes in two parts: a set of patches to the Mercurial source code, and a library
of Python bindings to the inotify subsystem.

Note

There are two Python inotify binding libraries. One of them is called pyinotify, and is packaged by
some Linux distributions as python-inotify. This is not the one you'll need, as it is too buggy and
inefficient to be practical.

To get going, it's best to already have a functioning copy of Mercurial installed.

Note

If you follow the instructions below, you'll be replacing and overwriting any existing installation
of Mercurial that you might already have, using the latest ‘bleeding edge’ Mercurial code. Don't
say you weren't warned!

1. Clone the Python inotify binding repository. Build and install it.

Ed. 1

Mercurial FUEIETE /
170 189

hg clone http://hg.kublai.com/python/inotify
cd inotify

python setup.py build --force

sudo python setup.py install --skip-build

2. Clone the crew Mercurial repository. Clone the inotify patch repository so that Mercurial Queues
will be able to apply patches to your cope of the crew repository.

hg clone http://hg.intevation.org/mercurial/crew
hg clone crew inotify
hg clone http://hg.kublai.com/mercurial/patches/inotify inotify/.hg/patches

3. Make sure that you have the Mercurial Queues extension, mq, enabled. If you've never used MQ, read
Section 12.5 to get started quickly.

4. Go into the inotify repo, and apply all of the inotify patches using the hg -a option to the qpush
command.

cd inotify
hg qpush -a

5. If you get an error message from gpush, you should not continue. Instead, ask for help.

6. Build and install the patched version of Mercurial.

python setup.py build --force
sudo python setup.py install --skip-build

Once you've build a suitably patched version of Mercurial, all you need to do to enable the inotify
extension is add an entry to your ~/.hgrc.

[extensions] inotify =

When the inotify extension is enabled, Mercurial will automatically and transparently start the status
daemon the first time you run a command that needs status in a repository. It runs one status daemon
per repository.

The status daemon is started silently, and runs in the background. If you look at a list of running
processes after you've enabled the inotify extension and run a few commands in different repositories,
you'll thus see a few hg processes sitting around, waiting for updates from the kernel and queries from
Mercurial.

The first time you run a Mercurial command in a repository when you have the inotify extension enabled,
it will run with about the same performance as a normal Mercurial command. This is because the status
daemon needs to perform a normal status scan so that it has a baseline against which to apply later
updates from the kernel. However, every subsequent command that does any kind of status check should
be noticeably faster on repositories of even fairly modest size. Better yet, the bigger your repository
is, the greater a performance advantage you'll see. The inotify daemon makes status operations almost
instantaneous on repositories of all sizes!

If you like, you can manually start a status daemon using the inserve command. This gives you slightly
finer control over how the daemon ought to run. This command will of course only be available when the
inotify extension is enabled.

When you're using the inotify extension, you should notice no difference at all in Mercurial's behavior,
with the sole exception of status-related commands running a whole lot faster than they used to. You
should specifically expect that commands will not print different output:; neither should they give
different results. If either of these situations occurs, please report a bug.

Ed. 1

Mercurial FUEIETE /
171 189

14.2 &R K extdiff UAY & £2F X

Mercurial NEM4S hg diff WEIHS55H—ZRAR -

$ hg diff

diff -r ad535869eb3b myfile

--- a/myfile Tue Mar 15 14:15:51 2011 +0000
+++ b/myfile Tue Mar 15 14:15:51 2011 +0000
e@ -1,1 +1,2 @@

The first line.

+The second line.

If you would like to use an external tool to display modifications, you'll want to use the extdiff
extension. This will let you use, for example, a graphical diff tool.

The extdiff extension is bundled with Mercurial, so it's easy to set up. In the extensions section of
your ~/.hgrc, simply add a one-line entry to enable the extension.

[extensions]
extdiff =

This introduces a command named extdiff, which by default uses your system's diff command to generate a
unified diff in the same form as the built-in hg diff command.

$ hg extdiff
--- a.ad535869eb3b/myfile 2011-03-15 14:15:51.000000000 +0000
+++ /tmp/extdifff1BSiu/a/myfile 2011-03-15 14:15:51.000000000 +0000
e -1 +1,2 e
The first 1line.
+The second line.

The result won't be exactly the same as with the built-in hg diff variations, because the output of diff
varies from one system to another, even when passed the same options.

As the ‘making snapshot’ lines of output above imply, the extdiff command works by creating two
snapshots of your source tree. The first snapshot is of the source revision; the second, of the target
revision or working directory. The extdiff command generates these snapshots in a temporary directory,
passes the name of each directory to an external diff viewer, then deletes the temporary directory. For
efficiency, it only snapshots the directories and files that have changed between the two revisions.

Snapshot directory names have the same base name as your repository. If your repository path is
/quux/bar/foo, then foo will be the name of each snapshot directory. Each snapshot directory name has
its changeset 1D appended, if appropriate. If a snapshot is of revision a63lacalO83f, the directory
will be named foo.a63lacalO83f. A snapshot of the working directory won't have a changeset 1D appended,
so it would Jjust be foo in this example. To see what this looks like in practice, look again at the
extdiff example above. Notice that the diff has the snapshot directory names embedded in its header.

The extdiff command accepts two important options. The hg —-p option lets you choose a program to view
differences with, instead of diff. With the hg -o option, you can change the options that extdiff passes
to the program (by default, these options are ‘-Npru’ ., which only make sense if you're running diff).
In other respects, the extdiff command acts similarly to the built-in hg diff command: you use the same
option names, syntax, and arguments to specify the revisions you want, the files you want, and so on.

As an example, here's how to run the normal system diff command, getting it to generate context diffs
(using the -c option) instead of unified diffs, and five lines of context instead of the default three
(passing 5 as the argument to the -C option).

$ hg extdiff -o -NprcC5
*** a.ad535869eb3b/myfile Tue Mar 15 14:15:52 2011
--—- /tmp/extdifff1BSiu/a/myfile Tue Mar 15 14:15:51 2011

sk sk sk sk sk ook sk ok ok ok ok

Ed. 1

Mercurial FUEIETE /
172 189

TOD | GOST

—— 1’2 —————
The first 1line.
+ The second line.

Launching a visual diff tool is just as easy. Here's how to launch the kdiff3 viewer.

hg extdiff -p kdiff3 -o

If your diff viewing command can't deal with directories, you can easily work around this with a little
scripting. For an example of such scripting in action with the mg extension and the interdiff command,
see Section 13.9.2.

14.2.1 T X445 4%

It can be cumbersome to remember the options to both the extdiff command and the diff viewer you want
to use, so the extdiff extension lets you define new commands that will invoke your diff viewer with
exactly the right options.

All you need to do is edit your ~/.hgrc, and add a section named extdiff. Inside this section, you can
define multiple commands. Here's how to add a kdiff3 command. Once you've defined this, you can type
‘hg kdiff3’ and the extdiff extension will run kdiff3 for you.

[extdiff]
cmd.kdiff3 =

If you leave the right hand side of the definition empty, as above, the extdiff extension uses the name
of the command you defined as the name of the external program to run. But these names don't have to be
the same. Here, we define a command named ‘hg wibble’ , which runs kdiff3.

[extdiff]
cmd.wibble = kdiff3

You can also specify the default options that you want to invoke your diff viewing program with. The
prefix to use is ‘opts.’ , followed by the name of the command to which the options apply. This example
defines a ‘hg vimdiff’ command that runs the vim editor's DirDiff extension.

[extdiff]
cmd.vimdiff = vim
opts.vimdiff = -f '+next' '+execute "DirDiff" argv(0) argv(1)'

14.3 1 AY B transplant APLiBAE 2L

Need to have a long chat with Brendan about this.

14.4 1A ¥ /& patchbomb @it email K EAEFPL

Many projects have a culture of ‘change review’ , in which people send their modifications to a mailing
list for others to read and comment on before they commit the final version to a shared repository. Some
projects have people who act as gatekeepers: they apply changes from other people to a repository to
which those others don't have access.

Mercurial makes it easy to send changes over email for review or application, via its patchbomb extension.
The extension is so named because changes are formatted as patches, and it's usual to send one changeset

Ed. 1

Mercurial FUEIETE /
173 189

per email message. Sending a long series of changes by email is thus much like ‘bombing’ the recipient's
inbox, hence ‘patchbomb’

As usual, the basic configuration of the patchbomb extension takes Jjust one or two lines in your /.hgrc.

[extensions |
patchbomb =

Once you've enabled the extension, you will have a new command available, named email.

The safest and best way to invoke the email command is to always run it first with the hg —-n option.
This will show you what the command would send, without actually sending anything. Once you've had a
quick glance over the changes and verified that you are sending the right ones, you can rerun the same
command, with the hg -n option removed.

The email command accepts the same kind of revision syntax as every other Mercurial command. For example,
this command will send every revision between 7 and tip, inclusive.

hg email -n 7:tip

You can also specify a repository to compare with. If you provide a repository but no revisions, the email
command will send all revisions in the local repository that are not present in the remote repository.
If you additionally specify revisions or a branch name (the latter using the hg -b option), this will
constrain the revisions sent.

It's perfectly safe to run the email command without the names of the people you want to send to: if you
do this, it will Jjust prompt you for those values interactively. (If you're using a Linux or Unix-like
system, you should have enhanced readline-style editing capabilities when entering those headers, too,
which is useful.)

When you are sending just one revision, the email command will by default use the first line of the
changeset description as the subject of the single email message it sends.

If you send multiple revisions, the email command will usually send one message per changeset. It will
preface the series with an introductory message, in which you should describe the purpose of the series
of changes you're sending.

14.4.1 157 patchbomb #3474

Not every project has exactly the same conventions for sending changes in email; the patchbomb extension
tries to accommodate a number of variations through command line options.

* You can write a subject for the introductory message on the command line using the hg -s option. This
takes one argument, the text of the subject to use.

+ To change the email address from which the messages originate, use the hg —f option. This takes one
argument, the email address to use.

+ The default behavior is to send unified diffs (see Section 12.4 for a description of the format), one
per message. You can send a binary bundle instead with the hg -b option.

Unified diffs are normally prefaced with a metadata header. You can omit this, and send unadorned
diffs, with the hg --plain option.

Diffs are normally sent ‘inline’ , in the same body part as the description of a patch. This makes
it easiest for the largest number of readers to quote and respond to parts of a diff, as some mail
clients will only quote the first MIME body part in a message. If you'd prefer to send the description
and the diff in separate body parts, use the hg —-a option.

+ Instead of sending mail messages, you can write them to an mbox-format mail folder using the hg -m
option. That option takes one argument, the name of the file to write to.

Ed. 1

Mercurial YIS
174 / 189

If you would like to add a diffstat-format summary to each patch, and one to the introductory message,
use the hg —-d option. The diffstat command displays a table containing the name of each file patched,
the number of lines affected, and a histogram showing how much each file is modified. This gives

readers a qualitative glance at how complex a patch is.

Ed. 1

Mercurial FUEIETE /
175 189

Appendix A

T4 %] Mercurial

A common way to test the waters with a new revision control tool is to experiment with switching an
existing project, rather than starting a new project from scratch.

In this appendix, we discuss how to import a project's history into Mercurial, and what to look out for
if you are used to a different revision control system.

Al RECRAERN AL FAT L

Mercurial ships with an extension named convert, which can import project history from most popular
revision control systems. At the time this book was written, it could import history from the following
systems:

Subversion
CVS

git

Darcs
Bazaar
Monotone
GNU Arch

Mercurial

(To see why Mercurial itself is supported as a source, see Section A.1.3.)
fRAT DUE AT, G /ner c SUSEE XA R ©

[extensions |
convert =

This will make a hg convert command available. The command is easy to use. For instance, this command
will import the Subversion history for the Nose unit testing framework into Mercurial.

$ hg convert http://python-nose.googlecode.com/svn/trunk

Ed. 1

Mercurial FUEIETE /
176 189

The convert extension operates incrementally. In other words, after you have run hg convert once, running
it again will import any new revisions committed after the first run began. Incremental conversion will
only work if you run hg convert in the same Mercurial repository that you originally used, because the
convert extension saves some private metadata in a non-revision-controlled file named .hg/shamap inside
the target repository.

When you want to start making changes using Mercurial, it's best to clone the tree in which you are doing
your conversions, and leave the original tree for future incremental conversions. This is the safest
way to let you pull and merge future commits from the source revision control system into your newly
active Mercurial project.

A1.1 2R Z A9

The hg convert command given above converts only the history of the trunk branch of the Subversion
repository. If we instead use the URL http://python-nose.googlecode.com/svn, Mercurial will automatically
detect the trunk, tags and branches layout that Subversion projects usually use, and it will import each
as a separate Mercurial branch.

By default, each Subversion branch imported into Mercurial is given a branch name. After the conversion
completes, you can get a list of the active branch names in the Mercurial repository using hg branches
-a. If you would prefer to import the Subversion branches without names, pass the —--config convert.hg-
.usebranchnames=false option to hg convert.

Once you have converted your tree, if you want to follow the usual Mercurial practice of working in a
tree that contains a single branch, you can clone that single branch using hg clone -r mybranchname.

A.l.2 BRHA P ZAR

Some revision control tools save only short usernames with commits, and these can be difficult to
interpret. The norm with Mercurial is to save a committer's name and email address, which is much more
useful for talking to them after the fact.

If you are converting a tree from a revision control system that uses short names, you can map those
names to longer equivalents by passing a ——authors option to hg convert. This option accepts a file name
that should contain entries of the following form.

arist = Aristotle <aristotlee@ephil.example.gr>
soc = Socrates <socrates@phil.example.gr>

Whenever convert encounters a commit with the username arist in the source repository, it will use the
name Aristotle <aristotle@phil.example.gr> in the converted Mercurial revision. If no match is found
for a name, it is used verbatim.

A.1.3 #H®HE FM

Not all projects have pristine history. There may be a directory that should never have been checked
in, a file that is too big, or a whole hierarchy that needs to be refactored.

The convert extension supports the idea of a ‘file map that can reorganize the files and directories
in a project as it imports the project's history. This is useful not only when importing history from
other revision control systems, but also to prune or refactor a Mercurial tree.

To specify a file map, use the ——filemap option and supply a file name. A file map contains lines of
the following forms.

This is a comment.
Empty lines are ignored.

Ed. 1

Mercurial FUEIETE /
177 189

include path/to/file
exclude path/to/file

rename from/some/path to/some/other/place

The include directive causes a file, or all files under a directory, to be included in the destination
repository. This also excludes all other files and dirs not explicitely included. The exclude directive
causes files or directories to be omitted, and others not explicitly mentioned to be included.

To move a file or directory from one location to another, use the rename directive. If you need to move
a Tile or directory from a subdirectory into the root of the repository, use . as the second argument
to the rename directive.

A.1.4 7X3% Subversion #8933 4E

You will often need several attempts before you hit the perfect combination of user map, file map, and
other conversion parameters. Converting a Subversion repository over an access protocol like ssh or
http can proceed thousands of times more slowly than Mercurial is capable of actually operating, due to
network delays. This can make tuning that perfect conversion recipe very painful.

The svnsync command can greatly speed up the conversion of a Subversion repository. It is a read-only
mirroring program for Subversion repositories. The idea is that you create a local mirror of your
Subversion tree, then convert the mirror into a Mercurial repository.

Suppose we want to convert the Subversion repository for the popular Memcached project into a Mercurial
tree. First, we create a local Subversion repository.

$ svnadmin create memcached-mirror

Next, we set up a Subversion hook that svnsync needs.

$ echo '#!/bin/sh' > memcached-mirror/hooks/pre-revprop-change
$ chmod +x memcached-mirror/hooks/pre-revprop-change

We then initialize svnsync in this repository.

$ svnsync --init file://‘pwd‘/memcached-mirror \
http://code.sixapart.com/svn/memcached

Our next step is to begin the svnsync mirroring process.

$ svnsync sync file:// pwd‘/memcached-mirror

Finally, we import the history of our local Subversion mirror into Mercurial.

$ hg convert memcached-mirror

We can use this process incrementally if the Subversion repository is still in use. We run svnsync to
pull new changes into our mirror, then hg convert to import them into our Mercurial tree.

There are two advantages to doing a two-stage import with svnsync. The first is that it uses more
efficient Subversion network syncing code than hg convert, so it transfers less data over the network.
The second is that the import from a local Subversion tree is so fast that you can tweak your conversion
setup repeatedly without having to sit through a painfully slow network-based conversion process each
time.

http://svn.collab.net/repos/svn/trunk/notes/svnsync.txt

Ed. 1

Mercurial FUEIETE /
178 189

A.2)\ Subversion it #%

Subversion is currently the most popular open source revision control system. Although there are many
differences between Mercurial and Subversion, making the transition from Subversion to Mercurial is not
particularly difficult. The two have similar command sets and generally uniform interfaces.

A2.1 HEEF

The fundamental difference between Subversion and Mercurial is of course that Subversion is centralized,
while Mercurial is distributed. Since Mercurial stores all of a project's history on your local drive, it
only needs to perform a network access when you want to explicitly communicate with another repository.
In contrast, Subversion stores very little information locally, and the client must thus contact its
server for many common operations.

Subversion more or less gets away without a well-defined notion of a branch: which portion of a server's
namespace qualifies as a branch is a matter of convention, with the software providing no enforcement.
Mercurial treats a repository as the unit of branch management.

A.2.1.1 4R

Since Subversion doesn't know what parts of its namespace are really branches, it treats most commands
as requests to operate at and below whatever directory you are currently visiting. For instance, if you
run svn log, you'll get the history of whatever part of the tree you're looking at, not the tree as a
whole.

Mercurial's commands behave differently, by defaulting to operating over an entire repository. Run hg
log and it will tell you the history of the entire tree, no matter what part of the working directory
you're visiting at the time. If you want the history of just a particular file or directory, simply
supply it by name, e.g. hg log src.

From my own experience, this difference in default behaviors is probably the most likely to trip you up
if you have to switch back and forth frequently between the two tools.

A2.1.2 ZRApP#ESRA

With Subversion, it is normal (though slightly frowned upon) for multiple people to collaborate in a
single branch. If Alice and Bob are working together, and Alice commits some changes to their shared
branch, Bob must update his client's view of the branch before he can commit. Since at this time he
has no permanent record of the changes he has made, he can corrupt or lose his modifications during and
after his update.

Mercurial encourages a commit—-then-merge model instead. Bob commits his changes locally before pulling
changes from, or pushing them to, the server that he shares with Alice. If Alice pushed her changes
before Bob tries to push his, he will not be able to push his changes until he pulls hers, merges with
them, and commits the result of the merge. If he makes a mistake during the merge, he still has the
option of reverting to the commit that recorded his changes.

It is worth emphasizing that these are the common ways of working with these tools. Subversion supports
a safer work—-in-your-own-branch model, but it is cumbersome enough in practice to not be widely used.
Mercurial can support the less safe mode of allowing changes to be pulled in and merged on top of
uncommitted edits, but this is considered highly unusual.

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
179 / 189

A.2.1.3 BRI RBEK

A Subversion svn commit command immediately publishes changes to a server, where they can be seen by
everyone who has read access.

With Mercurial, commits are always local, and must be published via a hg push command afterwards.

Each approach has its advantages and disadvantages. The Subversion model means that changes are published,
and hence reviewable and usable, immediately. On the other hand, this means that a user must have commit
access to a repository in order to use the software in a normal way, and commit access is not lightly
given out by most open source projects.

The Mercurial approach allows anyone who can clone a repository to commit changes without the need for
someone else's permission, and they can then publish their changes and continue to participate however
they see fit. The distinction between committing and pushing does open up the possibility of someone
committing changes to their laptop and walking away for a few days having forgotten to push them, which
in rare cases might leave collaborators temporarily stuck.

A.2.2 A E

Subversion Mercurial H1E

svn add hg add

svn blame hg annotate

svn cat hg cat

svn checkout hg clone

svn cleanup n/a NEEEH

svn commit hg commit; hg push X JGHH hg push £
svn copy hg clone AFEFFN T

svn copy hg copy BRI HFE H R
svn delete (svn remove) hg remove

svn diff hg diff

svn export hg archive

svn help hg help

svn import hg addremove:; hg commit

svn info hg parents B ERICRE R
svn info hg showconfig paths.parent EREHER URL

svn list hg manifest

svn log hg log

svn merge hg merge

svn mkdir n/a Mercurial AEREEHF
svn move (svn rename) hg rename

svn resolved hg resolve —m

svn revert hg revert

svn status hg status

svn update hg pull -u

Table A.1: Subversion #5245 Mercurial XfRE3E

A3 HFERT MO

Under some revision control systems, printing a diff for a single committed revision can be painful. For
instance, with Subversion, to see what changed in revision 104654, you must type svn diff -r104653:104654.

Ed. 1
Mercurial YIS
180 / 189

Mercurial eliminates the need to type the revision ID twice in this common case. For a plain diff, hg
export 104654. For a log message followed by a diff, hg log -r104654 -p.

When you run hg status without any arguments, it prints the status of the entire tree, with paths
relative to the root of the repository. This makes it tricky to copy a file name from the output of hg
status into the command line. If you supply a file or directory name to hg status, it will print paths
relative to your current location instead. So to get tree-wide status from hg status, with paths that
are relative to your current directory and not the root of the repository, feed the output of hg root
into hg status. You can easily do this as follows on a Unix-like system:

$ hg status “hg root®

Ed. 1

Mercurial fﬂﬁifﬁﬁﬁ
181 / 189

Appendix B

Mercurial FA | %%

B.1 MQ 44 %%

For an overview of the commands provided by MQ, use the command hg help mq.

B.1.1 qapplied— 2 =& & AT

The qapplied command prints the current stack of applied patches. Patches are printed in oldest-to-newest
order, so the last patch in the list is the ‘top’ patch.

B.1.2 qcommit—34% & PR 7| P 8915 2K

The qcommit command commits any outstanding changes in the .hg/patches repository. This command only
works if the .hg/patches directory is a repository, i.e. you created the directory using hg qinit -c or
ran hg init in the directory after running qinit.

This command is shorthand for hg commit --—cwd .hg/patches.

B.1.3 qdelete— M LHF series FM 4T

The qdelete command removes the entry for a patch from the series file in the .hg/patches directory. It
does not pop the patch if the patch is already applied. By default, it does not delete the patch file;
use the —-f option to do that.

iUk

—-f: Delete the patch file.

B.1.4 qdiff— R T:#FH AT 9 £7F

The qdiff command prints a diff of the topmost applied patch. It is equivalent to hg diff -r-2:-1.

B.1.5 qfold—3§ €& A 694k T LB IR A&

The hg qfinish command converts the specified applied patches into permanent changes by moving them out
of MQ's control so that they will be treated as normal repository history.

Ed. 1

Mercurial FUEIETE /
182 189

B.1.6 qfold—#4 444 T&H(& I)k—"N
The qfold command merges multiple patches into the topmost applied patch, so that the topmost applied

patch makes the union of all of the changes in the patches in question.

The patches to fold must not be applied; qfold will exit with an error if any is. The order in which
patches are folded is significant; hg qfold a b means ‘apply the current topmost patch, followed by a,
followed by b’

The comments from the folded patches are appended to the comments of the destination patch, with each
block of comments separated by three asterisk (‘*’) characters. Use the -e option to edit the commit
message for the combined patch/changeset after the folding has completed.

Uik

e JUET QIR T R s s (5 BN T Ui -
-1 (SRR RESCIFRI N BAE DD BN TR 3 (5 AN T i -

-m: Use the given text as the new commit message and patch description for the folded patch.

B.1.7 qheader— Z & #h T k3R Kbt

The gheader command prints the header, or description, of a patch. By default, it prints the header of
the topmost applied patch. Given an argument, it prints the header of the named patch.

B.1.8 qimport—¥ % =% 4T S AP 7|

The gimport command adds an entry for an external patch to the series file, and copies the patch into
the .hg/patches directory. It adds the entry immediately after the topmost applied patch, but does not
push the patch.

If the .hg/patches directory is a repository, qimport automatically does an hg add of the imported patch.

B.1.9 qinit—#4{£A MQ & ErRRAE

The qinit command prepares a repository to work with MQ. It creates a directory called .hg/patches.

1T :

—-c: Create .hg/patches as a repository in its own right. Also creates a .hgignore file that will
ignore the status file.

When the .hg/patches directory is a repository, the gimport and qnew commands automatically hg add new
patches.

B.1.10 qnew— &l #H AT

The gnew command creates a new patch. It takes one mandatory argument, the name to use for the patch
file. The newly created patch is created empty by default. It is added to the series file after the
current topmost applied patch, and is immediately pushed on top of that patch.

If gnew finds modified files in the working directory, it will refuse to create a new patch unless the
—-f option is used (see below). This behavior allows you to qrefresh your topmost applied patch before
you apply a new patch on top of it.

PRI :

Ed. 1

Mercurial FUEIETE /
183 189

-f: Create a new patch if the contents of the working directory are modified. Any outstanding
modifications are added to the newly created patch, so after this command completes, the working
directory will no longer be modified.

+ -m: Use the given text as the commit message. This text will be stored at the beginning of the patch
file, before the patch data.

B.1.11 qnext— &7 F AT 894 R

The gnext command prints the name name of the next patch in the series file after the topmost applied
patch. This patch will become the topmost applied patch if you run gpush.

B.1.12 qpop— M| M3f AR ARG 4 T
The gpop command removes applied patches from the top of the stack of applied patches. By default, it

removes only one patch.

This command removes the changesets that represent the popped patches from the repository, and updates
the working directory to undo the effects of the patches.

This command takes an optional argument, which it uses as the name or index of the patch to pop to. If
given a name, it will pop patches until the named patch is the topmost applied patch. If given a number,
qpop treats the number as an index into the entries in the series file, counting from zero (empty lines
and lines containing only comments do not count). It pops patches until the patch identified by the
given index is the topmost applied patch.

The gpop command does not read or write patches or the series file. It is thus safe to gpop a patch
that you have removed from the series file, or a patch that you have renamed or deleted entirely. In
the latter two cases, use the name of the patch as it was when you applied it.

By default, the gpop command will not pop any patches if the working directory has been modified. You can
override this behavior using the —-f option, which reverts all modifications in the working directory.

PRI :

-a: Pop all applied patches. This returns the repository to its state before you applied any patches.
-f: Forcibly revert any modifications to the working directory when popping.

-n: Pop a patch from the named queue.

The gpop command removes one line from the end of the status file for each patch that it pops.

B.1.13 qprev— & 7 EAFNT 892

The gprev command prints the name of the patch in the series file that comes before the topmost applied
patch. This will become the topmost applied patch if you run qpop.

B.1.14 qpush—3¥mfh T]34

The gpush command adds patches onto the applied stack. By default, it adds only one patch.

This command creates a new changeset to represent each applied patch, and updates the working directory
to apply the effects of the patches.

The default data used when creating a changeset are as follows:

Ed. 1

Mercurial FUEIETE /
184 189

The commit date and time zone are the current date and time zone. Because these data are used to
compute the identity of a changeset, this means that if you qpop a patch and qpush it again, the
changeset that you push will have a different identity than the changeset you popped.

+ The author is the same as the default used by the hg commit command.

+ The commit message is any text from the patch file that comes before the first diff header. If there
is no such text, a default commit message is used that identifies the name of the patch.

If a patch contains a Mercurial patch header, the information in the patch header overrides these
defaults.

PRI :

+ —a: Push all unapplied patches from the series file until there are none left to push.
+ —1: Add the name of the patch to the end of the commit message.

+ —-m: If a patch fails to apply cleanly, use the entry for the patch in another saved queue to compute
the parameters for a three-way merge, and perform a three-way merge using the normal Mercurial merge
machinery. Use the resolution of the merge as the new patch content.

-n: Use the named queue if merging while pushing.

The gqpush command reads, but does not modify, the series file. It appends one line to the hg status file
for each patch that it pushes.

B.1.15 qrefresh— & #HJm#AH G4 T

The gqrefresh command updates the topmost applied patch. It modifies the patch, removes the old changeset
that represented the patch, and creates a new changeset to represent the modified patch.

The qrefresh command looks for the following modifications:

Changes to the commit message, i.e. the text before the first diff header in the patch file, are
reflected in the new changeset that represents the patch.

Modifications to tracked files in the working directory are added to the patch.

+ Changes to the files tracked using hg add, hg copy, hg remove, or hg rename. Added files and copy
and rename destinations are added to the patch, while removed files and rename sources are removed.

Even if qrefresh detects no changes, it still recreates the changeset that represents the patch. This
causes the identity of the changeset to differ from the previous changeset that identified the patch.

EII -
-e: Modify the commit and patch description, using the preferred text editor.
-m: Modify the commit message and patch description, using the given text.

-1: Modify the commit message and patch description, using text from the given file.

B.1.16 qrename— & %4+ T

The qrename command renames a patch, and changes the entry for the patch in the series file.

With a single argument, qrename renames the topmost applied patch. With two arguments, it renames its
first argument to its second.

Ed. 1

Mercurial FUEIETE /
185 189

B.1.17 gqseries— % T4 T 57|

The qgseries command prints the entire patch series from the series file. It prints only patch names,
not empty lines or comments. It prints in order from first to be applied to last.

B.1.18 qtop— S ZAT4+ T 69 % AR

The qtop prints the name of the topmost currently applied patch.

B.1.19 qunapplied— & 7% K& M7 T

The qunapplied command prints the names of patches from the series file that are not yet applied. It
prints them in order from the next patch that will be pushed to the last.

B.1.20 hg strip— MK — R AR LG 4

The hg strip command removes a revision, and all of its descendants, from the repository. It undoes the
effects of the removed revisions from the repository, and updates the working directory to the first
parent of the removed revision.

The hg strip command saves a backup of the removed changesets in a bundle, so that they can be reapplied
if removed in error.

PRI :

-b: Save unrelated changesets that are intermixed with the stripped changesets in the backup bundle.
-f: If a branch has multiple heads, remove all heads.

-n: Do not save a backup bundle.

B.2 MQ X H4hH

B.2.1 JFH|TAHF

The series file contains a list of the names of all patches that MQ can apply. It is represented as a
list of names, with one name saved per line. Leading and trailing white space in each line are ignored.

Lines may contain comments. A comment begins with the ‘# character, and extends to the end of the
line. Empty lines, and lines that contain only comments, are ignored.

You will often need to edit the series file by hand, hence the support for comments and empty lines
noted above. For example, you can comment out a patch temporarily, and qpush will skip over that patch
when applying patches. You can also change the order in which patches are applied by reordering their
entries in the series file.

Placing the series file under revision control is also supported: it is a good idea to place all of the
patches that it refers to under revision control, as well. If you create a patch directory using the -c
option to ginit, this will be done for you automatically.

B.2.2 IREH

The status file contains the names and changeset hashes of all patches that MQ currently has applied.
Unlike the series file, this file is not intended for editing. You should not place this file under
revision control, or modify it in any way. It is used by MQ strictly for internal book-keeping.

Ed. 1

Mercurial FUEIETE /
186 189

Appendix C

M AKX AL 22 % Mercurial

C.1 % Unix &%

IARARFESE Unix REY, FHARBHH Python (2.3 HH), MIRMIEZLIE Mercurial BIRAES T o

1. kk http://www.selenic.com/mercurial/download Wiiﬁﬁﬁ%ﬁﬁﬁﬂﬁfﬁﬁ% °
2. .

gzip -dc mercurial -MYVERSION.tar.gz | tar xf -

8. HEAJRICHS BSR, PUTZEREUR < X B8 Mercurial, ZEREIREIKHER ©

cd mercurial —~-MYVERSION
python setup.py install --force --home=$HOME

ZRSEMA, Mercurial BUALTHHERH bin TH% o REICFHX N H FIIAZNREY AT PUT SCFER B E o

YR BEFE B BEASEAS & PYTHONPATH, LUF Mercurial AIHUTSCHFBEHE] Mercurial 4 o filf, 7EFRAVEICAERF, &7
/home/bos/1ib/python o IRFEE(H HAIEKIZMKE T Python AUMIE X, XRABEZHHIFK - WRIRAHIE, FHEE LHAY-
mercurial HIRHINBRZEENE -

C.2 Windows A%,

E\vindowsztggj@%ﬂf&% Mercurial FFELFTHE, MAZHEAE R, DUERBWC - IR IRE—" WHAFP | #
Mercurial °

If you are intent on building Mercurial from source on Windows, follow the ‘hard way directions
on the Mercurial wiki at http://www.selenic.com/mercurial/wiki/index.cgi/WindowsInstall, and expect the
process to involve a lot of fiddly work.

http://www.selenic.com/mercurial/download
http://www.selenic.com/mercurial/wiki/index.cgi/WindowsInstall

Ed. 1

Mercurial FUEIETE /
187 189

Appendix D

2 IR X

BrA 1.0, 1999 £ 6 A 8 H o

D.1 Requirements on both unmodified and modified versions

The Open Publication works may be reproduced and distributed in whole or in part, in any medium physical
or electronic, provided that the terms of this license are adhered to, and that this 1license or
an incorporation of it by reference (with any options elected by the author(s) and/or publisher) is
displayed in the reproduction.

Proper form for an incorporation by reference is as follows:

Copyright (c) year by author's name or designee. This material may be distributed only subject
to the terms and conditions set forth in the Open Publication License, vx.y or later (the
latest version is presently available at http://www.opencontent.org/openpub/) .

The reference must be immediately followed with any options elected by the author(s) and/or publisher
of the document (see Section D.6).
Commercial redistribution of Open Publication-licensed material is permitted.

Any publication in standard (paper) book form shall require the citation of the original publisher and
author. The publisher and author's names shall appear on all outer surfaces of the book. On all outer
surfaces of the book the original publisher's name shall be as large as the title of the work and cited
as possessive with respect to the title.

D.2 Copyright

The copyright to each Open Publication is owned by its author(s) or designee.

D.3 Scope of license

The following license terms apply to all Open Publication works, unless otherwise explicitly stated in
the document.

Mere aggregation of Open Publication works or a portion of an Open Publication work with other works or
programs on the same media shall not cause this license to apply to those other works. The aggregate

http://www.opencontent.org/openpub/

Ed. 1

Mercurial FUEIETE /
188 189

work shall contain a notice specifying the inclusion of the Open Publication material and appropriate
copyright notice.

Severability. If any part of this license is found to be unenforceable in any jurisdiction, the remaining
portions of the license remain in force.

No warranty. Open Publication works are licensed and provided ‘as is’ without warranty of any kind,
express or implied, including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose or a warranty of non—-infringement.

D.4 Requirements on modified works

All modified versions of documents covered by this license, including translations, anthologies, compi-
lations and partial documents, must meet the following requirements:

1. The modified version must be labeled as such.
2. The person making the modifications must be identified and the modifications dated.

3. Acknowledgement of the original author and publisher if applicable must be retained according to
normal academic citation practices.

4. The location of the original unmodified document must be identified.

5. The original author's (or authors') name(s) may not be used to assert or imply endorsement of the
resulting document without the original author's (or authors') permission.

D.5 Good-practice recommendations

In addition to the requirements of this license, it is requested from and strongly recommended of
redistributors that:

1. If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email notification
to the authors of your intent to redistribute at least thirty days before your manuscript or media
freeze, to give the authors time to provide updated documents. This notification should describe
modifications, if any, made to the document.

2. All substantive modifications (including deletions) be either clearly marked up in the document or
else described in an attachment to the document.

3. Finally, while it is not mandatory under this license, it is considered good form to offer a free
copy of any hardcopy and CD-ROM expression of an Open Publication-licensed work to its author(s).

D.6 License options

The author(s) and/or publisher of an Open Publication-licensed document may elect certain options by
appending language to the reference to or copy of the license. These options are considered part of the
license instance and must be included with the license (or its incorporation by reference) in derived
works.

1. To prohibit distribution of substantively modified versions without the explicit permission of the
author (s) . ‘Substantive modification’ 1is defined as a change to the semantic content of the
document, and excludes mere changes in format or typographical corrections.

Ed. 1
Mercurial YIS

189 / 189

2. To accomplish this, add the phrase ‘Distribution of substantively modified versions of this document
is prohibited without the explicit permission of the copyright holder.’ to the license reference
or copy.

3. To prohibit any publication of this work or derivative works in whole or in part in standard
(paper) book form for commercial purposes is prohibited unless prior permission is obtained from
the copyright holder.

4. To accomplish this, add the phrase ‘Distribution of the work or derivative of the work in any
standard (paper) book form is prohibited unless prior permission is obtained from the copyright
holder.’ +to the license reference or copy.

	写在前面
	为什么使用版本控制? 为什么使用 Mercurial?
	为什么使用版本控制?
	版本控制的别名

	本书的例子
	版本控制的发展趋势
	分布版本控制的优点
	开源项目的优点
	分支不是问题

	商业项目的优点

	为什么选择 Mercurial?
	Mercurial 与其它工具的比较
	Subversion
	Git
	CVS
	商业工具
	选择版本控制工具

	从其它工具切换到 Mercurial
	版本控制简史

	Mercurial 教程: 基础知识
	安装 Mercurial
	Windows
	Mac OS X
	Linux
	Solaris

	开始
	内置帮助

	使用版本库
	创建版本库的工作副本
	什么是版本库?

	回溯历史
	变更集，版本，与其它用户交互
	查看指定版本
	更详细的信息

	命令选项
	创建和复审变更
	在新修改集中记录修改
	配置用户名称
	创建 Mercurial 的配置文件
	选择用户名称

	写提交日志
	写高质量的提交日志
	终止提交
	欣赏我们的成果

	分享修改
	从其它版本库取得变更
	更新工作目录
	发布修改到其它版本库
	默认位置
	通过网络共享修改

	开始新项目

	Mercurial 教程: 合并工作
	合并的流程
	顶点修改集
	执行合并
	提交合并结果

	合并有冲突的变更
	使用图形合并工具
	合并实例

	简化拉-合并-提交程序
	重命名，复制与合并

	Mercurial 内幕
	Mercurial 的历史记录
	跟踪单一文件的历史
	管理跟踪的文件
	记录修改集信息
	版本之间的关系

	安全，高效的存储
	高效存储
	安全操作
	快速检索
	旁白: 视频压缩的影响

	鉴别和强完整性

	修订历史，分支与合并
	工作目录
	当你提交时发生的事情
	创建新顶点
	合并修改
	合并与重命名

	其它有趣的设计特性
	智能压缩
	网络重新压缩

	读写顺序与原子性
	并发访问
	安全的目录状态访问

	避免查找
	目录状态的其它内容

	Mercurial 的日常使用
	告诉 Mercurial 要跟踪哪些文件
	明确与隐含文件命名
	Mercurial 只跟踪文件，不跟踪目录

	如何停止跟踪文件
	删除文件不影响历史
	丢失的文件
	旁白: 为什么要明确告诉 Mercurial 删除文件?
	有用的技巧—一个步骤添加和删除文件

	拷贝文件
	合并后拷贝文件的内容
	为什么要传递变更?
	如何禁止变更传递?
	命令hg copy的行为

	重命名文件
	重命名文件与合并变更
	分歧的更名与合并
	收敛重命名与合并
	其它名称相关的信息

	从错误恢复
	合并的技巧
	文件的解决状态
	解决文件合并

	差异的更多技巧
	哪些文件需要管理，那些不需要
	备份与镜像

	团体协作
	Mercurial 的 web 接口
	协作模型
	要牢记的因素
	无政府状态
	单一中央版本库
	托管的中央版本库
	使用多个分支工作
	特性分支
	发布列车
	Linux 内核模型
	只读与共享写协作
	协作与分支管理

	共享的技术因素
	使用 hg serve 进行非正式共享
	要牢记的几件事

	使用 ssh 协议
	如何读写 ssh 路径
	为你的系统寻找 ssh 客户端
	产生密钥对
	使用认证代理
	正确配置服务器端
	通过 ssh 使用压缩

	使用 CGI 通过 HTTP 提供服务
	Web 服务器配置检查表
	基本 CGI 配置
	什么可能会出错?
	配置 lighttpd

	使用一个 CGI 脚本共享多个版本库
	明确指出要发布的版本库

	下载源代码档案包
	Web 配置选项
	针对单个版本库的选项
	命令 hg serve 的选项
	选择正确的 ~/.hgrc 文件增加到 web 条目

	全局配置
	让 Mercurial 更可信

	文件名称与模式匹配
	简单文件名称
	不提供文件名称的执行命令
	告诉你正在做什么
	使用模式标识文件
	外壳风格的 glob 模式
	千万小心！

	使用 re 模式的正则表达式匹配

	过滤文件
	始终忽略不需要的文件和目录
	大小写敏感性
	安全，可移植的版本库存储
	检测大小写冲突
	修正大小写冲突

	发布管理与分支开发
	给版本指定一个永久的名称
	在合并期间处理标签冲突
	标签与克隆
	当永久标签太多的时候

	修改流程—宏观与微观
	在版本库中管理分支
	不要重复劳动：在分支间合并
	版本库中的命名分支
	在版本库中处理多个命名分支
	分支名称与合并
	分支名称通常都很有用

	查找和修改错误
	销毁本地历史
	意外的提交
	回滚一个事务
	错误的抓取
	当完成推送后，回滚是无效的
	你只能回滚一次

	撤销错误的修改
	文件管理错误

	处理已经提交的修改
	恢复一个修改集
	恢复顶点修改集
	恢复非顶点的修改
	始终使用选项 --merge

	在恢复处理中获得更多控制
	hg backout 的内幕

	不该发生的修改
	撤销一个合并
	使用‘校验’修改来保护你自己
	处理敏感信息泄漏的方法

	查找问题的根源
	使用命令 hg bisect
	搜索后的清理

	有效查找问题的技巧
	给出一致的输入
	尽量自动
	检查你的结果
	谨防问题之间的冲突
	减少你的查找工作

	使用钩子处理版本库事件
	Mercurial 钩子概述
	钩子与安全性
	钩子以你的特权执行
	钩子不会传播
	钩子可以被覆盖
	确保关键钩子的执行

	使用钩子的简短指南
	每个事件执行多个操作
	控制处理的活动

	编写钩子
	选择钩子的执行方式
	钩子的参数
	钩子的返回值与活动控制
	编写外部钩子
	让 Mercurial 使用进程内钩子
	编写进程内钩子

	钩子样例
	编写有意义的提交日志
	检查行尾空格

	内置的钩子
	acl—版本库的访问控制
	配置 acl 钩子
	测试与问题处理

	bugzilla—与 Bugzilla 的集成
	配置 bugzilla 钩子
	提交者的名称与 Bugzilla 用户名称的映射
	配置增加到问题中的正文
	测试与问题处理

	notify—邮件通知
	配置 notify 钩子
	测试与问题处理

	编写钩子的信息
	进程内钩子的执行
	外部钩子的执行
	检查修改集来自何处
	修改集的来源
	修改集要到哪里—远程版本库的地址

	钩子参考
	changegroup—增加远程修改集之后
	commit—创建新修改集之后
	incoming—增加远程修改集之后
	outgoing—传播修改集之后
	prechangegroup—增加远程修改集之前
	precommit—提交修改集之前
	preoutgoing—传播修改集之前
	pretag—创建标签之前
	pretxnchangegroup—完成增加远程修改集之前
	pretxncommit—完成提交之前
	preupdate—更新或合并工作目录之前
	tag—创建标签之后
	update—更新或合并工作目录之后

	定制 Mercurial 的输出
	使用预定义的输出样式
	设置默认样式

	支持样式和模版的命令
	模版基础
	模版关键字
	转义序列
	通过过滤关键字来修改输出结果
	组合过滤器

	从模版到样式
	最简单的样式文件
	样式文件语法

	样式文件例子
	在样式文件中定位错误
	版本库的唯一标识
	每行列出一个文件
	模仿 Subversion 的输出

	使用 MQ 管理修改
	补丁的管理问题
	MQ 的历史
	A patchwork quilt
	从 patchwork quilt 到 MQ

	MQ 的巨大优势
	理解补丁
	开始使用 MQ
	创建新补丁
	刷新补丁
	堆叠和跟踪补丁
	操作补丁堆栈
	压入或弹出多个补丁
	安全的检查，然后覆盖它们
	同时处理多个补丁

	关于补丁的更多信息
	修剪计数
	应用补丁的策略
	补丁的一些特性
	当心毛刺
	处理拒绝

	补丁管理进阶
	删除不需要的补丁
	与持久版本的相互转换

	MQ 的性能
	当基础代码改变时，更新补丁的方法
	标识补丁
	其它需要了解的东西
	在版本库管理补丁
	MQ 支持补丁版本库
	需要注意的事情

	操作补丁的第三方工具
	操作补丁的好习惯
	MQ 手册
	管理‘琐碎的’补丁
	组合全部的补丁
	合并补丁的部分内容到其它补丁

	MQ 与 quilt 的区别

	MQ 的高级用法
	多个目标的问题
	工作不好的诱人方法

	有条件的应用补丁
	控制补丁的应用条件
	选择使用的条件
	MQ 应用补丁的规则
	修剪工作环境
	分类补丁系列
	维护补丁系列
	编写向后移植补丁的艺术

	使用 MQ 开发的技巧
	将补丁放到几个目录中
	察看补丁的历史

	使用扩展增加功能
	使用扩展 inotify 以提高性能
	使用扩展 extdiff 以扩展差异支持
	定义命令的别名

	使用扩展 transplant 以挑选修改
	使用扩展 patchbomb 通过 email 发送修改
	修改 patchbomb 的行为

	迁移到 Mercurial
	从其它版本控制系统导入历史
	转换多个分支
	映射用户名称
	清理目录树
	改进 Subversion 的转换性能

	从 Subversion 迁移
	哲学的差别
	命令作用域
	多用户操作与安全
	已发布的修改与本地修改

	快速参考

	新手需要了解的技巧

	Mercurial 队列参考
	MQ 命令参考
	qapplied—显示已应用的补丁
	qcommit—提交队列中的修改
	qdelete—从文件 series 中删除补丁
	qdiff—显示最新应用补丁的差异
	qfold—将已应用的补丁提交到版本库
	qfold—将多个补丁合并(‘折叠’)成一个
	qheader—显示补丁头部描述
	qimport—将第三方补丁导入队列
	qinit—为使用 MQ 配置版本库
	qnew—创建新补丁
	qnext—显示下个补丁的名称
	qpop—删除堆栈顶部的补丁
	qprev—显示上个补丁的名称
	qpush—增加补丁到堆栈
	qrefresh—更新最新的补丁
	qrename—改名补丁
	qseries—显示补丁序列
	qtop—显示当前补丁的名称
	qunapplied—显示尚未应用的补丁
	hg strip—删除一个版本及其后继

	MQ 文件参考
	序列文件
	状态文件

	从源代码安装 Mercurial
	类 Unix 系统
	Windows 系统

	开放出版协议
	Requirements on both unmodified and modified versions
	Copyright
	Scope of license
	Requirements on modified works
	Good-practice recommendations
	License options

