Mercurial 权威指南
Table of Contents
	序言
		技术背景
	谢谢你支持 Mercurial
	致谢
	本书的约定
	使用样例代码
	Safari® 在线书库
	联系我们

	1. 写在前面
		为什么使用版本控制? 为什么使用 Mercurial?
		为什么使用版本控制?
	版本控制的别名

	本书的例子
	版本控制的发展趋势
	分布版本控制的优点
		开源项目的优点
	商业项目的优点

	为什么选择 Mercurial?
	Mercurial 与其它工具的比较
		Subversion
	Git
	CVS
	商业工具
	选择版本控制工具

	从其它工具切换到 Mercurial
	版本控制简史

	2. Mercurial 教程: 基础知识
		安装 Mercurial
		Windows
	Mac OS X
	Linux
	Solaris

	开始
		内置帮助

	使用版本库
		创建版本库的工作副本
	什么是版本库?

	回溯历史
		变更集，版本，与其它用户交互
	查看指定版本
	更详细的信息

	命令选项
	创建和复审变更
	在新修改集中记录修改
		配置用户名称
	写提交日志
	写高质量的提交日志
	终止提交
	欣赏我们的成果

	分享修改
		从其它版本库取得变更
	更新工作目录
	发布修改到其它版本库
	默认位置
	通过网络共享修改

	开始新项目

	3. Mercurial 教程: 合并工作
		合并的流程
		顶点修改集
	执行合并
	提交合并结果

	合并有冲突的变更
		使用图形合并工具
	合并实例

	简化拉-合并-提交程序
	重命名，复制与合并

	4. Mercurial 内幕
		Mercurial 的历史记录
		跟踪单一文件的历史
	管理跟踪的文件
	记录修改集信息
	版本之间的关系

	安全，高效的存储
		高效存储
	安全操作
	快速检索
	鉴别和强完整性

	修订历史，分支与合并
	工作目录
		当你提交时发生的事情
	创建新顶点
	合并修改
	合并与重命名

	其它有趣的设计特性
		智能压缩
	读写顺序与原子性
	并发访问
	避免查找
	目录状态的其它内容

	5. Mercurial 的日常使用
		告诉 Mercurial 要跟踪哪些文件
		明确与隐含文件命名
	Mercurial 只跟踪文件，不跟踪目录

	如何停止跟踪文件
		删除文件不影响历史
	丢失的文件
	旁白: 为什么要明确告诉 Mercurial 删除文件?
	有用的技巧—一个步骤添加和删除文件

	拷贝文件
		合并后拷贝文件的内容
	为什么要传递变更?
	如何禁止变更传递?
	命令hg copy的行为

	重命名文件
		重命名文件与合并变更
	分歧的更名与合并
	收敛重命名与合并
	其它名称相关的信息

	从错误恢复
	合并的技巧
		文件的解决状态
	解决文件合并

	差异的更多技巧
	哪些文件需要管理，那些不需要
	备份与镜像

	6. 团体协作
		Mercurial 的 web 接口
	协作模型
		要牢记的因素
	无政府状态
	单一中央版本库
	托管的中央版本库
	使用多个分支工作
	特性分支
	发布列车
	Linux 内核模型
	只读与共享写协作
	协作与分支管理

	共享的技术因素
	使用 hg serve 进行非正式共享
		要牢记的几件事

	使用 ssh 协议
		如何读写 ssh 路径
	为你的系统寻找 ssh 客户端
	产生密钥对
	使用认证代理
	正确配置服务器端
	通过 ssh 使用压缩

	使用 CGI 通过 HTTP 提供服务
		Web 服务器配置检查表
	基本 CGI 配置
	使用一个 CGI 脚本共享多个版本库
	下载源代码档案包
	Web 配置选项

	全局配置
		让 Mercurial 更可信

	7. 文件名称与模式匹配
		简单文件名称
	不提供文件名称的执行命令
	告诉你正在做什么
	使用模式标识文件
		外壳风格的 glob 模式
	使用 re 模式的正则表达式匹配

	过滤文件
	始终忽略不需要的文件和目录
	大小写敏感性
		安全，可移植的版本库存储
	检测大小写冲突
	修正大小写冲突

	8. 发布管理与分支开发
		给版本指定一个永久的名称
		在合并期间处理标签冲突
	标签与克隆
	当永久标签太多的时候

	修改流程—宏观与微观
	在版本库中管理分支
	不要重复劳动：在分支间合并
	版本库中的命名分支
	在版本库中处理多个命名分支
	分支名称与合并
	分支名称通常都很有用

	9. 查找和修改错误
		销毁本地历史
		意外的提交
	回滚一个事务
	错误的抓取
	当完成推送后，回滚是无效的
	你只能回滚一次

	撤销错误的修改
		文件管理错误

	处理已经提交的修改
		恢复一个修改集
	恢复顶点修改集
	恢复非顶点的修改
	在恢复处理中获得更多控制
	hg backout 的内幕

	不该发生的修改
		撤销一个合并
	使用“校验”修改来保护你自己
	处理敏感信息泄漏的方法

	查找问题的根源
		使用命令 hg bisect
	搜索后的清理

	有效查找问题的技巧
		给出一致的输入
	尽量自动
	检查你的结果
	谨防问题之间的冲突
	减少你的查找工作

	10. 使用钩子处理版本库事件
		Mercurial 钩子概述
	钩子与安全性
		钩子以你的特权执行
	钩子不会传播
	钩子可以被覆盖
	确保关键钩子的执行

	使用钩子的简短指南
		每个事件执行多个操作
	控制处理的活动

	编写钩子
		选择钩子的执行方式
	钩子的参数
	钩子的返回值与活动控制
	编写外部钩子
	让 Mercurial 使用进程内钩子
	编写进程内钩子

	钩子样例
		编写有意义的提交日志
	检查行尾空格

	内置的钩子
		acl—版本库的访问控制
	bugzilla—与 Bugzilla 的集成
	notify—邮件通知

	编写钩子的信息
		进程内钩子的执行
	外部钩子的执行
	检查修改集来自何处

	钩子参考
		changegroup—增加远程修改集之后
	commit—创建新修改集之后
	incoming—增加远程修改集之后
	outgoing—传播修改集之后
	prechangegroup—增加远程修改集之前
	precommit—提交修改集之前
	preoutgoing—传播修改集之前
	pretag—创建标签之前
	pretxnchangegroup—完成增加远程修改集之前
	pretxncommit—完成提交之前
	preupdate—更新或合并工作目录之前
	tag—创建标签之后
	update—更新或合并工作目录之后

	11. 定制 Mercurial 的输出
		使用预定义的输出样式
		设置默认样式

	支持样式和模版的命令
	模版基础
	模版关键字
	转义序列
	通过过滤关键字来修改输出结果
		组合过滤器

	从模版到样式
		最简单的样式文件
	样式文件语法

	样式文件例子
		在样式文件中定位错误
	版本库的唯一标识
	每行列出一个文件
	模仿 Subversion 的输出

	12. 使用 MQ 管理修改
		补丁的管理问题
	MQ 的历史
		A patchwork quilt
	从 patchwork quilt 到 MQ

	MQ 的巨大优势
	理解补丁
	开始使用 MQ
		创建新补丁
	刷新补丁
	堆叠和跟踪补丁
	操作补丁堆栈
	压入或弹出多个补丁
	安全的检查，然后覆盖它们
	同时处理多个补丁

	关于补丁的更多信息
		修剪计数
	应用补丁的策略
	补丁的一些特性
	当心毛刺
	处理拒绝

	补丁管理进阶
		删除不需要的补丁
	与持久版本的相互转换

	MQ 的性能
	当基础代码改变时，更新补丁的方法
	标识补丁
	其它需要了解的东西
	在版本库管理补丁
		MQ 支持补丁版本库
	需要注意的事情

	操作补丁的第三方工具
	操作补丁的好习惯
	MQ 手册
		管理“琐碎的”补丁
	组合全部的补丁
	合并补丁的部分内容到其它补丁

	MQ 与 quilt 的区别

	13. MQ 的高级用法
		多个目标的问题
		工作不好的诱人方法

	有条件的应用补丁
	控制补丁的应用条件
	选择使用的条件
	MQ 应用补丁的规则
	修剪工作环境
	分类补丁系列
	维护补丁系列
		编写向后移植补丁的艺术

	使用 MQ 开发的技巧
		将补丁放到几个目录中
	察看补丁的历史

	14. 使用扩展增加功能
		使用扩展 inotify 以提高性能
	使用扩展 extdiff 以扩展差异支持
		定义命令的别名

	使用扩展 transplant 以挑选修改
	使用扩展 patchbomb 通过 email 发送修改
		修改 patchbomb 的行为

	A. 迁移到 Mercurial
		从其它版本控制系统导入历史
		转换多个分支
	映射用户名称
	清理目录树
	改进 Subversion 的转换性能

	从 Subversion 迁移
		哲学的差别
	快速参考

	新手需要了解的技巧

	B. Mercurial 队列参考
		MQ 命令参考
		qapplied—显示已应用的补丁
	qcommit—提交队列中的修改
	qdelete—从文件 series 中删除补丁
	qdiff—显示最新应用补丁的差异
	qfold—将已应用的补丁提交到版本库
	qfold—将多个补丁合并(“折叠”)成一个
	qheader—显示补丁头部描述
	qimport—将第三方补丁导入队列
	qinit—为使用 MQ 配置版本库
	qnew—创建新补丁
	qnext—显示下个补丁的名称
	qpop—删除堆栈顶部的补丁
	qprev—显示上个补丁的名称
	qpush—增加补丁到堆栈
	qrefresh—更新最新的补丁
	qrename—改名补丁
	qseries—显示补丁序列
	qtop—显示当前补丁的名称
	qunapplied—显示尚未应用的补丁
	hg strip—删除一个版本及其后继

	MQ 文件参考
		序列文件
	状态文件

	C. 从源代码安装 Mercurial
		类 Unix 系统
	Windows 系统

	D. 开放出版协议
		Requirements on both unmodified and modified versions
	Copyright
	Scope of license
	Requirements on modified works
	Good-practice recommendations
	License options

Mercurial 权威指南

编译自 a5365872734a (2011-03-17)

Bryan O'Sullivan

Copyright © 2006, 2007, 2008, 2009 Bryan O'Sullivan

序言

技术背景

数年之前，当我想解释为什么我相信分布式版本控制非常重要的时候，这个领域实在太新了，几乎没有公开的文献供人们参考。
虽然在那个时候，我已经在Mercurial的内核上花了一些时间，我转而写这本书是因为我发现这可能是帮助软件吸引更多用户，和让大家接受版本控制本质上就应该是分布式的最有效的方式，我把这本书在网上以自由许可的方式发布也是基于同样的原因：让大家都了解。
一本好的关于软件的书应该和讲故事类似：这是个什么东西？为什么需要它？它会怎样帮助我？我怎么使用它？本书中，我会为分布式版本控制回答这些问题，特别是Mercurial。

谢谢你支持 Mercurial

通过购买此书，你支持了开源和自由软件的持续发展和自由，特别是Mercurial。O'Reilly Media和我将本书的收入捐献给Software
Freedom Conservancy (http://www.softwarefreedom.org/)
,这个组织为Mercurial和其他一些有潜力和价值的开源软件项目提供了办公和法律支持。

致谢

没有Matt Mackall，Mercurial项目的开发者和领导的努力，这本书不可能存在。他得到了全球数以百计的志愿者的帮助。
我的孩子Cian和Ruairi总是站在我旁边帮我解决奇妙的疯狂小男孩游戏。我同样也要感谢我的前妻Shannon的帮助。
我的同事和朋友以各种方式提供了帮助和支持，这里的名单非常不全：Stephen Hahn, Karyn Ritter, Bonnie Corwin,
James Vasile, Matt Norwood, Eben Moglen, Bradley Kuhn, Robert Walsh, Jeremy
Fitzhardinge, Rachel Chalmers.
我以开放的方式完成了本书，当我完成各章的草稿后，就将其放在了网上。读者可以使用我开发的一个网络程序提交反馈。到我完成本书时，有100多人提交了评论。考虑到评论系统是在写作完成之前两个月才开放的，这是一个惊人的数字。
我特别希望认识以下人员，他们中有的人提交了超过总数三分之一的评论。我要感谢他们的关心和努力，提供了那么多详细的反馈。
Martin Geisler, Damien Cassou, Alexey Bakhirkin, Till Plewe, Dan Himes, Paul
Sargent, Gokberk Hamurcu, Matthijs van der Vleuten, Michael Chermside, John
Mulligan, Jordi Fita, Jon Parise.
我同样要感谢许多在书中找出错误和提供了有帮助的建议的人。
Jeremy W. Sherman, Brian Mearns, Vincent Furia, Iwan Luijks, Billy Edwards,
Andreas Sliwka, Paweł Sołyga, Eric Hanchrow, Steve Nicolai, Michał
Masłowski, Kevin Fitch, Johan Holmberg, Hal Wine, Volker Simonis, Thomas P
Jakobsen, Ted Stresen-Reuter, Stephen Rasku, Raphael Das Gupta, Ned
Batchelder, Lou Keeble, Li Linxiao, Kao Cardoso Félix, Joseph Wecker, Jon
Prescot, Jon Maken, John Yeary, Jason Harris, Geoffrey Zheng, Fredrik
Jonson, Ed Davies, David Zumbrunnen, David Mercer, David Cabana, Ben Karel,
Alan Franzoni, Yousry Abdallah, Whitney Young, Vinay Sajip, Tom Towle, Tim
Ottinger, Thomas Schraitle, Tero Saarni, Ted Mielczarek, Svetoslav
Agafonkin, Shaun Rowland, Rocco Rutte, Polo-Francois Poli, Philip Jenvey,
Petr Tesałék, Peter R. Annema, Paul Bonser, Olivier Scherler, Olivier
Fournier, Nick Parker, Nick Fabry, Nicholas Guarracino, Mike Driscoll, Mike
Coleman, Mietek Bák, Michael Maloney, László Nagy, Kent Johnson, Julio
Nobrega, Jord Fita, Jonathan March, Jonas Nockert, Jim Tittsler, Jeduan
Cornejo Legorreta, Jan Larres, James Murphy, Henri Wiechers, Hagen Möbius,
Gábor Farkas, Fabien Engels, Evert Rol, Evan Willms, Eduardo Felipe
Castegnaro, Dennis Decker Jensen, Deniz Dogan, David Smith, Daed Lee,
Christine Slotty, Charles Merriam, Guillaume Catto, Brian Dorsey, Bob
Nystrom, Benoit Boissinot, Avi Rosenschein, Andrew Watts, Andrew Donkin,
Alexey Rodriguez, Ahmed Chaudhary.

本书的约定

本书使用如下的印刷约定：
	斜体
	标识新术语，URL，电子邮件地址，文件名称与扩展名。

	等宽
	用于程序列表，以及段内引用的程序元素，例如变量、函数名称、数据库、数据类型、环境变量、声明和关键字。

	等宽粗体
	标识命令或者其它用户应该逐字输入的文本。

	等宽斜体
	标识应该被用户提供的值或者取决于上下文的值替换的文本。

Tip
此图标表示提示，建议或者一般的的注释。

Caution
此图标表示警告。

使用样例代码

本书的目的是帮助你完成工作。基本上，你可以将书中的代码用于你的程序或文档。无需取得我们的许可，除非你直接复制大量的代码。举例来说，在程序中使用几段书中的代码无需许可。出售或发布含有O'Reilly书中示例的CD-ROM则需经许可。引用本书中的叙述或示例代码来回答问题无需许可。将书中的大量代码合并到你的产品文档中则需经许可。
虽然我们并不要求在引用本书的时候做版权归属声明，但如果你这样做了，我们将非常感激。版权归属声明通常包含标题，作者，发行者和ISBN。例如：
“书名 某人著。 版权所有 2008 O’Reilly Media，Inc.，
978-0-596-xxxx-x。”
如果你觉得你对书中示例代码的使用超出了正常范围，或者不符合以上描述的许可，尽管用电子邮件跟我们联系：<permissions@oreilly.com>。

Safari® 在线书库

Note
如果你在喜欢的技术图书的封面上看见Safari® Books Online的图标，这表示你你可以通过O'Reilly Network Safari
Bookshelf在网上使用此书。

Safari提供了一个比电子书更好的解决方案。它是一所虚拟图书馆，你可以在上面轻松搜索上千种顶级的技术书籍，剪切和复制示例代码，下载章节，当你需要最准确、最新的信息时，让你更快地找到答案。可以通过下面链接免费试用http://my.safaribooksonline.com。

联系我们

关于本书的任何问题或评论请发邮件给出版商：
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707 829-0104 (fax)

我们将提供一个关于本书的主页，在那上面提供勘误表、示例以及其它附加信息。你可以从这里访问到它：
	http://www.oreilly.com/catalog/<catalog page>

Don’t forget to update the <url> attribute, too.
关于本书的任何技术问题或评论请发邮件给出版商：
	<bookquestions@oreilly.com>

如果想了解关于我们的图书、会议、资源中心以及O'Reilly Network的更多信息，可以浏览以下站点：
	http://www.oreilly.com

Chapter 1. 写在前面

为什么使用版本控制? 为什么使用 Mercurial?

版本控制是管理一些信息的多个版本的过程。它最简单的形式莫过于：每次你修改一个文件后都重新命名保存，文件名中包含一个数字，每次修改后这个数字都增加。这通常是许多人手工完成的。
然而，手工管理即使是一个文件的多个版本也是很容易出错的，所以很早就有软件工具来使这个过程自动化。最早的自动化软件管理工具的目标是帮助一个用户管理一个文件的版本。在过去的几十年里，版本控制工具的范围得到极大扩展；现在它们可以管理多个文件，帮助许多人一起工作。最新的版本控制工具可以支持上包含成数十万个文件，几千个人一起工作的项目。
分布式版本控制是最近才出现的，但是由于人们愿意探索新的疆域，目前这一新的领域已经得到了长足的发展
我写这本关于分布式版本控制的书是因为我相信这个领域应该有一个指南。我选择Mercurial是因为它是在这个领域中学习最容易上手的工具，并且它能够满足真实的，挑战性的环境的要求，而其他版本控制工具只能望而兴叹。
为什么使用版本控制?

为什么你或者你的团队可能需要在项目中使用自动化版本控制工具呢？有很多理由。
	因为它能记录你的项目的历史和演化，所以你不必再给每个变更都记录日志，谁做的；为什么他们这样做；什么时候做的；做了什么修改。

	当你和其他人一起工作的时候，版本控制工具让你合作的更容易。例如,当许多人或多或少的同时进行有可能冲突的修改的时候，软件可以帮助你确定和解决这些冲突。

	它能帮助你修正错误。如果你做了一个修改，但是后来发现这是个错误，你能恢复到一个或者多个文件以前的版本。实际上，一个相当好的版本控制工具甚至会帮助你找出什么什么是时候引入的这个问题（详细信息参考the section called “查找问题的根源”）。

	它能帮助你同时工作于项目的多个版本，并管理它们的差异。

大多数这些理由都是等效的—至少在理论上—不管你是一个人做项目还是和几百个人一起。
版本控制在在不同尺度上（“单个黑客”和“一个大项目组”）实践的一个关键问题是它的性价比怎么样。一个很难理解和使用的版本控制工具会让你的代价很高。
如果没有版本控制工具和过程，一个五百人的项目很快就可能就将自己压垮。在这种情况下，版本控制的代价基本上不用考虑，因为没有它，失败几乎是一定的。
另一方面，一个人的“快速编程”看起来并不适合使用版本控制工具，因为使用一个版本控制工具的代价就是整个项目的代价，对吧？
Mercurial的独特之处就是它同时支持这两种尺度的开发。你可以在几分钟之内学会基本的使用，因为代价很小，你可以很方便的在最小的项目上应用版本管理。它的简洁性意味着不会有很多艰深的概念和命令干扰你真正的工作。同时，Mercurial高性能和点对点的特性可以让你轻易的应对大的项目。
没有一个版本控制工具能拯救一个糟糕的项目，但是在项目中选择好的工具会大大的提高效率，正是工欲善其事，必先利其器。

版本控制的别名

版本控制是一个各自为政的领域，以至于有很多名称和缩略语，下面是你可能遇到的一些常用的术语：
	版本控制(RCS)

	软件配置管理(SCM)，或配置管理

	源代码管理

	源代码控制，或源控制

	版本控制(VCS)

有些人声称这些术语有不同的含义，但实际上它们的含义太重叠了，根本没有一致的，甚至有用的方式来区别它们。

本书的例子

本书采用了一种非同寻常的示例编程方法。每个例子都是“活的”—每一个示例都是一个shell脚本执行的实际结果，这个脚本执行了你看到的Mercurial命令。每次从源代码构建本书的映像时，所有的示例脚本都自动执行，然后将预期结果和实际执行结果比较。
这种方法的优点是每个例子都是永远精确的，它们是本书前面描述的Mercurial版本的实际运行结果。如果我更新了描述的Mercurial的版本，同时有些命令的输出变化了，创建就会失败。
这种方法也有小的缺点，就是你在示例中看见的日期和时间被“压缩”了，看起来这些命令不是人输入的。人不可能再一秒之内执行一条以上的命令，相应的时间戳都应该展开，我的自动化脚本中一秒之内可以执行很多命令。
举例来说，示例中的几个连续的提交可能显示发生于同一秒之内。你可以在bisect
示例中看到例子the section called “查找问题的根源”。
所以当你研究这些例子的时候，不要太注意命令输出的日期和时间。但是要保证你看到的结果是一致的和可以再现的。

版本控制的发展趋势

在过去的四十年中，随着人们越来越熟悉他们的工具的能力和限制，开发和使用版本控制工具出现了明确的趋势。
第一代软件开始于在个人计算机，人们用这些软件管理单个文件。虽然这些工具比手工管理版本有了巨大的飞跃。但是加锁模型和依赖于单个计算机限制了他们使用范围，只用于小的，组织严密的团队。
第二代软件放松了这些限制，因为它们采用了以网络为中心的结构，并且能够一次管理整个项目。随着项目增长，又出现了新的问题。客户需要频繁的和服务器交互，服务器的可伸缩性成为大项目的主要问题。不可靠的网络会妨碍客户和服务器的交互。随着开源项目开始开放只读权限给匿名用户，没有提交权限的用户发现他们不能以自然的方式使用工具和项目交互，因为他们不能记录他们的修改。
新一代的版本控制工具本质上是点对点的。所有的这些系统都抛弃了对单个中央服务器的依赖，允许用户将他们的版本控制数据发布到任何需要的地方。通过互联网的协作摆脱了技术的限制，走向选择和审查。现代的工具可以进行自治的，不受限制的离线操作。只需要在有网络的时候和其他的版本库同步即可。

分布版本控制的优点

与它们的上一代竞争者相比，虽然分布式版本控制工具多年来已经很稳定和实用了，但是旧的工具的使用者还没有完全了解它们的优点，分布式的工具在很多方面明显由于集中式的工具。
对于个人开发者，分布式工具几乎永远比集中式工具快的多。原因很简单：集中式工具的很多操作需要网络交互，因为大部分元数据都只在中央服务器上有一份拷贝。而一个分布式工具将所有的元数据保存在本地。其他的相同，通过网络的交互增加了集中式工具的负担。不要低估了反应迅速的工具的价值：你要花很多时间和你的版本控制软件交互。
分布式工具对你的服务器结构并不感冒，因为他们在将元数据复制到很多地方。如果你的集中式系统和你的服务器着火了，你最好希望你的备份介质是可靠的，同时你最后的备份是最近的，而且还能用。而对于分布式工具，你在贡献者的计算机上有很多备份。
网络的可靠性对分布式工具的影响要远远小于集中式工具。如果没有网络你根本不能使用集中式工具，除了少数几个功能有限命令。而对于分布式工具，即使在你工作的时候网络瘫痪了，你可能根本不会注意到。你不能做的事情仅仅是不能和其它计算机上的版本库交互了，这种情况在本地操作相当罕见。而如果你的团队有异地的人员，那这就很有可能了。
开源项目的优点

如果你喜欢一个开源项目并且决定准备开始改进它，同时这个项目使用分布式版本控制工具的话，你立刻可以和其他人一样认为自己成为项目的“核心”。如果他们发布了他们的版本库，你可以立即拷贝他们的项目。开始修改，记录你自己的工作，和内部人员一样使用同样的工具。相比之下，如果使用集中式工具，除非有人给你向中央服务器提交修改的权限，你只能用只读的方式使用软件。这样，你就不能记录你的修改，而且当你从版本库更新的时候，本地的修改随时有崩溃的可能。
分支不是问题

有人说分布式版本控制工具给开源项目带来了某种风险，因为在项目的发展过程中很容易出现“分支”。当不同组的开发人员有不同的意见和看法，决定不再一起工作的时候，就会产生新的分支，每个组的人都或多或少的获得项目代码的完整拷贝，然后向自己的方向发展。
有时候，不同分支的阵营决定协调他们之间的分歧。如果使用了集中式版本控制系统
技术上的问题使协调过程非常痛苦，大部分需要手动解决。你必须决定那个版本历史“赢”了，然后将其它团队的更改合并到代码中。这通常造成别的团队某些或者全部版本历史丢失。
分布式工具认为分支是项目开发的唯一方式。每个单独的变更都是潜在的分支点。这种方法的巨大力量在于，分布式版本控制工具非常善于合并分支，因为分支是非常基本的操作：它们随时都在发生。
如果所有的人在任何时候的做任何工作都这样使用合并和分支，那么对开源世界来讲，“分支”就变成了纯粹的社会事件。如果真的有什么影响到话，就是分布式工具降低了分支的可能性：
	消除了集中式工具带来的社会级别：有内部人员（有提交权限）和外部人员（没有权限）之分。

	在社会性分支之后很容易和解，因为从版本控制工具的角度来讲这仅仅是一次新的合并而已。

有些人拒绝分布式工具因为他们想保持对项目的控制，他们相信集中式工具会给他们这种控制。如果你这种想法，并你将CVS或者Subversion版本库向大众发布了，那么别人可用现有的很多工具将整个项目的历史抓取出来（可能很慢），在其它你控制不了的地方重建版本库。这时你的控制只不过是一种幻觉罢了，一些人被迫从你的版本库创建映像和分支，而你失去了和他们协作的机会。

商业项目的优点

遍布全球的团队正在进行许多商业项目。远离中央服务器的贡献者会发现执行命令速度很慢同时不怎么可靠。商业的版本控制系统改善这个问题的办法就是让你购买远程复制插件，这通常很昂贵，并且很难管理。分布式系统首先不会有这样的问题。其次，你可以很容易的建立多个授权服务器，假设每个站点一个，这样可以避免在昂贵的长途线路上的冗余的通讯。
集中式的版本控制系统的扩展性相对较低。只要不多的并行用户的组合负载就可以将一个昂贵的中央服务器压垮。同样，典型的反应就是昂贵笨重的复制设备。因为中央服务器的最大负载—如果你有的话—比分布式工具低很多（因为所有的数据要北复制到其它地方），一个廉价的服务器就可以满足一个相当大的团队的要求，为平衡负载而进行的复制只需要简单的脚本就够了。
如果你有员工需要在客户方解决问题，那么他们会受益于分布式版本控制。工具允许他们创建定制的环境，互相独立的尝试不同的解决方案。并且可以高效的从历史代码中查找bug的根源，在客户环境中进行回归，所有的这些都不需要连接公司的网络。

为什么选择 Mercurial?

Mercurial是一个非常好的版本控制系统，因为它有很多独一无二的特点。
	它易学易用。

	它轻量级。

	它扩展性很好。

	它很容易定制。

如果你熟悉版本控制系统，你在五分钟之内只能就可以使用Mercurial工作了。即使你不熟悉，也不过是再多花几分钟。Mercurial的命令和功能集非常统一一致，你只要遵守几个通用的规则就够了，很少有例外。
在很小的项目上，你马上就可以使用Mercurial开始工作。创建新的修改和分支；到处交换修改（不管本机还是通过网络）；获取历史和状态数据非常快。Mercurial努力保持小巧灵活，在眨眼之间就能完成操作。
不仅小的项目可以使用Mercurial：有成百上千的贡献者的项目也在使用它，这些项目每个都有上万个文件和几百兆的源码。
如果觉得Mercurial的核心功能不能满足要求，你很容易在现有基础上开发。Mercurial非常适合于脚本任务，它的核心简洁，并且用Python实现，用扩展的方式增加新的功能非常方便，现在已经有很多流行和有用的扩展了，像帮助你确定bug或者提高性能等。

Mercurial 与其它工具的比较

在你继续阅读之前，请理解本节完全反映了我的个人经验，兴趣，和偏好（我敢说）。下面列的每个版本控制工具我都使用过，大多数情况下都用过好几年。
Subversion

Subversion是一个流行的版本控制工具，是用来替代CVS的，它采用的是集中式的客户/服务器结构。
Subversion和Mercurial相同操作的命令的命名上非常相似，所以如果你熟悉一个，很容易学会另外一个，两个工具都可以在大多数平台上运行。
在1.5版之前，Subversion对合并的支持并不好。在我写本书的时候，它刚新增了并跟踪的功能，出名的复杂和容易出错。
在我测量过的每个版本控制操作上Mercurial都比Subversion有很大的性能优势。差距从两个数量级到六个数量级不等，我用的是Subversion
1.4.3的ra_local文件存储方式，这是已知的最快的存取方式了。在实际的部署中包括网络存储，那么Subversion的劣势更大。因为很多Subversion命令必须和主机交互，并且因为Subversion没有好的复制机制，使得对于中的等大小的项目而言，服务器容量和网络带宽成为主要瓶颈。
另外，Subversion以在客户端使用了更多存储空间的方法，换取降低几个常用操作的网络负载，例如查找修改过的文件（status）和显示对于当前版本的更改（diff）。结果Subversion的工作副本经常和Mercurial的版本库和工作目录一样大，或者更大，虽然Mercurial的版本库包括了项目的完整历史。
Subversion有很多的第三方工具支持。Mercurial现在在这方面稍微欠缺。然而差距正在逐渐缩小，实际上一些有Mercurial的GUI工具比Subversion类似工具还略胜一筹。和Mercurial一样，Subversion也有完善的用户手册。
Subversion并不在客户端存储版本历史，所以它很适合管理那些有很多大的二进制文件的项目。如果你对一个未压缩的10MB文件检入了五十次，Subversion客户端的占用的磁盘空间基本上保持不变。而对于分布式SCM软件，磁盘空间会随着版本数量的增加成而迅速增长，因为每个版本之间的差异非常大。
另外，合并不同版本的二进制文件非常困难，换句话说，基本上不可能。Subversion提供了锁定功能，用户可以锁定一个文件，这样他就取得了对这个文件临时的独占的提交权，这对于广泛使用二进制文件的项目而言是个明显优势。
Mercurial可以从Subversion的版本库中导入历史版本。它也可以向Subversion的版本库输出历史版本。这样在决定转换之前很容易先“试一下水”，同时并行的使用Mercurial和Subversion。版本史的转换是递增的，你可以先构造一个初始版本，每次有了新的更改后加入一个小的转换。

Git

Git是为了管理Linux内核代码而开发的一个分布式版本控制工具。它和Mercurial一样在设计上受了Monotone的影响。
Git有非常大的命令集，1.5.0版本提供了139个单独的命令。它以难学而闻名于世。与Git相比，Mercurial力求简洁。
就性能而言，Git非常快。在很多情况下它都比Mercurial快，至少是在Linux上，但Mercurial在其它操作上有优势。而在Windows上，Git不管是性能还是提供的支持，都比Mercurial差很多，至少在本书写作的时候是这样。
Mercurial的版本库不需要维护，但Git的版本库需要频繁的手工维护，将其元数据“repacks”，如果不这样做，性能就会下降，磁盘空间也会迅速增加。有多个Git版本库的服务器需要严格和频繁的重新打包，否则在备份的时候就会成为严重的瓶颈，曾经有过运行每日备份超过24小时的例子。一个新打包的Git版本库比Mercurial稍小一些，但是未打包的版本库则会大几个数量级。
Git的核心由C语言编写，许多Git命令是用shell或者perl脚本实现的，这些脚本的质量差别很大。我碰到过好几次这样的情况，明明已经出现了致命错误了，脚本还在盲目的执行。
Mercurial可以从Git的版本库中导入版本历史。

CVS

CVS可能是世界上使用最广泛的版本控制工具。因为它是太古老和内部实现很混乱，许多年来都处于维护状态。
CVS采用的是集中式客户/服务器结构。它不会将相关的文件变更一起作为原子提交，这使得它很容易“破坏构建”：一个人成功的提交了一部分更改，然后要停下来处理合并，这使得其他人只能看见他们的部分工作。这样也会影响你和项目历史的工作方式。如果你想看到其他人针对他的那部分任务做的全部修改，你必须手动检查每个受影响的文件的变更描述和时间戳（假如你知道是哪些文件）。
CVS的分支和标签的概念实在是太混乱了，我都不想给你介绍。它也不支持文件和目录的重命名。这使得版本库非常容易崩溃。它几乎没任何的内部一致性检查功能，所以通常你不可能知道版本库是不是崩溃了。不管是新项目还是老项目，我都不推荐使用CVS。
Mercurial可以导入CVS的版本历史。然而，这里面有很多限制；对其版本控制工具的CVS导入程序也是一样。因为CVS缺少原子更改并且不支持文件系统层次的版本控制，所以不可能完全精确的重建CVS的历史。有些需要猜测，重命名通常发现不了。因为CVS的很多的高级管理功能必须手动完成，因此非常容易出错。碰到崩溃的版本库，CVS导入程序通常会出现很多问题(完全伪造的版本时间戳，若干文件被锁定十多年，这是我个人经历的两个不太有趣的问题）。
Mercurial可以从CVS版本库导入版本历史。

商业工具

Perforce采用的是集中式客户/服务器结构，客户端不缓存任何数据。和现代的版本控制工具不同，每次想要编辑的一个文件，用户必须运行一个命令通知Perforce服务器。
对于小的团队而言，Perforce相当好，但是当用户数目超过数十个以后，性能急剧下降。中等大小Perforce安装需要部署代理来处理用户产生的负载。

选择版本控制工具

除了CVS之外，以上列出的所有工具都各有所长，没有一个版本控制工具适合所有情况。
比如说，因为采用集中式的结构并且支持文件锁定，Subversion非常适合频繁编辑二进制文件的场合。
我已经使用Mercurial很多年了，个人认为它有简洁，高性能，良好的合并支持诸多特点。

从其它工具切换到 Mercurial

Mercurial包括一个叫convert的扩展，它可以递增的从几个其他的版本控制工具导入版本历史。
“增量”的意思是你可以在某天将整个项目历史转换，以后再次进行转换获得初始版本以后新增的变更。
convert 支持的版本控制工具有:
	Subversion

	CVS

	Git

	Darcs

另外convert可以从Mercurial向Subversion导出历史，这可以让你在切换之前让Mercurial和Subversion并行工作，而不会丢失任何工作。
convert命令非常简单。只要给出源版本库的URL或者路径，给出目标版本库的名称（可选），它就开始工作了。第一次转换之后，只要运行同样的命令就可以导入新的变更。

版本控制简史

最有名史前的版本控制工具是SCCS（源代码控制系统），它是由Marc
Rochkind于七十年代在贝尔实验室完成的。SCCS只能控制单个文件，这就要求项目组人员只能使用一个系统上的共享工作空间。任何时候一个文件只能由一个人修改；通过加锁来保证。人们很容易锁定一个文件，然后忘了解锁，没有管理员的帮助，任何人都不能修改那些文件。
Walter
Tichy在八十年代早期开发了一个开源的SCCS替代软件；他称之RCS（版本控制系统）。和SCCS一样，RCS要求开发人员在一个共享的工作空间工作，同时锁定文件，以防止多个人他同时修改。
八十年代后期，Dick
Grune在RCS的基础上开发了一套脚本，他开始称之为cmt，后来又改名为CVS（并行版本系统）。CVS的最大的创新在于让开发人员可以在自己的工作空间里同时而且独立的工作。私人的工作空间防止了开发人员总是互相干扰，这在SCCS和RCS的使用中很常见。项目中的每个文件，开发者都有自己的拷贝，可以独立的修改自己的拷贝。他们可以在提交到中央版本库之前合并更改。
Brian
Berliner接管了Grune的脚本，用C重写了一遍，并在1989年发布了这些代码，现在的CVS就是从那时逐渐发展起来的。CVS随后增加了网络的功能，形成了客户/服务器结构。CVS的结构是集中式的；仅在服务器上保存一份项目的历史拷贝。客户工作空间仅包含项目中的文件的最近版本的拷贝，一些元数据告诉它们服务器的地址。CVS获得了极大成功；它可能是世界上应用最广泛的版本控制系统。
90年代早期，Sun公司开发了一个早期的分布式版本控制系统，叫做TeamWeare。TeamWare的工作空间包括项目历史的完整拷贝。TeamWare没有中央版本库的概念。（CVS使用RCS存储其历史，TeamWare使用SCCS。
在90年代中，随着时间的流逝，CVS逐渐暴露出很多问题。它对多个文件同时发生的变更不能一起记录，不能按照层次管理文件；对目录和文件的重命名很容易破坏版本库。更糟的是，它的源代码很难阅读和维护，修复这些架构上的问题的非常困难。
2001年，原来维护过CVS的两个开发者Jim Blandy和Karl
Fogel，开始了一个新项目，其目标是替代CVS，新的软件将采用更好的架构和更整洁的代码。于是Subversion诞生了，它并保留了CVS集中式的客户/服务器模型，但是增加了多文件原子提交，更好的命名空间管理，和其他一些功能。总而言之，它比CVS好的多。Subversion在发布后迅速流行起来。
大概相同时间，Graydon
Hoare开始了一个野心勃勃的分布式版本控制项目，他称之为Monotone。Monotone解决了很多CVS设计上的漏洞并且采用了点对点的架构，它在创新方面比以前（和以后）的版本控制系统走的更远。它使用加密哈希作为标识符，并且对于不同源的代码有了完整的
“信任”概念。
Mercurial诞生于2005年。设计方面受了Monotone的一些影响，Mercurial的目标是易用，高性能，对大的项目的良好扩展性。

Chapter 2. Mercurial 教程: 基础知识

安装 Mercurial

对于每种流行的操作系统，都有已经构建的二进制软件包。这让在你的计算机上开始使用 Mercurial 变得很容易。
Windows

The best version of Mercurial for Windows is TortoiseHg, which can be found
at http://tortoisehg.org. This
package has no external dependencies; it “just works”. It
provides both command line and graphical user interfaces.

Mac OS X

Lee Cantey 为 Mac OS X 在 http://mercurial.berkwood.com
发布了 Mercurial 安装程序。

Linux

由于每种 Linux 发行版都有自己的包管理工具，开发策略和进度，从而很难给出安装 Mercurial 二进制包的全面说明。你安装的 Mercurial
版本，在很大程度上依赖于你所使用的发行版的 Mercurial 维护者的活跃程度。
为了让事情简单，我会致力于说明在最流行的 Linux 发行版中，从命令行安装 Mercurial
的方法。这些发行版都提供了图形界面的包管理器，让你通过点击鼠标安装 Mercurial；寻找的包名称是
mercurial。
	Ubuntu 与 Debian:
apt-get install mercurial

	Fedora:
yum install mercurial

	OpenSUSE:
zypper install mercurial

	Gentoo:
emerge mercurial

Solaris

位于 http://www.sunfreeware.com 的
SunFreeWare 提供了 Mercurial 的二进制安装包。

开始

首先，我们使用 hg version 命令检查 Mercurial
是否已经正确安装。它打印出来的实际版本信息并不重要；我们只关心它是否能够运行，打印出信息。
$ hg version
Mercurial Distributed SCM (version 1.6.4)

Copyright (C) 2005-2010 Matt Mackall <mpm@selenic.com> and others
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

内置帮助

Mercurial 内置了帮助系统。当你不记得如何执行一个命令时，它会给你重要的帮助。如果你完全没有头绪，那就直接运行 hg
help；它会给出命令的简短列表，还描述了每个命令的作用。如果你需要具体命令的帮助(下述)，它会给出更详细的信息。
$ hg help init
hg init [-e CMD] [--remotecmd CMD] [DEST]

create a new repository in the given directory

 Initialize a new repository in the given directory. If the given directory
 does not exist, it will be created.

 If no directory is given, the current directory is used.

 It is possible to specify an "ssh://" URL as the destination. See "hg help
 urls" for more information.

 Returns 0 on success.

options:

 -e --ssh CMD specify ssh command to use
 --remotecmd CMD specify hg command to run on the remote side

use "hg -v help init" to show global options

要获得更多的详细信息(通常不需要)，可以执行 hg help -v。选项 -v 是 --verbose 的短格式，告诉 Mercurial 要打印通常不需要的更多信息。

使用版本库

在Mercurial中，所有的操作都在版本库中进行。项目的版本库包括了属于该项目的所有文件和这些文件的历史记录。
版本库没有什么神秘的地方；仅仅是你系统中的一个目录树，Mercurial会将它们特殊处理。你可以在任何喜欢的时候使用命令行或者文件浏览器删除版本库或者给它改名。
创建版本库的工作副本

拷贝版本库有点特殊。虽然你可以使用文件拷贝命令来复制一般版本库，最好还是用Mercurial内置的命令。这个命令叫做
hg clone，因为它创建了一个原来版本库的拷贝。
$ hg clone http://hg.serpentine.com/tutorial/hello
destination directory: hello
requesting all changes
adding changesets
adding manifests
adding file changes
added 5 changesets with 5 changes to 2 files
updating to branch default
2 files updated, 0 files merged, 0 files removed, 0 files unresolved

如上所示，使用hg
clone的好处在于它能够让你通过网络克隆版本库。另外一个好处你它会记得这个版本库是从哪里克隆的，稍后会看到，当我们想从其他的版本库获取新的变更的时候这点这会非常有用。
如果我们克隆成功，我们会得到一个本地目录，叫做 hello。这个目录会包括一些文件。
$ ls -l
total 0
drwxr-xr-x 3 oracle dba 120 Mar 17 05:13 hello
$ ls hello
Makefile hello.c

这个版本库中的文件和我们刚才克隆的版本库中的文件相同的内容和版本历史
每个Mercurial版本库都是完整的，自包含的，独立的。它包含了项目文件的一份私有拷贝和全部历史。我们刚才已经提到，克隆的版本库会记住它克隆的那个版本库的地址，但是Mercurial不会和那个或者其他任何一个版本库通信，除非你给它命令。
这意味着，我们可以随意的在我们的版本库中做实验，非常安全，因为它是一个私有的“沙盒”，不会影响任何人。

什么是版本库?

当我们仔细观察版本库内部时，我们会发现它有一个叫.hg的目录。这就是Mercurial为版本库保存所有元数据的地方。
$ cd hello
$ ls -a
. .. .hg Makefile hello.c

目录.hg中的内容和其子目录是Mercurial私有的。版本库中的其他任何文件和目录你都可以随意操作。
介绍一点术语， .hg目录是“真正的”版本库，所有其他的文件和目录称为工作目录一个简单的区分的方法就是版本库中包含了项目的历史，而
工作目录则是项目组一个特定历史点上的快照。

回溯历史

对于一个新的，我们不熟悉的版本库，我们想做的第一件事就是了解它的历史。命令hg
log可以让我们浏览版本库中的历史变更。
$ hg log
changeset: 4:2278160e78d4
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:16:53 2008 +0200
summary: Trim comments.

changeset: 3:0272e0d5a517
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:08:02 2008 +0200
summary: Get make to generate the final binary from a .o file.

changeset: 2:fef857204a0c
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:05:04 2008 +0200
summary: Introduce a typo into hello.c.

changeset: 1:82e55d328c8c
user: mpm@selenic.com
date: Fri Aug 26 01:21:28 2005 -0700
summary: Create a makefile

changeset: 0:0a04b987be5a
user: mpm@selenic.com
date: Fri Aug 26 01:20:50 2005 -0700
summary: Create a standard "hello, world" program

缺省情况下，这个命令对项目中记录的每个变更都输出一段简介，在Mercurial的术语中，我们将这些记录的事件成为变更集，因为每个记录都可能包括几个文件的变更。
 hg log输出记录的各个字段的意义如下。
	changeset：这个字段包括一个数字，接着一个冒号，然后是是一个十六进制字符串。这是这个变更的标识符。十六进制字符串是唯一标识符：在这个版本库的任何一个拷贝中，同一个字符串总是对应同一个变更集。数字更短并且比十六进制字符串更容易书写，但它不是唯一的：一个版本库的两个不同的的克隆中的同一个数字可能对应不同的变更集。

	user：这个字段标识是谁创建了这个变更集。这个字段格式可以自由定义，通常是一个人的姓名加上电子邮件地址。

	date：这是变更集创建的日期和时间，还有时区。（日期和时间是相对于时区的；他们显示了创建变更的人的日期和时间。）

	summary：创建者对该变更集的描述的第一行文本信息。

	有些变更集，像上面的第一个，有一个标签字段。标签是区分变更集的另外一种方法，给它一个容易记得名字。（叫做tip的标签有特殊意义：总是指向版本库中的最新的变更。）

缺省情况下，hg log的输出仅仅是个摘要，没有更详细的信息。
Figure 2.1, “版本库 hello 的历史图”以图形化方式显示了版本库hello的历史，这样很容易看出历史的“流向”。在本章和下面的章节中，我们会多次使用这个图。
Figure 2.1. 版本库 hello 的历史图
[image: XXX add text]

变更集，版本，与其它用户交互

英语是一种非常随便的语言，计算机史上也向来以混乱的术语为荣（如能用四个词为什么要用一个呢？），就版本控制而言，有很多词和短语有相同的意思。如果你和别人讨论Mercurial版本库的历史，你会发现“变更集”这个词常常被简化成“变更”或者（写的时候）“cset”,有时候变更集也指一个“版本”或者“rev”。
实际上，用哪个词来描述“变更集”的概念并不重要，重要的是如何用标识符来标识“一个特定的变更集”。回忆一下hg
log命令的输出，changeset字段里用一个数字和一个十六进制字符串来标识一个变更集。
	版本号是一个方便的标识，它仅在当前版本库中有效。

	十六进制字符串是永久的，不变的标识，它在该版本库的所有拷贝中都指向同一个变更集。

这个区别很重要。如果你通过邮件和别人讨论“版本33”，很有可能他们的版本33和你的不一样。原因在于版本号依赖于相应变更进入版本库的顺序。，不能保证同一个变更在不同的版本库中会有相同的次序。有可能三个变更a,b,c在一个版本库中的次序是0,1,2，而在另外一个版本库中则变成0,2,1
Mercurial使用版本号纯粹是为了有些命令的方便，如果你要和别人讨论变更集，或者由于某些原因为一个变更集做记录（如在bug报告中），请使用十六进制标识符。

查看指定版本

如果只想用hg log查看一个版本的日志使用-r（或者--rev）选项。版本号和十六进制标识符都可以来指定版本，可以一次指定任意多个版本。
$ hg log -r 3
changeset: 3:0272e0d5a517
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:08:02 2008 +0200
summary: Get make to generate the final binary from a .o file.

$ hg log -r 0272e0d5a517
changeset: 3:0272e0d5a517
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:08:02 2008 +0200
summary: Get make to generate the final binary from a .o file.

$ hg log -r 1 -r 4
changeset: 1:82e55d328c8c
user: mpm@selenic.com
date: Fri Aug 26 01:21:28 2005 -0700
summary: Create a makefile

changeset: 4:2278160e78d4
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:16:53 2008 +0200
summary: Trim comments.

如果你想显示几个版本历史，但是不想一个一个的列出来，可以使用
范围标记；它会显示包括abc和def，以及它们之间的所有版本的版本历史。
$ hg log -r 2:4
changeset: 2:fef857204a0c
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:05:04 2008 +0200
summary: Introduce a typo into hello.c.

changeset: 3:0272e0d5a517
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:08:02 2008 +0200
summary: Get make to generate the final binary from a .o file.

changeset: 4:2278160e78d4
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:16:53 2008 +0200
summary: Trim comments.

Mercurial还可以指定版本的输出顺序，如hg log -r
2:4输出2，3，4。而hg log -r
4:2则输出4，3，2。

更详细的信息

当你知道你在找那个版本的时候，hg
log输出的摘要是非常有用的，但有时候你不知道要找哪个版本，你想看到变更的完整描述，或者修改过的文件的列表，hg log命令的-v（--verbose）选项会给出更详细的信息。
$ hg log -v -r 3
changeset: 3:0272e0d5a517
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:08:02 2008 +0200
files: Makefile
description:
Get make to generate the final binary from a .o file.

如果你想同时看到变更的描述和内容，增加-p（--patch）选项。这会将变更的内容以unified
diff的格式显示（如果你不知道unified diff，请参考the section called “理解补丁”。
$ hg log -v -p -r 2
changeset: 2:fef857204a0c
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:05:04 2008 +0200
files: hello.c
description:
Introduce a typo into hello.c.

diff -r 82e55d328c8c -r fef857204a0c hello.c
--- a/hello.c	Fri Aug 26 01:21:28 2005 -0700
+++ b/hello.c	Sat Aug 16 22:05:04 2008 +0200
@@ -11,6 +11,6 @@

 int main(int argc, char **argv)
 {
-	printf("hello, world!\n");
+	printf("hello, world!\");
 	return 0;
 }

-p选项非常有用，所以一定要记住。

命令选项

我们休息一下，先不讨论Mercurial命令了，而是来看看它们工作的模式；这对以后的学习会非常有帮助。
Mercurial处理传递给它的命令选项的方法简单一致。它遵从现代Linux和Unix对选项的处理习惯。
	每个选项有一个长名。例如，我们已经看到了，hg log命令接受--rev选项。

	大多数选项还有短名，除了使用--rev，我们还可以用-r。（有些选项没有短名的原因是他们很少用到。）

	Long options start with two dashes (e.g. --rev), while short options start with one
(e.g. -r).

	Option naming and usage is consistent across commands. For example, every
command that lets you specify a changeset ID or revision number accepts both
-r and --rev arguments.

	如果使用短选项，你可以把它们放在一起以减少输入。例如，命令hg log -v -p -r
2 可以写成 hg log -vpr2。

在本书的例子中，我通常使用短选项，很少用长选项。这仅仅是我个人的习惯，你不一定要这样。
Most commands that print output of some kind will print more output when
passed a -v (or --verbose) option, and less when passed
-q (or --quiet).
选项命名的一致性
Almost always, Mercurial commands use consistent option names to refer to
the same concepts. For instance, if a command deals with changesets, you'll
always identify them with --rev or
-r. This consistent use of option names
makes it easier to remember what options a particular command takes.

创建和复审变更

现在我们已经对查看Mercurial的版本历史有了一些了解，现在我们开始做些修改并且检查这些修改。
The first thing we'll do is isolate our experiment in a repository of its
own. We use the hg clone command, but we
don't need to clone a copy of the remote repository. Since we already have
a copy of it locally, we can just clone that instead. This is much faster
than cloning over the network, and cloning a local repository uses less disk
space in most cases, too[1].
$ cd ..
$ hg clone hello my-hello
updating to branch default
2 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd my-hello

说句题外话，保留远程版本库的一份“原始”拷贝是一个很好的习惯，这样你就可以为每个任务都创建临时的克隆作为沙盒。直到认务完成并且你准备好提交到版本库,
每个任务都和其他的独立，这样你可以并行工作。因为本地的克隆很方便，在任何时候克隆和销毁一个版本库都只有很小的开销。
在我们的my-hello版本库中，有一个叫hello.c的文件，它包含了经典的“hello,
world”程序。
$ cat hello.c
/*
 * Placed in the public domain by Bryan O'Sullivan. This program is
 * not covered by patents in the United States or other countries.
 */

#include <stdio.h>

int main(int argc, char **argv)
{
	printf("hello, world!\");
	return 0;
}

我们编辑这个文件，让它打印第二行输出。
... edit edit edit ...
$ cat hello.c
/*
 * Placed in the public domain by Bryan O'Sullivan. This program is
 * not covered by patents in the United States or other countries.
 */

#include <stdio.h>

int main(int argc, char **argv)
{
	printf("hello, world!\");
	printf("hello again!\n");
	return 0;
}

Mercurial的hg status命令能告诉我们它对版本库中的文件有多少了解。
$ ls
Makefile hello.c
$ hg status
M hello.c

hg
status命令对有些文件没有输出信息，但是对文件hello.c，有一行以“M”为开头的输出。除非你明确告诉它，命令hg status不会输出那些没有修改的文件的信息。
“M”表明Mercurial已经发现我们修改了hello.c。我们不需要在改文件之前，或者在修改完之后通知Mercurial;它自己能处理。
知道文件hello.c被修改了很有用，但有时候我们想知道做了什么样的修改。这时，我们应该使用
hg diff命令。
$ hg diff
diff -r 2278160e78d4 hello.c
--- a/hello.c	Sat Aug 16 22:16:53 2008 +0200
+++ b/hello.c	Thu Mar 17 05:13:12 2011 +0000
@@ -8,5 +8,6 @@
 int main(int argc, char **argv)
 {
 	printf("hello, world!\");
+	printf("hello again!\n");
 	return 0;
 }

理解补丁
如果你不知道如何理解以上信息，请参考the section called “理解补丁”。

[1] 如果版本库的源和目标都在同一个文件系统上，将会节省很多空间。这种情况下，Mercurial会使用硬链接的方式来共享内部元数据，并使用写时拷贝的机制。如果你不明白这句话的意思，没有关系：所有的事情都是自动和透明的，你不需要知道它们。

在新修改集中记录修改

我们可以修改文件，创建并测试我们的修改，使用命令hg status和hg
diff复审修改，直到我们对修改满意，同时也达到了一个自然的停止点，然后用一个新的变更集记录我们的工作。
我们用命令hg
commit创建新的变更集；我们通常把这个称为“做一次提交”或者“提交”。
配置用户名称

当你准备第一次运行hg
commit命令时，不一定会成功。对于你提交的每个变更，Mercurial都会记录你的名字和邮件地址，这样你和其他人以后就能分开是谁做的哪个变更。Mercurial会自动尝试找出一个有意义的用户名来提交。它会依次尝试以下方法：
	如果你给hg commit命令加上了-u选项，接着是一个用户名，Mercurial会使用这个用户名，这是最高的优先级。

	接下来测试你是否设定了HGUSER环境变量。

	如果你在主目录创建了名字为.hgrc的文件，其中包括username条目，那就用它。如果想知道这个文件的格式，请参考下面的the section called “创建 Mercurial 的配置文件”。

	如果你设置了EMAIL环境变量，那就用它。

	Mercurial会查询你的系统，找出主机名和你的用户名，然后用他们创建一个用户名。这样的用户名不怎么有用，所以在只能这样生成用户名的时候，它会打印出一条告警信息。

如果所有的这些机制都失败了，Mercurial会执行失败退出，打印出一条错误信息这种情况下，只有你设定了用户名之后才能提交。
当你需要覆盖Mercurial缺省的用户时，可以考虑HGUSER环境变量和hg commit命令的-u选项。正常使用的情况下，最简单实用的方法就是创建.hgrc文件来设定用户名；步骤如下。
创建 Mercurial 的配置文件

设定用户名的时候，使用你最喜欢的编辑器在你的主目录创建一个名为.hgrc的文件。Mercurial将会从这个文件中查找你的个人配置信息。你的.hgrc开始的时候应该是这样子。
Windows上的“主目录”
英文版的Windows的主目录通常是C:\Documents and
Settings下你的用户名的那个文件夹。如果要找出你的主目录的确切位置，可以打开一个命令行窗口，运行以下命令。
C:\> echo %UserProfile%

This is a Mercurial configuration file.
[ui]
username = Firstname Lastname <email.address@example.net>
配置文件中“[ui]”这行标识着一个字段的开始,“username
=
...”这行的意思是在ui字段中设定项username的值。当出现一个新的字段或者到达文件结尾的时候，当前的字段才结束。

选择用户名称

username配置项的值可以是你喜欢的任意文字，因为这项信息主要是给其他用户阅读的，所以Mercurial不会去解释它。大多数人的习惯是采用用户名加上邮件地址的格式，就像上面的例子一样。
Note
Mercurial内置的网络服务器会混淆邮件地址，让垃圾邮件发送者用的邮件地址抓取工具很难获取你的邮件地址。当你把Mercurial的版本库在网路上发布的时候，这可以减小你接收到垃圾邮件的风险。

写提交日志

我们提交一个变更的时候，Mercurial会打开一个编辑器，让我们输入一些信息来描述这个变更集做的更改。这就是提交日志。它会告诉读者我们改了什么以及修改的原因，我们提交之后，命令hg log会输出这些信息。
$ hg commit

hg
commit命令打开的编辑器包括一两个空行，接着是以“HG:”开始的行。

This is where I type my commit comment.

HG: Enter commit message. Lines beginning with 'HG:' are removed.
HG: --
HG: user: Bryan O'Sullivan <bos@serpentine.com>
HG: branch 'default'
HG: changed hello.c
Mercurial会忽略以“HG:”为开始的行；它仅仅用来告诉我们这个变更集中包括哪些文件。修改或者删除这行没有任何影响。

写高质量的提交日志

因为hg
log命令在缺省情况下仅会输出提交日志的第一行，所以日志第一行最好是单独的一行。下面是一个日志的实例，它没有遵守这个规则，因此摘要可读性很差。

changeset: 73:584af0e231be
user: Censored Person <censored.person@example.org>
date: Tue Sep 26 21:37:07 2006 -0700
summary: include buildmeister/commondefs. Add exports.
至于日志的其他部分的内容，没有严格的规定。Mercurial并不解释或者关心日志的内容，虽然你的项目可能有某种格式的规定。
我个人喜欢简短，而又信息量大的日志，它能告诉我一些我不能通过快速浏览hg log
--patch的输出而得到的信息。
如果我们运行hg
commit命令的时候没有指定文件，它会提交我们做的所有修改，与hg
status和hg diff这两个命令的输出一样。
Subversion用户的困惑
和所有的Mercurial命令一样，如果我们不明确指出hg
commit命令要提交的文件名，它会在整个版本库的工作目录上执行操作。如果你以前使用过CVS或者Subversion，那一定要注意，你可能仅仅希望提交当前目录与其子目录的修改。

终止提交

如果你在编辑日志的时候决定不再提交，只要退出编辑器同时不保存文件就可以了。这对版本库和当前目录都没有任何影响。

欣赏我们的成果

提交完成后，我们就可以用hg
tip命令显示刚刚创建的变更集。这个命令和hg
log的输出一样，但是只显示版本库中最新的版本。
$ hg tip -vp
changeset: 5:8c1f47585717
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:13 2011 +0000
files: hello.c
description:
Added an extra line of output

diff -r 2278160e78d4 -r 8c1f47585717 hello.c
--- a/hello.c	Sat Aug 16 22:16:53 2008 +0200
+++ b/hello.c	Thu Mar 17 05:13:13 2011 +0000
@@ -8,5 +8,6 @@
 int main(int argc, char **argv)
 {
 	printf("hello, world!\");
+	printf("hello again!\n");
 	return 0;
 }

我们通常把版本库中最新的版本称为tip版本或者简称为tip。
顺便提一下，hg tip命令可以接受很多和hg log命令一样的选项。如-v选项的意思是“详细的”。-p的意思是“输出补丁”。使用-p输出补丁也是我们前面提到的一致性的另外一个例子。

分享修改

前面我们曾经提到Mercurial的版本库是自包含的。这意味着我们刚才创建的变更集仅仅存在于我们的my-hello版本库中。下面我们会看到几种将变更传播到其他版本库的方法。
从其它版本库取得变更

首先，我们克隆原始版本的hello版本库，它不包含我们刚刚提交的变更。我们将这个临时版本库称为hello。
$ cd ..
$ hg clone hello hello-pull
updating to branch default
2 files updated, 0 files merged, 0 files removed, 0 files unresolved

我们用hg pull命令将变更从my-hello拖到hello-pull。然而，不管三七二十一将不了解的变更拖进版本库也实在是冒险。Mercurial提供了hg incoming命令，它会告诉我们hg
pull将会把哪些变更拖进版本库，但不会真正的执行。
$ cd hello-pull
$ hg incoming ../my-hello
comparing with ../my-hello
searching for changes
changeset: 5:8c1f47585717
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:13 2011 +0000
summary: Added an extra line of output

运行hg pull命令将变更拖进版本库非常简单，你可以指定从那个版本库拖变更。
$ hg tip
changeset: 4:2278160e78d4
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:16:53 2008 +0200
summary: Trim comments.

$ hg pull ../my-hello
pulling from ../my-hello
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files
(run 'hg update' to get a working copy)
$ hg tip
changeset: 5:8c1f47585717
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:13 2011 +0000
summary: Added an extra line of output

从前后的hg
tip的输出可以看出，我们成功将变更拖进了我们的版本库。然而，Mercurial将拖变更和更新当前工作目录分成两个操作。在看到在当前目录中我们刚拖进的变更之前，还有一步要完成。
提取指定的修改
因为在运行hg incoming和hg
pull之间可能存在延时,你可能不能看到从其他版本库中的所有导入进来的变更集。假如你正在通过网络从其他地方的版本库拖变更。当你查看hg
incoming的输出，还没有拖这些变更的时候，其他人向这个版本库提交了一些东西。这意味着你可能拖进来比你用hg incoming看见的多的变更。
如果你仅希望将hg
incoming命令列出的变更拖进来，或者由于其他原因希望得到变更的一个子集，那么你可以明确的指定变更集的ID，比如hg
pull -r7e95bb。

更新工作目录

现在我们已经对版本库和它的工作目录之间的关系有了粗略的了解。我们在the section called “从其它版本库取得变更”一节运行的hg
pull命令会将变更拖进版本库，但是如果我们检查一下的话，就会发现工作目录并没有变化。这是因为hg pull命令并不会影响工作目录。实际上，我们需要hg
update命令来完成这个工作。
$ grep printf hello.c
	printf("hello, world!\");
$ hg update tip
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ grep printf hello.c
	printf("hello, world!\");
	printf("hello again!\n");

hg
pull命令并不会自动更新工作目录，这看起来有点奇怪。但实际上这样做是有原因的：你可以用hg
update来更新工作目录，切换到版本库中的任意一个版本。假设你将工作目录切换到一个老的版本—假如说是为了追踪一个bug—然后运行了hg pull命令。它自动将工作目录更新到新版本，这可能并不是你想要的结果。
因为拖然后更新是个非常常用的操作顺序，Mercurial允许你将这两个操作组合在一起，只要给hg
pull命令加上-u选项就可以了。
如果回顾the section called “从其它版本库取得变更”一节，我们运行hg
pull而又没有加上-u选项时，你可能会发现它输出了一条很有用的提示，我们还需要执行一个操作，才能更新工作目录。
如果想知道工作目录的版本，可以使用hg parents命令。
$ hg parents
changeset: 5:8c1f47585717
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:13 2011 +0000
summary: Added an extra line of output

如果回顾Figure 2.1, “版本库 hello 的历史图”一节，你会看到箭头连着每个变更集。箭头离开的节点是父版本，箭头指向的是子版本。工作目录的父版本也是一样的方式；它是工作目录包含的变更集。
如果需要将工作目录切换到一个特定版本，给hg
update命令加上版本号或者变更集标识符就可以了。
$ hg update 2
2 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ hg parents
changeset: 2:fef857204a0c
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:05:04 2008 +0200
summary: Introduce a typo into hello.c.

$ hg update
2 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ hg parents
changeset: 5:8c1f47585717
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:13 2011 +0000
summary: Added an extra line of output

如果没有明确指出版本，hg update会更新到tip版，就像上面例子hg update第二次执行的结果一样。

发布修改到其它版本库

我们可以将变更从当前所在的版本库推到其他的版本库。与上面的hgpull例子一样，我们可以创建一个临时的版本库存放我们的变更。
$ cd ..
$ hg clone hello hello-push
updating to branch default
2 files updated, 0 files merged, 0 files removed, 0 files unresolved

hg outgoing命令可以告诉我们那些变更将会被推到另外一个版本库。
$ cd my-hello
$ hg outgoing ../hello-push
comparing with ../hello-push
searching for changes
changeset: 5:8c1f47585717
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:13 2011 +0000
summary: Added an extra line of output

而hg push命令则会执行真正的推操作。
$ hg push ../hello-push
pushing to ../hello-push
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files

与hg pull一样，在变更推送之后，hg push命令并不会更新版本库的工作目录，与hg
pull命令不同，hg
push并不提供-u选项来更新其他版本库的工作目录。这一不对称是有目的的：我们推送的版本库可能是一个远端的服务器，并且很多人共享使用它。如果在其他人正在工作的时候，我们更新了工作目录，那么他们的工作很可能被破坏。
如果我们向一个已经包含了这些变更的版本库推送或者拉这些变更会发生什么事情呢？，什么也不会发生。
$ hg push ../hello-push
pushing to ../hello-push
searching for changes
no changes found

默认位置

在我们克隆版本库的时候，Mercurial会在新的版本库的.hg/hgrc文件中记录下版本库的位置，如果我们对hg
pull没有指定来源，或者对于hg push
没有指定目标，那么这些命令就会使用缺省位置。hg incoming和hg
outgoing命令也是如此。
如果你用文本编辑器打开版本库的.hg/hgrc文件，你会看到如下内容。
[paths]
default = http://www.selenic.com/repo/hg
有可能—并且常常很有用—hg push和hg
outgoing的缺省位置与hg pull和hg
incoming的位置不同。我们可以给.hg/hgrc文件的[paths]节加上default-push条目，如下所示。
[paths]
default = http://www.selenic.com/repo/hg
default-push = http://hg.example.com/hg

通过网络共享修改

前面几节我们介绍的命令不仅可以用于本地版本库，还可以用于网络；只要传递的参数从本地路径变成URL就可以了。
$ hg outgoing http://hg.serpentine.com/tutorial/hello
comparing with http://hg.serpentine.com/tutorial/hello
searching for changes
changeset: 5:8c1f47585717
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:13 2011 +0000
summary: Added an extra line of output

在本例中，我们可以看到准备向远程版本库推送的变更，但是该版本库并不允许匿名用户推送。
$ hg push http://hg.serpentine.com/tutorial/hello
pushing to http://hg.serpentine.com/tutorial/hello
searching for changes
remote: ssl required

开始新项目

开始一个新项目和使用一个已有项目一样简单。hg init命令可以创建一个新的，空的Mercurial版本库。
$ hg init myproject

在当前目录创建一个名为myproject的版本库就是这么简单。
$ ls -l
total 8
-rw-r--r-- 1 oracle dba 47 Mar 17 05:12 goodbye.c
-rw-r--r-- 1 oracle dba 45 Mar 17 05:12 hello.c
drwxr-xr-x 3 oracle dba 72 Mar 17 05:12 myproject

我们认为myproject是一个Mercurial版本库，
因为它包含了.hg目录。
$ ls -al myproject
total 0
drwxr-xr-x 3 oracle dba 72 Mar 17 05:12 .
drwx------ 3 oracle dba 184 Mar 17 05:12 ..
drwxr-xr-x 3 oracle dba 128 Mar 17 05:12 .hg

如果想将一些已有的文件加入版本库，我们可以将它们拷贝到目录下，然后执行hg
add命令，告诉Mercurial开始管理它们。
$ cd myproject
$ cp ../hello.c .
$ cp ../goodbye.c .
$ hg add
adding goodbye.c
adding hello.c
$ hg status
A goodbye.c
A hello.c

当对项目的状况满意时，我们就提交的变更。
$ hg commit -m 'Initial commit'

只需要几分钟就可以在一个新的项目上使用Mercurial，这时它的魅力之一。现在版本控制做起来非常方便，我们可以在很小的不需要复杂工具的项目上使用它。

Chapter 3. Mercurial 教程: 合并工作

我们已经介绍了如何克隆版本库，如何进行修改，从一个版本库向另外一个版本库拉或者推送变更。下面我们要介绍的是如何从不同的版本库合并变更。
合并的流程

在使用分布式版本控制工具中，合并是非常重要的。以下是几种需要进行合并的情形。
	在一个合作的项目中，Alice和Bob都有一个项目版本库的私有拷贝。Alice修复了在她的库中的一个bug；Bob则在他的版本库中增加了一个新功能。他们希望分享版本库，每个人都得到新的功能，同时又修复了bug。

	Cynthia同时在一个项目上进行几个不同的任务，每个任务都是孤立的。以这种方式工作意味着她经常需要将不同部分的工作进行合并。

因为我们经常需要合并，Mercurial使得这个过程很简单。下面我们演示一下合并的过程。我们仍然从克隆另外一个版本库开始（看看它出现的多么频繁），并在它上面作更改。
$ cd ..
$ hg clone hello my-new-hello
updating to branch default
2 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd my-new-hello
Make some simple edits to hello.c.
$ my-text-editor hello.c
$ hg commit -m 'A new hello for a new day.'

现在hello.c有了内容不尽相同的两份拷贝。 两个版本库的历史也出现差异，就像在Figure 3.1, “my-hello 与 my-new-hello 最新的历史分叉”中显示的那样。下面是文件在一个版本库中的拷贝。
$ cat hello.c
/*
 * Placed in the public domain by Bryan O'Sullivan. This program is
 * not covered by patents in the United States or other countries.
 */

#include <stdio.h>

int main(int argc, char **argv)
{
	printf("once more, hello.\n");
	printf("hello, world!\");
	printf("hello again!\n");
	return 0;
}

下面是该文件在另外一个版本库中稍微不同的版本。
$ cat ../my-hello/hello.c
/*
 * Placed in the public domain by Bryan O'Sullivan. This program is
 * not covered by patents in the United States or other countries.
 */

#include <stdio.h>

int main(int argc, char **argv)
{
	printf("hello, world!\");
	printf("hello again!\n");
	return 0;
}

Figure 3.1. my-hello 与 my-new-hello 最新的历史分叉
[image: XXX add text]

我们已经知道，从我们的my-hello版本库推送变更对工作目录没有任何影响。
$ hg pull ../my-hello
pulling from ../my-hello
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)

但是，hg pull命令还是输出了一些关于
“heads”的信息。
顶点修改集

记住Mercurial记录了每个变更的父版本。如果一个变更有父版本，我们称之为其父版本的孩子或者后裔。领头版本是一个没有孩子的版本。顶点版就是这样一个领头版本，因为版本库中的最新版没有任何孩子。有时候一个版本库中会有多个领头版本
Figure 3.2. 从 my-hello 拉到 my-new-hello 之后版本库的内容
[image: XXX add text]

在Figure 3.2, “从 my-hello 拉到 my-new-hello 之后版本库的内容”中，你可以看到将变更从my-hello拖到my-new-hello之后的效果。my-new-hello中已有的版本历史没有发生任何变化，但是增加了一个新的版本。从Figure 3.1, “my-hello 与 my-new-hello 最新的历史分叉”中，我们可以发现变更集标识符在新的版本库中保持不变，但是版本号变了。
(顺便说一句，这个例子很好的解释了为什么在讨论变更集的时候版本号是不安全的。我们可以使用hg
heads命令查看版本库中的领头版本。
$ hg heads
changeset: 6:8c1f47585717
tag: tip
parent: 4:2278160e78d4
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:13 2011 +0000
summary: Added an extra line of output

changeset: 5:17a0a2348b60
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:19 2011 +0000
summary: A new hello for a new day.

执行合并

如果我们使用常用的hg update命令来更新到新的顶点，会发生什么事情呢？
$ hg update
abort: crosses branches (use 'hg merge' or use 'hg update -c')

Mercurial告诉我们hg
update不能进行合并；当它认为我们可能需要进行合并的时候，它不会更工作目录。除非我们强制它这样做。（附带说一下，使用hg
update -C命令强制更新会丢掉当前目录没有提交的变更。）
我们使用 hg merge 命令来合并两个领头版本。
$ hg merge
merging hello.c
0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)

我们解析了hello.c的内容。这个操作更新了工作目录，使其包含了两个领头版本的变更，这反映在hg parents的输出和hello.c的内容上。
$ hg parents
changeset: 5:17a0a2348b60
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:19 2011 +0000
summary: A new hello for a new day.

changeset: 6:8c1f47585717
tag: tip
parent: 4:2278160e78d4
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:13 2011 +0000
summary: Added an extra line of output

$ cat hello.c
/*
 * Placed in the public domain by Bryan O'Sullivan. This program is
 * not covered by patents in the United States or other countries.
 */

#include <stdio.h>

int main(int argc, char **argv)
{
	printf("once more, hello.\n");
	printf("hello, world!\");
	printf("hello again!\n");
	return 0;
}

提交合并结果

当我们完成合并，并通过hg commit提交合并的结果之前，hg parents命令都会显示当前版本有两个父版本。
$ hg commit -m 'Merged changes'

现在我们有了一个新的顶点版本；注意先前的领头版本都是它的父版本。这和刚才我们用 hg parents显示的版本一致。
$ hg tip
changeset: 7:f9fd725fff8a
tag: tip
parent: 5:17a0a2348b60
parent: 6:8c1f47585717
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:20 2011 +0000
summary: Merged changes

图Figure 3.3, “在合并期间，以及提交之后的工作目录与版本库”显示了在合并过程中，工作目录中发生了什么，还有当提交发生的时候，它是如何影响版本库的。在合并过程中，当前目录有两个父变更集，他们都成为新的变更集的父版本。
Figure 3.3. 在合并期间，以及提交之后的工作目录与版本库
[image: XXX add text]

我们有时候说合并有两边：左边是hg
parents命令输出的第一个父版本，右边是第二个。如上例所示，如果在合并前版本号是5，那么它就会成为合并的左边。

合并有冲突的变更

大多数合并都很简单，但有时候你会发现待合并的不同变更修改了同一文件的相同部分。除非修改完全一致，否则合并会出现冲突，这时候你就要决定如何在不同的变更中取舍，最后形成一致的结果。
Figure 3.4. 冲突的修改
[image: XXX add text]

Figure 3.4, “冲突的修改”是一个文档变更相互冲突的的实例。我们从文件的一个版本开始，做了一些修改；但别人也在相同的地方作了不同的修改。我们解决冲突的目的就是要决定文件到底应该是什么样子。
Mercurial没有内建的工具处理冲突。相反，它会运行外部程序，通常是一个能够以图形化显示冲突的软件。缺省情况下，Mercurial会试着从有可能在你系统上安装的几个合并工具中挑选一个。它首先会尝试几个全自动的合并工具；如果不成功（因为解决冲突需要人工干预）或者找不到，它会尝试其他不同的图形化合并工具。
如果将环境变量HGMERGE传给你的程序，还可以让Mercurial运行特定的程序或者脚本。
使用图形合并工具

我比较喜欢的图形化的合并工具是kdiff3。我会用它来描述图形化合并工具的一般特征。你可以在Figure 3.5, “使用 kdiff3 合并文件的不同版本”看到正在使用中的kdiff3的截图.
它正在进行的这种合并叫三路合并。因为我们感兴趣的文件有三种不同的版本。所以它把窗口的上半部分为3格。
	左边是文件的基版本，也就是我们合并的两个版本的最新的父版本。

	中间是“我们的”版本，其内容已经被我们修改。

	右边是“他们的”版本，就是从我们试图进行合并的变更集。

它们下面的方格是合并的当前结果。我们任务就是替换所有的红色文字，它们标志着未解决的冲突，我们必须在“我们的”和“他们的”版本中进行合理的合并。
这四格都是关联的，如果我们将其中任意一个垂直或水平滚动，其他的格也会更新对应文件的相关部分的显示。
Figure 3.5. 使用 kdiff3 合并文件的不同版本
[image: XXX add text]

对于文件的每个冲突，我们可以用基版本，我们的版本或者他们的版本的一些文字的组合来解决冲突。也可以在任何时候手工编辑合并后的文件。这种情况下我们需要进一步的修改。
有许多可以选择的合并工具，篇幅有限，这里就不多介绍了。他们适应于不同的平台，各有其优点和缺点。大多数软件都是针对合并纯文本文件优化的，另外一些则是针对特殊的格式（通常是XML）进行了优化。

合并实例

在本例中，我们将重建Figure 3.4, “冲突的修改”的修改历史。我们从创建文档基版本的版本库开始。
$ cat > letter.txt <<EOF
> Greetings!
> I am Mariam Abacha, the wife of former
> Nigerian dictator Sani Abacha.
> EOF
$ hg add letter.txt
$ hg commit -m '419 scam, first draft'

我们克隆版本库并且修改文件。
$ cd ..
$ hg clone scam scam-cousin
updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd scam-cousin
$ cat > letter.txt <<EOF
> Greetings!
> I am Shehu Musa Abacha, cousin to the former
> Nigerian dictator Sani Abacha.
> EOF
$ hg commit -m '419 scam, with cousin'

让另外一个克隆去模拟别人修改文件（这意味着当你利用不同的版本库处理不同任务的时候，常常需要和自己合并，实际上也就是找到并解决冲突。）
$ cd ..
$ hg clone scam scam-son
updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd scam-son
$ cat > letter.txt <<EOF
> Greetings!
> I am Alhaji Abba Abacha, son of the former
> Nigerian dictator Sani Abacha.
> EOF
$ hg commit -m '419 scam, with son'

这个文件已经有了两个不同的版本，我们来设置适合进行合并的环境。
$ cd ..
$ hg clone scam-cousin scam-merge
updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd scam-merge
$ hg pull -u ../scam-son
pulling from ../scam-son
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
not updating, since new heads added
(run 'hg heads' to see heads, 'hg merge' to merge)

在本例中，我们设置HGMERGE告诉MERCURIAL用非交互式的合并命令。许多类似Unix系统都有这个功能。（如果你在电脑上，不必设置HGMERGE，直接使用GUI会更好）
$ export HGMERGE=merge
$ hg merge
merging letter.txt
merge: warning: conflicts during merge
merging letter.txt failed!
0 files updated, 0 files merged, 0 files removed, 1 files unresolved
use 'hg resolve' to retry unresolved file merges or 'hg update -C' to abandon
$ cat letter.txt
Greetings!
<<<<<<< /tmp/tour-merge-conflict8fnLeZ/scam-merge/letter.txt
I am Shehu Musa Abacha, cousin to the former
=======
I am Alhaji Abba Abacha, son of the former
>>>>>>> /tmp/letter.txt~other.nfo8ek
Nigerian dictator Sani Abacha.

由于合并解决不了冲突的变更，所以冲突文件会有标记，表明哪些行存在冲突，他们来自我们的文件还是他们的文件。
Mercurial能根据merge命令的退出状态判断出合并失败，所以它会告诉我们如果我们想重新执行合并操作的时候需要运行什么命令。这可能很有用，例如，我们运行了一个图形化合并工具然后发现不知所措或者意识到犯了错误然后退出。
如果自动化或者手动合并失败，那么我们只好自己“修复”受影响文件，然后提交合并的结果。
$ cat > letter.txt <<EOF
> Greetings!
> I am Bryan O'Sullivan, no relation of the former
> Nigerian dictator Sani Abacha.
> EOF
$ hg resolve -m letter.txt
$ hg commit -m 'Send me your money'
$ hg tip
changeset: 3:949dc2591988
tag: tip
parent: 1:695de5e0826a
parent: 2:4c2249119bfe
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:22 2011 +0000
summary: Send me your money

在哪里能找到 hg resolve 命令?
Mercurial 1.1版于2008年发布，从这个版本开始引入了hg
resolve命令。如果你还在使用更老的版本（可以运行hg
version命令查看），这个命令还不存在。如果你的Mercurial的版本比1.1还旧，那么我强烈建议你在尝试解决复杂的合并之前升级到新的版本。

简化拉-合并-提交程序

上面讨论的合并变更的过程非常简单，但是需要按照顺序允许三个命令
hg pull -u
hg merge
hg commit -m 'Merged remote changes'
在最后提交的时候，你需要输入一条提交信息，这通常并不怎么有趣。
如果有可能的话，最好能够减少需要的步骤。实际上，Mercurial发布的时候有一个扩展叫做fetch可以完成这个工作。
Mercurial提供了灵活的扩展机制，人们可以利用它扩展它的功能，同时保持Mercurial的核心很小并且容易管理。有些扩展增加了新的命令，你可以通过命令行使用它们，而其它的都是“幕后工作”，比如增加了Mercurial内建服务器模式的能力。
fetch扩展增加了一个新的命令，毫无疑问，它叫做hg fetch。这个扩展的功能像hg pull
-u, hg merge和hg commit的组合。
它首先从其他版本库将变更拖入当前版本库。如果它发现变更向版本库添加了新的领头版本，它会更新到新的领头版本，开始合并然后（如果合并成功）提交合并的结果和一条自动产生的提交信息。如果没有新的领头版本，它仅仅会将当前目录更新到新的顶点。
使用fetch扩展非常容易。编辑你的家目录的.hgrc文件，找到扩展段或者创建一个扩展段。然后增加一行“fetch=”。
[extensions]
fetch =
（一般情况下，“=”的右边应该表示如何找到扩展，但是因为fetch扩展是在标准的发布版中， Mercurial知道哪里能找到它。）

重命名，复制与合并

在一个项目的生命里，我们经常需要更改它的文件和目录的布局。这可能很简单，仅仅是对文件改名，或者非常复杂，像对整个项目的文件层次重新规划。
Mercurial对这种复杂的变更支持的很好，只要你告诉它你想干什么就可以了。如果你想要给一个文件改名，只要用hg
rename[2]给它改名就可以了，在以后需要合并的时候，Mercurial知道该怎么做。
我们将在the section called “拷贝文件”中详细介绍这些命令的使用。

[2] 如果你是一个Unix用户，你会很高兴的发现hg rename可以简写为hg
mv。

Chapter 4. Mercurial 内幕

Unlike many revision control systems, the concepts upon which Mercurial is
built are simple enough that it's easy to understand how the software really
works. Knowing these details certainly isn't necessary, so it is certainly
safe to skip this chapter. However, I think you will get more out of the
software with a “mental model” of what's going on.
Being able to understand what's going on behind the scenes gives me
confidence that Mercurial has been carefully designed to be both
safe and efficient. And just as
importantly, if it's easy for me to retain a good idea of what the software
is doing when I perform a revision control task, I'm less likely to be
surprised by its behavior.
In this chapter, we'll initially cover the core concepts behind Mercurial's
design, then continue to discuss some of the interesting details of its
implementation.
Mercurial 的历史记录

跟踪单一文件的历史

When Mercurial tracks modifications to a file, it stores the history of that
file in a metadata object called a filelog. Each entry
in the filelog contains enough information to reconstruct one revision of
the file that is being tracked. Filelogs are stored as files in the
.hg/store/data
directory. A filelog contains two kinds of information: revision data, and
an index to help Mercurial to find a revision efficiently.
A file that is large, or has a lot of history, has its filelog stored in
separate data (“.d” suffix) and index
(“.i” suffix) files. For small files
without much history, the revision data and index are combined in a single
“.i” file. The correspondence between a
file in the working directory and the filelog that tracks its history in the
repository is illustrated in Figure 4.1, “工作目录中的文件与版本库中的文件日志之间的关系”.
Figure 4.1. 工作目录中的文件与版本库中的文件日志之间的关系
[image: XXX add text]

管理跟踪的文件

Mercurial uses a structure called a manifest to collect
together information about the files that it tracks. Each entry in the
manifest contains information about the files present in a single
changeset. An entry records which files are present in the changeset, the
revision of each file, and a few other pieces of file metadata.

记录修改集信息

The changelog contains information about each
changeset. Each revision records who committed a change, the changeset
comment, other pieces of changeset-related information, and the revision of
the manifest to use.

版本之间的关系

Within a changelog, a manifest, or a filelog, each revision stores a pointer
to its immediate parent (or to its two parents, if it's a merge revision).
As I mentioned above, there are also relationships between revisions
across these structures, and they are hierarchical in
nature.
For every changeset in a repository, there is exactly one revision stored in
the changelog. Each revision of the changelog contains a pointer to a
single revision of the manifest. A revision of the manifest stores a
pointer to a single revision of each filelog tracked when that changeset was
created. These relationships are illustrated in Figure 4.2, “元数据之间的关系”.
Figure 4.2. 元数据之间的关系
[image: XXX add text]

As the illustration shows, there is not a “one to
one” relationship between revisions in the changelog, manifest, or
filelog. If a file that Mercurial tracks hasn't changed between two
changesets, the entry for that file in the two revisions of the manifest
will point to the same revision of its filelog[3].

[3] It is possible (though unusual) for the manifest to remain the same between
two changesets, in which case the changelog entries for those changesets
will point to the same revision of the manifest.

安全，高效的存储

The underpinnings of changelogs, manifests, and filelogs are provided by a
single structure called the revlog.
高效存储

The revlog provides efficient storage of revisions using a
delta mechanism. Instead of storing a complete copy of
a file for each revision, it stores the changes needed to transform an older
revision into the new revision. For many kinds of file data, these deltas
are typically a fraction of a percent of the size of a full copy of a file.
Some obsolete revision control systems can only work with deltas of text
files. They must either store binary files as complete snapshots or encoded
into a text representation, both of which are wasteful approaches.
Mercurial can efficiently handle deltas of files with arbitrary binary
contents; it doesn't need to treat text as special.

安全操作

Mercurial only ever appends data to the end of a revlog
file. It never modifies a section of a file after it has written it. This
is both more robust and efficient than schemes that need to modify or
rewrite data.
In addition, Mercurial treats every write as part of a
transaction that can span a number of files. A
transaction is atomic: either the entire transaction
succeeds and its effects are all visible to readers in one go, or the whole
thing is undone. This guarantee of atomicity means that if you're running
two copies of Mercurial, where one is reading data and one is writing it,
the reader will never see a partially written result that might confuse it.
The fact that Mercurial only appends to files makes it easier to provide
this transactional guarantee. The easier it is to do stuff like this, the
more confident you should be that it's done correctly.

快速检索

Mercurial cleverly avoids a pitfall common to all earlier revision control
systems: the problem of inefficient retrieval. Most
revision control systems store the contents of a revision as an incremental
series of modifications against a “snapshot”. (Some base the
snapshot on the oldest revision, others on the newest.) To reconstruct a
specific revision, you must first read the snapshot, and then every one of
the revisions between the snapshot and your target revision. The more
history that a file accumulates, the more revisions you must read, hence the
longer it takes to reconstruct a particular revision.
Figure 4.3. 版本日志的快照，以及增量差异
[image: XXX add text]

The innovation that Mercurial applies to this problem is simple but
effective. Once the cumulative amount of delta information stored since the
last snapshot exceeds a fixed threshold, it stores a new snapshot
(compressed, of course), instead of another delta. This makes it possible
to reconstruct any revision of a file quickly. This
approach works so well that it has since been copied by several other
revision control systems.
Figure 4.3, “版本日志的快照，以及增量差异” illustrates the idea. In an entry
in a revlog's index file, Mercurial stores the range of entries from the
data file that it must read to reconstruct a particular revision.
旁白: 视频压缩的影响

If you're familiar with video compression or have ever watched a TV feed
through a digital cable or satellite service, you may know that most video
compression schemes store each frame of video as a delta against its
predecessor frame.
Mercurial borrows this idea to make it possible to reconstruct a revision
from a snapshot and a small number of deltas.

鉴别和强完整性

Along with delta or snapshot information, a revlog entry contains a
cryptographic hash of the data that it represents. This makes it difficult
to forge the contents of a revision, and easy to detect accidental
corruption.
Hashes provide more than a mere check against corruption; they are used as
the identifiers for revisions. The changeset identification hashes that you
see as an end user are from revisions of the changelog. Although filelogs
and the manifest also use hashes, Mercurial only uses these behind the
scenes.
Mercurial verifies that hashes are correct when it retrieves file revisions
and when it pulls changes from another repository. If it encounters an
integrity problem, it will complain and stop whatever it's doing.
In addition to the effect it has on retrieval efficiency, Mercurial's use of
periodic snapshots makes it more robust against partial data corruption. If
a revlog becomes partly corrupted due to a hardware error or system bug,
it's often possible to reconstruct some or most revisions from the
uncorrupted sections of the revlog, both before and after the corrupted
section. This would not be possible with a delta-only storage model.

修订历史，分支与合并

Every entry in a Mercurial revlog knows the identity of its immediate
ancestor revision, usually referred to as its parent.
In fact, a revision contains room for not one parent, but two. Mercurial
uses a special hash, called the “null ID”, to represent the
idea “there is no parent here”. This hash is simply a string
of zeroes.
In Figure 4.4, “版本日志的设计结构”, you can see an example of the
conceptual structure of a revlog. Filelogs, manifests, and changelogs all
have this same structure; they differ only in the kind of data stored in
each delta or snapshot.
The first revision in a revlog (at the bottom of the image) has the null ID
in both of its parent slots. For a “normal” revision, its
first parent slot contains the ID of its parent revision, and its second
contains the null ID, indicating that the revision has only one real
parent. Any two revisions that have the same parent ID are branches. A
revision that represents a merge between branches has two normal revision
IDs in its parent slots.
Figure 4.4. 版本日志的设计结构
[image: XXX add text]

工作目录

In the working directory, Mercurial stores a snapshot of the files from the
repository as of a particular changeset.
The working directory “knows” which changeset it contains.
When you update the working directory to contain a particular changeset,
Mercurial looks up the appropriate revision of the manifest to find out
which files it was tracking at the time that changeset was committed, and
which revision of each file was then current. It then recreates a copy of
each of those files, with the same contents it had when the changeset was
committed.
The dirstate is a special structure that contains
Mercurial's knowledge of the working directory. It is maintained as a file
named .hg/dirstate inside a repository. The dirstate
details which changeset the working directory is updated to, and all of the
files that Mercurial is tracking in the working directory. It also lets
Mercurial quickly notice changed files, by recording their checkout times
and sizes.
Just as a revision of a revlog has room for two parents, so that it can
represent either a normal revision (with one parent) or a merge of two
earlier revisions, the dirstate has slots for two parents. When you use the
hg update command, the changeset that you
update to is stored in the “first parent” slot, and the null ID
in the second. When you hg merge with
another changeset, the first parent remains unchanged, and the second parent
is filled in with the changeset you're merging with. The hg parents command tells you what the parents of the
dirstate are.
当你提交时发生的事情

The dirstate stores parent information for more than just book-keeping
purposes. Mercurial uses the parents of the dirstate as the
parents of a new changeset when you perform a commit.
Figure 4.5. 工作目录可以有两个父亲
[image: XXX add text]

Figure 4.5, “工作目录可以有两个父亲” shows the normal state of the working
directory, where it has a single changeset as parent. That changeset is the
tip, the newest changeset in the repository that has no
children.
Figure 4.6. 提交之后，工作目录的父亲就改变了
[image: XXX add text]

It's useful to think of the working directory as “the changeset I'm
about to commit”. Any files that you tell Mercurial that you've
added, removed, renamed, or copied will be reflected in that changeset, as
will modifications to any files that Mercurial is already tracking; the new
changeset will have the parents of the working directory as its parents.
After a commit, Mercurial will update the parents of the working directory,
so that the first parent is the ID of the new changeset, and the second is
the null ID. This is shown in Figure 4.6, “提交之后，工作目录的父亲就改变了”. Mercurial doesn't touch any of
the files in the working directory when you commit; it just modifies the
dirstate to note its new parents.

创建新顶点

It's perfectly normal to update the working directory to a changeset other
than the current tip. For example, you might want to know what your project
looked like last Tuesday, or you could be looking through changesets to see
which one introduced a bug. In cases like this, the natural thing to do is
update the working directory to the changeset you're interested in, and then
examine the files in the working directory directly to see their contents as
they were when you committed that changeset. The effect of this is shown in
Figure 4.7, “同步到旧修改集的工作目录”.
Figure 4.7. 同步到旧修改集的工作目录
[image: XXX add text]

Having updated the working directory to an older changeset, what happens if
you make some changes, and then commit? Mercurial behaves in the same way as
I outlined above. The parents of the working directory become the parents
of the new changeset. This new changeset has no children, so it becomes the
new tip. And the repository now contains two changesets that have no
children; we call these heads. You can see the
structure that this creates in Figure 4.8, “对同步到旧修改集的工作目录提交之后”.
Figure 4.8. 对同步到旧修改集的工作目录提交之后
[image: XXX add text]

Note
If you're new to Mercurial, you should keep in mind a common
“error”, which is to use the hg
pull command without any options. By default, the hg pull command does not update
the working directory, so you'll bring new changesets into your repository,
but the working directory will stay synced at the same changeset as before
the pull. If you make some changes and commit afterwards, you'll thus
create a new head, because your working directory isn't synced to whatever
the current tip is. To combine the operation of a pull, followed by an
update, run hg pull -u.
I put the word “error” in quotes because all that you need to
do to rectify the situation where you created a new head by accident is
hg merge, then hg
commit. In other words, this almost never has negative
consequences; it's just something of a surprise for newcomers. I'll discuss
other ways to avoid this behavior, and why Mercurial behaves in this
initially surprising way, later on.

合并修改

When you run the hg merge command,
Mercurial leaves the first parent of the working directory unchanged, and
sets the second parent to the changeset you're merging with, as shown in
Figure 4.9, “合并两个顶点”.
Figure 4.9. 合并两个顶点
[image: XXX add text]

Mercurial also has to modify the working directory, to merge the files
managed in the two changesets. Simplified a little, the merging process
goes like this, for every file in the manifests of both changesets.
	If neither changeset has modified a file, do nothing with that file.

	If one changeset has modified a file, and the other hasn't, create the
modified copy of the file in the working directory.

	If one changeset has removed a file, and the other hasn't (or has also
deleted it), delete the file from the working directory.

	If one changeset has removed a file, but the other has modified the file,
ask the user what to do: keep the modified file, or remove it?

	If both changesets have modified a file, invoke an external merge program to
choose the new contents for the merged file. This may require input from
the user.

	If one changeset has modified a file, and the other has renamed or copied
the file, make sure that the changes follow the new name of the file.

There are more details—merging has plenty of corner cases—but
these are the most common choices that are involved in a merge. As you can
see, most cases are completely automatic, and indeed most merges finish
automatically, without requiring your input to resolve any conflicts.
When you're thinking about what happens when you commit after a merge, once
again the working directory is “the changeset I'm about to
commit”. After the hg merge command
completes, the working directory has two parents; these will become the
parents of the new changeset.
Mercurial lets you perform multiple merges, but you must commit the results
of each individual merge as you go. This is necessary because Mercurial
only tracks two parents for both revisions and the working directory. While
it would be technically feasible to merge multiple changesets at once,
Mercurial avoids this for simplicity. With multi-way merges, the risks of
user confusion, nasty conflict resolution, and making a terrible mess of a
merge would grow intolerable.

合并与重命名

A surprising number of revision control systems pay little or no attention
to a file's name over time. For instance, it used to
be common that if a file got renamed on one side of a merge, the changes
from the other side would be silently dropped.
Mercurial records metadata when you tell it to perform a rename or copy. It
uses this metadata during a merge to do the right thing in the case of a
merge. For instance, if I rename a file, and you edit it without renaming
it, when we merge our work the file will be renamed and have your edits
applied.

其它有趣的设计特性

In the sections above, I've tried to highlight some of the most important
aspects of Mercurial's design, to illustrate that it pays careful attention
to reliability and performance. However, the attention to detail doesn't
stop there. There are a number of other aspects of Mercurial's construction
that I personally find interesting. I'll detail a few of them here,
separate from the “big ticket” items above, so that if you're
interested, you can gain a better idea of the amount of thinking that goes
into a well-designed system.
智能压缩

When appropriate, Mercurial will store both snapshots and deltas in
compressed form. It does this by always trying to
compress a snapshot or delta, but only storing the compressed version if
it's smaller than the uncompressed version.
This means that Mercurial does “the right thing” when storing a
file whose native form is compressed, such as a zip
archive or a JPEG image. When these types of files are compressed a second
time, the resulting file is usually bigger than the once-compressed form,
and so Mercurial will store the plain zip or JPEG.
Deltas between revisions of a compressed file are usually larger than
snapshots of the file, and Mercurial again does “the right
thing” in these cases. It finds that such a delta exceeds the
threshold at which it should store a complete snapshot of the file, so it
stores the snapshot, again saving space compared to a naive delta-only
approach.
网络重新压缩

When storing revisions on disk, Mercurial uses the “deflate”
compression algorithm (the same one used by the popular
zip archive format), which balances good speed with a
respectable compression ratio. However, when transmitting revision data
over a network connection, Mercurial uncompresses the compressed revision
data.
If the connection is over HTTP, Mercurial recompresses the entire stream of
data using a compression algorithm that gives a better compression ratio
(the Burrows-Wheeler algorithm from the widely used bzip2
compression package). This combination of algorithm and compression of the
entire stream (instead of a revision at a time) substantially reduces the
number of bytes to be transferred, yielding better network performance over
most kinds of network.
If the connection is over ssh, Mercurial
doesn't recompress the stream, because
ssh can already do this itself. You can tell Mercurial
to always use ssh's compression feature by editing the
.hgrc file in your home directory as follows.
[ui]
ssh = ssh -C

读写顺序与原子性

Appending to files isn't the whole story when it comes to guaranteeing that
a reader won't see a partial write. If you recall Figure 4.2, “元数据之间的关系”, revisions in the changelog point to
revisions in the manifest, and revisions in the manifest point to revisions
in filelogs. This hierarchy is deliberate.
A writer starts a transaction by writing filelog and manifest data, and
doesn't write any changelog data until those are finished. A reader starts
by reading changelog data, then manifest data, followed by filelog data.
Since the writer has always finished writing filelog and manifest data
before it writes to the changelog, a reader will never read a pointer to a
partially written manifest revision from the changelog, and it will never
read a pointer to a partially written filelog revision from the manifest.

并发访问

The read/write ordering and atomicity guarantees mean that Mercurial never
needs to lock a repository when it's reading data, even
if the repository is being written to while the read is occurring. This has
a big effect on scalability; you can have an arbitrary number of Mercurial
processes safely reading data from a repository all at once, no matter
whether it's being written to or not.
The lockless nature of reading means that if you're sharing a repository on
a multi-user system, you don't need to grant other local users permission to
write to your repository in order for them to be able
to clone it or pull changes from it; they only need
read permission. (This is not a
common feature among revision control systems, so don't take it for granted!
Most require readers to be able to lock a repository to access it safely,
and this requires write permission on at least one directory, which of
course makes for all kinds of nasty and annoying security and administrative
problems.)
Mercurial uses locks to ensure that only one process can write to a
repository at a time (the locking mechanism is safe even over filesystems
that are notoriously hostile to locking, such as NFS). If a repository is
locked, a writer will wait for a while to retry if the repository becomes
unlocked, but if the repository remains locked for too long, the process
attempting to write will time out after a while. This means that your daily
automated scripts won't get stuck forever and pile up if a system crashes
unnoticed, for example. (Yes, the timeout is configurable, from zero to
infinity.)
安全的目录状态访问

As with revision data, Mercurial doesn't take a lock to read the dirstate
file; it does acquire a lock to write it. To avoid the possibility of
reading a partially written copy of the dirstate file, Mercurial writes to a
file with a unique name in the same directory as the dirstate file, then
renames the temporary file atomically to dirstate. The
file named dirstate is thus guaranteed to be complete,
not partially written.

避免查找

Critical to Mercurial's performance is the avoidance of seeks of the disk
head, since any seek is far more expensive than even a comparatively large
read operation.
This is why, for example, the dirstate is stored in a single file. If there
were a dirstate file per directory that Mercurial tracked, the disk would
seek once per directory. Instead, Mercurial reads the entire single
dirstate file in one step.
Mercurial also uses a “copy on write” scheme when cloning a
repository on local storage. Instead of copying every revlog file from the
old repository into the new repository, it makes a “hard link”,
which is a shorthand way to say “these two names point to the same
file”. When Mercurial is about to write to one of a revlog's files,
it checks to see if the number of names pointing at the file is greater than
one. If it is, more than one repository is using the file, so Mercurial
makes a new copy of the file that is private to this repository.
A few revision control developers have pointed out that this idea of making
a complete private copy of a file is not very efficient in its use of
storage. While this is true, storage is cheap, and this method gives the
highest performance while deferring most book-keeping to the operating
system. An alternative scheme would most likely reduce performance and
increase the complexity of the software, but speed and simplicity are key to
the “feel” of day-to-day use.

目录状态的其它内容

Because Mercurial doesn't force you to tell it when you're modifying a file,
it uses the dirstate to store some extra information so it can determine
efficiently whether you have modified a file. For each file in the working
directory, it stores the time that it last modified the file itself, and the
size of the file at that time.
When you explicitly hg add, hg remove, hg
rename or hg copy files,
Mercurial updates the dirstate so that it knows what to do with those files
when you commit.
The dirstate helps Mercurial to efficiently check the status of files in a
repository.
	When Mercurial checks the state of a file in the working directory, it first
checks a file's modification time against the time in the dirstate that
records when Mercurial last wrote the file. If the last modified time is the
same as the time when Mercurial wrote the file, the file must not have been
modified, so Mercurial does not need to check any further.

	If the file's size has changed, the file must have been modified. If the
modification time has changed, but the size has not, only then does
Mercurial need to actually read the contents of the file to see if it has
changed.

Storing the modification time and size dramatically reduces the number of
read operations that Mercurial needs to perform when we run commands like
hg status. This results in large performance
improvements.

Chapter 5. Mercurial 的日常使用

告诉 Mercurial 要跟踪哪些文件

Mercurial does not work with files in your repository unless you tell it to
manage them. The hg status command will
tell you which files Mercurial doesn't know about; it uses a
“?” to display such files.
使用hg add命令来让Mercurial跟踪一个文件。
一旦添加了一个文件,该文件的hg
status的输出就从“?”变成了“A”.
$ hg init add-example
$ cd add-example
$ echo a > myfile.txt
$ hg status
? myfile.txt
$ hg add myfile.txt
$ hg status
A myfile.txt
$ hg commit -m 'Added one file'
$ hg status

在运行hg commit之后，你在提交之前添加的文件将不会再出现在hg status命令的输出中。原因在于，在缺省情况下，hg
status仅仅告诉你那些你可能“感兴趣”的文件—那些你已经（比如）修改，删除，改名的文件。如果你的版本库中包含几千个文件，你基本上不会想知道Mercurial跟踪了哪些文件，如果这些文件并没有被更改的话。（你还是可以得到这一信息的，以后我们还会讨论它。）
添加一个文件之后，Mercurial并不会马上对它做任何操作。相反，在下次你提交的时候
，它会给这个文件作一个快照。并且在你以后每次提交的时候继续跟踪这个文件，直到你删除它。
明确与隐含文件命名

Mercurial一个有用的特征是如果你将一个目录名传递给一个命令，任何一个Mercurial命令都会作如下处理“我要在这个目录和它的子目录中的所有文件上执行操作”。
$ mkdir b
$ echo b > b/somefile.txt
$ echo c > b/source.cpp
$ mkdir b/d
$ echo d > b/d/test.h
$ hg add b
adding b/d/test.h
adding b/somefile.txt
adding b/source.cpp
$ hg commit -m 'Added all files in subdirectory'

注意在这个上面这个例子中，Mercurial输出了它添加的文件的名字，然而在前面的例子中当我们添加文件myfile.txt的时候，它没有输出任何东西。
在先前的那个例子中，我们在命令中明确的给出了要添加的文件。在这种情况下，Mercurial假设我们知道我们在做什么，所以它不输出任何东西。
然而，当我们通过目录隐含地指定文件的时候，Mercurial会将其操作的每个文件的文件名都输出。这样会更清晰，同时减少可能意外情况。大多数Mercurial命令都有这样的行为。

Mercurial 只跟踪文件，不跟踪目录

Mercurial并不跟踪目录信息。相反，它会跟踪文件的路径。在创建一个文件之前，它首先会创建该文件路径中缺少的目录。在删除文件之后，它会删除在被删除文件路径上的任何空目录。这看起来区别不大，但是却导致这样的结果：Mercurial不可能管理一个完全为空的目录。
空目录基本上没有什么用，而且你可以用其他的方法达到相同的效果。因此Mercurial的开发者认为管理空目录带来的复杂性超过它带来的好处。
如果你真的希望在版本中包含空目录，有几种方法。其一是创建一个目录，然后用hg
add命令在目录中添加一个“隐藏”文件。比如在UNIX类似系统上，大多数命令和GUI工具都认为文件名以点（“.”）
开头的文件是隐藏文件。这种方法如下。
$ hg init hidden-example
$ cd hidden-example
$ mkdir empty
$ touch empty/.hidden
$ hg add empty/.hidden
$ hg commit -m 'Manage an empty-looking directory'
$ ls empty
$ cd ..
$ hg clone hidden-example tmp
updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ ls tmp
empty
$ ls tmp/empty

另外一种方法是在使用自动化创建脚本，在需要空目录的时候创建。

如何停止跟踪文件

一旦你决定要将一个文件从版本库中删除，使用 hg
remove命令。它会删除该文件，同时通知Mercurial停止跟踪它（下次提交的时候生效）。已被删除的文件在hg status的输出中以“R”标识。
$ hg init remove-example
$ cd remove-example
$ echo a > a
$ mkdir b
$ echo b > b/b
$ hg add a b
adding b/b
$ hg commit -m 'Small example for file removal'
$ hg remove a
$ hg status
R a
$ hg remove b
removing b/b

在你使用hg
remove删除一个文件之后，Mercurial不再跟踪这个文件的变化，即使你在工作目录以同样的名字重新创建了一个文件。如果你以相同的名字重新创建了一个文件，并且希望Mercurial跟踪新的文件，只要用hg
add添加它就可以了。Mercurial会知道这个新加的文件虽然和以前的文件名字相同，但是毫无关系。
删除文件不影响历史

要理解删除一个文件仅仅两个方面的影响，这非常重要。
	文件的当前版本从工作目录中删除。

	从下次提交开始，Mercurial将不会在跟踪这个文件的变化。

删除一个文件不会以任何方式修改这个文件的历史。
如果你在某一版本中将一个文件删除，而后将工作目录更新到以前的某个版本，那时这个文件还没有被删除，那么这个文件会重新在工作目录中出现，其内容和你提交那个变更集的内容相同。然后如果你更新到比较新的版本，这时这个文件已经被删除了，那么Mercurial会再次将这个文件从工作目录中删除。

丢失的文件

如果一个文件被删除了，但是不是用hg
remove命令删除的，Mercurial认为它丢失了。 丢失的文件在hg
status的输出中以“!”标识。一般情况下Mercurial命令不会对丢失的文件作任何处理。
$ hg init missing-example
$ cd missing-example
$ echo a > a
$ hg add a
$ hg commit -m 'File about to be missing'
$ rm a
$ hg status
! a

如果hg
status报告版本库中的一个文件丢失了，而且你确实不需要这个文件了，你可以在以后的任何时间运行hg remove --after命令，告诉Mercurial你希望删除这个文件。
$ hg remove --after a
$ hg status
R a

另一方面，如果你是不小心把那个文件删掉的，可以用hg
revert命令加上要恢复的文件名。它会将文件恢复到未修改前的状态。
$ hg revert a
$ cat a
a
$ hg status

旁白: 为什么要明确告诉 Mercurial 删除文件?

你可能奇怪为什么Mercurial要求你明确的告诉它要删除一个文件。在Mercurial开发的早期，只要你喜欢就可以删掉文件；Mercurial会自动的注意到文件不在了，当你下一次运行hg commit的时候，它就会停止跟踪这个文件。实际上，这很导致没有注意到的误删。

有用的技巧—一个步骤添加和删除文件

Mercurial提供一个组合命令， hg
addremove，它会添加未跟踪的文件，同时将丢失的文件标志为删除。
$ hg init addremove-example
$ cd addremove-example
$ echo a > a
$ echo b > b
$ hg addremove
adding a
adding b

hg commit命令同样也提供一个-A选项，在提交之后进行相同的添加删除。
$ echo c > c
$ hg commit -A -m 'Commit with addremove'
adding c

拷贝文件

Mercurial提供了一个hg
copy命令，可以用来拷贝文件。当你用这个命令拷贝文件时，Mercurial会记录下这个文件是由原来的文件拷贝而来的。以后在你把工作和其他人的工作合并的时候，它会对这些拷贝的文件进行特殊处理。
合并后拷贝文件的内容

在合并过程中，变更会“传递”给拷贝。为了更好的解释它，我们创建一个例子。我们从一个仅仅包含一个文件的小版本库开始。
$ hg init my-copy
$ cd my-copy
$ echo line > file
$ hg add file
$ hg commit -m 'Added a file'

我们需要并行的工作，所以我们要进行合并。所以我们将版本库克隆。
$ cd ..
$ hg clone my-copy your-copy
updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

回到初始的版本库，我们用hg copy命令创建我们开始时建立的文件的拷贝。
$ cd my-copy
$ hg copy file new-file

然后如果我们看一下hg status的输出，发现拷贝的文件看起来像普通的新添加的文件。
$ hg status
A new-file

当时如果我们给hg status加上-C选项，它会输出另外一行：新添加的文件是从那个文件拷贝而来的。
$ hg status -C
A new-file
 file
$ hg commit -m 'Copied file'

现在，回到我们克隆的那个版本库，我们并行的作一点改动，给我们最开始创建的文件添加一行。
$ cd ../your-copy
$ echo 'new contents' >> file
$ hg commit -m 'Changed file'

现在版本库里面有了修改过的文件。我们从第一个版本库拖变更，并且合并两个顶版本，Mercurial会将变更从我们修改的文件file传递给它的拷贝，new-file。
$ hg pull ../my-copy
pulling from ../my-copy
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)
$ hg merge
merging file and new-file to new-file
0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)
$ cat new-file
line
new contents

为什么要传递变更?

这一行为—文件的变更会传递到它的拷贝中— 可能看起来难以理解， 但在大多数情况下，它很受欢迎。
首先要记住这种传播仅仅发生在合并的时候。所以如果你用hg
copy拷贝了一个文件，此后在工作过程这原文件进行了修改，这时什么也不会发生。
其次要了解的是，只有当你在合并的变更还没有看到这个拷贝的时候，修改才会通过拷贝传播。
Mercurial这样设计的原因如下。假设我们在源代码中修正了一个重要的bug，然后提交了变更。与此同时，你决定用hg
copy命令在你的版本库中拷贝这个文件，但你并不知到这个bug也没有发现它已经被修复了，并且你已经开始在你的拷贝上进行修改了。
如果你把我的变更拖进来并且合并，但Mercurial不会将变更传递给拷贝，那么你的新代码文件将仍然包含那个bug，除非你知道并且手动修复那个它，这个bug会一直保留在你的拷贝里面。
Mercurial将修复了bug的变更从原始文件自动的传播到拷贝，从而避免了这样的问题。据我了解，Mercurial是唯一的像这样在拷贝间传播变更的版本控制系统。
一旦你的变更历史中有了拷贝和随后的合并记录，通常再次将变更从原始文件传递到拷贝文件，这就是Mercurial仅仅在第一次合并的时候在拷贝间传递变更的原因，而不是此后。

如何禁止变更传递?

如果出于某种原因，你觉得这种自动在拷贝间传递变更的方式不适合你，那么你可以使用系统的拷贝命令（在类Unix系统上就是cp命令）来复制文件，然后使用hg add手动添加拷贝的文件。在你这么作之前，请重新阅读the section called “为什么要传递变更?”，确认这一功能是不是真的不适合你的情况，然后作出正确的决定。

命令hg copy的行为

在使用hg
copy命令的时候，Mercurial会复制工作目录中当前的文件。也就是说，如果你对文件作了修改，并且没有提交，那么hg copy生成的新的文件将包含这些修改。（我觉得这样有点不合常理，所以在这里提一下。）
hg
copy命令和Unix的cp命令功能类似（如果你喜欢，可以用hg cp作为它的别名）。我们必须提供两个或者两个以上参数，
其中最后一个为目标，其他的是源。
如果你传给hg copy一个文件作为源，而目标文件不存在，它创建该文件。
$ mkdir k
$ hg copy a k
$ ls k
a

如果目标是一个目录，Mercurial会将所有的源文件拷贝到目标目录。
$ mkdir d
$ hg copy a b d
$ ls d
a b

目录拷贝是递归的，保留源目录的结构。
$ hg copy z e
copying z/a/c to e/a/c

如果源和目标都是目录，源目录的结构会在目标目录中重建。
$ hg copy z d
copying z/a/c to d/z/a/c

和hg
remove命令一样，如果你手动拷贝了一个文件并且希望Mercurial知道你拷贝了这个文件，可以给hg copy命令加上--after选项。
$ cp a n
$ hg copy --after a n

重命名文件

与拷贝文件比起来，重命名文件使用频率更高。我在讨论重命名文件之前讨论hg
copy命令是因为Mercurial对于拷贝和重命名的处理方式相同。因此知道了Mercurial怎么处理拷贝文件也就知道了Mercurial怎么处理重命名文件。
在你运行hg rename命令的时候，Mercurial
首先对每个源文件都做一份拷贝，然后删除它，并将其标识为删除。
$ hg rename a b

hg status命令显示新拷贝的文件的状态是添加，拷贝的那个文件的状态是删除。
$ hg status
A b
R a

和hg copy命令的结果一样，我们必须给hg status命令加上-C选项才能看到Mercurial是将新加的文件是作为原始文件的拷贝进行管理的，同时原始文件已经删除。
$ hg status -C
A b
 a
R a

hg remove和hg
copy命令一样，你在事后可以使用--after选项告诉Mercurial改名。大多数情况下，hg rename和hg
copy的行为和接受的选项都是相似的。
如果你熟悉Unix命令行，那么告诉你一个好消息，可以用hg mv替代hg rename。
重命名文件与合并变更

因为Mercurial的重命名是以拷贝删除的方式实现的，如果拷贝了一个文件，然后又将其重命名，变更还是会从原来的文件传播到更名后的文件。
如果我修改了一个文件，同时你又将其更名，然后我们合并相关变更，那么我在原始文件名下作的修改将会传播到你的新文件中去。（这个功能你可能认为“很简单，”但是不是所有的版本控制系统都有这个功能。
对于变更会跟随拷贝这个功能，你可能不以为意地说 “好吧，这个可能会有用” 这里要说明让变更跟随重命名非常重要。
如果没有这个功能，那么在文件重命名之后，变更很容易被丢进黑洞。

分歧的更名与合并

分歧更名是这样的情况，假设两个开发者的版本库中有一个文件—文件名为foo。
$ hg clone orig anne
updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ hg clone orig bob
updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

Anne将文件改名为bar.
$ cd anne
$ hg rename foo bar
$ hg ci -m 'Rename foo to bar'

同时， Bob将它改名为quux。（记住hg
mv是hg rename的别名。）
$ cd ../bob
$ hg mv foo quux
$ hg ci -m 'Rename foo to quux'

我认为这是一个冲突，因为开发者对这个文件应该如何命名有了不同的意见。
你觉得他们合并的时候会发生什么呢？在合并包含分歧更名的变更集的时候，Mercurial实际上会将两个文件都保留。
See http://www.selenic.com/mercurial/bts/issue455
$ cd ../orig
$ hg pull -u ../anne
pulling from ../anne
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files
1 files updated, 0 files merged, 1 files removed, 0 files unresolved
$ hg pull ../bob
pulling from ../bob
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)
$ hg merge
warning: detected divergent renames of foo to:
 bar
 quux
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)
$ ls
bar quux

注意虽然Mercurial会对分歧更名产生警告，但是由你来决定在合并后如何解决分歧。

收敛重命名与合并

另一种更名冲突是两个人将不同的源文件改名为相同的目标文件。这种情况下，Mercurial会执行正常的合并过程，然后让你帮助他找到合适的解决方案。

其它名称相关的信息

Mercurial一直都有一个bug，如果它在进行合并的时候发现一边有一个文件，而另外一边有一个相同名称的目录，那么合并就会失败。这个问题记录在issue
29。
$ hg init issue29
$ cd issue29
$ echo a > a
$ hg ci -Ama
adding a
$ echo b > b
$ hg ci -Amb
adding b
$ hg up 0
0 files updated, 0 files merged, 1 files removed, 0 files unresolved
$ mkdir b
$ echo b > b/b
$ hg ci -Amc
adding b/b
created new head
$ hg merge
abort: Is a directory: /tmp/issue29CrJJ2P/issue29/b

从错误恢复

Mercurial提供了一些有用的命令，它们可以帮助你从一些常见的错误中恢复。
可以hg revert命令取消对工作目录做的变更。比如，你不小心用hg add命令添加了一个文件，只要运行hg
revert加上你添加的文件的文件名就可以了，文件的内容不会有任何改变，仅仅是Mercurial不再跟踪它了。你也可以用hg revert消除对文件作出的错误的更改。
要记住hg
revert命令仅仅适用于你的变更还没有提交的时候。一旦你提交了变更，然后发现这是个错误，你仍然有机会修正，虽然能做的很有限。
关于hg revert命令的更多信息，还有如何处理已经提交的变更，请参考Chapter 9, 查找和修改错误。

合并的技巧

在庞大而且复杂的项目中，两个变更集的合并常常让人头痛。假设有关大的源文件，合并的两边都作了很多修改：这不可避免的会导致很多冲突，有些要试几次才能解决。
我们用一个简单的例子看看如何处理这种情况。我们将包含一个文件的版本库克隆两次。
$ hg init conflict
$ cd conflict
$ echo first > myfile.txt
$ hg ci -A -m first
adding myfile.txt
$ cd ..
$ hg clone conflict left
updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ hg clone conflict right
updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

在第一个克隆中，我们将文件修改成这样。
$ cd left
$ echo left >> myfile.txt
$ hg ci -m left

在另外一个克隆中，我们做完全不同的修改。
$ cd ../right
$ echo right >> myfile.txt
$ hg ci -m right

接下来，我们将两个变更集都推到原始的版本库。
$ cd ../conflict
$ hg pull -u ../left
pulling from ../left
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ hg pull -u ../right
pulling from ../right
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
not updating, since new heads added
(run 'hg heads' to see heads, 'hg merge' to merge)

我们希望版本库现在有两个头版本。
$ hg heads
changeset: 2:c9e0ebba10f6
tag: tip
parent: 0:fcafd4b320d9
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:34 2011 +0000
summary: right

changeset: 1:44d42fe5201c
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:34 2011 +0000
summary: left

正常情况下，如果这时我们运行hg
merge。它会运行一个GUI程序，让我们解决myfile.txt的冲突。但是，为了简化这里的演示，我们希望合并失败。我们可以按照下面的方法做。
$ export HGMERGE=false

我们告诉Mercurial的合并状态机，如果它检测到不能自己解决的冲突的话，就运行命令false（像我们希望的一样，立即失败返回）。
如果现在我们运行hg merge，他会停止运行同时报告一条错误。
$ hg merge
merging myfile.txt
merging myfile.txt failed!
0 files updated, 0 files merged, 0 files removed, 1 files unresolved
use 'hg resolve' to retry unresolved file merges or 'hg update -C' to abandon

即使我们没有注意到合并失败，Mercurial也会阻止我们意外地提交失败的合并结果。
$ hg commit -m 'Attempt to commit a failed merge'
abort: unresolved merge conflicts (see hg resolve)

这种情况下，hg commit失败的时候，它建议我们使用陌生的hg resolve命令。和以前一样， hg help
resolve会输出帮助的摘要。
文件的解决状态

合并发生时，大多数文件没有任何变化。Mercurial对于每个需要进行操作的文件，都会跟踪它的状态。
	resolved表示文件已经成功合并，不管是Mercurial自动完成的还是手工修改完成的。

	unresolved表示文件没有成功的合并，需要特别注意。

如果Mercurial在合并后发现任何文件处于未解决状态，它会认为这次合并失败。幸运的是，我们不需要再次从头开始进行合并。
hg resolve的--list或者-l选项会打印出每个合并过的文件的状态。
$ hg resolve -l
U myfile.txt

在hg
resolve的输出中，已经解决的文件标识为R，而未解决文件标识为U。
如果有任何文件被标识为U，那么我们就不能提交合并的结果。

解决文件合并

我们有几种方法将文件从未解决状态变成解决状态。至今为止最常用的命令是重新运行hg
resolve。如果我们将文件名或者目录名传递给它，那么它会重新在给定为止合并任何未解决的文件。如果我们将--all或者-a选项传给它，那么它会重新合并所有的未解决文件。
Mercurial also lets us modify the resolution state of a file directly. We
can manually mark a file as resolved using the --mark option, or as unresolved using the
--unmark option. This allows us to
clean up a particularly messy merge by hand, and to keep track of our
progress with each file as we go.

差异的更多技巧

缺省情况下，hg
diff命令的输出与普通的diff命令兼容，但是这样有缺点。
设想我们使用 hg rename 命令来重命名文件。
$ hg rename a b
$ hg diff
diff -r 41a6212cc83f a
--- a/a	Thu Mar 17 05:12:33 2011 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-a
diff -r 41a6212cc83f b
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/b	Thu Mar 17 05:12:33 2011 +0000
@@ -0,0 +1,1 @@
+a

我们给一个文件改名，而hg diff的输出却掩盖了事实。hg
diff命令可以接受选项--git或者-g，使用新的差异格式以更加可读的方式显示这些信息。
$ hg diff -g
diff --git a/a b/b
rename from a
rename to b

这个选项在以下情况下十分有用，否则就很令人费解：一个文件如果用hg
status查看，显示的状态是被修改了，但是如果用hg
diff检查，却什么输出也没有。如果我们修改了文件的执行属性就会出现这种情况。
$ chmod +x a
$ hg st
M a
$ hg diff

The normal diff command pays no attention to file
permissions, which is why hg diff prints
nothing by default. If we supply it with the -g option, it
tells us what really happened.
$ hg diff -g
diff --git a/a b/a
old mode 100644
new mode 100755

哪些文件需要管理，那些不需要

版本控制系统最擅长管理人们书写的文本文件，例如源代码，不同的版本间文件的改动不会很大。集中式版本控制系统可以很好的出来二进制文件，例如位图文件。
例如，一个典型的游戏开发团队不仅要在版本控制系统中管理源代码，还要管理二进制财产（像地理数据，贴图，地图布局）。
因为一般不可能合并两个冲突的二进制文件，集中式系统通常提供文件锁机制来解决这个问题。它允许一个用户说 “
我是唯一能修改这个文件的人”。
和集中式系统相比，在分布式版本控制系统中，决定要管理那些文件和怎么管理的指导思路发生了变化。
例如，在本质上，一个分布式版本控制系统不能提供文件锁定机制。没有内建的机制可以防止两个人对一个二进制文件作相互冲突的修改。如果在你的团队中，有些人要频繁的编辑二进制文件，那么这时就不适合使用Mercurial—或者任何其他的分布式版本控制系统—来管理这些文件。
在存储文件的变更的时候，Mercurial通常只会保存当前版本和上一个版本之间的差异。对于大多数文本文件而言，这时非常高效的。但是有些文件（特别是二进制文件）而言，对于文件逻辑内容上的很小的改动，可能导致文件中很多或者绝大多数字节发生变化。例如，压缩文件就会这样。如果一个文件连续的版本之间的差异总是很大，Mercurial就不能有效的存储文件的版本历史。这会影响本地的存储需求和克隆版本库需要的时间。
要了解在这实际的使用中的影响，假设你准备用Mercurial管理一个OpenOffice文档。OpenOffice使用zip压缩的格式存储文件。即使你的文档在OpenOffice中仅仅修改了一个字符，在你存档的时候几乎文件中的每个字节都发生了变化。现在假设文件大小为2MB。因为每次你存档的时候文件中大部分都发生了变化，Mercurial不得不在你每次提交的时候都存储所有2MB的文件，即使是从你的角度来说，每次的变化只有几个单词。一个不符合Mercurial存储假设的频繁编辑的文件，将很快使版本库的膨胀。
更加糟糕的是，如果你和其他人都在编辑一个OpenOffice文档，没有什么办法合并你的工作。实际上，也没有办法告诉你不同变更之间的差异。
下面是应该小心处理的几种特殊类型文件的一些建议。
	非常大而且不能压缩的文件，如ISO CD-ROM映像，会使版本库大小从而剧增导致通过网络的克隆非常缓慢。

	不同版本间变化很多，如果频繁编辑会耗费很多空间，同时并行编辑导致的冲突很难解决的文件。

备份与镜像

因为Mercurial在每个克隆中都含有完整的历史拷贝，所以在一个项目中，每个使用Mercurial进行协作的人都可以在灾难发生的时候成为备份。如果中央版本库发生故障，你可以从一个贡献者那里克隆版本库作为替代，然后可以拖出其他版本库没有的变更。
It is simple to use Mercurial to perform off-site backups and remote
mirrors. Set up a periodic job (e.g. via the cron
command) on a remote server to pull changes from your master repositories
every hour. This will only be tricky in the unlikely case that the number
of master repositories you maintain changes frequently, in which case you'll
need to do a little scripting to refresh the list of repositories to back
up.
If you perform traditional backups of your master repositories to tape or
disk, and you want to back up a repository named
myrepo, use hg clone -U myrepo
myrepo.bak to create a clone of myrepo before
you start your backups. The -U option doesn't check out a
working directory after the clone completes, since that would be superfluous
and make the backup take longer.
If you then back up myrepo.bak instead of
myrepo, you will be guaranteed to have a consistent
snapshot of your repository that won't be pushed to by an insomniac
developer in mid-backup.

Chapter 6. 团体协作

As a completely decentralised tool, Mercurial doesn't impose any policy on
how people ought to work with each other. However, if you're new to
distributed revision control, it helps to have some tools and examples in
mind when you're thinking about possible workflow models.
Mercurial 的 web 接口

Mercurial has a powerful web interface that provides several useful
capabilities.
For interactive use, the web interface lets you browse a single repository
or a collection of repositories. You can view the history of a repository,
examine each change (comments and diffs), and view the contents of each
directory and file. You can even get a view of history that gives a
graphical view of the relationships between individual changes and merges.
Also for human consumption, the web interface provides Atom and RSS feeds of
the changes in a repository. This lets you “subscribe” to a
repository using your favorite feed reader, and be automatically notified of
activity in that repository as soon as it happens. I find this capability
much more convenient than the model of subscribing to a mailing list to
which notifications are sent, as it requires no additional configuration on
the part of whoever is serving the repository.
The web interface also lets remote users clone a repository, pull changes
from it, and (when the server is configured to permit it) push changes back
to it. Mercurial's HTTP tunneling protocol aggressively compresses data, so
that it works efficiently even over low-bandwidth network connections.
The easiest way to get started with the web interface is to use your web
browser to visit an existing repository, such as the master Mercurial
repository at http://www.selenic.com/repo/hg.
If you're interested in providing a web interface to your own repositories,
there are several good ways to do this.
The easiest and fastest way to get started in an informal environment is to
use the hg serve command, which is best
suited to short-term “lightweight” serving. See the section called “使用 hg serve 进行非正式共享” below for details of how to use this command.
For longer-lived repositories that you'd like to have permanently available,
there are several public hosting services available. Some are free to open
source projects, while others offer paid commercial hosting. An up-to-date
list is available at http://www.selenic.com/mercurial/wiki/index.cgi/MercurialHosting.
If you would prefer to host your own repositories, Mercurial has built-in
support for several popular hosting technologies, most notably CGI (Common
Gateway Interface), and WSGI (Web Services Gateway Interface). See the section called “使用 CGI 通过 HTTP 提供服务” for details of CGI and WSGI configuration.

协作模型

With a suitably flexible tool, making decisions about workflow is much more
of a social engineering challenge than a technical one. Mercurial imposes
few limitations on how you can structure the flow of work in a project, so
it's up to you and your group to set up and live with a model that matches
your own particular needs.
要牢记的因素

The most important aspect of any model that you must keep in mind is how
well it matches the needs and capabilities of the people who will be using
it. This might seem self-evident; even so, you still can't afford to forget
it for a moment.
I once put together a workflow model that seemed to make perfect sense to
me, but that caused a considerable amount of consternation and strife within
my development team. In spite of my attempts to explain why we needed a
complex set of branches, and how changes ought to flow between them, a few
team members revolted. Even though they were smart people, they didn't want
to pay attention to the constraints we were operating under, or face the
consequences of those constraints in the details of the model that I was
advocating.
Don't sweep foreseeable social or technical problems under the rug. Whatever
scheme you put into effect, you should plan for mistakes and problem
scenarios. Consider adding automated machinery to prevent, or quickly
recover from, trouble that you can anticipate. As an example, if you intend
to have a branch with not-for-release changes in it, you'd do well to think
early about the possibility that someone might accidentally merge those
changes into a release branch. You could avoid this particular problem by
writing a hook that prevents changes from being merged from an inappropriate
branch.

无政府状态

I wouldn't suggest an “anything goes” approach as something
sustainable, but it's a model that's easy to grasp, and it works perfectly
well in a few unusual situations.
As one example, many projects have a loose-knit group of collaborators who
rarely physically meet each other. Some groups like to overcome the
isolation of working at a distance by organizing occasional
“sprints”. In a sprint, a number of people get together in a
single location (a company's conference room, a hotel meeting room, that
kind of place) and spend several days more or less locked in there, hacking
intensely on a handful of projects.
A sprint or a hacking session in a coffee shop are the perfect places to use
the hg serve command, since hg serve does not require any fancy server
infrastructure. You can get started with hg
serve in moments, by reading the section called “使用 hg serve 进行非正式共享”
below. Then simply tell the person next to you that you're running a
server, send the URL to them in an instant message, and you immediately have
a quick-turnaround way to work together. They can type your URL into their
web browser and quickly review your changes; or they can pull a bugfix from
you and verify it; or they can clone a branch containing a new feature and
try it out.
The charm, and the problem, with doing things in an ad hoc fashion like this
is that only people who know about your changes, and where they are, can see
them. Such an informal approach simply doesn't scale beyond a handful
people, because each individual needs to know about n
different repositories to pull from.

单一中央版本库

For smaller projects migrating from a centralised revision control tool,
perhaps the easiest way to get started is to have changes flow through a
single shared central repository. This is also the most common
“building block” for more ambitious workflow schemes.
Contributors start by cloning a copy of this repository. They can pull
changes from it whenever they need to, and some (perhaps all) developers
have permission to push a change back when they're ready for other people to
see it.
Under this model, it can still often make sense for people to pull changes
directly from each other, without going through the central repository.
Consider a case in which I have a tentative bug fix, but I am worried that
if I were to publish it to the central repository, it might subsequently
break everyone else's trees as they pull it. To reduce the potential for
damage, I can ask you to clone my repository into a temporary repository of
your own and test it. This lets us put off publishing the potentially
unsafe change until it has had a little testing.
If a team is hosting its own repository in this kind of scenario, people
will usually use the ssh protocol to securely push
changes to the central repository, as documented in the section called “使用 ssh 协议”. It's also usual to publish a read-only copy of
the repository over HTTP, as in the section called “使用 CGI 通过 HTTP 提供服务”. Publishing
over HTTP satisfies the needs of people who don't have push access, and
those who want to use web browsers to browse the repository's history.

托管的中央版本库

A wonderful thing about public hosting services like Bitbucket is that not only do they
handle the fiddly server configuration details, such as user accounts,
authentication, and secure wire protocols, they provide additional
infrastructure to make this model work well.
For instance, a well-engineered hosting service will let people clone their
own copies of a repository with a single click. This lets people work in
separate spaces and share their changes when they're ready.
In addition, a good hosting service will let people communicate with each
other, for instance to say “there are changes ready for you to review
in this tree”.

使用多个分支工作

Projects of any significant size naturally tend to make progress on several
fronts simultaneously. In the case of software, it's common for a project
to go through periodic official releases. A release might then go into
“maintenance mode” for a while after its first publication;
maintenance releases tend to contain only bug fixes, not new features. In
parallel with these maintenance releases, one or more future releases may be
under development. People normally use the word “branch” to
refer to one of these many slightly different directions in which
development is proceeding.
Mercurial is particularly well suited to managing a number of simultaneous,
but not identical, branches. Each “development direction” can
live in its own central repository, and you can merge changes from one to
another as the need arises. Because repositories are independent of each
other, unstable changes in a development branch will never affect a stable
branch unless someone explicitly merges those changes into the stable
branch.
Here's an example of how this can work in practice. Let's say you have one
“main branch” on a central server.
$ hg init main
$ cd main
$ echo 'This is a boring feature.' > myfile
$ hg commit -A -m 'We have reached an important milestone!'
adding myfile

People clone it, make changes locally, test them, and push them back.
Once the main branch reaches a release milestone, you can use the hg tag command to give a permanent name to the
milestone revision.
$ hg tag v1.0
$ hg tip
changeset: 1:93ae47907829
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:31 2011 +0000
summary: Added tag v1.0 for changeset 856fed2d4711

$ hg tags
tip 1:93ae47907829
v1.0 0:856fed2d4711

Let's say some ongoing development occurs on the main branch.
$ cd ../main
$ echo 'This is exciting and new!' >> myfile
$ hg commit -m 'Add a new feature'
$ cat myfile
This is a boring feature.
This is exciting and new!

Using the tag that was recorded at the milestone, people who clone that
repository at any time in the future can use hg
update to get a copy of the working directory exactly as it was
when that tagged revision was committed.
$ cd ..
$ hg clone -U main main-old
$ cd main-old
$ hg update v1.0
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cat myfile
This is a boring feature.

In addition, immediately after the main branch is tagged, we can then clone
the main branch on the server to a new “stable” branch, also on
the server.
$ cd ..
$ hg clone -rv1.0 main stable
requesting all changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files
updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

If we need to make a change to the stable branch, we can then clone
that repository, make our changes, commit, and push our
changes back there.
$ hg clone stable stable-fix
updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd stable-fix
$ echo 'This is a fix to a boring feature.' > myfile
$ hg commit -m 'Fix a bug'
$ hg push
pushing to /tmp/branching7i7uLT/stable
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files

Because Mercurial repositories are independent, and Mercurial doesn't move
changes around automatically, the stable and main branches are
isolated from each other. The changes that we made on
the main branch don't “leak” to the stable branch, and vice
versa.
We'll often want all of our bugfixes on the stable branch to show up on the
main branch, too. Rather than rewrite a bugfix on the main branch, we can
simply pull and merge changes from the stable to the main branch, and
Mercurial will bring those bugfixes in for us.
$ cd ../main
$ hg pull ../stable
pulling from ../stable
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)
$ hg merge
merging myfile
0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)
$ hg commit -m 'Bring in bugfix from stable branch'
$ cat myfile
This is a fix to a boring feature.
This is exciting and new!

The main branch will still contain changes that are not on the stable
branch, but it will also contain all of the bugfixes from the stable
branch. The stable branch remains unaffected by these changes, since
changes are only flowing from the stable to the main branch, and not the
other way.

特性分支

For larger projects, an effective way to manage change is to break up a team
into smaller groups. Each group has a shared branch of its own, cloned from
a single “master” branch used by the entire project. People
working on an individual branch are typically quite isolated from
developments on other branches.
Figure 6.1. 特性分支
[image: XXX add text]

When a particular feature is deemed to be in suitable shape, someone on that
feature team pulls and merges from the master branch into the feature
branch, then pushes back up to the master branch.

发布列车

Some projects are organized on a “train” basis: a release is
scheduled to happen every few months, and whatever features are ready when
the “train” is ready to leave are allowed in.
This model resembles working with feature branches. The difference is that
when a feature branch misses a train, someone on the feature team pulls and
merges the changes that went out on that train release into the feature
branch, and the team continues its work on top of that release so that their
feature can make the next release.

Linux 内核模型

The development of the Linux kernel has a shallow hierarchical structure,
surrounded by a cloud of apparent chaos. Because most Linux developers use
git, a distributed revision control tool with
capabilities similar to Mercurial, it's useful to describe the way work
flows in that environment; if you like the ideas, the approach translates
well across tools.
At the center of the community sits Linus Torvalds, the creator of Linux.
He publishes a single source repository that is considered the
“authoritative” current tree by the entire developer
community. Anyone can clone Linus's tree, but he is very choosy about whose
trees he pulls from.
Linus has a number of “trusted lieutenants”. As a general
rule, he pulls whatever changes they publish, in most cases without even
reviewing those changes. Some of those lieutenants are generally agreed to
be “maintainers”, responsible for specific subsystems within
the kernel. If a random kernel hacker wants to make a change to a subsystem
that they want to end up in Linus's tree, they must find out who the
subsystem's maintainer is, and ask that maintainer to take their change. If
the maintainer reviews their changes and agrees to take them, they'll pass
them along to Linus in due course.
Individual lieutenants have their own approaches to reviewing, accepting,
and publishing changes; and for deciding when to feed them to Linus. In
addition, there are several well known branches that people use for
different purposes. For example, a few people maintain
“stable” repositories of older versions of the kernel, to which
they apply critical fixes as needed. Some maintainers publish multiple
trees: one for experimental changes; one for changes that they are about to
feed upstream; and so on. Others just publish a single tree.
This model has two notable features. The first is that it's “pull
only”. You have to ask, convince, or beg another developer to take a
change from you, because there are almost no trees to which more than one
person can push, and there's no way to push changes into a tree that someone
else controls.
The second is that it's based on reputation and acclaim. If you're an
unknown, Linus will probably ignore changes from you without even
responding. But a subsystem maintainer will probably review them, and will
likely take them if they pass their criteria for suitability. The more
“good” changes you contribute to a maintainer, the more likely
they are to trust your judgment and accept your changes. If you're
well-known and maintain a long-lived branch for something Linus hasn't yet
accepted, people with similar interests may pull your changes regularly to
keep up with your work.
Reputation and acclaim don't necessarily cross subsystem or
“people” boundaries. If you're a respected but specialised
storage hacker, and you try to fix a networking bug, that change will
receive a level of scrutiny from a network maintainer comparable to a change
from a complete stranger.
To people who come from more orderly project backgrounds, the comparatively
chaotic Linux kernel development process often seems completely insane.
It's subject to the whims of individuals; people make sweeping changes
whenever they deem it appropriate; and the pace of development is
astounding. And yet Linux is a highly successful, well-regarded piece of
software.

只读与共享写协作

A perpetual source of heat in the open source community is whether a
development model in which people only ever pull changes from others is
“better than” one in which multiple people can push changes to
a shared repository.
Typically, the backers of the shared-push model use tools that actively
enforce this approach. If you're using a centralised revision control tool
such as Subversion, there's no way to make a choice over which model you'll
use: the tool gives you shared-push, and if you want to do anything else,
you'll have to roll your own approach on top (such as applying a patch by
hand).
A good distributed revision control tool will support both models. You and
your collaborators can then structure how you work together based on your
own needs and preferences, not on what contortions your tools force you
into.

协作与分支管理

Once you and your team set up some shared repositories and start propagating
changes back and forth between local and shared repos, you begin to face a
related, but slightly different challenge: that of managing the multiple
directions in which your team may be moving at once. Even though this
subject is intimately related to how your team collaborates, it's dense
enough to merit treatment of its own, in Chapter 8, 发布管理与分支开发.

共享的技术因素

The remainder of this chapter is devoted to the question of sharing changes
with your collaborators.

使用 hg serve 进行非正式共享

Mercurial's hg serve command is wonderfully
suited to small, tight-knit, and fast-paced group environments. It also
provides a great way to get a feel for using Mercurial commands over a
network.
Run hg serve inside a repository, and in
under a second it will bring up a specialised HTTP server; this will accept
connections from any client, and serve up data for that repository until you
terminate it. Anyone who knows the URL of the server you just started, and
can talk to your computer over the network, can then use a web browser or
Mercurial to read data from that repository. A URL for a hg serve instance running on a laptop is likely to
look something like http://my-laptop.local:8000/.
The hg serve command is
not a general-purpose web server. It can do only two
things:
	Allow people to browse the history of the repository it's serving, from
their normal web browsers.

	Speak Mercurial's wire protocol, so that people can hg clone or hg pull
changes from that repository.

In particular, hg serve won't allow remote
users to modify your repository. It's intended for
read-only use.
If you're getting started with Mercurial, there's nothing to prevent you
from using hg serve to serve up a
repository on your own computer, then use commands like hg clone, hg
incoming, and so on to talk to that server as if the repository
was hosted remotely. This can help you to quickly get acquainted with using
commands on network-hosted repositories.
要牢记的几件事

Because it provides unauthenticated read access to all clients, you should
only use hg serve in an environment where
you either don't care, or have complete control over, who can access your
network and pull data from your repository.
The hg serve command knows nothing about
any firewall software you might have installed on your system or network.
It cannot detect or control your firewall software. If other people are
unable to talk to a running hg serve
instance, the second thing you should do (after you
make sure that they're using the correct URL) is check your firewall
configuration.
By default, hg serve listens for incoming
connections on port 8000. If another process is already listening on the
port you want to use, you can specify a different port to listen on using
the -p option.
Normally, when hg serve starts, it prints
no output, which can be a bit unnerving. If you'd like to confirm that it
is indeed running correctly, and find out what URL you should send to your
collaborators, start it with the -v
option.

使用 ssh 协议

You can pull and push changes securely over a network connection using the
Secure Shell (ssh) protocol. To use this successfully,
you may have to do a little bit of configuration on the client or server
sides.
If you're not familiar with ssh, it's the name of both a command and a
network protocol that let you securely communicate with another computer.
To use it with Mercurial, you'll be setting up one or more user accounts on
a server so that remote users can log in and execute commands.
(If you are familiar with ssh, you'll probably find
some of the material that follows to be elementary in nature.)
如何读写 ssh 路径

An ssh URL tends to look like this:
ssh://bos@hg.serpentine.com:22/hg/hgbook
	The “ssh://” part tells Mercurial to use the
ssh protocol.

	The “bos@” component indicates what username
to log into the server as. You can leave this out if the remote username is
the same as your local username.

	The “hg.serpentine.com” gives the hostname
of the server to log into.

	The “:22” identifies the port number to connect to the server
on. The default port is 22, so you only need to specify a colon and port
number if you're not using port 22.

	The remainder of the URL is the local path to the repository on the server.

There's plenty of scope for confusion with the path component of ssh URLs,
as there is no standard way for tools to interpret it. Some programs behave
differently than others when dealing with these paths. This isn't an ideal
situation, but it's unlikely to change. Please read the following
paragraphs carefully.
Mercurial treats the path to a repository on the server as relative to the
remote user's home directory. For example, if user foo
on the server has a home directory of /home/foo, then an ssh URL that contains a path
component of bar
really refers to the directory /home/foo/bar.
If you want to specify a path relative to another user's home directory, you
can use a path that starts with a tilde character followed by the user's
name (let's call them otheruser), like this.
ssh://server/~otheruser/hg/repo
And if you really want to specify an absolute path on
the server, begin the path component with two slashes, as in this example.
ssh://server//absolute/path

为你的系统寻找 ssh 客户端

Almost every Unix-like system comes with OpenSSH preinstalled. If you're
using such a system, run which ssh to find out if the
ssh command is installed (it's usually in /usr/bin). In the unlikely event that it isn't
present, take a look at your system documentation to figure out how to
install it.
On Windows, the TortoiseHg package is bundled with a version of Simon
Tatham's excellent plink command, and you should not need
to do any further configuration.

产生密钥对

To avoid the need to repetitively type a password every time you need to use
your ssh client, I recommend generating a key pair.
Key pairs are not mandatory
Mercurial knows nothing about ssh authentication or key pairs. You can, if
you like, safely ignore this section and the one that follows until you grow
tired of repeatedly typing ssh passwords.

	On a Unix-like system, the ssh-keygen command will do the
trick.
On Windows, if you're using TortoiseHg, you may need to download a command
named puttygen from the PuTTY web
site to generate a key pair. See the
puttygen documentation for details of how use the
command.

When you generate a key pair, it's usually highly
advisable to protect it with a passphrase. (The only time that you might
not want to do this is when you're using the ssh protocol for automated
tasks on a secure network.)
Simply generating a key pair isn't enough, however. You'll need to add the
public key to the set of authorised keys for whatever user you're logging in
remotely as. For servers using OpenSSH (the vast majority), this will mean
adding the public key to a list in a file called authorized_keys in their .ssh directory.
On a Unix-like system, your public key will have a .pub
extension. If you're using puttygen on Windows, you can
save the public key to a file of your choosing, or paste it from the window
it's displayed in straight into the authorized_keys file.

使用认证代理

An authentication agent is a daemon that stores passphrases in memory (so it
will forget passphrases if you log out and log back in again). An ssh client
will notice if it's running, and query it for a passphrase. If there's no
authentication agent running, or the agent doesn't store the necessary
passphrase, you'll have to type your passphrase every time Mercurial tries
to communicate with a server on your behalf (e.g. whenever you pull or push
changes).
The downside of storing passphrases in an agent is that it's possible for a
well-prepared attacker to recover the plain text of your passphrases, in
some cases even if your system has been power-cycled. You should make your
own judgment as to whether this is an acceptable risk. It certainly saves a
lot of repeated typing.
	On Unix-like systems, the agent is called ssh-agent, and
it's often run automatically for you when you log in. You'll need to use
the ssh-add command to add passphrases to the agent's
store.

	On Windows, if you're using TortoiseHg, the pageant
command acts as the agent. As with puttygen, you'll need
to download
pageant from the PuTTY web site and read its
documentation. The pageant command adds an icon
to your system tray that will let you manage stored passphrases.

正确配置服务器端

Because ssh can be fiddly to set up if you're new to it, a variety of things
can go wrong. Add Mercurial on top, and there's plenty more scope for
head-scratching. Most of these potential problems occur on the server side,
not the client side. The good news is that once you've gotten a
configuration working, it will usually continue to work indefinitely.
Before you try using Mercurial to talk to an ssh server, it's best to make
sure that you can use the normal ssh or
putty command to talk to the server first. If you run
into problems with using these commands directly, Mercurial surely won't
work. Worse, it will obscure the underlying problem. Any time you want to
debug ssh-related Mercurial problems, you should drop back to making sure
that plain ssh client commands work first, before you
worry about whether there's a problem with Mercurial.
The first thing to be sure of on the server side is that you can actually
log in from another machine at all. If you can't use ssh
or putty to log in, the error message you get may give
you a few hints as to what's wrong. The most common problems are as
follows.
	If you get a “connection refused” error, either there isn't an
SSH daemon running on the server at all, or it's inaccessible due to
firewall configuration.

	If you get a “no route to host” error, you either have an
incorrect address for the server or a seriously locked down firewall that
won't admit its existence at all.

	If you get a “permission denied” error, you may have mistyped
the username on the server, or you could have mistyped your key's passphrase
or the remote user's password.

In summary, if you're having trouble talking to the server's ssh daemon,
first make sure that one is running at all. On many systems it will be
installed, but disabled, by default. Once you're done with this step, you
should then check that the server's firewall is configured to allow incoming
connections on the port the ssh daemon is listening on (usually 22). Don't
worry about more exotic possibilities for misconfiguration until you've
checked these two first.
If you're using an authentication agent on the client side to store
passphrases for your keys, you ought to be able to log into the server
without being prompted for a passphrase or a password. If you're prompted
for a passphrase, there are a few possible culprits.
	You might have forgotten to use ssh-add or
pageant to store the passphrase.

	You might have stored the passphrase for the wrong key.

If you're being prompted for the remote user's password, there are another
few possible problems to check.
	Either the user's home directory or their .ssh directory might have excessively liberal
permissions. As a result, the ssh daemon will not trust or read their
authorized_keys file. For example, a
group-writable home or .ssh directory will often cause this symptom.

	The user's authorized_keys file may have
a problem. If anyone other than the user owns or can write to that file, the
ssh daemon will not trust or read it.

In the ideal world, you should be able to run the following command
successfully, and it should print exactly one line of output, the current
date and time.
ssh myserver date
If, on your server, you have login scripts that print banners or other junk
even when running non-interactive commands like this, you should fix them
before you continue, so that they only print output if they're run
interactively. Otherwise these banners will at least clutter up Mercurial's
output. Worse, they could potentially cause problems with running Mercurial
commands remotely. Mercurial tries to detect and ignore banners in
non-interactive ssh sessions, but it is not foolproof.
(If you're editing your login scripts on your server, the usual way to see
if a login script is running in an interactive shell is to check the return
code from the command tty -s.)
Once you've verified that plain old ssh is working with your server, the
next step is to ensure that Mercurial runs on the server. The following
command should run successfully:
ssh myserver hg version
If you see an error message instead of normal hg
version output, this is usually because you haven't installed
Mercurial to /usr/bin. Don't worry
if this is the case; you don't need to do that. But you should check for a
few possible problems.
	Is Mercurial really installed on the server at all? I know this sounds
trivial, but it's worth checking!

	Maybe your shell's search path (usually set via the PATH
environment variable) is simply misconfigured.

	Perhaps your PATH environment variable is only being set to
point to the location of the hg executable if the login
session is interactive. This can happen if you're setting the path in the
wrong shell login script. See your shell's documentation for details.

	The PYTHONPATH environment variable may need to contain the
path to the Mercurial Python modules. It might not be set at all; it could
be incorrect; or it may be set only if the login is interactive.

If you can run hg version over an ssh
connection, well done! You've got the server and client sorted out. You
should now be able to use Mercurial to access repositories hosted by that
username on that server. If you run into problems with Mercurial and ssh at
this point, try using the --debug
option to get a clearer picture of what's going on.

通过 ssh 使用压缩

Mercurial does not compress data when it uses the ssh protocol, because the
ssh protocol can transparently compress data. However, the default behavior
of ssh clients is not to request compression.
Over any network other than a fast LAN (even a wireless network), using
compression is likely to significantly speed up Mercurial's network
operations. For example, over a WAN, someone measured compression as
reducing the amount of time required to clone a particularly large
repository from 51 minutes to 17 minutes.
Both ssh and plink accept a -C option which turns on compression. You can
easily edit your ~/.hgrc to enable
compression for all of Mercurial's uses of the ssh protocol. Here is how to
do so for regular ssh on Unix-like systems, for example.
[ui]
ssh = ssh -C
If you use ssh on a Unix-like system, you can configure
it to always use compression when talking to your server. To do this, edit
your .ssh/config file (which may not yet
exist), as follows.
Host hg
 Compression yes
 HostName hg.example.com
This defines a hostname alias, hg. When you use that
hostname on the ssh command line or in a Mercurial
ssh-protocol URL, it will cause ssh to
connect to hg.example.com and use compression. This
gives you both a shorter name to type and compression, each of which is a
good thing in its own right.

使用 CGI 通过 HTTP 提供服务

The simplest way to host one or more repositories in a permanent way is to
use a web server and Mercurial's CGI support.
Depending on how ambitious you are, configuring Mercurial's CGI interface
can take anything from a few moments to several hours.
We'll begin with the simplest of examples, and work our way towards a more
complex configuration. Even for the most basic case, you're almost
certainly going to need to read and modify your web server's configuration.
High pain tolerance required
Configuring a web server is a complex, fiddly, and highly system-dependent
activity. I can't possibly give you instructions that will cover anything
like all of the cases you will encounter. Please use your discretion and
judgment in following the sections below. Be prepared to make plenty of
mistakes, and to spend a lot of time reading your server's error logs.
If you don't have a strong stomach for tweaking configurations over and
over, or a compelling need to host your own services, you might want to try
one of the public hosting services that I mentioned earlier.

Web 服务器配置检查表

Before you continue, do take a few moments to check a few aspects of your
system's setup.
	Do you have a web server installed at all? Mac OS X and some Linux
distributions ship with Apache, but many other systems may not have a web
server installed.

	If you have a web server installed, is it actually running? On most systems,
even if one is present, it will be disabled by default.

	Is your server configured to allow you to run CGI programs in the directory
where you plan to do so? Most servers default to explicitly disabling the
ability to run CGI programs.

If you don't have a web server installed, and don't have substantial
experience configuring Apache, you should consider using the
lighttpd web server instead of Apache. Apache has a
well-deserved reputation for baroque and confusing configuration. While
lighttpd is less capable in some ways than Apache, most
of these capabilities are not relevant to serving Mercurial repositories.
And lighttpd is undeniably much
easier to get started with than Apache.

基本 CGI 配置

On Unix-like systems, it's common for users to have a subdirectory named
something like public_html in their
home directory, from which they can serve up web pages. A file named
foo in this directory will be accessible at a URL of
the form http://www.example.com/username/foo.
To get started, find the hgweb.cgi
script that should be present in your Mercurial installation. If you can't
quickly find a local copy on your system, simply download one from the
master Mercurial repository at http://www.selenic.com/repo/hg/raw-file/tip/hgweb.cgi.
You'll need to copy this script into your public_html directory, and ensure that it's
executable.
cp .../hgweb.cgi ~/public_html
chmod 755 ~/public_html/hgweb.cgi
The 755 argument to chmod is a little
more general than just making the script executable: it ensures that the
script is executable by anyone, and that “group” and
“other” write permissions are not set. If
you were to leave those write permissions enabled, Apache's
suexec subsystem would likely refuse to execute the
script. In fact, suexec also insists that the
directory in which the script resides must not be
writable by others.
chmod 755 ~/public_html
什么可能会出错?

Once you've copied the CGI script into place, go into a web browser, and try
to open the URL http://myhostname/~myuser/hgweb.cgi,
but brace yourself for instant failure. There's a high
probability that trying to visit this URL will fail, and there are many
possible reasons for this. In fact, you're likely to stumble over almost
every one of the possible errors below, so please read carefully. The
following are all of the problems I ran into on a system running Fedora 7,
with a fresh installation of Apache, and a user account that I created
specially to perform this exercise.
Your web server may have per-user directories disabled. If you're using
Apache, search your config file for a UserDir directive.
If there's none present, per-user directories will be disabled. If one
exists, but its value is disabled, then per-user
directories will be disabled. Otherwise, the string after
UserDir gives the name of the subdirectory that Apache
will look in under your home directory, for example public_html.
Your file access permissions may be too restrictive. The web server must be
able to traverse your home directory and directories under your public_html directory, and read files under the
latter too. Here's a quick recipe to help you to make your permissions more
appropriate.
chmod 755 ~
find ~/public_html -type d -print0 | xargs -0r chmod 755
find ~/public_html -type f -print0 | xargs -0r chmod 644
The other possibility with permissions is that you might get a completely
empty window when you try to load the script. In this case, it's likely
that your access permissions are too permissive.
Apache's suexec subsystem won't execute a script that's
group- or world-writable, for example.
Your web server may be configured to disallow execution of CGI programs in
your per-user web directory. Here's Apache's default per-user configuration
from my Fedora system.
<Directory /home/*/public_html>
 AllowOverride FileInfo AuthConfig Limit
 Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
 <Limit GET POST OPTIONS>
 Order allow,deny
 Allow from all
 </Limit>
 <LimitExcept GET POST OPTIONS>
 Order deny,allow Deny from all
 </LimitExcept>
</Directory>
If you find a similar-looking Directory group in your
Apache configuration, the directive to look at inside it is
Options. Add ExecCGI to the end of
this list if it's missing, and restart the web server.
If you find that Apache serves you the text of the CGI script instead of
executing it, you may need to either uncomment (if already present) or add a
directive like this.
AddHandler cgi-script .cgi
The next possibility is that you might be served with a colourful Python
backtrace claiming that it can't import a
mercurial-related module. This is actually progress! The
server is now capable of executing your CGI script. This error is only
likely to occur if you're running a private installation of Mercurial,
instead of a system-wide version. Remember that the web server runs the CGI
program without any of the environment variables that you take for granted
in an interactive session. If this error happens to you, edit your copy of
hgweb.cgi and follow the directions
inside it to correctly set your PYTHONPATH environment
variable.
Finally, you are certain to be served with another
colourful Python backtrace: this one will complain that it can't find
/path/to/repository. Edit your
hgweb.cgi script and replace the
/path/to/repository string with the
complete path to the repository you want to serve up.
At this point, when you try to reload the page, you should be presented with
a nice HTML view of your repository's history. Whew!

配置 lighttpd

To be exhaustive in my experiments, I tried configuring the increasingly
popular lighttpd web server to serve the same repository
as I described with Apache above. I had already overcome all of the
problems I outlined with Apache, many of which are not server-specific. As
a result, I was fairly sure that my file and directory permissions were
good, and that my hgweb.cgi script was
properly edited.
Once I had Apache running, getting lighttpd to serve the
repository was a snap (in other words, even if you're trying to use
lighttpd, you should read the Apache section). I first
had to edit the mod_access section of its config file to
enable mod_cgi and mod_userdir, both
of which were disabled by default on my system. I then added a few lines to
the end of the config file, to configure these modules.
userdir.path = "public_html"
cgi.assign = (".cgi" => "")
With this done, lighttpd ran immediately for me. If I
had configured lighttpd before Apache, I'd almost
certainly have run into many of the same system-level configuration problems
as I did with Apache. However, I found lighttpd to be
noticeably easier to configure than Apache, even though I've used Apache for
over a decade, and this was my first exposure to
lighttpd.

使用一个 CGI 脚本共享多个版本库

The hgweb.cgi script only lets you
publish a single repository, which is an annoying restriction. If you want
to publish more than one without wracking yourself with multiple copies of
the same script, each with different names, a better choice is to use the
hgwebdir.cgi script.
The procedure to configure hgwebdir.cgi
is only a little more involved than for hgweb.cgi. First, you must obtain a copy of the
script. If you don't have one handy, you can download a copy from the
master Mercurial repository at http://www.selenic.com/repo/hg/raw-file/tip/hgwebdir.cgi.
You'll need to copy this script into your public_html directory, and ensure that it's
executable.
cp .../hgwebdir.cgi ~/public_html
chmod 755 ~/public_html ~/public_html/hgwebdir.cgi
With basic configuration out of the way, try to visit
http://myhostname/~myuser/hgwebdir.cgi in your	browser.
It should display an empty list of repositories. If you get a blank window
or error message, try walking through the list of potential problems in
the section called “什么可能会出错?”.
The hgwebdir.cgi script relies on an
external configuration file. By default, it searches for a file named
hgweb.config in the same directory as
itself. You'll need to create this file, and make it world-readable. The
format of the file is similar to a Windows “ini” file, as
understood by Python's ConfigParser
[web:configparser] module.
The easiest way to configure hgwebdir.cgi is with a section named
collections. This will automatically publish
every repository under the directories you name. The
section should look like this:
[collections]
/my/root = /my/root
Mercurial interprets this by looking at the directory name on the
right hand side of the
“=” sign; finding repositories in that
directory hierarchy; and using the text on the left to
strip off matching text from the names it will actually list in the web
interface. The remaining component of a path after this stripping has
occurred is called a “virtual path”.
Given the example above, if we have a repository whose local path is
/my/root/this/repo, the CGI script
will strip the leading /my/root from
the name, and publish the repository with a virtual path of this/repo. If the base URL for our CGI script
is http://myhostname/~myuser/hgwebdir.cgi, the complete
URL for that repository will be
http://myhostname/~myuser/hgwebdir.cgi/this/repo.
If we replace /my/root on the left
hand side of this example with /my,
then hgwebdir.cgi will only strip off
/my from the repository name, and
will give us a virtual path of root/this/repo instead of this/repo.
The hgwebdir.cgi script will recursively
search each directory listed in the collections section
of its configuration file, but it will not recurse into
the repositories it finds.
The collections mechanism makes it easy to publish many
repositories in a “fire and forget” manner. You only need to
set up the CGI script and configuration file one time. Afterwards, you can
publish or unpublish a repository at any time by simply moving it into, or
out of, the directory hierarchy in which you've configured hgwebdir.cgi to look.
明确指出要发布的版本库

In addition to the collections mechanism, the hgwebdir.cgi script allows you to publish a
specific list of repositories. To do so, create a paths
section, with contents of the following form.
[paths]
repo1 = /my/path/to/some/repo
repo2 = /some/path/to/another
In this case, the virtual path (the component that will appear in a URL) is
on the left hand side of each definition, while the path to the repository
is on the right. Notice that there does not need to be any relationship
between the virtual path you choose and the location of a repository in your
filesystem.
If you wish, you can use both the collections and
paths mechanisms simultaneously in a single configuration
file.
Beware duplicate virtual paths
 If several repositories have the same virtual path, hgwebdir.cgi will not report an error. Instead,
it will behave unpredictably.

下载源代码档案包

Mercurial's web interface lets users download an archive of any revision.
This archive will contain a snapshot of the working directory as of that
revision, but it will not contain a copy of the repository data.
By default, this feature is not enabled. To enable it, you'll need to add
an allow_archive item to the web section of your ~/.hgrc; see below for details.

Web 配置选项

Mercurial's web interfaces (the hg serve
command, and the hgweb.cgi and hgwebdir.cgi scripts) have a number of
configuration options that you can set. These belong in a section named
web.
	allow_archive: Determines which (if any)
archive download mechanisms Mercurial supports. If you enable this feature,
users of the web interface will be able to download an archive of whatever
revision of a repository they are viewing. To enable the archive feature,
this item must take the form of a sequence of words drawn from the list
below.
	bz2: A tar archive, compressed using
bzip2 compression. This has the best compression ratio,
but uses the most CPU time on the server.

	gz: A tar archive, compressed using
gzip compression.

	zip: A zip archive, compressed using
LZW compression. This format has the worst compression ratio, but is widely
used in the Windows world.

 If you provide an empty list, or don't have an allow_archive entry at all, this feature will be
disabled. Here is an example of how to enable all three supported formats.
[web]
allow_archive = bz2 gz zip

	allowpull: Boolean. Determines whether
the web interface allows remote users to hg
pull and hg clone this repository
over HTTP. If set to no or false,
only the “human-oriented” portion of the web interface is
available.

	contact: String. A free-form (but
preferably brief) string identifying the person or group in charge of the
repository. This often contains the name and email address of a person or
mailing list. It often makes sense to place this entry in a repository's
own .hg/hgrc file, but it can make sense
to use in a global ~/.hgrc if every
repository has a single maintainer.

	maxchanges: Integer. The default maximum
number of changesets to display in a single page of output.

	maxfiles: Integer. The default maximum
number of modified files to display in a single page of output.

	stripes: Integer. If the web interface
displays alternating “stripes” to make it easier to visually
align rows when you are looking at a table, this number controls the number
of rows in each stripe.

	style: Controls the template Mercurial
uses to display the web interface. Mercurial ships with several web
templates.
	coal is monochromatic.

	gitweb emulates the visual style of git's web interface.

	monoblue uses solid blues and greys.

	paper is the default.

	spartan was the default for a long time.

You can also specify a custom template of your own; see Chapter 11, 定制 Mercurial 的输出 for details. Here, you can see how to enable the
gitweb style.
[web]
style = gitweb

	templates: Path. The directory in which
to search for template files. By default, Mercurial searches in the
directory in which it was installed.

If you are using hgwebdir.cgi, you can
place a few configuration items in a web
section of the hgweb.config file instead
of a ~/.hgrc file, for convenience.
These items are motd and style.
针对单个版本库的选项

A few web configuration items ought to be
placed in a repository's local .hg/hgrc,
rather than a user's or global ~/.hgrc.
	description: String. A free-form (but
preferably brief) string that describes the contents or purpose of the
repository.

	name: String. The name to use for the
repository in the web interface. This overrides the default name, which is
the last component of the repository's path.

命令 hg serve 的选项

Some of the items in the web section of a
~/.hgrc file are only for use with the
hg serve command.
	accesslog: Path. The name of a file into
which to write an access log. By default, the hg
serve command writes this information to standard output, not to a
file. Log entries are written in the standard “combined” file
format used by almost all web servers.

	address: String. The local address on
which the server should listen for incoming connections. By default, the
server listens on all addresses.

	errorlog: Path. The name of a file into
which to write an error log. By default, the hg
serve command writes this information to standard error, not to a
file.

	ipv6: Boolean. Whether to use the IPv6
protocol. By default, IPv6 is not used.

	port: Integer. The TCP port number on
which the server should listen. The default port number used is 8000.

选择正确的 ~/.hgrc 文件增加到 web 条目

It is important to remember that a web server like Apache or
lighttpd will run under a user ID that is different to
yours. CGI scripts run by your server, such as hgweb.cgi, will usually also run under that user
ID.
If you add web items to your own personal
~/.hgrc file, CGI scripts won't read
that ~/.hgrc file. Those settings will
thus only affect the behavior of the hg
serve command when you run it. To cause CGI scripts to see your
settings, either create a ~/.hgrc file
in the home directory of the user ID that runs your web server, or add those
settings to a system-wide hgrc file.

全局配置

On Unix-like systems shared by multiple users (such as a server to which
people publish changes), it often makes sense to set up some global default
behaviors, such as what theme to use in web interfaces.
If a file named /etc/mercurial/hgrc exists, Mercurial
will read it at startup time and apply any configuration settings it finds
in that file. It will also look for files ending in a
.rc extension in a directory named
/etc/mercurial/hgrc.d, and apply any configuration
settings it finds in each of those files.
让 Mercurial 更可信

One situation in which a global hgrc can be useful is
if users are pulling changes owned by other users. By default, Mercurial
will not trust most of the configuration items in a
.hg/hgrc file inside a repository that is owned by a
different user. If we clone or pull changes from such a repository,
Mercurial will print a warning stating that it does not trust their
.hg/hgrc.
If everyone in a particular Unix group is on the same team and
should trust each other's configuration settings, or we
want to trust particular users, we can override Mercurial's skeptical
defaults by creating a system-wide hgrc file such as
the following:
Save this as e.g. /etc/mercurial/hgrc.d/trust.rc
[trusted]
Trust all entries in any hgrc file owned by the "editors" or
"www-data" groups.
groups = editors, www-data

Trust entries in hgrc files owned by the following users.
users = apache, bobo

Chapter 7. 文件名称与模式匹配

Mercurial provides mechanisms that let you work with file names in a
consistent and expressive way.
简单文件名称

Mercurial uses a unified piece of machinery “under the hood” to
handle file names. Every command behaves uniformly with respect to file
names. The way in which commands work with file names is as follows.
If you explicitly name real files on the command line, Mercurial works with
exactly those files, as you would expect.

$ hg add COPYING README examples/simple.py

When you provide a directory name, Mercurial will interpret this as
“operate on every file in this directory and its
subdirectories”. Mercurial traverses the files and subdirectories in
a directory in alphabetical order. When it encounters a subdirectory, it
will traverse that subdirectory before continuing with the current
directory.
$ hg status src
? src/main.py
? src/watcher/_watcher.c
? src/watcher/watcher.py
? src/xyzzy.txt

不提供文件名称的执行命令

Mercurial's commands that work with file names have useful default behaviors
when you invoke them without providing any file names or patterns. What
kind of behavior you should expect depends on what the command does. Here
are a few rules of thumb you can use to predict what a command is likely to
do if you don't give it any names to work with.
	Most commands will operate on the entire working directory. This is what the
hg add command does, for example.

	If the command has effects that are difficult or impossible to reverse, it
will force you to explicitly provide at least one name or pattern (see
below). This protects you from accidentally deleting files by running
hg remove with no arguments, for example.

It's easy to work around these default behaviors if they don't suit you. If
a command normally operates on the whole working directory, you can invoke
it on just the current directory and its subdirectories by giving it the
name “.”.
$ cd src
$ hg add -n
adding ../MANIFEST.in
adding ../examples/performant.py
adding ../setup.py
adding main.py
adding watcher/_watcher.c
adding watcher/watcher.py
adding xyzzy.txt
$ hg add -n .
adding main.py
adding watcher/_watcher.c
adding watcher/watcher.py
adding xyzzy.txt

Along the same lines, some commands normally print file names relative to
the root of the repository, even if you're invoking them from a
subdirectory. Such a command will print file names relative to your
subdirectory if you give it explicit names. Here, we're going to run
hg status from a subdirectory, and get it
to operate on the entire working directory while printing file names
relative to our subdirectory, by passing it the output of the hg root command.
$ hg status
A COPYING
A README
A examples/simple.py
? MANIFEST.in
? examples/performant.py
? setup.py
? src/main.py
? src/watcher/_watcher.c
? src/watcher/watcher.py
? src/xyzzy.txt
$ hg status `hg root`
A ../COPYING
A ../README
A ../examples/simple.py
? ../MANIFEST.in
? ../examples/performant.py
? ../setup.py
? main.py
? watcher/_watcher.c
? watcher/watcher.py
? xyzzy.txt

告诉你正在做什么

The hg add example in the preceding section
illustrates something else that's helpful about Mercurial commands. If a
command operates on a file that you didn't name explicitly on the command
line, it will usually print the name of the file, so that you will not be
surprised what's going on.
The principle here is of least surprise. If you've
exactly named a file on the command line, there's no point in repeating it
back at you. If Mercurial is acting on a file
implicitly, e.g. because you provided no names, or a
directory, or a pattern (see below), it is safest to tell you what files
it's operating on.
For commands that behave this way, you can silence them using the -q option. You can also get them to print the
name of every file, even those you've named explicitly, using the -v option.

使用模式标识文件

In addition to working with file and directory names, Mercurial lets you use
patterns to identify files. Mercurial's pattern
handling is expressive.
On Unix-like systems (Linux, MacOS, etc.), the job of matching file names to
patterns normally falls to the shell. On these systems, you must explicitly
tell Mercurial that a name is a pattern. On Windows, the shell does not
expand patterns, so Mercurial will automatically identify names that are
patterns, and expand them for you.
To provide a pattern in place of a regular name on the command line, the
mechanism is simple:
syntax:patternbody
That is, a pattern is identified by a short text string that says what kind
of pattern this is, followed by a colon, followed by the actual pattern.
Mercurial supports two kinds of pattern syntax. The most frequently used is
called glob; this is the same kind of pattern matching
used by the Unix shell, and should be familiar to Windows command prompt
users, too.
When Mercurial does automatic pattern matching on Windows, it uses
glob syntax. You can thus omit the
“glob:” prefix on Windows, but it's safe to
use it, too.
The re syntax is more powerful; it lets you specify
patterns using regular expressions, also known as regexps.
By the way, in the examples that follow, notice that I'm careful to wrap all
of my patterns in quote characters, so that they won't get expanded by the
shell before Mercurial sees them.
外壳风格的 glob 模式

This is an overview of the kinds of patterns you can use when you're
matching on glob patterns.
The “*” character matches any string, within
a single directory.
$ hg add 'glob:*.py'
adding main.py

The “**” pattern matches any string, and
crosses directory boundaries. It's not a standard Unix glob token, but it's
accepted by several popular Unix shells, and is very useful.
$ cd ..
$ hg status 'glob:**.py'
A examples/simple.py
A src/main.py
? examples/performant.py
? setup.py
? src/watcher/watcher.py

The “?” pattern matches any single
character.
$ hg status 'glob:**.?'
? src/watcher/_watcher.c

The “[” character begins a
character class. This matches any single character
within the class. The class ends with a “]”
character. A class may contain multiple ranges of the
form “a-f”, which is shorthand for
“abcdef”.
$ hg status 'glob:**[nr-t]'
? MANIFEST.in
? src/xyzzy.txt

If the first character after the “[” in a
character class is a “!”, it
negates the class, making it match any single character
not in the class.
A “{” begins a group of subpatterns, where
the whole group matches if any subpattern in the group matches. The
“,” character separates subpatterns, and
“}” ends the group.
$ hg status 'glob:*.{in,py}'
? MANIFEST.in
? setup.py

千万小心！

Don't forget that if you want to match a pattern in any directory, you
should not be using the “*” match-any token,
as this will only match within one directory. Instead, use the
“**” token. This small example illustrates
the difference between the two.
$ hg status 'glob:*.py'
? setup.py
$ hg status 'glob:**.py'
A examples/simple.py
A src/main.py
? examples/performant.py
? setup.py
? src/watcher/watcher.py

使用 re 模式的正则表达式匹配

Mercurial accepts the same regular expression syntax as the Python
programming language (it uses Python's regexp engine internally). This is
based on the Perl language's regexp syntax, which is the most popular
dialect in use (it's also used in Java, for example).
I won't discuss Mercurial's regexp dialect in any detail here, as regexps
are not often used. Perl-style regexps are in any case already exhaustively
documented on a multitude of web sites, and in many books. Instead, I will
focus here on a few things you should know if you find yourself needing to
use regexps with Mercurial.
A regexp is matched against an entire file name, relative to the root of the
repository. In other words, even if you're already in subbdirectory
foo, if you want to match files under
this directory, your pattern must start with
“foo/”.
One thing to note, if you're familiar with Perl-style regexps, is that
Mercurial's are rooted. That is, a regexp starts
matching against the beginning of a string; it doesn't look for a match
anywhere within the string. To match anywhere in a string, start your
pattern with “.*”.

过滤文件

Not only does Mercurial give you a variety of ways to specify files; it lets
you further winnow those files using filters. Commands
that work with file names accept two filtering options.
	-I, or --include, lets you specify a pattern that
file names must match in order to be processed.

	-X, or --exclude, gives you a way to
avoid processing files, if they match this pattern.

You can provide multiple -I and
-X options on the command line, and
intermix them as you please. Mercurial interprets the patterns you provide
using glob syntax by default (but you can use regexps if you need to).
You can read a -I filter as
“process only the files that match this filter”.
$ hg status -I '*.in'
? MANIFEST.in

The -X filter is best read as
“process only the files that don't match this pattern”.
$ hg status -X '**.py' src
? src/watcher/_watcher.c
? src/xyzzy.txt

始终忽略不需要的文件和目录

When you create a new repository, the chances are that over time it will
grow to contain files that ought to not be managed by
Mercurial, but which you don't want to see listed every time you run
hg status. For instance, “build products”
are files that are created as part of a build but which should not be
managed by a revision control system. The most common build products are
output files produced by software tools such as compilers. As another
example, many text editors litter a directory with lock files, temporary
working files, and backup files, which it also makes no sense to manage.
To have Mercurial permanently ignore such files, create a file named
.hgignore in the root of your repository. You
should hg add this file so that it
gets tracked with the rest of your repository contents, since your
collaborators will probably find it useful too.
By default, the .hgignore file should contain a list of
regular expressions, one per line. Empty lines are skipped. Most people
prefer to describe the files they want to ignore using the
“glob” syntax that we described above, so a typical
.hgignore file will start with this directive:
syntax: glob
This tells Mercurial to interpret the lines that follow as glob patterns,
not regular expressions.
Here is a typical-looking .hgignore file.
syntax: glob
This line is a comment, and will be skipped.
Empty lines are skipped too.

Backup files left behind by the Emacs editor.
*~

Lock files used by the Emacs editor.
Notice that the "#" character is quoted with a backslash.
This prevents it from being interpreted as starting a comment.
.\#*

Temporary files used by the vim editor.
.*.swp

A hidden file created by the Mac OS X Finder.
.DS_Store

大小写敏感性

If you're working in a mixed development environment that contains both
Linux (or other Unix) systems and Macs or Windows systems, you should keep
in the back of your mind the knowledge that they treat the case
(“N” versus “n”) of file names in incompatible
ways. This is not very likely to affect you, and it's easy to deal with if
it does, but it could surprise you if you don't know about it.
Operating systems and filesystems differ in the way they handle the
case of characters in file and directory names. There
are three common ways to handle case in names.
	Completely case insensitive. Uppercase and lowercase versions of a letter
are treated as identical, both when creating a file and during subsequent
accesses. This is common on older DOS-based systems.

	Case preserving, but insensitive. When a file or directory is created, the
case of its name is stored, and can be retrieved and displayed by the
operating system. When an existing file is being looked up, its case is
ignored. This is the standard arrangement on Windows and MacOS. The names
foo and FoO identify the same
file. This treatment of uppercase and lowercase letters as interchangeable
is also referred to as case folding.

	Case sensitive. The case of a name is significant at all times. The names
foo and FoO identify different
files. This is the way Linux and Unix systems normally work.

On Unix-like systems, it is possible to have any or all of the above ways of
handling case in action at once. For example, if you use a USB thumb drive
formatted with a FAT32 filesystem on a Linux system, Linux will handle names
on that filesystem in a case preserving, but insensitive, way.
安全，可移植的版本库存储

Mercurial's repository storage mechanism is case safe.
It translates file names so that they can be safely stored on both case
sensitive and case insensitive filesystems. This means that you can use
normal file copying tools to transfer a Mercurial repository onto, for
example, a USB thumb drive, and safely move that drive and repository back
and forth between a Mac, a PC running Windows, and a Linux box.

检测大小写冲突

When operating in the working directory, Mercurial honours the naming policy
of the filesystem where the working directory is located. If the filesystem
is case preserving, but insensitive, Mercurial will treat names that differ
only in case as the same.
An important aspect of this approach is that it is possible to commit a
changeset on a case sensitive (typically Linux or Unix) filesystem that will
cause trouble for users on case insensitive (usually Windows and MacOS)
users. If a Linux user commits changes to two files, one named
myfile.c and the other named
MyFile.C, they will be stored correctly in the
repository. And in the working directories of other Linux users, they will
be correctly represented as separate files.
If a Windows or Mac user pulls this change, they will not initially have a
problem, because Mercurial's repository storage mechanism is case safe.
However, once they try to hg update the
working directory to that changeset, or hg
merge with that changeset, Mercurial will spot the conflict
between the two file names that the filesystem would treat as the same, and
forbid the update or merge from occurring.

修正大小写冲突

If you are using Windows or a Mac in a mixed environment where some of your
collaborators are using Linux or Unix, and Mercurial reports a case folding
conflict when you try to hg update or
hg merge, the procedure to fix the problem
is simple.
Just find a nearby Linux or Unix box, clone the problem repository onto it,
and use Mercurial's hg rename command to
change the names of any offending files or directories so that they will no
longer cause case folding conflicts. Commit this change, hg pull or hg push
it across to your Windows or MacOS system, and hg
update to the revision with the non-conflicting names.
The changeset with case-conflicting names will remain in your project's
history, and you still won't be able to hg
update your working directory to that changeset on a Windows or
MacOS system, but you can continue development unimpeded.

Chapter 8. 发布管理与分支开发

Mercurial provides several mechanisms for you to manage a project that is
making progress on multiple fronts at once. To understand these mechanisms,
let's first take a brief look at a fairly normal software project structure.
Many software projects issue periodic “major” releases that
contain substantial new features. In parallel, they may issue
“minor” releases. These are usually identical to the major
releases off which they're based, but with a few bugs fixed.
In this chapter, we'll start by talking about how to keep records of project
milestones such as releases. We'll then continue on to talk about the flow
of work between different phases of a project, and how Mercurial can help
you to isolate and manage this work.
给版本指定一个永久的名称

Once you decide that you'd like to call a particular revision a
“release”, it's a good idea to record the identity of that
revision. This will let you reproduce that release at a later date, for
whatever purpose you might need at the time (reproducing a bug, porting to a
new platform, etc).

$ hg init mytag
$ cd mytag
$ echo hello > myfile
$ hg commit -A -m 'Initial commit'
adding myfile

Mercurial lets you give a permanent name to any revision using the hg tag command. Not surprisingly, these names are
called “tags”.
$ hg tag v1.0

A tag is nothing more than a “symbolic name” for a revision.
Tags exist purely for your convenience, so that you have a handy permanent
way to refer to a revision; Mercurial doesn't interpret the tag names you
use in any way. Neither does Mercurial place any restrictions on the name
of a tag, beyond a few that are necessary to ensure that a tag can be parsed
unambiguously. A tag name cannot contain any of the following characters:
	Colon (ASCII 58, “:”)

	Carriage return (ASCII 13, “\r”)

	Newline (ASCII 10, “\n”)

You can use the hg tags command to display
the tags present in your repository. In the output, each tagged revision is
identified first by its name, then by revision number, and finally by the
unique hash of the revision.
$ hg tags
tip 1:75599b086c0f
v1.0 0:57e5334e8f68

Notice that tip is listed in the output of hg tags. The tip tag is a
special “floating” tag, which always identifies the newest
revision in the repository.
In the output of the hg tags command, tags
are listed in reverse order, by revision number. This usually means that
recent tags are listed before older tags. It also means that
tip is always going to be the first tag listed in the
output of hg tags.
When you run hg log, if it displays a
revision that has tags associated with it, it will print those tags.
$ hg log
changeset: 1:75599b086c0f
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:03 2011 +0000
summary: Added tag v1.0 for changeset 57e5334e8f68

changeset: 0:57e5334e8f68
tag: v1.0
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:03 2011 +0000
summary: Initial commit

Any time you need to provide a revision ID to a Mercurial command, the
command will accept a tag name in its place. Internally, Mercurial will
translate your tag name into the corresponding revision ID, then use that.
$ echo goodbye > myfile2
$ hg commit -A -m 'Second commit'
adding myfile2
$ hg log -r v1.0
changeset: 0:57e5334e8f68
tag: v1.0
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:03 2011 +0000
summary: Initial commit

There's no limit on the number of tags you can have in a repository, or on
the number of tags that a single revision can have. As a practical matter,
it's not a great idea to have “too many” (a number which will
vary from project to project), simply because tags are supposed to help you
to find revisions. If you have lots of tags, the ease of using them to
identify revisions diminishes rapidly.
For example, if your project has milestones as frequent as every few days,
it's perfectly reasonable to tag each one of those. But if you have a
continuous build system that makes sure every revision can be built cleanly,
you'd be introducing a lot of noise if you were to tag every clean build.
Instead, you could tag failed builds (on the assumption that they're rare!),
or simply not use tags to track buildability.
If you want to remove a tag that you no longer want, use hg tag --remove.
$ hg tag --remove v1.0
$ hg tags
tip 3:803f4548034d

You can also modify a tag at any time, so that it identifies a different
revision, by simply issuing a new hg tag
command. You'll have to use the -f option
to tell Mercurial that you really want to update the
tag.
$ hg tag -r 1 v1.1
$ hg tags
tip 4:096ab8855c7f
v1.1 1:75599b086c0f
$ hg tag -r 2 v1.1
abort: tag 'v1.1' already exists (use -f to force)
$ hg tag -f -r 2 v1.1
$ hg tags
tip 5:5b9d97380c8a
v1.1 2:69428c741a3d

There will still be a permanent record of the previous identity of the tag,
but Mercurial will no longer use it. There's thus no penalty to tagging the
wrong revision; all you have to do is turn around and tag the correct
revision once you discover your error.
Mercurial stores tags in a normal revision-controlled file in your
repository. If you've created any tags, you'll find them in a file in the
root of your repository named .hgtags.
When you run the hg tag command, Mercurial
modifies this file, then automatically commits the change to it. This means
that every time you run hg tag, you'll see
a corresponding changeset in the output of hg
log.
$ hg tip
changeset: 5:5b9d97380c8a
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:04 2011 +0000
summary: Added tag v1.1 for changeset 69428c741a3d

在合并期间处理标签冲突

You won't often need to care about the .hgtags file, but it sometimes makes its presence
known during a merge. The format of the file is simple: it consists of a
series of lines. Each line starts with a changeset hash, followed by a
space, followed by the name of a tag.
If you're resolving a conflict in the .hgtags file during a merge, there's one twist to
modifying the .hgtags file: when
Mercurial is parsing the tags in a repository, it never
reads the working copy of the .hgtags
file. Instead, it reads the most recently committed
revision of the file.
An unfortunate consequence of this design is that you can't actually verify
that your merged .hgtags file is correct
until after you've committed a change. So if you find
yourself resolving a conflict on .hgtags
during a merge, be sure to run hg tags
after you commit. If it finds an error in the .hgtags file, it will report the location of the
error, which you can then fix and commit. You should then run hg tags again, just to be sure that your fix is
correct.

标签与克隆

You may have noticed that the hg clone
command has a -r option that lets you
clone an exact copy of the repository as of a particular changeset. The new
clone will not contain any project history that comes after the revision you
specified. This has an interaction with tags that can surprise the unwary.
Recall that a tag is stored as a revision to the .hgtags file. When you create a tag, the changeset
in which its recorded refers to an older changeset. When you run hg clone -r foo to clone a repository as of tag
foo, the new clone will not contain any
revision newer than the one the tag refers to, including the revision where
the tag was created. The result is that you'll get exactly the
right subset of the project's history in the new repository, but
not the tag you might have expected.

当永久标签太多的时候

Since Mercurial's tags are revision controlled and carried around with a
project's history, everyone you work with will see the tags you create. But
giving names to revisions has uses beyond simply noting that revision
4237e45506ee is really v2.0.2. If
you're trying to track down a subtle bug, you might want a tag to remind you
of something like “Anne saw the symptoms with this revision”.
For cases like this, what you might want to use are
local tags. You can create a local tag with the -l option to the hg
tag command. This will store the tag in a file called .hg/localtags. Unlike .hgtags, .hg/localtags is not revision controlled. Any
tags you create using -l remain strictly
local to the repository you're currently working in.

修改流程—宏观与微观

To return to the outline I sketched at the beginning of the chapter, let's
think about a project that has multiple concurrent pieces of work under
development at once.
There might be a push for a new “main” release; a new minor
bugfix release to the last main release; and an unexpected “hot
fix” to an old release that is now in maintenance mode.
The usual way people refer to these different concurrent directions of
development is as “branches”. However, we've already seen
numerous times that Mercurial treats all of history as
a series of branches and merges. Really, what we have here is two ideas
that are peripherally related, but which happen to share a name.
	“Big picture” branches represent the sweep of a project's
evolution; people give them names, and talk about them in conversation.

	“Little picture” branches are artefacts of the day-to-day
activity of developing and merging changes. They expose the narrative of
how the code was developed.

在版本库中管理分支

The easiest way to isolate a “big picture” branch in Mercurial
is in a dedicated repository. If you have an existing shared
repository—let's call it myproject—that
reaches a “1.0” milestone, you can start to prepare for future
maintenance releases on top of version 1.0 by tagging the revision from
which you prepared the 1.0 release.
$ cd myproject
$ hg tag v1.0

You can then clone a new shared myproject-1.0.1
repository as of that tag.
$ cd ..
$ hg clone myproject myproject-1.0.1
updating to branch default
2 files updated, 0 files merged, 0 files removed, 0 files unresolved

Afterwards, if someone needs to work on a bug fix that ought to go into an
upcoming 1.0.1 minor release, they clone the
myproject-1.0.1 repository, make their changes, and push
them back.
$ hg clone myproject-1.0.1 my-1.0.1-bugfix
updating to branch default
2 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd my-1.0.1-bugfix
$ echo 'I fixed a bug using only echo!' >> myfile
$ hg commit -m 'Important fix for 1.0.1'
$ hg push
pushing to /tmp/branch-repovDHbo_/myproject-1.0.1
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files

Meanwhile, development for the next major release can continue, isolated and
unabated, in the myproject repository.
$ cd ..
$ hg clone myproject my-feature
updating to branch default
2 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd my-feature
$ echo 'This sure is an exciting new feature!' > mynewfile
$ hg commit -A -m 'New feature'
adding mynewfile
$ hg push
pushing to /tmp/branch-repovDHbo_/myproject
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files

不要重复劳动：在分支间合并

In many cases, if you have a bug to fix on a maintenance branch, the chances
are good that the bug exists on your project's main branch (and possibly
other maintenance branches, too). It's a rare developer who wants to fix
the same bug multiple times, so let's look at a few ways that Mercurial can
help you to manage these bugfixes without duplicating your work.
In the simplest instance, all you need to do is pull changes from your
maintenance branch into your local clone of the target branch.
$ cd ..
$ hg clone myproject myproject-merge
updating to branch default
3 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd myproject-merge
$ hg pull ../myproject-1.0.1
pulling from ../myproject-1.0.1
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)

You'll then need to merge the heads of the two branches, and push back to
the main branch.
$ hg merge
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)
$ hg commit -m 'Merge bugfix from 1.0.1 branch'
$ hg push
pushing to /tmp/branch-repovDHbo_/myproject
searching for changes
adding changesets
adding manifests
adding file changes
added 2 changesets with 1 changes to 1 files

版本库中的命名分支

In most instances, isolating branches in repositories is the right
approach. Its simplicity makes it easy to understand; and so it's hard to
make mistakes. There's a one-to-one relationship between branches you're
working in and directories on your system. This lets you use normal
(non-Mercurial-aware) tools to work on files within a branch/repository.
If you're more in the “power user” category
(and your collaborators are too), there is an
alternative way of handling branches that you can consider. I've already
mentioned the human-level distinction between “small picture”
and “big picture” branches. While Mercurial works with
multiple “small picture” branches in a repository all the time
(for example after you pull changes in, but before you merge them), it can
also work with multiple “big picture”
branches.
The key to working this way is that Mercurial lets you assign a persistent
name to a branch. There always exists a branch named
default. Even before you start naming branches yourself,
you can find traces of the default branch if you look for
them.
As an example, when you run the hg commit
command, and it pops up your editor so that you can enter a commit message,
look for a line that contains the text “HG: branch
default” at the bottom. This is telling you that your
commit will occur on the branch named default.
To start working with named branches, use the hg
branches command. This command lists the named branches already
present in your repository, telling you which changeset is the tip of each.
$ hg tip
changeset: 0:26126cee1b4f
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:26 2011 +0000
summary: Initial commit

$ hg branches
default 0:26126cee1b4f

Since you haven't created any named branches yet, the only one that exists
is default.
To find out what the “current” branch is, run the hg branch command, giving it no arguments. This
tells you what branch the parent of the current changeset is on.
$ hg branch
default

To create a new branch, run the hg branch
command again. This time, give it one argument: the name of the branch you
want to create.
$ hg branch foo
marked working directory as branch foo
$ hg branch
foo

After you've created a branch, you might wonder what effect the hg branch command has had. What do the hg status and hg
tip commands report?
$ hg status
$ hg tip
changeset: 0:26126cee1b4f
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:26 2011 +0000
summary: Initial commit

Nothing has changed in the working directory, and there's been no new
history created. As this suggests, running the hg
branch command has no permanent effect; it only tells Mercurial
what branch name to use the next time you commit a
changeset.
When you commit a change, Mercurial records the name of the branch on which
you committed. Once you've switched from the default
branch to another and committed, you'll see the name of the new branch show
up in the output of hg log, hg tip, and other commands that display the same
kind of output.
$ echo 'hello again' >> myfile
$ hg commit -m 'Second commit'
$ hg tip
changeset: 1:439d2ab7c725
branch: foo
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:27 2011 +0000
summary: Second commit

The hg log-like commands will print the
branch name of every changeset that's not on the default
branch. As a result, if you never use named branches, you'll never see this
information.
Once you've named a branch and committed a change with that name, every
subsequent commit that descends from that change will inherit the same
branch name. You can change the name of a branch at any time, using the
hg branch command.
$ hg branch
foo
$ hg branch bar
marked working directory as branch bar
$ echo new file > newfile
$ hg commit -A -m 'Third commit'
adding newfile
$ hg tip
changeset: 2:5ca8ceb6b905
branch: bar
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:27 2011 +0000
summary: Third commit

In practice, this is something you won't do very often, as branch names tend
to have fairly long lifetimes. (This isn't a rule, just an observation.)

在版本库中处理多个命名分支

If you have more than one named branch in a repository, Mercurial will
remember the branch that your working directory is on when you start a
command like hg update or hg pull -u. It will update the working directory to
the tip of this branch, no matter what the “repo-wide” tip is.
To update to a revision that's on a different named branch, you may need to
use the -C option to hg update.
This behavior is a little subtle, so let's see it in action. First, let's
remind ourselves what branch we're currently on, and what branches are in
our repository.
$ hg parents
changeset: 2:5ca8ceb6b905
branch: bar
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:27 2011 +0000
summary: Third commit

$ hg branches
bar 2:5ca8ceb6b905
foo 1:439d2ab7c725 (inactive)
default 0:26126cee1b4f (inactive)

We're on the bar branch, but there also exists an older
hg foo branch.
We can hg update back and forth between the
tips of the foo and bar branches
without needing to use the -C option,
because this only involves going backwards and forwards linearly through our
change history.
$ hg update foo
0 files updated, 0 files merged, 1 files removed, 0 files unresolved
$ hg parents
changeset: 1:439d2ab7c725
branch: foo
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:27 2011 +0000
summary: Second commit

$ hg update bar
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ hg parents
changeset: 2:5ca8ceb6b905
branch: bar
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:27 2011 +0000
summary: Third commit

If we go back to the foo branch and then run hg update, it will keep us on
foo, not move us to the tip of bar.
$ hg update foo
0 files updated, 0 files merged, 1 files removed, 0 files unresolved
$ hg update
0 files updated, 0 files merged, 0 files removed, 0 files unresolved

Committing a new change on the foo branch introduces a
new head.
$ echo something > somefile
$ hg commit -A -m 'New file'
adding somefile
$ hg heads
changeset: 3:87448247f5a9
branch: foo
tag: tip
parent: 1:439d2ab7c725
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:28 2011 +0000
summary: New file

changeset: 2:5ca8ceb6b905
branch: bar
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:27 2011 +0000
summary: Third commit

changeset: 0:26126cee1b4f
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:26 2011 +0000
summary: Initial commit

分支名称与合并

As you've probably noticed, merges in Mercurial are not symmetrical. Let's
say our repository has two heads, 17 and 23. If I hg
update to 17 and then hg merge
with 23, Mercurial records 17 as the first parent of the merge, and 23 as
the second. Whereas if I hg update to 23
and then hg merge with 17, it records 23 as
the first parent, and 17 as the second.
This affects Mercurial's choice of branch name when you merge. After a
merge, Mercurial will retain the branch name of the first parent when you
commit the result of the merge. If your first parent's branch name is
foo, and you merge with bar, the
branch name will still be foo after you merge.
It's not unusual for a repository to contain multiple heads, each with the
same branch name. Let's say I'm working on the foo
branch, and so are you. We commit different changes; I pull your changes; I
now have two heads, each claiming to be on the foo
branch. The result of a merge will be a single head on the
foo branch, as you might hope.
But if I'm working on the bar branch, and I merge work
from the foo branch, the result will remain on the
bar branch.
$ hg branch
bar
$ hg merge foo
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)
$ hg commit -m 'Merge'
$ hg tip
changeset: 4:161b9ec3227b
branch: bar
tag: tip
parent: 2:5ca8ceb6b905
parent: 3:87448247f5a9
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:28 2011 +0000
summary: Merge

To give a more concrete example, if I'm working on the
bleeding-edge branch, and I want to bring in the latest
fixes from the stable branch, Mercurial will choose the
“right” (bleeding-edge) branch name when I
pull and merge from stable.

分支名称通常都很有用

You shouldn't think of named branches as applicable only to situations where
you have multiple long-lived branches cohabiting in a single repository.
They're very useful even in the one-branch-per-repository case.
In the simplest case, giving a name to each branch gives you a permanent
record of which branch a changeset originated on. This gives you more
context when you're trying to follow the history of a long-lived branchy
project.
If you're working with shared repositories, you can set up a pretxnchangegroup hook on each that will block
incoming changes that have the “wrong” branch name. This
provides a simple, but effective, defence against people accidentally
pushing changes from a “bleeding edge” branch to a
“stable” branch. Such a hook might look like this inside the
shared repo's /.hgrc.
[hooks]
pretxnchangegroup.branch = hg heads --template '{branches} ' | grep mybranch

Chapter 9. 查找和修改错误

To err might be human, but to really handle the consequences well takes a
top-notch revision control system. In this chapter, we'll discuss some of
the techniques you can use when you find that a problem has crept into your
project. Mercurial has some highly capable features that will help you to
isolate the sources of problems, and to handle them appropriately.
销毁本地历史

意外的提交

I have the occasional but persistent problem of typing rather more quickly
than I can think, which sometimes results in me committing a changeset that
is either incomplete or plain wrong. In my case, the usual kind of
incomplete changeset is one in which I've created a new source file, but
forgotten to hg add it. A “plain
wrong” changeset is not as common, but no less annoying.

回滚一个事务

In the section called “安全操作”, I mentioned that Mercurial treats
each modification of a repository as a transaction.
Every time you commit a changeset or pull changes from another repository,
Mercurial remembers what you did. You can undo, or roll
back, exactly one of these actions using the hg rollback command. (See the section called “当完成推送后，回滚是无效的” for an important caveat about the
use of this command.)
Here's a mistake that I often find myself making: committing a change in
which I've created a new file, but forgotten to hg
add it.
$ hg status
M a
$ echo b > b
$ hg commit -m 'Add file b'

Looking at the output of hg status after
the commit immediately confirms the error.
$ hg status
? b
$ hg tip
changeset: 1:419de3acfb60
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:02 2011 +0000
summary: Add file b

The commit captured the changes to the file a, but not
the new file b. If I were to push this changeset to a
repository that I shared with a colleague, the chances are high that
something in a would refer to b,
which would not be present in their repository when they pulled my changes.
I would thus become the object of some indignation.
However, luck is with me—I've caught my error before I pushed the
changeset. I use the hg rollback command,
and Mercurial makes that last changeset vanish.
$ hg rollback
rolling back to revision 0 (undo commit)
$ hg tip
changeset: 0:db623ac460a8
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:02 2011 +0000
summary: First commit

$ hg status
M a
? b

Notice that the changeset is no longer present in the repository's history,
and the working directory once again thinks that the file
a is modified. The commit and rollback have left the
working directory exactly as it was prior to the commit; the changeset has
been completely erased. I can now safely hg
add the file b, and rerun my commit.
$ hg add b
$ hg commit -m 'Add file b, this time for real'

错误的抓取

It's common practice with Mercurial to maintain separate development
branches of a project in different repositories. Your development team
might have one shared repository for your project's “0.9”
release, and another, containing different changes, for the
“1.0” release.
Given this, you can imagine that the consequences could be messy if you had
a local “0.9” repository, and accidentally pulled changes from
the shared “1.0” repository into it. At worst, you could be
paying insufficient attention, and push those changes into the shared
“0.9” tree, confusing your entire team (but don't worry, we'll
return to this horror scenario later). However, it's more likely that
you'll notice immediately, because Mercurial will display the URL it's
pulling from, or you will see it pull a suspiciously large number of changes
into the repository.
The hg rollback command will work nicely to
expunge all of the changesets that you just pulled. Mercurial groups all
changes from one hg pull into a single
transaction, so one hg rollback is all you
need to undo this mistake.

当完成推送后，回滚是无效的

The value of the hg rollback command drops
to zero once you've pushed your changes to another repository. Rolling back
a change makes it disappear entirely, but only in the
repository in which you perform the hg
rollback. Because a rollback eliminates history, there's no way
for the disappearance of a change to propagate between repositories.
If you've pushed a change to another repository—particularly if it's
a shared repository—it has essentially “escaped into the
wild,” and you'll have to recover from your mistake in a different
way. If you push a changeset somewhere, then roll it back, then pull from
the repository you pushed to, the changeset you thought you'd gotten rid of
will simply reappear in your repository.
(If you absolutely know for sure that the change you want to roll back is
the most recent change in the repository that you pushed to,
and you know that nobody else could have pulled it from
that repository, you can roll back the changeset there, too, but you really
should not expect this to work reliably. Sooner or later a change really
will make it into a repository that you don't directly control (or have
forgotten about), and come back to bite you.)

你只能回滚一次

Mercurial stores exactly one transaction in its transaction log; that
transaction is the most recent one that occurred in the repository. This
means that you can only roll back one transaction. If you expect to be able
to roll back one transaction, then its predecessor, this is not the behavior
you will get.
$ hg rollback
rolling back to revision 0 (undo commit)
$ hg rollback
no rollback information available

Once you've rolled back one transaction in a repository, you can't roll back
again in that repository until you perform another commit or pull.

撤销错误的修改

If you make a modification to a file, and decide that you really didn't want
to change the file at all, and you haven't yet committed your changes, the
hg revert command is the one you'll need.
It looks at the changeset that's the parent of the working directory, and
restores the contents of the file to their state as of that
changeset. (That's a long-winded way of saying that, in the normal case, it
undoes your modifications.)
Let's illustrate how the hg revert command
works with yet another small example. We'll begin by modifying a file that
Mercurial is already tracking.
$ cat file
original content
$ echo unwanted change >> file
$ hg diff file
diff -r 5ad45795abe5 file
--- a/file	Thu Mar 17 05:12:44 2011 +0000
+++ b/file	Thu Mar 17 05:12:44 2011 +0000
@@ -1,1 +1,2 @@
 original content
+unwanted change

If we don't want that change, we can simply hg
revert the file.
$ hg status
M file
$ hg revert file
$ cat file
original content

The hg revert command provides us with an
extra degree of safety by saving our modified file with a
.orig extension.
$ hg status
? file.orig
$ cat file.orig
original content
unwanted change

小心 .orig 文件
It's extremely unlikely that you are either using Mercurial to manage files
with .orig extensions or that you even care about the
contents of such files. Just in case, though, it's useful to remember that
hg revert will unconditionally overwrite an
existing file with a .orig extension. For instance, if
you already have a file named foo.orig when you revert
foo, the contents of foo.orig will
be clobbered.

Here is a summary of the cases that the hg
revert command can deal with. We will describe each of these in
more detail in the section that follows.
	If you modify a file, it will restore the file to its unmodified state.

	If you hg add a file, it will undo the
“added” state of the file, but leave the file itself untouched.

	If you delete a file without telling Mercurial, it will restore the file to
its unmodified contents.

	If you use the hg remove command to remove
a file, it will undo the “removed” state of the file, and
restore the file to its unmodified contents.

文件管理错误

The hg revert command is useful for more
than just modified files. It lets you reverse the results of all of
Mercurial's file management commands—hg
add, hg remove, and so on.
If you hg add a file, then decide that in
fact you don't want Mercurial to track it, use hg
revert to undo the add. Don't worry; Mercurial will not modify
the file in any way. It will just “unmark” the file.
$ echo oops > oops
$ hg add oops
$ hg status oops
A oops
$ hg revert oops
$ hg status
? oops

Similarly, if you ask Mercurial to hg
remove a file, you can use hg
revert to restore it to the contents it had as of the parent of
the working directory.

$ hg remove file
$ hg status
R file
$ hg revert file
$ hg status
$ ls file
file

 This works just as
well for a file that you deleted by hand, without telling Mercurial (recall
that in Mercurial terminology, this kind of file is called
“missing”).
$ rm file
$ hg status
! file
$ hg revert file
$ ls file
file

If you revert a hg copy, the copied-to file
remains in your working directory afterwards, untracked. Since a copy
doesn't affect the copied-from file in any way, Mercurial doesn't do
anything with the copied-from file.
$ hg copy file new-file
$ hg revert new-file
$ hg status
? new-file

处理已经提交的修改

Consider a case where you have committed a change a,
and another change b on top of it; you then realise
that change a was incorrect. Mercurial lets you
“back out” an entire changeset automatically, and building
blocks that let you reverse part of a changeset by hand.
Before you read this section, here's something to keep in mind: the hg backout command undoes the effect of a change by
adding to your repository's history, not by modifying
or erasing it. It's the right tool to use if you're fixing bugs, but not if
you're trying to undo some change that has catastrophic consequences. To
deal with those, see the section called “不该发生的修改”.
恢复一个修改集

The hg backout command lets you
“undo” the effects of an entire changeset in an automated
fashion. Because Mercurial's history is immutable, this command
does not get rid of the changeset you want to undo.
Instead, it creates a new changeset that reverses the
effect of the to-be-undone changeset.
The operation of the hg backout command is
a little intricate, so let's illustrate it with some examples. First, we'll
create a repository with some simple changes.
$ hg init myrepo
$ cd myrepo
$ echo first change >> myfile
$ hg add myfile
$ hg commit -m 'first change'
$ echo second change >> myfile
$ hg commit -m 'second change'

The hg backout command takes a single
changeset ID as its argument; this is the changeset to back out. Normally,
hg backout will drop you into a text editor
to write a commit message, so you can record why you're backing the change
out. In this example, we provide a commit message on the command line using
the -m option.

恢复顶点修改集

We're going to start by backing out the last changeset we committed.
$ hg backout -m 'back out second change' tip
reverting myfile
changeset 2:d09c58db4cc2 backs out changeset 1:61f2e31139fb
$ cat myfile
first change

You can see that the second line from myfile is no
longer present. Taking a look at the output of hg
log gives us an idea of what the hg
backout command has done.

$ hg log --style compact
2[tip] d09c58db4cc2 2011-03-17 05:12 +0000 bos
 back out second change

1 61f2e31139fb 2011-03-17 05:12 +0000 bos
 second change

0 0370bc335ba4 2011-03-17 05:12 +0000 bos
 first change

 Notice
that the new changeset that hg backout has
created is a child of the changeset we backed out. It's easier to see this
in Figure 9.1, “使用 hg backout 恢复一个修改”, which presents a graphical view of
the change history. As you can see, the history is nice and linear.
Figure 9.1. 使用 hg backout 恢复一个修改
[image: XXX add text]

恢复非顶点的修改

If you want to back out a change other than the last one you committed, pass
the --merge option to the hg backout command.
$ cd ..
$ hg clone -r1 myrepo non-tip-repo
requesting all changes
adding changesets
adding manifests
adding file changes
added 2 changesets with 2 changes to 1 files
updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd non-tip-repo

This makes backing out any changeset a “one-shot” operation
that's usually simple and fast.
$ echo third change >> myfile
$ hg commit -m 'third change'
$ hg backout --merge -m 'back out second change' 1
reverting myfile
created new head
changeset 3:d09c58db4cc2 backs out changeset 1:61f2e31139fb
merging with changeset 3:d09c58db4cc2
merging myfile
0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)

If you take a look at the contents of myfile after the
backout finishes, you'll see that the first and third changes are present,
but not the second.
$ cat myfile
first change
third change

As the graphical history in Figure 9.2, “使用 hg backout 自动恢复非顶点的修改”
illustrates, Mercurial still commits one change in this kind of situation
(the box-shaped node is the ones that Mercurial commits automatically), but
the revision graph now looks different. Before Mercurial begins the backout
process, it first remembers what the current parent of the working directory
is. It then backs out the target changeset, and commits that as a
changeset. Finally, it merges back to the previous parent of the working
directory, but notice that it does not commit the
result of the merge. The repository now contains two heads, and the working
directory is in a merge state.
Figure 9.2. 使用 hg backout 自动恢复非顶点的修改
[image: XXX add text]

The result is that you end up “back where you were”, only with
some extra history that undoes the effect of the changeset you wanted to
back out.
You might wonder why Mercurial does not commit the result of the merge that
it performed. The reason lies in Mercurial behaving conservatively: a merge
naturally has more scope for error than simply undoing the effect of the tip
changeset, so your work will be safest if you first inspect (and test!) the
result of the merge, then commit it.
始终使用选项 --merge

In fact, since the --merge option
will do the “right thing” whether or not the changeset you're
backing out is the tip (i.e. it won't try to merge if it's backing out the
tip, since there's no need), you should always use this
option when you run the hg backout command.

在恢复处理中获得更多控制

While I've recommended that you always use the --merge option when backing out a change, the
hg backout command lets you decide how to
merge a backout changeset. Taking control of the backout process by hand is
something you will rarely need to do, but it can be useful to understand
what the hg backout command is doing for
you automatically. To illustrate this, let's clone our first repository,
but omit the backout change that it contains.
$ cd ..
$ hg clone -r1 myrepo newrepo
requesting all changes
adding changesets
adding manifests
adding file changes
added 2 changesets with 2 changes to 1 files
updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd newrepo

As with our earlier example, We'll commit a third changeset, then back out
its parent, and see what happens.
$ echo third change >> myfile
$ hg commit -m 'third change'
$ hg backout -m 'back out second change' 1
reverting myfile
created new head
changeset 3:43935536d186 backs out changeset 1:61f2e31139fb
the backout changeset is a new head - do not forget to merge
(use "backout --merge" if you want to auto-merge)

Our new changeset is again a descendant of the changeset we backout out;
it's thus a new head, not a descendant of the changeset
that was the tip. The hg backout command
was quite explicit in telling us this.
$ hg log --style compact
3[tip]:1 43935536d186 2011-03-17 05:12 +0000 bos
 back out second change

2 bc61df1f54f3 2011-03-17 05:12 +0000 bos
 third change

1 61f2e31139fb 2011-03-17 05:12 +0000 bos
 second change

0 0370bc335ba4 2011-03-17 05:12 +0000 bos
 first change

Again, it's easier to see what has happened by looking at a graph of the
revision history, in Figure 9.3, “使用 hg backout 恢复一个修改”. This makes
it clear that when we use hg backout to
back out a change other than the tip, Mercurial adds a new head to the
repository (the change it committed is box-shaped).
Figure 9.3. 使用 hg backout 恢复一个修改
[image: XXX add text]

After the hg backout command has completed,
it leaves the new “backout” changeset as the parent of the
working directory.
$ hg parents
changeset: 2:bc61df1f54f3
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:21 2011 +0000
summary: third change

Now we have two isolated sets of changes.
$ hg heads
changeset: 3:43935536d186
tag: tip
parent: 1:61f2e31139fb
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:21 2011 +0000
summary: back out second change

changeset: 2:bc61df1f54f3
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:21 2011 +0000
summary: third change

Let's think about what we expect to see as the contents of
myfile now. The first change should be present,
because we've never backed it out. The second change should be missing, as
that's the change we backed out. Since the history graph shows the third
change as a separate head, we don't expect to see the
third change present in myfile.
$ cat myfile
first change

To get the third change back into the file, we just do a normal merge of our
two heads.
$ hg merge
abort: outstanding uncommitted changes (use 'hg status' to list changes)
$ hg commit -m 'merged backout with previous tip'
$ cat myfile
first change

Afterwards, the graphical history of our repository looks like Figure 9.4, “手工合并恢复修改”.
Figure 9.4. 手工合并恢复修改
[image: XXX add text]

hg backout 的内幕

Here's a brief description of how the hg
backout command works.
	It ensures that the working directory is “clean”, i.e. that the
output of hg status would be empty.

	It remembers the current parent of the working directory. Let's call this
changeset orig.

	It does the equivalent of a hg update to
sync the working directory to the changeset you want to back out. Let's
call this changeset backout.

	It finds the parent of that changeset. Let's call that changeset
parent.

	For each file that the backout changeset affected, it
does the equivalent of a hg revert -r
parent on that file, to restore it to the contents it had before
that changeset was committed.

	It commits the result as a new changeset. This changeset has
backout as its parent.

	If you specify --merge on the command
line, it merges with orig, and commits the result of the
merge.

An alternative way to implement the hg
backout command would be to hg
export the to-be-backed-out changeset as a diff, then use the
--reverse option to the
patch command to reverse the effect of the change without
fiddling with the working directory. This sounds much simpler, but it would
not work nearly as well.
The reason that hg backout does an update,
a commit, a merge, and another commit is to give the merge machinery the
best chance to do a good job when dealing with all the changes
between the change you're backing out and the current
tip.
If you're backing out a changeset that's 100 revisions back in your
project's history, the chances that the patch command
will be able to apply a reverse diff cleanly are not good, because
intervening changes are likely to have “broken the context”
that patch uses to determine whether it can apply a patch
(if this sounds like gibberish, see the section called “理解补丁” for a
discussion of the patch command). Also, Mercurial's
merge machinery will handle files and directories being renamed, permission
changes, and modifications to binary files, none of which
patch can deal with.

不该发生的修改

Most of the time, the hg backout command is
exactly what you need if you want to undo the effects of a change. It
leaves a permanent record of exactly what you did, both when committing the
original changeset and when you cleaned up after it.
On rare occasions, though, you may find that you've committed a change that
really should not be present in the repository at all. For example, it
would be very unusual, and usually considered a mistake, to commit a
software project's object files as well as its source files. Object files
have almost no intrinsic value, and they're big, so
they increase the size of the repository and the amount of time it takes to
clone or pull changes.
Before I discuss the options that you have if you commit a “brown
paper bag” change (the kind that's so bad that you want to pull a
brown paper bag over your head), let me first discuss some approaches that
probably won't work.
Since Mercurial treats history as accumulative—every change builds on
top of all changes that preceded it—you generally can't just make
disastrous changes disappear. The one exception is when you've just
committed a change, and it hasn't been pushed or pulled into another
repository. That's when you can safely use the hg
rollback command, as I detailed in the section called “回滚一个事务”.
After you've pushed a bad change to another repository, you
could still use hg
rollback to make your local copy of the change disappear, but it
won't have the consequences you want. The change will still be present in
the remote repository, so it will reappear in your local repository the next
time you pull.
If a situation like this arises, and you know which repositories your bad
change has propagated into, you can try to get rid of
the change from every one of those repositories. This
is, of course, not a satisfactory solution: if you miss even a single
repository while you're expunging, the change is still “in the
wild”, and could propagate further.
If you've committed one or more changes after the
change that you'd like to see disappear, your options are further
reduced. Mercurial doesn't provide a way to “punch a hole” in
history, leaving changesets intact.
撤销一个合并

Since merges are often complicated, it is not unheard of for a merge to be
mangled badly, but committed erroneously. Mercurial provides an important
safeguard against bad merges by refusing to commit unresolved files, but
human ingenuity guarantees that it is still possible to mess a merge up and
commit it.
Given a bad merge that has been committed, usually the best way to approach
it is to simply try to repair the damage by hand. A complete disaster that
cannot be easily fixed up by hand ought to be very rare, but the hg backout command may help in making the cleanup
easier. It offers a --parent option,
which lets you specify which parent to revert to when backing out a merge.
Figure 9.5. 错误的合并
[image: XXX add text]

Suppose we have a revision graph like that in Figure 9.5, “错误的合并”. What we'd like is to
redo the merge of revisions 2 and 3.
One way to do so would be as follows.
	Call hg backout --rev=4 --parent=2. This
tells hg backout to back out revision 4,
which is the bad merge, and to when deciding which revision to prefer, to
choose parent 2, one of the parents of the merge. The effect can be seen in
Figure 9.6, “拆除合并，关注一个父亲”.
Figure 9.6. 拆除合并，关注一个父亲
[image: XXX add text]

	Call hg backout --rev=4 --parent=3. This
tells hg backout to back out revision 4
again, but this time to choose parent 3, the other parent of the merge. The
result is visible in Figure 9.7, “拆除合并，关注其它父亲”, in which the
repository now contains three heads.
Figure 9.7. 拆除合并，关注其它父亲
[image: XXX add text]

	Redo the bad merge by merging the two backout heads, which reduces the
number of heads in the repository to two, as can be seen in Figure 9.8, “合并拆除”.
Figure 9.8. 合并拆除
[image: XXX add text]

	Merge with the commit that was made after the bad merge, as shown in Figure 9.9, “合并拆除”.
Figure 9.9. 合并拆除
[image: XXX add text]

使用“校验”修改来保护你自己

If you've committed some changes to your local repository and they've been
pushed or pulled somewhere else, this isn't necessarily a disaster. You can
protect yourself ahead of time against some classes of bad changeset. This
is particularly easy if your team usually pulls changes from a central
repository.
By configuring some hooks on that repository to validate incoming changesets
(see chapter Chapter 10, 使用钩子处理版本库事件), you can automatically prevent
some kinds of bad changeset from being pushed to the central repository at
all. With such a configuration in place, some kinds of bad changeset will
naturally tend to “die out” because they can't propagate into
the central repository. Better yet, this happens without any need for
explicit intervention.
For instance, an incoming change hook that verifies that a changeset will
actually compile can prevent people from inadvertently “breaking the
build”.

处理敏感信息泄漏的方法

Even a carefully run project can suffer an unfortunate event such as the
committing and uncontrolled propagation of a file that contains important
passwords.
If something like this happens to you, and the information that gets
accidentally propagated is truly sensitive, your first step should be to
mitigate the effect of the leak without trying to control the leak
itself. If you are not 100% certain that you know exactly who could have
seen the changes, you should immediately change passwords, cancel credit
cards, or find some other way to make sure that the information that has
leaked is no longer useful. In other words, assume that the change has
propagated far and wide, and that there's nothing more you can do.
You might hope that there would be mechanisms you could use to either figure
out who has seen a change or to erase the change permanently everywhere, but
there are good reasons why these are not possible.
Mercurial does not provide an audit trail of who has pulled changes from a
repository, because it is usually either impossible to record such
information or trivial to spoof it. In a multi-user or networked
environment, you should thus be extremely skeptical of yourself if you think
that you have identified every place that a sensitive changeset has
propagated to. Don't forget that people can and will send bundles by email,
have their backup software save data offsite, carry repositories on USB
sticks, and find other completely innocent ways to confound your attempts to
track down every copy of a problematic change.
Mercurial also does not provide a way to make a file or changeset completely
disappear from history, because there is no way to enforce its
disappearance; someone could easily modify their copy of Mercurial to ignore
such directives. In addition, even if Mercurial provided such a capability,
someone who simply hadn't pulled a “make this file disappear”
changeset wouldn't be affected by it, nor would web crawlers visiting at the
wrong time, disk backups, or other mechanisms. Indeed, no distributed
revision control system can make data reliably vanish. Providing the
illusion of such control could easily give a false sense of security, and be
worse than not providing it at all.

查找问题的根源

While it's all very well to be able to back out a changeset that introduced
a bug, this requires that you know which changeset to back out. Mercurial
provides an invaluable command, called hg
bisect, that helps you to automate this process and accomplish it
very efficiently.
The idea behind the hg bisect command is
that a changeset has introduced some change of behavior that you can
identify with a simple pass/fail test. You don't know which piece of code
introduced the change, but you know how to test for the presence of the
bug. The hg bisect command uses your test
to direct its search for the changeset that introduced the code that caused
the bug.
Here are a few scenarios to help you understand how you might apply this
command.
	The most recent version of your software has a bug that you remember wasn't
present a few weeks ago, but you don't know when it was introduced. Here,
your binary test checks for the presence of that bug.

	You fixed a bug in a rush, and now it's time to close the entry in your
team's bug database. The bug database requires a changeset ID when you
close an entry, but you don't remember which changeset you fixed the bug
in. Once again, your binary test checks for the presence of the bug.

	Your software works correctly, but runs 15% slower than the last time you
measured it. You want to know which changeset introduced the performance
regression. In this case, your binary test measures the performance of your
software, to see whether it's “fast” or “slow”.

	The sizes of the components of your project that you ship exploded recently,
and you suspect that something changed in the way you build your project.

From these examples, it should be clear that the hg
bisect command is not useful only for finding the sources of
bugs. You can use it to find any “emergent property” of a
repository (anything that you can't find from a simple text search of the
files in the tree) for which you can write a binary test.
We'll introduce a little bit of terminology here, just to make it clear
which parts of the search process are your responsibility, and which are
Mercurial's. A test is something that
you run when hg bisect
chooses a changeset. A probe is what hg bisect runs to tell whether a revision is good.
Finally, we'll use the word “bisect”, as both a noun and a
verb, to stand in for the phrase “search using the hg bisect command”.
One simple way to automate the searching process would be simply to probe
every changeset. However, this scales poorly. If it took ten minutes to
test a single changeset, and you had 10,000 changesets in your repository,
the exhaustive approach would take on average 35 days
to find the changeset that introduced a bug. Even if you knew that the bug
was introduced by one of the last 500 changesets, and limited your search to
those, you'd still be looking at over 40 hours to find the changeset that
introduced your bug.
What the hg bisect command does is use its
knowledge of the “shape” of your project's revision history to
perform a search in time proportional to the logarithm
of the number of changesets to check (the kind of search it performs is
called a dichotomic search). With this approach, searching through 10,000
changesets will take less than three hours, even at ten minutes per test
(the search will require about 14 tests). Limit your search to the last
hundred changesets, and it will take only about an hour (roughly seven
tests).
The hg bisect command is aware of the
“branchy” nature of a Mercurial project's revision history, so
it has no problems dealing with branches, merges, or multiple heads in a
repository. It can prune entire branches of history with a single probe,
which is how it operates so efficiently.
使用命令 hg bisect

Here's an example of hg bisect in action.
Note
 In versions 0.9.5 and earlier of Mercurial, hg
bisect was not a core command: it was distributed with Mercurial
as an extension. This section describes the built-in command, not the old
extension.

Now let's create a repository, so that we can try out the hg bisect command in isolation.
$ hg init mybug
$ cd mybug

We'll simulate a project that has a bug in it in a simple-minded way: create
trivial changes in a loop, and nominate one specific change that will have
the “bug”. This loop creates 35 changesets, each adding a
single file to the repository. We'll represent our “bug” with a
file that contains the text “i have a gub”.
$ buggy_change=22
$ for ((i = 0; i < 35; i++)); do
> if [[$i = $buggy_change]]; then
> echo 'i have a gub' > myfile$i
> hg commit -q -A -m 'buggy changeset'
> else
> echo 'nothing to see here, move along' > myfile$i
> hg commit -q -A -m 'normal changeset'
> fi
> done

The next thing that we'd like to do is figure out how to use the hg bisect command. We can use Mercurial's normal
built-in help mechanism for this.
$ hg help bisect
hg bisect [-gbsr] [-U] [-c CMD] [REV]

subdivision search of changesets

 This command helps to find changesets which introduce problems. To use,
 mark the earliest changeset you know exhibits the problem as bad, then
 mark the latest changeset which is free from the problem as good. Bisect
 will update your working directory to a revision for testing (unless the
 -U/--noupdate option is specified). Once you have performed tests, mark
 the working directory as good or bad, and bisect will either update to
 another candidate changeset or announce that it has found the bad
 revision.

 As a shortcut, you can also use the revision argument to mark a revision
 as good or bad without checking it out first.

 If you supply a command, it will be used for automatic bisection. Its exit
 status will be used to mark revisions as good or bad: status 0 means good,
 125 means to skip the revision, 127 (command not found) will abort the
 bisection, and any other non-zero exit status means the revision is bad.

 Returns 0 on success.

options:

 -r --reset reset bisect state
 -g --good mark changeset good
 -b --bad mark changeset bad
 -s --skip skip testing changeset
 -c --command CMD use command to check changeset state
 -U --noupdate do not update to target

use "hg -v help bisect" to show global options

The hg bisect command works in steps. Each
step proceeds as follows.
	You run your binary test.
	当测试成功后，使用 hg bisect --good 命令告诉 hg bisect 命令。

	如果失败，执行 hg bisect --bad 命令。

	The command uses your information to decide which changeset to test next.

	It updates the working directory to that changeset, and the process begins
again.

The process ends when hg bisect identifies
a unique changeset that marks the point where your test transitioned from
“succeeding” to “failing”.
To start the search, we must run the hg bisect
--reset command.
$ hg bisect --reset

In our case, the binary test we use is simple: we check to see if any file
in the repository contains the string “i have a gub”. If it
does, this changeset contains the change that “caused the
bug”. By convention, a changeset that has the property we're
searching for is “bad”, while one that doesn't is
“good”.
Most of the time, the revision to which the working directory is synced
(usually the tip) already exhibits the problem introduced by the buggy
change, so we'll mark it as “bad”.
$ hg bisect --bad

Our next task is to nominate a changeset that we know
doesn't have the bug; the hg
bisect command will “bracket” its search between the
first pair of good and bad changesets. In our case, we know that revision
10 didn't have the bug. (I'll have more words about choosing the first
“good” changeset later.)
$ hg bisect --good 10
Testing changeset 22:164241ec48a9 (24 changesets remaining, ~4 tests)
0 files updated, 0 files merged, 12 files removed, 0 files unresolved

Notice that this command printed some output.
	It told us how many changesets it must consider before it can identify the
one that introduced the bug, and how many tests that will require.

	It updated the working directory to the next changeset to test, and told us
which changeset it's testing.

We now run our test in the working directory. We use the
grep command to see if our “bad” file is
present in the working directory. If it is, this revision is bad; if not,
this revision is good.

$ if grep -q 'i have a gub' *
> then
> result=bad
> else
> result=good
> fi
$ echo this revision is $result
this revision is bad
$ hg bisect --$result
Testing changeset 16:daf8c89a65df (12 changesets remaining, ~3 tests)
0 files updated, 0 files merged, 6 files removed, 0 files unresolved

This test looks like a perfect candidate for automation, so let's turn it
into a shell function.
$ mytest() {
> if grep -q 'i have a gub' *
> then
> result=bad
> else
> result=good
> fi
> echo this revision is $result
> hg bisect --$result
> }

We can now run an entire test step with a single command,
mytest.
$ mytest
this revision is good
Testing changeset 19:2f3b0376ef3a (6 changesets remaining, ~2 tests)
3 files updated, 0 files merged, 0 files removed, 0 files unresolved

A few more invocations of our canned test step command, and we're done.
$ mytest
this revision is good
Testing changeset 20:eacd121af469 (3 changesets remaining, ~1 tests)
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ mytest
this revision is good
Testing changeset 21:06c96f381ab8 (2 changesets remaining, ~1 tests)
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ mytest
this revision is good
The first bad revision is:
changeset: 22:164241ec48a9
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:24 2011 +0000
summary: buggy changeset

Even though we had 40 changesets to search through, the hg bisect command let us find the changeset that
introduced our “bug” with only five tests. Because the number
of tests that the hg bisect command
performs grows logarithmically with the number of changesets to search, the
advantage that it has over the “brute force” search approach
increases with every changeset you add.

搜索后的清理

When you're finished using the hg bisect
command in a repository, you can use the hg bisect
--reset command to drop the information it was using to drive your
search. The command doesn't use much space, so it doesn't matter if you
forget to run this command. However, hg
bisect won't let you start a new search in that repository until
you do a hg bisect --reset.
$ hg bisect --reset

有效查找问题的技巧

给出一致的输入

The hg bisect command requires that you
correctly report the result of every test you perform. If you tell it that
a test failed when it really succeeded, it might be
able to detect the inconsistency. If it can identify an inconsistency in
your reports, it will tell you that a particular changeset is both good and
bad. However, it can't do this perfectly; it's about as likely to report the
wrong changeset as the source of the bug.

尽量自动

When I started using the hg bisect command,
I tried a few times to run my tests by hand, on the command line. This is
an approach that I, at least, am not suited to. After a few tries, I found
that I was making enough mistakes that I was having to restart my searches
several times before finally getting correct results.
My initial problems with driving the hg
bisect command by hand occurred even with simple searches on small
repositories; if the problem you're looking for is more subtle, or the
number of tests that hg bisect must perform
increases, the likelihood of operator error ruining the search is much
higher. Once I started automating my tests, I had much better results.
The key to automated testing is twofold:
	always test for the same symptom, and

	always feed consistent input to the hg
bisect command.

In my tutorial example above, the grep command tests for
the symptom, and the if statement takes the result of
this check and ensures that we always feed the same input to the hg bisect command. The mytest
function marries these together in a reproducible way, so that every test is
uniform and consistent.

检查你的结果

Because the output of a hg bisect search is
only as good as the input you give it, don't take the changeset it reports
as the absolute truth. A simple way to cross-check its report is to
manually run your test at each of the following changesets:
	The changeset that it reports as the first bad revision. Your test should
still report this as bad.

	The parent of that changeset (either parent, if it's a merge). Your test
should report this changeset as good.

	A child of that changeset. Your test should report this changeset as bad.

谨防问题之间的冲突

It's possible that your search for one bug could be disrupted by the
presence of another. For example, let's say your software crashes at
revision 100, and worked correctly at revision 50. Unknown to you, someone
else introduced a different crashing bug at revision 60, and fixed it at
revision 80. This could distort your results in one of several ways.
It is possible that this other bug completely “masks” yours,
which is to say that it occurs before your bug has a chance to manifest
itself. If you can't avoid that other bug (for example, it prevents your
project from building), and so can't tell whether your bug is present in a
particular changeset, the hg bisect command
cannot help you directly. Instead, you can mark a changeset as untested by
running hg bisect --skip.
A different problem could arise if your test for a bug's presence is not
specific enough. If you check for “my program crashes”, then
both your crashing bug and an unrelated crashing bug that masks it will look
like the same thing, and mislead hg bisect.
Another useful situation in which to use hg bisect
--skip is if you can't test a revision because your project was in
a broken and hence untestable state at that revision, perhaps because
someone checked in a change that prevented the project from building.

减少你的查找工作

Choosing the first “good” and “bad” changesets
that will mark the end points of your search is often easy, but it bears a
little discussion nevertheless. From the perspective of hg bisect, the “newest” changeset is
conventionally “bad”, and the older changeset is
“good”.
If you're having trouble remembering when a suitable “good”
change was, so that you can tell hg bisect,
you could do worse than testing changesets at random. Just remember to
eliminate contenders that can't possibly exhibit the bug (perhaps because
the feature with the bug isn't present yet) and those where another problem
masks the bug (as I discussed above).
Even if you end up “early” by thousands of changesets or months
of history, you will only add a handful of tests to the total number that
hg bisect must perform, thanks to its
logarithmic behavior.

Chapter 10. 使用钩子处理版本库事件

Mercurial offers a powerful mechanism to let you perform automated actions
in response to events that occur in a repository. In some cases, you can
even control Mercurial's response to those events.
The name Mercurial uses for one of these actions is a
hook. Hooks are called “triggers” in some
revision control systems, but the two names refer to the same idea.
Mercurial 钩子概述

Here is a brief list of the hooks that Mercurial supports. We will revisit
each of these hooks in more detail later, in the section called “编写钩子的信息”.
Each of the hooks whose description begins with the word
“Controlling” has the ability to determine whether an activity
can proceed. If the hook succeeds, the activity may proceed; if it fails,
the activity is either not permitted or undone, depending on the hook.
	changegroup: This is run after a group of
changesets has been brought into the repository from elsewhere.

	commit: This is run after a new changeset has
been created in the local repository.

	incoming: This is run once for each new
changeset that is brought into the repository from elsewhere. Notice the
difference from changegroup, which is run
once per group of changesets brought in.

	outgoing: This is run after a group of
changesets has been transmitted from this repository.

	prechangegroup: This is run before starting
to bring a group of changesets into the repository.
	

	precommit: Controlling. This is run before
starting a commit.
	

	preoutgoing: Controlling. This is run before
starting to transmit a group of changesets from this repository.
	

	pretag: Controlling. This is run before
creating a tag.
	

	pretxnchangegroup: Controlling. This is run
after a group of changesets has been brought into the local repository from
another, but before the transaction completes that will make the changes
permanent in the repository.
	

	pretxncommit: Controlling. This is run after
a new changeset has been created in the local repository, but before the
transaction completes that will make it permanent.
	

	preupdate: Controlling. This is run before
starting an update or merge of the working directory.
	

	tag: This is run after a tag is created.
	

	update: This is run after an update or merge
of the working directory has finished.
	

钩子与安全性

钩子以你的特权执行

When you run a Mercurial command in a repository, and the command causes a
hook to run, that hook runs on your system, under
your user account, with your
privilege level. Since hooks are arbitrary pieces of executable code, you
should treat them with an appropriate level of suspicion. Do not install a
hook unless you are confident that you know who created it and what it does.

In some cases, you may be exposed to hooks that you did not install
yourself. If you work with Mercurial on an unfamiliar system, Mercurial
will run hooks defined in that system's global ~/.hgrc file.

If you are working with a repository owned by another user, Mercurial can
run hooks defined in that user's repository, but it will still run them as
“you”. For example, if you hg
pull from that repository, and its .hg/hgrc defines a local outgoing hook, that hook will run under your user
account, even though you don't own that repository.

Note
 This only applies if you are pulling from a repository on a local or network
filesystem. If you're pulling over http or ssh, any outgoing hook will run under whatever account is
executing the server process, on the server.
	

To see what hooks are defined in a repository, use the hg showconfig hooks command. If you are working in
one repository, but talking to another that you do not own (e.g. using
hg pull or hg
incoming), remember that it is the other repository's hooks you
should be checking, not your own.

钩子不会传播

In Mercurial, hooks are not revision controlled, and do not propagate when
you clone, or pull from, a repository. The reason for this is simple: a
hook is a completely arbitrary piece of executable code. It runs under your
user identity, with your privilege level, on your machine.

It would be extremely reckless for any distributed revision control system
to implement revision-controlled hooks, as this would offer an easily
exploitable way to subvert the accounts of users of the revision control
system.

Since Mercurial does not propagate hooks, if you are collaborating with
other people on a common project, you should not assume that they are using
the same Mercurial hooks as you are, or that theirs are correctly
configured. You should document the hooks you expect people to use.

In a corporate intranet, this is somewhat easier to control, as you can for
example provide a “standard” installation of Mercurial on an
NFS filesystem, and use a site-wide ~/.hgrc file to define hooks that all users will
see. However, this too has its limits; see below.

钩子可以被覆盖

Mercurial allows you to override a hook definition by redefining the hook.
You can disable it by setting its value to the empty string, or change its
behavior as you wish.

If you deploy a system- or site-wide ~/.hgrc file that defines some hooks, you should
thus understand that your users can disable or override those hooks.

确保关键钩子的执行

Sometimes you may want to enforce a policy that you do not want others to be
able to work around. For example, you may have a requirement that every
changeset must pass a rigorous set of tests. Defining this requirement via
a hook in a site-wide ~/.hgrc won't work
for remote users on laptops, and of course local users can subvert it at
will by overriding the hook.

Instead, you can set up your policies for use of Mercurial so that people
are expected to propagate changes through a well-known
“canonical” server that you have locked down and configured
appropriately.

One way to do this is via a combination of social engineering and
technology. Set up a restricted-access account; users can push changes over
the network to repositories managed by this account, but they cannot log
into the account and run normal shell commands. In this scenario, a user
can commit a changeset that contains any old garbage they want.

When someone pushes a changeset to the server that everyone pulls from, the
server will test the changeset before it accepts it as permanent, and reject
it if it fails to pass the test suite. If people only pull changes from
this filtering server, it will serve to ensure that all changes that people
pull have been automatically vetted.

使用钩子的简短指南

It is easy to write a Mercurial hook. Let's start with a hook that runs
when you finish a hg commit, and simply
prints the hash of the changeset you just created. The hook is called
commit.

All hooks follow the pattern in this example.
$ hg init hook-test
$ cd hook-test
$ echo '[hooks]' >> .hg/hgrc
$ echo 'commit = echo committed $HG_NODE' >> .hg/hgrc
$ cat .hg/hgrc
[hooks]
commit = echo committed $HG_NODE
$ echo a > a
$ hg add a
$ hg commit -m 'testing commit hook'
committed 0683dece2ce57cb7f4179c7826c2d09afb085bcb

You add an entry to the hooks section of
your ~/.hgrc. On the left is the name
of the event to trigger on; on the right is the action to take. As you can
see, you can run an arbitrary shell command in a hook. Mercurial passes
extra information to the hook using environment variables (look for
HG_NODE in the example).

每个事件执行多个操作

Quite often, you will want to define more than one hook for a particular
kind of event, as shown below.
$ echo 'commit.when = echo -n "date of commit: "; date' >> .hg/hgrc
$ echo a >> a
$ hg commit -m 'i have two hooks'
committed 3f042aaecc8baaa1a31886596a2a38649afbaa98
date of commit: Thu Mar 17 05:12:50 GMT 2011

Mercurial lets you do this by adding an extension to
the end of a hook's name. You extend a hook's name by giving the name of
the hook, followed by a full stop (the “.”
character), followed by some more text of your choosing. For example,
Mercurial will run both commit.foo and
commit.bar when the commit event
occurs.

To give a well-defined order of execution when there are multiple hooks
defined for an event, Mercurial sorts hooks by extension, and executes the
hook commands in this sorted order. In the above example, it will execute
commit.bar before commit.foo, and
commit before both.

It is a good idea to use a somewhat descriptive extension when you define a
new hook. This will help you to remember what the hook was for. If the
hook fails, you'll get an error message that contains the hook name and
extension, so using a descriptive extension could give you an immediate hint
as to why the hook failed (see the section called “控制处理的活动” for an
example).

控制处理的活动

In our earlier examples, we used the commit
hook, which is run after a commit has completed. This is one of several
Mercurial hooks that run after an activity finishes. Such hooks have no way
of influencing the activity itself.

Mercurial defines a number of events that occur before an activity starts;
or after it starts, but before it finishes. Hooks that trigger on these
events have the added ability to choose whether the activity can continue,
or will abort.

The pretxncommit hook runs after a commit has
all but completed. In other words, the metadata representing the changeset
has been written out to disk, but the transaction has not yet been allowed
to complete. The pretxncommit hook has the
ability to decide whether the transaction can complete, or must be rolled
back.

If the pretxncommit hook exits with a status
code of zero, the transaction is allowed to complete; the commit finishes;
and the commit hook is run. If the pretxncommit hook exits with a non-zero status code,
the transaction is rolled back; the metadata representing the changeset is
erased; and the commit hook is not run.

$ cat check_bug_id
#!/bin/sh
check that a commit comment mentions a numeric bug id
hg log -r $1 --template {desc} | grep -q "\<bug *[0-9]"
$ echo 'pretxncommit.bug_id_required = ./check_bug_id $HG_NODE' >> .hg/hgrc
$ echo a >> a
$ hg commit -m 'i am not mentioning a bug id'
transaction abort!
rollback completed
abort: pretxncommit.bug_id_required hook exited with status 1
$ hg commit -m 'i refer you to bug 666'
committed 0b6fb94811af8f7d193bc8c83142a30aaabfb164
date of commit: Thu Mar 17 05:12:51 GMT 2011

The hook in the example above checks that a commit comment contains a bug
ID. If it does, the commit can complete. If not, the commit is rolled
back.

编写钩子

When you are writing a hook, you might find it useful to run Mercurial
either with the -v option, or the
verbose config item set to
“true”. When you do so, Mercurial will print a message before
it calls each hook.

选择钩子的执行方式

You can write a hook either as a normal program—typically a shell
script—or as a Python function that is executed within the Mercurial
process.

Writing a hook as an external program has the advantage that it requires no
knowledge of Mercurial's internals. You can call normal Mercurial commands
to get any added information you need. The trade-off is that external hooks
are slower than in-process hooks.

An in-process Python hook has complete access to the Mercurial API, and does
not “shell out” to another process, so it is inherently faster
than an external hook. It is also easier to obtain much of the information
that a hook requires by using the Mercurial API than by running Mercurial
commands.

If you are comfortable with Python, or require high performance, writing
your hooks in Python may be a good choice. However, when you have a
straightforward hook to write and you don't need to care about performance
(probably the majority of hooks), a shell script is perfectly fine.

钩子的参数

Mercurial calls each hook with a set of well-defined parameters. In Python,
a parameter is passed as a keyword argument to your hook function. For an
external program, a parameter is passed as an environment variable.

Whether your hook is written in Python or as a shell script, the
hook-specific parameter names and values will be the same. A boolean
parameter will be represented as a boolean value in Python, but as the
number 1 (for “true”) or 0 (for “false”) as an
environment variable for an external hook. If a hook parameter is named
foo, the keyword argument for a Python hook will also be
named foo, while the environment variable for an external
hook will be named HG_FOO.

钩子的返回值与活动控制

A hook that executes successfully must exit with a status of zero if
external, or return boolean “false” if in-process. Failure is
indicated with a non-zero exit status from an external hook, or an
in-process hook returning boolean “true”. If an in-process
hook raises an exception, the hook is considered to have failed.

For a hook that controls whether an activity can proceed, zero/false means
“allow”, while non-zero/true/exception means
“deny”.

编写外部钩子

When you define an external hook in your ~/.hgrc and the hook is run, its value is passed
to your shell, which interprets it. This means that you can use normal
shell constructs in the body of the hook.

An executable hook is always run with its current directory set to a
repository's root directory.

Each hook parameter is passed in as an environment variable; the name is
upper-cased, and prefixed with the string
“HG_”.

With the exception of hook parameters, Mercurial does not set or modify any
environment variables when running a hook. This is useful to remember if
you are writing a site-wide hook that may be run by a number of different
users with differing environment variables set. In multi-user situations,
you should not rely on environment variables being set to the values you
have in your environment when testing the hook.

让 Mercurial 使用进程内钩子

The ~/.hgrc syntax for defining an
in-process hook is slightly different than for an executable hook. The
value of the hook must start with the text
“python:”, and continue with the
fully-qualified name of a callable object to use as the hook's value.

The module in which a hook lives is automatically imported when a hook is
run. So long as you have the module name and PYTHONPATH
right, it should “just work”.

The following ~/.hgrc example snippet
illustrates the syntax and meaning of the notions we just described.

[hooks]
commit.example = python:mymodule.submodule.myhook
When Mercurial runs the commit.example hook, it imports
mymodule.submodule, looks for the callable object named
myhook, and calls it.

编写进程内钩子

The simplest in-process hook does nothing, but illustrates the basic shape
of the hook API:

def myhook(ui, repo, **kwargs):
 pass
The first argument to a Python hook is always a ui object. The second is a repository
object; at the moment, it is always an instance of localrepository. Following
these two arguments are other keyword arguments. Which ones are passed in
depends on the hook being called, but a hook can ignore arguments it doesn't
care about by dropping them into a keyword argument dict, as with
**kwargs above.

钩子样例

编写有意义的提交日志

It's hard to imagine a useful commit message being very short. The simple
pretxncommit hook of the example below will
prevent you from committing a changeset with a message that is less than ten
bytes long.

$ cat .hg/hgrc
[hooks]
pretxncommit.msglen = test `hg tip --template {desc} | wc -c` -ge 10
$ echo a > a
$ hg add a
$ hg commit -A -m 'too short'
transaction abort!
rollback completed
abort: pretxncommit.msglen hook exited with status 1
$ hg commit -A -m 'long enough'

检查行尾空格

An interesting use of a commit-related hook is to help you to write cleaner
code. A simple example of “cleaner code” is the dictum that a
change should not add any new lines of text that contain “trailing
whitespace”. Trailing whitespace is a series of space and tab
characters at the end of a line of text. In most cases, trailing whitespace
is unnecessary, invisible noise, but it is occasionally problematic, and
people often prefer to get rid of it.

You can use either the precommit or pretxncommit hook to tell whether you have a trailing
whitespace problem. If you use the precommit
hook, the hook will not know which files you are committing, so it will have
to check every modified file in the repository for trailing white space. If
you want to commit a change to just the file foo, but
the file bar contains trailing whitespace, doing a
check in the precommit hook will prevent you
from committing foo due to the problem with
bar. This doesn't seem right.

Should you choose the pretxncommit hook, the
check won't occur until just before the transaction for the commit
completes. This will allow you to check for problems only the exact files
that are being committed. However, if you entered the commit message
interactively and the hook fails, the transaction will roll back; you'll
have to re-enter the commit message after you fix the trailing whitespace
and run hg commit again.

$ cat .hg/hgrc
[hooks]
pretxncommit.whitespace = hg export tip | (! egrep -q '^\+.*[\t]$')
$ echo 'a ' > a
$ hg commit -A -m 'test with trailing whitespace'
adding a
transaction abort!
rollback completed
abort: pretxncommit.whitespace hook exited with status 1
$ echo 'a' > a
$ hg commit -A -m 'drop trailing whitespace and try again'

In this example, we introduce a simple pretxncommit hook that checks for trailing
whitespace. This hook is short, but not very helpful. It exits with an
error status if a change adds a line with trailing whitespace to any file,
but does not print any information that might help us to identify the
offending file or line. It also has the nice property of not paying
attention to unmodified lines; only lines that introduce new trailing
whitespace cause problems.

#!/usr/bin/env python
#
save as .hg/check_whitespace.py and make executable

import re

def trailing_whitespace(difflines):
 #
 linenum, header = 0, False

 for line in difflines:
 if header:
 # remember the name of the file that this diff affects
 m = re.match(r'(?:---|\+\+\+) ([^\t]+)', line)
 if m and m.group(1) != '/dev/null':
 filename = m.group(1).split('/', 1)[-1]
 if line.startswith('+++ '):
 header = False
 continue
 if line.startswith('diff '):
 header = True
 continue
 # hunk header - save the line number
 m = re.match(r'@@ -\d+,\d+ \+(\d+),', line)
 if m:
 linenum = int(m.group(1))
 continue
 # hunk body - check for an added line with trailing whitespace
 m = re.match(r'\+.*\s$', line)
 if m:
 yield filename, linenum
 if line and line[0] in ' +':
 linenum += 1

if __name__ == '__main__':
 import os, sys

 added = 0
 for filename, linenum in trailing_whitespace(os.popen('hg export tip')):
 print >> sys.stderr, ('%s, line %d: trailing whitespace added' %
 (filename, linenum))
 added += 1
 if added:
 # save the commit message so we don't need to retype it
 os.system('hg tip --template "{desc}" > .hg/commit.save')
 print >> sys.stderr, 'commit message saved to .hg/commit.save'
 sys.exit(1)
The above version is much more complex, but also more useful. It parses a
unified diff to see if any lines add trailing whitespace, and prints the
name of the file and the line number of each such occurrence. Even better,
if the change adds trailing whitespace, this hook saves the commit comment
and prints the name of the save file before exiting and telling Mercurial to
roll the transaction back, so you can use the -l filename option to hg commit to reuse the saved commit message once
you've corrected the problem.

$ cat .hg/hgrc
[hooks]
pretxncommit.whitespace = .hg/check_whitespace.py
$ echo 'a ' >> a
$ hg commit -A -m 'add new line with trailing whitespace'
a, line 2: trailing whitespace added
commit message saved to .hg/commit.save
transaction abort!
rollback completed
abort: pretxncommit.whitespace hook exited with status 1
$ sed -i 's, *$,,' a
$ hg commit -A -m 'trimmed trailing whitespace'
a, line 2: trailing whitespace added
commit message saved to .hg/commit.save
transaction abort!
rollback completed
abort: pretxncommit.whitespace hook exited with status 1

As a final aside, note in the example above the use of
sed's in-place editing feature to get rid of trailing
whitespace from a file. This is concise and useful enough that I will
reproduce it here (using perl for good measure).
perl -pi -e 's,\s+$,,' filename

内置的钩子

Mercurial ships with several bundled hooks. You can find them in the
hgext directory of a Mercurial source
tree. If you are using a Mercurial binary package, the hooks will be
located in the hgext directory of
wherever your package installer put Mercurial.

acl—版本库的访问控制

The acl extension lets you control which
remote users are allowed to push changesets to a networked server. You can
protect any portion of a repository (including the entire repo), so that a
specific remote user can push changes that do not affect the protected
portion.

This extension implements access control based on the identity of the user
performing a push, not on who committed the changesets
they're pushing. It makes sense to use this hook only if you have a
locked-down server environment that authenticates remote users, and you want
to be sure that only specific users are allowed to push changes to that
server.

配置 acl 钩子

In order to manage incoming changesets, the acl hook must be used as a pretxnchangegroup hook. This lets it see which files
are modified by each incoming changeset, and roll back a group of changesets
if they modify “forbidden” files. Example:
	
[hooks]
pretxnchangegroup.acl = python:hgext.acl.hook
The acl extension is configured using three
sections.
	
The acl section has only one entry, sources, which lists the sources of incoming
changesets that the hook should pay attention to. You don't normally need
to configure this section.
	
	serve: Control incoming changesets that
are arriving from a remote repository over http or ssh. This is the default
value of sources, and usually the only
setting you'll need for this configuration item.
	

	pull: Control incoming changesets that are
arriving via a pull from a local repository.
	

	push: Control incoming changesets that are
arriving via a push from a local repository.
	

	bundle: Control incoming changesets that
are arriving from another repository via a bundle.
	

The acl.allow section controls the
users that are allowed to add changesets to the repository. If this section
is not present, all users that are not explicitly denied are allowed. If
this section is present, all users that are not explicitly allowed are
denied (so an empty section means that all users are denied).
	
The acl.deny section determines which
users are denied from adding changesets to the repository. If this section
is not present or is empty, no users are denied.
	
The syntaxes for the acl.allow and
acl.deny sections are identical. On
the left of each entry is a glob pattern that matches files or directories,
relative to the root of the repository; on the right, a user name.
	
In the following example, the user docwriter can only
push changes to the docs subtree of
the repository, while intern can push changes to any file
or directory except source/sensitive.
	
[acl.allow]
docs/** = docwriter
[acl.deny]
source/sensitive/** = intern

测试与问题处理

If you want to test the acl hook, run it
with Mercurial's debugging output enabled. Since you'll probably be running
it on a server where it's not convenient (or sometimes possible) to pass in
the --debug option, don't forget that
you can enable debugging output in your ~/.hgrc:
	
[ui]
debug = true
With this enabled, the acl hook will print
enough information to let you figure out why it is allowing or forbidding
pushes from specific users.
	

bugzilla—与 Bugzilla 的集成

The bugzilla extension adds a comment to a
Bugzilla bug whenever it finds a reference to that bug ID in a commit
comment. You can install this hook on a shared server, so that any time a
remote user pushes changes to this server, the hook gets run.

It adds a comment to the bug that looks like this (you can configure the
contents of the comment—see below):

Changeset aad8b264143a, made by Joe User
	<joe.user@domain.com> in the frobnitz repository, refers
	to this bug. For complete details, see
	http://hg.domain.com/frobnitz?cmd=changeset;node=aad8b264143a
	Changeset description: Fix bug 10483 by guarding against some
	NULL pointers
The value of this hook is that it automates the process of updating a bug
any time a changeset refers to it. If you configure the hook properly, it
makes it easy for people to browse straight from a Bugzilla bug to a
changeset that refers to that bug.

You can use the code in this hook as a starting point for some more exotic
Bugzilla integration recipes. Here are a few possibilities:

	Require that every changeset pushed to the server have a valid bug ID in its
commit comment. In this case, you'd want to configure the hook as a
pretxncommit hook. This would allow the hook
to reject changes that didn't contain bug IDs.
	

	Allow incoming changesets to automatically modify the
state of a bug, as well as simply adding a comment.
For example, the hook could recognise the string “fixed bug
31337” as indicating that it should update the state of bug 31337 to
“requires testing”.
	

配置 bugzilla 钩子

You should configure this hook in your server's ~/.hgrc as an incoming hook, for example as follows:
	
[hooks]
incoming.bugzilla = python:hgext.bugzilla.hook
Because of the specialised nature of this hook, and because Bugzilla was not
written with this kind of integration in mind, configuring this hook is a
somewhat involved process.
	
Before you begin, you must install the MySQL bindings for Python on the
host(s) where you'll be running the hook. If this is not available as a
binary package for your system, you can download it from
[web:mysql-python].
	
Configuration information for this hook lives in the bugzilla section of your ~/.hgrc.
	
	version: The version of Bugzilla
installed on the server. The database schema that Bugzilla uses changes
occasionally, so this hook has to know exactly which schema to use.

	host: The hostname of the MySQL
server that stores your Bugzilla data. The database must be configured to
allow connections from whatever host you are running the bugzilla hook on.
	

	user: The username with which to
connect to the MySQL server. The database must be configured to allow this
user to connect from whatever host you are running the bugzilla hook on. This user must be able to access
and modify Bugzilla tables. The default value of this item is
bugs, which is the standard name of the Bugzilla user in
a MySQL database.
	

	password: The MySQL password for the
user you configured above. This is stored as plain text, so you should make
sure that unauthorised users cannot read the ~/.hgrc file where you store this information.
	

	db: The name of the Bugzilla database
on the MySQL server. The default value of this item is
bugs, which is the standard name of the MySQL database
where Bugzilla stores its data.
	

	notify: If you want Bugzilla to send
out a notification email to subscribers after this hook has added a comment
to a bug, you will need this hook to run a command whenever it updates the
database. The command to run depends on where you have installed Bugzilla,
but it will typically look something like this, if you have Bugzilla
installed in /var/www/html/bugzilla:
	
cd /var/www/html/bugzilla &&
	 ./processmail %s nobody@nowhere.com

	 The Bugzilla processmail program expects to be given a
bug ID (the hook replaces “%s” with the bug
ID) and an email address. It also expects to be able to write to some
files in the directory that it runs in. If Bugzilla and this hook are not
installed on the same machine, you will need to find a way to run
processmail on the server where Bugzilla is installed.
	

提交者的名称与 Bugzilla 用户名称的映射

By default, the bugzilla hook tries to use
the email address of a changeset's committer as the Bugzilla user name with
which to update a bug. If this does not suit your needs, you can map
committer email addresses to Bugzilla user names using a usermap section.
	
Each item in the usermap section
contains an email address on the left, and a Bugzilla user name on the
right.
	
[usermap]
jane.user@example.com = jane
You can either keep the usermap data in
a normal ~/.hgrc, or tell the bugzilla hook to read the information from an
external usermap file. In the latter case, you can
store usermap data by itself in (for example) a
user-modifiable repository. This makes it possible to let your users
maintain their own usermap entries.
The main ~/.hgrc file might look like
this:
	
regular hgrc file refers to external usermap file
[bugzilla]
usermap = /home/hg/repos/userdata/bugzilla-usermap.conf
While the usermap file that it refers to might look
like this:
	
bugzilla-usermap.conf - inside a hg repository
[usermap] stephanie@example.com = steph

配置增加到问题中的正文

You can configure the text that this hook adds as a comment; you specify it
in the form of a Mercurial template. Several ~/.hgrc entries (still in the bugzilla section) control this behavior.
	
	strip: The number of leading path elements to strip from
a repository's path name to construct a partial path for a URL. For example,
if the repositories on your server live under /home/hg/repos, and you have a repository whose
path is /home/hg/repos/app/tests,
then setting strip to 4 will give a
partial path of app/tests. The hook
will make this partial path available when expanding a template, as
webroot.
	

	template: The text of the template to use. In addition
to the usual changeset-related variables, this template can use
hgweb (the value of the hgweb
configuration item above) and webroot (the path
constructed using strip above).
	

In addition, you can add a baseurl item to
the web section of your ~/.hgrc. The bugzilla hook will make this available when
expanding a template, as the base string to use when constructing a URL that
will let users browse from a Bugzilla comment to view a changeset. Example:
	
[web]
baseurl = http://hg.domain.com/
Here is an example set of bugzilla hook
config information.
	
[bugzilla]
host = bugzilla.example.com
password = mypassword version = 2.16
server-side repos live in /home/hg/repos, so strip 4 leading
separators
strip = 4
hgweb = http://hg.example.com/
usermap = /home/hg/repos/notify/bugzilla.conf
template = Changeset {node|short}, made by {author} in the {webroot}
 repo, refers to this bug.\n
 For complete details, see
 {hgweb}{webroot}?cmd=changeset;node={node|short}\n
 Changeset description:\n
 \t{desc|tabindent}

测试与问题处理

The most common problems with configuring the bugzilla hook relate to running Bugzilla's
processmail script and mapping committer names to user
names.
	
Recall from the section called “配置 bugzilla 钩子” above that the user
that runs the Mercurial process on the server is also the one that will run
the processmail script. The
processmail script sometimes causes Bugzilla to write
to files in its configuration directory, and Bugzilla's configuration files
are usually owned by the user that your web server runs under.
	
You can cause processmail to be run with the suitable
user's identity using the sudo command. Here is an
example entry for a sudoers file.
	
hg_user = (httpd_user)
NOPASSWD: /var/www/html/bugzilla/processmail-wrapper %s
This allows the hg_user user to run a
processmail-wrapper program under the identity of
httpd_user.
	
This indirection through a wrapper script is necessary, because
processmail expects to be run with its current
directory set to wherever you installed Bugzilla; you can't specify that
kind of constraint in a sudoers file. The contents of
the wrapper script are simple:
	
#!/bin/sh
cd `dirname $0` && ./processmail "$1" nobody@example.com
It doesn't seem to matter what email address you pass to
processmail.
	
If your usermap is not set up
correctly, users will see an error message from the bugzilla hook when they push changes to the server.
The error message will look like this:
	
cannot find bugzilla user id for john.q.public@example.com
What this means is that the committer's address,
john.q.public@example.com, is not a valid Bugzilla user
name, nor does it have an entry in your usermap that maps it to a valid Bugzilla user
name.
	

notify—邮件通知

Although Mercurial's built-in web server provides RSS feeds of changes in
every repository, many people prefer to receive change notifications via
email. The notify hook lets you send out
notifications to a set of email addresses whenever changesets arrive that
those subscribers are interested in.

As with the bugzilla hook, the notify hook is template-driven, so you can customise
the contents of the notification messages that it sends.

By default, the notify hook includes a diff
of every changeset that it sends out; you can limit the size of the diff, or
turn this feature off entirely. It is useful for letting subscribers review
changes immediately, rather than clicking to follow a URL.

配置 notify 钩子

You can set up the notify hook to send one
email message per incoming changeset, or one per incoming group of
changesets (all those that arrived in a single pull or push).
	
[hooks]
send one email per group of changes
changegroup.notify = python:hgext.notify.hook
send one email per change
incoming.notify = python:hgext.notify.hook
Configuration information for this hook lives in the notify section of a ~/.hgrc file.
	
	test: By default, this hook does not
send out email at all; instead, it prints the message that it
would send. Set this item to false
to allow email to be sent. The reason that sending of email is turned off by
default is that it takes several tries to configure this extension exactly
as you would like, and it would be bad form to spam subscribers with a
number of “broken” notifications while you debug your
configuration.
	

	config: The path to a configuration
file that contains subscription information. This is kept separate from the
main ~/.hgrc so that you can maintain it
in a repository of its own. People can then clone that repository, update
their subscriptions, and push the changes back to your server.
	

	strip: The number of leading path
separator characters to strip from a repository's path, when deciding
whether a repository has subscribers. For example, if the repositories on
your server live in /home/hg/repos,
and notify is considering a repository
named /home/hg/repos/shared/test,
setting strip to 4
will cause notify to trim the path it
considers down to shared/test, and it
will match subscribers against that.
	

	template: The template text to use when
sending messages. This specifies both the contents of the message header
and its body.
	

	maxdiff: The maximum number of lines of
diff data to append to the end of a message. If a diff is longer than this,
it is truncated. By default, this is set to 300. Set this to
0 to omit diffs from notification emails.
	

	sources: A list of sources of
changesets to consider. This lets you limit notify to only sending out email about changes that
remote users pushed into this repository via a server, for example. See
the section called “修改集的来源” for the sources you can specify here.
	

If you set the baseurl item in the
web section, you can use it in a template;
it will be available as webroot.
	
Here is an example set of notify
configuration information.
	
[notify]
really send email
test = false
subscriber data lives in the notify repo
config = /home/hg/repos/notify/notify.conf
repos live in /home/hg/repos on server, so strip 4 "/" chars
strip = 4
template = X-Hg-Repo: {webroot}\n
 Subject: {webroot}: {desc|firstline|strip}\n
 From: {author}
 \n\n
 changeset {node|short} in {root}
 \n\ndetails:
 {baseurl}{webroot}?cmd=changeset;node={node|short}
 description: {desc|tabindent|strip}

[web]
baseurl =
http://hg.example.com/
This will produce a message that looks like the following:
	
X-Hg-Repo: tests/slave
Subject: tests/slave: Handle error case when slave has no buffers
Date: Wed, 2 Aug 2006 15:25:46 -0700 (PDT)

changeset 3cba9bfe74b5 in /home/hg/repos/tests/slave

details:
http://hg.example.com/tests/slave?cmd=changeset;node=3cba9bfe74b5

description: Handle error case when slave has no buffers

diffs (54 lines):
diff -r 9d95df7cf2ad -r 3cba9bfe74b5 include/tests.h
--- a/include/tests.h Wed Aug 02 15:19:52 2006 -0700
+++ b/include/tests.h Wed Aug 02 15:25:26 2006 -0700
@@ -212,6 +212,15 @@ static __inline__
void test_headers(void *h)
[...snip...]

测试与问题处理

Do not forget that by default, the notify
extension will not send any mail until you explicitly
configure it to do so, by setting test
to false. Until you do that, it simply prints the
message it would send.
	

编写钩子的信息

进程内钩子的执行

An in-process hook is called with arguments of the following form:

def myhook(ui, repo, **kwargs): pass
The ui parameter is a ui object. The repo
parameter is a localrepository object. The
names and values of the **kwargs parameters depend on the
hook being invoked, with the following common features:

	If a parameter is named node or
parentN, it will contain a hexadecimal changeset ID. The
empty string is used to represent “null changeset ID” instead
of a string of zeroes.
	

	If a parameter is named url, it will contain the URL of a
remote repository, if that can be determined.
	

	Boolean-valued parameters are represented as Python bool
objects.
	

An in-process hook is called without a change to the process's working
directory (unlike external hooks, which are run in the root of the
repository). It must not change the process's working directory, or it will
cause any calls it makes into the Mercurial API to fail.

If a hook returns a boolean “false” value, it is considered to
have succeeded. If it returns a boolean “true” value or raises
an exception, it is considered to have failed. A useful way to think of the
calling convention is “tell me if you fail”.

Note that changeset IDs are passed into Python hooks as hexadecimal strings,
not the binary hashes that Mercurial's APIs normally use. To convert a hash
from hex to binary, use the bin function.

外部钩子的执行

An external hook is passed to the shell of the user running
Mercurial. Features of that shell, such as variable substitution and command
redirection, are available. The hook is run in the root directory of the
repository (unlike in-process hooks, which are run in the same directory
that Mercurial was run in).

Hook parameters are passed to the hook as environment variables. Each
environment variable's name is converted in upper case and prefixed with the
string “HG_”. For example, if the name of a
parameter is “node”, the name of the
environment variable representing that parameter will be
“HG_NODE”.

A boolean parameter is represented as the string
“1” for “true”,
“0” for “false”. If an
environment variable is named HG_NODE,
HG_PARENT1 or HG_PARENT2, it contains a
changeset ID represented as a hexadecimal string. The empty string is used
to represent “null changeset ID” instead of a string of
zeroes. If an environment variable is named HG_URL, it will
contain the URL of a remote repository, if that can be determined.

If a hook exits with a status of zero, it is considered to have succeeded.
If it exits with a non-zero status, it is considered to have failed.

检查修改集来自何处

A hook that involves the transfer of changesets between a local repository
and another may be able to find out information about the “far
side”. Mercurial knows how changes are being
transferred, and in many cases where they are being
transferred to or from.

修改集的来源

Mercurial will tell a hook what means are, or were, used to transfer
changesets between repositories. This is provided by Mercurial in a Python
parameter named source, or an environment variable named
HG_SOURCE.
	
	serve: Changesets are transferred to or from a remote
repository over http or ssh.
	

	pull: Changesets are being transferred via a pull from
one repository into another.
	

	push: Changesets are being transferred via a push from
one repository into another.
	

	bundle: Changesets are being transferred to or from a
bundle.
	

修改集要到哪里—远程版本库的地址

When possible, Mercurial will tell a hook the location of the “far
side” of an activity that transfers changeset data between
repositories. This is provided by Mercurial in a Python parameter named
url, or an environment variable named
HG_URL.
	
This information is not always known. If a hook is invoked in a repository
that is being served via http or ssh, Mercurial cannot tell where the remote
repository is, but it may know where the client is connecting from. In such
cases, the URL will take one of the following forms:
	
	remote:ssh:1.2.3.4—remote ssh client, at the IP
address 1.2.3.4.
	

	remote:http:1.2.3.4—remote http client, at the IP
address 1.2.3.4. If the client is using SSL, this will
be of the form remote:https:1.2.3.4.
	

	Empty—no information could be discovered about the remote client.
	

钩子参考

changegroup—增加远程修改集之后

This hook is run after a group of pre-existing changesets has been added to
the repository, for example via a hg pull
or hg unbundle. This hook is run once per
operation that added one or more changesets. This is in contrast to the
incoming hook, which is run once per
changeset, regardless of whether the changesets arrive in a group.

Some possible uses for this hook include kicking off an automated build or
test of the added changesets, updating a bug database, or notifying
subscribers that a repository contains new changes.

Parameters to this hook:

	node: A changeset ID. The changeset ID of the first
changeset in the group that was added. All changesets between this and
tip, inclusive, were added by a single
hg pull, hg
push or hg unbundle.
	

	source: A string. The source of these changes. See
the section called “修改集的来源” for details.
	

	url: A URL. The location of the remote repository, if
known. See the section called “修改集要到哪里—远程版本库的地址” for more information.
	

See also: incoming (the section called “incoming—增加远程修改集之后”), prechangegroup (the section called “prechangegroup—增加远程修改集之前”), pretxnchangegroup (the section called “pretxnchangegroup—完成增加远程修改集之前”)

commit—创建新修改集之后

This hook is run after a new changeset has been created.

Parameters to this hook:

	node: A changeset ID. The changeset ID of the newly
committed changeset.
	

	parent1: A changeset ID. The changeset ID of the first
parent of the newly committed changeset.
	

	parent2: A changeset ID. The changeset ID of the second
parent of the newly committed changeset.
	

See also: precommit (the section called “precommit—提交修改集之前”), pretxncommit
(the section called “pretxncommit—完成提交之前”)

incoming—增加远程修改集之后

This hook is run after a pre-existing changeset has been added to the
repository, for example via a hg push. If
a group of changesets was added in a single operation, this hook is called
once for each added changeset.

You can use this hook for the same purposes as the changegroup hook (the section called “changegroup—增加远程修改集之后”); it's simply more convenient sometimes to
run a hook once per group of changesets, while other times it's handier once
per changeset.

Parameters to this hook:

	node: A changeset ID. The ID of the newly added
changeset.
	

	source: A string. The source of these changes. See
the section called “修改集的来源” for details.
	

	url: A URL. The location of the remote repository, if
known. See the section called “修改集要到哪里—远程版本库的地址” for more information.
	

See also: changegroup (the section called “changegroup—增加远程修改集之后”) prechangegroup (the section called “prechangegroup—增加远程修改集之前”), pretxnchangegroup (the section called “pretxnchangegroup—完成增加远程修改集之前”)

outgoing—传播修改集之后

This hook is run after a group of changesets has been propagated out of this
repository, for example by a hg push or
hg bundle command.

One possible use for this hook is to notify administrators that changes have
been pulled.

Parameters to this hook:

	node: A changeset ID. The changeset ID of the first
changeset of the group that was sent.
	

	source: A string. The source of the of the operation
(see the section called “修改集的来源”). If a remote client pulled changes
from this repository, source will be
serve. If the client that obtained changes from this
repository was local, source will be
bundle, pull, or
push, depending on the operation the client performed.
	

	url: A URL. The location of the remote repository, if
known. See the section called “修改集要到哪里—远程版本库的地址” for more information.
	

See also: preoutgoing (the section called “preoutgoing—传播修改集之前”)

prechangegroup—增加远程修改集之前

This controlling hook is run before Mercurial begins to add a group of
changesets from another repository.

This hook does not have any information about the changesets to be added,
because it is run before transmission of those changesets is allowed to
begin. If this hook fails, the changesets will not be transmitted.

One use for this hook is to prevent external changes from being added to a
repository. For example, you could use this to “freeze” a
server-hosted branch temporarily or permanently so that users cannot push to
it, while still allowing a local administrator to modify the repository.

Parameters to this hook:

	source: A string. The source of these changes. See
the section called “修改集的来源” for details.
	

	url: A URL. The location of the remote repository, if
known. See the section called “修改集要到哪里—远程版本库的地址” for more information.
	

See also: changegroup (the section called “changegroup—增加远程修改集之后”), incoming
(the section called “incoming—增加远程修改集之后”), pretxnchangegroup (the section called “pretxnchangegroup—完成增加远程修改集之前”)

precommit—提交修改集之前

This hook is run before Mercurial begins to commit a new changeset. It is
run before Mercurial has any of the metadata for the commit, such as the
files to be committed, the commit message, or the commit date.

One use for this hook is to disable the ability to commit new changesets,
while still allowing incoming changesets. Another is to run a build or
test, and only allow the commit to begin if the build or test succeeds.

Parameters to this hook:

	parent1: A changeset ID. The changeset ID of the first
parent of the working directory.
	

	parent2: A changeset ID. The changeset ID of the second
parent of the working directory.
	

If the commit proceeds, the parents of the working directory will become the
parents of the new changeset.

See also: commit (the section called “commit—创建新修改集之后”), pretxncommit
(the section called “pretxncommit—完成提交之前”)

preoutgoing—传播修改集之前

This hook is invoked before Mercurial knows the identities of the changesets
to be transmitted.

One use for this hook is to prevent changes from being transmitted to
another repository.

Parameters to this hook:

	source: A string. The source of the operation that is
attempting to obtain changes from this repository (see the section called “修改集的来源”). See the documentation for the
source parameter to the outgoing hook, in the section called “outgoing—传播修改集之后”,
for possible values of this parameter.
	

	url: A URL. The location of the remote repository, if
known. See the section called “修改集要到哪里—远程版本库的地址” for more information.
	

See also: outgoing (the section called “outgoing—传播修改集之后”)

pretag—创建标签之前

This controlling hook is run before a tag is created. If the hook succeeds,
creation of the tag proceeds. If the hook fails, the tag is not created.

Parameters to this hook:

	local: A boolean. Whether the tag is local to this
repository instance (i.e. stored in .hg/localtags) or managed by Mercurial (stored in
.hgtags).
	

	node: A changeset ID. The ID of the changeset to be
tagged.
	

	tag: A string. The name of the tag to be created.
	

If the tag to be created is revision-controlled, the precommit and pretxncommit hooks (the section called “commit—创建新修改集之后”
and the section called “pretxncommit—完成提交之前”) will also be run.

See also: tag (the section called “tag—创建标签之后”)

pretxnchangegroup—完成增加远程修改集之前

This controlling hook is run before a transaction—that manages the
addition of a group of new changesets from outside the
repository—completes. If the hook succeeds, the transaction
completes, and all of the changesets become permanent within this
repository. If the hook fails, the transaction is rolled back, and the data
for the changesets is erased.

This hook can access the metadata associated with the almost-added
changesets, but it should not do anything permanent with this data. It must
also not modify the working directory.

While this hook is running, if other Mercurial processes access this
repository, they will be able to see the almost-added changesets as if they
are permanent. This may lead to race conditions if you do not take steps to
avoid them.

This hook can be used to automatically vet a group of changesets. If the
hook fails, all of the changesets are “rejected” when the
transaction rolls back.

Parameters to this hook:

	node: A changeset ID. The changeset ID of the first
changeset in the group that was added. All changesets between this and
tip, inclusive, were added by a single
hg pull, hg
push or hg unbundle.
	

	source: A string. The source of these changes. See
the section called “修改集的来源” for details.
	

	url: A URL. The location of the remote repository, if
known. See the section called “修改集要到哪里—远程版本库的地址” for more information.
	

See also: changegroup (the section called “changegroup—增加远程修改集之后”), incoming
(the section called “incoming—增加远程修改集之后”), prechangegroup (the section called “prechangegroup—增加远程修改集之前”)

pretxncommit—完成提交之前

This controlling hook is run before a transaction—that manages a new
commit—completes. If the hook succeeds, the transaction completes
and the changeset becomes permanent within this repository. If the hook
fails, the transaction is rolled back, and the commit data is erased.

This hook can access the metadata associated with the almost-new changeset,
but it should not do anything permanent with this data. It must also not
modify the working directory.

While this hook is running, if other Mercurial processes access this
repository, they will be able to see the almost-new changeset as if it is
permanent. This may lead to race conditions if you do not take steps to
avoid them.

Parameters to this hook:
	node: A changeset ID. The changeset ID of the newly
committed changeset.
	

	parent1: A changeset ID. The changeset ID of the first
parent of the newly committed changeset.
	

	parent2: A changeset ID. The changeset ID of the second
parent of the newly committed changeset.
	

参见: precommit (the section called “precommit—提交修改集之前”)

preupdate—更新或合并工作目录之前

This controlling hook is run before an update or merge of the working
directory begins. It is run only if Mercurial's normal pre-update checks
determine that the update or merge can proceed. If the hook succeeds, the
update or merge may proceed; if it fails, the update or merge does not
start.

Parameters to this hook:

	parent1: A changeset ID. The ID of the parent that the
working directory is to be updated to. If the working directory is being
merged, it will not change this parent.
	

	parent2: A changeset ID. Only set if the working
directory is being merged. The ID of the revision that the working
directory is being merged with.
	

See also: update (the section called “update—更新或合并工作目录之后”)

tag—创建标签之后

This hook is run after a tag has been created.

Parameters to this hook:

	local: A boolean. Whether the new tag is local to this
repository instance (i.e. stored in .hg/localtags) or managed by Mercurial (stored in
.hgtags).
	

	node: A changeset ID. The ID of the changeset that was
tagged.
	

	tag: A string. The name of the tag that was created.
	

If the created tag is revision-controlled, the commit hook (section the section called “commit—创建新修改集之后”) is run before this hook.

参见: pretag (the section called “pretag—创建标签之前”)

update—更新或合并工作目录之后

This hook is run after an update or merge of the working directory
completes. Since a merge can fail (if the external
hgmerge command fails to resolve conflicts in a file),
this hook communicates whether the update or merge completed cleanly.

	error: A boolean. Indicates whether the update or merge
completed successfully.
	

	parent1: A changeset ID. The ID of the parent that the
working directory was updated to. If the working directory was merged, it
will not have changed this parent.
	

	parent2: A changeset ID. Only set if the working
directory was merged. The ID of the revision that the working directory was
merged with.
	

See also: preupdate (the section called “preupdate—更新或合并工作目录之前”)

Chapter 11. 定制 Mercurial 的输出

Mercurial provides a powerful mechanism to let you control how it displays
information. The mechanism is based on templates. You can use templates to
generate specific output for a single command, or to customize the entire
appearance of the built-in web interface.
使用预定义的输出样式

Packaged with Mercurial are some output styles that you can use
immediately. A style is simply a precanned template that someone wrote and
installed somewhere that Mercurial can find.
Before we take a look at Mercurial's bundled styles, let's review its normal
output.
$ hg log -r1
changeset: 1:01203f832f89
tag: mytag
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:05 2011 +0000
summary: added line to end of <<hello>> file.

This is somewhat informative, but it takes up a lot of space—five
lines of output per changeset. The compact style reduces
this to three lines, presented in a sparse manner.
$ hg log --style compact
3[tip] f63804ec1ef9 2011-03-17 05:13 +0000 bos
 Added tag v0.1 for changeset ba163e9ae98c

2[v0.1] ba163e9ae98c 2011-03-17 05:13 +0000 bos
 Added tag mytag for changeset 01203f832f89

1[mytag] 01203f832f89 2011-03-17 05:13 +0000 bos
 added line to end of <<hello>> file.

0 4b92ecaf18ff 2011-03-17 05:13 +0000 bos
 added hello

The changelog style hints at the expressive power of
Mercurial's templating engine. This style attempts to follow the GNU
Project's changelog guidelines[web:changelog].
$ hg log --style changelog
2011-03-17 Bryan O'Sullivan <bos@serpentine.com>

	* .hgtags:
	Added tag v0.1 for changeset ba163e9ae98c
	[f63804ec1ef9] [tip]

	* .hgtags:
	Added tag mytag for changeset 01203f832f89
	[ba163e9ae98c] [v0.1]

	* goodbye, hello:
	added line to end of <<hello>> file.

	in addition, added a file with the helpful name (at least i hope
	that some might consider it so) of goodbye.
	[01203f832f89] [mytag]

	* hello:
	added hello
	[4b92ecaf18ff]

You will not be shocked to learn that Mercurial's default output style is
named default.
设置默认样式

You can modify the output style that Mercurial will use for every command by
editing your ~/.hgrc file, naming the
style you would prefer to use.
[ui]
style = compact
If you write a style of your own, you can use it by either providing the
path to your style file, or copying your style file into a location where
Mercurial can find it (typically the templates
subdirectory of your Mercurial install directory).

支持样式和模版的命令

All of Mercurial's “log-like” commands let
you use styles and templates: hg incoming,
hg log, hg
outgoing, and hg tip.
As I write this manual, these are so far the only commands that support
styles and templates. Since these are the most important commands that need
customizable output, there has been little pressure from the Mercurial user
community to add style and template support to other commands.

模版基础

At its simplest, a Mercurial template is a piece of text. Some of the text
never changes, while other parts are expanded, or
replaced with new text, when necessary.
Before we continue, let's look again at a simple example of Mercurial's
normal output.
$ hg log -r1
changeset: 1:01203f832f89
tag: mytag
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:13:05 2011 +0000
summary: added line to end of <<hello>> file.

Now, let's run the same command, but using a template to change its output.
$ hg log -r1 --template 'i saw a changeset\n'
i saw a changeset

The example above illustrates the simplest possible template; it's just a
piece of static text, printed once for each changeset. The --template option to the hg log command tells Mercurial to use the given text
as the template when printing each changeset.
Notice that the template string above ends with the text
“\n”. This is an escape
sequence, telling Mercurial to print a newline at the end of each
template item. If you omit this newline, Mercurial will run each piece of
output together. See the section called “转义序列” for more details
of escape sequences.
A template that prints a fixed string of text all the time isn't very
useful; let's try something a bit more complex.
$ hg log --template 'i saw a changeset: {desc}\n'
i saw a changeset: Added tag v0.1 for changeset ba163e9ae98c
i saw a changeset: Added tag mytag for changeset 01203f832f89
i saw a changeset: added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some might consider it so) of goodbye.
i saw a changeset: added hello

As you can see, the string “{desc}” in the
template has been replaced in the output with the description of each
changeset. Every time Mercurial finds text enclosed in curly braces
(“{” and
“}”), it will try to replace the braces and
text with the expansion of whatever is inside. To print a literal curly
brace, you must escape it, as described in the section called “转义序列”.

模版关键字

You can start writing simple templates immediately using the keywords below.
	author: String. The unmodified
author of the changeset.

	branches: String. The name of
the branch on which the changeset was committed. Will be empty if the
branch name was default.

	date: Date information. The date
when the changeset was committed. This is not
human-readable; you must pass it through a filter that will render it
appropriately. See the section called “通过过滤关键字来修改输出结果” for more
information on filters. The date is expressed as a pair of numbers. The
first number is a Unix UTC timestamp (seconds since January 1, 1970); the
second is the offset of the committer's timezone from UTC, in seconds.

	desc: String. The text of the
changeset description.

	files: List of strings. All
files modified, added, or removed by this changeset.

	file_adds: List of strings.
Files added by this changeset.

	file_dels: List of strings.
Files removed by this changeset.

	node: String. The changeset
identification hash, as a 40-character hexadecimal string.

	parents: List of strings. The
parents of the changeset.

	rev: Integer. The
repository-local changeset revision number.

	tags: List of strings. Any tags
associated with the changeset.

A few simple experiments will show us what to expect when we use these
keywords; you can see the results below.
$ hg log -r1 --template 'author: {author}\n'
author: Bryan O'Sullivan <bos@serpentine.com>
$ hg log -r1 --template 'desc:\n{desc}\n'
desc:
added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some might consider it so) of goodbye.
$ hg log -r1 --template 'files: {files}\n'
files: goodbye hello
$ hg log -r1 --template 'file_adds: {file_adds}\n'
file_adds: goodbye
$ hg log -r1 --template 'file_dels: {file_dels}\n'
file_dels:
$ hg log -r1 --template 'node: {node}\n'
node: 01203f832f89b80d847295961a03613f759e62bf
$ hg log -r1 --template 'parents: {parents}\n'
parents:
$ hg log -r1 --template 'rev: {rev}\n'
rev: 1
$ hg log -r1 --template 'tags: {tags}\n'
tags: mytag

As we noted above, the date keyword does not produce human-readable output,
so we must treat it specially. This involves using a
filter, about which more in the section called “通过过滤关键字来修改输出结果”.
$ hg log -r1 --template 'date: {date}\n'
date: 1300338785.00
$ hg log -r1 --template 'date: {date|isodate}\n'
date: 2011-03-17 05:13 +0000

转义序列

Mercurial's templating engine recognises the most commonly used escape
sequences in strings. When it sees a backslash
(“\”) character, it looks at the following
character and substitutes the two characters with a single replacement, as
described below.
	\: Backslash, “\”, ASCII
134.

	\n: Newline, ASCII 12.

	\r: Carriage return, ASCII 15.

	\t: Tab, ASCII 11.

	\v: Vertical tab, ASCII 13.

	\{: Open curly brace,
“{”, ASCII 173.

	\}: Close curly brace,
“}”, ASCII 175.

As indicated above, if you want the expansion of a template to contain a
literal “\”,
“{”, or “{”
character, you must escape it.

通过过滤关键字来修改输出结果

Some of the results of template expansion are not immediately easy to use.
Mercurial lets you specify an optional chain of filters
to modify the result of expanding a keyword. You have already seen a common
filter, isodate, in action
above, to make a date readable.
Below is a list of the most commonly used filters that Mercurial supports.
While some filters can be applied to any text, others can only be used in
specific circumstances. The name of each filter is followed first by an
indication of where it can be used, then a description of its effect.
	addbreaks: Any text. Add an XHTML
“
” tag before the end of every
line except the last. For example,
“foo\nbar” becomes
“foo
\nbar”.

	age: date keyword. Render the age of the date,
relative to the current time. Yields a string like “10
minutes”.

	basename: Any text, but most
useful for the files keyword and
its relatives. Treat the text as a path, and return the basename. For
example, “foo/bar/baz” becomes
“baz”.

	date: date keyword. Render a date in a similar
format to the Unix date command,
but with timezone included. Yields a string like “Mon Sep 04
15:13:13 2006 -0700”.

	domain: Any text, but most
useful for the author keyword.
Finds the first string that looks like an email address, and extract just
the domain component. For example, “Bryan O'Sullivan
<bos@serpentine.com>” becomes
“serpentine.com”.

	email: Any text, but most
useful for the author keyword.
Extract the first string that looks like an email address. For example,
“Bryan O'Sullivan
<bos@serpentine.com>” becomes
“bos@serpentine.com”.

	escape: Any text. Replace the
special XML/XHTML characters “&”,
“<” and
“>” with XML entities.

	fill68: Any text. Wrap the text
to fit in 68 columns. This is useful before you pass text through the
tabindent filter, and still want
it to fit in an 80-column fixed-font window.

	fill76: Any text. Wrap the text
to fit in 76 columns.

	firstline: Any text. Yield the
first line of text, without any trailing newlines.

	hgdate: date keyword. Render the date as a pair
of readable numbers. Yields a string like “1157407993
25200”.

	isodate: date keyword. Render the date as a text
string in ISO 8601 format. Yields a string like “2006-09-04
15:13:13 -0700”.

	obfuscate: Any text, but most
useful for the author keyword.
Yield the input text rendered as a sequence of XML entities. This helps to
defeat some particularly stupid screen-scraping email harvesting spambots.

	person: Any text, but most
useful for the author keyword.
Yield the text before an email address. For example, “Bryan
O'Sullivan <bos@serpentine.com>” becomes
“Bryan O'Sullivan”.

	rfc822date: date keyword. Render a date using the
same format used in email headers. Yields a string like
“Mon, 04 Sep 2006 15:13:13 -0700”.

	short: Changeset hash.
Yield the short form of a changeset hash, i.e. a 12-character hexadecimal
string.

	shortdate: date keyword. Render the year, month, and
day of the date. Yields a string like
“2006-09-04”.

	strip: Any text. Strip all
leading and trailing whitespace from the string.

	tabindent: Any text. Yield the
text, with every line except the first starting with a tab character.

	urlescape: Any text. Escape all
characters that are considered “special” by URL parsers. For
example, foo bar becomes foo%20bar.

	user: Any text, but most
useful for the author keyword.
Return the “user” portion of an email address. For example,
“Bryan O'Sullivan
<bos@serpentine.com>” becomes
“bos”.

$ hg log -r1 --template '{author}\n'
Bryan O'Sullivan <bos@serpentine.com>
$ hg log -r1 --template '{author|domain}\n'
serpentine.com
$ hg log -r1 --template '{author|email}\n'
bos@serpentine.com
$ hg log -r1 --template '{author|obfuscate}\n' | cut -c-76
Bryan O'Sulli
$ hg log -r1 --template '{author|person}\n'
Bryan O'Sullivan
$ hg log -r1 --template '{author|user}\n'
bos
$ hg log -r1 --template 'looks almost right, but actually garbage: {date}\n'
looks almost right, but actually garbage: 1300338785.00
$ hg log -r1 --template '{date|age}\n'
2 seconds ago
$ hg log -r1 --template '{date|date}\n'
Thu Mar 17 05:13:05 2011 +0000
$ hg log -r1 --template '{date|hgdate}\n'
1300338785 0
$ hg log -r1 --template '{date|isodate}\n'
2011-03-17 05:13 +0000
$ hg log -r1 --template '{date|rfc822date}\n'
Thu, 17 Mar 2011 05:13:05 +0000
$ hg log -r1 --template '{date|shortdate}\n'
2011-03-17
$ hg log -r1 --template '{desc}\n' | cut -c-76
added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some m
$ hg log -r1 --template '{desc|addbreaks}\n' | cut -c-76
added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some m
$ hg log -r1 --template '{desc|escape}\n' | cut -c-76
added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some m
$ hg log -r1 --template '{desc|fill68}\n'
added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope
that some might consider it so) of goodbye.
$ hg log -r1 --template '{desc|fill76}\n'
added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some
might consider it so) of goodbye.
$ hg log -r1 --template '{desc|firstline}\n'
added line to end of <<hello>> file.
$ hg log -r1 --template '{desc|strip}\n' | cut -c-76
added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some m
$ hg log -r1 --template '{desc|tabindent}\n' | expand | cut -c-76
added line to end of <<hello>> file.

 in addition, added a file with the helpful name (at least i hope tha
$ hg log -r1 --template '{node}\n'
01203f832f89b80d847295961a03613f759e62bf
$ hg log -r1 --template '{node|short}\n'
01203f832f89

Note
 If you try to apply a filter to a piece of data that it cannot process,
Mercurial will fail and print a Python exception. For example, trying to
run the output of the desc
keyword into the isodate
filter is not a good idea.

组合过滤器

It is easy to combine filters to yield output in the form you would like.
The following chain of filters tidies up a description, then makes sure that
it fits cleanly into 68 columns, then indents it by a further 8 characters
(at least on Unix-like systems, where a tab is conventionally 8 characters
wide).
$ hg log -r1 --template 'description:\n\t{desc|strip|fill68|tabindent}\n'
description:
	added line to end of <<hello>> file.

	in addition, added a file with the helpful name (at least i hope
	that some might consider it so) of goodbye.

Note the use of “\t” (a tab character) in
the template to force the first line to be indented; this is necessary since
tabindent indents all lines
except the first.
Keep in mind that the order of filters in a chain is significant. The first
filter is applied to the result of the keyword; the second to the result of
the first filter; and so on. For example, using
fill68|tabindent gives very different results from
tabindent|fill68.

从模版到样式

A command line template provides a quick and simple way to format some
output. Templates can become verbose, though, and it's useful to be able to
give a template a name. A style file is a template with a name, stored in a
file.
More than that, using a style file unlocks the power of Mercurial's
templating engine in ways that are not possible using the command line
--template option.
最简单的样式文件

Our simple style file contains just one line:
$ echo 'changeset = "rev: {rev}\n"' > rev
$ hg log -l1 --style ./rev
rev: 3

This tells Mercurial, “if you're printing a changeset, use the text on
the right as the template”.

样式文件语法

The syntax rules for a style file are simple.
	The file is processed one line at a time.

	Leading and trailing white space are ignored.

	Empty lines are skipped.

	If a line starts with either of the characters
“#” or “;”,
the entire line is treated as a comment, and skipped as if empty.

	A line starts with a keyword. This must start with an alphabetic character
or underscore, and can subsequently contain any alphanumeric character or
underscore. (In regexp notation, a keyword must match
[A-Za-z_][A-Za-z0-9_]*.)

	The next element must be an “=” character,
which can be preceded or followed by an arbitrary amount of white space.

	If the rest of the line starts and ends with matching quote characters
(either single or double quote), it is treated as a template body.

	If the rest of the line does not start with a quote
character, it is treated as the name of a file; the contents of this file
will be read and used as a template body.

样式文件例子

To illustrate how to write a style file, we will construct a few by
example. Rather than provide a complete style file and walk through it,
we'll mirror the usual process of developing a style file by starting with
something very simple, and walking through a series of successively more
complete examples.
在样式文件中定位错误

If Mercurial encounters a problem in a style file you are working on, it
prints a terse error message that, once you figure out what it means, is
actually quite useful.
$ cat broken.style
changeset =

Notice that broken.style attempts to define a
changeset keyword, but forgets to give any content for
it. When instructed to use this style file, Mercurial promptly complains.
$ hg log -r1 --style broken.style
** unknown exception encountered, details follow
** report bug details to http://mercurial.selenic.com/bts/
** or mercurial@selenic.com
** Python 2.6.6 (r266:84292, Dec 27 2010, 00:02:40) [GCC 4.4.5]
** Mercurial Distributed SCM (version 1.6.4)
** Extensions loaded:
Traceback (most recent call last):
 File "/usr/bin/hg", line 27, in <module>
 mercurial.dispatch.run()
 File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 16, in run
 sys.exit(dispatch(sys.argv[1:]))
 File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 34, in dispatch
 return _runcatch(u, args)
 File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 54, in _runcatch
 return _dispatch(ui, args)
 File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 494, in _dispatch
 cmdpats, cmdoptions)
 File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 355, in runcommand
 ret = _runcommand(ui, options, cmd, d)
 File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 545, in _runcommand
 return checkargs()
 File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 499, in checkargs
 return cmdfunc()
 File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 492, in <lambda>
 d = lambda: util.checksignature(func)(ui, *args, **cmdoptions)
 File "/usr/lib/pymodules/python2.6/mercurial/util.py", line 420, in check
 return func(*args, **kwargs)
 File "/usr/lib/pymodules/python2.6/mercurial/commands.py", line 2501, in log
 displayer = cmdutil.show_changeset(ui, repo, opts, True)
 File "/usr/lib/pymodules/python2.6/mercurial/cmdutil.py", line 981, in show_changeset
 t = changeset_templater(ui, repo, patch, opts, mapfile, buffered)
 File "/usr/lib/pymodules/python2.6/mercurial/cmdutil.py", line 850, in __init__
 cache=defaulttempl)
 File "/usr/lib/pymodules/python2.6/mercurial/templater.py", line 194, in __init__
 if val[0] in "'\"":
IndexError: string index out of range

This error message looks intimidating, but it is not too hard to follow.
	The first component is simply Mercurial's way of saying “I am giving
up”.
___abort___: broken.style:1: parse error

	Next comes the name of the style file that contains the error.
abort: ___broken.style___:1: parse error

	Following the file name is the line number where the error was encountered.
abort: broken.style:___1___: parse error

	Finally, a description of what went wrong.
abort: broken.style:1: ___parse error___

	The description of the problem is not always clear (as in this case), but
even when it is cryptic, it is almost always trivial to visually inspect the
offending line in the style file and see what is wrong.

版本库的唯一标识

If you would like to be able to identify a Mercurial repository
“fairly uniquely” using a short string as an identifier, you
can use the first revision in the repository.
$ hg log -r0 --template '{node}'
f61f76dffc17617d58ec1c5d9dff5f5a0d3ccc40
This is likely to be unique, and so it is useful in many cases. There are a
few caveats.
	It will not work in a completely empty repository, because such a repository
does not have a revision zero.

	Neither will it work in the (extremely rare) case where a repository is a
merge of two or more formerly independent repositories, and you still have
those repositories around.

Here are some uses to which you could put this identifier:
	As a key into a table for a database that manages repositories on a server.

	As half of a {repository ID, revision
ID} tuple. Save this information away when you run an automated
build or other activity, so that you can “replay” the build
later if necessary.

每行列出一个文件

Suppose we want to list the files changed by a changeset, one per line, with
a little indentation before each file name.
$ cat > multiline << EOF
> changeset = "Changed in {node|short}:\n{files}"
> file = " {file}\n"
> EOF
$ hg log --style multiline
Changed in 202ea4ba30b2:
 .bashrc
 .hgrc
 test.c

模仿 Subversion 的输出

Let's try to emulate the default output format used by another revision
control tool, Subversion.
$ svn log -r9653
--
r9653 | sean.hefty | 2006-09-27 14:39:55 -0700 (Wed, 27 Sep 2006) | 5 lines

On reporting a route error, also include the status for the error,
rather than indicating a status of 0 when an error has occurred.

Signed-off-by: Sean Hefty <sean.hefty@intel.com>

--

Since Subversion's output style is fairly simple, it is easy to
copy-and-paste a hunk of its output into a file, and replace the text
produced above by Subversion with the template values we'd like to see
expanded.
$ cat svn.template
r{rev} | {author|user} | {date|isodate} ({date|rfc822date})

{desc|strip|fill76}

--

There are a few small ways in which this template deviates from the output
produced by Subversion.
	Subversion prints a “readable” date (the “Wed,
27 Sep 2006” in the example output above) in parentheses.
Mercurial's templating engine does not provide a way to display a date in
this format without also printing the time and time zone.

	We emulate Subversion's printing of “separator” lines full of
“-” characters by ending the template with
such a line. We use the templating engine's header keyword to print a separator line
as the first line of output (see below), thus achieving similar output to
Subversion.

	Subversion's output includes a count in the header of the number of lines in
the commit message. We cannot replicate this in Mercurial; the templating
engine does not currently provide a filter that counts the number of lines
the template generates.

It took me no more than a minute or two of work to replace literal text from
an example of Subversion's output with some keywords and filters to give the
template above. The style file simply refers to the template.
$ cat svn.style
header = '--\n\n'
changeset = svn.template

We could have included the text of the template file directly in the style
file by enclosing it in quotes and replacing the newlines with
“\n” sequences, but it would have made the
style file too difficult to read. Readability is a good guide when you're
trying to decide whether some text belongs in a style file, or in a template
file that the style file points to. If the style file will look too big or
cluttered if you insert a literal piece of text, drop it into a template
instead.

Chapter 12. 使用 MQ 管理修改

补丁的管理问题

Here is a common scenario: you need to install a software package from
source, but you find a bug that you must fix in the source before you can
start using the package. You make your changes, forget about the package
for a while, and a few months later you need to upgrade to a newer version
of the package. If the newer version of the package still has the bug, you
must extract your fix from the older source tree and apply it against the
newer version. This is a tedious task, and it's easy to make mistakes.
This is a simple case of the “patch management” problem. You
have an “upstream” source tree that you can't change; you need
to make some local changes on top of the upstream tree; and you'd like to be
able to keep those changes separate, so that you can apply them to newer
versions of the upstream source.
The patch management problem arises in many situations. Probably the most
visible is that a user of an open source software project will contribute a
bug fix or new feature to the project's maintainers in the form of a patch.
Distributors of operating systems that include open source software often
need to make changes to the packages they distribute so that they will build
properly in their environments.
When you have few changes to maintain, it is easy to manage a single patch
using the standard diff and patch
programs (see the section called “理解补丁” for a discussion of these
tools). Once the number of changes grows, it starts to make sense to
maintain patches as discrete “chunks of work,” so that for
example a single patch will contain only one bug fix (the patch might modify
several files, but it's doing “only one thing”), and you may
have a number of such patches for different bugs you need fixed and local
changes you require. In this situation, if you submit a bug fix patch to
the upstream maintainers of a package and they include your fix in a
subsequent release, you can simply drop that single patch when you're
updating to the newer release.
Maintaining a single patch against an upstream tree is a little tedious and
error-prone, but not difficult. However, the complexity of the problem
grows rapidly as the number of patches you have to maintain increases. With
more than a tiny number of patches in hand, understanding which ones you
have applied and maintaining them moves from messy to overwhelming.
Fortunately, Mercurial includes a powerful extension, Mercurial Queues (or
simply “MQ”), that massively simplifies the patch management
problem.

MQ 的历史

During the late 1990s, several Linux kernel developers started to maintain
“patch series” that modified the behavior of the Linux kernel.
Some of these series were focused on stability, some on feature coverage,
and others were more speculative.
The sizes of these patch series grew rapidly. In 2002, Andrew Morton
published some shell scripts he had been using to automate the task of
managing his patch queues. Andrew was successfully using these scripts to
manage hundreds (sometimes thousands) of patches on top of the Linux kernel.
A patchwork quilt

In early 2003, Andreas Gruenbacher and Martin Quinson borrowed the approach
of Andrew's scripts and published a tool called “patchwork
quilt” [web:quilt], or simply “quilt”
(see [gruenbacher:2005] for a paper describing it).
Because quilt substantially automated patch management, it rapidly gained a
large following among open source software developers.
Quilt manages a stack of patches on top of a directory
tree. To begin, you tell quilt to manage a directory tree, and tell it which
files you want to manage; it stores away the names and contents of those
files. To fix a bug, you create a new patch (using a single command), edit
the files you need to fix, then “refresh” the patch.
The refresh step causes quilt to scan the directory tree; it updates the
patch with all of the changes you have made. You can create another patch
on top of the first, which will track the changes required to modify the
tree from “tree with one patch applied” to “tree with two
patches applied”.
You can change which patches are applied to the tree.
If you “pop” a patch, the changes made by that patch will
vanish from the directory tree. Quilt remembers which patches you have
popped, though, so you can “push” a popped patch again, and the
directory tree will be restored to contain the modifications in the patch.
Most importantly, you can run the “refresh” command at any
time, and the topmost applied patch will be updated. This means that you
can, at any time, change both which patches are applied and what
modifications those patches make.
Quilt knows nothing about revision control tools, so it works equally well
on top of an unpacked tarball or a Subversion working copy.

从 patchwork quilt 到 MQ

In mid-2005, Chris Mason took the features of quilt and wrote an extension
that he called Mercurial Queues, which added quilt-like behavior to
Mercurial.
The key difference between quilt and MQ is that quilt knows nothing about
revision control systems, while MQ is integrated into
Mercurial. Each patch that you push is represented as a Mercurial
changeset. Pop a patch, and the changeset goes away.
Because quilt does not care about revision control tools, it is still a
tremendously useful piece of software to know about for situations where you
cannot use Mercurial and MQ.

MQ 的巨大优势

I cannot overstate the value that MQ offers through the unification of
patches and revision control.
A major reason that patches have persisted in the free software and open
source world—in spite of the availability of increasingly capable
revision control tools over the years—is the
agility they offer.
Traditional revision control tools make a permanent, irreversible record of
everything that you do. While this has great value, it's also somewhat
stifling. If you want to perform a wild-eyed experiment, you have to be
careful in how you go about it, or you risk leaving unneeded—or
worse, misleading or destabilising—traces of your missteps and errors
in the permanent revision record.
By contrast, MQ's marriage of distributed revision control with patches
makes it much easier to isolate your work. Your patches live on top of
normal revision history, and you can make them disappear or reappear at
will. If you don't like a patch, you can drop it. If a patch isn't quite
as you want it to be, simply fix it—as many times as you need to,
until you have refined it into the form you desire.
As an example, the integration of patches with revision control makes
understanding patches and debugging their effects—and their interplay
with the code they're based on—enormously
easier. Since every applied patch has an associated changeset, you can give
hg log a file name to see which changesets
and patches affected the file. You can use the hg
bisect command to binary-search through all changesets and applied
patches to see where a bug got introduced or fixed. You can use the
hg annotate command to see which changeset
or patch modified a particular line of a source file. And so on.

理解补丁

Because MQ doesn't hide its patch-oriented nature, it is helpful to
understand what patches are, and a little about the tools that work with
them.
The traditional Unix diff command compares two files, and
prints a list of differences between them. The patch
command understands these differences as modifications
to make to a file. Take a look below for a simple example of these commands
in action.
$ echo 'this is my original thought' > oldfile
$ echo 'i have changed my mind' > newfile
$ diff -u oldfile newfile > tiny.patch
$ cat tiny.patch
--- oldfile	2011-03-17 05:12:52.000000000 +0000
+++ newfile	2011-03-17 05:12:52.000000000 +0000
@@ -1 +1 @@
-this is my original thought
+i have changed my mind
$ patch < tiny.patch
patching file oldfile
$ cat oldfile
i have changed my mind

The type of file that diff generates (and
patch takes as input) is called a “patch” or
a “diff”; there is no difference between a patch and a diff.
(We'll use the term “patch”, since it's more commonly used.)
A patch file can start with arbitrary text; the patch
command ignores this text, but MQ uses it as the commit message when
creating changesets. To find the beginning of the patch content,
patch searches for the first line that starts with the
string “diff -”.
MQ works with unified diffs (patch
can accept several other diff formats, but MQ doesn't). A unified diff
contains two kinds of header. The file header
describes the file being modified; it contains the name of the file to
modify. When patch sees a new file header, it looks for
a file with that name to start modifying.
After the file header comes a series of hunks. Each
hunk starts with a header; this identifies the range of line numbers within
the file that the hunk should modify. Following the header, a hunk starts
and ends with a few (usually three) lines of text from the unmodified file;
these are called the context for the hunk. If there's
only a small amount of context between successive hunks,
diff doesn't print a new hunk header; it just runs the
hunks together, with a few lines of context between modifications.
Each line of context begins with a space character. Within the hunk, a line
that begins with “-” means “remove
this line,” while a line that begins with
“+” means “insert this line.”
For example, a line that is modified is represented by one deletion and one
insertion.
We will return to some of the more subtle aspects of patches later (in the section called “关于补丁的更多信息”), but you should have enough information now to
use MQ.

开始使用 MQ

Because MQ is implemented as an extension, you must explicitly enable before
you can use it. (You don't need to download anything; MQ ships with the
standard Mercurial distribution.) To enable MQ, edit your ~/.hgrc file, and add the lines below.
[extensions]
hgext.mq =
Once the extension is enabled, it will make a number of new commands
available. To verify that the extension is working, you can use hg help to see if the qinit command is now available.
$ hg help qinit
hg qinit [-c]

init a new queue repository (DEPRECATED)

 The queue repository is unversioned by default. If -c/--create-repo is
 specified, qinit will create a separate nested repository for patches
 (qinit -c may also be run later to convert an unversioned patch repository
 into a versioned one). You can use qcommit to commit changes to this queue
 repository.

 This command is deprecated. Without -c, it's implied by other relevant
 commands. With -c, use "hg init --mq" instead.

options:

 -c --create-repo create queue repository

use "hg -v help qinit" to show global options

You can use MQ with any Mercurial repository, and its
commands only operate within that repository. To get started, simply
prepare the repository using the qinit
command.
$ hg init mq-sandbox
$ cd mq-sandbox
$ echo 'line 1' > file1
$ echo 'another line 1' > file2
$ hg add file1 file2
$ hg commit -m'first change'
$ hg qinit

This command creates an empty directory called .hg/patches, where MQ will keep its metadata.
As with many Mercurial commands, the qinit command prints nothing if it succeeds.
创建新补丁

To begin work on a new patch, use the qnew command. This command takes one argument,
the name of the patch to create.
MQ will use this as the name of an actual file in the .hg/patches directory, as you
can see below.
$ hg tip
changeset: 0:3657df7bc7e5
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:58 2011 +0000
summary: first change

$ hg qnew first.patch
$ hg tip
changeset: 1:ae2b409d2586
tag: first.patch
tag: qbase
tag: qtip
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:58 2011 +0000
summary: [mq]: first.patch

$ ls .hg/patches
first.patch series status

Also newly present in the .hg/patches directory are two other files,
series and status. The series file lists all of the patches that MQ knows
about for this repository, with one patch per line. Mercurial uses the
status file for internal book-keeping;
it tracks all of the patches that MQ has applied in
this repository.
Note
 You may sometimes want to edit the series file by hand; for example, to change the
sequence in which some patches are applied. However, manually editing the
status file is almost always a bad idea,
as it's easy to corrupt MQ's idea of what is happening.

Once you have created your new patch, you can edit files in the working
directory as you usually would. All of the normal Mercurial commands, such
as hg diff and hg
annotate, work exactly as they did before.

刷新补丁

When you reach a point where you want to save your work, use the qrefresh command to update the patch you are
working on.
$ echo 'line 2' >> file1
$ hg diff
diff -r ae2b409d2586 file1
--- a/file1	Thu Mar 17 05:12:58 2011 +0000
+++ b/file1	Thu Mar 17 05:12:59 2011 +0000
@@ -1,1 +1,2 @@
 line 1
+line 2
$ hg qrefresh
$ hg diff
$ hg tip --style=compact --patch
1[first.patch,qbase,qtip,tip] 6e893d555d1f 2011-03-17 05:12 +0000 bos
 [mq]: first.patch

diff -r 3657df7bc7e5 -r 6e893d555d1f file1
--- a/file1	Thu Mar 17 05:12:58 2011 +0000
+++ b/file1	Thu Mar 17 05:12:59 2011 +0000
@@ -1,1 +1,2 @@
 line 1
+line 2

This command folds the changes you have made in the working directory into
your patch, and updates its corresponding changeset to contain those
changes.
You can run qrefresh as often as you
like, so it's a good way to “checkpoint” your work. Refresh
your patch at an opportune time; try an experiment; and if the experiment
doesn't work out, hg revert your
modifications back to the last time you refreshed.
$ echo 'line 3' >> file1
$ hg status
M file1
$ hg qrefresh
$ hg tip --style=compact --patch
1[first.patch,qbase,qtip,tip] 2c186f31d71c 2011-03-17 05:12 +0000 bos
 [mq]: first.patch

diff -r 3657df7bc7e5 -r 2c186f31d71c file1
--- a/file1	Thu Mar 17 05:12:58 2011 +0000
+++ b/file1	Thu Mar 17 05:12:59 2011 +0000
@@ -1,1 +1,3 @@
 line 1
+line 2
+line 3

堆叠和跟踪补丁

Once you have finished working on a patch, or need to work on another, you
can use the qnew command again to create
a new patch. Mercurial will apply this patch on top of your existing patch.
$ hg qnew second.patch
$ hg log --style=compact --limit=2
2[qtip,second.patch,tip] 42dc515d9ae7 2011-03-17 05:12 +0000 bos
 [mq]: second.patch

1[first.patch,qbase] 2c186f31d71c 2011-03-17 05:12 +0000 bos
 [mq]: first.patch

$ echo 'line 4' >> file1
$ hg qrefresh
$ hg tip --style=compact --patch
2[qtip,second.patch,tip] 7ad13de51101 2011-03-17 05:13 +0000 bos
 [mq]: second.patch

diff -r 2c186f31d71c -r 7ad13de51101 file1
--- a/file1	Thu Mar 17 05:12:59 2011 +0000
+++ b/file1	Thu Mar 17 05:13:00 2011 +0000
@@ -1,3 +1,4 @@
 line 1
 line 2
 line 3
+line 4

$ hg annotate file1
0: line 1
1: line 2
1: line 3
2: line 4

Notice that the patch contains the changes in our prior patch as part of its
context (you can see this more clearly in the output of hg annotate).
So far, with the exception of qnew and
qrefresh, we've been careful to only use
regular Mercurial commands. However, MQ provides many commands that are
easier to use when you are thinking about patches, as illustrated below.
$ hg qseries
first.patch
second.patch
$ hg qapplied
first.patch
second.patch

	The qseries command lists every patch
that MQ knows about in this repository, from oldest to newest (most recently
created).

	The qapplied command lists every patch
that MQ has applied in this repository, again from
oldest to newest (most recently applied).

操作补丁堆栈

The previous discussion implied that there must be a difference between
“known” and “applied” patches, and there is. MQ
can manage a patch without it being applied in the repository.
An applied patch has a corresponding changeset in the
repository, and the effects of the patch and changeset are visible in the
working directory. You can undo the application of a patch using the
qpop command. MQ still knows
about, or manages, a popped patch, but the patch no longer has a
corresponding changeset in the repository, and the working directory does
not contain the changes made by the patch. Figure 12.1, “在 MQ 补丁堆栈中应用和撤销补丁”
illustrates the difference between applied and tracked patches.
Figure 12.1. 在 MQ 补丁堆栈中应用和撤销补丁
[image: XXX add text]

You can reapply an unapplied, or popped, patch using the qpush command. This creates a new changeset to
correspond to the patch, and the patch's changes once again become present
in the working directory. See below for examples of qpop and qpush in action.
$ hg qapplied
first.patch
second.patch
$ hg qpop
popping second.patch
now at: first.patch
$ hg qseries
first.patch
second.patch
$ hg qapplied
first.patch
$ cat file1
line 1
line 2
line 3

Notice that once we have popped a patch or two patches, the output of
qseries remains the same, while that of
qapplied has changed.

压入或弹出多个补丁

While qpush and qpop each operate on a single patch at a time by
default, you can push and pop many patches in one go. The -a option to qpush causes it to push all unapplied patches,
while the -a option to
qpop causes it to pop all applied
patches. (For some more ways to push and pop many patches, see the section called “MQ 的性能” below.)
$ hg qpush -a
applying second.patch
now at: second.patch
$ cat file1
line 1
line 2
line 3
line 4

安全的检查，然后覆盖它们

Several MQ commands check the working directory before they do anything, and
fail if they find any modifications. They do this to ensure that you won't
lose any changes that you have made, but not yet incorporated into a patch.
The example below illustrates this; the qnew command will not create a new patch if there
are outstanding changes, caused in this case by the hg add of file3.
$ echo 'file 3, line 1' >> file3
$ hg qnew add-file3.patch
$ hg qnew -f add-file3.patch
abort: patch "add-file3.patch" already exists

Commands that check the working directory all take an “I know what I'm
doing” option, which is always named -f. The exact
meaning of -f depends on the command. For example,
hg qnew -f will incorporate any
outstanding changes into the new patch it creates, but hg qpop -f will revert
modifications to any files affected by the patch that it is popping. Be
sure to read the documentation for a command's -f option
before you use it!

同时处理多个补丁

The qrefresh command always refreshes
the topmost applied patch. This means that you can
suspend work on one patch (by refreshing it), pop or push to make a
different patch the top, and work on that patch for a
while.
Here's an example that illustrates how you can use this ability. Let's say
you're developing a new feature as two patches. The first is a change to
the core of your software, and the second—layered on top of the
first—changes the user interface to use the code you just added to
the core. If you notice a bug in the core while you're working on the UI
patch, it's easy to fix the core. Simply qrefresh the UI patch to save your in-progress
changes, and qpop down to the core
patch. Fix the core bug, qrefresh the
core patch, and qpush back to the UI
patch to continue where you left off.

关于补丁的更多信息

MQ uses the GNU patch command to apply patches, so it's
helpful to know a few more detailed aspects of how patch
works, and about patches themselves.
修剪计数

If you look at the file headers in a patch, you will notice that the
pathnames usually have an extra component on the front that isn't present in
the actual path name. This is a holdover from the way that people used to
generate patches (people still do this, but it's somewhat rare with modern
revision control tools).
Alice would unpack a tarball, edit her files, then decide that she wanted to
create a patch. So she'd rename her working directory, unpack the tarball
again (hence the need for the rename), and use the -r and -N
options to diff to recursively generate a patch between
the unmodified directory and the modified one. The result would be that the
name of the unmodified directory would be at the front of the left-hand path
in every file header, and the name of the modified directory would be at the
front of the right-hand path.
Since someone receiving a patch from the Alices of the net would be unlikely
to have unmodified and modified directories with exactly the same names, the
patch command has a -p option that indicates the number of leading
path name components to strip when trying to apply a patch. This number is
called the strip count.
An option of “-p1” means “use a strip
count of one”. If patch sees a file name
foo/bar/baz in a file header, it will strip
foo and try to patch a file named
bar/baz. (Strictly speaking, the strip count refers to
the number of path separators (and the components that
go with them) to strip. A strip count of one will turn
foo/bar into bar, but
/foo/bar (notice the extra leading slash) into
foo/bar.)
The “standard” strip count for patches is one; almost all
patches contain one leading path name component that needs to be
stripped. Mercurial's hg diff command
generates path names in this form, and the hg
import command and MQ expect patches to have a strip count of one.
If you receive a patch from someone that you want to add to your patch
queue, and the patch needs a strip count other than one, you cannot just
qimport the patch, because qimport does not yet have a -p
option (see issue 311).
Your best bet is to qnew a patch of your
own, then use patch -pN to apply their patch, followed by
hg addremove to pick up any files added or
removed by the patch, followed by hg
qrefresh. This complexity may become unnecessary; see issue
311 for details.

应用补丁的策略

When patch applies a hunk, it tries a handful of
successively less accurate strategies to try to make the hunk apply. This
falling-back technique often makes it possible to take a patch that was
generated against an old version of a file, and apply it against a newer
version of that file.
First, patch tries an exact match, where the line
numbers, the context, and the text to be modified must apply exactly. If it
cannot make an exact match, it tries to find an exact match for the context,
without honouring the line numbering information. If this succeeds, it
prints a line of output saying that the hunk was applied, but at some
offset from the original line number.
If a context-only match fails, patch removes the first
and last lines of the context, and tries a reduced
context-only match. If the hunk with reduced context succeeds, it prints a
message saying that it applied the hunk with a fuzz
factor (the number after the fuzz factor indicates how many lines
of context patch had to trim before the patch applied).
When neither of these techniques works, patch prints a
message saying that the hunk in question was rejected. It saves rejected
hunks (also simply called “rejects”) to a file with the same
name, and an added .rej extension. It
also saves an unmodified copy of the file with a .orig extension; the copy of the file without any
extensions will contain any changes made by hunks that
did apply cleanly. If you have a patch that modifies
foo with six hunks, and one of them fails to apply, you
will have: an unmodified foo.orig, a
foo.rej containing one hunk, and
foo, containing the changes made by the five successful
hunks.

补丁的一些特性

There are a few useful things to know about how patch
works with files.
	This should already be obvious, but patch cannot handle
binary files.

	Neither does it care about the executable bit; it creates new files as
readable, but not executable.

	patch treats the removal of a file as a diff between the
file to be removed and the empty file. So your idea of “I deleted
this file” looks like “every line of this file was
deleted” in a patch.

	It treats the addition of a file as a diff between the empty file and the
file to be added. So in a patch, your idea of “I added this
file” looks like “every line of this file was added”.

	It treats a renamed file as the removal of the old name, and the addition of
the new name. This means that renamed files have a big footprint in
patches. (Note also that Mercurial does not currently try to infer when
files have been renamed or copied in a patch.)

	patch cannot represent empty files, so you cannot use a
patch to represent the notion “I added this empty file to the
tree”.

当心毛刺

While applying a hunk at an offset, or with a fuzz factor, will often be
completely successful, these inexact techniques naturally leave open the
possibility of corrupting the patched file. The most common cases typically
involve applying a patch twice, or at an incorrect location in the file. If
patch or qpush ever
mentions an offset or fuzz factor, you should make sure that the modified
files are correct afterwards.
It's often a good idea to refresh a patch that has applied with an offset or
fuzz factor; refreshing the patch generates new context information that
will make it apply cleanly. I say “often,” not
“always,” because sometimes refreshing a patch will make it
fail to apply against a different revision of the underlying files. In some
cases, such as when you're maintaining a patch that must sit on top of
multiple versions of a source tree, it's acceptable to have a patch apply
with some fuzz, provided you've verified the results of the patching process
in such cases.

处理拒绝

If qpush fails to apply a patch, it will
print an error message and exit. If it has left .rej files behind, it is usually best to fix up
the rejected hunks before you push more patches or do any further work.
If your patch used to apply cleanly, and no longer does
because you've changed the underlying code that your patches are based on,
Mercurial Queues can help; see the section called “当基础代码改变时，更新补丁的方法” for details.
Unfortunately, there aren't any great techniques for dealing with rejected
hunks. Most often, you'll need to view the .rej file and edit the target file, applying the
rejected hunks by hand.
A Linux kernel hacker, Chris Mason (the author of Mercurial Queues), wrote a
tool called mpatch (http://oss.oracle.com/~mason/mpatch/),
which takes a simple approach to automating the application of hunks
rejected by patch. The mpatch command
can help with four common reasons that a hunk may be rejected:
	The context in the middle of a hunk has changed.

	A hunk is missing some context at the beginning or end.

	A large hunk might apply better—either entirely or in part—if
it was broken up into smaller hunks.

	A hunk removes lines with slightly different content than those currently
present in the file.

If you use mpatch, you should be doubly careful to check
your results when you're done. In fact, mpatch enforces
this method of double-checking the tool's output, by automatically dropping
you into a merge program when it has done its job, so that you can verify
its work and finish off any remaining merges.

补丁管理进阶

As you grow familiar with MQ, you will find yourself wanting to perform
other kinds of patch management operations.
删除不需要的补丁

If you want to get rid of a patch, use the hg
qdelete command to delete the patch file and remove its entry from
the patch series. If you try to delete a patch that is still applied,
hg qdelete will refuse.
$ hg init myrepo
$ cd myrepo
$ hg qinit
$ hg qnew bad.patch
$ echo a > a
$ hg add a
$ hg qrefresh
$ hg qdelete bad.patch
abort: cannot delete applied patch bad.patch
$ hg qpop
popping bad.patch
patch queue now empty
$ hg qdelete bad.patch

与持久版本的相互转换

Once you're done working on a patch and want to turn it into a permanent
changeset, use the hg qfinish
command. Pass a revision to the command to identify the patch that you want
to turn into a regular changeset; this patch must already be applied.
$ hg qnew good.patch
$ echo a > a
$ hg add a
$ hg qrefresh -m 'Good change'
$ hg qfinish tip
$ hg qapplied
$ hg tip --style=compact
0[tip] b5bc40f0c0ec 2011-03-17 05:12 +0000 bos
 Good change

The hg qfinish command accepts an
--all or -a option, which turns all
applied patches into regular changesets.
It is also possible to turn an existing changeset into a patch, by passing
the -r option to hg
qimport.
$ hg qimport -r tip
$ hg qapplied
0.diff

Note that it only makes sense to convert a changeset into a patch if you
have not propagated that changeset into any other repositories. The
imported changeset's ID will change every time you refresh the patch, which
will make Mercurial treat it as unrelated to the original changeset if you
have pushed it somewhere else.

MQ 的性能

MQ is very efficient at handling a large number of patches. I ran some
performance experiments in mid-2006 for a talk that I gave at the 2006
EuroPython conference (on modern hardware, you should expect better
performance than you'll see below). I used as my data set the Linux
2.6.17-mm1 patch series, which consists of 1,738 patches. I applied these on
top of a Linux kernel repository containing all 27,472 revisions between
Linux 2.6.12-rc2 and Linux 2.6.17.
On my old, slow laptop, I was able to hg qpush
-a all 1,738
patches in 3.5 minutes, and hg qpop -a them all in 30 seconds.
(On a newer laptop, the time to push all patches dropped to two minutes.) I
could qrefresh one of the biggest
patches (which made 22,779 lines of changes to 287 files) in 6.6 seconds.
Clearly, MQ is well suited to working in large trees, but there are a few
tricks you can use to get the best performance of it.
First of all, try to “batch” operations together. Every time
you run qpush or qpop, these commands scan the working directory
once to make sure you haven't made some changes and then forgotten to run
qrefresh. On a small tree, the time
that this scan takes is unnoticeable. However, on a medium-sized tree
(containing tens of thousands of files), it can take a second or more.
The qpush and qpop commands allow you to push and pop multiple
patches at a time. You can identify the “destination patch”
that you want to end up at. When you qpush with a destination specified, it will push
patches until that patch is at the top of the applied stack. When you
qpop to a destination, MQ will pop
patches until the destination patch is at the top.
You can identify a destination patch using either the name of the patch, or
by number. If you use numeric addressing, patches are counted from zero;
this means that the first patch is zero, the second is one, and so on.

当基础代码改变时，更新补丁的方法

It's common to have a stack of patches on top of an underlying repository
that you don't modify directly. If you're working on changes to third-party
code, or on a feature that is taking longer to develop than the rate of
change of the code beneath, you will often need to sync up with the
underlying code, and fix up any hunks in your patches that no longer apply.
This is called rebasing your patch series.
The simplest way to do this is to hg qpop hg -a your patches, then
hg pull changes into the underlying
repository, and finally hg qpush -a your patches again. MQ
will stop pushing any time it runs across a patch that fails to apply during
conflicts, allowing you to fix your conflicts, qrefresh the affected patch, and continue pushing
until you have fixed your entire stack.
This approach is easy to use and works well if you don't expect changes to
the underlying code to affect how well your patches apply. If your patch
stack touches code that is modified frequently or invasively in the
underlying repository, however, fixing up rejected hunks by hand quickly
becomes tiresome.
It's possible to partially automate the rebasing process. If your patches
apply cleanly against some revision of the underlying repo, MQ can use this
information to help you to resolve conflicts between your patches and a
different revision.
The process is a little involved.
	To begin, hg qpush -a all of your patches
on top of the revision where you know that they apply cleanly.

	Save a backup copy of your patch directory using hg
qsave hg -e hg -c. This prints the
name of the directory that it has saved the patches in. It will save the
patches to a directory called .hg/patches.N, where N is a
small integer. It also commits a “save changeset” on top of
your applied patches; this is for internal book-keeping, and records the
states of the series and status files.

	Use hg pull to bring new changes into the
underlying repository. (Don't run hg pull
-u; see below for why.)

	Update to the new tip revision, using hg update
-C to override the patches
you have pushed.

	Merge all patches using hg qpush -m -a. The -m option to qpush tells MQ to perform a three-way merge if
the patch fails to apply.

During the hg qpush hg -m, each patch in the
series file is applied normally. If a
patch applies with fuzz or rejects, MQ looks at the queue you qsaved, and performs a three-way merge with the
corresponding changeset. This merge uses Mercurial's normal merge
machinery, so it may pop up a GUI merge tool to help you to resolve
problems.
When you finish resolving the effects of a patch, MQ refreshes your patch
based on the result of the merge.
At the end of this process, your repository will have one extra head from
the old patch queue, and a copy of the old patch queue will be in .hg/patches.N. You can remove
the extra head using hg qpop -a -n
patches.N or hg strip. You can
delete .hg/patches.N
once you are sure that you no longer need it as a backup.

标识补丁

MQ commands that work with patches let you refer to a patch either by using
its name or by a number. By name is obvious enough; pass the name
foo.patch to qpush,
for example, and it will push patches until foo.patch
is applied.
As a shortcut, you can refer to a patch using both a name and a numeric
offset; foo.patch-2 means “two patches before
foo.patch”, while bar.patch+4
means “four patches after bar.patch”.
Referring to a patch by index isn't much different. The first patch printed
in the output of qseries is patch zero
(yes, it's one of those start-at-zero counting systems); the second is patch
one; and so on.
MQ also makes it easy to work with patches when you are using normal
Mercurial commands. Every command that accepts a changeset ID will also
accept the name of an applied patch. MQ augments the tags normally in the
repository with an eponymous one for each applied patch. In addition, the
special tags qbase and qtip identify the “bottom-most” and
topmost applied patches, respectively.
These additions to Mercurial's normal tagging capabilities make dealing with
patches even more of a breeze.
	Want to patchbomb a mailing list with your latest series of changes?
hg email qbase:qtip
 (Don't know what “patchbombing” is? See the section called “使用扩展 patchbomb 通过 email 发送修改”.)

	Need to see all of the patches since foo.patch that have
touched files in a subdirectory of your tree?
hg log -r foo.patch:qtip subdir

Because MQ makes the names of patches available to the rest of Mercurial
through its normal internal tag machinery, you don't need to type in the
entire name of a patch when you want to identify it by name.
Another nice consequence of representing patch names as tags is that when
you run the hg log command, it will display
a patch's name as a tag, simply as part of its normal output. This makes it
easy to visually distinguish applied patches from underlying
“normal” revisions. The following example shows a few normal
Mercurial commands in use with applied patches.
$ hg qapplied
first.patch
second.patch
$ hg log -r qbase:qtip
changeset: 1:9c187a1fdfdf
tag: first.patch
tag: qbase
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:55 2011 +0000
summary: [mq]: first.patch

changeset: 2:c1e651d48c6c
tag: qtip
tag: second.patch
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:55 2011 +0000
summary: [mq]: second.patch

$ hg export second.patch
HG changeset patch
User Bryan O'Sullivan <bos@serpentine.com>
Date 1300338775 0
Node ID c1e651d48c6c623d191be2bac19e50b8dbd8fda8
Parent 9c187a1fdfdf19a9abda6864e1640f1977c22a89
[mq]: second.patch

diff -r 9c187a1fdfdf -r c1e651d48c6c other.c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/other.c	Thu Mar 17 05:12:55 2011 +0000
@@ -0,0 +1,1 @@
+double u;

其它需要了解的东西

There are a number of aspects of MQ usage that don't fit tidily into
sections of their own, but that are good to know. Here they are, in one
place.
	Normally, when you qpop a patch and
qpush it again, the changeset that
represents the patch after the pop/push will have a different
identity than the changeset that represented the hash
beforehand. See the section called “qpush—增加补丁到堆栈” for information as to
why this is.

	It's not a good idea to hg merge changes
from another branch with a patch changeset, at least if you want to maintain
the “patchiness” of that changeset and changesets below it on
the patch stack. If you try to do this, it will appear to succeed, but MQ
will become confused.

在版本库管理补丁

Because MQ's .hg/patches directory resides outside a
Mercurial repository's working directory, the “underlying”
Mercurial repository knows nothing about the management or presence of
patches.
This presents the interesting possibility of managing the contents of the
patch directory as a Mercurial repository in its own right. This can be a
useful way to work. For example, you can work on a patch for a while,
qrefresh it, then hg commit the current state of the patch. This lets
you “roll back” to that version of the patch later on.
You can then share different versions of the same patch stack among multiple
underlying repositories. I use this when I am developing a Linux kernel
feature. I have a pristine copy of my kernel sources for each of several
CPU architectures, and a cloned repository under each that contains the
patches I am working on. When I want to test a change on a different
architecture, I push my current patches to the patch repository associated
with that kernel tree, pop and push all of my patches, and build and test
that kernel.
Managing patches in a repository makes it possible for multiple developers
to work on the same patch series without colliding with each other, all on
top of an underlying source base that they may or may not control.
MQ 支持补丁版本库

MQ helps you to work with the .hg/patches directory as a repository; when you
prepare a repository for working with patches using qinit, you can pass the hg -c option to create the .hg/patches directory as a
Mercurial repository.
Note
 If you forget to use the hg
-c option, you can simply go into the .hg/patches directory at any time and run
hg init. Don't forget to add an entry for
the status file to the .hgignore file, though
 (hg qinit hg
-c does this for you automatically); you
really don't want to manage the status file.

As a convenience, if MQ notices that the .hg/patches directory is a repository, it will
automatically hg add every patch that you
create and import.
MQ provides a shortcut command, qcommit,
that runs hg commit in the .hg/patches directory. This
saves some bothersome typing.
Finally, as a convenience to manage the patch directory, you can define the
alias mq on Unix systems. For example, on Linux systems
using the bash shell, you can include the following
snippet in your ~/.bashrc.
alias mq=`hg -R $(hg root)/.hg/patches'
You can then issue commands of the form mq pull from the
main repository.

需要注意的事情

MQ's support for working with a repository full of patches is limited in a
few small respects.
MQ cannot automatically detect changes that you make to the patch
directory. If you hg pull, manually edit,
or hg update changes to patches or the
series file, you will have to hg qpop -a and then hg qpush -a in the underlying
repository to see those changes show up there. If you forget to do this,
you can confuse MQ's idea of which patches are applied.

操作补丁的第三方工具

Once you've been working with patches for a while, you'll find yourself
hungry for tools that will help you to understand and manipulate the patches
you're dealing with.
The diffstat command [web:diffstat]
generates a histogram of the modifications made to each file in a patch. It
provides a good way to “get a sense of” a patch—which
files it affects, and how much change it introduces to each file and as a
whole. (I find that it's a good idea to use diffstat's
-p option as a matter of course, as
otherwise it will try to do clever things with prefixes of file names that
inevitably confuse at least me.)
$ diffstat -p1 remove-redundant-null-checks.patch
 drivers/char/agp/sgi-agp.c | 5 ++---
 drivers/char/hvcs.c | 11 +++++------
 drivers/message/fusion/mptfc.c | 6 ++----
 drivers/message/fusion/mptsas.c | 3 +--
 drivers/net/fs_enet/fs_enet-mii.c | 3 +--
 drivers/net/wireless/ipw2200.c | 22 ++++++----------------
 drivers/scsi/libata-scsi.c | 4 +---
 drivers/video/au1100fb.c | 3 +--
 8 files changed, 19 insertions(+), 38 deletions(-)
$ filterdiff -i '*/video/*' remove-redundant-null-checks.patch
--- a/drivers/video/au1100fb.c~remove-redundant-null-checks-before-free-in-drivers
+++ a/drivers/video/au1100fb.c
@@ -743,8 +743,7 @@ void __exit au1100fb_cleanup(void)
 {
 	driver_unregister(&au1100fb_driver);

-	if (drv_info.opt_mode)
-		kfree(drv_info.opt_mode);
+	kfree(drv_info.opt_mode);
 }

 module_init(au1100fb_init);

The patchutils package
[web:patchutils] is invaluable. It provides a set of
small utilities that follow the “Unix philosophy;” each does
one useful thing with a patch. The patchutils command I use most is
filterdiff, which extracts subsets from a patch file.
For example, given a patch that modifies hundreds of files across dozens of
directories, a single invocation of filterdiff can
generate a smaller patch that only touches files whose names match a
particular glob pattern. See the section called “察看补丁的历史” for
another example.

操作补丁的好习惯

Whether you are working on a patch series to submit to a free software or
open source project, or a series that you intend to treat as a sequence of
regular changesets when you're done, you can use some simple techniques to
keep your work well organized.
Give your patches descriptive names. A good name for a patch might be
rework-device-alloc.patch, because it will immediately
give you a hint what the purpose of the patch is. Long names shouldn't be a
problem; you won't be typing the names often, but you
will be running commands like qapplied and qtop over and over. Good naming becomes
especially important when you have a number of patches to work with, or if
you are juggling a number of different tasks and your patches only get a
fraction of your attention.
Be aware of what patch you're working on. Use the qtop command and skim over the text of your
patches frequently—for example, using hg tip
-p)—to be sure of where
you stand. I have several times worked on and qrefreshed a patch other than the one I intended,
and it's often tricky to migrate changes into the right patch after making
them in the wrong one.
For this reason, it is very much worth investing a little time to learn how
to use some of the third-party tools I described in the section called “操作补丁的第三方工具”, particularly diffstat and
filterdiff. The former will give you a quick idea of
what changes your patch is making, while the latter makes it easy to splice
hunks selectively out of one patch and into another.

MQ 手册

管理“琐碎的”补丁

Because the overhead of dropping files into a new Mercurial repository is so
low, it makes a lot of sense to manage patches this way even if you simply
want to make a few changes to a source tarball that you downloaded.
Begin by downloading and unpacking the source tarball, and turning it into a
Mercurial repository.
$ download netplug-1.2.5.tar.bz2
$ tar jxf netplug-1.2.5.tar.bz2
$ cd netplug-1.2.5
$ hg init
$ hg commit -q --addremove --message netplug-1.2.5
$ cd ..
$ hg clone netplug-1.2.5 netplug
updating to branch default
18 files updated, 0 files merged, 0 files removed, 0 files unresolved

Continue by creating a patch stack and making your changes.
$ cd netplug
$ hg qinit
$ hg qnew -m 'fix build problem with gcc 4' build-fix.patch
$ perl -pi -e 's/int addr_len/socklen_t addr_len/' netlink.c
$ hg qrefresh
$ hg tip -p
changeset: 1:dadf94fc7ca1
tag: build-fix.patch
tag: qbase
tag: qtip
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Thu Mar 17 05:12:57 2011 +0000
summary: fix build problem with gcc 4

diff -r a4244c7386b3 -r dadf94fc7ca1 netlink.c
--- a/netlink.c	Thu Mar 17 05:12:56 2011 +0000
+++ b/netlink.c	Thu Mar 17 05:12:57 2011 +0000
@@ -275,7 +275,7 @@
 exit(1);
 }

- int addr_len = sizeof(addr);
+ socklen_t addr_len = sizeof(addr);

 if (getsockname(fd, (struct sockaddr *) &addr, &addr_len) == -1) {
 do_log(LOG_ERR, "Could not get socket details: %m");

Let's say a few weeks or months pass, and your package author releases a new
version. First, bring their changes into the repository.
$ hg qpop -a
popping build-fix.patch
patch queue now empty
$ cd ..
$ download netplug-1.2.8.tar.bz2
$ hg clone netplug-1.2.5 netplug-1.2.8
updating to branch default
18 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd netplug-1.2.8
$ hg locate -0 | xargs -0 rm
$ cd ..
$ tar jxf netplug-1.2.8.tar.bz2
$ cd netplug-1.2.8
$ hg commit --addremove --message netplug-1.2.8

The pipeline starting with hg locate above
deletes all files in the working directory, so that hg commit's --addremove option can actually tell which
files have really been removed in the newer version of the source.
Finally, you can apply your patches on top of the new tree.
$ cd ../netplug
$ hg pull ../netplug-1.2.8
pulling from ../netplug-1.2.8
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 12 changes to 12 files
(run 'hg update' to get a working copy)
$ hg qpush -a
(working directory not at a head)
applying build-fix.patch
now at: build-fix.patch

组合全部的补丁

MQ provides a command, qfold that lets
you combine entire patches. This “folds” the patches you name,
in the order you name them, into the topmost applied patch, and concatenates
their descriptions onto the end of its description. The patches that you
fold must be unapplied before you fold them.
The order in which you fold patches matters. If your topmost applied patch
is foo, and you qfold
bar and quux into it, you will end up
with a patch that has the same effect as if you applied first
foo, then bar, followed by
quux.

合并补丁的部分内容到其它补丁

Merging part of one patch into another is more
difficult than combining entire patches.
If you want to move changes to entire files, you can use
filterdiff's -i and -x options to choose the modifications to
snip out of one patch, concatenating its output onto the end of the patch
you want to merge into. You usually won't need to modify the patch you've
merged the changes from. Instead, MQ will report some rejected hunks when
you qpush it (from the hunks you moved
into the other patch), and you can simply qrefresh the patch to drop the duplicate hunks.
If you have a patch that has multiple hunks modifying a file, and you only
want to move a few of those hunks, the job becomes more messy, but you can
still partly automate it. Use lsdiff -nvv to print some
metadata about the patch.
$ lsdiff -nvv remove-redundant-null-checks.patch
22	File #1 	a/drivers/char/agp/sgi-agp.c
	24	Hunk #1	static int __devinit agp_sgi_init(void)
37	File #2 	a/drivers/char/hvcs.c
	39	Hunk #1	static struct tty_operations hvcs_ops =
	53	Hunk #2	static int hvcs_alloc_index_list(int n)
69	File #3 	a/drivers/message/fusion/mptfc.c
	71	Hunk #1	mptfc_GetFcDevPage0(MPT_ADAPTER *ioc, in
85	File #4 	a/drivers/message/fusion/mptsas.c
	87	Hunk #1	mptsas_probe_hba_phys(MPT_ADAPTER *ioc)
98	File #5 	a/drivers/net/fs_enet/fs_enet-mii.c
	100	Hunk #1	static struct fs_enet_mii_bus *create_bu
111	File #6 	a/drivers/net/wireless/ipw2200.c
	113	Hunk #1	static struct ipw_fw_error *ipw_alloc_er
	126	Hunk #2	static ssize_t clear_error(struct device
	140	Hunk #3	static void ipw_irq_tasklet(struct ipw_p
	150	Hunk #4	static void ipw_pci_remove(struct pci_de
164	File #7 	a/drivers/scsi/libata-scsi.c
	166	Hunk #1	int ata_cmd_ioctl(struct scsi_device *sc
178	File #8 	a/drivers/video/au1100fb.c
	180	Hunk #1	void __exit au1100fb_cleanup(void)

This command prints three different kinds of number:
	(in the first column) a file number to identify each
file modified in the patch;

	(on the next line, indented) the line number within a modified file where a
hunk starts; and

	(on the same line) a hunk number to identify that hunk.

You'll have to use some visual inspection, and reading of the patch, to
identify the file and hunk numbers you'll want, but you can then pass them
to to filterdiff's --files and --hunks options, to select exactly the
file and hunk you want to extract.
Once you have this hunk, you can concatenate it onto the end of your
destination patch and continue with the remainder of the section called “组合全部的补丁”.

MQ 与 quilt 的区别

If you are already familiar with quilt, MQ provides a similar command set.
There are a few differences in the way that it works.
You will already have noticed that most quilt commands have MQ counterparts
that simply begin with a “q”. The
exceptions are quilt's add and remove
commands, the counterparts for which are the normal Mercurial hg add and hg
remove commands. There is no MQ equivalent of the quilt
edit command.

Chapter 13. MQ 的高级用法

While it's easy to pick up straightforward uses of Mercurial Queues, use of
a little discipline and some of MQ's less frequently used capabilities makes
it possible to work in complicated development environments.
In this chapter, I will use as an example a technique I have used to manage
the development of an Infiniband device driver for the Linux kernel. The
driver in question is large (at least as drivers go), with 25,000 lines of
code spread across 35 source files. It is maintained by a small team of
developers.
While much of the material in this chapter is specific to Linux, the same
principles apply to any code base for which you're not the primary owner,
and upon which you need to do a lot of development.
多个目标的问题

The Linux kernel changes rapidly, and has never been internally stable;
developers frequently make drastic changes between releases. This means that
a version of the driver that works well with a particular released version
of the kernel will not even compile correctly against,
typically, any other version.
To maintain a driver, we have to keep a number of distinct versions of Linux
in mind.
	One target is the main Linux kernel development tree. Maintenance of the
code is in this case partly shared by other developers in the kernel
community, who make “drive-by” modifications to the driver as
they develop and refine kernel subsystems.

	We also maintain a number of “backports” to older versions of
the Linux kernel, to support the needs of customers who are running older
Linux distributions that do not incorporate our drivers. (To
backport a piece of code is to modify it to work in an
older version of its target environment than the version it was developed
for.)

	Finally, we make software releases on a schedule that is necessarily not
aligned with those used by Linux distributors and kernel developers, so that
we can deliver new features to customers without forcing them to upgrade
their entire kernels or distributions.

工作不好的诱人方法

There are two “standard” ways to maintain a piece of software
that has to target many different environments.
The first is to maintain a number of branches, each intended for a single
target. The trouble with this approach is that you must maintain iron
discipline in the flow of changes between repositories. A new feature or bug
fix must start life in a “pristine” repository, then percolate
out to every backport repository. Backport changes are more limited in the
branches they should propagate to; a backport change that is applied to a
branch where it doesn't belong will probably stop the driver from compiling.
The second is to maintain a single source tree filled with conditional
statements that turn chunks of code on or off depending on the intended
target. Because these “ifdefs” are not allowed in the Linux
kernel tree, a manual or automatic process must be followed to strip them
out and yield a clean tree. A code base maintained in this fashion rapidly
becomes a rat's nest of conditional blocks that are difficult to understand
and maintain.
Neither of these approaches is well suited to a situation where you don't
“own” the canonical copy of a source tree. In the case of a
Linux driver that is distributed with the standard kernel, Linus's tree
contains the copy of the code that will be treated by the world as
canonical. The upstream version of “my” driver can be modified
by people I don't know, without me even finding out about it until after the
changes show up in Linus's tree.
These approaches have the added weakness of making it difficult to generate
well-formed patches to submit upstream.
In principle, Mercurial Queues seems like a good candidate to manage a
development scenario such as the above. While this is indeed the case, MQ
contains a few added features that make the job more pleasant.

有条件的应用补丁

Perhaps the best way to maintain sanity with so many targets is to be able
to choose specific patches to apply for a given situation. MQ provides a
feature called “guards” (which originates with quilt's
guards command) that does just this. To start off, let's
create a simple repository for experimenting in.
$ hg qinit
$ hg qnew hello.patch
$ echo hello > hello
$ hg add hello
$ hg qrefresh
$ hg qnew goodbye.patch
$ echo goodbye > goodbye
$ hg add goodbye
$ hg qrefresh

This gives us a tiny repository that contains two patches that don't have
any dependencies on each other, because they touch different files.
The idea behind conditional application is that you can “tag” a
patch with a guard, which is simply a text string of
your choosing, then tell MQ to select specific guards to use when applying
patches. MQ will then either apply, or skip over, a guarded patch,
depending on the guards that you have selected.
A patch can have an arbitrary number of guards; each one is
positive (“apply this patch if this guard is
selected”) or negative (“skip this patch
if this guard is selected”). A patch with no guards is always
applied.

控制补丁的应用条件

The qguard command lets you determine
which guards should apply to a patch, or display the guards that are already
in effect. Without any arguments, it displays the guards on the current
topmost patch.
$ hg qguard
goodbye.patch: unguarded

To set a positive guard on a patch, prefix the name of the guard with a
“+”.
$ hg qguard +foo
$ hg qguard
goodbye.patch: +foo

To set a negative guard on a patch, prefix the name of the guard with a
“-”.
$ hg qguard -- hello.patch -quux
$ hg qguard hello.patch
hello.patch: -quux

Notice that we prefixed the arguments to the hg qguard
command with a -- here, so that Mercurial would not
interpret the text -quux as an option.
Setting vs. modifying
 The qguard command
sets the guards on a patch; it doesn't
modify them. What this means is that if you run
hg qguard +a +b on a patch, then hg qguard +c on the same patch, the
only guard that will be set on it afterwards is
+c.

Mercurial stores guards in the series
file; the form in which they are stored is easy both to understand and to
edit by hand. (In other words, you don't have to use the qguard command if you don't want to; it's okay to
simply edit the series file.)
$ cat .hg/patches/series
hello.patch #-quux
goodbye.patch #+foo

选择使用的条件

The qselect command determines which
guards are active at a given time. The effect of this is to determine which
patches MQ will apply the next time you run qpush. It has no other effect; in particular, it
doesn't do anything to patches that are already applied.
With no arguments, the qselect command
lists the guards currently in effect, one per line of output. Each argument
is treated as the name of a guard to apply.
$ hg qpop -a
popping goodbye.patch
popping hello.patch
patch queue now empty
$ hg qselect
no active guards
$ hg qselect foo
number of unguarded, unapplied patches has changed from 1 to 2
$ hg qselect
foo

In case you're interested, the currently selected guards are stored in the
guards file.
$ cat .hg/patches/guards
foo

We can see the effect the selected guards have when we run qpush.
$ hg qpush -a
applying hello.patch
applying goodbye.patch
now at: goodbye.patch

A guard cannot start with a “+” or
“-” character. The name of a guard must not
contain white space, but most other characters are acceptable. If you try
to use a guard with an invalid name, MQ will complain:
$ hg qselect +foo
abort: guard '+foo' starts with invalid character: '+'

Changing the selected guards changes the patches that are applied.
$ hg qselect quux
number of guarded, applied patches has changed from 0 to 2
$ hg qpop -a
popping goodbye.patch
popping hello.patch
patch queue now empty
$ hg qpush -a
skipping goodbye.patch - guarded by ['+foo']

You can see in the example below that negative guards take precedence over
positive guards.
$ hg qselect foo bar
number of unguarded, unapplied patches has changed from 0 to 2
$ hg qpop -a
no patches applied
$ hg qpush -a
applying hello.patch
applying goodbye.patch
now at: goodbye.patch

MQ 应用补丁的规则

The rules that MQ uses when deciding whether to apply a patch are as
follows.
	A patch that has no guards is always applied.

	If the patch has any negative guard that matches any currently selected
guard, the patch is skipped.

	If the patch has any positive guard that matches any currently selected
guard, the patch is applied.

	If the patch has positive or negative guards, but none matches any currently
selected guard, the patch is skipped.

修剪工作环境

In working on the device driver I mentioned earlier, I don't apply the
patches to a normal Linux kernel tree. Instead, I use a repository that
contains only a snapshot of the source files and headers that are relevant
to Infiniband development. This repository is 1% the size of a kernel
repository, so it's easier to work with.
I then choose a “base” version on top of which the patches are
applied. This is a snapshot of the Linux kernel tree as of a revision of my
choosing. When I take the snapshot, I record the changeset ID from the
kernel repository in the commit message. Since the snapshot preserves the
“shape” and content of the relevant parts of the kernel tree, I
can apply my patches on top of either my tiny repository or a normal kernel
tree.
Normally, the base tree atop which the patches apply should be a snapshot of
a very recent upstream tree. This best facilitates the development of
patches that can easily be submitted upstream with few or no modifications.

分类补丁系列

I categorise the patches in the series
file into a number of logical groups. Each section of like patches begins
with a block of comments that describes the purpose of the patches that
follow.
The sequence of patch groups that I maintain follows. The ordering of these
groups is important; I'll describe why after I introduce the groups.
	The “accepted” group. Patches that the development team has
submitted to the maintainer of the Infiniband subsystem, and which he has
accepted, but which are not present in the snapshot that the tiny repository
is based on. These are “read only” patches, present only to
transform the tree into a similar state as it is in the upstream
maintainer's repository.

	The “rework” group. Patches that I have submitted, but that
the upstream maintainer has requested modifications to before he will accept
them.

	The “pending” group. Patches that I have not yet submitted to
the upstream maintainer, but which we have finished working on. These will
be “read only” for a while. If the upstream maintainer accepts
them upon submission, I'll move them to the end of the
“accepted” group. If he requests that I modify any, I'll move
them to the beginning of the “rework” group.

	The “in progress” group. Patches that are actively being
developed, and should not be submitted anywhere yet.

	The “backport” group. Patches that adapt the source tree to
older versions of the kernel tree.

	The “do not ship” group. Patches that for some reason should
never be submitted upstream. For example, one such patch might change
embedded driver identification strings to make it easier to distinguish, in
the field, between an out-of-tree version of the driver and a version
shipped by a distribution vendor.

Now to return to the reasons for ordering groups of patches in this way. We
would like the lowest patches in the stack to be as stable as possible, so
that we will not need to rework higher patches due to changes in context.
Putting patches that will never be changed first in the series file serves this purpose.
We would also like the patches that we know we'll need to modify to be
applied on top of a source tree that resembles the upstream tree as closely
as possible. This is why we keep accepted patches around for a while.
The “backport” and “do not ship” patches float at
the end of the series file. The
backport patches must be applied on top of all other patches, and the
“do not ship” patches might as well stay out of harm's way.

维护补丁系列

In my work, I use a number of guards to control which patches are to be
applied.
	“Accepted” patches are guarded with
accepted. I enable this guard most of the time. When
I'm applying the patches on top of a tree where the patches are already
present, I can turn this patch off, and the patches that follow it will
apply cleanly.

	Patches that are “finished”, but not yet submitted, have no
guards. If I'm applying the patch stack to a copy of the upstream tree, I
don't need to enable any guards in order to get a reasonably safe source
tree.

	Those patches that need reworking before being resubmitted are guarded with
rework.

	For those patches that are still under development, I use
devel.

	A backport patch may have several guards, one for each version of the kernel
to which it applies. For example, a patch that backports a piece of code to
2.6.9 will have a 2.6.9 guard.

This variety of guards gives me considerable flexibility in determining what
kind of source tree I want to end up with. For most situations, the
selection of appropriate guards is automated during the build process, but I
can manually tune the guards to use for less common circumstances.
编写向后移植补丁的艺术

Using MQ, writing a backport patch is a simple process. All such a patch
has to do is modify a piece of code that uses a kernel feature not present
in the older version of the kernel, so that the driver continues to work
correctly under that older version.
A useful goal when writing a good backport patch is to make your code look
as if it was written for the older version of the kernel you're targeting.
The less obtrusive the patch, the easier it will be to understand and
maintain. If you're writing a collection of backport patches to avoid the
“rat's nest” effect of lots of #ifdefs
(hunks of source code that are only used conditionally) in your code, don't
introduce version-dependent #ifdefs into the patches.
Instead, write several patches, each of which makes unconditional changes,
and control their application using guards.
There are two reasons to divide backport patches into a distinct group, away
from the “regular” patches whose effects they modify. The first
is that intermingling the two makes it more difficult to use a tool like the
patchbomb extension to automate the process
of submitting the patches to an upstream maintainer. The second is that a
backport patch could perturb the context in which a subsequent regular patch
is applied, making it impossible to apply the regular patch cleanly
without the earlier backport patch already being
applied.

使用 MQ 开发的技巧

将补丁放到几个目录中

If you're working on a substantial project with MQ, it's not difficult to
accumulate a large number of patches. For example, I have one patch
repository that contains over 250 patches.
If you can group these patches into separate logical categories, you can if
you like store them in different directories; MQ has no problems with patch
names that contain path separators.

察看补丁的历史

If you're developing a set of patches over a long time, it's a good idea to
maintain them in a repository, as discussed in the section called “在版本库管理补丁”. If you do so, you'll quickly discover that using
the hg diff command to look at the history
of changes to a patch is unworkable. This is in part because you're looking
at the second derivative of the real code (a diff of a diff), but also
because MQ adds noise to the process by modifying time stamps and directory
names when it updates a patch.
However, you can use the extdiff extension,
which is bundled with Mercurial, to turn a diff of two versions of a patch
into something readable. To do this, you will need a third-party package
called patchutils
[web:patchutils]. This provides a command named
interdiff, which shows the differences between two diffs
as a diff. Used on two versions of the same diff, it generates a diff that
represents the diff from the first to the second version.
You can enable the extdiff extension in the
usual way, by adding a line to the extensions section of your ~/.hgrc.
[extensions]
extdiff =

The interdiff command expects to be passed the names of
two files, but the extdiff extension passes
the program it runs a pair of directories, each of which can contain an
arbitrary number of files. We thus need a small program that will run
interdiff on each pair of files in these two
directories. This program is available as hg-interdiff in the examples directory of the source code
repository that accompanies this book.
With the hg-interdiff program in your
shell's search path, you can run it as follows, from inside an MQ patch
directory:
hg extdiff -p hg-interdiff -r A:B my-change.patch
Since you'll probably want to use this long-winded command a lot, you can
get hgext to make it available as a normal
Mercurial command, again by editing your ~/.hgrc.
[extdiff]
cmd.interdiff = hg-interdiff
This directs hgext to make an
interdiff command available, so you can now shorten the
previous invocation of extdiff to
something a little more wieldy.
hg interdiff -r A:B my-change.patch
Note
 The interdiff command works well only if the underlying
files against which versions of a patch are generated remain the same. If
you create a patch, modify the underlying files, and then regenerate the
patch, interdiff may not produce useful output.

The extdiff extension is useful for more
than merely improving the presentation of MQ patches. To read more about
it, go to the section called “使用扩展 extdiff 以扩展差异支持”.

Chapter 14. 使用扩展增加功能

While the core of Mercurial is quite complete from a functionality
standpoint, it's deliberately shorn of fancy features. This approach of
preserving simplicity keeps the software easy to deal with for both
maintainers and users.
However, Mercurial doesn't box you in with an inflexible command set: you
can add features to it as extensions (sometimes known
as plugins). We've already discussed a few of these
extensions in earlier chapters.
	the section called “简化拉-合并-提交程序” covers the fetch extension; this combines pulling new changes
and merging them with local changes into a single command, fetch.

	In Chapter 10, 使用钩子处理版本库事件, we covered several extensions that are
useful for hook-related functionality: acl
adds access control lists; bugzilla adds
integration with the Bugzilla bug tracking system; and notify sends notification emails on new changes.

	The Mercurial Queues patch management extension is so invaluable that it
merits two chapters and an appendix all to itself. Chapter 12, 使用 MQ 管理修改
covers the basics; Chapter 13, MQ 的高级用法 discusses advanced
topics; and Appendix B, Mercurial 队列参考 goes into detail on each command.

In this chapter, we'll cover some of the other extensions that are available
for Mercurial, and briefly touch on some of the machinery you'll need to
know about if you want to write an extension of your own.
	In the section called “使用扩展 inotify 以提高性能”, we'll discuss the possibility of
huge performance improvements using the inotify extension.

使用扩展 inotify 以提高性能

Are you interested in having some of the most common Mercurial operations
run as much as a hundred times faster? Read on!
Mercurial has great performance under normal circumstances. For example,
when you run the hg status command,
Mercurial has to scan almost every directory and file in your repository so
that it can display file status. Many other Mercurial commands need to do
the same work behind the scenes; for example, the hg
diff command uses the status machinery to avoid doing an expensive
comparison operation on files that obviously haven't changed.
Because obtaining file status is crucial to good performance, the authors of
Mercurial have optimised this code to within an inch of its life. However,
there's no avoiding the fact that when you run hg
status, Mercurial is going to have to perform at least one
expensive system call for each managed file to determine whether it's
changed since the last time Mercurial checked. For a sufficiently large
repository, this can take a long time.
To put a number on the magnitude of this effect, I created a repository
containing 150,000 managed files. I timed hg
status as taking ten seconds to run, even when
none of those files had been modified.
Many modern operating systems contain a file notification facility. If a
program signs up to an appropriate service, the operating system will notify
it every time a file of interest is created, modified, or deleted. On Linux
systems, the kernel component that does this is called
inotify.
Mercurial's inotify extension talks to the
kernel's inotify component to optimise hg status commands. The extension has two
components. A daemon sits in the background and receives notifications from
the inotify subsystem. It also listens for connections
from a regular Mercurial command. The extension modifies Mercurial's
behavior so that instead of scanning the filesystem, it queries the daemon.
Since the daemon has perfect information about the state of the repository,
it can respond with a result instantaneously, avoiding the need to scan
every directory and file in the repository.
Recall the ten seconds that I measured plain Mercurial as taking to run
hg status on a 150,000 file repository.
With the inotify extension enabled, the
time dropped to 0.1 seconds, a factor of one hundred
faster.
Before we continue, please pay attention to some caveats.
	The inotify extension is Linux-specific.
Because it interfaces directly to the Linux kernel's
inotify subsystem, it does not work on other operating
systems.

	It should work on any Linux distribution that was released after early
2005. Older distributions are likely to have a kernel that lacks
inotify, or a version of glibc that
does not have the necessary interfacing support.

	Not all filesystems are suitable for use with the inotify extension. Network filesystems such as NFS
are a non-starter, for example, particularly if you're running Mercurial on
several systems, all mounting the same network filesystem. The kernel's
inotify system has no way of knowing about changes made
on another system. Most local filesystems (e.g. ext3, XFS, ReiserFS) should
work fine.

The inotify extension is shipped with
Mercurial since 1.0. All you need to do to enable the inotify extension is add an entry to your ~/.hgrc.
[extensions] inotify =
When the inotify extension is enabled,
Mercurial will automatically and transparently start the status daemon the
first time you run a command that needs status in a repository. It runs one
status daemon per repository.
The status daemon is started silently, and runs in the background. If you
look at a list of running processes after you've enabled the inotify extension and run a few commands in
different repositories, you'll thus see a few hg
processes sitting around, waiting for updates from the kernel and queries
from Mercurial.
The first time you run a Mercurial command in a repository when you have the
inotify extension enabled, it will run with
about the same performance as a normal Mercurial command. This is because
the status daemon needs to perform a normal status scan so that it has a
baseline against which to apply later updates from the kernel. However,
every subsequent command that does any kind of status
check should be noticeably faster on repositories of even fairly modest
size. Better yet, the bigger your repository is, the greater a performance
advantage you'll see. The inotify daemon
makes status operations almost instantaneous on repositories of all sizes!
If you like, you can manually start a status daemon using the inserve command. This gives you slightly
finer control over how the daemon ought to run. This command will of course
only be available when the inotify
extension is enabled.
When you're using the inotify extension,
you should notice no difference at all in Mercurial's
behavior, with the sole exception of status-related commands running a whole
lot faster than they used to. You should specifically expect that commands
will not print different output; neither should they give different
results. If either of these situations occurs, please report a bug.

使用扩展 extdiff 以扩展差异支持

Mercurial 内置命令 hg diff 的输出与统一差异不同。
$ hg diff
diff -r 88a15ba2987d myfile
--- a/myfile	Thu Mar 17 05:12:47 2011 +0000
+++ b/myfile	Thu Mar 17 05:12:47 2011 +0000
@@ -1,1 +1,2 @@
 The first line.
+The second line.

If you would like to use an external tool to display modifications, you'll
want to use the extdiff extension. This
will let you use, for example, a graphical diff tool.
The extdiff extension is bundled with
Mercurial, so it's easy to set up. In the extensions section of your ~/.hgrc, simply add a one-line entry to enable the
extension.
[extensions]
extdiff =
This introduces a command named extdiff, which by default uses your system's
diff command to generate a unified diff in the same form
as the built-in hg diff command.
$ hg extdiff
--- a.88a15ba2987d/myfile	2011-03-17 05:12:47.000000000 +0000
+++ /tmp/extdiffiV5v1F/a/myfile	2011-03-17 05:12:47.000000000 +0000
@@ -1 +1,2 @@
 The first line.
+The second line.

The result won't be exactly the same as with the built-in hg diff variations, because the output of
diff varies from one system to another, even when passed
the same options.
As the “making snapshot” lines of output
above imply, the extdiff command
works by creating two snapshots of your source tree. The first snapshot is
of the source revision; the second, of the target revision or working
directory. The extdiff command
generates these snapshots in a temporary directory, passes the name of each
directory to an external diff viewer, then deletes the temporary directory.
For efficiency, it only snapshots the directories and files that have
changed between the two revisions.
Snapshot directory names have the same base name as your repository. If your
repository path is /quux/bar/foo,
then foo will be the name of each
snapshot directory. Each snapshot directory name has its changeset ID
appended, if appropriate. If a snapshot is of revision
a631aca1083f, the directory will be named foo.a631aca1083f. A snapshot of the working
directory won't have a changeset ID appended, so it would just be foo in this example. To see what this looks
like in practice, look again at the extdiff example above. Notice that the diff
has the snapshot directory names embedded in its header.
The extdiff command accepts two
important options. The hg
-p option lets you choose a program to view differences with,
instead of diff. With the hg -o option, you can change
the options that extdiff passes to
the program (by default, these options are
“-Npru”, which only make sense if you're
running diff). In other respects, the extdiff command acts similarly to the
built-in hg diff command: you use the same
option names, syntax, and arguments to specify the revisions you want, the
files you want, and so on.
As an example, here's how to run the normal system diff
command, getting it to generate context diffs (using the -c option) instead of unified diffs, and five
lines of context instead of the default three (passing 5
as the argument to the -C option).
$ hg extdiff -o -NprcC5
*** a.88a15ba2987d/myfile	Thu Mar 17 05:12:47 2011
--- /tmp/extdiffiV5v1F/a/myfile	Thu Mar 17 05:12:47 2011

*** 1 ****
--- 1,2 ----
 The first line.
+ The second line.

Launching a visual diff tool is just as easy. Here's how to launch the
kdiff3 viewer.
hg extdiff -p kdiff3 -o
If your diff viewing command can't deal with directories, you can easily
work around this with a little scripting. For an example of such scripting
in action with the mq extension and the
interdiff command, see the section called “察看补丁的历史”.
定义命令的别名

It can be cumbersome to remember the options to both the extdiff command and the diff viewer you want
to use, so the extdiff extension lets you
define new commands that will invoke your diff viewer
with exactly the right options.
All you need to do is edit your ~/.hgrc,
and add a section named extdiff.
Inside this section, you can define multiple commands. Here's how to add a
kdiff3 command. Once you've defined this, you can type
“hg kdiff3” and the extdiff extension will run kdiff3
for you.
[extdiff]
cmd.kdiff3 =
If you leave the right hand side of the definition empty, as above, the
extdiff extension uses the name of the
command you defined as the name of the external program to run. But these
names don't have to be the same. Here, we define a command named
“hg wibble”, which runs
kdiff3.
[extdiff]
 cmd.wibble = kdiff3
You can also specify the default options that you want to invoke your diff
viewing program with. The prefix to use is
“opts.”, followed by the name of the command
to which the options apply. This example defines a “hg
vimdiff” command that runs the vim
editor's DirDiff extension.
[extdiff]
 cmd.vimdiff = vim
opts.vimdiff = -f '+next' '+execute "DirDiff" argv(0) argv(1)'

使用扩展 transplant 以挑选修改

Need to have a long chat with Brendan about this.

使用扩展 patchbomb 通过 email 发送修改

Many projects have a culture of “change review”, in which
people send their modifications to a mailing list for others to read and
comment on before they commit the final version to a shared repository.
Some projects have people who act as gatekeepers; they apply changes from
other people to a repository to which those others don't have access.
Mercurial makes it easy to send changes over email for review or
application, via its patchbomb extension.
The extension is so named because changes are formatted as patches, and it's
usual to send one changeset per email message. Sending a long series of
changes by email is thus much like “bombing” the recipient's
inbox, hence “patchbomb”.
As usual, the basic configuration of the patchbomb extension takes just one or two lines in
your /.hgrc.
[extensions]
patchbomb =
Once you've enabled the extension, you will have a new command available,
named email.
The safest and best way to invoke the email command is to
always run it first with the hg -n option. This will show
you what the command would send, without actually
sending anything. Once you've had a quick glance over the changes and
verified that you are sending the right ones, you can rerun the same
command, with the hg
-n option removed.
The email command accepts the
same kind of revision syntax as every other Mercurial command. For example,
this command will send every revision between 7 and tip,
inclusive.
hg email -n 7:tip
You can also specify a repository to compare with. If
you provide a repository but no revisions, the email command will send all revisions in
the local repository that are not present in the remote repository. If you
additionally specify revisions or a branch name (the latter using the
hg -b option), this
will constrain the revisions sent.
It's perfectly safe to run the email command without the names of the
people you want to send to: if you do this, it will just prompt you for
those values interactively. (If you're using a Linux or Unix-like system,
you should have enhanced readline-style editing
capabilities when entering those headers, too, which is useful.)
When you are sending just one revision, the email command will by default use the
first line of the changeset description as the subject of the single email
message it sends.
If you send multiple revisions, the email command will usually send one
message per changeset. It will preface the series with an introductory
message, in which you should describe the purpose of the series of changes
you're sending.
修改 patchbomb 的行为

Not every project has exactly the same conventions for sending changes in
email; the patchbomb extension tries to
accommodate a number of variations through command line options.
	You can write a subject for the introductory message on the command line
using the hg -s
option. This takes one argument, the text of the subject to use.

	To change the email address from which the messages originate, use the
hg -f option. This
takes one argument, the email address to use.

	The default behavior is to send unified diffs (see the section called “理解补丁” for a description of the format), one per message.
You can send a binary bundle instead with the hg -b option.

	Unified diffs are normally prefaced with a metadata header. You can omit
this, and send unadorned diffs, with the hg --plain option.

	Diffs are normally sent “inline”, in the same body part as the
description of a patch. This makes it easiest for the largest number of
readers to quote and respond to parts of a diff, as some mail clients will
only quote the first MIME body part in a message. If you'd prefer to send
the description and the diff in separate body parts, use the hg -a option.

	Instead of sending mail messages, you can write them to an
mbox-format mail folder using the hg -m option. That option
takes one argument, the name of the file to write to.

	If you would like to add a diffstat-format summary to
each patch, and one to the introductory message, use the hg -d option. The
diffstat command displays a table containing the name of
each file patched, the number of lines affected, and a histogram showing how
much each file is modified. This gives readers a qualitative glance at how
complex a patch is.

Appendix A. 迁移到 Mercurial

A common way to test the waters with a new revision control tool is to
experiment with switching an existing project, rather than starting a new
project from scratch.
In this appendix, we discuss how to import a project's history into
Mercurial, and what to look out for if you are used to a different revision
control system.
从其它版本控制系统导入历史

Mercurial ships with an extension named convert, which
can import project history from most popular revision control systems. At
the time this book was written, it could import history from the following
systems:
	Subversion

	CVS

	git

	Darcs

	Bazaar

	Monotone

	GNU Arch

	Mercurial

(To see why Mercurial itself is supported as a source, see the section called “清理目录树”.)
你可以通过常用的方式，编辑~./hgrc文件来使用这个扩展。
[extensions]
convert =
This will make a hg convert command available. The
command is easy to use. For instance, this command will import the
Subversion history for the Nose unit testing framework into Mercurial.
$ hg convert http://python-nose.googlecode.com/svn/trunk
The convert extension operates incrementally. In other
words, after you have run hg convert once, running it
again will import any new revisions committed after the first run began.
Incremental conversion will only work if you run hg
convert in the same Mercurial repository that you originally used,
because the convert extension saves some private metadata
in a non-revision-controlled file named .hg/shamap
inside the target repository.
When you want to start making changes using Mercurial, it's best to clone
the tree in which you are doing your conversions, and leave the original
tree for future incremental conversions. This is the safest way to let you
pull and merge future commits from the source revision control system into
your newly active Mercurial project.
转换多个分支

The hg convert command given above converts only the
history of the trunk branch of the Subversion
repository. If we instead use the URL
http://python-nose.googlecode.com/svn, Mercurial will
automatically detect the trunk, tags
and branches layout that Subversion projects usually use,
and it will import each as a separate Mercurial branch.
By default, each Subversion branch imported into Mercurial is given a branch
name. After the conversion completes, you can get a list of the active
branch names in the Mercurial repository using hg branches
-a. If you would prefer to import the Subversion branches without
names, pass the --config convert.hg.usebranchnames=false
option to hg convert.
Once you have converted your tree, if you want to follow the usual Mercurial
practice of working in a tree that contains a single branch, you can clone
that single branch using hg clone -r mybranchname.

映射用户名称

Some revision control tools save only short usernames with commits, and
these can be difficult to interpret. The norm with Mercurial is to save a
committer's name and email address, which is much more useful for talking to
them after the fact.
If you are converting a tree from a revision control system that uses short
names, you can map those names to longer equivalents by passing a
--authors option to hg convert. This
option accepts a file name that should contain entries of the following
form.
arist = Aristotle <aristotle@phil.example.gr>
soc = Socrates <socrates@phil.example.gr>
Whenever convert encounters a commit with the username
arist in the source repository, it will use the name
Aristotle <aristotle@phil.example.gr> in the
converted Mercurial revision. If no match is found for a name, it is used
verbatim.

清理目录树

Not all projects have pristine history. There may be a directory that
should never have been checked in, a file that is too big, or a whole
hierarchy that needs to be refactored.
The convert extension supports the idea of a “file
map” that can reorganize the files and directories in a project as it
imports the project's history. This is useful not only when importing
history from other revision control systems, but also to prune or refactor a
Mercurial tree.
To specify a file map, use the --filemap option and supply
a file name. A file map contains lines of the following forms.
This is a comment.
# Empty lines are ignored.	

include path/to/file

exclude path/to/file

rename from/some/path to/some/other/place

The include directive causes a file, or all files under a
directory, to be included in the destination repository. This also excludes
all other files and dirs not explicitely included. The
exclude directive causes files or directories to be
omitted, and others not explicitly mentioned to be included.
To move a file or directory from one location to another, use the
rename directive. If you need to move a file or
directory from a subdirectory into the root of the repository, use
. as the second argument to the rename
directive.

改进 Subversion 的转换性能

You will often need several attempts before you hit the perfect combination
of user map, file map, and other conversion parameters. Converting a
Subversion repository over an access protocol like ssh or
http can proceed thousands of times more slowly than
Mercurial is capable of actually operating, due to network delays. This can
make tuning that perfect conversion recipe very painful.
The svnsync
command can greatly speed up the conversion of a Subversion repository. It
is a read-only mirroring program for Subversion repositories. The idea is
that you create a local mirror of your Subversion tree, then convert the
mirror into a Mercurial repository.
Suppose we want to convert the Subversion repository for the popular
Memcached project into a Mercurial tree. First, we create a local
Subversion repository.
$ svnadmin create memcached-mirror
Next, we set up a Subversion hook that svnsync needs.
$ echo '#!/bin/sh' > memcached-mirror/hooks/pre-revprop-change
$ chmod +x memcached-mirror/hooks/pre-revprop-change
We then initialize svnsync in this repository.
$ svnsync --init file://`pwd`/memcached-mirror \
http://code.sixapart.com/svn/memcached
Our next step is to begin the svnsync mirroring process.
$ svnsync sync file://`pwd`/memcached-mirror
Finally, we import the history of our local Subversion mirror into
Mercurial.
$ hg convert memcached-mirror
We can use this process incrementally if the Subversion repository is still
in use. We run svnsync to pull new changes into our
mirror, then hg convert to import them into our Mercurial
tree.
There are two advantages to doing a two-stage import with
svnsync. The first is that it uses more efficient
Subversion network syncing code than hg convert, so it
transfers less data over the network. The second is that the import from a
local Subversion tree is so fast that you can tweak your conversion setup
repeatedly without having to sit through a painfully slow network-based
conversion process each time.

从 Subversion 迁移

Subversion is currently the most popular open source revision control
system. Although there are many differences between Mercurial and
Subversion, making the transition from Subversion to Mercurial is not
particularly difficult. The two have similar command sets and generally
uniform interfaces.
哲学的差别

The fundamental difference between Subversion and Mercurial is of course
that Subversion is centralized, while Mercurial is distributed. Since
Mercurial stores all of a project's history on your local drive, it only
needs to perform a network access when you want to explicitly communicate
with another repository. In contrast, Subversion stores very little
information locally, and the client must thus contact its server for many
common operations.
Subversion more or less gets away without a well-defined notion of a branch:
which portion of a server's namespace qualifies as a branch is a matter of
convention, with the software providing no enforcement. Mercurial treats a
repository as the unit of branch management.
命令作用域

Since Subversion doesn't know what parts of its namespace are really
branches, it treats most commands as requests to operate at and below
whatever directory you are currently visiting. For instance, if you run
svn log, you'll get the history of whatever part of the
tree you're looking at, not the tree as a whole.
Mercurial's commands behave differently, by defaulting to operating over an
entire repository. Run hg log and it will tell you the
history of the entire tree, no matter what part of the working directory
you're visiting at the time. If you want the history of just a particular
file or directory, simply supply it by name, e.g. hg log
src.
From my own experience, this difference in default behaviors is probably the
most likely to trip you up if you have to switch back and forth frequently
between the two tools.

多用户操作与安全

With Subversion, it is normal (though slightly frowned upon) for multiple
people to collaborate in a single branch. If Alice and Bob are working
together, and Alice commits some changes to their shared branch, Bob must
update his client's view of the branch before he can commit. Since at this
time he has no permanent record of the changes he has made, he can corrupt
or lose his modifications during and after his update.
Mercurial encourages a commit-then-merge model instead. Bob commits his
changes locally before pulling changes from, or pushing them to, the server
that he shares with Alice. If Alice pushed her changes before Bob tries to
push his, he will not be able to push his changes until he pulls hers,
merges with them, and commits the result of the merge. If he makes a
mistake during the merge, he still has the option of reverting to the commit
that recorded his changes.
It is worth emphasizing that these are the common ways of working with these
tools. Subversion supports a safer work-in-your-own-branch model, but it is
cumbersome enough in practice to not be widely used. Mercurial can support
the less safe mode of allowing changes to be pulled in and merged on top of
uncommitted edits, but this is considered highly unusual.

已发布的修改与本地修改

A Subversion svn commit command immediately publishes
changes to a server, where they can be seen by everyone who has read access.
With Mercurial, commits are always local, and must be published via a
hg push command afterwards.
Each approach has its advantages and disadvantages. The Subversion model
means that changes are published, and hence reviewable and usable,
immediately. On the other hand, this means that a user must have commit
access to a repository in order to use the software in a normal way, and
commit access is not lightly given out by most open source projects.
The Mercurial approach allows anyone who can clone a repository to commit
changes without the need for someone else's permission, and they can then
publish their changes and continue to participate however they see fit. The
distinction between committing and pushing does open up the possibility of
someone committing changes to their laptop and walking away for a few days
having forgotten to push them, which in rare cases might leave collaborators
temporarily stuck.

快速参考

Table A.1. Subversion 命令与 Mercurial 对照表
	Subversion	Mercurial	备注
	svn add	hg add	
	svn blame	hg annotate	
	svn cat	hg cat	
	svn checkout	hg clone	
	svn cleanup	n/a	不需要清理
	svn commit	hg commit; hg push	提交后使用 hg push 发布
	svn copy	hg clone	创建新补丁
	svn copy	hg copy	复制文件或目录
	svn delete (svn remove)	hg remove	
	svn diff	hg diff	
	svn export	hg archive	
	svn help	hg help	
	svn import	hg addremove; hg commit	
	svn info	hg parents	显示检出的版本信息
	svn info	hg showconfig paths.parent	显示检出的 URL
	svn list	hg manifest	
	svn log	hg log	
	svn merge	hg merge	
	svn mkdir	n/a	Mercurial 不跟踪目录
	svn move (svn rename)	hg rename	
	svn resolved	hg resolve -m	
	svn revert	hg revert	
	svn status	hg status	
	svn update	hg pull -u	

新手需要了解的技巧

Under some revision control systems, printing a diff for a single committed
revision can be painful. For instance, with Subversion, to see what changed
in revision 104654, you must type svn diff
-r104653:104654. Mercurial eliminates the need to type the
revision ID twice in this common case. For a plain diff, hg export
104654. For a log message followed by a diff, hg log
-r104654 -p.
When you run hg status without any arguments, it prints
the status of the entire tree, with paths relative to the root of the
repository. This makes it tricky to copy a file name from the output of
hg status into the command line. If you supply a file or
directory name to hg status, it will print paths relative
to your current location instead. So to get tree-wide status from
hg status, with paths that are relative to your current
directory and not the root of the repository, feed the output of hg
root into hg status. You can easily do this as
follows on a Unix-like system:
$ hg status `hg root`

Appendix B. Mercurial 队列参考

MQ 命令参考

For an overview of the commands provided by MQ, use the command hg help mq.
qapplied—显示已应用的补丁

The qapplied command prints the current
stack of applied patches. Patches are printed in oldest-to-newest order, so
the last patch in the list is the “top” patch.

qcommit—提交队列中的修改

The qcommit command commits any
outstanding changes in the .hg/patches repository. This command only
works if the .hg/patches directory is a repository, i.e. you
created the directory using hg qinit -c or ran hg init in the directory after running qinit.
This command is shorthand for hg commit --cwd
.hg/patches.

qdelete—从文件 series 中删除补丁

The qdelete command removes the entry
for a patch from the series file in the
.hg/patches
directory. It does not pop the patch if the patch is already applied. By
default, it does not delete the patch file; use the -f option to do that.
选项:
	-f: Delete the patch file.

qdiff—显示最新应用补丁的差异

The qdiff command prints a diff of the
topmost applied patch. It is equivalent to hg diff
-r-2:-1.

qfold—将已应用的补丁提交到版本库

The hg qfinish command converts the specified applied
patches into permanent changes by moving them out of MQ's control so that
they will be treated as normal repository history.

qfold—将多个补丁合并(“折叠”)成一个

The qfold command merges multiple
patches into the topmost applied patch, so that the topmost applied patch
makes the union of all of the changes in the patches in question.
The patches to fold must not be applied; qfold will exit with an error if any is. The
order in which patches are folded is significant; hg
qfold a b means “apply the current topmost patch, followed
by a, followed by b”.
The comments from the folded patches are appended to the comments of the
destination patch, with each block of comments separated by three asterisk
(“*”) characters. Use the -e option to edit the commit message
for the combined patch/changeset after the folding has completed.
选项:
	-e:为新创建的补丁编辑提交信息和补丁说明。

	-l:
使用给定文件的内容作为创建补丁新的提交信息和补丁说明。

	-m: Use the given text as
the new commit message and patch description for the folded patch.

qheader—显示补丁头部描述

The qheader command prints the header,
or description, of a patch. By default, it prints the header of the topmost
applied patch. Given an argument, it prints the header of the named patch.

qimport—将第三方补丁导入队列

The qimport command adds an entry for an
external patch to the series file, and
copies the patch into the .hg/patches directory. It adds the entry
immediately after the topmost applied patch, but does not push the patch.
If the .hg/patches
directory is a repository, qimport
automatically does an hg add of the
imported patch.

qinit—为使用 MQ 配置版本库

The qinit command prepares a repository
to work with MQ. It creates a directory called .hg/patches.
选项:
	-c: Create .hg/patches as a repository in
its own right. Also creates a .hgignore
file that will ignore the status file.

When the .hg/patches
directory is a repository, the qimport
and qnew commands automatically hg add new patches.

qnew—创建新补丁

The qnew command creates a new patch.
It takes one mandatory argument, the name to use for the patch file. The
newly created patch is created empty by default. It is added to the
series file after the current topmost
applied patch, and is immediately pushed on top of that patch.
If qnew finds modified files in the
working directory, it will refuse to create a new patch unless the -f option is used (see below). This
behavior allows you to qrefresh your
topmost applied patch before you apply a new patch on top of it.
选项:
	-f: Create a new patch if the
contents of the working directory are modified. Any outstanding
modifications are added to the newly created patch, so after this command
completes, the working directory will no longer be modified.

	-m: Use the given text as the
commit message. This text will be stored at the beginning of the patch file,
before the patch data.

qnext—显示下个补丁的名称

The qnext command prints the name name
of the next patch in the series file
after the topmost applied patch. This patch will become the topmost applied
patch if you run qpush.

qpop—删除堆栈顶部的补丁

The qpop command removes applied patches
from the top of the stack of applied patches. By default, it removes only
one patch.
This command removes the changesets that represent the popped patches from
the repository, and updates the working directory to undo the effects of the
patches.
This command takes an optional argument, which it uses as the name or index
of the patch to pop to. If given a name, it will pop patches until the
named patch is the topmost applied patch. If given a number, qpop treats the number as an index into the
entries in the series file, counting from zero (empty lines and lines
containing only comments do not count). It pops patches until the patch
identified by the given index is the topmost applied patch.
The qpop command does not read or write
patches or the series file. It is thus
safe to qpop a patch that you have
removed from the series file, or a patch
that you have renamed or deleted entirely. In the latter two cases, use the
name of the patch as it was when you applied it.
By default, the qpop command will not
pop any patches if the working directory has been modified. You can
override this behavior using the -f option, which reverts all
modifications in the working directory.
选项:
	-a: Pop all applied patches.
This returns the repository to its state before you applied any patches.

	-f: Forcibly revert any
modifications to the working directory when popping.

	-n: Pop a patch from the
named queue.

The qpop command removes one line from
the end of the status file for each
patch that it pops.

qprev—显示上个补丁的名称

The qprev command prints the name of the
patch in the series file that comes
before the topmost applied patch. This will become the topmost applied patch
if you run qpop.

qpush—增加补丁到堆栈

The qpush command adds patches onto the
applied stack. By default, it adds only one patch.
This command creates a new changeset to represent each applied patch, and
updates the working directory to apply the effects of the patches.
The default data used when creating a changeset are as follows:
	The commit date and time zone are the current date and time zone. Because
these data are used to compute the identity of a changeset, this means that
if you qpop a patch and qpush it again, the changeset that you push will
have a different identity than the changeset you popped.

	The author is the same as the default used by the hg
commit command.

	The commit message is any text from the patch file that comes before the
first diff header. If there is no such text, a default commit message is
used that identifies the name of the patch.

If a patch contains a Mercurial patch header, the information in the patch
header overrides these defaults.
选项:
	-a: Push all unapplied
patches from the series file until there
are none left to push.

	-l: Add the name of the
patch to the end of the commit message.

	-m: If a patch fails to
apply cleanly, use the entry for the patch in another saved queue to compute
the parameters for a three-way merge, and perform a three-way merge using
the normal Mercurial merge machinery. Use the resolution of the merge as
the new patch content.

	-n: Use the named queue if
merging while pushing.

The qpush command reads, but does not
modify, the series file. It appends one
line to the hg status file for each patch
that it pushes.

qrefresh—更新最新的补丁

The qrefresh command updates the topmost
applied patch. It modifies the patch, removes the old changeset that
represented the patch, and creates a new changeset to represent the modified
patch.
The qrefresh command looks for the
following modifications:
	Changes to the commit message, i.e. the text before the first diff header in
the patch file, are reflected in the new changeset that represents the
patch.

	Modifications to tracked files in the working directory are added to the
patch.

	Changes to the files tracked using hg add,
hg copy, hg
remove, or hg rename. Added
files and copy and rename destinations are added to the patch, while removed
files and rename sources are removed.

Even if qrefresh detects no changes, it
still recreates the changeset that represents the patch. This causes the
identity of the changeset to differ from the previous changeset that
identified the patch.
选项:
	-e: Modify the commit and
patch description, using the preferred text editor.

	-m: Modify the commit
message and patch description, using the given text.

	-l: Modify the commit
message and patch description, using text from the given file.

qrename—改名补丁

The qrename command renames a patch, and
changes the entry for the patch in the series file.
With a single argument, qrename renames
the topmost applied patch. With two arguments, it renames its first
argument to its second.

qseries—显示补丁序列

The qseries command prints the entire
patch series from the series file. It
prints only patch names, not empty lines or comments. It prints in order
from first to be applied to last.

qtop—显示当前补丁的名称

The qtop prints the name of the topmost
currently applied patch.

qunapplied—显示尚未应用的补丁

The qunapplied command prints the names
of patches from the series file that are
not yet applied. It prints them in order from the next patch that will be
pushed to the last.

hg strip—删除一个版本及其后继

The hg strip command removes a revision,
and all of its descendants, from the repository. It undoes the effects of
the removed revisions from the repository, and updates the working directory
to the first parent of the removed revision.
The hg strip command saves a backup of the
removed changesets in a bundle, so that they can be reapplied if removed in
error.
选项:
	-b: Save unrelated changesets that are
intermixed with the stripped changesets in the backup bundle.

	-f: If a branch has multiple heads,
remove all heads.

	-n: Do not save a backup bundle.

MQ 文件参考

序列文件

The series file contains a list of the
names of all patches that MQ can apply. It is represented as a list of
names, with one name saved per line. Leading and trailing white space in
each line are ignored.
Lines may contain comments. A comment begins with the
“#” character, and extends to the end of the
line. Empty lines, and lines that contain only comments, are ignored.
You will often need to edit the series
file by hand, hence the support for comments and empty lines noted above.
For example, you can comment out a patch temporarily, and qpush will skip over that patch when applying
patches. You can also change the order in which patches are applied by
reordering their entries in the series
file.
Placing the series file under revision
control is also supported; it is a good idea to place all of the patches
that it refers to under revision control, as well. If you create a patch
directory using the -c
option to qinit, this will be done for
you automatically.

状态文件

The status file contains the names and
changeset hashes of all patches that MQ currently has applied. Unlike the
series file, this file is not intended
for editing. You should not place this file under revision control, or
modify it in any way. It is used by MQ strictly for internal book-keeping.

Appendix C. 从源代码安装 Mercurial

类 Unix 系统

如果你使用类 Unix 系统，并且有足够新的 Python (2.3 更新)，从源代码安装 Mercurial 就很容易了。
	从 http://www.selenic.com/mercurial/download
下载最新的源代码。

	解压：
gzip -dc mercurial-MYVERSION.tar.gz | tar xf -

	进入源代码目录，执行安装教本。这会构建 Mercurial，安装到你的家目录。
cd mercurial-MYVERSION
python setup.py install --force --home=$HOME

安装完成后，Mercurial 就位于家目录的 bin 子目录。不要忘记将这个目录加入到你的可执行文件搜索路径中。
你可能需要设置环境变量 PYTHONPATH，以便 Mercurial 可执行文件能找到 Mercurial
包。例如，在我的笔记本电脑中，必须设置为 /home/bos/lib/python。你需要使用的路径依赖于
Python 的构建方式，这很容易找出来。如果你不确定，仔细察看上面的安装脚本输出，检查包含 mercurial
目录的内容的安装位置。

Windows 系统

在 Windows 中构建和安装 Mercurial
需要各种工具，相当多的技术背景，以及足够的耐心。如果你是一个“初级用户”，我很不赞成这个方法。我强烈建议你使用二进制安装包，除非你想深入研究
Mercurial 本身。
If you are intent on building Mercurial from source on Windows, follow the
“hard way” directions on the Mercurial wiki at http://www.selenic.com/mercurial/wiki/index.cgi/WindowsInstall,
and expect the process to involve a lot of fiddly work.

Appendix D. 开放出版协议

版本 1.0，1999 年 6 月 8 日。
Requirements on both unmodified and modified versions

The Open Publication works may be reproduced and distributed in whole or in
part, in any medium physical or electronic, provided that the terms of this
license are adhered to, and that this license or an incorporation of it by
reference (with any options elected by the author(s) and/or publisher) is
displayed in the reproduction.
Proper form for an incorporation by reference is as follows:
 Copyright (c) year by author's name or
designee. This material may be distributed only subject to the
terms and conditions set forth in the Open Publication License,
vx.y or later (the latest version is presently
available at http://www.opencontent.org/openpub/).

The reference must be immediately followed with any options elected by the
author(s) and/or publisher of the document (see the section called “License options”).
Commercial redistribution of Open Publication-licensed material is
permitted.
Any publication in standard (paper) book form shall require the citation of
the original publisher and author. The publisher and author's names shall
appear on all outer surfaces of the book. On all outer surfaces of the book
the original publisher's name shall be as large as the title of the work and
cited as possessive with respect to the title.

Copyright

The copyright to each Open Publication is owned by its author(s) or
designee.

Scope of license

The following license terms apply to all Open Publication works, unless
otherwise explicitly stated in the document.
Mere aggregation of Open Publication works or a portion of an Open
Publication work with other works or programs on the same media shall not
cause this license to apply to those other works. The aggregate work shall
contain a notice specifying the inclusion of the Open Publication material
and appropriate copyright notice.
Severability. If any part of this license
is found to be unenforceable in any jurisdiction, the remaining portions of
the license remain in force.
No warranty. Open Publication works are
licensed and provided “as is” without warranty of any kind,
express or implied, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose or a warranty of
non-infringement.

Requirements on modified works

All modified versions of documents covered by this license, including
translations, anthologies, compilations and partial documents, must meet the
following requirements:
	The modified version must be labeled as such.

	The person making the modifications must be identified and the modifications
dated.

	Acknowledgement of the original author and publisher if applicable must be
retained according to normal academic citation practices.

	The location of the original unmodified document must be identified.

	The original author's (or authors') name(s) may not be used to assert or
imply endorsement of the resulting document without the original author's
(or authors') permission.

Good-practice recommendations

In addition to the requirements of this license, it is requested from and
strongly recommended of redistributors that:
	If you are distributing Open Publication works on hardcopy or CD-ROM, you
provide email notification to the authors of your intent to redistribute at
least thirty days before your manuscript or media freeze, to give the
authors time to provide updated documents. This notification should describe
modifications, if any, made to the document.

	All substantive modifications (including deletions) be either clearly marked
up in the document or else described in an attachment to the document.

	Finally, while it is not mandatory under this license, it is considered good
form to offer a free copy of any hardcopy and CD-ROM expression of an Open
Publication-licensed work to its author(s).

License options

The author(s) and/or publisher of an Open Publication-licensed document may
elect certain options by appending language to the reference to or copy of
the license. These options are considered part of the license instance and
must be included with the license (or its incorporation by reference) in
derived works.
	To prohibit distribution of substantively modified versions without the
explicit permission of the author(s). “Substantive
modification” is defined as a change to the semantic content of the
document, and excludes mere changes in format or typographical corrections.

	 To accomplish this, add the phrase “Distribution of substantively
modified versions of this document is prohibited without the explicit
permission of the copyright holder.” to the license reference or
copy.

	To prohibit any publication of this work or derivative works in whole or in
part in standard (paper) book form for commercial purposes is prohibited
unless prior permission is obtained from the copyright holder.

	To accomplish this, add the phrase “Distribution of the work or
derivative of the work in any standard (paper) book form is prohibited
unless prior permission is obtained from the copyright holder.” to
the license reference or copy.

