Mercurial Y g1 =g

4232 1 4d5f7d4fb8d7 (2010-05-11)

Bryan O'Sullivan

=R Xii
I N = ST OO oSO xii
2. YR S EE MEICUNAl .o Xil
3o FLIE wereeereereeeseesee ettt xii
N 1 L3 = TSSO Xiii
O AT I REAT AT weveeeeeee e Xl
B. SAAI® ZELE FHIE oo s Xiv
T 5 = 5 [XIv

I 4 TR BT S 1
1.1, gt i TR AT A2 R 28] MEICUNAl? ..o 1

I S e R 1 0. X | eSO 1
N R g N o [2/ OO PSSO 2
120 ZCAL[FIIFI T wereerveeereesersessreseeseesessaeesessessessssssssess st ess e es s s et ettt 2
1.3 BRACES N TR BB ettt ettt 3
LA, I3 A BRI BIIEIAE FE coreereereereereessensisssesse et 3
I & B 1 o = RSO 3
N A o = RSO 4
L5, g AZEFE MEICUNA? ..o 5
1.6. Mercurial 5 H T H IR ELET oot 5
L1.6.1. SUDVEISION ...ttt 5
1.6.2. Gt s 6
L1.6.3. CVS s 6
LG4, BGAE T H oo 7
1.6.5. FEARRR AT T L correereereereienieeesee et 7
L7, WHE T HAHF] MECUNal ..o 7
1.8, JIUASHZEEBIITAT K vvrreereeseesesseeseesessessesseessesssees st s bbb 8

2. Mercurial ZFE . FERBATITR cooverrreremmeieiens e 10

2.1, 22 MEICUNTAL ..o e 10
2,11 WINCAOWS ...ttt b 10
2.1.2. MAC OS X ..ot s 10
2.1.3. LINUX o 10
2,14, SON@IIS ..ottt 10

A o RO 11
221, PPEFEH oo 11

P R R N OO PO 11
2.3.L. BFEIRAS PEI TAETIZS cveeeereeereesneeseesessssssessssssssssssssessssssesssesssssassessssssesssssssssnes 11
2.3.2. fF A ERATIED oo 12

e I OO 12
280 AFHAE | JRAS, G FIAT T wevereereereesessneeseesessassssssssssssessassssssssssssesssssssssessnss 13
2.8.2. FETEHETE RIS wereeereereeseesaetneeseesessesssesse e ss st s sttt 14
2.3, HEPEAN A5 FAL weveeeeeeeseeseesseessesessesssssss e ss st s st et s ettt 14

R v 14

P R I 1= ol < OO 15

2.7 ZE BT L TR TT FEMEIIL vwerevreereereeseeseessessessesssesssssssessess st es sttt seneas 16
N O = o OO 16
2.7.2. B HAE i 17

Mercuria #¢ 845 g

............. 18
273 B mErRAa HE o
e o
275, JHRIR o 18
2B RSB o 19
2.8.1. M HE IRAS JE B4R AR o o
P L o
2.8.3. K AiE B H e RASE -
P o
2.8.5. i ik 2 L= AE % -
20, FHHBIIEL °
3 Moreunlal B : BFFTAR v >
B B JIIILEL 2
S TUIBEIIR o 2
S BT B ~
5% BRITE AR v o~
32 AT TEMIITL o 2
321@mg%gﬁ1ﬁmmmmmmmmmmmmmmm: llllllllllllllllllllllllllllllllllll 2
322 GIFTYL o 28
5 (AL SBATRRIE o~
B T) SLHIG I o %0
A MEIOURE I oo o
A4 MEHOUIE BIFSALTE v o
411 PREER— AR >
4l2%@ﬁﬁmj@"wwwwwwwwwwwwwwww: o
BB LFAEEITEL v o
4.1.4. fRAZ 6 & o
4.2. 224, =LA .. >
AL BT v 33
A 33
28 BRI o "
28 BERFTRTEEIIE v o
4&@@@&,ﬁﬁggﬁ"wwwwwwwwwwwwwt:: 3
A TR o ®
ot SRR AR o o
A.4.2. B3 H T e
B B THBEL L "
bl B IIGI £ "
0 SRR BAFE o P
g BREIAR oo s
452§§m$§@¥@mmmmmmmmmmmmmmm:: llllllllllllllllllllllllllllllll o
323 TR o P
A5.4. BEARATHE oo s P
455 WAL E AR P
5. Mercuria {¢)H % 5 F T g
>4 G MACHE BRERMLCH o s
B —— "
5.1.2. Mercurial I ERE= A4, AEREZH 5 o

.20 YIAITAZE [BRI ST wereeereeseeeseeeeesnessessssssessessessssssesssesssssessssssesncs

Mercuria #¢ 845 g

S5.2.1. JHER STAEANFEM T B covereererieesi s 47
5.2.2, TP SEAE oo 47
5.2.3. 1 WA B F Mercurial JJHE SEAE? oo 47
5.2.4. 47 FH 4 T5— AN BB IIFIINER SEAE <eoveeeeseeereeeseeseessesssesssssessssssasesssseesssnncs 47

R T 1 £ OSSOSO 48
5.3.10 L5 S UL STAEIRI P 5 weereerevereeseesesssesssssessessasssessssssssssessssssasssssssssssssesssssssnnssns 48
5.3.2. I BEAL I AF B vvereereeseeseesasssessasssesssessasssesssessesssessessesssessasssesssssssssesssesssesns 49
B5.3.3. A EE L AF H AL D evereereeereesseesasssesssssessseesssssesssessesssssssssasssessasssasssssssssesssessnssns 49
5.3.4. 7 A NG COPYEIIT T verrererrererrmerinieiniee s s 50
B4, TEATA A covoerereeei i s 50
541@ A A G A FEAB T crvreereeeeesseeess sttt ettt 51
B2, A3 I I H A2 G FT weeeerreereseeesnesssesessssssessssssassess st esssssssssesssess s sses st ssessessasenns 51
B3, UL BHT AT AL G T weereerreereesreesaessesssesssssessssssss st ss s ssessssssess st sses st sssssessanenns 52
S R oA 19 i B a1 1L = TSP 52
O.5. A TR K AL covverererrmreiris i s 52
5.6, A I UEL I corrrrri s 53
S5.6. 1. AR LIRS coverererimrsis i s 54

S B L o OSSO 54
5.7, ZE I TG o s 55
5.8, ML B HELAG T, JPLEATEEL coee s 55
.. Z4 A GBI wereereeeeesaeeeeseeseseess et s et 56
B [JIAA I wervereesneereesreesaeeseeseesesssesseeseseseesasesess st ess s st s et 58
6.1. Mercurial (1] WED F52 1 oo 58
B.2. TIIVERETED ovoeereeseeseeeeeseeesest ettt 59
B.2.1. BT FEZE o s 59
B.2.2. TEIFFAR A wovveererererimesir i 59
B.2.3. B HI LB SR overeeereeseeseeseessessessessasssssssessesssess st esssess st asssesssess s ssesssesssssesennes 60
B.2.4. JTAG [T HLBRACIEE overeereereesseeseeeseesseesssssesssessasssesssssesssesssessesssesssssesssessnssssssssanens 60
B.2.5. [i [T 22 /N4 T2 TAE evereereereeseesesssessssssasssesssessassssssasssssssessssssasssessssssssesssssessssssnnens 60
B.2.6. HEPEAT T o s 62
B.2.7. JTATHIZE woverereeiiise i 63
6.2.8. LINUX PHAZAETIL oovieciiiesecei bbb 63
B.2.9. LI G HEELE A coveeererereesseeseeeeessessessessssssssssessssssesssess st s sesssssesssessssssesssessnens 64
B.2.10. I LG43 SEAT T worrerrereesseeseesseesseesesssessssssessess s ssess st es sttt st 64

S e T N 7 -~ OO 64
6.4. fifi] Ng Serve 17 dE IFE AL v 64
B.4.1L. FEAZ TR JLAE T oo s 65

B.5. A SSN PP IIL weverererrrrereiiiiiis e s 65
B.5. 1. fI[1E SSN BHIE covrririririii s 66
B.5.2. I UK B T3 SSN K PP oottt 66
6.5.3. PEEBEEHNT crvviiiiisi i 66
B.5.4. 5 FIATEAR T oo s 67
6.5.5. [EHFTC B HR S5 BRI vvvrerrereeissisisissis s bbb 68
6.5.6. JH sk SN AT FEZE -oovvevererrerererisisi i s 69

6.6. fifi] CGl i HTTP FEAEARZS oo 70
6.6.1. WD Jl3 45 BETI B R BT cvrverereeei s s 70
6.6.2. FLA CGI JIIE v 71
6.6.3. {fifl] A CGl JIAILEL S AN AE wvereeereerreesmeereesseessssessssssssssssasssesssessassssssnnees 73

Mercuria #¢ 845 g

654Tﬁﬁﬁ@ﬁ$@”mmmmmmmmmmmmmmmmmmmmmf::x
6.6.5. Web i ‘& vt i n
6.7. 4 JRIHE B e e s
671 1k MAICURA JEIR oo "
Zi#%%%ﬁﬁ@mmwwwwwwwwwwwwwwwwwwwwwt: ------------------- s
P BT AR o e
7.2. APEPSCILEPRIGIATI D s o
1.3, HFRRIELEMAT 4 -
e 0
O G Lo oI OSSR 0
742@@reﬁﬁmgmﬁﬁﬁ@mmwwwwwwwwwwwwwwww::m
7.5. ERIE A o o
PO ML JEME NGB IIITIER FL e o &
T R IIBUIHE oo &2
1.7.1. 224, L o
772¢§mjw@@¢%"mmwmmwmmwmmwmmwmmwmmwmmwmmm: i
7.7.3. O oe

B IARATIL 593 3P o
N N 21 7 23
SLLEg#y@ﬁ@ﬁgm%“mmmmmmmmmmmmmmmmmmmﬂrw
BLD I G JUEE o il
8.1.3. R e — oo
&zgﬁﬁﬁ—%mgwmHWWWWWWWWWWWWWWWWWWWWT:: %
B e ——— e
8.4. AERBGrhs A SIIEIT v o
O MRATE NI A4S 2
8.6. LENRAS FE R AN B 22 /N 44 00 < o
&Zﬁigﬁggﬁ"WWWWWWWWWWWWWWWWWWWWWWWW: ''''''''''''' o
8.8. 4 A4 Fil s AR A L o
9. MG oA R o
O AL 1 o
e o
9l2@@gﬁg%nmmmmmmmmmmmmmmmmmmmmmm: %
O A8 BRI v o
9l4§%&ﬁﬁg,@@%%ﬁ%mwwwwwwwwwwwwwwwwwt.W
QLSWR%@@QW"wwwwwwwwwwwwwwwwwwwww::: o
9.2. R — o
O, SLYATTRHEIR v %
O3 ALILLUIHAL ST v %
9.3.1. I o
R e
9.3.3. PRIZ AETH S TR AL eeveeeee e e
9.3.4. {p M4 Ab 3 vh 3545 5 £ skl s 102
935 DG DAKOU IR s e
9.4. ANZ KRG oo
08,1, S — AN T wereererresssesiesesssssss sttt 106
.42 (Fi [l “HEI” AETUTATI R LD T werrvereeereeseeressmesmessmssessassssssssssesssssssssasssessssens 10

9.4.3. Kb BAHURAZ ARG IRI TT T <vereeereeseeermeseesnessesssssssssssssssssssesssessasssesssssssssesssesssesns

Mercuria #¢ 845 g

O.5. FFHR][RI HEYEL +vvrvevreereeseeseeseeseessesssssssssassessessssssessssssssssssessessessessesssssssssssssansassassessessenns 111
95.1. ffFF 64 NODISECE ..o 112
0.5.2, JHIZZ FGIAIIE I oo 115

9.6. AL BT R] FH P FE I v s 115
9.6.1. 28 HL - FIPIHI N corerrerrmrirsres i s 115
0.6.2. JELER [HZ] oerrrererrermeiisss i s 116
0.8.3. KU BEMRILILEHL wovvreereereeneenssnssessessesseesssss s ssssssssssessessassessessessssssssssssssssessassessessessesas 116
9.6.4. JH 1] F 2 TA I THIZE coeeeirisses i 116
0.6.5. Y /DHRIITEER TAHE «evreveeereereesnessesseesesssssesessessssesssssssess st st ess s ssessassssssssssssns 117

OO B A e 0 i N =i L OO OO ROTROS 118

10.1. MECUNEl) F-HIEIR vrvererrerereriiresieisie i 118

10.2. KT G EEATE weereereereeseessenssnssessessssess sttt s st s e st 119
10.2. 1. T LIARIEIEEALPUAT wereereererrersersmesmeeeesessasssesessessassssssessessssssesssssessssssssssssessnes 119
10.2.2. FT-ANEALETR o 119
10.2.3. T T LBEZE 25 oo 120
10248, FHS SFAHEE T (R PUAT werereererreeserseesnesneesessasssssseesesssssssssessessssssessessessssssssssssessnces 120

10.3. i T4 T I T ETFE T wervereereereesersneeseeessessasesessessessasss s ssess st sss e ssess s st essssssessessncs 120
10.3. 1. FFATIEFHAT Z AN weevvereererreereeeneeneeeesessseesessessssssssssesssesssssse s ssessssssssessenes 121
10.3.2. FHHIADFRIRIHE BN ovvrerrreremreeirisssss s 121

104, Z B T+ oo 122
104 1. FEARA T-IRIFHAT TG IX coereereerreremseesmessesessessssssesessesssssssssessessssssessessesssssssssssessanes 122
10.4.2. Z TR HL oo 122
10.4.3. TR [FUE S IE B v 122
O N 123
10.4.5. |- Mercurial fifi FIERE PIAL T oo 123
10.4.6. G B BEFEPIEE T= ovrerrreremeeiriisiss s 123

LO5. ZJTFRER] ovrererrereeiss i 124
10.5.1. G E AT 5 XLIKERAT FI S wereereereereeressesssssssssssssessesssssssssssssssssssassessessessssssssssnssssnnes 124
O e e - ST 124

1O.6. P [FJEE T= oveverrerereimrisisiess s b 126
10.6.1. ACH —g A e (7 TAIFESZE] wereereereereeeeereeseeseesssseesessssesssssssesssssse st ssessasssens 126
10.6.2. bugzi | | a—L5 BUQZIllA [FJEE K «oereerrrereriieneinsise e 127
10.6.3. NOL i fY——HEAEIT LI «ovvvrererrerermrmrisisesis s 130

0.7, Gt B A T HIAE JA eveeererreeseesnsueseesassaseessess st st sssssess e ss et 132
10.7. 1. HEFE PV TIRIHIAT ovveererermermi i 132
10.7.2. HRERAL T HIFRAT «eereeseeeresreeeesessmessessessessassssessssessassssssssessssssssessessesssssssssessassnens 133
10.7.3. Ky PEAE AR T FIAITAD vereereerereereeseeeneesesseesassssseesessssesesssssessssssessessessssssssessessnees 133

10.8. T i 134
10.8.1. changegr OUP—H I3 BB ILAE Z T woeverrerererrsmsisis s 134
10.8.2. COMMI t — BB IMAE D ST cververreereereesessnessesessesssesssssssessssssessessssssssssssssesens 135
10.8.3. i NCOM NO— 4 NTEFEME ELEE L T woeverereerermrerisiseisis s 135
10.8.4. OUt QOI NY—ALFRABUEE L S5 weverereremermiriisisess s 135
10.8.5. pr echangegr oup—3 iz PSR 7 T oevevereemresmsnmssissss s 136
10.8.6. precomi t —HEATME AR 7 Tl wovverereremrmrmrmsessss s 136
10.8.7. pr eout goi NG—fLFRMEILEE L T woevevererermrmrsmeisiss s 137
10.8.8. Pr €t AQ—(lZREARZEZ T «rereererremremrmsmsmsin s 137
10.8.9. pr et xnchangegr oup—=2 i 8 HE R ELEE 2 BT veveveererererenmeissnsisisiennnns 137
10.8.10. pr et XNCOMMI t —52 fEHLRT 7 FiJ woeverererermimrisinisiis i 138

Vi

Mercuria #¢ 845 g

10.8.11. pr eupdat e— kA FF TAE H S22 oeeereremermrmsnnminisssssisssiseenns 139
10.8.12. t AQ—FFRARLZE D JT wreverererrrrsssinississsiss s 139
10.8.13. updat e— g HiEL & JF TAE H SEZ G weeererererermrmesesesssesesese s sesseens 139

11, 5] Mercurial I H oo 140
0 £ e e A 1L T AT = s AR OTT 140
11100 PEEBRIAAETID o 141
112 7 FRRETC IR [S wereereeereeseeseessesssessssssessasssesssssasssesssesssessesssessasssessssssssssssnssasssns 141
R = o 141
114, FEPR BT o 142
ST = S 7 143
116, S i I 7 RAB I L ZE L oevveereeeseeseeeeeesssse sttt 143
11.6.0. ZLATETESR o 146
117, PR BURE L oo 146
L1700 T BATRIREIC SEAE weoeereeereesneeeesssessessssssesssesessssss st sess sttt ssesssessnssas 146
11720 BEIE SCAETETE oo 146
RS 5 v Y 1 e T 147
R e Va4 e (VAL SO OO 147
11.8.2. P S JZE FEIMEE — BRI ot 148
11.8.3. FFATHH AN TCAE e 149
11.8.4. Fiff; SUDVEISION [RIHIHL coverererieieiies s 149

12, i] MQ A B TUL «oveverererererereteistsieis ittt bbb bbb bbb 151
N I N T = T 151
12.2. MQ JEJJJTHT v 151
12.2.1. A patChWOrK QUITT ..o 152
12.2.2. J) patchwork quilt F| MQ ..o 152
12.3. MQ F L A FA o 152
O N T 153
125, FFUEAH] MQ o 154
12.5.0. BFRITAR T v 154
1252, JHITAR T covevererererererissisi s 155
12.5.3. HEBFIEREZEN T coeerreeeeesessss s 156
1254, 3EAEAN T HERR weereerreereeeeesaneseessessesssssessssssesssssssssasssessssssesssssasssessessessessssssenens 157
1255, FE NBEAAH 2 ANERN T o 158
12.5.6. G2 IURI R, SRJETEZETIATT wervvereesreeseesmesnessssssessssssssssssssssssssssssssassssssessasssnses 158
12.5.7. [AJHABFEZZANER T oererereressisiss s 158
12.6. 2 TN T T 242 L coreretieiiesessss e ettt 159
12.6.1. fBHTLFEL covvererererererrrs s 159
12.6.2. [AN T HISEE oveeereeeeeeeee s 159
12.8.3. HN T IR B PE weereereeseeeeeseeseeesessseesesssess e ssess st ssess st ss sttt enssesens 160
12.6.4. M4ULNTE] corvverererereriri s 160
12.6.5. FEFFFF LG cvvvverereririsirisssiss s 161
A N = 161
12.7.0. JHERASFEZTLIIEN T ovvrerererereessssiss s 161
12.7.2. 543 A RASTRIAE FLIE B weoreereeereesseeseeeseesseesssssssseesesssess s essssssessesssessesssesssnssnens 162
12.8. MQ JEJPEFE wvvvverererererisisisisisisisisisis s 162
12.9. YRR EL AT, FETAR T IRITTI eeereereeeeesseeseessesnessesssssssesssssssssssssssssesesssnees 163
1210, FRTHER T corererereressississs s 164
1211, o B T ARIFIZRTE o 165

Vil

Mercuria #¢ 845 g

1212, FEFRAERT FEER T covrererererereieieiee st 165
0 2 TV L@ B =5 N N /=TT 166
12.12.2. B FE G I TETE oveerererereesssssss s 166

1203, BEAEIN T I 277 T EL ceereeereeeeeseeesseseesssssessssssessssssssssssssess st esssesssssssssssessesssessssssns 167

1214, BEAERFN T IR STHE ceeeeeeeeiee bbb 167

12.15. MQ TR} cvvverrreriririsisrri s 168
12.15.0. 25 F PRI BT ovrrrrrrrsnrr s 168
12.15.2. ZH A ASERHIAN T oererererereeisisie s 169
12.15.3. L FERN T HIZBAF TN 2B LRI AR T cveeveereeeeesseesnsssesssessssssssssessssssesssssssssssssssnses 169

12.16. MQ L5 QUITE FEIIR TH] weveeererereisieieiieisisis s s 170

13, MQ B2 VL v 171

N I O TN LT T 171
3. LL TAEALFHITE ATTVE v 171

1320 G LA LRI FHER T weneereereeseesmesneessesessseesasssessssssasssesssessasssesssssssssesssesssssesssssssssessnnssncs 172

13.3. AN TIRIIN FH LA wereereeereeseesneeessessssssssssessasssessssssassssssessesssesssessasssesssssssssesssesssesns 172

134, FEARAT FH [FIZME weeereeereesneeseeeessseeseeseesssesesssssasssess st s ssess st ssess st s sesssssesssnssesssenns 173

13.5. MQ B AN T HITIII] wevererererereieieieieieisisis s 174

13.6. fB BT TAEIREE coorreii s 174

D37, Z3ZRAN THH s 175

S o e N = 7| T 176
13.8.1. G B A G FEHIAD T IR cerveereeereesneenesreesnesssssessssssssssss s essessssssessssssssesssnees 176

13.9. ffiF] MQ FFRITELE TG v 176
13.9.0 54D THEB LA H ST v 176
13.9.2. BEF AN T I H overereeeees bbb 177

1A, [FHAT FEIETIITI G «eereereesseeseeseesasesesssessasssesssesssssessssssasssesssssasssesssssssssesssssssssssssesssssnssssssnns 178

1AL A 1 NOLT Y DUFRRIIEAE ovveereessmmressmmsesssnsssssssss s 178

14.2. (g4 e eXtdi F DUd R ZE T R ettt 181
N B < 71| 22T 182

143 fF P R transpl ant DIHRGEIE L oo 182

14.4. ff ¥ g pat chbonb jF it email s %5 I oo 183
14.4.1. &% PatChDOMD (K147 S oo 184

AL SFFE B MEICUNAL ..o 185

AL PR RS EI B G5 G AT T reeeeereeereesseesessessaessesssssasssssssssasssessesssssessssssssesssssens 185
ALL LI AP T s 186
AL2 BT FTAATR orerererereeiesssss s 186
AL JETH H SRR coerer s 186
ALA Bt SUDVErSION [LIEEHEPEBE cooererrer s 187

A2, Jh SUDVEISION JFFL woveereerirerieresieisiee st 188
A2.L HFELFITETU] oo 188
A22, JIE B oo s 189

A3 T THRITEL T oo 190

B. MErCUrial FAAIZ oo 191

B.L. MQ £ A 3 i 191
B.1.1. qapplied—1I3 75 T IR T eveeererreereinseisies s 191
B.1.2. qCOMMIit—4Z A5 FAF A TAL «overerrrereremrmiiisises e 191
B.1.3. qdelete—)\ 4 Seri €S thjJiEh T oo 191
B.L4. qaiff— 5 R I 07 FHER T IR ZE S ceeeeerenrsesse et ssessss st ssessnsans 191
B.1.5. qfold— 03 I RIAD T HEAT FURAZE wervereeseeseeseesnessnssesssssssssssssesssssssssesans 191

viii

Mercuria #¢ 845 g

B.1.6. fold— L AR T FE(“HTE 7 Ml AN cerverreereeermesneesnessessneesssesessssssessssssnens 191
B.1.7. gheader — 5 7R AN T S HIA v 192
B.1.8. qimport—y5 45 = 77 T R ABATI] v 192
B.1.9. qinit—>34 g] MQ il B HRAE «oveererereiiriis s 192
B.1.10. gNeW—F1]ZE TR T corereererrermremiesie s s 192
B.L1L gneXt— I 7R FANEN THIZZTR o 193
B.1.12. QPOP—H| B HEAR THES LI AR T cevrererrerreeremrereneisssesese s 193
B.1L13. gprev—I5 7k FEANEN T IZFR oo 193
B.1.14. qPUSN—EHIIAN T FUHEFE «oveerererireirsirsee s 194
B.1.15. Qrefresh—Tu i T I RN T coeeererrerereiresersee s 194
B.1.16. grename—p§1 4 4N T eoererrenmienenin s 195
B.1.17. qSEri€S— I RN T TTHI] corerrereriiiisisssi s 195
B.1.18. QUOP— I 715 M TN T HRIZZ TR evrererererenieiresiesese s 195
B.1.19. qunapplied— G 7 17 N IR T weverererereeresesesee s 195
B.1.20. hg Strip—IjHi[g:—ANERAS Az FL ST o 195

B.2. MQ SUEB T i 196
B2 L. HH T oo 196
BL2.2. HH T oo 196

C. MJEARIL Z23E MEICUNAl ..o 197
C.L. 2 UNIX ZAZE ittt 197
C.2. WINUAOWS ZEZ oot 197
D FFFBCH BRI I weeveerrerereemremreesieissse st 198
D.1. Requirements on both unmodified and modified VErsionsccccccevvevevceevecceseennens 198
[2022 O oY/ 1 o | | (S 198
(DRI o0 o L= o) [T 0= USSR 198
D.4. Requirements on Modified WOIKSccocveiiiieieciece s 199
D.5. Good-practice reCoOmMmMENELIONScceieereeiieiieieee e e e se e e e e e eeeens 199
D.6. LICENSE OPLIONSveceeecieeiiciesieesieete st e et e st e te e re e tesseesseeteeseesseesesseesseenseeneesseensennnens 199

HaEIEE

2.0, fAHE NELT O [T IR ceeeeerseeeie s 13
3.1 ny-hello 5 ny-new hel | 0 817 145 X e 24
3.2.)\ my-hel I o 73] my-new-hel | 0 2 [GRRAZEIIPIZS o, 24
B3 ZEL I, LLIEEAE Y o TAE H 5 BRI TR wereereeeereeseereeeesesessesseseessssssessessessessesseenees 26
Bl JHIGEIEIBETAL werveereeererseeseeseeseesseesesssesseessees st es s s bbb 26
3.5, i] KAIff3 2 31 S0 A AS RS «eereereseereereeeneseeeeneseessessssessssssessssssetssssssssesss s sssessssseans 27
AL THEHFET SO 5 BRA EE I S B Z A E 55 2R wevereereermesnesseeseeessnsssessessesssssssessssesens 31
B2, TEHAR Y LI TEZR weereereereesesereeseesessesssssssssessassessssssessessess s e sses s st e s s st st es s s bbb ss st 32
A3, A HEIPE, DL 255 s 34
R N N 1R 27 IO 36
A5, THEH LT LG THANALIE eeeerereereeressesenssnessessestssssessessesssssss s ss st ssesssens 37
A6 JERX Y 5, THEH I SETTIAR T weveereererressesenessessessssissssessessssiss s essesssssse s ssesssssessessenes 38
AT, [T BB IR TAE H T oeereereereeseeeressessessasssessessessesssssssssessesssssssssessessssssssessesssssssssssesssens 39
A.8. 55f [25 B IHE DU I TAE F SEERAT LT eerereeeeresrersessnsissssesessesesssss s esisssssse s sssessessses 39
A.9. L FFEPIT/NTTL I wereerereereeresesseseesessssessessessesesessseas s s et ss e s bbb A 40
B I A3 7 vevreseeeeee ettt 63
9.1 fifiF g DACKOUL AT — ANMETAL woveveererenrmreieie et 100
9.2. {§i] hg backout 1K E FETT E B -eveverermrrrmreise s s 101
9.3. fifi F N DACKOUL AT — AN TAL wovereererenrereeie e 103
S I e = (7. OO 104
I L B OO 106
0.6. FRIB A TT, JETEA0IE crvererreereimsissiesese ettt 107
0.7 PFRIB AT, JoTFHITIALTE ettt 108
0.8, B FFHRER wvvrerererrmme i 109
0.9, B FFHRER coovrerererrmmei i e 110
12.1. 5 MQ AP T HERE TS FHFIFHEL AR T ereeeereerereereerenmensseensensssesssssssssssessesssssssssssssssssesssessesssees 157

RIBHE

A.l. Subversion 445 Mercuria i 3%

Xi

—l

=

L ERE=

BEFE 2R, SRR N AT A BAME A APBA P AR H BRIk, IX AN AT K
BT LA R ITSGIREEAATZ %

HARAETRANI g, RO g Mercunial il pyi% LAe T —SBimrin), ol i 5 A B -
RIX W REFE T B AR 51 52 F P, AL R 5% S RRAS P A Jot_ E gl I 22 o3 A X e
RTT A FATEAPAEM B L E tvr] 107 A AT o A R R SR RS T i

—ARUF RO TERAF B ROEFI VS SR X R AR WA ATREE? BN
WO WEAMHE? A, B A A Al E0X L), Rpdi)@Mercurial.

. 1§18t {R S ¥ Mercurial

RS AS, ARSCHE T IR B AR RS R A E B, Rl 2
Mercurial. 0’ Reilly MediafiF A+ il N385k 2 Software Freedom Conservancy (http://
www.softwarefreedom.org/) x A~41 £ g Mercurial Fi L Ath— 647 v o AN AR 1K) IR AP0 H 42
T IR AFIEAE S R

- B

BATMatt Mackal 1, Mercurial 3 H (9T & & RGP 055)1, XA AT REAAE . (155
T ABRAA T AR B

Bz ClanfiRuain i 2 il 75 355 10 H BRI AT Wb (KRR /N 3 2200 ke e R Al 22 k)
1 iy 2EShannon(yy 35 1 .

TV IR AC LA 55 By sRAR A T R BRI SCHE, X HLY 4 R R 4. Stephen Hahn,
Karyn Ritter, Bonnie Corwin, James Vasile, Matt Norwood, Eben Moglen, Bradley Kuhn, Robert
Walsh, Jeremy Fitzhardinge, Rachel Chalmers.

T LTIy e A, A3 GE S SR o, iR LB 7 b B T DM
FERTF R — AR R PARAS Rt BT A 1o, A1002 4848 TiFie. HIEFITFE R
GEIEAE BAESE AT H A TTIB 3Kt — M N

A A AR EL N A5, AT A s 1 S =y 2 — HPRe . FREERH
TIHIDLANBS Ty, 34 T4 2 PRI) B 45

Martin Geisler, Damien Cassou, Alexey Bakhirkin, Till Plewe, Dan Himes, Paul Sargent,

Gokberk Hamurcu, Matthijs van der Vleuten, Michael Chermside, John Mulligan, Jordi Fita, Jon
Parise.

TR IFVRE SN VR 2 A0 P P R AR AL T A R 2 U

Jeremy W. Sherman, Brian Mearns, Vincent Furia, Iwan Luijks, Billy Edwards, Andreas Sliwka,
Pawett So#tyga, Eric Hanchrow, Steve Nicolai, Micha# Mas#towski, Kevin Fitch, Johan Holmberg, Hal

Xii

http://www.softwarefreedom.org/
http://www.softwarefreedom.org/

e

Wine, Volker Simonis, Thomas P Jakobsen, Ted Stresen-Reuter, Stephen Rasku, Raphael Das Gupta,
Ned Batchelder, Lou Keeble, Li Linxiao, Kao Cardoso Félix, Joseph Wecker, Jon Prescot, Jon Maken,
John Y eary, Jason Harris, Geoffrey Zheng, Fredrik Jonson, Ed Davies, David Zumbrunnen, David
Mercer, David Cabana, Ben Karel, Alan Franzoni, Yousry Abdallah, Whitney Y oung, Vinay Sgjip,
Tom Towle, Tim Ottinger, Thomas Schraitle, Tero Saarni, Ted Mielczarek, Svetoslav Agafonkin,
Shaun Rowland, Rocco Rutte, Polo-Francois Poli, Philip Jenvey, Petr Tesa#ék, Peter R. Annema,
Paul Bonser, Olivier Scherler, Olivier Fournier, Nick Parker, Nick Fabry, Nicholas Guarracino,
Mike Driscoll, Mike Coleman, Mietek Bak, Michael Maloney, Laszl6 Nagy, Kent Johnson, Julio
Nobrega, Jord Fita, Jonathan March, Jonas Nockert, Jim Tittsler, Jeduan Cornejo Legorreta, Jan
Larres, James Murphy, Henri Wiechers, Hagen M 6bius, Gabor Farkas, Fabien Engels, Evert Rol, Evan
Willms, Eduardo Felipe Castegnaro, Dennis Decker Jensen, Deniz Dogan, David Smith, Daed Lee,
Christine Slotty, Charles Merriam, Guillaume Catto, Brian Dorsey, Bob Nystrom, Benoit Boissinot,
Avi Rosenschein, Andrew Watts, Andrew Donkin, Alexey Rodriguez, Ahmed Chaudhary.

- AFBHLE

AL QT R BRI 20 5E -

RHE
PRUUHTARTE, URL, Wi, SCrE2AR S 4.

#H#

MRS, URBINGIHIIRCR, Bl sRE8amr. SdnE. SRR, 3
B, ISR T .

LEEE o
bl & sE Se P A% IR A A IR SCA
LEAME ‘
PRUANAZ AR PR A A (E B T 1 SO R AR SCAS
1 IR
BEEIbRRs PR, s A TR
- NI

LA TE s S

- A 51K AS

KPS0 H AR TR JA b, RT3 RS P TR B .
BGHRAVOVETT, Bt e SRR O ARAT . 26k, e oot LTS AT
TRV SR A A A OReilly-{iefr 4ol CD-ROMI i 22 VF . 5 1A 15 (I AGA B 1%
I PR R 128 JEJE 2P T o 5 P KR D 2 R0 0007 SR P A 2 VT

BARTATIEAZERAE 5 AT B ISR A) & 75 B, A SRR AR T, AT AR
B OBUHE B b, 1EE, RATEMISBN. flin: "H8 FEAE. BREUTa
2008 O'Reilly Media, Inc., 978-0-596-XxXX-x, ”

Xiii

e

R AR SEAFARAT A5 b GRS AL AT S T IE R Vel sE ARF & DL ERSR A vFal, -
BT IR R . <permi ssions@reilly. conp,

6. Safari® &4 E

S ==
~
=

U FARLE SR A B 15 1} i L i Safari® Books Onlinefyy [l b5, X R R IRk 1]
L i O'Reilly Network Safari BookshelfZg i |4 F it 15 .

Safarif fit 7 — Lo AR T o e — TR T, ARnT DALE LR A S
R ETRIRE R EARPEE, SOV SRR G, NEET, IR R . sorifs &
I, APRSE PR B g R Lm0 e 4 21 1A http://my .safaribooksonline.com - [hittp://
my.safaribooksonline.com/?portal=oreilly] ,

(. BRZRFAN

KT AASIIAEAT i (B 1E A IS4 R -

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

707 829-0104 (fax)

BV RTARBM T, AR ERsEfEiRE. a~fl L E G . ARnT
LUK BLY7 1) 21«

http://www.oreilly.com/catal og/<catal og page>
Don't forget to update the <url> attribute, too.

R A AT FA [PR 15 A B4 YRR -

<bookquestions@reilly.conmr

AR T RO AW . £ o U OReilly Networkpyy s 245 &,) LLix]
PAYRIISE

http://www.oreilly.com

Xiv

http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/<catalog page>
http://www.oreilly.com

%1% SHENE
1L St AfEMIRAEH? Hit AR

Mercurial?

FRASH A 25 B 2 MR R . E R R RS T iR e A
SRR Ay A4 DA, SCMEA TP MUY, BRRIBSUR XA ARG N . IXE H R TE
ZNT L.

SRINT, T A BRI AN SO 2 A IRAS R R AR 2 AR Y, BT DR Bt 3 TR
RATIXA L BB . S 1) B SRS BB B bR R B — AN P AN SO AR
Ao AELLHIL TR, AR TRV RS2 s I e n] LU B2 A4S0,
%%g%kﬂﬁiﬁo%%%Wﬁﬁﬂiﬁﬂuiﬁhﬁﬁﬂﬁ+ﬁ¢iﬁ,R?ﬁk*@
TAERIUH

oA PR A LY, B AR OB ISR, F AT) 4k
RESTCELNE Ly 9

5 IXAIK 0 A APBA T) 452 D D BARF XA N ZAT A RFE . i +¥

Mercurial J& i Jhy 2 AR IX AN b 2 S s 2 EF LR, JF HE R L B, Bt
HREZ A1 20 NPT X (17 ot S AN =S TP

L1 At AfE R RRAIZHI?

A AAREE R 0 A B R] e 5 ZEAET0 H AR AL H] B S ALRRCA B T He? AR # .

* DI EREICSARRIIH 17 LA, BT ARAN s R B D S HA&, I 4
T+ 2T EFEAG A+ A BRSO T ARG

© CUURAIA N R AR AR, BRSPS TR SRR Sy B, PF 2 N2 alisb
(RITR] IR BEATAT T BEF S RIMBE CAURI I, 0T vl LA B (il s AR DRI L b 5

* CERETEMREIEA R WIARRIL T MEYL ERRRBLIZ AR, IREERE 2] A
H A S LT RRAS . SEFs b, —NE ZEF O RRCA) D R e A Bh IRk AT At
LAEIHEGINEEA S (EAIE RS 5 957 “Ark i miE”) .

* CERETE BRI TAE T3 H 2 AR, JFEEEAINZER.

R ZHOX LB AL SR — 2 /DA PIS E— AR S — N AR H e 2 A LA —
.

JRAAE R EAEA R B b C B TRE” R —ANKIH A7 D S2e i) — S B) i
ERHEM LB ARE . —MRAEBE AR A] A AP 1) - 2 AR AR IR

U SRBAT FROAS P B AR, A NI AR SR Al REURs H G5 o AR
LR, APERI AT SEA EAEIE, ORI e, RIBJLFRE M.

1

5 (LRI 1

I3t AN PR RR” EEOR I ANE S A RO T, U] AN i
AP TR AR 2 AT H A, R ?

Mercurial ff i 2 Ak g e B B SCREX P R R (KPR . AR AT LLYE JL A B) A s A
AR, PR AR AN, AT DR S AR S MR H B IR B e IR it P R
ALAMRERE IS a2 TIHAREEM LAE. RN, Mercurial myfh BENT RN s fRIRFE 7T
CAAEARAEE By IR R R R H o

B — A TR REVRR—MREI T, (ERAETUH b # 1) TR KRR
AR, IR TR, SRR

1.1.2. A 0950 %

REA SR — % (R BUO S, DU T RS AR MG, IR KT B —
s Y) R

© RAEEHI(RCS)

B B (SCM) , Bl R
P A A P

P AR 2], A

fi Az 1 (VCS)

AL NFRRIREAREA AR S S B EET S ORES T, RARE 801,
FeAA 7 SR AT

1.2. KB 617

AR T — PR R 8 R IR 5. BRI HGE IR — RS
A shell AT 1S BR45 08, IXANIARAT T fif 2 frgMercurial iy 4 o A3 GRS AG 2 A
PSRN, B R B RIAS S B ST, AR5 A FU 4 RSB A T 4 R LU

ST A R R T L ARSI, AT AT i I A fryMereurial ji Ay st
FRISAT 40 R TE T ik g Mercurial (A, A I A Le i A A AR T, GRS
PNLE

RN U AREA G A WL AT Rl “ 548”7 1, AfkixLt
e AIENBIAL . NATTRER— 2 APAT— 25 LU B4, AR R I T AR % T
ety BB IIAS th—Fb 2 AT EAATIR 2 A %o

2GR, R LA EESE AR A AT B R R AE TR — P2 . fRATBLAEDT sect R
B h & 2] 755 9.5 4 “ AR I B HRYE”

It L2 PRI I S48 5 R IR, AN SR S i At) YIRS T (DR B ORAE AR 2
R4l R — SBUR AT LLEEL .

N

5 (LRI 1

1.3 i A= H B & RS TS

FERL L MDY, B A DR AR 10 B RE AT, AR Y RRAS 32
B T A R

F ARG TAEDN NN, AT IZ LA E B A SCfF . BRI T H LT 1T
ERRAAT T BRI KR BN BRI T SV LR T AR A ve i, T
N, HEE R BA .

S AT BR TIXLERRA, DU EATR T ELR 4y o i gty JF gl — e B
BEATH o BEADTH IS, SCHIL TR 207 5 P R IR G52 A I, IRS5 as AT
A S KT H L . AN TS FER 2% 2 Wit 25 7 IR 95 2 HOAZ H.. - Bt T H T
DEIT IR BRSPS AT PR AR IR Y P A BLAATIAS fiE LA 1 88 110 5 A P LR I
HAZH, DUMATIABE L sARATT IR B o

B AR RRAS T) T RAS i ot O jU e T IR LR R GU AT 1 0 A o SR i 55
IR, FCVF R REARAT T RRAS S i 00 A AT A o] g B3y o B I R R 2 1
BRI, SEFIERAME A BUCH TR ATBLET AR, ARG B2t ff. R
FEAT W 28 1R RS AT At PR RBCAS 126 [R5 BT R

1.4. %0 R A= BRI =

e EAGEE ML, BRI AR TR ZHRkEaMRie Ml 7, H
e IH I R A H I BeAT e 4 T eI s, A X DR AEAR 2 Uy i W e b T4 rh 5
T H .

MFNMNITRE, AT RILPKIE T T AR 2 . e BIR . erp XA
AR 2 BRA s ZEM AT B, R KB o e B Al e b e e 25 & BT — A% Do 1l —A> o0 A
N R e Bl ORAFAE A . FARRATIR], Sl M2 A BN 1 4 b sX R 6
Ho ANBRAL 7 S M I) TR B AREAEAR 22 I Ta) AR PR RRCAS 328 S A F AL

A SRR 5 2 S IFANE PO AT IR e B S RIR 2 37 . 2R AR
P ARGNIRI IR S S E K T Rl Ay BRI AR TS W EER, [R)IN R 1) 45
sedIT i, M HIERER o R T A D, ARAE TR T L B IR 2 A5

¥ 28)] SE P A AU R S i i /T AR U H e R MR R IR A AN BEAE
MEFXTH, BT DB DIREA R4 o T oAl E, RUELE VR T AR R 90 45
Wi 1, AR REARAANSHER B ARA BRI FE X DCEARERILETH N B RCAS FEAZ B
T XFHEOAEA I ERA A 5 Mo Mo SRR IR AT S 3 (KN 51, I AR AT 7] g

LAl FiEm BRI =

BARAREIR AT H I F Hpog A T da cSodt &, RN IS I H A 231 SR AR 32)
TS, ARSZZ AT AFEAR N —FEUCh B CECHIE 1“0 o anARAT R AT T AT
A, AR LIS RIS DB T H o AR e, Al R H Qi AR, AN bR
FIFE TR AHEZ N, RIS SR, BRARA NG IR TR P S i 55 25 38 A28 AL

3

5 (LRI 1

PR, AR R B A e IXFE, ARBEABEIC SRR, 10 HL =4 - A RBCAS %2 58
PRI ANt (018 5Bt AT o 358) R B

1.4.1.1. 433 2 55

AT N A ACRBAS 2 1) 25 TR Aok T 38R AU, DO AR H 1A gl R Hh AR 2
B s o AARFHBIT RN AT AR R IAEDL, SO AT TAERRR, gier™
ORI 00 S, ARSI N AR B2 Bl /b BRI FACRS R 5E 4898 DL, RS 1) B SRS 1) A g o

AT, AN SRR P A T Z TR B A RAEH] TR R SRR i R 48 #2K |
R T B R AR H IR Y, K A BT sl ko AR TP E IS RRA T L “” T, R
Jr R e B AR S e 5 I SRS o 338 5 38 1 i PR 14T ARG 22 o 4 R AR 7 B 252K

oA BN 70 SO T H T A e — 3o REAN SRR R AR S AW AE K 20 SO o IR
ME R EAET, A SRR TR AR % TE IS0 WA SORARFEEAR AR &
IRt A AR A

U PIAT I NAEAT AT I G IR ASAEAT AR ARSI 5 IR0 S, B AXITIR IR, “ 9>
SC7OAL IR T SRR A AT WER AT T ASE MBI, e o AT SRR T 2 ST
AETE:

© HBR TS DRSSO : AT AT (ATHRASEUR) MM b3 GRATARRD

2y
© AEAESVE Y SCZ AR S AR, DO DORRCAS S 1 R R A R IR AR — VOB I 5 I F it
o

SR F/NG S5 s W D SN 1K A5 7 i S 9 U P (K S (o S s Wl D g R [NP S L
il SRR FPARS:, O pRH CV Sl Subvers onfig A 2) K AR AT T, B4 5 AR FTIRAT)
R 2 TR 3N I H (R D S R CRTREAR TS, AR HCE URPEHIAS T (15 R RROA T

RN RIPZERIAA R ML R T, L N AR ZE QI BRI 5, iRk 25
T AT E AL

LA2. mlim B ey =

AT A BRI A IEAEBEATVE 2 BP0 H o 0 85 P SR IR 55458 (0 DR 2 A LA iy 3k
R I AN A nAE 1 M RRCAS P2) 28 G2 25038 I A 1) P R A b PR I 328 2 A 7 3
fF, XFER BT, JFHARMEE . ARG E A SATIXFEN 8. R, ARn] IR %
Sy WIS 2 AR ST A% BBEREAN B f S, IR T DU S e &) D1 (M K ks LR 1
BRI

SR IR AR R G FEMEATS 8% . HEAZ R IFAT) AL & 8oit vl LORE—
A E IR R ST A I s o [FIRE, R S Nt B SR K R e . DR R IR S5 AR I
R WERARA A — e A U AR 2 (A AT i Bl ZEE =l 2 et
;??Q%%%ﬁ%ﬂuﬁﬂﬁﬁﬁ%ﬁ%ﬂM%Ei,%?@ﬁﬁﬁﬁﬁ%ﬁﬁﬁ%gﬁ
AR T

UERARAT A LA BAE %) Iy gk il L, B A 1o 32 i § 0 A sUROAS i . TR Sevpf
G e B PREE, TR) 2R AN R PR oy 560 O Ll LA R0 A s AR o 5 4 bug
IR, AR5 AR AT [, P PR S AN B4 2w IR R 5

4

5 (LRI 1

1.5. 1+ 4% Mercurial?

Mercurial & — N8 IF MRASE IR S8, A & 1R 20— T8 — (M £

VEL P

=]

B
e
=

Y

EHERENR.
* eV REMERSS .

EARR S e i
I RAR BB RATE TR G, AL 05 B2 9 AR el LG FIMercurial AR . BIE PR AN
AL, WA EZAL)L P, Mercurial (ar & MIIRERARF 98— 2, R 20E Ay LAY IE
IR es 7, ARDA 151

FEAVNIIE L, Aty Fgel LURE HIMercurial Jrg6 10 . G BT KI5 50/ 4 3 Babag

BB (ANEAYLC LWL LS 5 SR LRSS AFF R Mercurial 35 fRHF/N G R
W, FERZHR 2)l B e R AT o

AN W] BUE fMercurial . A7 LTI unikE i3 BB A, 1X 28T H
AT LT A SCAERDL T IR RS .

st #gMercurial (.0 ThEE AN BEI /L ZEoK, ARARZ D) (A ZEml 1T & . Mercurialdk

WA TWAATS, SO, I HPYthonsegl, FH4™ g i) 75 X8 gt i Th se AR 77
f, WAECEHMETATRHE MY T, 5B IRHf e bugalzs i mtk e .

1.6. Mercurial EEET BB EEE:

FEARGREL I D221, WS EEMR AT s A et 7 i Nt X, Al (REGHD
AR A TR B RL, K2 A O N A R LA

1.6.1. Subversion

Subversion2 — AN AT AR TR, R FSRERCV S, e g R/
J 55 A 454 o

SubversioniMercurial f e # £ 1y diy & 1 dr 4 _EARF AL BT LA AR BAE A, IRE S
RTINS, WA TRAT LR 2 B & BigT

TELSRR 21T, Subversion®f & IFMISCREIFALF . EREARBINE, ERIFYE T IFIRER
HIThRE, HA2MEZeRMR 5 [http://svnbook.red-bean.com/nightly/en/
svn.branchmerge.advanced.html#svn.branchmerge.advanced.finaword] ,

EF I 1) AN R A 2 il B A1 _L-Mercurial L Subversiondg AR i M RE AR 3. 22 A
MR RIS B A, T L Subversion 1.4.3pyra_local sepRAEmi . a3 i
BAARMAEIOT T o 1E BR8P S M4 A7, T4 Subversionfiy i 3h e K, RN IR %
Subversiongiy 4 i iR EALAE HL, I PR Ay Subversiony Ay i (¥ 53 L], AEA % T rh iAok
ANEIITE T, g% i 5 i M IR 4 6 Bk 2

5

http://svnbook.red-bean.com/nightly/en/svn.branchmerge.advanced.html#svn.branchmerge.advanced.finalword
http://svnbook.red-bean.com/nightly/en/svn.branchmerge.advanced.html#svn.branchmerge.advanced.finalword
http://svnbook.red-bean.com/nightly/en/svn.branchmerge.advanced.html#svn.branchmerge.advanced.finalword

5 (LRI 1

7358k, SubversionAFEZ a1 8 2 A7 Al A VA, BBUSAR LA & I3 (1 ¥
gk, PlnAr BSOS (status) FE R E (diff) o gh
Subversionyit L 4f: gl A 2 i FiMercurial (f A BRI T AF Hse—#ER, sl ik, H gk Mercurial
(RIRBAS PE AL 1 300 H) 58 B 52

Subversionf5 18 £ ()55 = J7 T B2 ¥ . Mercurial BLAEAEIX 7 RS MO B . SR 258 1EAE
BN, Szhr b—-seggMercurial fyGUI T H. Ly Subversionss b, T ELiRmg Jik—2% . FiMercuria
—#f, Subversionthf5EEKIH T Fllto

SubVersi OnJf N % F i A7 A I S, T L ARIE £ 4 BB AT AR 22 K — R ST A
IUH o WRARR AR AR IOMBICAF RN T T HK, Subversion F i) by F AORGAE 2
A ORI T3 A AU SCMER A, 188 2 1] 2 Bt A FSUAR S50 1 48 o ol g L3 1
Ko PRURREA A Z 8] 1 22 57 AR H K

TN EIFANFIRRCAS 1) —BERISCA AR R NAE, A s, JEA AR RE. Subversiondi
BT BUEThne, M AT LAOE — A SOrF, SRR EUS 7XIXAS SOPR IR IR (R0 (5232 A
T2 AR BER SO I H M S A R

Mercurial i), j\ Subversionjg i A et & A s A . ¢ty L [Subversionf i A< i
SRR . XRETE R R RTRAS 6 IR FAK” L RN IEATHO fl I Mercurial fi
Subversion. FUA S EESUR M, KT BAHIE AN IBIUR, AR T I SR
A AN

1.6.2. Git

Gitye Jy 745 BLINUX Py AT I R 10— o Al oA Bl T H . g fMercuria — ey

Wit 52 7 Monotoney £

. Gitg - KT 24, 1.5, OfRASEAL T 139 gl (v 4. "B LAKESA I 48 Ttk 5
Gitff L, Mercurial JjsK i

MRS, GitdeH . RN Fe#itMercunal, /bR ELinux |-, {1
Mercurial /e Hog i f AR, ifEWIndows |, Gt AN R IERRIE R4 LIS RE, #IL
Mercuria 7211 %, 23 /AR A B SR I g /21X AT o

Mercurial [y g A AN B4R, (HGIURRAS PR A T T4y, K Hoosk
fi repacks’, RRIXAEAL, PERERLS NRE, BIE IR S I . 5 2 A GIUSUR R ¥ R
55 e e S RS AP SN HOFTAT AL, I A 03 IHs2x SO P AT, W ey il et i
HA ORI 24NN 15 —ASBHT BRI GIthA P LuMercurial fg N —28, {EUE R AT ALK AA
RN 2 KUK 2

Gitff 0 HCili = 'S, VF 2 Gt 42 I shell iz perl AL, X e A i1 Ji e %
AR K . MRS 4F JLOCGXAE RO, B C 2 I T Biahie T, AL H AT,

Mercurial i DL\ Git g i 4s J7 v S A BRAS 5 5
1.6.3. CVS

CVSuyfig 2t 7t Al a5 2 IR AR B) C o DR B Rt SR A s S AR L, V7
EZCS SV OE R STAN /N

5 (LRI 1

CVSKH 2 A % /1 /IRST A4 . EA SRR SO AT R/ i 744, 1X
A EARE S “WARdE” = D NIRRT T S, SRJA 245 FORME B SR, X
A3 TLAl N L RER AR TR B0 A o SXFEt 2 S M AT H g S i) T R ARE
BILABNET AR B AL 55 W A 0, R b 20T Sl G A A A 52 5 M) SO 1) A2 BE i
AR B R SR TE 2 MREE A

CVSIf) 43 STANBFRE IR 92702 RV AL T, RABARG RN . S WASTRE A H 3%
A 4o RAEFFRCAEARH B S it . &L BRI A S — SR & Thfe, P LA H 1
AT RERITERRAS FERANIE I 7o ANVELBTI H ISR ZIH , BAAHEREALHICVS.,

Mercuriauf L 5 NCVSIRUA D 5. AR, X H AT IR 2 B s JOpA b L R
CVSGARLFPIE . KN CVSERD 57 B SOF A SR SO R G2 IR IRCA T, BT LA
AHREE R T ECV S . LT, WAl s AT . FACVSIIRE
I s BRI RE T8l 58 e, INILAR R A 5 A o MERIAT I IARCASJZE, CVS AR I W 2
%%@%M%ﬁﬁ%%%%ﬁﬁ@&,%Fi#%ﬁ%+%$,ﬁ%&ﬁk%%%%%ﬁﬁ

R R D

Mercurial] LA NCV St A P 5 N RiA 1 12

1.6.4. ' TE

Perforcesg F fry it e h U P /IR A 40, 3 P ANGEAAE AT Bt . RIRAR I AR 23
THAR, ARG A SO, P GEAT— >y 43l &n Perforceff 5 45 .

XN BIBAIT S, Perforcetfl Xl (HZ A1 B H il B A LUn, PERETURI T
B o oK Perforce sz o i 25 AR A AR B P 7= A= 1) £ 280

1.6.5. 4% A dzvsh] T2

R TCVSZA, LU LS TRAS AR, B A LG & A
o

bednid, PRCASR I SRh SU 4 A F HLSCRF SCFBE, Subversion Wil G4 % g 3t
B EERINE7 R

Lo Mercuna iR 24T, AN ANUKHEHFR, ke, REFIMEIF SRS 24
H

1.7. N E T T Ei{]#%| Mercurial

Mercurial 1 f5—A-njconver t g e, gl LLESHE () A JUAN S 1o oA 6] T 1 3 Nl
APrse IR IR EIEUR AT DAER IR AT H D e e, DU PR T R A) 4
FRCAS LU B B 1R A2 5

convert SRR AR T HAT:

e Subversion

« CVS

5 (LRI 1

* Git
e Darcs

5 ghconver t L) j\Mercurial jiySubversion St 57 s, 3 iy BALHRE)42 i ik
Mercurial fSubversioni- 7 4k, i K4 -5k AL T 4F .

convert & iy . gy IRARA R URL 88 #5424t B BRRRAS R A4 FR (R]
W), BRI T T o BB n, B AT R dr - il LA AT AR T

1.8. hig A4z 5 52

AT 44 LTI RCAR B T RRSCes (PRI RS g iMarc Rochkind 4|4
AAE DRSS S 58 KK o SCCS I REFE M AAN SO, IXi 2RI H AN - el] — A R4t b
ot CARZR) . AT — A SO R BE T — D B I BRI AATRA S B0
AN, RIS TR BT L DAY, AR AN RANRERS OB L S

Walter Tichy 7)\ 4R RIFF R T — AN FFUE I SCCSHARER AT AR ZRCS (WA IR
40 o FSCCS—#, RCSERIFRNRTE MM TAEA M TAE, RN S0E S, UL
EZWNIACTINE T

TG, Dick GrunefpRCS{ELRL FIF R T —EMA, fhIFafRZ Kemt, JEkX
B4 HCVS TR RS o CVSIYE RN BIFTAE -1k AN Sn] LUAE H CU A% 8] B[]
Iy EL AR AR . RO CAEZS B 1 E T PR A SR AT, X 7ESCCSHIRCSIK{i]
HAR Il T8 H R RREAS SO, T RCE R B ERIFE DL, aTLOMSZ RS A SR . Al
A AAESRAT B SR AN B 2 i 65 9 B

Brian Berlineryizi T GruneffifiA, HICTE'S T i, H 219894 R A5 T ik #efti, BIfE
HICV St IS 8 R ARSI . CVSBAJT RN T WA HUThfE, T T %)/ IR G A
Fi. CVSIIZEHIRBEA A0 OUZERR 508 L ARAT Gy I3 e DL 2 AR .
H o SO B A I HE DL, — B T 2R e RS 22 b . CVS3EAE TR &
AR AL UL T b N T IRRA) R«

OEMREI, SunAFEITFA T — AW A sSRA I R e, Ui
TeamWeare. TeamWare (] T /EZS[AIALFEIN H JJ) 52 1K) 5 28 5% U1, TeamWare % 7 HH Y i A 22 (1) Ak
o (CVSIEHRCSIEfEH: 8, TeamWarefii FHSCCS.

FEQOFEARr, BHAT I (] (UL, CVSIZ 4% 8 tHAR 2)il "e0ont 2N SCA [N A AR K AR B
AR ALK, ABIEIRICE BSOS H SRS (1 By 4 AR S A A - SR
s BRI ARME DY BRI GRS, A8 AL R b) 1) A PR o

20014E, Jsiok ey ik CVSIBIA T & #Jim BlandyfiKarl Fogel, JFiaT —A#iTiH, It
H B FFARCVS, IR AR R H S 1 S R B 3 3 (¥ AR5 . I Subversionygg A= 7, g Jf
TR T CVSIER R)/ RS A, ERIEIN T 2 SCAF IR THRAS, SEAF IR i 44 2) 57 2,
FIIADL — 25T hE. RIS, EHCVSIFNZ . SubversionfE AN fE R HRATE K

KMEM I A], Graydon — HoareJfis 17— ANEFEh g i) o A SR A HITH . AhFr 2
Monotone. Monotoneffftuk T 1R 2 CVSE I L imiA I HR A 7 A6t 28, eoeQH
ELPART (RILLE) BIRRAES IR G E Bt . e A B N8 s a5 VF bR iR AT, IF Bo6 T AN AR
PR T 58381 “A54E” ME&

5 (LRI 1

Mercurial it 2| 20054 . %1177 1 5 T Monotoneyi)—
rPERE, XERIIIH 1 R

/,
e

i, Mercurial) HAr &%

== 2 = Mercurial 2 -

2.1. zz23£ Mercurial

X RERRAT IR R SE, A S R AR TR BT AR AL
H Mercuria As43 4148 5 .

2.1.1. Windows

Windows 41t Mercurid fig A TortoiseHg, ‘&3 itk & http://bitbucket.org/
tortoisehg/stable/wiki/Home, SXANF PSSk, S ATLL “HST TR, FINERGET frd
AT AT P S i

2.1.2. Mac OS X

Lee Cantey 3, Mac OS X 7t http://mercurial .berkwood.com % 4 7 Mercurial 22355427,

2.1.3. Linux

AR Linux ORATRREAT 1 MR I TR, TFR A AIIERE, IR MESS) e
Mercurial —3f il i1 4 B . ke Mercurial ik, (EAR KRB AR T AR pT A HI 1) &
ATy Mercurial gff 425 1oy 3 BRRR S

h TR, A TR BAT I LinuX RATRR R, M dr A7 2edE Mercurial
77k XY RAT ARG T B A A PR es, AR S AR 228 Mercurial; 3
FR (K F 4 Bk mer cur i al

* Ubuntu & Debian:

AL ENIR

\I

|apt -get install mercurial

* Fedora:

yuminstall nercurial

* OpenSUSE:

|zypper install mercurial

* Gentoo:

lemer ge nercuri al

2.1.4. Solaris

£ F- http://www.sunfreeware.com) SunFreeWare 3744t 7 Mercurial (1) — ikl 2z 340 ,

10

http://bitbucket.org/tortoisehg/stable/wiki/Home
http://bitbucket.org/tortoisehg/stable/wiki/Home
http://mercurial.berkwood.com
http://www.sunfreeware.com

Mercurial Zfe: JLad 50N

2.2. Fria

G, FAMEH hg version £ 4k Mercurial J 75 (U 22 IEff ke BT B R I¥ SEBR R
AMEEIFAELE, JAVCOE RS R, FTEIHER.

$ hg version
Mercurial Distributed SCM (version 1.5.2)

Copyright (C) 2005-2010 Matt Mackall <nmpm@el enic.conm> and ot hers
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE

2.2.1. E LB

Mercurial Jy'& T HIBIRSE. YRS UTHAT — A A0, SR R EE B,
RARTEARWAT K, Ml HEs4T hg help, gLy ar ST RISIR, Ehiid TR 62 m
M. WRIR R EE ARG B CRIR) , Eagy M EEM I E.

$ hg help init
hg init [-e CMD] [--remptecnd CMVD] [DEST]

create a new repository in the given directory

Initialize a new repository in the given directory. If the given directory
does not exist, it will be created

If no directory is given, the current directory is used

It is possible to specify an "ssh://" URL as the destination. See 'hg help
urls' for nore information

opt i ons

-e --ssh speci fy ssh command to use
--remptecnd specify hg command to run on the renote side

use "hg -v help init" to show gl obal options

TERAFE 2 MVEA (S B (BH AT L), afLIsfT hghelp - v, 315 - v J& - - ver bose [y
fifal, YR Mercurial ST B AN I 245 KL

2.3. {E AR

feMercurial vy, B (AR R CE RRAS BE P EAT o T H IR RSUR R G048 T 8 T %50 H I T
SCAF AR LSS R 7 S %

FRAPEBRAT A AR T ABOR IR ARG I — A H %W, Mercurial 2ok EA1RF R AL
Bo ARRT DARE AT AR 55X AR I A P A7 58038 S 30 S M e R AR P 8 4 e 44

2.3.1. QZRAER TR

P8 DURRAS PEAT RURFIR o BB AR RT LU] SO DL iy R AL — AR P8, Bt i 2
Mercurial py i 11y dy 4. 3X AN 4 i hg clone, B el gt 7 — N R IR R (145 L

5 hg clone http://hg. serpentine.contutorial/hello

11

Mercurial Zfe: JLad 50N

bR, Ad A hg clonefyy i kb 7r & BE M LRI I 4 S BERSUAR P o o b AN b ke
SRR RRAS e AR HL e 1Y), R I 2 21, 2 3T TARUM A R RSO SR DRI PR A2 B
I I AR A H

WMRBAT BT, BATSEE —AAMER, Mg hello, XAMHF{SEFE LY
e

Is -1
I's hello

S RCASJZE PR R SO RN BAT TR A 5 [1RO AR e v 18 SCAEARTRD 1 P9 7 RRRCAS 17 82

fpA-Mercurial f A FEH I SE 28, AAE, ML, ea8 T IH S — R H
DURAER I S FATRIA 2328, Sa B IRRAS 7 20 A e vd B BN RROAS R R ik, {H2
Mercurial A 22 RIS s HABAE AT — M RRAPEIEAS , BRAFRG e

REWAE, BAT AR AR BT RRCAR R s, AR =4, BUER M
K “Y&E” . AWM

2.3.2. {t ARIRAEE?

YIRAVFAGERA R IS, Feli T RILE A —A- haff H k. X2 Mercurial
FRAS PR AT T AT e R 3 77

cd hello
Is -a

H k- hgehigy py 29 R3L 7 H s jeMercurial FA vy . WA 2 i oy S A AT] SCAE A H SRR
LA R .

MR, NOEFR “FUEM” BAREE, B HAb i Sor A H 5 oh TEE R —

AN DX VAU AR A BE P& TIUH R 2, 1 TAE B R H 4 — M I s
BT RER

2.4. B

ST —NH, BA IR R RIALE, BA VMR — e Te ik, a4hg
logmy AL ZRA T30 SRR AR P v i1 g s AR

[hg Iog |

SR DL R, I AT X I H Hic R (R AR ST — B, fEMercurial fry R
o BATREX SR A SOV T E SR, ORI kAT e A5 LA SR AR

hg 1ogfy i i 55 1454~ BUI R LA R

* changeset . INFRAME AT, BE—AES, RERE TR ARE . X
FEIRXAN AL IFRIREF o A NBERI AT H S ME AR IRRF: RIS PR (A A — A5 DL,
Al ASFAF R RS MR AR AR Moy BRI HL B NBE R AT R A S 1, (HE
ANEME IR ANHRCAS P FR AN AN [18 (10 5 I v 8 [— AR mT e I AN TR (R AR BE A

12

Mercurial Zfe: JLad 50N

o user. XANFBARPURMEGIE TIRXANREE . XANTBAE AT LA dE X, WA A
gk 44 Ik L sk o

© date. XA AT, EH XK. CHIARI R AR TR A8
7 T BIEEAZ RN H AT).)

© summary. Qg oeiz A AR S AT SO B

© AT, R LM A, AR FRER KPR RN AN RO, S
—AELHICEB T (U PIAREATRR IR E X B R P RRCAS b 1 B BT (A2 B)

BRAIEDL T, g OgHH UURAHEE, B T AT

2.1 “ppApE hel Lo gypysale” LA R G R T oA FEhel oy g, S fefgs
DA P U7 o EARTENN IR E T, AT 2 IRAEHIE A .

2.1 pAEE hel | o gyfm s

4: (newest)
4:
l 3: f \
revision changeset
2: number identifier
L1
0: (oldest)

241 THEE, AKX, SHEHFARE

S SRR RO S, AL Ll FOR LR LR Clr P
KIEAE?) BRI, AT R AR R, SRR A6

Mercurial A iErfg i s, ik ie B “ A0 AR AL A58 Sk (5

) oset’ ATV IR A S AR s eV

e b, SRR “AZH AR IR AR, R W AR IR R AR
W= MFERLTEE” . Hi2—~hg logay &b, changeset &g i — M4y fil—
AN NBEB A R RARIR - AN R
* RATRATHERESR, ENAE S BTRRAE R AR

© FONBERI AT OE R AR, NEEIRRIR, EAERBASE R BT $ DU RS 1A R AR
£

Ao

XA XAR S A AR W R NS A3, ARAT AT R AAT] (¥ A S3F
MR —4E o R PRIPE T RRCAS 5 ORI AH W AR B HE NRCA I o 5 ANBEDRAIE[R]— M EEAEA

13

Mercurial Zfe: JLad 50N

IR ARV . FTR=AETa, b, e MRASE T RIKFF 0, 1, 2, T
AE SIS R A RO, 2, 1

Mercurial fff i i A5 Ak 2 o 747 S S 105 (8, Ui RAREERUI AR AR T4, 5l iy
THRLJR P — AN AL CnfEbUgHR D, AR E oS BERIAR RS

2.4.2. BEIEEMA

R ARG Togiy B — AN AR Y HAEE -1 (Blig--rev) eI, A5 AT ik
PRARTFRS AT LICRAR @ WAS, W] L3R E AR 2O
hg log -r 3

hg log -r 0272e0d5a517
hg log -r 1 -r 4

UERARAE B JLASRRAS P B, (ER AR AN FIHER, WTUMER] SEEFRIE: Ea B
L fRabegnder DU AT) T RRAS A RSOAR 7 5 o

[hg log -1 2:4

Mercurialif n] DL sz BR A (K i, dnhglog-r 2:445112, 3, 4. ififhglog-r 4: 254
4, 3, 2,

2.4.3. BIFHMER

M AREITEARAE SRS TA I, hg oGkt i 2R AR A IR, (AT IR AN Janid
TERRIBATA, PRADE BRI e 2 qliid, s s sad mscpkmsik, hg logdy &m-v (- -
verbose) ybriisegs SRl 115 K

[hg log -v -r 3

IR ARAR RN B A RER RN 28, Hn-p (- -patch) BEIf . X2 AR 5 i Py 2%
plunified diff g 0 7R (SRR GniEunified dior, 354 12497 “H@a 17 .

[hg Tog -v -p -r 2 |

PSR, PLL R
A
2.5. fpFIEIn

BAVRR—TF, deAvfipMercurial gy &7, kG G e TAEMB 00 BUS %
HeAREATH.

Mercurial iib 3144 i 45 1) iy & IR TR 7 VR T B — 30 23 AR LINWCRIUNIXG L I b
BB

© AMETE MK B, BATCEFER T, hgloghy &8sz - eviEi.

* RBHOETEATH A, B TAH--rev, JfTErTBAHI-T o (A7 LEIE I BcAT R 44 1 B A
AR 2L D

14

Mercurial . Ffsnin

 Long options start with two dashes (e.g. - - r ev), while short options start with one (e.g. - r).

» Option naming and usage is consistent across commands. For example, every command that lets
you specify achangeset ID or revision number acceptsboth - r and - - r ev arguments.

. ﬁﬂi%ﬁﬂ%%ﬁziilﬁ, PRAT LA AT TRAE e A b o B, v 4-hglog-v-p-r 2y L) 5
glog-vpre,

FEAAS B, Bl H A HIRIE I, AR AR XA NI B ARA—

Most commands that print output of some kind will print more output when passed a- v (or - -
ver bose) option, and lesswhen passed - g (or - - qui et).

115 A A B — B

Almost aways, Mercurial commands use consistent option names to refer to the same
concepts. For instance, if a command deals with changesets, you'll always identify them
with- - rev or - r . This consistent use of option names makes it easier to remember what
options a particular command takes.

2.6. Q| EMEHTE

MAERATC 0t Mercunal (A i T — 86 TR, BRAEFRAIIT AR et ot BAS
AR LB

The first thing we'll do isisolate our experiment in arepository of its own. We use the hg clone
command, but we don't need to clone a copy of the remote repository. Since we already have a copy of
itlocally, we can just clonethat instead. Thisis much faster than cloning over the network, and cloning
alocal repository usesless disk space in most cases, too’.

cd ..
hg clone hello ny-hello
cd ny-hello

YORJEING, ORBICRERRCAS (0 “ IR ” $5 DU MRUFI I, XK R] LY
TEAMESS ARV I I 1R S AT b e RPN ST 58 MOF HARMER I SEAZ RIRRAS I, RAMESS
ARRIIAB AN, IXFEAR AT BLIFAT AR . RO AR SO BEAR D7 A0, B AT AT I o o B R A 55—
A RRAS AR TR T4

LEBAIny - hel L opA ey, fr—Asmfhel Lo cryseff, w s T2 helo,
world” # %,

[cat hello.c

PA G XA A, AR EATENS AT

... edit edit edit ...

i SRS PE (R F R — A SO RS b, KR AR A, ORI R, Mercurial & FUREREREA J7 20K
WERCE, RS I EE DUALE] . W RARA] XA RS, BT RR: I 3OS A SR, IRA T2
PSP ENEL (N

15

Mercurial Zfe: JLad 50N

| cat hello.c

Mercurial fthg statusgy 4 fi 15 R FAT & A B () ST 2 /0 T fik

I's
hg status

hg statusgy &%t 28 PR AR E R, FExscpkhel To. e, 5 —47 LM IRk ity
Hio BRAFRIIE S Uie, 4 N0 Status AR 2edi th IS Se i A7 6 5) ST AR L

"Mk iiMercuria Uz B A e Thel To. ¢ ATRTEASCAEZ AT, sS#EEE
Mse 2 G B EnMercurial s [CURg b B

g scpEhel Lo ey TR AL AR I BERAT TR A T A ARERE S, X0, 3R
IR ZALH hg diff gy 4
[hg diff

IBREANT
WRARAFE W B AR DL BA5 R, TS5 12477 BT .

2.7. EIEWEPIERIEL

BATRI MBSO, G IFINRIA T, H A4 hg statusfihg diff & s g, 1)
FADF B R, FINEIES] T A ARKE R, RSB AR D 3 1 L
E.

BAIH A Ahg commitGia B AR 4R s JRATTE B X ARy “M—IRdAs” i “dt

ZN

2.0.1. EE B P AR

M fRuER S — iz 4Thg commitdy & if, N—E . % TAREEAE IR
8, Mercurial#oicsrAR A4 P ANIB A kL, SXFEURAITIL AR LS 5L B 70 TT 2 WA k-~ A2
o Mercurial ey A2 —MT RS 2RI B KIRZAAL R riE:

L fniRrgihg - commitdy & n b7 - UiRI, e — M4, Mercurial 23 X AN P
%, X IILEY .

2. FEN R AT g T HOUSERIR S AR &

3 I RIRAEE H R QI T 478 harefgyseffy, Hrhfoffusernamese |, gl e. Wi
RUMEXAN SO RS 2, WS T s 271175 “ g Mercunial (g & 3041

A AR AR E T EMAL LIRSS R, IR e

5. Mercurial 2 A ifi it 248, et UL R 4, SR AR G- — AN . IXFE
M BAE LA R, FrUAE R BEXFE A 2 s, B dTEN I — 4

AR P X EE LSRRI T Mercurial PAT RIBGR Y, 4T BT HH — 404 A5 B A
DU, RATRBGE T A Z R A BEREAL

16

Mercurial Zfe: JLad 50N

ki B s Mercurial oy (1 i i, al L% R HGUSERER 5 Ar fHfiihg commit gy 4 f1y-
URETH . (AP0, S] s HT K 7 it 2 Qe har etk e 7 445 S0
I

2.7.1.1. 4] Mercurial gyt & x4

BOE H P A4 R, A8 R e B R K SR AE IR 1 2 H sk Bl —A 44 har e se
o Mercurial ¥4 WIXANSCAF A 4R AR IS NBCEAS B R NOT CIFAR TR I 5 Y 24 I R
T

Windows gy “ H5&”

i Windowsyyg - H s i 2 C \ Docunent s and Setti ngs 4R H F 4
IS S o SRR AR 3 H SR I VIAL S, v DT H— AT E I, 18
TRA R4

[C:\> echo %Jser Profile%

This is a Mercurial configuration file.
[uil]

username = Firstnane Lastnane <enail.address@xanpl e. net >

FLE SO [Ul] " BAFBRIAA N F BRI, “USer name = .. "R BUEAEU T
o IS T NAMR KT, 44t BL /MBI Bt SISO A R IR, 407 BA 2
s

2.1.1.2. &$FH R &FR

user name g & 1 (1) { n] U ARSI SC 7, DO IS B B 45 JLAR T P 1 321,
Jir AMercurial A gs e e . KZ BN I BORRA AL 44 0 Bt bk ik X, g b
7+

==
T=
1L ,c

Mercurial py .) Do) 2% [l 55 25 2 TR IB MO F AL, bt 32 38 H () s - 3 U
L HARMESRIUR A ME A b o 2 piap M ercurial iy g A e i TR Af TR e, X)
DATSI /IR 0T 380 457 35 R A1 18] DXL o

2.71.2. 513 HE

BARA DN EHRIN AR, Mercurial &3 H— " wfhds, 1EIRATEA L5 EoRFHIAIX
ANRFEMPI R, K2R HE. BB FEE TN T4 LAE SR RN, FeA 13

L2 JE, frAhglogsst hix 2e (5 .

[hg commit |

hg commit i 47 7T A8 (0 —PIANAAT, a2 S L HG " TR 14T,

This is where | type ny commit comment.

HG Enter commit nmessage. Lines beginning with 'HG' are renoved.

17

Mercurial Zfe: JLad 50N

HG - -
HG user: Bryan O Sullivan <bos@er pentine. conr
HG branch 'default
HG changed hello.c

Mercurial 25 2 b HG: ™ g FUARGOAT s & U 5 VR A 1k AN A5 B M a0l 5
PR A B R T AT (A B

2.1.3. ERREMRR AE

P g logy & 7E B A I T A2 AR AT FUE ISR —AT, i LA HE S8 — A7 B 2 S
—ATe MHZASHERSS], e ER IR, R A SR 22

changeset : 73: 584af 0e231be

user: Censored Person <censored. per son@xanpl e. or g>
dat e: Tue Sep 26 21:37:07 2006 -0700

sunmary: i nclude buil dnei st er/ commondefs. Add exports

T HS AR N A, BT R AIE » Mercurial AR B S0 HS KN
7, BARDRINI H wl AT 2R A RE .

TANENERL, TR HE, it FR— ek s phidnl vahg log -
Patch ¥y 1 75 21 1 e o

R A is4Thg commitegy A (I B HiE S0, B RS RAM T fi 5%, 5hg
statusfiihg diffix 4~y & 1) 4t —FE

Subver sionFg F i [3%
FgrfrgMercurial g &k, W RIATABIFFEHhG commit gy & SEHLAE i SCAF

B ERAEEEA TR TAE H 3 EHATHRAE . i RAR LR i CV Sali
Subversion, A g EER, ARW]REDUNAY BARAT 1T H X 57 H R B2

2.7.4. B

DR R ARAE G A5 (R I DR AN PR, R R 2 A N AN DR AE SOt T L T X
X RRCAS JZE 1 24 i H SR BAT AR AT S0

2.1.5. FREFHABIRLR

PAZTERUG, FATEtnT LAHhG tipdr 4 BoRRINI G @i AR sE 4 . 3> 4-Rithg Togrrf i
—FE, AR R IR RRAS R a5 B RS

[hg tip -vp
T T30 FE AR T BT AR RRAS B PR 7 B3 i A i
FfgEHE— T, hg tipdy4ny L3z 1R 2 Fihg 1004y & —kERIE TR . n- VIR & S “iF

A7 o - PRUEIERE “Huthah 177 o AL - PH AN Tt A THT P2 B — B S 4h— A
Bl

18

Mercurial Zfe: JLad 50N

2.8. /\ 1|&E5I

T AT] 8 22 4 M ercurial (AR it 19 6L 35 1o I RERAS JRAT T A6 222 £ A 5 AR A AX
FEAE TRATIY - hel T oAk R AT 127 B UK AR 58 A 4% 2 A RUA PR I 57

2.8.1. NEERAEREE

Bk, TATSEkE B RNe] | oA, A A B ATRINERA AR . oA 1A
it B AP ghel | o,

cd .
hg clone hello hell o-pul

TAIhg pulldy A% g Ay - hel Lo zjhel T o-pul |, 8Rif, A=+ "+ %A
T AR KRR AR PEAR S AE B K. Mercurialddfit Thg incomingdy4-, ‘&4a45F3k4A1hg
PUI L2 R 6 A5 B i 33 i AS 2 fHT/\EEEI'JT}MT

cd hel |l o-pul
hg incomng ../nmy-hello

12 47Ng pull iy 44 A2 St BERRUAS AR R R 00, PR AT LASR S AIRAS RRAS PRI AR B

hg tip
hg pull ../nmy-hello
hg tip
M e rhg P4 T LA Y, BRI AL a1 T RA T MAS . 3R

17, Mercurial 5448 SR SR i AT H 33 B AN RAE . 757G 2UAE 1T H Sk b JATTNIE 1
WA 2 /i, A — e

HTEEE ERYIZ

[51 s 7324 7hg incomingfithg pull 2 [] A7 74T I, 44T A A A7 50 LA S A e
AT SRR S B et 2% M A 7 O A PR . 2%
PR NG INCOMINGRHY, i BAT HEIKHEAs 8 (68, HoAls AL 3ok A A A
TSR VR T A ok L kTG incoming 7 IR ity £ AR R

IR AT HEKENG - incoming iy 451 AR SEHEIER, s R T LA 5 R A 2R 49 3
AT AT, PR A F e AR SE4E R ID, L fihg pull -r7e9sbb,

2.8.2. BEFITIERR

BULEFRATT R RRAS RIS 1 A H sk Z MRS R TR0 T . RAIESS 281 4
N FRAFERASAR 17— ia4T NG pull 6y A 2o AR S ERRCAS J2E, H D R R AT 1A A
— R, SR CAEH SRR 2. X2 hhg pull gy 4 3F A4 igmy TAEH 5. SZhr
b, Bl 17 2ihg updatedy 4ok 52 X A TAE .

grep printf hello.c
hg update tip
grep printf hello.c

hg pulldy &I A2 BB TAR %, XAERRA AR, (L9255 FIXREAUR A 5 A
[¥): YRATLAFING updatesi s T4 Hagt, Yl BIMCA PR IR — M. RBH TAE H

19

Mercurial Zfe: JLad 50N

FOMRE A A— R 3l T8 g —AMug—R 51217 Tha pulldy 4. & [3k T4
H SR B 2B RRCAS, Xl RE IR AR IR AR EE R 4521

DR R Ha AR J5 BT AN AR T IARAE IR, Mercurial RVFARIGIX AR A ik,
Hgggrhg pull gy 4 b= UgE st rT LA T .

R EE sy 281 A < NI RA IR TE 7 —Y, Ffiizqrhg pullify S8 n 1

U IGI , fRAT e e Rt T FARA ISR, BADEF ZHhAT D ERAE, A8
TAEH .

LR AR NG AR H AR, nf LM HThg parentsy 4

[hg parents |

R 2.1 “pAkpE hel To gypysafe” —35, fRaF BIREH AR EE. §
SREFF T AR SUA, FikigEMR A, TAEH M IRAME 2 T s BT
TEH RS WA,

WA TR TAE B D)) MRF e A, 45hg updatedy & i T il A5 5l AR AR BRIl
FFRLATEAL T
hg update 2
hg parents

hg update
hg parents

IR B W dR A, hg updatess S #tiph, 4 L i) 7-hg updatess — i AT
4R —F.

2.8.3. A HmIEM B HERMARE

TRAT AT LIRS AZ 5 A i 72 (KO UA PEHE B AR I A e . 5 i fghopull fif-r—#¢, 3%
ATTRT LG AN IS A RS P2 TR RAT T AR B

cd .
hg clone hello hello-push

hg outgoingiy 4 1 A5 Y AT I LE AR T4 23 e 51 5y S —ANREUA e o

cd ny-hello
hg outgoing ../hello-push

ififhg puShy 4 Jj 2 h A7 JIE IR HERRAEE
[hg push ../hello-push

5hg pull—#f, EE#Exy 5, hg pushiy &I RS BRI T/E H %, 5hg
pull sy & A[H], hg pushjf g - Uik IR s FT HAbARAS R 1 A H 5o X —AWFREAT H Il
(K32 BATIIEE (0 FRCAS 5 m eSS — i (R e o5 s, JF HARZ AL A e WiRAE AR A LE
FE AR, BT 7 LR H 5% B AAbATT 0 TARIR ol BER A o

UERFA T A O T IX B B RRAS JPEAEIL B iy IX AR B e e AT 2 iy
We? , fHratAskd.

[hg push ../hello-push

20

Mercurial Zfe: JLad 50N

2.8.4. BOIAMIE

ERAN TSR RA FERIH G, Mercurial 27EHIONAFER. ho/ hOr ¢ SCpFriid 3 FRA
MR, I RTA DG PUll B fi i, o kg push B fi s FL b, IS4 188y 44k
LA R B4 (7 . hg incomingrihg outgoinggiy 4 th 1.

R AR SO G R 25T TFRURFE - hal hgr e3r ik, R4 B0 1 4%

[pat hs]
default = http://ww. sel eni c. conl repo/ hg

A] fe—3F 3 #1845 Fi—hg pushfihg outgoingfp i 44 fi7 & 5 hg pullFihg incomingy fi7
BANFE . FATATLAZ . hal hgr ekl pat hs] 5 Fdef aul t - push4c H, W R,

[pat hs]
default = http://ww. sel eni c. coni repo/ hg
def aul t - push = http://hg. exanpl e. coni hg

2.8.5. @i MK L Z1EL

R J LT FA I AR i AT U A hROAR 2, 3] DU T 2%, I B4R (1 24
WAL AR AR R URL g T LT

|hg outgoing http://hg.serpentine.comtutorial/hello

FEAGI, BATRT UG BT [R A I 1A B, ESRAZ A AN Se ViR 44 1
JHEE

[hg push http://hg.serpentine. contutorial/hello

2.9. FFH43HA E

TR —ABIH A AN O —RERi. hg initgr & i LABIEE —ANBT, 25
Mercurial g A g ,

6 hg init nyproject

74 SR QU424 NYPr O] ect (A Pk Rk 4 T

S 1s -1

total 8

-rwr--r-- 1 oracle dba 47 Aug 11 06: 05 goodbye. c
-rwr--r-- 1 oracle dba 45 Aug 11 06:05 hello.c
drwxr-xr-x 3 oracle dba 72 Aug 11 06: 05 myproj ect

FAA KMy proj ect j—A-Mercurial A, B a5 T hgH %,

$ Is -al nyproject

total O
drwxr-xr-x 3 oracle dba 72 Aug 11 06: 05
dr wx------ 3 oracle dba 184 Aug 11 06:05 .

drwxr-xr-x 3 oracle dba 128 Aug 11 06: 05 . hg

g RN — 88 DA (SO NIRRT AT L e LB H SR, AR5 7hg

add#y 4, 4-ygMercurid JF4445 #2141,

|6 cd nyproject

21

Mercurial Zfe: JLad 50N

$ cp ../hello.c

$ cp ../goodbye.c
$ hg add

addi ng goodbye. c
adding hello.c

$ hg status

/A goodbye. c

A hello.c

I H RPARDUR RN, B TR A AR L

6 hg commit -m'Initial commit'

ST B LAY Bl v AE— AN I L FiMercurial, XEE M2 —. BUAERRAE
TIHOEARART 5, FA T AAEAR /M AT 222 TR H B

22

= 3 = Mercurial ##2: €3 T

HATE N T SO BERRCAS T, T REATAE S, A ANRCAS R [7) 5 A AN RRCAS B
HHEILALH o N THBATTEEA G A2 W] AANTR] IR RRCAS P & AR B

3.1. EFrviAIE

FEAE AT AR TR, SIFRARE EER . LU URh A 23T 5 B o

* AEAEERTHE T, Alice MIBODIRAT —ANIG H A AL #5 L. Alicefs 5 T {EM 1Y
e —"bug; BODIIEA A RA FE P I T — /BT The . AT S 5 S UA e, A A
#AF2UR I Zh e, [N B T bug.

* Cynthia] i) 75— H BT JLANAFRFAES, BMEEHRLIOLN . LU 7 U LR
R b 22 ¥ o BB AN R R 23 1) A EAT 0

DU BATA 1 75 5 JF, Mercuria MEARIX AN RRAR T H . N I FRA TS — N &R
Mo FAMIRMTCHE 53 oh— MR TG (BREMINZ A% , JHEE LifE .

W\

cd ..

hg clone hello nmy-new hello

cd ny-newhello

Make some sinple edits to hello.c.
my-text-editor hello.c

hg conmit -m'A new hello for a new day.'

IAEhel 1 o. ey 7 Py A AN F 1R P 3 5 DL PHASRRCASJZE IR B S B 2257, 8
el 3.1 “my-hel lo Lj ny-new hel | o 57 ;s oy 7 op o ee . R SCpFE—
ARBCASJZE P8 DL

[cat hello.c

NSO EAE 3 AR P R R AN R R RRCAS

[cat ../ny-hello/hello.c

23

Mercurial #f: &3 TAF

3.1 ny-hello 5ny-newhell o A EH Y

my-new-hello

head revision
(has no children)

newest changes
differ

——mmmm—— =

common history
A

g
5
=4
1]
=
&

BAIC g g, AFATRY - hel T of Ak e #i i A48 56k TAE H s BcA AR

[hg pull ../ny-hello

A2, hg pulldy 456 L4 T —2o6 T “heads' [y 5 1L

3.1.1. T S8 &

AXALNY

idfEMercurialig s T REANARSE A MA . WA AL RAS, RATTFRZ A HAL A
187 B Ja o AEKRRASIE — B T A o TR A SR — SR ARCAS, - A A A
A PEP BB TR AE AT 4% 5o A I DR 7 2 ANk A

3.2.)\ ny-hel | o0 y57) ny-newhel | 0 Z SERAEBAS

) {

tip {and head)

24

Mercurial Zf: &9 T4k

fEK 3.2 «)\ ny-hel | o 45| ny-newhel | o 7 JSERAE 2" h, ki) UG K AR
F Y- hel Tojzny- new hel | oz j5 2 . ny-new hel | oy U iR A T 2 8 R
PEATAARAL, RN T —ANFcA . A 31 “ny-hello & ny-new
hel 1o gty 524y X7 v, JRATTAT LUK S 2 58 SERRIR A (BT I IOAS R P R FEAN AR, (HJE Rl
ASET . ORES—f), XA TARGF AR T 0t ALEH IR AR AR A IR RO 5 e A %
Ao FATTAT LA hg headsey 4 75 ji A 2 Hh (1 45k FRUAR

[hg heads |

3.1.2. PTA
W R FATE g updatedy &Sk 5 25 I Tk, 2 kA A8 ?

[hg update |

Mercurial ¢ £ 1T UPDAteqRREREIT 4 0F: e W BA T RE A BT 2 I IR, &
ALHTHEH R, BARRATRBICOCRER. (R F, (EIhg update-Coy & il 537 2
T R A)

TA TR NG Merge gy &5k & I A KA

[hg nerge |

TAIfgpr Thel T o. ey gy, XAMRAERR T TIEH R, RS T BmASELRA KA
i, X wrehg parentsyfgdifihel 1 o. crypyz b

hg parents
cat hello.c

313 RRXEHER

LEAMTERA I, JfilEhg commitie sy £ f 45 i, hg parentsdy & #4x s i
FRAAT I SCRRAS o

[hg commit -m' Merged changes’

PAEBATIA T B TR RRAS s VR EHT IR AN ER 2 B A RAS o IX TN T
I hg parentsig i i i A —3.

[hg tip |

KK 33 “YERIFHIN, LURARAC I AR H s SR A7 B THEA IFidfed, T
TEH SRR T AT AL AT [T A IR, ERITR AR . /£, =
I SRAT AN SCAR S, Al AT TS 1A B (R 42 BE B K SCRRCAS

25

Mercurial #if: & 3F T4

B 33 E&FHE, URRZZBEMIIEERSMRARE

Working directory during merge Repository after merge committed
:o R 'Ihé'r'éé lllll E :.Dl:k]ng ({ll’cctﬂl’}f tip
....... ’ b i uring merge
tip (and head) | 6:
head BE 5:
4 4

AV WM ULA A L. /i Ehg parentsay & i 55 — AN ALhUR, AT AN
i EBIpS, WEARAES IFITRRAS 525, At e o & IF 1 /2 .

A3t 22 ZE g s
3.2. 5HB PP E
REHE AR T, AHEIHRIR S KIS & IR R AR TS O T [R]— ST A AH [R]358
e BRAEENGES 2, BEIFSHINMEE, X MEAR R ZE B 52 da] 26 A [F] i) AR 5 A
f, A2 gE R .

& 34. ihseafER

(g

Gireetings! Gireetings!
I am Shetio Musa I amn Adffi Abi
Abare in o The Abach an o The
QOur changes former Nigenan former Nigenan Their ghanges
dictator Sani Abacha. 1 dictator Sani Abacha. 1
[contacting you in am conlacing you in
confidence, and as a confidence, and as a

means of developing < means of developing 7

Greetings!

I am Mariam Abacha,
the wife of former
Nigenan dictator Sam Base version
Ahbacha. 1 am
contacting you in
confidence, and as a

means of developing V

K 34 PRSBSOS AR SEAR EL SR S . FRATT ISR I A AT
. T B O NBAEARR TR T AR B SG BAR P SR H w2 2k
S8 SRR AR AT AFET

Mercurial 547 py gty T HARSEIP I . IR, ERISATANIRYY, L — N Res LURE
W RIS IR SRE O, Mercurial il WA AT REEIR R 4e L2)L JF TR

26

Mercurial Zf: &9 T4k

hbiE A EELRFWIILANE AN EIF TR WUERAN D) (ROt R &N T T
i) BE AR, Ea A R E AL S IF T H

IR B AR i HGVERGEAL 45 (R R, 3d m] L EMercunial iz 47 5 (1 R 7 sl & AR .

321 FHEREHIA

LB BB AL 1A I LR KIS, os By erkfifiid BB AL & 9 TR — ks
i PRATAFER 35 “ffiff] Kdiff3 S f oA A A 2 IE R4 o g kdiff 3 ik
A, CEEAAATIIXMEIF =S I DU BAVER I S AT =R R I RRAS . FrEle
FER T 23803 4 3%
© JeIRRESCAFINERCAS, Rt e B AT I (0 P RRCAS IR 5508 IR SCRRAR o
© PIEGE AT WA, WA Ca g kA IE .
© AL AR AR, e MNBRA A AT SR AR AR

EATNHFTAS R SIS AT E R . A UES R B L0y, EAhREE R
R ISE, FRATLAE “IRATE” A “ABATE " FRAS h B AT & P 5 5F

X PURS S RER Y, WERBATR AR AR HUK- RS, AR IR 2 SE0Fx Y
SCAF IR ER 20) 7R o

7 35. {E A kdiff3 & 3R RIRRA

‘Im ...[/letter.txt~base.C8-rvc <-> .../lettertxt.orig.2182927874 <-> .../lettertxt~other.ladxFb - KDiff3
Eile Edit Directory Movement Diffview Merge Window Settings Help
BEHESg O DEem s s 23230 c[l0l-E==
A (Ease)l‘jtmpfletter.txth-base.CS-rvc ” ... |Top line 1 E:|fhomejbcsjscamfletter.txt.ur\g.2182927874 H .. |Topline 1 Cl‘jtmpfletter‘txt~uther.\adbu
Greetings! Greetings! Greetings!
Bl T am Mariam Abacha, the_wife_of former W11 am shehu_Musa Abacha, cousin_to_the former [Hl||I am Alhaji_abbal Abacha, son_o
Migerian dictator Sani Abacha. Nigerian dictator Sani Abacha. Nigerian dictator Sani Abacha.

/////

Output : fhome/bos/scam/letter.txt
Greetings!

? I<Merge Conflicts
}ngerlan dictator Sani Abacha.

[=I7T

[« s B
Number of remaining unsolved conflicts: 1 (of which 0 are whitespace)

£

XSO IR, BATTAT LU FERBRAS, JRAT T 8 RBOA B0 AT T B (1 — 223 1) 21
B ARAR R IE o W] AFEAT R N T T2 485 0 Jm (S0 XA B0 h Bl T 2t — D g
G

27

Mercurial Zf: &9 T4k

HHEE LR G L, BIEAR, XERAZNHAT . MIENTARKTE,
BAHA AN . R ERAFES L E X & IR Al SCAR ST AR, 5 Ah— S8) A XHRE R 1)
kR GRFZEXML) 34T T

3.2.2. & 3320

$$EW,ﬁmﬁﬁﬁ@34“W%%@&”%@&%EoﬁﬁM@ﬁiﬁ%Wﬁ%W
I

cat > letter.txt <<EOF

Greetings!

| am Mari am Abacha, the wife of fornmer
Ni gerian dictator Sani Abacha.

ECF

hg add letter.txt

hg conmt -m'419 scam first draft’

AT B FRCAN 2 I BB S

$ cd ..

$ hg cl one scam scam cousin

updating to branch default

files updated, O files nmerged, O files renoved, O files unresol ved
cd scamcousin

cat > letter.txt <<EOF

G eeti ngs!

| am Shehu Miusa Abacha, cousin to the forner
Ni geri an dictator Sani Abacha.

EOF

hg commt -m'419 scam wth cousin'

T A AN TR LA MBSO GREWRA /R FH AN) RRCAS P Ak PN [A 551
I, W HRERA 5 IF, Kb ERAUE R BRI, D

$ cd ..

$ hg cl one scam scam son

updating to branch default

files updated, O files nerged, O files renpved, O files unresol ved
cd scam son

cat > letter.txt <<EOF

Greetings!

| am Al haji Abba Abacha, son of the forner
Ni gerian dictator Sani Abacha.

EOF

hg conmt -m'419 scam with son'

A CEAT T AR, JAT PR EE ST G I A

$ cd ..

$ hg cl one scam cousi n scam nerge

updating to branch default

1 files updated, O files nerged, O files renpved, O files unresol ved
$ cd scam nerge

$ hg pull -u ../scamson

pulling from../scam son

sear ching for changes

addi ng changeset s

addi ng mani fests

addi ng file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
not updating, since new heads added

(run 'hg heads' to see heads, 'hg nerge' to nerge)

(eI, 0T T HOVERGE 2 JRMERCURIAL |4k 42 1 A & 36 4o VF2 A {LIUnNiX
RO, CIRARAEI L, R g B HOVERGE, bk HIGUI 2 # 47

AV VV VA

“®©VVVVeaEaR

€V VVVaar

28

Mercurial Zf: &9 T4k

$ export HGQVERGE=mer ge

$ hg nerge

merging letter.txt

merge: warning: conflicts during merge

merging letter.txt fail ed!

O files updated, O files nmerged, O files removed, 1 files unresolved
use 'hg resolve' to retry unresolved file nerges or 'hg update -C to abandon
$ cat letter.txt

Greet i ngs!

<<<<<<< [tnp/tour-nerge-conflicttXvSTf/scam nerge/letter.txt

| am Shehu Musa Abacha, cousin to the forner

| am Al haji Abba Abacha, son of the forner
>>>>>>> [tnp/letter.txt~other. QrvgQ
Ni gerian dictator Sani Abacha.

M IFMRRA T PRI, PrASh RS ATRRIL, RYIIBLEATAA AR PP, ATk
F AT AL AT 1 SCAF

Mercurial fi fi fismer gedy 4 1y HTR AT A F R BT LA 2 5 VR AT SR FAT 148
HOPT AT S R ERAE IR T 208 AT A Adin S . XATREARA T, Blan, FdilisdT T — A EJEAL
B IF LRSS R IA RIS B8 R EE TR AR IR H

R A B Tal G IR, AT B 2“1 SZagmiscrt, Wit
INEE

$ cat > letter.txt <<EOF

> & eetings!

> | am Bryan O Sullivan, no relation of the former
> Nigerian dictator Sani Abacha.

> EOF

$ hg resolve -mletter.txt

$ hg commit -m' Send nme your noney'

$ hg tip

changeset : 3: b14e50e602b1

t ag: tip

parent: 1: aeblel00f 70f

parent: 2:4707eldc08de

user: Bryan O Sul | i van <bos@er penti ne. con>
dat e: Wed Aug 11 06:06: 37 2010 +0000
sunmary: Send nme your noney

7EMREE 4% 3 hg resolve 4542

Mercuria 1.1fj; F-20084% % 4, U\ii_/l\ﬁ)ﬁliﬁﬁﬁé‘l)\Thg resolveds 4. I B A
AT L IR (TEUE{TNG VerSOngy 48 7) , B ir A H e, IR
Mercurial ity A Ho L1 IH, 8 3230 £ e LA 7 5 WA Ye 52 AR 1 25 D2 W T+ 1
I ICAS o

3.3. B -EFH-1RRXIEF

TR A AR SRR AR R R A, (R AR ER RO SV = A
hg pull -u

hg nerge
hg conmit -m' Merged renote changes'

FESR G AT IR, AR E A — PG R, R R I A E A .

WIRAATREG, B Reg D T 2 P8R b b, Mercurial AW igAT — N9 e
I figf et chmf USE seix AN T

29

Mercurial Zf: &9 T4k

Mercurial § 41t T Ry 04 AL, AMTRT LURI A e e i T ag, [l LR FeMercurial iy
ORI B S BB ATEEy AN ToBran <, kel U ar- AT e, mien
HOIE RS LAET L Lkl T Mercurial py gt iR 45 B AR 1 R

Fetchy s T —/MFifidn 4, =Joken, emfihg fetch, x4~y gy ohagghg pull
-U, hg mergefiihg commitf 2y £, e 1 4 A RUAS OB AR SEHE N 1 AT RRCA P it e R IR
AR i) FRCAS PEAS N 1B ISR A, B BORT BB UK ARAS, JTaR& IR R CIERE I R
) RAE IG5 Bl AERERAE R WA SR ARCA, e SR 2 Ry
H S5 BB 258 1 T

T et chiy el 2 b . G PRI K H k- hor Cxofl, JRBHH BLali 64— AN
#E . R In—A7"f et ch=",

[ext ensi ons]
fetch =

CRAEBLT, =AY Z IR AT R B R, EUE AT et chy R AEpRUEI) R A
fiH, Mercurial kil g R F e . O

3.4. B4, SH5EH

FE—ATH A G HL, A2 o 2 SR SRR H S A Jy o IR AR AT H, XA
FER SO AL, BE AR SR 2%, GO SN I H [V SCPF =R L o

Mercurial i X Fft 42 2% [75 58 7 F (AR I R%‘Mﬁ%ﬁ?%dﬁﬂféﬁxﬂul AR
L — A4, HEThg rename g e g At LT, AR UUE 75 A IR
fisg, Mercurial &N iz B4

BAVRAEEE O34 “H DUCAE” hiEgi N 4IX sEdr - IRALH] .

LR ANUNIXF P, fRa iR 2 Bhg renamen L) 5 Syhg mv,

30

=% 4 &= Mercurial g%

Unlike many revision control systems, the concepts upon which Mercurial is built are smple
enough that it's easy to understand how the software really works. Knowing these details certainly isn't
necessary, so it is certainly safe to skip this chapter. However, | think you will get more out of the
software with a“mental model” of what's going on.

Being able to understand what's going on behind the scenes gives me confidence that Mercurial
has been carefully designed to be both safe and efficient. And just as importantly, if it's easy for me
to retain a good idea of what the software is doing when | perform a revision control task, I'm less
likely to be surprised by its behavior.

In this chapter, we'll initially cover the core concepts behind Mercurial's design, then continue to
discuss some of the interesting details of its implementation.

4.1. Mercurial g7 $£1i23%
4.1.1. RIFE—1HRI R E

When Mercurial tracks modificationsto afile, it storesthe history of that file in ametadata object
called afilelog. Each entry in the filelog contains enough information to reconstruct one revision of
thefilethat isbeing tracked. Filelogs are stored asfilesinthe. hg/ st or e/ dat a directory. A filelog
contains two kinds of information: revision data, and an index to help Mercuria to find a revision
efficiently.

A file that is large, or has alot of history, has its filelog stored in separate data (“. d” suffix)
and index (“. 1 ” suffix) files. For small files without much history, the revision data and index are
combined in asingle“. i ” file. The correspondence between afile in the working directory and the
filelog that tracks its history in the repository isillustrated in &g 4.1 « T4 H s 0 (10 S0 4-5 A 2
I SCEHEZ R RR” -

41 TEBRPIXHSRAESRB M4 AEZBIXER

Working directory Repository

README .hg/store/data/_r_e_a_d m e.i

.hg/store/data/src/hello.c.d

src/hello.c
.hg/store/data/src/hello.c.i

31

Mercurial pyzz

4.1.2. EIRIRERAY M

Mercurial uses a structure called a manifest to collect together information about the files that it
tracks. Each entry in the manifest contains information about the files present in a single changeset.
An entry records which files are present in the changeset, the revision of each file, and a few other
pieces of file metadata.

4.13. EREUERER

The changel og contains information about each changeset. Each revision records who committed
a change, the changeset comment, other pieces of changeset-related information, and the revision of
the manifest to use.

4.1.4. fRARZ BBy K F

Within a changelog, amanifest, or afilelog, each revision stores a pointer to itsimmediate parent
(or to its two parents, if it's a merge revision). As | mentioned above, there are also relationships
between revisions acr oss these structures, and they are hierarchical in nature.

For every changeset in arepository, there is exactly one revision stored in the changelog. Each
revision of the changelog contains a pointer to a single revision of the manifest. A revision of the
manifest stores a pointer to a single revision of each filelog tracked when that changeset was created.
Theserelationships areillustrated in |5 4.2 “ o 2 AR .

4.2. TR Z BRIKR R

Changelog
g N

Manifest

I S

i
D

-
-

P SP———
e

Filelogs ¥

As the illustration shows, there is not a “one to one’ relationship between revisions in the
changelog, manifest, or filelog. If afile that Mercurial tracks hasn't changed between two changesets,
the entry for that file in the two revisions of the manifest will point to the same revision of itsfilelogl.

htis possible (though unusual) for the manifest to remain the same between two changesets, in which case the changel og entries for
those changesets will point to the same revision of the manifest.

32

Mercurial pyzz

42. B, BHMTEHE

The underpinnings of changel ogs, manifests, and filelogs are provided by asingle structure called
therevlog.

4.2.1. BT

The revlog provides efficient storage of revisions using a delta mechanism. Instead of storing a
complete copy of afile for each revision, it stores the changes needed to transform an older revision
into the new revision. For many kinds of file data, these deltas are typically afraction of a percent of
the size of afull copy of afile.

Some obsolete revision control systems can only work with deltas of text files. They must either
storebinary files as compl ete snapshots or encoded into atext representation, both of which arewasteful
approaches. Mercurial can efficiently handle deltas of files with arbitrary binary contents; it doesn't
need to treat text as special.

4.2.2. e 1BHE

Mercurial only ever appends data to the end of a revlog file. It never modifies a section of a
file after it has written it. Thisis both more robust and efficient than schemes that need to modify or
rewrite data.

In addition, Mercurial treats every write as part of atransaction that can span a number of files.
A transaction is atomic: either the entire transaction succeeds and its effects are all visible to readers
in one go, or the whole thing is undone. This guarantee of atomicity meansthat if you're running two
copiesof Mercurial, where oneisreading dataand oneiswriting it, the reader will never seeapartially
written result that might confuse it.

The fact that Mercurial only appends to files makes it easier to provide this transactional
guarantee. The easier it isto do stuff like this, the more confident you should be that it's done correctly.

4.2.3. [hiEHE

Mercurial cleverly avoidsapitfall common to all earlier revision control systems: the problem of
inefficient retrieval. Most revision control systems store the contents of arevision as an incremental
series of modifications against a“snapshot” . (Some base the snapshot on the oldest revision, otherson
the newest.) To reconstruct a specific revision, you must first read the snapshot, and then every one of
the revisions between the snapshot and your target revision. The more history that a file accumulates,
the more revisions you must read, hence the longer it takes to reconstruct a particular revision.

33

Mercurial pyzz

4.3. H}izlt H Ib\H,] I;&:un U&i E%#

Revlog index (.1 file) Revlog data (.d file)

Index, rev 7

Theinnovation that Mercurial appliesto this problem issimple but effective. Once the cumulative
amount of delta information stored since the last snapshot exceeds a fixed threshold, it stores a new
snapshot (compressed, of course), instead of another delta. This makes it possible to reconstruct any
revision of afile quickly. This approach works so well that it has since been copied by several other
revision control systems.

4.3 “pRokHErbem, Dtz illustrates theidea. Inan entry in arevlog's index
file, Mercurial storesthe range of entries from the data file that it must read to reconstruct a particular
revision.

4.2.3.1. 351 WIRE SRS

If you're familiar with video compression or have ever watched a TV feed through a digital cable or
satellite service, you may know that most video compression schemes store each frame of video as a
delta against its predecessor frame.

Mercuria borrows this ideato make it possible to reconstruct arevision from a snapshot and a small
number of deltas.

4.2.4. BRI F058 S EL 14

Along with delta or snapshot information, a revliog entry contains a cryptographic hash of the
data that it represents. This makes it difficult to forge the contents of a revision, and easy to detect
accidental corruption.

Hashes provide more than a mere check against corruption; they are used as the identifiers for
revisions. The changeset identification hashes that you see as an end user are from revisions of the
changelog. Although filelogs and the manifest also use hashes, Mercuria only uses these behind the
scenes.

Mercurial pyzz

Mercurial verifiesthat hashes are correct when it retrievesfile revisionsand when it pulls changes
from another repository. If it encounters an integrity problem, it will complain and stop whatever it's
doing.

In addition to the effect it has on retrieval efficiency, Mercurial's use of periodic snapshots makes
it more robust against partial data corruption. If arevlog becomes partly corrupted due to a hardware
error or system bug, it's often possible to reconstruct some or most revisions from the uncorrupted
sections of the revlog, both before and after the corrupted section. This would not be possible with a
delta-only storage model.

43. 21T, 2% 5&H

Every entry in a Mercuria revlog knows the identity of its immediate ancestor revision, usually
referred to asits parent. In fact, arevision contains room for not one parent, but two. Mercurial uses
aspecial hash, called the “null ID”, to represent the idea “there is no parent here”. Thishashis simply
astring of zeroes.

In |5 4.4 “pAHER%E45E#)” , you can see an example of the conceptual structure of a
revlog. Filelogs, manifests, and changelogs all have this same structure; they differ only in the kind
of data stored in each delta or snapshot.

The first revision in arevlog (at the bottom of the image) has the null 1D in both of its parent
dots. For a“normal” revision, itsfirst parent slot containsthe ID of its parent revision, and its second
contains the null ID, indicating that the revision has only one real parent. Any two revisions that have
the same parent ID are branches. A revision that represents a merge between branches has two normal
revision IDsin its parent slots.

35

Mercurial pyzz

4.4. H}izlt H TR E,JTQVI_ 1:,7

Rrvishon dara {dela or spapehork

b

Head revision

{no children)

HbEhTaldeal AEDOODONRNNG

Rirvison hash
I4bERYAl%eal

Rrvishon dara {dela or spapehork

Merge revision
(two parents)

ShENGTZZebad 1bEFaslEZn

Rervicion hash
nENgIEZebdd

Revisaon besh
FER TN LATT
§

rrRdoEhoZask Ll

Branches

{two revisions, £19dndkedask | =cooononoong

same parent)

Rarvision hash
£fRdoihoZadh

First revision
(both parents null)

Firs pasent Second paren
ononoooooaas FepooOOOnnn

4.4 TIEEF

In the working directory, Mercurial stores a snapshot of the files from the repository as of a
particular changeset.

The working directory “knows’ which changeset it contains. When you update the working
directory to contain a particular changeset, Mercurial 1ooks up the appropriate revision of the manifest
to find out which files it was tracking at the time that changeset was committed, and which revision
of each file was then current. It then recreates a copy of each of those files, with the same contents it
had when the changeset was committed.

Thedirstateisaspecia structure that contains Mercuria's knowledge of the working directory.
It is maintained as a file named . hg/ di r st at e inside a repository. The dirstate details which
changeset the working directory is updated to, and all of the files that Mercurid is tracking in the
working directory. It a'so letsMercuria quickly notice changed files, by recording their checkout times
and sizes.

36

Mercurial pyzz

Just as a revision of arevlog has room for two parents, so that it can represent either a normal
revision (with one parent) or a merge of two earlier revisions, the dirstate has slots for two parents.
When you use the hg update command, the changeset that you update to is stored in the “first parent”
slot, and the null 1D inthe second. When you hg mer ge with another changeset, thefirst parent remains
unchanged, and the second parent isfilled in with the changeset you're merging with. The hg parents
command tells you what the parents of the dirstate are.

4.4.1. YRIBRXFEZEEE

The dirstate stores parent information for more than just book-keeping purposes. Mercurial uses
the parents of the dirstate as the parents of a new changeset when you perform a commit.

45 THEERATUIBRANLFE

History in repository Parents of working directory
First parent
e7639888bb2f e
eTE39888bb2f
Tbl64d8bacbe

A5 “THEHER LA PANE” shows the normal state of the working directory, where
it has a single changeset as parent. That changeset is the tip, the newest changeset in the repository
that has no children.

37

Mercurial pyzz

46.@1% 2/, TIEARMRFHRBET

History in repository Parents of working directory
New First parent
changeset dfEBBI3FAfA3 | |
1 dfbbb33f3fa3
eT639888bb2f
Tb064dB8bacse

It'suseful to think of the working directory as“the changeset I'm about to commit”. Any filesthat
you tell Mercurial that you've added, removed, renamed, or copied will be reflected in that changeset,
as will modifications to any files that Mercuria is already tracking; the new changeset will have the
parents of the working directory asits parents.

After acommit, Mercuria will update the parents of the working directory, so that the first parent
isthe ID of the new changeset, and the second isthe null ID. Thisisshown in g 4.6 “3ix5 7 5,

TAEH A e %As 77 - Mercurial doesn't touch any of the filesin the working directory when
you commit; it just modifies the dirstate to note its new parents.

442 GIBHTNS

It's perfectly normal to update the working directory to a changeset other than the current tip. For
example, you might want to know what your project looked like last Tuesday, or you could be looking
through changesets to see which one introduced a bug. In cases like this, the natural thing to do is
update the working directory to the changeset you're interested in, and then examine the files in the
working directory directly to see their contents as they were when you committed that changeset. The

effect of thisisshownin & 4.7 “ G5 2| IHIG G T/EH S -

38

Mercurial pyzz

B 4.7 ES R BERERMTIERR

History in repository Parents of working directory
First parent
el639888bb2t
Te06d4dBbacse

7bl0e4d8bacse

Having updated the working directory to an older changeset, what happens if you make some
changes, and then commit? Mercurial behaves in the same way as | outlined above. The parents of
the working directory become the parents of the new changeset. This new changeset has no children,
so it becomes the new tip. And the repository now contains two changesets that have no children; we
call these heads. You can see the structure that this creates in 5] 4.8« [3 21| [HA& M 82 1 TAE

HrAZZ)R -

B 48 MESE IRERENTIEERIRZZR

Pre-existing head Newly created head (and tip) Parents of working directory
|

First parent

el639888bb2t

ffh20ell0lea

Tbl64dB8bacbe

S =
~
ph =)

If you're new to Mercurial, you should keep in mind a common “error”, which is to use
the hg pull command without any options. By default, the hg pull command does not
update the working directory, so you'll bring new changesets into your repository, but the
working directory will stay synced at the same changeset as before the pull. If you make
some changes and commit afterwards, you'll thus create anew head, because your working
directory isn't synced to whatever the current tip is. To combine the operation of a pull,
followed by an update, run hg pull -u.

39

Mercurial pyzz

| put theword “error” in quotes because all that you need to do to rectify the situation where
you created a new head by accident is hg merge, then hg commit. In other words, this
almost never has negative consequences; it's just something of a surprise for newcomers.
I'll discuss other ways to avoid this behavior, and why Mercurial behaves in thisinitially
surprising way, later on.

4.4.3. 5FH 15X

When you run the hg mer ge command, Mercuria leavesthe first parent of the working directory

unchanged, and sets the second parent to the changeset you're merging with, asshownin |5} 4.9 «4
HPIATI L -

4'9' éﬁﬁ/l\]ﬁlﬁ

Pre-existing head Newly created head (and tip) Parents of working directory
|

First parent (unchanged)

el639888bb2t

ffh20ell0lea

e7E39888bb2f

Mercurial also has to modify the working directory, to merge the files managed in the two

Tbl64dB8bacbe

changesets. Simplified a little, the merging process goes like this, for every file in the manifests of
both changesets.

If neither changeset has modified afile, do nothing with that file.

If one changeset has modified a file, and the other hasn't, create the modified copy of the file in
the working directory.

If one changeset has removed afile, and the other hasn't (or has also deleted it), delete the file from
the working directory.

If one changeset has removed a file, but the other has modified the file, ask the user what to do:
keep the modified file, or removeit?

If both changesets have modified afile, invoke an external merge program to choosethe new contents
for the merged file. This may require input from the user.

If one changeset has modified afile, and the other has renamed or copied the file, make sure that
the changes follow the new name of thefile.

Mercurial pyzz

There are more details—merging has plenty of corner cases—but these are the most common
choicesthat areinvolved in amerge. Asyou can see, most cases are completely automatic, and indeed
most merges finish automatically, without requiring your input to resolve any conflicts.

When you'rethinking about what happenswhen you commit after amerge, once again theworking
directory is"the changeset I'm about to commit”. After the hg mer ge command completes, theworking
directory has two parents; these will become the parents of the new changeset.

Mercurial lets you perform multiple merges, but you must commit the results of each individual
merge as you go. Thisis necessary because Mercurial only tracks two parents for both revisions and
the working directory. While it would be technically feasible to merge multiple changesets at once,
Mercurial avoidsthisfor ssmplicity. With multi-way merges, the risks of user confusion, nasty conflict
resolution, and making a terrible mess of a merge would grow intolerable.

444 BHEERE

A surprising number of revision control systems pay little or no attention to a file's name over
time. For instance, it used to be common that if afile got renamed on one side of amerge, the changes
from the other side would be silently dropped.

Mercuria records metadata when you tell it to perform arename or copy. It uses this metadata
during amergeto do theright thing in the case of amerge. For instance, if | rename afile, and you edit
it without renaming it, when we merge our work the file will be renamed and have your edits applied.

4.5. HER/EBARITHE

In the sections above, I've tried to highlight some of the most important aspects of Mercuria's
design, toillustrate that it pays careful attention to reliability and performance. However, the attention
to detaill doesn't stop there. There are a number of other aspects of Mercurial's construction that |
personaly find interesting. I'll detail afew of them here, separate from the “big ticket” items above,
so that if you're interested, you can gain a better idea of the amount of thinking that goes into awell-
designed system.

4.5.1. L E S

When appropriate, Mercurial will store both snapshots and deltas in compressed form. It does
this by always trying to compress a snapshot or delta, but only storing the compressed version if it's
smaller than the uncompressed version.

This means that Mercurial does “the right thing” when storing a file whose native form is
compressed, such as azi p archive or a JPEG image. When these types of files are compressed a
second time, the resulting file is usually bigger than the once-compressed form, and so Mercuria will
storethe plain zi p or JPEG.

Deltas between revisions of a compressed file are usually larger than snapshots of the file, and
Mercurial again does “the right thing” in these cases. It finds that such a delta exceeds the threshold
at which it should store a complete snapshot of the file, so it stores the snapshot, again saving space
compared to a haive delta-only approach.

41

Mercurial pyzz

4.5.1.1. MREFHEH

When storing revisions on disk, Mercurial uses the “deflate” compression algorithm (the same one
used by the popular zi p archive format), which balances good speed with a respectable compression
ratio. However, when transmitting revision data over a network connection, Mercurial uncompresses
the compressed revision data.

If the connection isover HTTP, Mercurial recompresses the entire stream of datausing acompression
algorithm that gives abetter compression ratio (the Burrows-Wheeler algorithm from the widely used
bzi p2 compression package). This combination of algorithm and compression of the entire stream
(instead of arevision at a time) substantially reduces the number of bytes to be transferred, yielding
better network performance over most kinds of network.

If the connection is over ssh, Mercurial doesn't recompress the stream, because ssh can already do
thisitself. You can tell Mercurial to aways use ssh's compression feature by editing the . hgr c file
in your home directory as follows.

[ui]

ssh = ssh -C

4.5.2. EEiF5RF1t

Appending to files isn't the whole story when it comes to guaranteeing that a reader won't see a
partial write. If yourecall [4.2 “ ¥ At 22 & ” , revisionsin the changelog point to revisions
in the manifest, and revisionsin the manifest point to revisionsin filelogs. This hierarchy is deliberate.

A writer starts atransaction by writing filelog and manifest data, and doesn't write any changelog
data until those are finished. A reader starts by reading changelog data, then manifest data, followed
by filelog data.

Since the writer has always finished writing filelog and manifest data before it writes to the
changelog, areader will never read apointer to apartially written manifest revision from the changel og,
and it will never read a pointer to a partially written filelog revision from the manifest.

4.5.3. 3% i
The read/write ordering and atomicity guarantees mean that Mercurial never needs to lock a
repository when it's reading data, even if the repository is being written to while the read is occurring.

This has a big effect on scalability; you can have an arbitrary number of Mercurial processes safely
reading data from arepository all at once, no matter whether it's being written to or not.

The lockless nature of reading means that if you're sharing a repository on a multi-user system,
you don't need to grant other local users permission to write to your repository in order for them to be
ableto cloneit or pull changesfrom it; they only need read permission. (Thisisnot acommon feature
among revision control systems, so don't take it for granted! Most require readers to be able to lock
arepository to access it safely, and this requires write permission on at least one directory, which of
course makes for all kinds of nasty and annoying security and administrative problems.)

Mercurial useslocksto ensurethat only one process can writeto arepository at atime (thelocking
mechanism is safe even over filesystems that are notoriously hostile to locking, such as NFS). If a

42

Mercurial pyzz

repository is locked, awriter will wait for a while to retry if the repository becomes unlocked, but if
the repository remains locked for too long, the process attempting to write will time out after awhile.
This means that your daily automated scripts won't get stuck forever and pile up if a system crashes
unnoticed, for example. (Y es, the timeout is configurable, from zero to infinity.)

4531 ReHE TR

As with revision data, Mercurial doesn't take a lock to read the dirstate file; it does acquire a lock to
writeit. To avoid the possibility of reading a partially written copy of the dirstate file, Mercurial writes
to afile with a unique name in the same directory as the dirstate file, then renames the temporary file
atomically todi r st at e. Thefilenamed di r st at e isthus guaranteed to be complete, not partially
written.

4.5.4, Bt Bk

Critical to Mercuria's performance is the avoidance of seeks of the disk head, since any seek is
far more expensive than even a comparatively large read operation.

This is why, for example, the dirstate is stored in a single file. If there were a dirstate file per
directory that Mercurial tracked, the disk would seek once per directory. Instead, Mercurial reads the
entire single dirstate file in one step.

Mercurial also usesa“copy onwrite” scheme when cloning arepository on local storage. Instead
of copying every revlog file from the old repository into the new repository, it makes a “hard link”,
which is a shorthand way to say “these two names point to the same file”. When Mercurial is about to
write to one of arevlog's files, it checks to see if the number of names pointing at the file is greater
than one. If it is, more than one repository is using the file, so Mercurial makes a new copy of thefile
that is private to this repository.

A few revision control developers have pointed out that this idea of making a complete private
copy of afileisnot very efficient in its use of storage. While this is true, storage is cheap, and this
method gives the highest performance while deferring most book-keeping to the operating system. An
alternative scheme would most likely reduce performance and increase the complexity of the software,
but speed and simplicity are key to the “fedl” of day-to-day use.

4.5.0. HRIRTESHEEAS

Because Mercurial doesn't force you to tell it when you're modifying afile, it uses the dirstate
to store some extra information so it can determine efficiently whether you have modified a file. For
each file in the working directory, it stores the time that it last modified the file itself, and the size of
thefile at that time.

When you explicitly hg add, hg remove, hg rename or hg copy files, Mercurial updates the
dirstate so that it knows what to do with those files when you commit.

The dirstate helps Mercurial to efficiently check the status of filesin arepository.

» When Mercuria checksthe state of afileintheworking directory, it first checksafile'smodification
timeagainst thetimeinthedirstatethat recordswhen Mercurial last wrotethefile. If thelast modified

43

Mercurial pyzz

time is the same as the time when Mercuria wrote the file, the file must not have been modified,
so Mercuria does not need to check any further.

« If thefile'ssize has changed, the file must have been modified. If the modification time has changed,
but the size has not, only then does Mercurial need to actually read the contents of the file to see
if it has changed.

Storing the modification time and size dramatically reduces the number of read operations that

Mercurial needsto perform when we run commands like hg status. This resultsin large performance
improvements.

2 5 & Mercurial pyHE{FEH
5.1. &if Mercurial ZiRERMRLE ST

Mercuria does not work with filesin your repository unless you tell it to manage them. The hg
status command will tell you which files Mercurial doesn't know about; it usesa*“?” to display such
files.

11N add iy 4 ik Mercurialiig— S, — ELUIN T — AP, %3 g satusi
LA 7 A5 T

$ hg init add-exanple

$ cd add- exanpl e

$ echo a > nyfile.txt

$ hg status

? myfile. txt

$ hg add nyfile.txt

$ hg status

A nyfile.txt

$ hg commit -m' Added one file'
$ hg status

fEizfrhg commity j5, fREEAEASZFTVR NI SCHRR A2 HHILAERG - statusgy 4y
o BRE T, fEBVETENL R, hg Status{y SRR IR SE IR T RE < TEROGER 1 SCIF—R LR
gz (D B, MBR, S msert. WERIRIMIRAS e b A5 LTSS, ARIEAR EANG
A gniEMercurial fLgs T s o pk, X e SO B B U . (PRIE T LU FIX —
FER, RENMESTRE.)

WIn—A3EZ 5, Mercurial A &y EXSEMATRMEAE . B, £E R IRIRIRAT I
i, ESEREASE MR IF HAEIRELS BRRIRAS I IR AR SR XA S, HEIR
THIER"E -

°.1.1. At SRR & XK fr

Mercurial — A4 I IRFAE & G SRR — A H skt i — A &, fE i —A-Mercurial
DA N AL B “ FEAERXA H M 15 Ha H B I SO AT ERAE

$ mkdir b

$ echo b > b/sonmefile.txt

$ echo ¢ > b/source.cpp

$ nkdir b/d

$ echo d > b/d/test.h

$ hg add b

adding b/d/test.h

addi ng b/ sonefile.txt

addi ng b/ source. cpp

$ hg commit -m'Added all files in subdirectory

FERALIXA BIRBX A7 rp, Mercurialfaith 7R AN IHRISCAFH44 7, ARIAE AT A 615
O BATA IOy L e Xt ki, e AT AT AR

TESEHT A7 rh, AT IAE A& Th I 45 T SN SCfk . 7EXp s ol
Ny Mercurial i EATAERAEMA A, FrEVEA R AL A0

45

Mercurial 1) H & 15 F

SR, AT H or bR & AR 2 SCPF IR, Mercurial 20K FLHR AT AOREA SR SCAF
AR KPR TV, IR AT BERAME L. K2 HMercurial gy A HIT X R IAT A o

5.1.2. Mercurial RRESSC#, FREER

Mercurial Jf AR RS H A5 e AR, BRSOt ERIdE—AN 02w, vl
Je ISR AR R D I H e FEMBRSCAE 2 5, e BRAE RN B SO B A B A AE A
FHF . EFERKXAKR, (HREFEOXFEER. Mercurial vl § 45 11— A 584 2411
BB

B HSEA ERA A, T HAR AT DL AR T2k B R ROR . Rl gMercurial (i
TR B2 H saly RIS 2 M B R M AFAL

MR AR B AT O S B, HJUME. H—R_eg—AHx, #K5Ahg
addy 475 H P in—A~ “Baiil” Soff. WmfEUNIXRR S b, K28 4 RGUI T A
WA ST VAR 27D FFR ISR Bl S o X R

$ hg init hidden-exanple

$ cd hi dden- exanpl e

$ nkdir enpty

$ touch enpty/. hidden

$ hg add enpty/. hidden

$ hg commit -m' Manage an enpty-1ooking directory
$ I's enpty

$ cd .

$ hg cl one hi dden-exanple tnp

updating to branch default

1 files updated, O files nerged, O files renpved, O files unresol ved
$Is tnp

enpty

$ I's tnp/enpty

TN FTTRGEAEAEH] AZI A B IIAS, A B H SR I

0.2, YA F Lk BR ER 3L A4

— FARYCE BLRE— A SO A B,] g removedy 4. & 2 BRiZSCfE,]
ﬁ%ﬁMmﬂﬂﬁiﬁﬁE(Tﬁ%T%ﬁﬁiﬁ)owaﬁmiﬁﬁﬂl5m%%ﬁﬁ$
LI RUBR

$ hg init renove-exanple
$ cd renove-exanpl e

$ echo a > a

$ nkdir b

$ echo b > b/b

$ hg add a b

adding b/b

$ hg commit -m'Snall exanple for file renoval
$ hg renove a

$ hg status

R a

$ hg renmove b
removing b/b

fEUR{EFhG removeiik— A2 i, Mercurial ANFREREIXA SCAFAR L, BIAE R 7E
AR H S BLRFE 40 5 BB 80 1A SCPF e ARARLAA R A 4% 7 Eop g 17— A 3eft, JF
HAygEMercurial i i S, HZEHIhg addys el nT B T o Mercurial 238X ASHT N
SO AR AR (SO A, HRRZ R R

46

Mercurial 1) H & 15 F

0.2.1. MHBR A oM 7 52

SRR R — A SO DU AN T TR, IR B
* SCPFIR T RRCAS A H b iR
* W FKERAETF, Mercurial AR ERERIX AN SCAF 1AL o
MR — AN SO AN & LM 7 B SO AN SO R 52

DR ARAEIE — FRA R — AN SCPFINBS, i ke A H S SR 21 LU I A BCAS, IR
SR BATHMER . IR ATZA ST 2 B AL AR Hoerp i, N BRI SE AT AN AL B 4R
()Y AR o SRS U SRR S B LU AEHROAS , S I IXAN ST Ll 7, i 2 Mercurial
SRR SO AR H S ER

5.2.2. EH%

IAR—ASFHINER T, AR AZHIhg removedy SHERTY, Mercurial INNEERT .
TRINSCAFENG statusfdiyh cp LU " bR — BBl FMercurial iy &R 2ok R I SUAHE A
fAbFE

$ hg init mssing-exanple

$ cd nissing-exanple

$ echo a > a

$ hg add a

$ hg commit -m'File about to be missing
$ rma

$ hg status

| a

W1 SRS ISP A SCPEE R T o T LRI SR A AR T, Ao LA
£E LU AT f i)iz frhg remove - - af ter 4y 4, i fpMercurial {5 8 i o A S0 f
$ hg renove --after a

$ hg status
R a

Gy —J7 T, A RARREASNOAHIRA SO, rTRANG revertgy & n bR i S
o BB SCIHRE BIR B ST RS .

$ hg revert a
$ cat a

a

$ hg status

5.2.3. FH: At 4ZER#HEIF Mercurial fillpR3c 42
T Mercurial S fe T 5 - SN, e Mercurial 3 sz

39, N RO AT LU s S Mereunial 2x | gl B SCIEANE T, 4R F—kizfrhg
COMMIL{yIRf ik, e mlb ox 58 I BRIESX AN SO S b, AR 3 B0 EE 2R .

0.2.4. H A IT—— NSRRI INFAMBR ST

Mercurialjfifit &4, hg addremove, &y Ak ERER IS, I 25200
b S R

a7

Mercurial 1) H & 15 F

$ hg init addrenove-exanple
$ cd addr enmove- exanpl e

$ echo a > a

$ echo b > b

$ hg addrenove

adding a

adding b

hg commity & FIFEBHLAE— - ARIT, AR5 2 5 HEATAHH IR A0S In i s
$ echo ¢ > ¢

$ hg commit -A -m'Commit with addrenove
adding ¢

0.3. $5 N34

Mercurial it fit 7 —/~hg CopY iy, A LAHIRES DISCE. 2R RN #5 DUCft
I, Mercurialgxick FIXASSCAFE i ORI SCPEHS DUMR K. BUSAE/RIE TARRI AR A T
TEG IR, &2 XX P8 DR S REA TR PR AL BE o

°.3.1. SHRENHHAE

fEAIFLRE R, AR o “ARIL” 45 P5 L. O T AR Y, BATEIE M. BT
M AL A S MRA TG -

$ hg init ny-copy

$ cd ny-copy

$ echo line > file

$ hg add file

$ hg commit -m' Added a file

BATFEIATI LA, P ASRA AT 5 0F o P LASRA DRERSCAS 28 5 o o

$ cd .

$ hg cl one ny-copy your-copy

updating to branch default

1 files updated, O files nerged, O files renpved, O files unresol ved

[RIEIHIA AR, AT THING copy iy & Gl e JAT I 4 il 42 37) SCAF 4% DL

$ cd ny-copy
$ hg copy file newfile

SR I RIRA TG — T ho statusifyginth, R ILEE DU SO RD R A5 38 1A VA I s SC A

$ hg status
A newfile

Y R A4hg statushy b- Cueit, g2t Sy Ah—A47: BRI SO WA ST
PN

$ hg status -C
A newfile
file
$ hg commit -m ' Copied file'

WAL, [PIRFATT e BE AN A S, FRATTHAT BIVE— s ckesl, g AT TS I a4t () ST A
wh—17,

Mercurial 1) H & 15 F

$ cd ../your-copy
$ echo 'new contents' >> file
$ hg commit -m' Changed file'

DUAERRCAS T BT B i S0 o BATIER — DR ESEARSE, I HA IR A TR
A, Mercurial £:¥528 M IRAME S ScrEf 1] eflitgy e e 0L, new-file,

$ hg pull ../my-copy

pul ling from../ny-copy

searchi ng for changes

addi ng changesets

addi ng nmani fests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)

(run 'hg heads' to see heads, 'hg nerge' to nerge)

$ hg merge

merging file and newfile to newfile

O files updated, 1 files merged, O files renoved, O files unresol ved
(branch nmerge, don't forget to commt)

$ cat newfile

I ine

new contents

0.3.2. it AEEZIHTE?

K AT SIS AL RIS (K9 Db — WA RORMELAEEAR, (HAE K2 G O
N, EARERO

e B AR PR IR R A AE B IR . BT AT SRk g copy s DL T —AN S, ik
JAAE TAR R JSUSCAHREAT T80, RNt ati skt

FORE TR, HA SRS IF AR R B B2 WK, Bcd i+
DR

Mercurial i FE R IR G R o BRI BRATAE RIS P IE T — N E % (fibug, RJGIRAET
AR, SUEREIN, g NG copy iy A EARKIRRAR e v % DX AN SO, ARARIEAJ B IX A
bugth B R I CAMIER T, I HRCEITHATER I I LTS T

WA BRI AR SEHE R kI HA . (HMercurial R & AR g A s 4545 D1, IS A AR IFIHEAR
SO EL S I bug, BRARIRANIE I HFalE A e, X ANDUGL— HAR B /EIRIM#5
UL

Mercurial: {6 55 1 DUQIK) AR T8 A SRR SCAT 1 2 (K AL 4R 2045 DL, AT I8 G T SRR () i 445
T f#, Mercurial i MeE—REIXHFEAEPS DLIR) A AL B K ARSI R 4T

— ELRIGAZ S s A T DUMIBE S A IR Ad sk, 3 CRE AR 3 UR SO A% 3 21 35
DISCAE, it s Mercunial (Y AS L 5 — & I R B E 4 DL AL 8 AR B SR, A

©.3.3. tnfAIZE ik BB L i%?

UR TR AL, ARGEAFIXP B SIS UL A3 A8 5 (R 7 sANIE SR, A URAT LLAE
HRGE 5 D dn & (FEUNIXRGE gt epin) REHISCE, SAJEEHNhg addF g 7sngs
DURISCAT e TEARIXAAEZ T, WERPIERES 532 4% “ At A LA, HihX—Ihfg
FEARHMIAE SR OL, SRJE 1 RS e .

49

Mercurial 1) H & 15 F

5.3.4. is£hg copyyiTA

5.4.

{EAET TG copy iy &I, Mercurial<x &I TAE H g i scfk. Wil il
PR SCPE T i85, I BB, ABahg Copy 2k sy ik SCFK o A ix s, (FRbirs
AT NGB, PTUAERR R — T)

hg copy iy 4 FUNIX[CP Ay A ThfERL (IR AR =Xk, wf LUHhg epiE e 4) o 34l
DAL A B AL E S5, b Es — AN BiR, HABK B,

R H AR — A H 3, Mercurial 20K I AT USR5 DU H bR H %o

$ nkdir d

$ hg copy a b d
$ s d

a b

H sk DRI VTR, ORI H sk IS4

$ hg copy z e
copying z/alc to elalc

BARYSEAN H bR Hox, I H SRS 2 A8 H AR Hoxk P .

$ hg copy z d
copying z/alc to d/z/alc

Fihg removedy & —#f, W ALRT A4 DT —ASCpFIf Ay EMercurial fi frds LT ix A
Sk, T Bhgrhg copy iy 4 I-- - af ter yEI,

$ cpan
$ hg copy --after a n

s ip A M1
SISt sk, S 4 SO R . IRETHE E AT S 2w iehg copy iy

A [g Mercurialf -4 DU E diy 44 () b 277 5UAH). DRtk i T Mercurial 7 2 4h 3145 DLSC
AR 01 T Mercurial 7 2 hb 35 iy 44 301

fEfRizfrhg renamedy & (i %, Mercurial B 5EXHEEANJESCITHEA— 1045 UL, SRS IHBR
s IR AR U MRS o

6 hg rename a b

hg statusgiy 4 W B DU SCEFIPRA RN, #5 TURIIBAN STEF IR A MR -

g status

$ h
A b
R a

Fhg copyiy & (K4 J—FF, FAinZighhg statusay 4 |- Cig 1A fig A FMercurial 2o
B SCPE AR N S a SCPF 3% DLREA T B, RN JsUn S e BR

50

Mercurial 1) H & 15 F

$ hg status -C
A b

a
a

Py

hg removefiihg copy#y4-—FE, fRIES G0 LIE - - af t er 2E i fMercurial 544,
ZHE WL T, hg renamegiihg copy (/147 143 52 16 TR 2 AR BL

IR AEUNXE ST, B4 S VRIR—ANFIE R, ATELHhg mvFi{thg rename,

oAl EmANMHSEHETE

Pl Sy Mercurial () o iy 44 & LAFE DUINBR (¥ 7 202 IUIK, R DU T —ANSCA, AR SO
A, AR 2 ISR SCAFATAR 21 5 4% 5 (1 S0P

WRPANBE ST A, RN A, RGN G IFANORAL S, A 3RAE J5tih
24 M AERME SO AR R EIREE SR 25 GZANTHREIRAT RGN “ARM L, 7 (HEAR
FITAT IO RRCAS P T R e AR AT IX AN T i o

XA LS BRAESE VXA TIRE, ARATREA LU “ 418, XAATRES A7 X HLEE
VLA T ERBE T Ar AR . WERBA XA ThRE, WA EmA L)n, ZEIRES)
YL R

042 FEFMERZSEFH

3 B AR KA DL, ABR P A I R IR RRUAS PR A — AN SCF—3e 44 4T oo,

$ hg clone orig anne

updating to branch default

1 files updated, O files nerged, O files renpved, O files unresol ved
$ hg clone orig bob

updating to branch default

1 files updated, O files nerged, O files renpved, O files unresol ved

Annes i 1 4 Jybar .

$ cd anne
$ hg renane foo bar
$ hg ci -m'Renane foo to bar

A, Bobyg 4 hquux, (iff:hg mvighg renameyy i 4.,)

$ cd ../bob
$ hg nv foo quux
$ hg ci -m' Renane foo to quux

PN RIE AR, BRI A X IXA SCAE Rz i ey 444 7 AR S W

TRVEAFARNTE I I A AT AWE? AE SIS 2 BOE A AR AR I, Mercurial
PR B2 R AN SO R B

See http://ww. sel eni c.confnmercurial/bts/issue455
$ cd ../orig

$ hg pull -u ../anne

pul ling from../anne

searchi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

51

Mercurial 1) H & 15 F

added 1 changesets with 1 changes to 1 files
1 files updated, O files nerged, 1 files renoved, O files unresol ved
$ hg pull ../bob
pul ling from../bob
sear chi ng for changes
addi ng changesets
addi ng mani fests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg nerge' to nerge)
$ hg nerge
war ni ng: detected divergent renanes of foo to
bar
quux
1 files updated, O files nerged, O files renoved, O files unresol ved
(branch merge, don't forget to conmit)
$ s
bar quux

VR B M ercurial 2onf o 15 5 44 e AR A AR B ARSR YR 7E & 5 S Al R 3 B

°0.4.3. EWBSEFHF

I3 TR A4 PSR AN NG AN R R0 SO 4% AR TR B BRSO o X 2t
T, Mercurial &HUTIEH A IR, ARG LEUREE B 3% B A58 (iR e 7 22

°.4.4. HEAIRBERIER

Mercurial — B 5 —/Nbug, WAV AENEAT A I IR R I —30 — AN S, i 54—k
AR FRI H 3%, A It 4 R, 1A) i s i ssue 29 [http://www.sel eni c.com/
mercurial/bts/issue29] ,

$ hg init issue29

$ cd issue29

$ echo a > a

$ hg ci -Ama

adding a

$ echo b > b

$ hg ci -Anb

adding b

$ hg up O

O files updated, O files nmerged, 1 files renmoved, O files unresol ved
$ nkdir b

$ echo b > b/b

$ hg ci -Anc

adding b/b

created new head

$ hg nerge

abort: |Is a directory: /tnp/issue2905JNPz/i ssue29/b

£t o
9.0. NFEIRKE
Mercurialf gt 7oy s 4, ST LA — 84 IR B 1L
ATLANG Tevertr SIS T FMIAE H.L Lo, AV add gy &yt T —
A, RIEEIENG revert LRI AR AT BLT , PRI 2 2 A (T
45, (AR EMercurial £ B S T . it BLTING Tever il et Rt .

FLAENG reverty A AUE TR AR BB FRAC I . — FLARERAS TAR T, R
RIVZEAN R, RARANSBIE, BEARBMIIRA R,

52

http://www.selenic.com/mercurial/bts/issue29
http://www.selenic.com/mercurial/bts/issue29
http://www.selenic.com/mercurial/bts/issue29

Mercurial 1) H & 15 F

Krhg revert@y &ML A5 R, BT WTALEE AR, 1S5 9 & &g

BEEIR -
°0.6. FHAYHIS

FEPERINT LA 2RI, ARG S IR 8 AL AR . BT RIS, &
FERIPTLARAE TARZ B XA R 2 FEURZ h5E, ATLE S LIRS REff ko

FATH AT B 7B G T A BRI Do BATTREAL AN SR A RRCAS P2 e e Y

W

(g

Ko

$ hg init conflict

$ cd conflict

$ echo first > nyfile.txt

$ hg ci -A-mfirst

addi ng nyfile.txt

$ cd .

$ hg clone conflict left

updating to branch default

1 files updated, O files nerged, O files renpved, O files unresol ved
$ hg clone conflict right

updating to branch default

1 files updated, O files nerged, O files renpved, O files unresol ved

FER A TBE, BATTRE SO HE BUSaXAE

cd left
echo left >> nyfile. txt
hg ci -mleft

FETIAN A salEr, BAISE A RN B

cd ../right
echo right >> nyfile.txt
hg ci -mright

B MR, BRATTHRE P A B LA 2 4 R R P

TR

R ZRT

$ cd ../conflict

$ hg pull -u ../left

pulling from../left

sear ching for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files

1 files updated, O files nerged, O files renpved, O files unresol ved
$ hg pull -u ../right

pulling from../right

sear chi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
not updating, since new heads added

(run 'hg heads' to see heads, 'hg nerge' to nerge)

AT 195 B FBAS PR BLAE A AN SR OAS

$ hg heads

changeset : 2:1896a6123b21

t ag: tip

parent: 0: 12f 348aeaf be

user: Bryan O Sul | i van <bos@er penti ne. con>
dat e: Wed Aug 11 06:05:51 2010 +0000

53

Mercurial 1) H & 15 F

sunmary: right
changeset : 1: 4c8d394d00ed
user: Bryan O Sul | i van <bos@er penti ne. con>
dat e: Wed Aug 11 06:05:51 2010 +0000
sunmary: left
IEHAEOL R, AU Bl 1577 merge. IEfT - AGUIRESE, iERA I

ey ile. EXUpgphse, HUE, T X BRE0R, BAIGEEEIRM. BATT LT
T) TR

|6 export HGVERGE=fal se

P st ypMercurial ffy & JRIRAHL, AR Rl BIARRE 1 ORISR, BsAT d
ofalse (GRAIA LN —FE, SLEIRIURED .

WRIAEFATZAThg merge, i 245 111847 7] IR 5 — 44 12

$ hg nerge
mer gi ng nyfile.txt

merging nyfile.txt failed
O files updated, O files nmerged, O files removed, 1 files unresolved
use 'hg resolve' to retry unresolved file nerges or 'hg update -C to abandon

R RRA 1A B G I RI, Mercurial s BHIEFRATT R AP ERAS R) A I 45

$ hg commit -m'Attenpt to commt a failed nerge'
abort: unresolved nerge conflicts (see hg resolve)

KRR, hg commitJemk (i, i BRAE A g resolvedy & FILLET—
£, g help resolves: i i # I it 22 .

0.6.1. I HBYFRRARTS

HIRAR, KREBHCEATME . Mercurial b FREATF EHHTHAE R SO, #is
PRI PR o

* resolved IR S L £ F, AN EMercunial [2 e sl ik 2 T TAS 5058 o
* unresolved kR SC AT I I G OF, R R

M ereunial fe 23 5 R R SCAFAL T RAFJCRA, BN IZIRA IR SR
s BAIA T EF IR ITIRREAT 5 IF
hg resolveyyy- - | st alzg- | RIS 4T B H AEAN A 91 (K SCAF RS

$ hg resolve -1
U nyfile.txt

fEhg resolveftdgritih, ORI SCAFRIRAR, TARMISCEARRANY, WA (R
SRR URY, B ATAMTHA BRI A5 IF 45 R -

5.6.2. R THE I

BATAT I LR 7 1208 SO AR HRAR AL e PRS- 224 ab e F I i &2 HE B
f7hg resolve, W%&MHI#%&%E%%%ﬁ%b,%ZE%E%E”%%&AﬁEﬁi
RO SO I RRAT K- - al | sl - ik miife 4y e, A e R EH A I SR MU

54

Mercurial 1) H & 15 F

Mercurial aso lets us modify the resolution state of afile directly. We can manually mark afile
asresolved using the - - mar k option, or as unresolved using the - - unnar k option. Thisallowsusto
clean up aparticularly messy merge by hand, and to keep track of our progress with each file aswe go.

°./. ERMEZHKIT

Bt LR, hg diffdy 4 fo i 53 pdiff gy A9 2, BRI 85 .
PARFRAT 1] hg rename iy 4k 5 iy 4 S

$ hg renane a b
$ hg diff
di ff -r daaf2ble2664 a

- a/a Wed Aug 11 06:05:50 2010 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
a®-1,1 +0,0 @@
-a
di ff -r daaf2ble2664 b

- /dev/null Thu Jan 01 00: 00: 00 1970 +0000
+++ b/ b Wed Aug 11 06: 05: 50 2010 +0000
@®-0,0 +1,1 @@

+a

BAgh —A etk s, mho diff s 05 56 T Fs. hgdiffdy &ny IRz ik 1mi- - 9i t ok,
-9, AT ZE g X LA SE e e () 07 28 s X 645 R
$ hg diff -g
diff --git a/a b/b

renane froma
renane to b

EAEIAELL FROLF 3, BIAR S N g —A SR hg - statusér g,
SORIPRASRPE S T, RN diffiy Ay, i as R e . IR M ST SO
RIS T I PR A2 B DL o
$ chnod +x a
$ hg st

M a
$ hg diff

The normal diff command pays no attention to file permissions, which is why hg diff prints
nothing by default. If we supply it with the - g option, it tells us what really happened.

$ hg diff -g

diff --git a/a b/a
ol d node 100644
new node 100755

5.8. MLt HEEEE, UL FE

AP RGeS KA BN 5 (R SCARSCA . st AR, ANTR] (0 FRCAS T SO) el
SRR B RRAS S T AR G] AR (¥ ok —BERISCAE, s el ST

o, > R A3 RO A BAAN B RRAS 2l 3 4 rh A BERACAY,, 3 B B — k7
Wrs (B, WA, HEAED .

DA Ay =B AN T RE S PR BRSO P, AR i SUR Gl 1 B ST B LRR X
AN BV BAEME RSO RN

55

Mercurial 1) H & 15 F

ARG, B AR RS, e 2 R LSO S A B 45
SRR A T AR

wln, EAFE, — DA R R EA RSB BUE IR B R LT
LB LEPHAS A A ZBE RSO AN LR R B . WERAEAR TP, A7 28 N SRR (K 2
B HERISCAE, B A ANIE A A M ercurial— gl 2 A 4] HoAl) 43 A AU ROA T) R G —K
P

EAFA SO AR S P, Mercurial 385 H 2 PRAT 2 B AR RN _E—ANRRCAR 22 18]) 22 57
KT REZHSCR ST S, IXBEHER @R (H2 S CRelg —3EISC) mis, X
TAFZ N LIRS, wREFECCE IR 2 803 48 K 2 501 Rk AR AR . o,
g AR IXFE o W — AN SO E SRR 2 [A] [22 57 S 2R K, Mercurial gt ASBEA 2L T
A SCAFIRRAS 7 5 o 3X 23 52 M A b (A 5 SR 0 B RiAS P 7 B (P s (1]

ST AR S BRI I B, L A 4 JTIMercurial 45351 — 4~ OpenOffice sy
Fi. OpenOfficeffi FIZIPFEATHIFS A7 SCHE. VS i i Sk 7EOpenOfficert (A s T — A
TR, AEARAERS IO JLPSC P AT 52 T 280k AL SO 2B 8]y
FE U A RS SC AT R A T 25k, Mercur ial AP ASE A UCHRAC I 4575
Frar MBI SCk, B M AR AR B, AR AT LA, — R Mercurial
ARG BT SR S0, Fe IRDAE RS P PO BB

TIRTEER I, G AR AL AR A g 4 —~OpenOtficesc kY, AT (14 ImEA IFR T
TAE. SEbr b, AR INEE RARAN R AR S T8 22 57 o

I EITATZNIVY GEZARPIN E LS 27 ALt CF 11 a3 €
AR EAREEAE R SCfE, wlSO CD-ROMBUE, 2o A AR A /IS AT i 1 3 S50 e 4

21N e AR 2218
* AFRARARS, WEARSE AT TR L 250, RN AT G 0 b TEAR A A ok
3P

°.9. & 53R

Pl Sy Mercurial 75 AN o e o 5 5 A7 S ¥ g s 48 DL, BT LAAE— AN H RS
Mercurial 547 /E 1) N8 T LALE A& A= (IR BR800 T SR v SRR AN P R 7 s, k)
LA Aok 8 8 B e BERRCAS PEAR D9 AN, A% vl DA HE AR RRCAS J2E B0 AT 1R AR

Itissimpleto use Mercuria to perform off-site backups and remote mirrors. Set up a periodic job
(e.g. viathe cron command) on a remote server to pull changes from your master repositories every
hour. Thiswill only be tricky in the unlikely case that the number of master repositories you maintain
changes frequently, in which case you'll need to do a little scripting to refresh the list of repositories
to back up.

If you perform traditional backups of your master repositoriesto tape or disk, and you want to back
up arepository named nyr epo, use hg clone -U myrepo myrepo.bak to create a clone of nyr epo
before you start your backups. The - U option doesn't check out a working directory after the clone
completes, since that would be superfluous and make the backup take longer.

56

Mercurial 1) H & 15 F

If youthenback upnyr epo. bak instead of myr epo, youwill beguaranteed to have aconsistent
snapshot of your repository that won't be pushed to by an insomniac developer in mid-backup.

57

% 6 & FIKIHE

As acompletely decentralised tool, Mercurial doesn't impose any policy on how people ought to
work with each other. However, if you're new to distributed revision control, it helps to have some
tools and examples in mind when you're thinking about possible workflow models.

6.1. Mercurial g§ web 3£

Mercurial has a powerful web interface that provides several useful capabilities.

For interactive use, the web interface lets you browse a single repository or a collection of
repositories. Y ou can view the history of arepository, examine each change (comments and diffs), and
view the contents of each directory and file. Y ou can even get aview of history that gives a graphical
view of the relationships between individual changes and merges.

Also for human consumption, the web interface provides Atom and RSS feeds of the changes
in a repository. This lets you “subscribe’ to a repository using your favorite feed reader, and be
automatically notified of activity in that repository as soon as it happens. | find this capability much
more convenient than the model of subscribing to a mailing list to which notifications are sent, as it
requires no additional configuration on the part of whoever is serving the repository.

The web interface also lets remote users clone a repository, pull changes from it, and
(when the server is configured to permit it) push changes back to it. Mercurial's HTTP tunneling
protocol aggressively compresses data, so that it works efficiently even over low-bandwidth network
connections.

The easiest way to get started with the web interfaceisto use your web browser to visit an existing
repository, such as the master Mercurial repository at http://www.selenic.com/repo/hg.

If you're interested in providing a web interface to your own repositories, there are several good
waysto do this.

The easiest and fastest way to get started in an informal environment is to use the hg serve
command, which is best suited to short-term “lightweight” serving. See #f; 6.4 =5 i fj hg serve jj
47AEIE k== below for details of how to use this command.

For longer-lived repositories that you'd like to have permanently available, there are several
public hosting services available. Some are free to open source projects, while others offer
paid commercial hosting. An up-to-date list is available at http://www.selenic.com/mercurial /wiki/
index.cgi/MercurialHosting.

If you would prefer to host your own repositories, Mercurial has built-in support for several
popular hosting technologies, most notably CGI (Common Gateway Interface), and WSGI (Web
Services Gateway Interface). See i 6.6 45 “ /i ff] CGI ik HTTP 3t jjz 4% > for details of CGl
and WSGI configuration.

58

http://www.selenic.com/repo/hg
http://www.selenic.com/mercurial/wiki/index.cgi/MercurialHosting
http://www.selenic.com/mercurial/wiki/index.cgi/MercurialHosting

A DA

6.2. H{EiEEl

With a suitably flexible tool, making decisions about workflow is much more of a socia
engineering challengethan atechnical one. Mercurial imposesfew limitations on how you can structure
the flow of work in a project, so it's up to you and your group to set up and live with a model that
matches your own particular needs.

6.2.1. EHIEWE =

The most important aspect of any model that you must keep in mind is how well it matches the
needs and capabilities of the people who will be using it. This might seem self-evident; even so, you
still can't afford to forget it for a moment.

| once put together aworkflow model that seemed to make perfect sense to me, but that caused a
considerable amount of consternation and strife within my development team. In spite of my attempts
to explain why we needed a complex set of branches, and how changes ought to flow between them,
afew team members revolted. Even though they were smart people, they didn't want to pay attention
to the constraints we were operating under, or face the consequences of those constraints in the details
of the model that | was advocating.

Don't sweep foreseeable socia or technical problems under the rug. Whatever scheme you put
into effect, you should plan for mistakes and problem scenarios. Consider adding automated machinery
to prevent, or quickly recover from, trouble that you can anticipate. As an example, if you intend to
have a branch with not-for-release changesin it, you'd do well to think early about the possibility that
someone might accidentally merge those changesinto arelease branch. Y ou could avoid this particular
problem by writing a hook that prevents changes from being merged from an inappropriate branch.

6.2.2. THIAFIRZS

| wouldn't suggest an “anything goes’ approach as something sustainable, but it's a model that's
easy to grasp, and it works perfectly well in afew unusual situations.

As one example, many projects have a loose-knit group of collaborators who rarely physically
meet each other. Some groups like to overcome the isolation of working at a distance by organizing
occasiona “sprints’. In a sprint, a number of people get together in a single location (a company's
conference room, a hotel meeting room, that kind of place) and spend several days more or lesslocked
in there, hacking intensely on a handful of projects.

A sprint or ahacking session in acoffee shop are the perfect placesto use the hg ser ve command,
since hg serve does not require any fancy server infrastructure. You can get started with hg serve
in moments, by reading % 6.4 45 “/{fi] hg serve #i47E IF 1t ” below. Then smply tell the
person next to you that you're running a server, send the URL to them in an instant message, and you
immediately have a quick-turnaround way to work together. They can type your URL into their web
browser and quickly review your changes; or they can pull abugfix from you and verify it; or they can
clone a branch containing a new feature and try it out.

The charm, and the problem, with doing things in an ad hoc fashion like thisis that only people
who know about your changes, and where they are, can see them. Such an informal approach ssmply

59

A DA

doesn't scale beyond a handful people, because each individual needs to know about n different
repositoriesto pull from.

6.2.3. & —th sk AR A

For smaller projects migrating from a centralised revision control tool, perhaps the easiest way
to get started is to have changes flow through a single shared central repository. Thisis aso the most
common “building block” for more ambitious workflow schemes.

Contributors start by cloning a copy of this repository. They can pull changes from it whenever
they need to, and some (perhaps al) developers have permission to push a change back when they're
ready for other people to seeit.

Under thismodel, it can still often make sense for peopleto pull changes directly from each other,
without going through the central repository. Consider a case in which | have atentative bug fix, but |
am worried that if | were to publish it to the central repository, it might subsequently break everyone
else'streesasthey pull it. To reduce the potential for damage, | can ask you to clone my repository into
atemporary repository of your own and test it. This lets us put off publishing the potentially unsafe
change until it has had alittle testing.

If ateam is hosting its own repository in this kind of scenario, people will usually use the ssh
protocol to securely push changes to the central repository, as documented in % 6.5 45 “{gijj] ssh
#ip” . It's aso usual to publish aread-only copy of the repository over HTTP, asin & 6.6 45 “ /i
H CGl @k HTTP $4it i 4% 7 . Publishing over HTTP sétisfies the needs of people who don't have
push access, and those who want to use web browsers to browse the repository’s history.

6.2.4. £ ERY P RARAEE

A wonderful thing about public hosting services like Bitbucket [http://bitbucket.org/] is that not
only do they handle the fiddly server configuration details, such as user accounts, authentication, and
secure wire protocols, they provide additional infrastructure to make this model work well.

For instance, a well-engineered hosting service will let people clone their own copies of a
repository with asingle click. This lets people work in separate spaces and share their changes when
they're ready.

In addition, a good hosting service will et people communicate with each other, for instance to
say “there are changes ready for you to review in thistree”.

6.25. EFHE NI TAE

Projects of any significant size naturally tend to make progress on several fronts simultaneously.
In the case of software, it's common for a project to go through periodic official releases. A release
might then go into “maintenance mode” for a while after its first publication; maintenance releases
tend to contain only bug fixes, not new features. In paralel with these maintenance releases, one or
more future releases may be under development. People normally use the word “branch” to refer to
one of these many dlightly different directions in which development is proceeding.

60

http://bitbucket.org/
http://bitbucket.org/

A DA

Mercurial is particularly well suited to managing a number of simultaneous, but not identical,
branches. Each “development direction” can live in its own central repository, and you can merge
changes from one to another as the need arises. Because repositories are independent of each other,
unstable changes in a development branch will never affect a stable branch unless someone explicitly
merges those changes into the stable branch.

Here's an example of how this can work in practice. Let's say you have one “main branch” on
acentral server.

$ hg init main

$ cd nmain

$ echo 'This is a boring feature.' > nyfile

$ hg commit -A -m'We have reached an inportant milestone!
addi ng nyfile

People clone it, make changes locally, test them, and push them back.

Once the main branch reaches a release milestone, you can use the hg tag command to give a
permanent name to the milestone revision.

$ hg tag v1.0
$ hg tip
changeset : 1: 62544c7cff5b
t ag: tip
user: Bryan O Sul | i van <bos@er penti ne. con
dat e: Wed Aug 11 06:05:48 2010 +0000
sunmary: Added tag v1.0 for changeset 69a857f8al98
$ hg tags
tip 1: 62544c7cff5b
1.0 0: 69a857f 8a198

Let's say some ongoing development occurs on the main branch.

$ cd ../main

$ echo 'This is exciting and new' >> nyfile
$ hg conmmit -m'Add a new feature

$ cat myfile

This is a boring feature

This is exciting and new

Using the tag that was recorded at the milestone, people who clone that repository at any time
in the future can use hg update to get a copy of the working directory exactly as it was when that
tagged revision was committed.

$ cd .

$ hg clone -U main nmain-old

$ cd main-old

$ hg update v1.0

1 files updated, O files nerged, O files renmoved, O files unresol ved
$ cat myfile

This is a boring feature

In addition, immediately after the main branch is tagged, we can then clone the main branch on
the server to anew “stable” branch, also on the server.

$ cd .

$ hg clone -rv1.0 nmain stable
requesting all changes

addi ng changeset s

addi ng mani fests

addi ng file changes

61

A DA

added 1 changesets with 1 changes to 1 files
updating to branch default
1 files updated, O files nerged, O files renoved, O files unresol ved

If we need to make a change to the stable branch, we can then clone that repository, make our
changes, commit, and push our changes back there.

$ hg clone stable stable-fix

updating to branch default

1 files updated, O files nerged, O files renoved, O files unresol ved
$ cd stable-fix

$ echo 'This is a fix to a boring feature.' > nyfile
$ hg commit -m'Fix a bug

$ hg push

pushing to /tnp/branchi ngu8YRgX/ st abl e

sear chi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files

Because Mercurial repositories are independent, and Mercurial doesn't move changes around
automatically, the stable and main branches are isolated from each other. The changes that we made
on the main branch don't “leak” to the stable branch, and vice versa

WEell often want all of our bugfixes on the stable branch to show up on the main branch, too.
Rather than rewrite abugfix on the main branch, we can simply pull and merge changesfrom the stable
to the main branch, and Mercuria will bring those bugfixesin for us.

$ cd ../main

$ hg pull ../stable

pulling from../stable

searchi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg nerge' to nerge)

$ hg nerge

merging nyfile

O files updated, 1 files nmerged, O files renoved, O files unresol ved
(branch nmerge, don't forget to commt)

$ hg commit -m'Bring in bugfix from stable branch

$ cat nyfile

This is a fix to a boring feature

This is exciting and new

Themain branch will still contain changesthat are not on the stable branch, but it will also contain
al of the bugfixes from the stable branch. The stable branch remains unaffected by these changes,
since changes are only flowing from the stable to the main branch, and not the other way.

6.2.6. 4o

For larger projects, an effective way to manage changeisto break up ateam into smaller groups.
Each group has a shared branch of its own, cloned from a single “master” branch used by the entire
project. People working on an individual branch are typically quite isolated from developments on
other branches.

62

A DA

6.1 45145

When a particular feature is deemed to be in suitable shape, someone on that feature team pulls
and merges from the master branch into the feature branch, then pushes back up to the master branch.

6.2.7. X% %%

Some projectsare organized ona“train” basis: areleaseis scheduled to happen every few months,
and whatever features are ready when the “train” is ready to leave are alowed in.

Thismodel resemblesworking with feature branches. The differenceisthat when afeature branch
misses a train, someone on the feature team pulls and merges the changes that went out on that train
release into the feature branch, and the team continues its work on top of that release so that their
feature can make the next release.

6.2.8. Linux jiztaEsl

The development of the Linux kernel has a shallow hierarchical structure, surrounded by acloud
of apparent chaos. Because most Linux developers use git, a distributed revision control tool with
capabilities similar to Mercuria, it's useful to describe the way work flows in that environment; if you
like the ideas, the approach translates well across tools.

At the center of the community sits Linus Torvalds, the creator of Linux. He publishes a single
source repository that is considered the “ authoritative” current tree by the entire devel oper community.
Anyone can clone Linusstree, but he is very choosy about whose trees he pulls from.

Linus has a number of “trusted lieutenants’. As a general rule, he pulls whatever changes they
publish, in most cases without even reviewing those changes. Some of those lieutenants are generally
agreed to be “maintainers’, responsible for specific subsystems within the kernel. If arandom kernel
hacker wants to make a change to a subsystem that they want to end up in Linus's tree, they must find
out who the subsystem's maintainer is, and ask that maintainer to take their change. If the maintainer
reviews their changes and agrees to take them, they'll pass them along to Linusin due course.

Individual lieutenants havetheir own approachesto reviewing, accepting, and publishing changes;
and for deciding when to feed them to Linus. In addition, there are several well known branches that
people use for different purposes. For example, a few people maintain “stable” repositories of older
versions of the kernel, to which they apply critical fixes as needed. Some maintainers publish multiple
trees. one for experimental changes; one for changes that they are about to feed upstream; and so on.
Othersjust publish asingle tree.

This model has two notable features. Thefirst isthat it's “pull only”. Y ou have to ask, convince,
or beg another developer to take a change from you, because there are almost no trees to which more
than one person can push, and there's no way to push changes into a tree that someone else controls.

63

A DA

The second isthat it's based on reputation and acclaim. If you're an unknown, Linuswill probably
ignore changes from you without even responding. But a subsystem maintainer will probably review
them, and will likely take them if they passtheir criteriafor suitability. The more “good” changes you
contribute to a maintainer, the more likely they are to trust your judgment and accept your changes. If
you're well-known and maintain a long-lived branch for something Linus hasn't yet accepted, people
with similar interests may pull your changes regularly to keep up with your work.

Reputation and acclaim don't necessarily cross subsystem or “people’ boundaries. If you're a
respected but specialised storage hacker, and you try to fix a networking bug, that change will receive
alevel of scrutiny from a network maintainer comparable to a change from a complete stranger.

To people who come from more orderly project backgrounds, the comparatively chaotic Linux
kernel development process often seems completely insane. It's subject to the whims of individuals;
people make sweeping changes whenever they deem it appropriate; and the pace of development is
astounding. And yet Linux isahighly successful, well-regarded piece of software.

6.2.9. R 5 #HZ S e

A perpetual source of heat in the open source community is whether a development model in
which people only ever pull changes from others is “better than” one in which multiple people can
push changes to a shared repository.

Typically, the backers of the shared-push model use tools that actively enforce this approach. If
you're using a centralised revision control tool such as Subversion, there's no way to make a choice
over which model you'll use: thetool givesyou shared-push, and if you want to do anything else, you'll
have to roll your own approach on top (such as applying a patch by hand).

A good distributed revision control tool will support both models. You and your collaborators
can then structure how you work together based on your own needs and preferences, not on what
contortions your tools force you into.

6.2.10. tME5 N X EHE

Once you and your team set up some shared repositories and start propagating changes back and
forth between local and shared repos, you begin to face arelated, but slightly different challenge: that
of managing the multiple directions in which your team may be moving at once. Even though this
subject isintimately related to how your team collaborates, it's dense enough to merit treatment of its

own,in % 8% ZHEBENITF L

6.3. =R HFARE=

The remainder of this chapter is devoted to the question of sharing changes with your
collaborators.

6.4. {£f hg serve #{TIEERLE

Mercurial's hg serve command is wonderfully suited to small, tight-knit, and fast-paced group
environments. It also provides agreat way to get afeel for using Mercurial commands over a network.

64

A DA

Run hg serve inside a repository, and in under a second it will bring up a specialised HTTP
server; this will accept connections from any client, and serve up data for that repository until you
terminate it. Anyone who knows the URL of the server you just started, and can talk to your computer
over the network, can then use a web browser or Mercurial to read data from that repository. A
URL for a hg serve instance running on a laptop is likely to look something like ht t p: // y-
| apt op. | ocal : 8000/ .

The hg serve command is not a general-purpose web server. It can do only two things:
» Allow people to browse the history of the repository it's serving, from their normal web browsers.
» Speak Mercurial'swire protocol, so that people can hg clone or hg pull changesfrom that repository.

In particular, hg servewon't alow remote usersto modify your repository. It'sintended for read-
only use.

If you're getting started with Mercurial, there's nothing to prevent you from using hg serve to
Serve up a repository on your own computer, then use commands like hg clone, hg incoming, and
so on to talk to that server asif the repository was hosted remotely. This can help you to quickly get
acquainted with using commands on network-hosted repositories.

6.4.1. EXIZM/LHE

Because it provides unauthenticated read access to al clients, you should only use hg servein an
environment where you either don't care, or have complete control over, who can access your network
and pull data from your repository.

The hg serve command knows nothing about any firewall software you might have installed on
your system or network. It cannot detect or control your firewall software. If other people are unable
to talk to arunning hg ser ve instance, the second thing you should do (after you make sure that they're
using the correct URL) is check your firewall configuration.

By default, hg serve listens for incoming connections on port 8000. If another processis aready
listening on the port you want to use, you can specify adifferent port to listen on using the - p option.

Normally, when hg serve starts, it prints no output, which can be a bit unnerving. If you'd
like to confirm that it is indeed running correctly, and find out what URL you should send to your
collaborators, start it with the - v option.

6.5. {55/ Ssh i

Y ou can pull and push changes securely over a network connection using the Secure Shell (ssh)
protocol. To use this successfully, you may have to do a little bit of configuration on the client or
server sides.

If you're not familiar with ssh, it's the name of both a command and a network protocol that let
you securely communicate with another computer. To use it with Mercurial, you'll be setting up one
Or more user accounts on a server so that remote users can log in and execute commands.

65

A DA

(If you are familiar with ssh, you'll probably find some of the material that follows to be
elementary in nature.)

6.5.1. gpfrix s ssh iz

An ssh URL tendsto look like this:

|ssh: /1 bos@g. serpentine.com 22/ hg/ hgbook

1. The“ssh://” parttells Mercuria to use the ssh protocol.

2. The*bos@ component indicates what username to log into the server as. Y ou can leave this out
if the remote username is the same as your local username.

3. The“hg. ser penti ne. cont givesthe hosthame of the server to log into.

4. The*:22" identifies the port number to connect to the server on. The default port is 22, so you only
need to specify a colon and port number if you're not using port 22.

5. Theremainder of the URL istheloca path to the repository on the server.

There'splenty of scopefor confusion with the path component of ssh URLs, asthereisno standard
way for tools to interpret it. Some programs behave differently than others when dealing with these
paths. Thisisn't an ideal situation, but it's unlikely to change. Please read the following paragraphs
carefully.

Mercurial treats the path to a repository on the server as relative to the remote user's home
directory. For example, if user f 00 on the server has a home directory of / hone/ f 00, then an ssh
URL that contains a path component of bar really refersto the directory / hone/ f oo/ bar .

If you want to specify a path relative to another user's home directory, you can use a path that
starts with atilde character followed by the user's name (let's call them ot her user), likethis.

lssh://server/~otheruser/hg/repo |

And if you really want to specify an absolute path on the server, begin the path component with
two slashes, as in this example.

lssh://server//absol ute/ path |

6.5.2. A IRHI R LTIk ssh B Rim

Almost every Unix-like system comes with OpenSSH preinstalled. If you're using such a system,
runwhi ch ssh tofindoutif thessh commandisinstalled (it'susually in/ usr / bi n). Intheunlikely
event that it isn't present, take alook at your system documentation to figure out how to install it.

On Windows, the TortoiseHg package is bundled with a version of Simon Tatham's excellent
plink command, and you should not need to do any further configuration.

6.5.3. Ptk B4R

To avoid the need to repetitively type a password every time you need to use your ssh client, |
recommend generating akey pair.

66

A DA

Key pairsare not mandatory

Mercurial knows nothing about ssh authentication or key pairs. You can, if you like, safely
ignore this section and the one that follows until you grow tired of repeatedly typing ssh
passwords.

* On aUnix-like system, the ssh-keygen command will do the trick.

On Windows, if you're using TortoiseHg, you may need to download a command named
puttygen from the PUTTY web site [http://www.chiark.greenend.org.uk/~sgtatham/putty] to
generate a key pair. See the puttygen documentation [http://the.earth.li/~sgtatham/putty/0.60/
html doc/Chapter8.html#pubkey-puttygen] for details of how use the command.

When you generate a key pair, it's usually highly advisable to protect it with a passphrase. (The
only time that you might not want to do thisis when you're using the ssh protocol for automated tasks
on a secure network.)

Simply generating a key pair isn't enough, however. Y ou'll need to add the public key to the set
of authorised keys for whatever user you're logging in remotely as. For servers using OpenSSH (the
vast mgjority), this will mean adding the public key to alist in afile called aut hori zed _keys in
their . ssh directory.

On a Unix-like system, your public key will have a. pub extension. If you're using puttygen
on Windows, you can save the public key to afile of your choosing, or paste it from the window it's
displayed in straight into the aut hor i zed_keys file.

6.5.4. & FIAUEIE

An authentication agent is a daemon that stores passphrases in memory (so it will forget
passphrases if you log out and log back in again). An ssh client will notice if it's running, and query
it for a passphrase. If there's no authentication agent running, or the agent doesn't store the necessary
passphrase, you'll haveto type your passphrase every timeMercurial triesto communicate with aserver
on your behalf (e.g. whenever you pull or push changes).

The downside of storing passphrasesin an agent isthat it's possible for awell-prepared attacker to
recover the plain text of your passphrases, in some cases even if your system has been power-cycled.
Y ou should make your own judgment as to whether this is an acceptable risk. It certainly saves alot
of repeated typing.

» On Unix-like systems, the agent is called ssh-agent, and it's often run automatically for you when
you log in. You'll need to use the ssh-add command to add passphrases to the agent's store.

* On Windows, if you're using TortoiseHg, the pageant command acts as the agent. As with
puttygen, you'll need to download pageant [http://www.chiark.greenend.org.uk/%7Esgtatham/
putty/download.html] from the PUTTY web site and read its documentation [http://the.earth.li/
~sgtatham/putty/0.60/htmldoc/Chapter9.html#pageant]. The pageant command adds an icon to
your system tray that will let you manage stored passphrases.

67

http://www.chiark.greenend.org.uk/~sgtatham/putty
http://www.chiark.greenend.org.uk/~sgtatham/putty
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter8.html#pubkey-puttygen
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter8.html#pubkey-puttygen
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter8.html#pubkey-puttygen
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter9.html#pageant
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter9.html#pageant
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter9.html#pageant

A DA

6.5.5. IF fAfic B AR 55 28 im

Because ssh can be fiddly to set up if you're new to it, a variety of things can go wrong. Add
Mercurial on top, and there's plenty more scope for head-scratching. Most of these potential problems
occur on the server side, not the client side. The good news is that once you've gotten a configuration
working, it will usually continue to work indefinitely.

Before you try using Mercurial to talk to an ssh server, it's best to make sure that you can use
the normal ssh or putty command to talk to the server first. If you run into problems with using these
commands directly, Mercurial surely won't work. Worse, it will obscure the underlying problem. Any
time you want to debug ssh-related Mercurial problems, you should drop back to making surethat plain
ssh client commands work first, befor e you worry about whether there's a problem with Mercurial.

Thefirst thing to be sure of on the server sideisthat you can actually log in from another machine
at all. If you can't use ssh or putty to log in, the error message you get may give you afew hintsasto
what's wrong. The most common problems are as follows.

 If you get a“connection refused” error, either there isn't an SSH daemon running on the server at
all, or it'sinaccessible due to firewall configuration.

* If you get a“norouteto host” error, you either have an incorrect addressfor the server or aseriously
locked down firewall that won't admit its existence at all.

 If you get a“permission denied” error, you may have mistyped the username on the server, or you
could have mistyped your key's passphrase or the remote user's password.

In summary, if you're having trouble talking to the server's ssh daemon, first make sure that one
isrunning at all. On many systemsit will be installed, but disabled, by default. Once you're done with
this step, you should then check that the server's firewall is configured to allow incoming connections
on the port the ssh daemon is listening on (usually 22). Don't worry about more exotic possibilitiesfor
misconfiguration until you've checked these two first.

If you're using an authentication agent on the client side to store passphrases for your keys, you
ought to be able to log into the server without being prompted for a passphrase or a password. If you're
prompted for a passphrase, there are afew possible culprits.

* You might have forgotten to use ssh-add or pageant to store the passphrase.
* You might have stored the passphrase for the wrong key.

If you're being prompted for the remote user's password, there are another few possible problems
to check.

* Either the user'shomedirectory or their . ssh directory might have excessively liberal permissions.
As aresult, the ssh daemon will not trust or read their aut hori zed_keys file. For example, a
group-writable home or . ssh directory will often cause this symptom.

» Theuser'saut hori zed_keys file may have a problem. If anyone other than the user owns or
can write to that file, the ssh daemon will not trust or read it.

68

A DA

In the ideal world, you should be able to run the following command successfully, and it should
print exactly one line of output, the current date and time.

lssh nyserver date

If, on your server, you have login scriptsthat print banners or other junk even when running non-
interactive commands like this, you should fix them before you continue, so that they only print output
if they're run interactively. Otherwise these banners will at least clutter up Mercuria's output. Worse,
they could potentially cause problems with running Mercurial commands remotely. Mercurial triesto
detect and ignore bannersin non-interactive ssh sessions, but it is not fool proof. (If you're editing your
login scripts on your server, the usual way to seeif alogin script isrunning in an interactive shell is
to check the return code from the commandtty -s.)

Once you've verified that plain old ssh is working with your server, the next step isto ensure that
Mercurial runs on the server. The following command should run successfully:

lssh nyserver hg version

If you see an error message instead of normal hg version output, this is usualy because you
haven't installed Mercurial to / usr/ bi n. Don't worry if this is the case; you don't need to do that.
But you should check for afew possible problems.

* IsMercuria really installed on the server at all? | know this sounds trivial, but it's worth checking!

* Maybe your shell's search path (usually set via the PATH environment variable) is simply
misconfigured.

» Perhaps your PATH environment variable is only being set to point to the location of the hg
executable if thelogin session isinteractive. This can happen if you're setting the path in the wrong
shell login script. See your shell's documentation for details.

» The PYTHONPATH environment variable may need to contain the path to the Mercurial Python
modules. It might not be set at all; it could beincorrect; or it may be set only if theloginisinteractive.

If you can run hg version over an ssh connection, well done! You've got the server and client
sorted out. You should now be able to use Mercurial to access repositories hosted by that username
on that server. If you run into problems with Mercurial and ssh at this point, try using the - - debug
option to get a clearer picture of what's going on.

6.5.6. j@3T ssh {E A E4E

Mercurial does not compress data when it uses the ssh protocol, because the ssh protocol can
transparently compressdata. However, the default behavior of ssh clientsisnot to request compression.

Over any network other than afast LAN (even awireless network), using compressionislikely to
significantly speed up Mercurial's network operations. For example, over aWAN, someone measured
compression as reducing the amount of time required to clone a particularly large repository from 51
minutes to 17 minutes.

Both ssh and plink accept a - C option which turns on compression. You can easily edit your
~/ . hgr ¢ to enable compression for all of Mercurial's uses of the ssh protocol. Here is how to do so
for regular ssh on Unix-like systems, for example.

69

A DA

[ui]
ssh = ssh -C

If you use ssh on aUnix-like system, you can configureit to always use compression when talking
to your server. To do this, edit your . ssh/ conf i g file (which may not yet exist), asfollows.

Host hg
Conpr essi on yes
Host Nane hg. exanpl e. com

This defines a hostname dlias, hg. When you use that hostname on the ssh command line
or in a Mercurial ssh-protocol URL, it will cause ssh to connect to hg. exanpl e. comand use
compression. This gives you both a shorter name to type and compression, each of which is a good
thing in itsown right.

6.6. g CGl @3 HTTP 2 AR S5

The simplest way to host one or more repositoriesin a permanent way isto use aweb server and
Mercuria's CGI support.

Depending on how ambitious you are, configuring Mercuria's CGI interface can take anything
from afew moments to several hours.

WEell begin with the simplest of examples, and work our way towards a more complex
configuration. Even for the most basic case, you're almost certainly going to need to read and modify
your web server's configuration.

High pain tolerance required

Configuring a web server is a complex, fiddly, and highly system-dependent activity. |
can't possibly give you instructions that will cover anything like all of the cases you will
encounter. Please use your discretion and judgment in following the sections below. Be
prepared to make plenty of mistakes, and to spend alot of time reading your server's error
logs.

If you don't have a strong stomach for tweaking configurations over and over, or a
compelling need to host your own services, you might want to try one of the public hosting
services that | mentioned earlier.

6.6.1. Web fRZ £ BEHMER

Before you continue, do take afew moments to check afew aspects of your system's setup.

1. Doyou haveaweb server installed at all?Mac OS X and some Linux distributions ship with Apache,
but many other systems may not have aweb server installed.

2. If you have aweb server installed, isit actually running? On most systems, even if one is present,
it will be disabled by defaullt.

3. Isyour server configured to allow you to run CGI programs in the directory where you plan to do
so? Most servers default to explicitly disabling the ability to run CGI programs.

70

A DA

If you don't have a web server installed, and don't have substantial experience configuring
Apache, you should consider using thel i ght t pd web server instead of Apache. Apache hasawell-
deserved reputation for baroque and confusing configuration. While | i ght t pd is less capable in
some ways than Apache, most of these capabilities are not relevant to serving Mercurial repositories.
And | i ght t pd isundeniably much easier to get started with than Apache.

6.6.2. /& CGl fi =

On Unix-like systems, it's common for users to have a subdirectory named something like
publ i c_ht m intheir homedirectory, fromwhich they can serve up web pages. A filenamedf oo in
thisdirectory will be accessibleat aURL of theformht t p: / / www. exanpl e. com user nane/
f 0o.

To get started, find the hgweb. cgi script that should be present in your Mercuria installation.
If you can't quickly find alocal copy on your system, simply download one from the master Mercurial
repository at http://www.selenic.com/repo/hg/raw-file/tip/hgweb.cgi.

Y ou'll need to copy thisscript into your publ i ¢_ht ml directory, and ensurethat it's executable.

cp .../ hgweb.cgi ~/public_htmn
chmod 755 ~/ public_htm /hgweb. cg

The 755 argument to chmod is a little more general than just making the script executable: it
ensures that the script is executable by anyone, and that “group” and “other” write permissions are not
set. If you were to leave those write permissions enabled, Apache's suexec subsystem would likely
refuse to execute the script. In fact, suexec alsoinsiststhat the directory in which the script resides
must not be writable by others.

lchnod 755 ~/ public_htni |

6.6.2.1. f+ AT H 47

Once you've copied the CGI script into place, go into a web browser, and try to open the URL
htt p:// nyhost nanme/ ~myuser/ hgweb. cgi , but brace yourself for instant failure. There's a
high probability that trying to visit this URL will fail, and there are many possible reasons for this.
In fact, you're likely to stumble over almost every one of the possible errors below, so please read
carefully. The following are all of the problems | ran into on a system running Fedora 7, with afresh
installation of Apache, and a user account that | created specially to perform this exercise.

Y our web server may have per-user directoriesdisabled. If you're using Apache, search your configfile
foraUser Di r directive. If there'snone present, per-user directorieswill be disabled. If one exists, but
itsvalueisdi sabl ed, then per-user directorieswill bedisabled. Otherwise, thestring after User Di r
gives the name of the subdirectory that Apache will look in under your home directory, for example
public_htm .

Your file access permissions may be too restrictive. The web server must be able to traverse your
home directory and directories under your publ i ¢_ht ml directory, and read files under the latter
too. Here's aquick recipe to help you to make your permissions more appropriate.

chnod 755 ~
find ~/public_htm -type d -print0O | xargs -0Or chnod 755

71

http://www.selenic.com/repo/hg/raw-file/tip/hgweb.cgi

A DA

find ~/public_htm -type f -print0 | xargs -Or chnod 644 |

The other possibility with permissions is that you might get a completely empty window when you
try to load the script. In this case, it's likely that your access permissions are too per missive. Apache's
suexec subsystem won't execute a script that's group- or world-writable, for example.

Your web server may be configured to disallow execution of CGI programs in your per-user web
directory. Here's Apache's default per-user configuration from my Fedora system.

<Di rectory /home/*/public_htm >
Al l owOverride Filelnfo AuthConfig Limt
Options MultiViews | ndexes SynLinkslfOanerMatch | ncl udesNoExec
<Limt GET POST OPTI ONS>
Order all ow, deny
Allow from al |
</Limt>
<Li m t Except GET POST OPTI ONS>
Order deny, all ow Deny from al |
</ Li m t Except >
</ Directory>

If you find a similar-looking Di r ect or y group in your Apache configuration, the directive to look
atinsideitisOpt i ons. Add ExecCd totheend of thislist if it'smissing, and restart the web server.

If you find that Apache serves you the text of the CGI script instead of executing it, you may need to
either uncomment (if already present) or add a directive like this.

[AddHandl er cgi -script .cgi |

The next possibility is that you might be served with a colourful Python backtrace claiming that it
can't import amer cur i al -related module. This is actually progress! The server is now capable of
executing your CGI script. This error is only likely to occur if you're running a private installation
of Mercurial, instead of a system-wide version. Remember that the web server runs the CGI program
without any of the environment variables that you take for granted in an interactive session. If this
error happens to you, edit your copy of hgweb. cgi and follow the directions inside it to correctly
set your PYTHONPATH environment variable.

Finally, you are certain to be served with another colourful Python backtrace: this one will complain
that it can't find / pat h/ t o/ r eposi t ory. Edit your hgweb. cgi script and replace the/ pat h/
t o/ r eposi t ory string with the complete path to the repository you want to serve up.

At this point, when you try to reload the page, you should be presented with a nice HTML view of
your repository's history. Whew!

6.6.2.2. g = lighttpd

To be exhaustive in my experiments, | tried configuring the increasingly popular | i ght t pd web
server to serve the same repository as | described with Apache above. | had already overcomeall of the
problems | outlined with Apache, many of which are not server-specific. Asaresult, | wasfairly sure
that my file and directory permissionswere good, and that my hgweb. cgi script was properly edited.

Once | had Apache running, getting | i ght t pd to serve the repository was a snap (in other words,
even if youretryingtousel i ght t pd, you should read the Apache section). | first had to edit the
nod_access section of itsconfig fileto enablenod_cgi and nod_user di r, both of which were

72

A DA

disabled by default on my system. | then added a few lines to the end of the config file, to configure
these modul es.

userdir.path = "public_htm"
cgi.assign = (".cgi" =>"")

With thisdone, | i ght t pd ran immediately for me. If | had configured | i ght t pd before Apache,
I'd almost certainly have run into many of the same system-level configuration problemsas| did with
Apache. However, | found | i ght t pd to be noticeably easier to configure than Apache, even though
I've used Apache for over adecade, and thiswas my first exposureto | i ght t pd.

6.6.3. EH—1> CGl FIRH£LZZ 4~ RAZE

Thehgweb. cgi script only letsyou publish asinglerepository, whichisan annoying restriction.
If you want to publish more than one without wracking yourself with multiple copies of the same script,
each with different names, a better choiceisto use the hgwebdi r. cgi script.

Theprocedureto configurehgwebdi r . cgi isonly alittlemoreinvolved thanfor hgweb. cgi .
First, you must obtain acopy of the script. If you don't have one handy, you can download a copy from
the master Mercurial repository at http://www.selenic.com/repo/hg/raw-file/tip/hgwebdir.cgi.

Y ou'll needto copy thisscript intoyour publ i ¢_ht ml directory, and ensurethat it's executable.

cp .../hgwebdir.cgi ~/public_htm
chnmod 755 ~/public_htm ~/public_htm/hgwebdir. cgi

With basic configuration out of the way, try to visit htt p: // nyhost nane/ ~nyuser/
hgwebdi r. cgi inyour browser. It should display an empty list of repositories. If you get a blank
window or error message, try walking through thelist of potential problemsin % 6.6.2.1 5“4 A]

I

Thehgwebdi r. cgi script relies on an external configuration file. By default, it searchesfor a
file named hgweb. conf i g in the same directory asitself. You'll need to create this file, and make
it world-readable. The format of the file is similar to aWindows “ini” file, as understood by Python's
Conf i gPar ser [web:configparser] module.

The easiest way to configure hgwebdi r. cgi iswith a section named col | ecti ons. This
will automatically publish every repository under the directories you name. The section should |ook
likethis:

[col I ections]
nmy/ root = /ny/root

Mercurial interprets this by looking at the directory name on the right hand side of the“=" sign;
finding repositoriesin that directory hierarchy; and using the text on the left to strip off matching text
from the names it will actually list in the web interface. The remaining component of a path after this
stripping has occurred is called a“virtual path”.

Given the example above, if we have a repository whose local path is / ny/root/
t hi s/ repo, the CGI script will strip the leading / ny/ root from the name, and publish
the repository with a virtual path of t hi s/ repo. If the base URL for our CGI script is
htt p:// nyhost nane/ ~myuser / hgwebdi r. cgi , the complete URL for that repository will
behtt p:// nyhost name/ ~nmyuser/ hgwebdir. cgi/this/repo.

73

http://www.selenic.com/repo/hg/raw-file/tip/hgwebdir.cgi

A DA

If wereplace/ my/ r oot ontheleft hand side of this example with/ ny, then hgwebdi r . cgi

will only strip off / my from the repository name, and will give us a virtua path of r oot/ t hi s/
repo instead of t hi s/ r epo.

Thehgwebdi r. cgi script will recursively search each directory listed inthecol | ecti ons
section of its configuration file, but it will not recurse into the repositoriesit finds.

Thecol | ect i ons mechanism makesit easy to publish many repositoriesin a“fire and forget”
manner. Y ou only need to set up the CGI script and configuration file one time. Afterwards, you can
publish or unpublish arepository at any time by simply moving it into, or out of, the directory hierarchy
in which you've configured hgwebdi r . cgi to look.

6.6.3.1. PRt H E L BRI E

In addition to the col | ect i ons mechanism, the hgwebdi r. cgi script allows you to publish a
specific list of repositories. To do so, create apat hs section, with contents of the following form.
[pat hs]

repol = /ny/path/tol/sone/repo
repo2 = /sone/ path/to/anot her

In this case, the virtual path (the component that will appear in aURL) is on the left hand side of each
definition, while the path to the repository is on the right. Notice that there does not need to be any
relationship between the virtual path you choose and the location of arepository in your filesystem.

If you wish, you can use boththecol | ect i ons and pat hs mechanisms simultaneously in asingle
configuration file.

Bewar e duplicate virtual paths

If several repositories have the samevirtual path, hgwebdi r. cgi will not report an error.
Instead, it will behave unpredictably.

6.6.4. THIFKABEEE

Mercurial'sweb interface lets users download an archive of any revision. Thisarchivewill contain

a snapshot of the working directory as of that revision, but it will not contain a copy of the repository
data.

By default, thisfeatureis not enabled. To enableit, you'll needtoadd anal | ow_ar chi ve item
to theweb section of your ~/ . hgr c; see below for details.

6.6.5. Web #g &1%In

Mercurial's web interfaces (the hg serve command, and the hgweb. cgi and hgwebdi r . cgi
scripts) have anumber of configuration optionsthat you can set. These belong in a section named web.

e al | ow_ar chi ve: Determines which (if any) archive download mechanisms Mercurial supports.
If you enablethisfeature, users of the web interface will be able to download an archive of whatever

revision of arepository they are viewing. To enable the archive feature, thisitem must take the form
of a sequence of words drawn from the list below.

74

A DA

* bz2: A tar archive, compressed using bzi p2 compression. This has the best compression ratio,
but uses the most CPU time on the server.

* Qgz: A tar archive, compressed using gzi p compression.

* zi p: A zip archive, compressed using LZW compression. Thisformat has the worst compression
ratio, but iswidely used in the Windows world.

If you provide an empty list, or don't have an al | ow_ar chi ve entry at al, this feature will be
disabled. Here is an example of how to enable all three supported formats.

[web]
al | ow_archive = bz2 gz zip

al | owpul | : Boolean. Determines whether the web interface allows remote users to hg pull and
hg clone this repository over HTTP. If set to no or f al se, only the “human-oriented” portion of
the web interface is available.

cont act : String. A free-form (but preferably brief) string identifying the person or group in charge
of therepository. This often contains the name and email address of aperson or mailing list. It often
makes sense to place this entry in arepository's own . hg/ hgr c file, but it can make sense to use
inaglobal ~/ . hgr c if every repository has a single maintainer.

maxchanges: Integer. The default maximum number of changesets to display in a single page of
output.

maxf i | es: Integer. The default maximum number of modified files to display in a single page
of output.

stri pes: Integer. If the web interface displays alternating “stripes’ to make it easier to visually
align rows when you are looking at atable, this number controls the number of rows in each stripe.

st yl e: Controls the template Mercurial uses to display the web interface. Mercurial ships with
severa web templates.

* coal ismonochromatic.

gi t web emulates the visual style of git's web interface.

nonobl ue uses solid blues and greys.

paper isthe default.

spart an was the default for along time.

You can also specify a custom template of your own; see % 11 25 =4 Mercurial gyig 4 for
details. Here, you can see how to enable the gi t web style.

[web]
style = gitweb

t enpl at es: Path. The directory in which to search for template files. By default, Mercuria
searches in the directory in which it was installed.

75

A DA

If youareusinghgwebdi r . cgi , you can placeafew configurationitemsinaweb section of the
hgweb. conf i g fileinstead of a~/ . hgr c file, for convenience. Theseitemsarenot d andst yl e.

6.6.5.1. §t 3t B A hig A R By 1% I

A few web configuration items ought to be placed in a repository's local . hg/ hgr c, rather than a
user'sor global ~/ . hgrc.

» descri ption: String. A free-form (but preferably brief) string that describes the contents or
purpose of the repository.

* nane: String. The name to use for the repository in the web interface. This overrides the default
name, which is the last component of the repository's path.

6.6.5.2. 5% hg serve gyikIn
Some of theitemsin theweb section of a~/ . hgr c fileare only for use with the hg serve command.

» accessl og: Path. The name of afile into which to write an access log. By default, the hg serve
command writes this information to standard output, not to a file. Log entries are written in the
standard “combined” file format used by aimost all web servers.

» addr ess: String. The local address on which the server should listen for incoming connections.
By default, the server listens on all addresses.

» errorl og: Path. The name of afile into which to write an error log. By default, the hg serve
command writes this information to standard error, not to afile.

* | pv6: Boolean. Whether to use the IPv6 protocol. By default, 1Pv6 is not used.

e port: Integer. The TCP port number on which the server should listen. The default port number
used is 8000.

6.6.5.3. Jk#EF#AY ~/.hgrc sz web & H

It is important to remember that a web server like Apache or | i ght t pd will run under a user ID
that is different to yours. CGI scripts run by your server, such as hgweb. cgi , will usually also run
under that user ID.

If you add web itemsto your own personal ~/ . hgr c file, CGI scriptswon't read that ~/ . hgr c file.
Those settings will thus only affect the behavior of the hg ser ve command when you run it. To cause
CGl scriptsto see your settings, either createa~/ . hgr c filein the home directory of the user ID that
runs your web server, or add those settings to a system-wide hgr c file.

6.7. = /HfcE

On Unix-like systems shared by multiple users (such asaserver to which people publish changes),
it often makes sense to set up some global default behaviors, such as what theme to use in web
interfaces.

76

A DA

If afilenamed/ et ¢/ mer curi al / hgr c exists, Mercuria will read it at startup time and apply
any configuration settingsit findsin that file. It will also look for filesendingina. r c extensionina
directory named/ et ¢/ mer curi al / hgr c. d, and apply any configuration settingsit findsin each
of those files.

6.7.1. it Mercurial EaJ{5

One situation in which a global hgr ¢ can be useful is if users are pulling changes owned by
other users. By default, Mercuria will not trust most of the configuration itemsin a. hg/ hgr c file
inside arepository that isowned by adifferent user. If we clone or pull changesfrom such arepository,
Mercurial will print awarning stating that it does not trust their . hg/ hgr c.

If everyone in a particular Unix group is on the same team and should trust each other's
configuration settings, or we want to trust particular users, we can override Mercuria's skeptical
defaults by creating a system-wide hgr ¢ file such as the following:

Save this as e.g. /etc/nercurial/hgrc.d/trust.rc

[trusted]

Trust all entries in any hgrc file owned by the "editors" or
"ww\« data" groups

groups = editors, www«data

Trust entries in hgrc files owned by the follow ng users
users = apache, bobo

77

FE XHaRSEA T

Mercuria provides mechanisms that et you work with file names in a consistent and expressive
way.

Ve I
7.1 B BRI A ER
Mercurial uses a unified piece of machinery “under the hood” to handle file names. Every

command behaves uniformly with respect to file names. The way in which commands work with file
namesis asfollows.

If you explicitly name real files on the command line, Mercurial works with exactly those files,
as you would expect.

| $ hg add COPYI NG README exanpl es/ si npl e. py

When you provide a directory name, Mercurial will interpret this as “operate on every filein
this directory and its subdirectories’. Mercurial traverses the files and subdirectories in a directory
in aphabetical order. When it encounters a subdirectory, it will traverse that subdirectory before
continuing with the current directory.

hg status src
src/ mai n. py
src/wat cher/ _wat cher.c
src/ wat cher/wat cher. py
src/ xyzzy. txt

1.2, NEEHX B RZIRBRITA S

Mercurial's commands that work with file names have useful default behaviors when you invoke
them without providing any file names or patterns. What kind of behavior you should expect depends
on what the command does. Here are afew rules of thumb you can use to predict what acommand is
likely to do if you don't give it any names to work with.

ESIESEES IR IR

* Most commands will operate on the entire working directory. This is what the hg add command
does, for example.

« If the command has effects that are difficult or impossible to reverse, it will force you to explicitly
provide at |east one name or pattern (see below). This protects you from accidentally deleting files
by running hg remove with no arguments, for example.

It's easy to work around these default behaviors if they don't suit you. If a command normally
operates on the whole working directory, you can invoke it on just the current directory and its

subdirectories by giving it the name*“. ”.

$ cd src

$ hg add -n

adding ../MANI FEST.in

addi ng ../ exanpl es/ performant. py
addi ng ../setup. py

addi ng mai n. py

addi ng wat cher/_wat cher.c

78

AT AR RECDE A

addi ng wat cher/wat cher. py
addi ng xyzzy.txt

$ hg add -n

addi ng mai n. py

addi ng wat cher/_wat cher.c
addi ng wat cher/wat cher. py
addi ng xyzzy.txt

Along the same lines, some commands normally print file names relative to the root of the
repository, even if you're invoking them from a subdirectory. Such a command will print file names
relative to your subdirectory if you give it explicit names. Here, we're going to run hg status from a
subdirectory, and get it to operate on the entire working directory while printing file names relative to
our subdirectory, by passing it the output of the hg root command.

$ hg status

A COPYI NG

A READMVE

A exanpl es/ si npl e. py

? MANI FEST. i n

exanpl es/ per f or mant . py
set up. py

src/ mai n. py

src/ wat cher/ _wat cher.c
src/ wat cher/wat cher. py
src/xyzzy.txt

hg status "hg root"

../ COPYI NG

. . | READMVE

.. I exanpl es/ si npl e. py
../ MANI FEST. i n

.. I exanpl es/ per f or mant . py
..l setup. py

mai n. py

wat cher/ _wat cher. c

wat cher/ wat cher . py
Xyzzy. t xt

7.3 HIFREEMIT 4

The hg add example in the preceding section illustrates something else that's helpful about
Mercurial commands. If acommand operates on afile that you didn't name explicitly on the command
line, it will usually print the name of the file, so that you will not be surprised what's going on.

EEES RS RS RSN EES REN B S S S RS BES RES RES RES RN

Theprinciple hereisof least surprise. If you've exactly named afile on the command line, there's
no point inrepeating it back at you. If Mercuria isacting on afileimplicitly, e.g. because you provided
no names, or adirectory, or a pattern (see below), it is safest to tell you what filesit's operating on.

For commands that behave this way, you can silence them using the - g option. Y ou can also get
them to print the name of every file, even those you've named explicitly, using the - v option.

7.4 g AR ARIR S

In addition to working with file and directory names, Mercurial lets you use patter nsto identify
files. Mercurial's pattern handling is expressive.

On Unix-like systems (Linux, MacOS, etc.), the job of matching file names to patterns normally
falls to the shell. On these systems, you must explicitly tell Mercurial that a name is a pattern. On

79

AT AR RECDE A

Windows, the shell does not expand patterns, so Mercurial will automatically identify names that are
patterns, and expand them for you.

To provide a pattern in place of aregular name on the command line, the mechanism is simple:

hyntax:patternbody

That is, apattern isidentified by a short text string that says what kind of pattern thisis, followed
by acolon, followed by the actual pattern.

Mercurial supports two kinds of pattern syntax. The most frequently used is called gl ob; thisis
the samekind of pattern matching used by the Unix shell, and should be familiar to Windows command
prompt users, too.

When Mercurial does automatic pattern matching on Windows, it uses gl ob syntax. You can
thusomit the “gl ob: ” prefix on Windows, but it's safe to use it, too.

Ther e syntax ismore powerful; it letsyou specify patternsusing regular expressions, also known
as regexps.

By theway, in the examplesthat follow, notice that I'm careful to wrap all of my patternsin quote
characters, so that they won't get expanded by the shell before Mercuria sees them.

7.4.1. ShEMAgE) gl ob &5

Thisisan overview of the kinds of patterns you can use when you're matching on glob patterns.

The“*” character matches any string, within asingle directory.

$ hg add ' gl ob: *. py'
addi ng mai n. py

The “**” pattern matches any string, and crosses directory boundaries. It's not a standard Unix
glob token, but it's accepted by several popular Unix shells, and is very useful.

$ cd .

$ hg status 'glob:**. py
A exanpl es/ si npl e. py

A src/ nmain. py

? exanpl es/ performant. py
? setup. py

? src/wat cher/wat cher. py

The“?” pattern matches any single character.

$ hg status 'glob:**.?
? src/wat cher/_watcher.c

The“[" character begins a character class. This matches any single character within the class.
The class endswith a“] ” character. A class may contain multiple ranges of the form “a- f ”, which
is shorthand for “abcdef .

$ hg status 'glob:**[nr-t]"’
? MANI FEST. in
? src/xyzzy.txt

If thefirst character after the“[” inacharacter classisa“! ”, it negatesthe class, making it match
any single character not in the class.

80

AT AR RECDE A

A “{” begins a group of subpatterns, where the whole group matches if any subpattern in the

group matches. The“, ” character separates subpatterns, and “} ” ends the group.

$ hg status 'glob:*.{in, py}
? MANI FEST. i n
? setup. py

71411, F R/ !

Don't forget that if you want to match a pattern in any directory, you should not be using the “*”
match-any token, asthiswill only match within one directory. Instead, use the “* *” token. This small
exampleillustrates the difference between the two.

$ hg status 'glob:*.py’'
? setup. py

$ hg status 'glob:**. py'
A exanpl es/ si npl e. py

A src/ main. py

? exanpl es/ performant. py
? setup. py

? src/wat cher/wat cher. py

71.4.2. g/ re R IEN FRiA TEC

Mercurial accepts the same regular expression syntax as the Python programming language (it
uses Python's regexp engine internally). Thisis based on the Perl language's regexp syntax, which is
the most popular dialect in use (it's also used in Java, for example).

| won't discuss Mercuria's regexp dialect in any detail here, as regexps are not often used. Perl-
style regexps are in any case aready exhaustively documented on a multitude of web sites, and in
many books. Instead, | will focus here on a few things you should know if you find yourself needing
to use regexps with Mercurial.

A regexp is matched against an entire file name, relative to the root of the repository. In other
words, even if you're aready in subbdirectory f 0o, if you want to match files under this directory,
your pattern must start with “f oo/ ”.

Onething to note, if you'refamiliar with Perl-styleregexps, isthat Mercurial'sarerooted. That is,
aregexp starts matching against the beginning of astring; it doesn't look for amatch anywhere within
the string. To match anywhere in a string, start your pattern with “. *”.

7.0, JiEX

Not only does Mercuria give you a variety of ways to specify files; it lets you further winnow
those files using filters. Commands that work with file names accept two filtering options.

e -|,or--incl ude, letsyou specify a pattern that file names must match in order to be processed.
* - X or--excl ude, givesyou away to avoid processing files, if they match this pattern.

You can provide multiple - I and - X options on the command line, and intermix them as you
please. Mercuria interprets the patterns you provide using glob syntax by default (but you can use
regexpsif you need to).

81

SCAE AL R S AL A

Youcanread a- | filter as“process only the files that match thisfilter”.

$ hg status -1 "*.in'
? MANI FEST. i n

The - X filter is best read as “ process only the files that don't match this pattern”.

$ hg status -X '**.py' src
? src/watcher/_watcher.c
? src/xyzzy.txt

7.6. L BT B EM AT A R

When you create anew repository, the chances are that over timeit will grow to contain files that
ought to not be managed by Mercurial, but which you don't want to see listed every time you run hg
status. For instance, “build products’ are files that are created as part of a build but which should not
be managed by arevision control system. The most common build products are output files produced
by software tools such as compilers. As another example, many text editors litter adirectory with lock
files, temporary working files, and backup files, which it a'so makes no sense to manage.

To have Mercurial permanently ignore such files, create a file named . hgi gnor e in the root
of your repository. Y ou should hg add thisfile so that it gets tracked with the rest of your repository
contents, since your collaborators will probably find it useful too.

By default, the. hgi gnor e file should contain alist of regular expressions, one per line. Empty
lines are skipped. Most people prefer to describe the files they want to ignore using the “glob” syntax
that we described above, so atypica . hgi gnor e file will start with thisdirective:

lsyntax: gl ob |

Thistells Mercurial to interpret the lines that follow as glob patterns, not regular expressions.

Hereisatypical-looking . hgi gnor e file.

synt ax: gl ob
This line is a conmment, and will be ski pped.
Enpty |lines are skipped too.

Backup files |left behind by the Emacs editor.

x ~

Lock files used by the Enacs editor.

Notice that the "#" character is quoted with a backsl ash.

This prevents it frombeing interpreted as starting a comment.
L\ #*

Tenporary files used by the vimeditor.
L *.swp

A hidden file created by the Mac OS X Fi nder.
.DS_Store

(0. RINE SRS

If you're working in amixed development environment that contains both Linux (or other Unix)
systems and Macs or Windows systems, you should keep in the back of your mind the knowledge that

82

AT AR RECDE A

they treat the case (“N” versus*“n”) of file namesinincompatible ways. Thisisnot very likely to affect
you, and it's easy to deal with if it does, but it could surprise you if you don't know about it.

Operating systems and filesystems differ in the way they handle the case of charactersin file and
directory names. There are three common ways to handle case in names.

» Completely case insensitive. Uppercase and lowercase versions of a letter are treated as identical,
both when creating a file and during subsequent accesses. This is common on older DOS-based
systems.

» Case preserving, but insensitive. When afile or directory is created, the case of its name is stored,
and can be retrieved and displayed by the operating system. When an existing file is being looked
up, its caseisignored. Thisis the standard arrangement on Windows and MacOS. The namesf 00
and FoOidentify the samefile. Thistreatment of uppercase and lowercase | etters asinterchangeable
isalso referred to as case folding.

» Case senditive. The case of a name is significant at all times. The names f oo and FoO identify
different files. Thisisthe way Linux and Unix systems normally work.

On Unix-like systems, it is possible to have any or all of the above ways of handling casein action
at once. For example, if you use a USB thumb drive formatted with a FAT32 filesystem on a Linux
system, Linux will handle names on that filesystem in a case preserving, but insensitive, way.

(7.1 %%, AIRBERRAEFE

Mercurial's repository storage mechanism is case safe. It trandates file names so that they can
be safely stored on both case sensitive and case insensitive filesystems. This means that you can use
normal file copying tools to transfer a Mercurial repository onto, for example, a USB thumb drive,
and safely move that drive and repository back and forth between a Mac, a PC running Windows, and
aLinux box.

7.7.2. A NE 5

When operating in the working directory, Mercurial honours the naming policy of the filesystem
where the working directory islocated. If the filesystem is case preserving, but insensitive, Mercurial
will treat names that differ only in case as the same.

Animportant aspect of thisapproachisthat it ispossibleto commit achangeset on acase sensitive
(typically Linux or Unix) filesystem that will cause trouble for users on case insensitive (usually
Windows and MacOS) users. If aLinux user commits changes to two files, one named nyfil e. c
and the other named MyFi | e. C, they will be stored correctly in the repository. And in the working
directories of other Linux users, they will be correctly represented as separate files.

If a Windows or Mac user pulls this change, they will not initially have a problem, because
Mercurial's repository storage mechanism is case safe. However, once they try to hg update the
working directory to that changeset, or hg mer ge with that changeset, Mercuria will spot the conflict
between the two file namesthat the filesystem would treat as the same, and forbid the update or merge
from occurring.

83

AT AR RECDE A

7.7.3. f£IEK/NE HzE

If you are using Windows or a Mac in a mixed environment where some of your collaborators
are using Linux or Unix, and Mercurial reports a case folding conflict when you try to hg update or
hg mer ge, the procedure to fix the problem is simple.

Just find anearby Linux or Unix box, clone the problem repository onto it, and use Mercuria'shg
rename command to change the names of any offending files or directories so that they will no longer
cause case folding conflicts. Commit this change, hg pull or hg push it across to your Windows or
MacOS system, and hg update to the revision with the non-conflicting names.

The changeset with case-conflicting names will remain in your project's history, and you still
won't be able to hg update your working directory to that changeset on aWindows or MacOS system,
but you can continue devel opment unimpeded.

Vavay = > Y, ax - L]
EOEANEESN AL
Mercurial provides several mechanisms for you to manage a project that is making progress on

multiple fronts at once. To understand these mechanisms, let's first take a brief ook at afairly normal
software project structure.

Many software projects issue periodic “major” releases that contain substantial new features. In
parallel, they may issue “minor” releases. These are usually identical to the major releases off which
they're based, but with afew bugs fixed.

In this chapter, we'll start by talking about how to keep records of project milestones such as
releases. We'll then continue on to talk about the flow of work between different phases of a project,
and how Mercuria can help you to isolate and manage this work.

8.1. LRhRAIEE— K AR BFR

Once you decide that you'd like to call a particular revision a“release”, it's agood ideato record
theidentity of that revision. Thiswill let you reproducethat rel ease at alater date, for whatever purpose
you might need at the time (reproducing a bug, porting to a new platform, etc).

$ hg init mytag
$ cd nytag
$ echo hello > nyfile
$ hg commit -A-m'Initial commt
addi ng nyfile

Mercurial lets you give a permanent name to any revision using the hg tag command. Not
surprisingly, these names are called “tags”.

[hg tag v1.0

A tag is nothing more than a “symbolic name” for a revision. Tags exist purely for your
convenience, so that you have ahandy permanent way to refer to arevision; Mercurial doesn't interpret
the tag names you use in any way. Neither does Mercurial place any restrictions on the name of atag,
beyond afew that are necessary to ensure that a tag can be parsed unambiguously. A tag name cannot
contain any of the following characters:

* Colon (ASCII 58, “: ™)
e Carriagereturn (ASCII 13,“\ r ")
* Newline (ASCII 10, “\ n”)

Y ou can use the hg tags command to display the tags present in your repository. In the output,
each tagged revision isidentified first by its name, then by revision number, and finally by the unique
hash of the revision.

$ hg tags
tip 1: a3430f 3c7c94
v1.0 0: daf 6043d97f a

Noticethat t i p islisted in the output of hg tags. Thet i p tagisaspecial “floating” tag, which
always identifies the newest revision in the repository.

85

FATE 5 5y SO

In the output of the hg tags command, tags are listed in reverse order, by revision number. This
usually means that recent tags are listed before older tags. It also meansthat t i p is aways going to
be the first tag listed in the output of hg tags.

Whenyourunhglog, if it displaysarevision that hastagsassociated withit, it will print thosetags.

$ hg | og

changeset : 1: a3430f 3c7c94

tag: tip

user : Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Wed Aug 11 06: 06:23 2010 +0000
sunmmary: Added tag v1.0 for changeset daf6043d97fa
changeset : 0: daf 6043d97f a

t ag: v1l.0

user: Bryan O Sul li van <bos@er penti ne. con>
dat e: Wed Aug 11 06: 06:22 2010 +0000
sunmmary: Initial conmt

Any time you need to provide arevision ID to aMercurial command, the command will accept a
tag nameinitsplace. Internally, Mercurial will translate your tag name into the corresponding revision
ID, then use that.

$ echo goodbye > nyfile2

$ hg commit -A -m' Second conmit
addi ng nyfile2

$ hg log -r v1.0

changeset : 0: daf 6043d97f a

t ag: v1l.0

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Wed Aug 11 06:06:22 2010 +0000
summary: Initial commt

There'sno limit on the number of tags you can havein arepository, or on the number of tagsthat a
singlerevision can have. Asapractical matter, it'snot agreat ideato have“too many” (anumber which
will vary from project to project), smply because tags are supposed to help you to find revisions. If
you have lots of tags, the ease of using them to identify revisions diminishes rapidly.

For example, if your project has milestones asfrequent asevery few days, it's perfectly reasonable
to tag each one of those. But if you have a continuous build system that makes sure every revision can
be built cleanly, you'd be introducing alot of noise if you were to tag every clean build. Instead, you
could tag failed builds (on the assumption that they'rerare!), or smply not usetagsto track buildability.

If you want to remove atag that you no longer want, use hg tag --remove.

$ hg tag --renmove v1.0
$ hg tags
tip 3: 5da402035625

Y ou can aso modify atag at any time, so that it identifies a different revision, by simply issuing
a new hg tag command. You'll have to use the - f option to tell Mercurial that you really want to
update the tag.

$ hg tag -r 1 vl.1

$ hg tags

tip 4:0e21c0931c18
1.1 1: a3430f 3c7c94

$ hg tag -r 2 v1.1

abort: tag 'vl.1' already exists (use -f to force)

$ hg tag -f -r 2 vi.1

$ hg tags

86

FATE 5 5y SO

tip 5: d54belc7b5d8
vli.1 2:215c25bcdbde

There will still be a permanent record of the previous identity of the tag, but Mercuria will no
longer use it. There's thus no penalty to tagging the wrong revision; all you have to do is turn around
and tag the correct revision once you discover your error.

Mercurial storestagsinanormal revision-controlled filein your repository. If you've created any
tags, you'll find them in afile in the root of your repository named . hgt ags. When you run the hg
tag command, Mercurial modifies this file, then automatically commits the change to it. This means
that every time you run hg tag, you'll see a corresponding changeset in the output of hg log.

$ hg tip

changeset : 5: d54belc7b5d8

t ag: tip

user: Bryan O Sul | i van <bos@er penti ne. con»

dat e: Wed Aug 11 06:06: 24 2010 +0000

sunmary: Added tag v1.1 for changeset 215c25bcdbde

8.1.1. ZE & FF HA B AL FRFRZS I 5

Y ouwon't often need to care about the. hgt ags file, but it sometimes makesits presence known
during amerge. The format of the fileis ssimple: it consists of a series of lines. Each line starts with a
changeset hash, followed by a space, followed by the name of atag.

If you'reresolving aconflict inthe . hgt ags file during a merge, there's one twist to modifying
the. hgt ags file: when Mercuria isparsing the tagsin arepository, it never reads the working copy
of the. hgt ags file. Instead, it reads the most recently committed revision of thefile.

An unfortunate consequence of this design is that you can't actually verify that your merged
. hgt ags fileis correct until after you've committed a change. So if you find yourself resolving a
conflict on . hgt ags during a merge, be sure to run hg tags after you commit. If it finds an error in
the . hgt ags file, it will report the location of the error, which you can then fix and commit. You
should then run hg tags again, just to be sure that your fix is correct.

8.12. ir¥EwE

Y ou may have noticed that the hg clonecommand hasa- r option that |etsyou clone an exact copy
of the repository as of a particular changeset. The new clone will not contain any project history that
comes after the revision you specified. This has an interaction with tags that can surprise the unwary.

Recall that atag isstored asarevisiontothe. hgt ags file. When you create atag, the changeset
in which its recorded refers to an older changeset. When you run hg clone -r foo to clone arepository
as of tag f 00, the new clone will not contain any revision newer than the one the tag refers to,
including therevision wherethetag was created. Theresult isthat you'll get exactly the right subset
of the project's history in the new repository, but not the tag you might have expected.

8.1.3. YR AREKXZ BIFHE

Since Mercuria'stagsarerevision controlled and carried around with aproject's history, everyone
you work with will see the tags you create. But giving names to revisions has uses beyond ssimply

87

FATE 5 5y SO

noting that revision 4237e45506ee isrealy v2. 0. 2. If you're trying to track down a subtle bug,
you might want atag to remind you of something like “Anne saw the symptoms with thisrevision”.

For caseslike this, what you might want to use are local tags. Y ou can create alocal tag with the
- | option to the hg tag command. Thiswill store thetag in afilecalled . hg/ | ocal t ags. Unlike
. hgt ags, . hg/ | ocal t ags isnot revision controlled. Any tagsyou createusing - | remain strictly
local to the repository you're currently working in.

8.2. B URIE—HE MR

To return to the outline | sketched at the beginning of the chapter, let's think about a project that
has multiple concurrent pieces of work under development at once.

There might be a push for a new “main” release; a new minor bugfix release to the last main
release; and an unexpected “hot fix” to an old release that is now in maintenance mode.

The usual way people refer to these different concurrent directions of development is as
“branches’. However, we've already seen numeroustimesthat Mercurial treatsall of history asaseries
of branches and merges. Really, what we have hereistwo ideasthat are peripherally related, but which
happen to share a name.

» “Big picture” branches represent the sweep of a project's evolution; people give them names, and
talk about them in conversation.

» “Littlepicture” branches are artefacts of the day-to-day activity of devel oping and merging changes.
They expose the narrative of how the code was devel oped.

8.3. EhRAEREIE 3L

The easiest way to isolate a“big picture” branch in Mercuria isin adedicated repository. If you
have an existing shared repository—Ilet's call it mypr oj ect —that reaches a “1.0” milestone, you
can start to prepare for future maintenance releases on top of version 1.0 by tagging the revision from
which you prepared the 1.0 release.

$ cd nyproj ect
$ hg tag v1.0

Y ou can then clone anew shared mypr oj ect - 1. 0. 1 repository as of that tag.

$ cd .

$ hg clone nyproject nyproject-1.0.1

updating to branch default

2 files updated, O files nmerged, O files rempbved, O files unresol ved

Afterwards, if someone needsto work on abug fix that ought to go into an upcoming 1.0.1 minor
release, they clonethe nypr oj ect - 1. 0. 1 repository, make their changes, and push them back.

$ hg clone nyproject-1.0.1 ny-1.0.1-bugfix
updating to branch default

2 files updated, O files nmerged, O files rempved, O files unresol ved
$ cd ny-1.0. 1- bugfix
$ echo '|I fixed a bug using only echo!' >> nyfile

88

FATE 5 5y SO

$ hg conmit -m'Inportant fix for 1.0.1

$ hg push

pushing to /tnp/branch-reponxkk6H myproject-1.0.1
searchi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files

Meanwhile, development for the next major release can continue, isolated and unabated, in the
nypr oj ect repository.

$ cd .

$ hg cl one nyproject ny-feature

updating to branch default

2 files updated, O files nerged, O files renpved, O files unresol ved
$ cd ny-feature

$ echo 'This sure is an exciting new feature!' > nynewfile
$ hg commit -A -m' New feature

addi ng nmynewfile

$ hg push

pushing to /tnp/branch-reponxkk6H myproj ect

sear chi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files

8.4. REEEHH: EHLEEH

In many cases, if you have a bug to fix on a maintenance branch, the chances are good that the
bug exists on your project's main branch (and possibly other maintenance branches, too). It's arare
developer who wantsto fix the same bug multiple times, so let'slook at afew waysthat Mercurial can
help you to manage these bugfixes without duplicating your work.

In the simplest instance, all you need to do is pull changes from your maintenance branch into
your local clone of the target branch.

$ cd .

$ hg cl one nyproject nyproject-nerge

updating to branch default

3 files updated, O files nmerged, O files renopved, O files unresol ved
$ cd nyproj ect - nerge

$ hg pull ../myproject-1.0.1

pulling from../nyproject-1.0.1

sear chi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg nerge' to nerge)

You'll then need to merge the heads of the two branches, and push back to the main branch.

$ hg nerge

1 files updated, O files nerged, O files renpved, O files unresol ved
(branch nmerge, don't forget to commt)

$ hg commit -m' Merge bugfix from1.0.1 branch
$ hg push

pushing to /tnp/branch-reponxkk6H nmyproj ect
sear ching for changes

addi ng changeset s

addi ng mani fests

addi ng file changes

added 2 changesets with 1 changes to 1 files

89

FATE 5 5y SO

8.9. IRAREHRHIAF BT X

In most instances, isolating branches in repositories is the right approach. Its ssimplicity makes
it easy to understand; and so it's hard to make mistakes. There's a one-to-one relationship between
branches you're working in and directories on your system. This lets you use normal (non-Mercurial-
aware) tools to work on files within a branch/repository.

If you'remoreinthe”power user” category (and your collaborators aretoo), thereisan alternative
way of handling branches that you can consider. I've already mentioned the human-level distinction
between “small picture’” and “big picture’” branches. While Mercurial works with multiple “small
picture” branches in a repository al the time (for example after you pull changes in, but before you
merge them), it can also work with multiple “big picture’ branches.

Thekey to working thisway isthat Mercurial letsyou assign apersistent nameto abranch. There
aways exists a branch named def aul t . Even before you start naming branches yourself, you can
find traces of thedef aul t branch if you look for them.

As an example, when you run the hg commit command, and it pops up your editor so that you
can enter acommit message, look for aline that containsthe text “HG. br anch def aul t ” at the
bottom. Thisistelling you that your commit will occur on the branch named def aul t .

To start working with named branches, use the hg branches command. This command lists the
named branches already present in your repository, telling you which changeset is the tip of each.

$ hg tip

changeset : 0: 8994d67a4d28

t ag: tip

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Wed Aug 11 06: 05:43 2010 +0000
sunmmary: Initial commt

$ hg branches

def aul t 0: 8994d67a4d28

Since you haven't created any named branches yet, the only one that existsisdef aul t .

To find out what the “current” branch is, run the hg branch command, giving it no arguments.
Thistells you what branch the parent of the current changeset is on.

$ hg branch
def aul t

To create anew branch, run the hg branch command again. Thistime, give it one argument: the
name of the branch you want to create.

$ hg branch foo

mar ked working directory as branch foo
$ hg branch

f oo

After you've created a branch, you might wonder what effect the hg branch command has had.
What do the hg status and hg tip commands report?

$ hg status

$ hg tip

changeset : 0: 8994d67a4d28

tag: tip

user: Bryan O Sul | i van <bos@er penti ne. con>

90

FATE 5 5y SO

dat e: Wed Aug 11 06:05:43 2010 +0000
sunmary: Initial comit

Nothing has changed in the working directory, and there's been no new history created. Asthis
suggests, running the hg branch command has no permanent effect; it only tellsMercurial what branch
name to use the next time you commit a changeset.

When you commit a change, Mercuria records the name of the branch on which you committed.
Once you've switched from the def aul t branch to another and committed, you'll see the name of
the new branch show up in the output of hg log, hg tip, and other commands that display the same
kind of output.

$ echo '"hello again' >> nyfile
$ hg conmit -m' Second commit

$ hg tip

changeset : 1: 0c7a21a40346

br anch: foo

tag: tip

user : Bryan O Sul |l i van <bos@er penti ne. con>
dat e: Wed Aug 11 06: 05: 44 2010 +0000
summary: Second conmit

The hg log-like commands will print the branch name of every changeset that's not on the
def aul t branch. Asaresult, if you never use named branches, you'll never see this information.

Once you've named a branch and committed a change with that name, every subsequent commit
that descends from that change will inherit the same branch name. You can change the name of a
branch at any time, using the hg branch command.

$ hg branch

f oo

$ hg branch bar

mar ked working directory as branch bar
$ echo new file > newfile

$ hg commit -A -m ' Third commt

addi ng newfile

$ hg tip

changeset : 2: d8a670718b6b

br anch: bar

t ag: tip

user: Bryan O Sul |l i van <bos@er penti ne. con>
dat e: Wed Aug 11 06:05:44 2010 +0000
summary: Third comm t

In practice, this is something you won't do very often, as branch names tend to have fairly long
lifetimes. (Thisisn't arule, just an observation.)

6. EREAREPAEZ MENTX

If you have more than one named branch in arepository, Mercuria will remember the branch that
your working directory is on when you start a command like hg update or hg pull -u. It will update
the working directory to the tip of this branch, no matter what the “repo-wide” tip is. To update to a
revision that's on a different named branch, you may need to use the - C option to hg update.

This behavior is alittle subtle, so let's see it in action. First, let's remind ourselves what branch
we're currently on, and what branches are in our repository.

91

FATE 5 5y SO

$ hg parents

changeset : 2: d8a670718b6b

br anch: bar

t ag: tip

user: Bryan O Sul | i van <bos@er penti ne. con»
dat e: Wed Aug 11 06:05:44 2010 +0000
sunmary: Third conm t

$ hg branches

bar 2:d8a670718b6b
f 0o 1: 0c7a21a40346 (inactive)
def aul t 0: 8994d67a4d28 (i nactive)

We're on the bar branch, but there also exists an older hg foo branch.

We can hg update back and forth between thetips of thef oo and bar brancheswithout needing
to use the - C option, because this only involves going backwards and forwards linearly through our
change history.

$ hg update foo
O files updated, O files merged, 1 files renoved, O files unresol ved
$ hg parents

changeset : 1: 0c7a21a40346

br anch: foo

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Wed Aug 11 06: 05:44 2010 +0000
summary: Second commit

$ hg update bar

1 files updated, O files nerged, O files renpved, O files unresol ved
$ hg parents

changeset : 2:d8a670718b6b

br anch: bar

t ag: tip

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Wed Aug 11 06: 05:44 2010 +0000
summary: Third comm t

If we go back to the f oo branch and then run hg update, it will keep us on f 00, not move us
to thetip of bar .

$ hg update foo

O files updated, O files nmerged, 1 files renoved, O files unresol ved
$ hg update

O files updated, O files nmerged, O files renoved, O files unresol ved

Committing a new change on the f 0o branch introduces a new head.

$ echo sonething > sonefile
$ hg commit -A-m'Newfile
addi ng sonefile
created new head

$ hg heads

changeset : 3: ael3e3d235f 2

br anch: foo

tag: tip

parent: 1: 0c7a21a40346

user: Bryan O Sul | i van <bos@er penti ne. con>
dat e: Wed Aug 11 06:05:45 2010 +0000
sunmary: New fil e

changeset : 2: d8a670718b6b

br anch: bar

user: Bryan O Sul | i van <bos@er penti ne. con>
dat e: Wed Aug 11 06:05:44 2010 +0000
sunmary: Third conmm t

92

FATE 5 5y SO

changeset : 0: 8994d67a4d28

user: Bryan O Sul | i van <bos@er penti ne. con>
dat e: Wed Aug 11 06:05:43 2010 +0000
sunmary: Initial commit

8.1. X A5 EH

As you've probably noticed, merges in Mercuria are not symmetrical. Let's say our repository
has two heads, 17 and 23. If | hg update to 17 and then hg mer ge with 23, Mercuria records 17 as
the first parent of the merge, and 23 as the second. Whereas if | hg update to 23 and then hg merge
with 17, it records 23 as the first parent, and 17 as the second.

This affects Mercurial's choice of branch name when you merge. After a merge, Mercurial will
retain the branch name of the first parent when you commit the result of the merge. If your first parent's
branch nameisf 00, and you merge with bar , the branch name will still be f oo after you merge.

It's not unusual for arepository to contain multiple heads, each with the same branch name. Let's
say I'mworking onthef oo branch, and so are you. We commit different changes; | pull your changes,
| now have two heads, each claiming to be on the f oo branch. The result of amerge will be asingle
head on the f 00 branch, as you might hope.

But if I'm working on the bar branch, and I merge work from the f oo branch, the result will
remain on the bar branch.

$ hg branch

bar

$ hg merge foo

1 files updated, O files nerged, O files renpved, O files unresol ved
(branch nmerge, don't forget to commt)

$ hg commit -m"' Merge'

$ hg tip

changeset : 4: b9cc49ef 3672

br anch: bar

t ag: tip

parent : 2:d8a670718b6b

parent: 3: ael3e3d235f2

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Wed Aug 11 06: 05:45 2010 +0000
sunmmary: Mer ge

To give a more concrete example, if I'm working on the bl eedi ng- edge branch, and | want
to bring in the latest fixes from the st abl e branch, Mercuria will choose the “right” (bl eedi ng-
edge) branch name when | pull and merge from st abl e.

8.8. X BIrRBEEIREH

Y ou shouldn't think of named branches as applicable only to situations where you have multiple
long-lived branches cohabiting in asingle repository. They're very useful even in the one-branch-per-
repository case.

In the ssimplest case, giving a name to each branch gives you a permanent record of which branch
a changeset originated on. This gives you more context when you're trying to follow the history of a
long-lived branchy project.

93

FATE 5 5y SO

If you're working with shared repositories, you can set up a pr et xnchangegr oup hook on
each that will block incoming changes that have the “wrong” branch name. This provides a simple,
but effective, defence against people accidentally pushing changes from a “bleeding edge” branch to
a“stable” branch. Such a hook might look like thisinside the shared repo's /. hgr c.

[hooks]
pr et xnchangegr oup. branch = hg heads --tenplate '{branches} ' | grep nybranch

94

£ 9 B EHRFEMEIR

To err might be human, but to really handle the consequences well takes a top-notch revision
control system. In this chapter, we'll discuss some of the techniques you can use when you find that a
problem has crept into your project. Mercuria has some highly capable features that will help you to
isolate the sources of problems, and to handle them appropriately.

9.1. tHER A &2

0.1.1. BirvER

| have the occasional but persistent problem of typing rather more quickly than | can think, which
sometimes results in me committing a changeset that is either incomplete or plain wrong. In my case,
the usual kind of incomplete changeset is one in which I've created a new source file, but forgotten to
hg add it. A “plain wrong” changeset is not as common, but no less annoying.

9.1.2. EF—EE

Inifs 4.2.245 <2z 44457 , 1 mentioned that Mercurial treats each modification of arepository
as a transaction. Every time you commit a changeset or pull changes from another repository,
Mercurial rememberswhat you did. Y ou can undo, or roll back, exactly one of these actions using the
hgrollback command. (See i 9.1.4 45 “ ozt 5, nlyE &z fr” for animportant caveat
about the use of this command.)

Here's a mistake that | often find myself making: committing a change in which I've created a
new file, but forgotten to hg add it.

$ hg status

M a

$ echo b > b

$ hg commit -m"'Add file b’

Looking at the output of hg status after the commit immediately confirms the error.

$ hg status

? b

$ hg tip

changeset : 1: 9eb3354e2f 61

t ag: tip

user: Bryan O Sul | i van <bos@er penti ne. con»
dat e: Wed Aug 11 06:06:21 2010 +0000
sunmary: Add file b

The commit captured the changes to the file a, but not the new file b. If | were to push this
changeset to arepository that | shared with a colleague, the chances are high that something ina would
refer to b, which would not be present in their repository when they pulled my changes. | would thus
become the object of some indignation.

However, luck is with me—I've caught my error before | pushed the changeset. | use the hg
rollback command, and Mercurial makes that last changeset vanish.

|6 hg rollback

95

APANE R

rol ling back |ast transaction

$ hg tip

changeset : 0: de701d6bcdcd

t ag: tip

user: Bryan O Sul | i van <bos@er penti ne. con>
dat e: Wed Aug 11 06:06:21 2010 +0000
sunmary: First commt

$ hg status

M a

? b

Noticethat the changeset isno longer present in the repository's history, and the working directory
once again thinks that the file a is modified. The commit and rollback have |eft the working directory
exactly as it was prior to the commit; the changeset has been completely erased. | can now safely hg
add thefile b, and rerun my commit.

$ hg add b
$ hg commit -m'Add file b, this time for real

9.1.3. $&ix BYHTEY

It's common practice with Mercurial to maintain separate development branches of a project in
different repositories. Your development team might have one shared repository for your project's
“0.9” release, and another, containing different changes, for the “1.0” release.

Given this, you can imagine that the consequences could be messy if you had a local “0.9”
repository, and accidentally pulled changes from the shared “1.0” repository into it. At worst, you
could be paying insufficient attention, and push those changes into the shared “0.9” tree, confusing
your entire team (but don't worry, we'll return to this horror scenario later). However, it's more likely
that you'll notice immediately, because Mercurial will display the URL it's pulling from, or you will
seeit pull asuspiciously large number of changes into the repository.

The hg rollback command will work nicely to expunge all of the changesets that you just pulled.
Mercurial groups al changes from one hg pull into asingle transaction, so one hg rollback isall you
need to undo this mistake.

s/ =2 2 LI NI = ey
9.1.4. S piEfE, ERERYH
Thevalue of the hg rollback command dropsto zero once you've pushed your changes to another
repository. Rolling back a change makes it disappear entirely, but only in the repository in which you

perform the hg rollback. Because a rollback eliminates history, there's no way for the disappearance
of a change to propagate between repositories.

If you've pushed a change to another repository—particularly if it's a shared repository—it has
essentially “escaped into the wild,” and you'll have to recover from your mistake in a different way.
If you push a changeset somewhere, then roll it back, then pull from the repository you pushed to, the
changeset you thought you'd gotten rid of will simply reappear in your repository.

(If you absolutely know for sure that the change you want to roll back is the most recent change
in the repository that you pushed to, and you know that nobody else could have pulled it from that
repository, you can roll back the changeset there, too, but you really should not expect this to work
reliably. Sooner or later a change really will make it into a repository that you don't directly control
(or have forgotten about), and come back to bite you.)

96

APANE R

9.1.5. 1’]‘/\ﬁb /A

Mercurial stores exactly one transaction in its transaction log; that transaction is the most recent
one that occurred in the repository. This means that you can only roll back one transaction. If you
expect to be ableto roll back one transaction, then its predecessor, thisis not the behavior you will get.

$ hg roll back

rol ling back |ast transaction

$ hg roll back

no rol |l back information avail able

Onceyou'verolled back onetransaction in arepository, you can't roll back againin that repository
until you perform another commit or pull.

9.2. HIHIEIRBIIZ X

If you make a modification to afile, and decide that you really didn't want to change the file at
al, and you haven't yet committed your changes, the hg revert command is the one you'll need. It
looks at the changeset that's the parent of the working directory, and restores the contents of the fileto
their state as of that changeset. (That's along-winded way of saying that, in the normal case, it undoes
your modifications.)

Let'sillustrate how the hg revert command works with yet another small example. We'll begin
by modifying afile that Mercurial is aready tracking.

$ cat file
ori gi nal content
$ echo unwanted change >> file
$ hg diff file
di ff -r 3bcd658f8dfe file
- a/file Wed Aug 11 06:06:01 2010 +0000
+++ b/file Wed Aug 11 06: 06: 01 2010 +0000
an-1,1 +1,2 @@
original content
+unwant ed change

If we don't want that change, we can simply hg revert thefile.

$ hg status
Mfile

$ hg revert file
$ cat file
ori gi nal content

The hg revert command provides us with an extra degree of safety by saving our modified file
witha. ori g extension.

$ hg status
? file.orig
$ cat file.orig
ori gi nal content
unwant ed change

‘i Ity . Ori g s

It's extremely unlikely that you are either using Mercurial to manage files with . ori g
extensions or that you even care about the contents of such files. Just in case, though, it's

97

APANE R

useful to remember that hg revert will unconditionally overwrite an existing file with a
. ori g extension. For instance, if you already have afile named f 0o. or i g when you
revert f 00, the contents of f 0o. or i g will be clobbered.

Hereisasummary of the cases that the hg revert command can deal with. Wewill describe each
of these in more detail in the section that follows.

* If you modify afile, it will restore the file to its unmodified state.
» |f you hg add afile, it will undo the “added” state of the file, but leave the file itself untouched.
* If you delete afile without telling Mercurial, it will restore the file to its unmodified contents.

* If you use the hg remove command to remove afile, it will undo the “removed” state of the file,
and restore the file to its unmodified contents.

3 Parlax £EH 3
9.2.1. X HEEIEIR
The hg revert command is useful for more than just modified files. It lets you reverse the results
of all of Mercurial's file management commands—hg add, hg remove, and so on.

If you hg add afile, then decide that in fact you don't want Mercurial to track it, use hg revert to
undo the add. Don't worry; Mercurial will not modify thefilein any way. It will just “unmark” thefile.

$ echo oops > oops
$ hg add oops

$ hg status oops
A oops

$ hg revert oops

$ hg status

? oops

Similarly, if you ask Mercuria to hg remove afile, you can use hg revert to restore it to the
contents it had as of the parent of the working directory.

$ hg renove file
hg status
file
hg revert file
hg status
Is file
le

R

$
$
$
$
f

This works just as well for afile that you deleted by hand, without telling Mercurial (recall that in
Mercurial terminology, thiskind of fileis caled “missing”).

$ rmfile

$ hg status

I file

$ hg revert file
$Is file

file

If you revert ahg copy, the copied-to fileremainsin your working directory afterwards, untracked.
Since a copy doesn't affect the copied-from file in any way, Mercurial doesn't do anything with the
copied-from file.

6 hg copy file newfile |

98

APANE R

$ hg revert newfile
$ hg status
? newfile

9.3. A E LRI AIEN

Consider acase where you have committed achange a, and another change b on top of it; you then
realise that change a was incorrect. Mercurial lets you “back out” an entire changeset automatically,
and building blocks that let you reverse part of a changeset by hand.

Before you read this section, here's something to keep in mind: the hg backout command undoes
the effect of a change by adding to your repository's history, not by modifying or erasing it. It's the
right tool to useif you'refixing bugs, but not if you're trying to undo some change that has catastrophic
consequences. To deal with those, see &5 9.4 5 “ Rz K EHMEH” -

9.3.1. k& —MEME

The hg backout command lets you “undo” the effects of an entire changeset in an automated
fashion. Because Mercurial's history isimmutable, thiscommand does not get rid of the changeset you
want to undo. Instead, it creates anew changeset that r ever sesthe effect of the to-be-undone changeset.

The operation of the hg backout command is a little intricate, so let's illustrate it with some
examples. First, well create arepository with some simple changes.

hg init nyrepo

cd nyrepo

echo first change >> nyfile
hg add nyfile

hg conmit -m'first change
echo second change >> nyfile
hg commt -m'second change

(R R R

The hg backout command takes a single changeset ID as its argument; this is the changeset to
back out. Normally, hg backout will drop you into atext editor to write a commit message, so you
can record why you're backing the change out. In this example, we provide a commit message on the
command line using the - moption.

9.3.2. Ik BTN =B &

We're going to start by backing out the last changeset we committed.

$ hg backout -m'back out second change' tip

reverting nyfile

changeset 2:d7d87ee0942a backs out changeset 1:d1600c9903de
$ cat myfile

first change

Y ou can see that the second line from nyf i | e isno longer present. Taking alook at the output
of hg log gives us an idea of what the hg backout command has done.

$ hg log --style conpact
2[tip] d7d87ee0942a 2010-08-11 06: 05 +0000 bos
back out second change

99

APANE R

1 d1600c9903de 2010-08-11 06: 05 +0000 bos
second change

0 bd4ad04lac6al 2010-08-11 06: 05 +0000 bos
first change

Notice that the new changeset that hg backout has created is a child of the changeset we backed out.
It'seasier to seethisin |5 9.1 “{ji f{ hg backout {x & —4~&pk ” , which presents a graphical view
of the change history. Asyou can see, the history isnice and linear.

9.1. {§ /g hg backout {8 —/M&2g

second change

back out
second change

9.3.3. Ik EETh = B Z 2K

If you want to back out achange other than the last one you committed, passthe- - mer ge option
to the hg backout command.

$ cd .

$ hg clone -r1 nyrepo non-tip-repo

requesting all changes

addi ng changesets

addi ng mani fests

adding file changes

added 2 changesets with 2 changes to 1 files

updating to branch default

1 files updated, O files nerged, O files renoved, O files unresol ved
$ cd non-tip-repo

This makes backing out any changeset a“one-shot” operation that's usually simple and fast.

$ echo third change >> nyfile

$ hg commit -m'third change

$ hg backout --nmerge -m'back out second change' 1

reverting nyfile

creat ed new head

changeset 3:28facefcd9bd backs out changeset 1:d1600c9903de

mergi ng with changeset 3:28facefcd9bd

merging nyfile

O files updated, 1 files nmerged, O files renoved, O files unresol ved
(branch nmerge, don't forget to commt)

100

APANE R

If you take alook at the contents of nmyf i | e after the backout finishes, you'll see that the first
and third changes are present, but not the second.

$ cat myfile
first change
t hird change

As the graphical history in |5] 9.2 “{gi i hg backout [5zik&E T S &7 illustrates,
Mercuria still commits one change in this kind of situation (the box-shaped node is the ones that
Mercurial commitsautomatically), but the revision graph now looks different. Before Mercurial begins
the backout process, it first rememberswhat the current parent of theworking directory is. It then backs
out the target changeset, and commitsthat as achangeset. Finally, it merges back to the previous parent
of the working directory, but notice that it does not commit the result of the merge. The repository
now contains two heads, and the working directory isin a merge state.

9.2. f§ F§ hg backout gz & JETH = KL

back out

third change second change

automated
merge

The result is that you end up “back where you were”, only with some extra history that undoes
the effect of the changeset you wanted to back oui.

Y ou might wonder why Mercurial does not commit the result of the merge that it performed.
Thereason liesin Mercurial behaving conservatively: amerge naturally has more scope for error than
simply undoing the effect of the tip changeset, so your work will be safest if you first inspect (and
test!) the result of the merge, then commit it.

9.3.3.1. #5¢%{E FH&In - - ner ge

Infact, sincethe- - mer ge optionwill do the*right thing” whether or not the changeset you're backing
out is the tip (i.e. it won't try to merge if it's backing out the tip, since there's no need), you should
always use this option when you run the hg backout command.

101

APANE R

0.3.4. fE iR EAMIB BT £ 154

While I've recommended that you always use the - - mer ge option when backing out a change,
the hg backout command lets you decide how to merge a backout changeset. Taking control of the
backout process by hand is something you will rarely need to do, but it can be useful to understand
what the hg backout command is doing for you automatically. To illustrate this, let's clone our first
repository, but omit the backout change that it contains.

$ cd .

$ hg clone -rl1 nyrepo new epo

requesting all changes

addi ng changesets

addi ng mani fests

addi ng file changes

added 2 changesets with 2 changes to 1 files

updating to branch default

1 files updated, O files nerged, O files renpved, O files unresol ved
$ cd new epo

As with our earlier example, We'll commit a third changeset, then back out its parent, and see
what happens.

$ echo third change >> nyfile

$ hg commit -m'third change

$ hg backout -m'back out second change' 1

reverting nyfile

created new head

changeset 3:28facefcd9bd backs out changeset 1:d1600c9903de
t he backout changeset is a new head - do not forget to nerge
(use "backout --nerge" if you want to auto-nerge)

Our new changeset is again a descendant of the changeset we backout out; it's thus a new head,
not a descendant of the changeset that was the tip. The hg backout command was quite explicit in
telling us this.

$ hg log --style conpact
B[tip]:1 28f acef cd9bd 2010-08-11 06: 05 +0000 bos
back out second change

2 f8009e53e608 2010-08-11 06: 05 +0000 bos
third change

1 d1600c9903de 2010-08-11 06: 05 +0000 bos
second change

0 bdad04lac6al 2010-08-11 06: 05 +0000 bos
first change

Again, it's easier to see what has happened by looking at a graph of the revision history, in 5] 9.3

“f¢i H hg backout x4 — A&k~ . This makes it clear that when we use hg backout to back out

a change other than the tip, Mercuria adds a new head to the repository (the change it committed is
box-shaped).

102

APANE R

9.3. (& F§ hg backout i & —/M& &

third change

After the hg backout command has completed, it leaves the new “backout” changeset as the
parent of the working directory.

back out
second change

$ hg parents

changeset : 2: £8009e53e608

user: Bryan O Sul |l i van <bos@er penti ne. con»
dat e: Wed Aug 11 06:05:38 2010 +0000
summary: third change

Now we have two isolated sets of changes.

$ hg heads

changeset : 3: 28f acef cd9bd

tag: tip

par ent : 1: d1600c9903de

user: Bryan O Sul li van <bos@er penti ne. con>
dat e: Wed Aug 11 06: 05:38 2010 +0000
sunmmary: back out second change

changeset : 2:8009e53e608

user: Bryan O Sul li van <bos@er penti ne. con>
dat e: Wed Aug 11 06: 05:38 2010 +0000
sunmmary: third change

Let's think about what we expect to see as the contents of nmyf i | e now. The first change should
be present, because we've never backed it out. The second change should be missing, as that's the
change we backed out. Since the history graph shows the third change as a separate head, we don't
expect to see the third change present innyfi | e.

$ cat myfile
first change

To get the third change back into the file, we just do a normal merge of our two heads.

$ hg nerge

abort: outstanding uncommtted changes (use 'hg status' to |list changes)
$ hg commit -m ' nerged backout with previous tip

$ cat myfile

first change

103

APANE R

Afterwards, the graphical history of our repository lookslike [% 9.4 “=F T &3tk &% -

94 FT &I LY

third change

back out
second change

9.3.5. hg backout gyR =

Here's abrief description of how the hg backout command works.
1. It ensures that the working directory is“clean”, i.e. that the output of hg status would be empty.
2. It remembers the current parent of the working directory. Let's call this changeset or i g.

3. It does the equivalent of a hg update to sync the working directory to the changeset you want to
back out. Let's call this changeset backout .

4. It finds the parent of that changeset. Let's call that changeset par ent .

5. For each filethat the backout changeset affected, it doesthe equivalent of ahg revert -r parent
on that file, to restore it to the contents it had before that changeset was committed.

6. It commits the result as a new changeset. This changeset hasbackout asits parent.

7. If you specify - - mer ge on the command line, it merges with or i g, and commits the result of
the merge.

An dternative way to implement the hg backout command would be to hg export the to-be-
backed-out changeset as a diff, then use the - - r ever se option to the patch command to reverse

104

APANE R

the effect of the change without fiddling with the working directory. This sounds much simpler, but
it would not work nearly as well.

The reason that hg backout does an update, a commit, a merge, and another commit is to give
the merge machinery the best chance to do a good job when dealing with all the changes between the
change you're backing out and the current tip.

If you're backing out a changeset that's 100 revisions back in your project's history, the chances
that the patch command will be able to apply areverse diff cleanly are not good, because intervening
changes are likely to have “broken the context” that patch uses to determine whether it can apply
a patch (if this sounds like gibberish, see % 12.4 -5 “sifw 4] 7 for adiscussion of the patch
command). Also, Mercuria's merge machinery will handle files and directories being renamed,
permission changes, and modifications to binary files, none of which patch can deal with.

9.4. Nz REMIEN

Most of the time, the hg backout command is exactly what you need if you want to undo the
effects of a change. It leaves a permanent record of exactly what you did, both when committing the
original changeset and when you cleaned up after it.

On rare occasions, though, you may find that you've committed a change that really should not
be present in the repository at all. For example, it would be very unusual, and usually considered a
mistake, to commit a software project's object files as well asits source files. Object files have amost
no intrinsic value, and they're big, so they increase the size of the repository and the amount of time
it takesto clone or pull changes.

Before | discuss the options that you have if you commit a“brown paper bag” change (the kind
that's so bad that you want to pull a brown paper bag over your head), let me first discuss some
approaches that probably won't work.

Since Mercurial treats history as accumulative—every change builds on top of all changes that
preceded it—you generally can't just make disastrous changes disappear. The one exception is when
you've just committed a change, and it hasn't been pushed or pulled into another repository. That's
when you can safely use the hg rollback command, as| detailed in %5 9.1.2 %5 “[n|ji— A% .

After you've pushed a bad change to another repository, you could still use hg rollback to make
your local copy of the change disappear, but it won't have the consequences you want. The change
will still be present in the remote repository, so it will reappear in your local repository the next time
you pull.

If asituation like this arises, and you know which repositories your bad change has propagated
into, you can try to get rid of the change from every one of those repositories. Thisis, of course, not
asatisfactory solution: if you miss even asingle repository while you're expunging, the change is still
“inthe wild”, and could propagate further.

If you've committed one or more changes after the change that you'd like to see disappear, your
options are further reduced. Mercurial doesn't provide a way to “punch a hole” in history, leaving
changesets intact.

105

APANE R

0.4.1. BHH— B3

Since merges are often complicated, it is not unheard of for a merge to be mangled badly, but
committed erroneously. Mercurial provides an important safeguard against bad merges by refusing to
commit unresolved files, but human ingenuity guarantees that it is still possible to mess a merge up
and commit it.

Given a bad merge that has been committed, usually the best way to approach it isto simply try
to repair the damage by hand. A complete disaster that cannot be easily fixed up by hand ought to be
very rare, but the hg backout command may help in making the cleanup easier. It offersa- - par ent
option, which lets you specify which parent to revert to when backing out a merge.

905 HIRHIEH

w 3: your change
4: bad merge

Suppose we have arevision graph likethat in |5 9.5 « 45 (¢4 317 . What we'd likeisto redo
the merge of revisions 2 and 3.

One way to do so would be as follows.

1. Call hgbackout --rev=4 --parent=2. Thistellshg backout to back out revision 4, which isthe bad
merge, and to when deciding which revision to prefer, to choose parent 2, one of the parents of the
merge. The effect canbeseenin |§] 9.6 “3{x[a4IE, JovE—ANE” -

106

APANE R

906. Ik EH, KiF—IPRE

--parent=2

i
6: backout 1 of
bad merge

5: new change

2. Cadl hg backout --rev=4 --parent=3. This tells hg backout to back out revision 4 again, but this
time to choose parent 3, the other parent of the merge. Theresultisvisiblein g 9.7 “37[5 4%,
Jevi He A2 sE 7, inwhich the repository now contains three heads.

107

APANE R

Q7 IR EH, KFHERE

- —-parent=2 "-._--parent=3
v 4
6: backout 1 of 8: backout 2 of
bad merge bad merge

3. Redo the bad merge by merging the two backout heads, which reduces the number of heads in the
repository to two, ascan beseenin |5 9.8 “ & 3145 E%” -

108

APANE R

9.8. SRR

--parent=2 --parent=3
4
6: backout 1 of 7: backout 2 of
bad merge bad merge

T

4. Merge with the commit that was made after the bad merge, asshownin 5] 9.9 “ &3¢9z .

8: merge
of backouts

109

APANE R

9.9. &R

—

-
Q new change \

8: merge
of backouts

/

9: merge with
new change

9.42 £/ “REE” ZURFRIPIREC

If you've committed some changes to your local repository and they've been pushed or pulled
somewhere else, thisisn't necessarily adisaster. You can protect yourself ahead of time against some
classes of bad changeset. Thisis particularly easy if your team usualy pulls changes from a central
repository.

By configuring some hooks on that repository to validate incoming changesets (see chapter

i 10 ¥ [F P FAIB AR A FESE44), you can automatically prevent some kinds of bad changeset
from being pushed to the central repository at all. With such a configuration in place, some kinds of

110

APANE R

bad changeset will naturally tend to “die out” because they can't propagate into the central repository.
Better yet, this happens without any need for explicit intervention.

For instance, an incoming change hook that verifies that a changeset will actually compile can
prevent people from inadvertently “breaking the build”.

9.4.3. SMIBBRLIE B R 0 555

Even a carefully run project can suffer an unfortunate event such as the committing and
uncontrolled propagation of afile that contains important passwords.

If something like this happens to you, and the information that gets accidentally propagated is
truly sensitive, your first step should be to mitigate the effect of the leak without trying to control
the leak itself. If you are not 100% certain that you know exactly who could have seen the changes,
you should immediately change passwords, cancel credit cards, or find some other way to make sure
that the information that has leaked is no longer useful. In other words, assume that the change has
propagated far and wide, and that there's nothing more you can do.

Y ou might hope that there would be mechanisms you could use to either figure out who has seen
a change or to erase the change permanently everywhere, but there are good reasons why these are
not possible.

Mercurial does not provide an audit trail of who has pulled changes from a repository, because
it is usually either impossible to record such information or trivial to spoof it. In a multi-user or
networked environment, you should thus be extremely skeptical of yourself if you think that you have
identified every place that a sensitive changeset has propagated to. Don't forget that people can and
will send bundles by email, have their backup software save data offsite, carry repositories on USB
sticks, and find other completely innocent ways to confound your attempts to track down every copy
of a problematic change.

Mercurial also does not provide a way to make a file or changeset completely disappear from
history, becausethereisno way to enforceits disappearance; someone could easily modify their copy of
Mercurial to ignore such directives. In addition, even if Mercurial provided such acapability, someone
who simply hadn't pulled a*“ make thisfile disappear” changeset wouldn't be affected by it, nor would
web crawlers visiting at the wrong time, disk backups, or other mechanisms. Indeed, no distributed
revision control system can make data reliably vanish. Providing the illusion of such control could
easily give afalse sense of security, and be worse than not providing it at all.

9.5. E#x (o) R HIAR IR

Whileit'sall very well to be able to back out a changeset that introduced a bug, this requires that
you know which changeset to back out. Mercurial provides an invaluable command, called hg bisect,
that helps you to automate this process and accomplish it very efficiently.

The idea behind the hg bisect command is that a changeset has introduced some change of
behavior that you can identify with a simple pass/fail test. You don't know which piece of code
introduced the change, but you know how to test for the presence of the bug. The hg bisect command
uses your test to direct its search for the changeset that introduced the code that caused the bug.

111

APANE R

Here are afew scenarios to help you understand how you might apply this command.

» The most recent version of your software has a bug that you remember wasn't present a few weeks
ago, but you don't know when it was introduced. Here, your binary test checks for the presence of
that bug.

* You fixed abug in arush, and now it's time to close the entry in your team's bug database. The bug
database requires a changeset |D when you close an entry, but you don't remember which changeset
you fixed the bug in. Once again, your binary test checks for the presence of the bug.

* Your softwareworks correctly, but runs 15% slower than the last time you measured it. Y ou want to
know which changeset introduced the performance regression. In thiscase, your binary test measures
the performance of your software, to see whether it's “fast” or “slow”.

» The sizes of the components of your project that you ship exploded recently, and you suspect that
something changed in the way you build your project.

From these examples, it should be clear that the hg bisect command is not useful only for finding
the sources of bugs. Y ou can useit to find any “emergent property” of arepository (anything that you
can't find from a simple text search of the filesin the tree) for which you can write abinary test.

WEe'll introduce a little bit of terminology here, just to make it clear which parts of the search
process are your responsibility, and which are Mercuria's. A test is something that you run when hg
bisect chooses a changeset. A probeiswhat hg bisect runsto tell whether arevision isgood. Findly,
we'll use the word “bisect”, as both a noun and a verb, to stand in for the phrase “search using the
hg bisect command”.

One simple way to automate the searching process would be simply to probe every changeset.
However, this scales poorly. If it took ten minutes to test a single changeset, and you had 10,000
changesets in your repository, the exhaustive approach would take on average 35 days to find the
changeset that introduced a bug. Even if you knew that the bug was introduced by one of the last
500 changesets, and limited your search to those, you'd still be looking at over 40 hours to find the
changeset that introduced your bug.

What the hg bisect command doesis use its knowledge of the “shape” of your project's revision
history to perform asearch in time proportional to thelogarithm of the number of changesets to check
(the kind of search it performsis called a dichotomic search). With this approach, searching through
10,000 changesets will take less than three hours, even at ten minutes per test (the search will require
about 14 tests). Limit your search to the last hundred changesets, and it will take only about an hour
(roughly seven tests).

Thehg bisect command isaware of the “ branchy” nature of aMercurial project'srevision history,

so it has no problems dealing with branches, merges, or multiple heads in a repository. It can prune
entire branches of history with a single probe, which is how it operates so efficiently.

9.5.1. (% hg bisect

Here's an example of hg bisect in action.

112

APANE R

PR e

=

In versions 0.9.5 and earlier of Mercurial, hg bisect was not a core command: it was
distributed with Mercurial as an extension. This section describes the built-in command,
not the old extension.

Now let's create arepository, so that we can try out the hg bisect command in isolation.

$ hg init nybug
$ cd nybug

WEe'l simulate a project that has a bug in it in a simple-minded way: create trivial changes in
aloop, and nominate one specific change that will have the “bug”. This loop creates 35 changesets,
each adding a single file to the repository. We'll represent our “bug” with afile that contains the text
“i haveagub”.

$ buggy_change=22

$ for ((i =0; i <35; i++)); do

> if [[$i = $buggy_change]]; then

> echo 'i have a gub' > nyfile$

> hg conmt -q -A -m'buggy changeset

> el se

> echo 'nothing to see here, nove along' > nyfile$
> hg conmit -q -A -m'nornmal changeset

> fi

> done

The next thing that we'd like to do is figure out how to use the hg bisect command. We can use
Mercurial's normal built-in help mechanism for this.

$ hg hel p bisect
hg bisect [-gbsr] [-U [-c CMD] [REV]

subdi vi si on search of changesets

This command hel ps to find changesets which introduce problens. To use
mark the earliest changeset you know exhibits the problemas bad, then
mark the | atest changeset which is free fromthe problemas good. Bisect
wi || update your working directory to a revision for testing (unless the
-U --noupdate option is specified). Once you have perforned tests, nark
the working directory as good or bad, and bisect will either update to
anot her candi date changeset or announce that it has found the bad

revi sion

As a shortcut, you can also use the revision argunent to nmark a revision
as good or bad without checking it out first

If you supply a cormand, it will be used for automatic bisection. Its exit
status will be used to mark revisions as good or bad: status O neans good
125 nmeans to skip the revision, 127 (command not found) will abort the
bi section, and any other non-zero exit status neans the revision is bad

opti ons

-r --reset reset bisect state

-g --good mar k changeset good

-b --bad mar k changeset bad

-s --skip skip testing changeset

-c --conmmand use command to check changeset state
-U --noupdate do not update to target

use "hg -v help bisect" to show gl obal options

The hg bisect command works in steps. Each step proceeds as follows.

1. You runyour binary test.

113

APANE R

* MR TG, A hg bisect --good iy 4% i hg bisect 54,
© W R, AT hg bisect --bad 4y 4,
2. The command uses your information to decide which changeset to test next.
3. It updates the working directory to that changeset, and the process begins again.

The process ends when hg bisect identifies a unique changeset that marks the point where your
test transitioned from “succeeding” to “failing”.

To start the search, we must run the hg bisect --reset command.

B hg bisect --reset

In our case, the binary test we use is simple: we check to seeif any file in the repository contains
the string “i have a gub”. If it does, this changeset contains the change that “caused the bug”. By
convention, a changeset that has the property we're searching for is “bad”, while one that doesn't is
“good”.

Most of the time, the revision to which the working directory is synced (usually the tip) aready
exhibits the problem introduced by the buggy change, so we'll mark it as“bad”.

|6 hg bisect --bad

Our next task is to nominate a changeset that we know doesn't have the bug; the hg bisect
command will “bracket” its search between the first pair of good and bad changesets. In our case,
we know that revision 10 didn't have the bug. (I'll have more words about choosing the first “good”
changeset later.)

$ hg bisect --good 10
Testing changeset 22: d37540aeb00f (24 changesets remaining, ~4 tests)
O files updated, O files nmerged, 12 files renoved, O files unresol ved

Notice that this command printed some output.

* It told us how many changesets it must consider before it can identify the one that introduced the
bug, and how many tests that will require.

* It updated the working directory to the next changeset to test, and told uswhich changeset it'stesting.

We now run our test in the working directory. We use the grep command to see if our “bad” file
is present in the working directory. If it is, thisrevision is bad; if not, thisrevision is good.

$if grep -q 'i have a gub' *
t hen
resul t =bad
el se
resul t =good
f
echo this revision is $result
this revision is bad
$ hg bisect --$result
Testing changeset 16:99021bf16ald (12 changesets remmining, ~3 tests)
O files updated, O files merged, 6 files renoved, O files unresol ved

€®©V VYV VYV

This test looks like a perfect candidate for automation, so let's turn it into a shell function.

114

APANE R

$ nytest() {

> if grep -q 'i have a gub' *
> t hen

> resul t =bad

> el se

> resul t =good

> fi

> echo this revision is $result
> hg bisect --$result

>

}

We can now run an entire test step with asingle command, nyt est .

$ nyt est

this revision is good

Testing changeset 19: 82553e74eb61 (6 changesets remmining, ~2 tests)
3 files updated, O files nerged, O files renoved, O files unresol ved

A few more invocations of our canned test step command, and we're done.

$ nyt est

this revision is good

Testi ng changeset 20: 708cef 94152b (3 changesets renmining, ~1 tests)
1 files updated, O files nerged, O files renoved, O files unresol ved
$ nytest

this revision is good

Testing changeset 21:a32a359502c2 (2 changesets remmining, ~1 tests)
1 files updated, O files nerged, O files renoved, O files unresol ved
$ nyt est

this revision is good

The first bad revision is

changeset : 22: d37540aeb00f

user: Bryan O Sul |l i van <bos@er penti ne. con»
dat e: Wed Aug 11 06:05:41 2010 +0000
summary: buggy changeset

Even though we had 40 changesets to search through, the hg bisect command let us find the
changeset that introduced our “bug” with only five tests. Because the number of teststhat the hg bisect
command performs grows logarithmically with the number of changesetsto search, the advantage that
it has over the “brute force” search approach increases with every changeset you add.

9.5.2. ZEFH)E

When you're finished using the hg bisect command in a repository, you can use the hg bisect --
reset command to drop the information it was using to drive your search. The command doesn't use
much space, so it doesn't matter if you forget to run this command. However, hg bisect won't let you
start anew search in that repository until you do ahg bisect --reset.

6 hg bisect --reset

9.6. &Kk el @AY F 15

9.6.1. {HH—Eavim A

The hg bisect command requires that you correctly report the result of every test you perform.
If you tell it that a test failed when it really succeeded, it might be able to detect the inconsistency.
If it can identify an inconsistency in your reports, it will tell you that a particular changeset is both

115

APANE R

good and bad. However, it can't do this perfectly; it's about as likely to report the wrong changeset
as the source of the bug.

9.6.2. RE83%

When | started using the hg bisect command, | tried a few times to run my tests by hand, on
the command line. Thisis an approach that |, at least, am not suited to. After afew tries, | found that
| was making enough mistakes that | was having to restart my searches several times before finally
getting correct results.

My initial problems with driving the hg bisect command by hand occurred even with simple
searches on small repositories; if the problem you're looking for is more subtle, or the number of tests
that hg bisect must perform increases, the likelihood of operator error ruining the search is much
higher. Once | started automating my tests, | had much better results.

The key to automated testing is twofold:
» awaystest for the same symptom, and
» awaysfeed consistent input to the hg bisect command.

In my tutorial example above, the grep command tests for the symptom, and the i f statement
takestheresult of thischeck and ensuresthat we alwaysfeed the same input to the hg bisect command.
Thenyt est function marries these together in a reproducible way, so that every test is uniform and
consistent.

9.6.3. I E{RAYZ R

Because the output of a hg bisect search is only as good as the input you give it, don't take the
changeset it reports as the absolute truth. A ssmple way to cross-check its report is to manually run
your test at each of the following changesets:

» The changeset that it reports as the first bad revision. Y our test should still report this as bad.

» The parent of that changeset (either parent, if it's amerge). Y our test should report this changeset
as good.

» A child of that changeset. Y our test should report this changeset as bad.

9.6.4. 1Z [[5) B [B) B i 58

It's possible that your search for one bug could be disrupted by the presence of another. For
example, let's say your software crashes at revision 100, and worked correctly at revision 50. Unknown
to you, someone else introduced a different crashing bug at revision 60, and fixed it at revision 80.
This could distort your resultsin one of several ways.

It is possible that this other bug completely “masks’ yours, which isto say that it occurs before
your bug has a chance to manifest itself. If you can't avoid that other bug (for example, it prevents
your project from building), and so can't tell whether your bug is present in a particular changeset,

116

APANE R

the hg bisect command cannot help you directly. Instead, you can mark a changeset as untested by
running hg bisect --skip.

A different problem could arise if your test for a bug's presence is not specific enough. If you
check for “my program crashes’, then both your crashing bug and an unrelated crashing bug that masks
it will look like the same thing, and mislead hg bisect.

Another useful situationinwhich to use hg bisect --skip isif you can't test arevision because your
project was in a broken and hence untestable state at that revision, perhaps because someone checked
in a change that prevented the project from building.

9.6.5. B /MREVEHR TME

Choosing the first “good” and “bad” changesets that will mark the end points of your search is
often easy, but it bears alittle discussion nevertheless. From the perspective of hg bisect, the “newest”
changeset is conventionally “bad”, and the older changeset is“good”.

If you're having trouble remembering when a suitable “good” change was, so that you can tell hg
bisect, you could do worse than testing changesets at random. Just remember to eliminate contenders
that can't possibly exhibit the bug (perhaps because the feature with the bug isn't present yet) and those
where another problem masks the bug (as | discussed above).

Evenif you end up “early” by thousands of changesets or months of history, you will only add a
handful of teststo the total number that hg bisect must perform, thanks to its logarithmic behavior.

117

F 10 & R TFAEBMAESH

Mercurial offersapowerful mechanismto let you perform automated actionsin responseto events

that occur in arepository. In some cases, you can even control Mercurial's response to those events.

The name Mercurial uses for one of these actions is a hook. Hooks are called “triggers’ in some

revision control systems, but the two names refer to the same idea.

10.

1. Mercurial £)5 A

Hereis abrief list of the hooks that Mercuria supports. We will revisit each of these hooks in

more detail later, in &5 10.7 35 “4p 'S4 1 (=5 5.7

Each of the hooks whose description begins with the word “Controlling” has the ability to

determine whether an activity can proceed. If the hook succeeds, the activity may proceed; if it fails,
the activity is either not permitted or undone, depending on the hook.

changegr oup: Thisisrun after agroup of changesets has been brought into the repository from
elsewhere.

commi t : Thisisrun after a new changeset has been created in the local repository.

i ncom ng: This is run once for each new changeset that is brought into the repository from
elsewhere. Notice the difference from changegr oup, which isrun once per group of changesets
brought in.

out goi ng: Thisisrun after agroup of changesets has been transmitted from this repository.

pr echangegr oup: Thisisrun before starting to bring a group of changesets into the repository.

preconm t : Controlling. Thisis run before starting a commit.

pr eout goi ng: Controlling. Thisisrun before starting to transmit agroup of changesets from this
repository.

pr et ag: Controlling. Thisis run before creating atag.
pr et xnchangegr oup: Controlling. Thisisrun after agroup of changesets has been brought into
the local repository from another, but before the transaction completes that will make the changes

permanent in the repository.

pret xnconm t: Controlling. This is run after a new changeset has been created in the local
repository, but before the transaction completes that will make it permanent.

pr eupdat e: Controlling. Thisis run before starting an update or merge of the working directory.

t ag: Thisisrun after atagis created.

118

A5 B Aab B RAS B A

» updat e: Thisisrun after an update or merge of the working directory has finished.

10.2. 17 584
10.2.1. 89 F LA{RBI4FRGIIT

When you run a Mercurial command in a repository, and the command causes a hook to run,
that hook runs on your system, under your user account, with your privilege level. Since hooks are
arbitrary pieces of executable code, you should treat them with an appropriate level of suspicion. Do
not install a hook unless you are confident that you know who created it and what it does.

In some cases, you may be exposed to hooks that you did not install yourself. If you work with
Mercurial on an unfamiliar system, Mercurial will run hooks defined in that system'sglobal ~/ . hgr ¢
file.

If you are working with a repository owned by another user, Mercurial can run hooks defined
in that user's repository, but it will still run them as “you”. For example, if you hg pull from that
repository, and its . hg/ hgr ¢ defines alocal out goi ng hook, that hook will run under your user
account, even though you don't own that repository.

==
T=
1L ,c

This only appliesif you are pulling from a repository on alocal or network filesystem. If
you're pulling over http or ssh, any out goi ng hook will run under whatever account is
executing the server process, on the server.

To see what hooks are defined in a repository, use the hg showconfig hooks command. If you
are working in one repository, but talking to another that you do not own (e.g. using hg pull or hg
incoming), remember that it is the other repository's hooks you should be checking, not your own.

10.2.2.) F RS AE4E

In Mercuria, hooks are not revision controlled, and do not propagate when you clone, or pull
from, arepository. The reason for thisis simple: a hook is a completely arbitrary piece of executable
code. It runs under your user identity, with your privilege level, on your machine.

It would be extremely recklessfor any distributed revision control system to implement revision-
controlled hooks, as this would offer an easily exploitable way to subvert the accounts of users of the
revision control system.

Since Mercurial doesnot propagate hooks, if you are collaborating with other people on acommon
project, you should not assume that they are using the same Mercurial hooks as you are, or that theirs
are correctly configured. Y ou should document the hooks you expect people to use.

In a corporate intranet, this is somewhat easier to control, as you can for example provide a
“standard” installation of Mercurial on an NFSfilesystem, and useasite-wide~/ . hgr c fileto define
hooks that all users will see. However, this too hasits limits; see below.

119

A5 B Aab B RAS B A

10.2.3. s FrRI IR B =

Mercurial allows you to override a hook definition by redefining the hook. Y ou can disable it by
setting its value to the empty string, or change its behavior as you wish.

If you deploy a system- or site-wide ~/ . hgr c file that defines some hooks, you should thus
understand that your users can disable or override those hooks.

10.2.4. MR KB FHIAT

Sometimes you may want to enforce a policy that you do not want others to be able to work
around. For example, you may have a requirement that every changeset must pass a rigorous set of
tests. Defining this requirement via a hook in a site-wide ~/ . hgr ¢ won't work for remote users on
laptops, and of course local users can subvert it at will by overriding the hook.

Instead, you can set up your policies for use of Mercurial so that people are expected to
propagate changesthrough awell-known “ canonical” server that you have locked down and configured

appropriately.

Oneway to do thisisviaacombination of social engineering and technology. Set up arestricted-
access account; users can push changes over the network to repositories managed by this account, but
they cannot log into the account and run normal shell commands. In this scenario, a user can commit
a changeset that contains any old garbage they want.

When someone pushes a changeset to the server that everyone pulls from, the server will test the
changeset before it accepts it as permanent, and reject it if it fails to pass the test suite. If people only
pull changes from this filtering server, it will serve to ensure that all changes that people pull have
been automatically vetted.

10.3. £ H$FHIE 3 F5 e

Itiseasy towriteaMercurial hook. Let's start with ahook that runswhen you finish ahg commit,
and simply prints the hash of the changeset you just created. The hook iscaled conmi t .

All hooks follow the pattern in this example.

$ hg init hook-test

$ cd hook-test

$ echo '[hooks]' >> .hg/hgrc

$ echo 'commit = echo conmm tted $HG NODE' >> . hg/hgrc
$ cat .hg/hgrc

[hooks]

commit = echo committed $HG NODE

$ echo a > a

$ hg add a

$ hg conmit -m'testing commit hook

conmi tted c458938417a1703ad91f 9d5314c069064d91edd2

You add an entry to the hooks section of your ~/ . hgr c. On theleft isthe name of the event to
trigger on; on theright isthe action to take. Asyou can see, you can run an arbitrary shell commandina
hook. Mercuria passes extrainformation to the hook using environment variables (look for HG_NODE
in the example).

120

A5 B Aab B RAS B A

10.3.1. S1MEHPITEZ MRE

Quite often, you will want to define more than one hook for a particular kind of event, as shown
below.

$ echo 'commit.when = echo -n "date of commit: "; date' >> .hg/hgrc
$ echo a >> a

$ hg conmit -m'i have two hooks

commi tted b4facl23f983636e71690475f52d57f cd17ea31d

date of commt: Wed Aug 11 06:06: 07 GMI 2010

Mercurial letsyou do thisby adding an extension to the end of ahook's name. Y ou extend ahook's
name by giving the name of the hook, followed by afull stop (the “. ” character), followed by some
more text of your choosing. For example, Mercurial will run both conmi t . f oo and commi t . bar

when the conmmi t event occurs.

To give a well-defined order of execution when there are multiple hooks defined for an event,
Mercurial sorts hooks by extension, and executes the hook commands in this sorted order. In the above
example, it will executeconmi t . bar beforecomm t. f 0o, and comni t before both.

It isagood ideato use a somewhat descriptive extension when you define a new hook. Thiswill
help you to remember what the hook wasfor. If the hook fails, you'll get an error message that contains
the hook name and extension, so using a descriptive extension could give you an immediate hint asto
why the hook failed (see & 10.3.2 45 “ ¥l kbH (fyEz) > for an example).

10.3.2. =5 A3 A 7R B

In our earlier examples, we used the commi t hook, which is run after acommit has completed.
Thisis one of severa Mercuria hooks that run after an activity finishes. Such hooks have no way of
influencing the activity itself.

Mercurial defines a number of events that occur before an activity starts; or after it starts, but
before it finishes. Hooks that trigger on these events have the added ability to choose whether the
activity can continue, or will abort.

The pr et xncomm t hook runs after a commit has all but completed. In other words, the
metadata representing the changeset has been written out to disk, but the transaction has not yet been
allowed to complete. The pr et xncomm t hook hasthe ability to decide whether the transaction can
complete, or must be rolled back.

If the pr et xncomm t hook exits with a status code of zero, the transaction is allowed to
complete; the commit finishes; andtheconmm t hook isrun. If thepr et xncommi t hook exitswitha
non-zero status code, the transaction isrolled back; the metadata representing the changeset is erased;
and theconmi t hook isnot run.

$ cat check_bug_id

#! [bi n/ sh

check that a commit comment nentions a numeric bug id

hg log -r $1 --tenplate {desc} | grep -gq "\<bug *[0-9]"

$ echo 'pretxncommt.bug_id_required = ./check_bug_id $HG NODE' >> .hg/hgrc
$ echo a >> a

$ hg conmmit -m'i amnot nentioning a bug id

transacti on abort

121

A5 B Aab B RAS B A

rol | back conpl et ed

abort: pretxncommit.bug_id_required hook exited with status 1
$ hg conmit -m'i refer you to bug 666

conmi tted 3al64a4d6d6c3lac5507a8ed902c36c19ef bedf c

date of commt: Wed Aug 11 06:06: 09 GMI 2010

The hook in the example above checks that a commit comment contains abug ID. If it does, the
commit can complete. If not, the commit isrolled back.

10.4. BT

When you are writing a hook, you might find it useful to run Mercurial either with the - v option,
or thever bose config item set to “true”. When you do so, Mercuria will print a message before it
calls each hook.

10.4.1. & Z#FRIITAR

Y ou canwriteahook either asanormal program—typically ashell script—or asaPython function
that is executed within the Mercurial process.

Writing a hook as an external program has the advantage that it requires no knowledge of
Mercuria's internals. You can call normal Mercurial commands to get any added information you
need. The trade-off isthat external hooks are slower than in-process hooks.

An in-process Python hook has complete access to the Mercurial API, and does not “shell out” to
another process, so it isinherently faster than an external hook. It is aso easier to obtain much of the
information that a hook requires by using the Mercurial API than by running Mercurial commands.

If you are comfortable with Python, or require high performance, writing your hooks in Python
may be a good choice. However, when you have a straightforward hook to write and you don't need
to care about performance (probably the majority of hooks), a shell script is perfectly fine.

10.4.2.) FHIS

Mercurial calls each hook with aset of well-defined parameters. In Python, a parameter is passed
as a keyword argument to your hook function. For an external program, a parameter is passed as an
environment variable.

Whether your hook is written in Python or as a shell script, the hook-specific parameter names
and values will be the same. A boolean parameter will be represented as a boolean value in Python,
but as the number 1 (for “true”) or O (for “false”) as an environment variable for an external hook. If
a hook parameter is named f 00, the keyword argument for a Python hook will also be named f 00,
while the environment variable for an external hook will be named HG_FOOQ.

10.4.3. ¢yFaYyiR [B1{E 5 & shiz

A hook that executes successfully must exit with a status of zero if external, or return boolean
“false” if in-process. Failure is indicated with a non-zero exit status from an external hook, or an in-

122

A5 B Aab B RAS B A

process hook returning boolean “true”. If anin-process hook raisesan exception, the hook is considered
to have failed.

For a hook that controls whether an activity can proceed, zero/false means “alow”, while non-
zero/true/exception means “deny”.

10.4.4. /g B 5N ERENF

When you define an external hook in your ~/ . hgr ¢ and the hook is run, its value is passed
to your shell, which interprets it. This means that you can use normal shell constructs in the body of
the hook.

An executable hook is always run with its current directory set to arepository's root directory.

Each hook parameter is passed in as an environment variable; the name is upper-cased, and
prefixed with the string “HG .

With the exception of hook parameters, Mercurial does not set or modify any environment
variables when running ahook. Thisisuseful to remember if you are writing asite-wide hook that may
be run by anumber of different userswith differing environment variables set. In multi-user situations,
you should not rely on environment variables being set to the values you have in your environment
when testing the hook.

10.4.5. it Mercurial {EH# 2R F

The~/ . hgr ¢ syntax for defining an in-process hook is dlightly different than for an executable
hook. The value of the hook must start with thetext “pyt hon: ”, and continue with the fully-qualified
name of a callable object to use as the hook's value.

The module in which ahook lives is automatically imported when a hook is run. So long as you
have the module name and PYTHONPATH right, it should “just work”.

The following ~/ . hgr c example snippet illustrates the syntax and meaning of the notions we
just described.

[hooks]
conmi t . exanpl e = pyt hon: nynodul e. subnodul e. nyhook

When Mercuria runstheconmi t . exanpl e hook, itimportsnmynodul e. subnodul e, looks
for the callable object named nyhook, and calsit.

10.4.6. S HIZH T

The simplest in-process hook does nothing, but illustrates the basic shape of the hook API:

def nyhook(ui, repo, **kwargs)
pass

The first argument to a Python hook is aways a ui object. The second is a repository object;
at the moment, it isalways an instance of | ocal r eposi t or y. Following these two arguments are

123

A5 B Aab B RAS B A

other keyword arguments. Which ones are passed in depends on the hook being called, but a hook
can ignore arguments it doesn't care about by dropping them into a keyword argument dict, as with
** kwar gs above.

10.5. $5 745451
10.5.1. HEHEXMIRZAE

It's hard to imagine a useful commit message being very short. The simple pr et xncomn t
hook of the example below will prevent you from committing a changeset with a message that is less
than ten bytes long.

$ cat .hg/hgrc

[hooks]

pretxncommit.nsglen = test "hg tip --tenplate {desc} | wc -¢c* -ge 10
$ echo a > a

$ hg add a

$ hg commit -A -m'too short

transacti on abort

rol | back conpl et ed

abort: pretxncommit.nsglen hook exited with status 1

$ hg conmit -A -m"'long enough

10.5.2. i BITR=H

Aninteresting use of acommit-related hook isto help you to write cleaner code. A simpleexample
of “cleaner code” isthe dictum that a change should not add any new lines of text that contain “trailing
whitespace”. Trailing whitespace is a series of space and tab characters at the end of aline of text. In
most cases, trailing whitespace is unnecessary, invisible noise, but it is occasionally problematic, and
people often prefer to get rid of it.

Y ou can useeither thepr ecomm t or pr et xncomm t hook to tell whether you have atrailing
whitespace problem. If you use the pr ecomm t hook, the hook will not know which files you are
committing, so it will have to check every modified file in the repository for trailing white space. If
you want to commit achangeto just thefilef 0o, but thefilebar containstrailing whitespace, doing a
check inthe pr econmi t hook will prevent you from committing f oo due to the problem with bar .
This doesn't seem right.

Should you choose the pr et xncomni t hook, the check won't occur until just before the
transaction for the commit completes. This will allow you to check for problems only the exact files
that are being committed. However, if you entered the commit message interactively and the hook
fails, the transaction will roll back; you'll have to re-enter the commit message after you fix thetrailing
whitespace and run hg commit again.

$ cat .hg/hgrc

[hooks]

pret xnconmi t. whitespace = hg export tip | (! egrep -q '+ *[\t]$")
$ echo 'a' > a

$ hg commt -A -m'test with trailing whitespace

addi ng a

transaction abort

rol | back conpl et ed

abort: pretxnconmit.whitespace hook exited with status 1
$ echo 'a' > a

$ hg commit -A -m'drop trailing whitespace and try again

124

A5 B Aab B RAS B A

Inthisexample, weintroduceasimplepr et xncomm t hook that checksfor trailing whitespace.
Thishook is short, but not very helpful. It exitswith an error statusif a change adds aline with trailing
whitespace to any file, but does not print any information that might help usto identify the offending
file or line. It also has the nice property of not paying attention to unmodified lines; only lines that
introduce new trailing whitespace cause problems.

#! /[usr/ bi n/ env python
i3
save as . hg/check_whitespace. py and nake execut abl e

i mport re
def trailing_whitespace(difflines):
#

linenum header = 0, Fal se

for line in difflines:

if header:
remenber the name of the file that this diff affects
m=re.match(r' (?2:---|\+\+\+) ([MNt]+)', line)
if mand mgroup(1l) != "'/dev/null"':

filename = mgroup(1).split('/', 1)[-1]
if line.startswith('+++ ")
header = Fal se
conti nue
if line.startswith('diff '):
header = True

conti nue
hunk header - save the |ine nunber
m=re.match(r' @-\d+,\d+ \+(\d+),"', line)
if m
l'inenum = int(mgroup(1))
conti nue
hunk body - check for an added line with trailing whitespace
m=re.match(r'\+. *\s$', line)
if m
yield filenane, |inenum

if line and line[0] in ' +':
linenum += 1

if name__ =="'__main__

import o0s, sys

added = 0
for filename, linenumin trailing_whitespace(os. popen('hg export tip')):
print >> sys.stderr, ('%, line %: trailing whitespace added %
(filenanme, |inenum)
added += 1
if added

save the commit nessage so we don't need to retype it
os.systen('hg tip --tenplate "{desc}" > .hg/commit.save')
print >> sys.stderr, 'conmit nessage saved to .hg/commit.save
sys.exit(1)

The above version is much more complex, but also more useful. It parses a unified diff to see
if any lines add trailing whitespace, and prints the name of the file and the line number of each such
occurrence. Even better, if the change adds trailing whitespace, this hook saves the commit comment
and prints the name of the save file before exiting and telling Mercurial to roll the transaction back,
soyou can usethe-1 fil ename option to hg commit to reuse the saved commit message once
you've corrected the problem.

$ cat .hg/hgrc

[hooks]

pretxnconmmi t . whi tespace = . hg/check_whitespace. py

$ echo "a ' >> a

$ hg commit -A -m'add newline with trailing whitespace
a, line 2: trailing whitespace added

125

A5 B Aab B RAS B A

comit message saved to .hg/commit.save

transacti on abort

rol | back conpl et ed

abort: pretxncommit.whitespace hook exited with status 1

$ sed -i 's, *$,,' a
$ hg commit -A -m'trimed trailing whitespace
a, line 2: trailing whitespace added

comit message saved to .hg/commit.save

transacti on abort

rol | back conpl et ed

abort: pretxncommit.whitespace hook exited with status 1

As afinal aside, note in the example above the use of sed's in-place editing feature to get rid of
trailing whitespace from afile. Thisis concise and useful enough that | will reproduce it here (using
perl for good measure).

perl -pi -e "s,\s+$,,' filenane |

10.6. HEHHTF

Mercurial ships with several bundled hooks. You can find them in the hgext directory of a
Mercurial source tree. If you are using a Mercurial binary package, the hooks will be located in the
hgext directory of wherever your package installer put Mercurial.

10.6.1. acl —pg A BY i [a]45 &)

The acl extension lets you control which remote users are allowed to push changesets to a
networked server. Y ou can protect any portion of a repository (including the entire repo), so that a
specific remote user can push changes that do not affect the protected portion.

This extension implements access control based on the identity of the user performing apush, not
on who committed the changesets they're pushing. It makes sense to use this hook only if you have
alocked-down server environment that authenticates remote users, and you want to be sure that only
specific users are allowed to push changes to that server.

10.6.1.1. fig & acl £#F

In order to manage incoming changesets, the acl hook must be used as a pr et xnchangegr oup
hook. This lets it see which files are modified by each incoming changeset, and roll back a group of
changesetsif they modify “forbidden” files. Example:

[hooks]
pr et xnchangegr oup. acl = python: hgext . acl . hook

Theacl extensionisconfigured using three sections.

The acl section has only one entry, sour ces, which lists the sources of incoming changesets that
the hook should pay attention to. Y ou don't normally need to configure this section.

» serve: Control incoming changesets that are arriving from a remote repository over http or ssh.
Thisisthe default value of sour ces, and usually the only setting you'll need for this configuration
item.

* pul | : Control incoming changesets that are arriving viaapull from alocal repository.

126

A5 B Aab B RAS B A

* push: Control incoming changesets that are arriving via a push from alocal repository.
* bundl e: Control incoming changesets that are arriving from another repository viaabundle.

Theacl . al | owsection controlsthe usersthat are allowed to add changesets to the repository. If this
section is not present, all usersthat are not explicitly denied are allowed. If this section is present, all
usersthat are not explicitly allowed are denied (so an empty section means that all users are denied).

Theacl . deny section determines which users are denied from adding changesets to the repository.
If this section is not present or is empty, no users are denied.

The syntaxes for the acl . al | owand acl . deny sections are identical. On the left of each entry
is a glob pattern that matches files or directories, relative to the root of the repository; on the right,
auser name.

In the following example, the user docwr i t er can only push changes to the docs subtree of the
repository, whilei nt er n can push changesto any file or directory except sour ce/ sensi ti ve.

[acl . al | ow

docs/** = docwriter

[acl . deny]

source/ sensitive/** = intern

10.6.1.2. iz 5 ia) A 4k 32

If you want to test the acl hook, run it with Mercurial's debugging output enabled. Since you'll
probably be running it on a server where it's not convenient (or sometimes possible) to passin the - -
debug option, don't forget that you can enable debugging output in your ~/ . hgr c:

[ui]

debug = true

With thisenabled, theacl hook will print enough information to let you figure out why it isalowing
or forbidding pushes from specific users.

10.6.2. bugzi | | a—5 Bugzilla gy& g

Thebugzi | | a extension adds acomment to aBugzillabug whenever it finds areference to that
bug ID in acommit comment. Y ou can install this hook on a shared server, so that any time aremote
user pushes changes to this server, the hook gets run.

It adds a comment to the bug that looks like this (you can configure the contents of the comment
—see below):

Changeset aad8b264143a, nmade by Joe User

<j oe. user @omai n.conm> in the frobnitz repository, refers

to this bug. For conplete details, see

http://hg. domai n. coni frobni t z?cnd=changeset ; node=aad8b264143a
Changeset description: Fix bug 10483 by guardi ng agai nst some
NULL pointers

The value of this hook is that it automates the process of updating a bug any time a changeset
refersto it. If you configure the hook properly, it makes it easy for people to browse straight from a
Bugzilla bug to a changeset that refers to that bug.

127

A5 B Aab B RAS B A

Y ou can use the code in this hook as a starting point for some more exotic Bugzilla integration
recipes. Here are afew possibilities:

» Require that every changeset pushed to the server have avalid bug ID in its commit comment. In
this case, you'd want to configure the hook asapr et xncomm t hook. Thiswould allow the hook
to reject changes that didn't contain bug IDs.

» Allow incoming changesets to automatically modify the state of a bug, as well as simply adding a
comment. For example, the hook could recognise the string “fixed bug 31337” asindicating that it
should update the state of bug 31337 to “requires testing”.

10.6.2.1. fig & bugzi | | a $F

Y ou should configure this hook in your server's~/ . hgr c asani ncom ng hook, for example as
follows:

[hooks]
i ncom ng. bugzill a = python: hgext. bugzil | a. hook

Because of the specialised nature of this hook, and because Bugzilla was not written with this kind of
integration in mind, configuring this hook is a somewhat involved process.

Before you begin, you must install the MySQL bindings for Python on the host(s) where you'll be
running the hook. If thisis not available as a binary package for your system, you can download it
from [web:mysgl-python].

Configuration information for this hook livesin thebugzi | | a section of your ~/ . hgr c.

* versi on: Theversion of Bugzillainstalled on the server. The database schemathat Bugzilla uses
changes occasionally, so this hook has to know exactly which schemato use.

* host : The hostname of the MySQL server that stores your Bugzilla data. The database must be
configured to allow connections from whatever host you are running the bugzi | | a hook on.

» user : Theusername with which to connect to the MySQL server. The database must be configured
to allow this user to connect from whatever host you are running thebugzi | | a hook on. This user
must be able to access and modify Bugzillatables. The default value of thisitemisbugs, whichis
the standard name of the Bugzilla user in aMySQL database.

* passwor d: The MySQL password for the user you configured above. Thisis stored as plain text,
so you should make sure that unauthorised users cannot read the ~/ . hgr c file where you store
thisinformation.

» db: Thename of the Bugzilladatabase on the MySQL server. The default value of thisitemisbugs,
which is the standard name of the MySQL database where Bugzilla stores its data.

* noti fy: If youwant Bugzillato send out a notification email to subscribers after this hook has
added a comment to a bug, you will need this hook to run a command whenever it updates the
database. The command to run depends on where you have installed Bugzilla, but it will typically
look something like this, if you have Bugzillainstalledin/ var / ww/ ht ml / bugzi | | a:

cd /var/ww/ html /bugzilla &
./ processnui|l % nobody@owhere.com

128

A5 B Aab B RAS B A

» TheBugzillapr ocessmai | program expectsto be given abug ID (the hook replaces “%s” with
the bug ID) and an email address. It also expects to be able to write to some files in the directory
that it runsin. If Bugzillaand this hook are not installed on the same machine, you will need to find
away torunpr ocessnai | onthe server where Bugzillaisinstalled.

10.6.2.2. 233 FHy &R 5 Bugzilla f p ZFRagak st

By default, the bugzi | | a hook tries to use the email address of a changeset's committer as the
Bugzillauser namewith which to update a bug. If thisdoes not suit your needs, you can map committer
email addressesto Bugzilla user namesusing auser map section.

Each item in the user map section contains an email address on the left, and a Bugzilla user name
on the right.

[user map]
j ane. user @xanpl e. com = j ane

You can either keep the user map datain anormal ~/ . hgr c, or tell the bugzi | | a hook to read
the information from an external user map file. In the latter case, you can store user map data by
itself in (for example) a user-modifiable repository. This makesit possible to let your users maintain
their own user map entries. Themain~/ . hgr c file might look like this:

regular hgrc file refers to external usermap file
[bugzil | a]
usermap = / hone/ hg/ r epos/ userdat a/ bugzi | | a- user map. conf

Whiletheuser map filethat it refersto might look like this:

bugzilla-usermap.conf - inside a hg repository
[usermap] stephani e@xanpl e. com = st eph

10.6.2.3. BL &8I0 2| /5] @1 H B9 IE 3L

Y ou can configure the text that this hook adds as a comment; you specify it in the form of aMercurial
template. Several ~/ . hgr c entries (still inthebugzi | | a section) control this behavior.

e strip: The number of leading path elements to strip from a repository's path name to construct
a partial path for a URL. For example, if the repositories on your server live under / home/ hg/
r epos, and you have arepository whose path is/ hone/ hg/ r epos/ app/ t est s, then setting
stri pto4 will giveapartial path of app/ t est s. The hook will make this partial path available
when expanding atemplate, aswebr oot .

* t enpl at e: The text of the template to use. In addition to the usual changeset-related variables,
thistemplate can use hgweb (the value of the hgweb configuration item above) and webr oot (the
path constructed using st r i p above).

In addition, you can add a baseur | item to the web section of your ~/ . hgrc. The bugzill a
hook will make this available when expanding a template, as the base string to use when constructing
aURL that will let users browse from a Bugzilla comment to view a changeset. Example:

[web]
baseur| = http://hg. domain. conl

Hereisan example set of bugzi | | a hook config information.

[bugzilla]

129

A5 B Aab B RAS B A

host = bugzill a. exanpl e. com
password = nypassword version = 2.16
server-side repos live in /home/hg/repos, so strip 4 |eading
separators
strip = 4
hgweb = http://hg. exanpl e. com
usermap = / home/ hg/ repos/ noti fy/ bugzill a. conf
t enpl at e = Changeset {node|short}, made by {author} in the {webroot}
repo, refers to this bug.\n
For conplete details, see
{ hgweb} {webr oot } ?cnmd=changeset ; node={ node| short}\n
Changeset description:\n
\t{desc| tabi ndent}

10.6.2.4. i 5 jo) g5 Ab 28

The most common problems with configuring the bugzi | | a hook relate to running Bugzilla's
processmai | script and mapping committer names to user names.

Recall from %7 10.6.2.1 -5 «fig g bugzi | | a 4~ above that the user that runs the Mercurial
processonthe server isalsotheonethat will runthepr ocessnai | script. Thepr ocessmai | script
sometimes causes Bugzillato write to filesin its configuration directory, and Bugzilla's configuration
files are usually owned by the user that your web server runs under.

You can cause pr ocessmnai | to be run with the suitable user's identity using the sudo command.
Hereis an example entry for asudoer s file.

hg_user = (httpd_user)
NOPASSWD: / var / ww/ ht ml / bugzi | | a/ processmai | - w apper %

This allows the hg_user user to run apr ocessmai | - w apper program under the identity of
htt pd_user.

Thisindirection through awrapper script is necessary, because pr ocessmai | expectsto be run with
its current directory set to wherever you installed Bugzilla; you can't specify that kind of constraint in
asudoer s file. The contents of the wrapper script are simple:

#! [bi n/ sh
cd “dirname $0° && ./processnail "$1" nobody@xanpl e. com

It doesn't seem to matter what email address you passto pr ocessnai | .

If your user map is not set up correctly, users will see an error message from the bugzi I | a hook
when they push changes to the server. The error message will ook like this:

kannot find bugzilla user id for john.q.public@xanple.com

What this means is that the committer's address, j ohn. q. publ i c@xanpl e. com isnot avalid
Bugzilla user name, nor does it have an entry in your user map that maps it to a valid Bugzilla user
name.

10.6.3. not i f y—mp44 3@ 4N

Although Mercuria's built-in web server provides RSS feeds of changes in every repository,
many people prefer to receive change notifications via email. The not i fy hook lets you send out
notificationsto aset of email addresseswhenever changesets arrive that those subscribersare interested
in.

130

A5 B Aab B RAS B A

As with the bugzi I | a hook, the not i f y hook is template-driven, so you can customise the
contents of the notification messages that it sends.

By default, the not i f'y hook includes a diff of every changeset that it sends out; you can limit
the size of the diff, or turn this feature off entirely. It is useful for letting subscribers review changes
immediately, rather than clicking to follow a URL.

10.6.3.1. fig & noti fy ¢+

You can set up the not i fy hook to send one email message per incoming changeset, or one per
incoming group of changesets (all those that arrived in asingle pull or push).

[hooks]

send one enmil per group of changes
changegroup. notify = python: hgext.notify. hook
send one enmil per change

i ncom ng. notify = python: hgext.notify. hook

Configuration information for this hook livesinthenot i f y section of a~/ . hgr c file.

» t est: By default, this hook does not send out email at al; instead, it prints the message that it
would send. Set thisitemto f al se to alow email to be sent. The reason that sending of email is
turned off by default is that it takes several tries to configure this extension exactly as you would
like, and it would be bad form to spam subscribers with a number of “broken” notifications while
you debug your configuration.

e confi g: The path to a configuration file that contains subscription information. This is kept
separate from themain ~/ . hgr ¢ so that you can maintain it in arepository of its own. People can
then clone that repository, update their subscriptions, and push the changes back to your server.

e strip: The number of leading path separator characters to strip from a repository's path, when
deciding whether a repository has subscribers. For example, if the repositories on your server live
in / homre/ hg/ repos, and not i fy is considering a repository named / hone/ hg/ r epos/
shared/ t est, setting stri p to 4 will cause noti fy to trim the path it considers down to
shar ed/ t est, and it will match subscribers against that.

* t enpl at e: The template text to use when sending messages. This specifies both the contents of
the message header and its body.

* maxdi f f : The maximum number of lines of diff data to append to the end of a message. If a diff
is longer than this, it is truncated. By default, this is set to 300. Set this to 0 to omit diffs from
notification emails.

* sour ces: A list of sources of changesetsto consider. Thisletsyou limit not i f y to only sending
out email about changes that remote users pushed into this repository viaaserver, for example. See
o5 10.7.3.1 45 A s skys” for the sources you can specify here.

If you set the baseur | iteminthe web section, you can use it in atemplate; it will be available as
webr oot .

Hereisan example set of not i f y configuration information.

[notify]

131

S) A PO I A

10.

really send emai
test = fal se
subscriber data lives in the notify repo
config = /home/ hg/ repos/ notify/notify.conf
repos live in /hone/hg/repos on server, so strip 4 "/" chars
strip = 4
t enpl ate = X-Hg- Repo: {webroot}\n
Subj ect: {webroot}: {desc|firstline|strip}\n
From {author}
\n\n
changeset {node|short} in {root}
\'n\ ndetails:
{baseurl| }{webr oot } ?cnd=changeset ; node={ node| short}
description: {desc|tabindent|strip}

[web]
baseur| =
http://hg. exanpl e. com

Thiswill produce a message that 1ooks like the following:

X- Hg- Repo: tests/slave
Subj ect: tests/slave: Handle error case when slave has no buffers
Date: Wed, 2 Aug 2006 15:25:46 -0700 (PDT)

changeset 3cba9bfe74b5 in /hone/ hg/repos/tests/slave

det ai | s:
http://hg. exanpl e. conf t est s/ sl ave?cnd=changeset ; node=3cba9bf e74b5

description: Handle error case when slave has no buffers

diffs (54 lines)
di ff -r 9d95df 7cf2ad -r 3cba9bfe74b5 include/tests. h

- alinclude/tests.h Wed Aug 02 15:19:52 2006 -0700
+++ b/include/tests.h Wed Aug 02 15:25:26 2006 -0700
@m-212,6 +212,15 @static __inline__
voi d test_headers(void *h)
[...snip...]

6.3.2. ik 5 (o) RE AL 22

Do not forget that by default, the not i fy extension will not send any mail until you explicitly
configure it to do so, by setting t est to f al se. Until you do that, it ssimply prints the message it

would send.

10.7. mEHTRIER
10.7.1. 72 M40 F BOIAAT

An in-process hook is called with arguments of the following form:

hef myhook(ui, repo, **kwargs): pass

The ui parameter isaui object. Ther epo parameter isal ocal r eposi t ory object. The
names and values of the* * kwar gs parameters depend on the hook being invoked, with the following

common features:

 |If aparameter isnamed node or par ent N, it will contain a hexadecimal changeset ID. The empty
string is used to represent “null changeset ID” instead of a string of zeroes.

132

A5 B Aab B RAS B A

 If aparameterisnamedur | ,itwill containthe URL of aremoterepository, if that can be determined.
» Boolean-valued parameters are represented as Python bool objects.

An in-process hook is called without a change to the process's working directory (unlike external
hooks, which are run in the root of the repository). It must not change the process's working directory,
or it will cause any callsit makesinto the Mercurial API to fail.

If ahook returns aboolean “false” value, it isconsidered to have succeeded. If it returns aboolean
“true” value or raises an exception, it is considered to havefailed. A useful way to think of the calling
convention is “tell meif you fail”.

Note that changeset IDs are passed into Python hooks as hexadecimal strings, not the binary
hashesthat Mercurial's APIsnormally use. To convert ahash from hex to binary, usethebi n function.

10.7.2. 5 aREF BT

An external hook is passed to the shell of the user running Mercurial. Features of that shell, such
as variable substitution and command redirection, are available. The hook isrunintheroot directory of
the repository (unlikein-process hooks, which are run in the same directory that Mercurial wasrunin).

Hook parameters are passed to the hook as environment variables. Each environment variable's
name is converted in upper case and prefixed with the string “HG_". For example, if the name of
a parameter is “node”, the name of the environment variable representing that parameter will be
“HG_NODE”.

A boolean parameter isrepresented asthe string “1” for “true”, “0” for “false”. If an environment
variableisnamed HG_NODE, HG_PARENT1 or HG_PARENT?2, it contains a changeset I D represented
asahexadecimal string. The empty string is used to represent “ null changeset ID” instead of a string of
zeroes. If an environment variable is named HG_URL, it will contain the URL of aremote repository,
if that can be determined.

If ahook exits with a status of zero, it is considered to have succeeded. If it exits with a non-zero
status, it is considered to have failed.

10.7.3. @wE B ER B A

A hook that involves the transfer of changesets between alocal repository and another may be
ableto find out information about the “far side”. Mercurial knows how changes are being transferred,
and in many cases wher e they are being transferred to or from.

10.7.3.1. (& EERYKR IR

Mercurial will tell a hook what means are, or were, used to transfer changesets between repositories.
This is provided by Mercuria in a Python parameter named sour ce, or an environment variable
named HG_SOURCE.

» serve: Changesets are transferred to or from aremote repository over http or ssh.

133

A5 B Aab B RAS B A

» pul | : Changesets are being transferred via a pull from one repository into another.
» push: Changesets are being transferred via a push from one repository into another.

* bundl e: Changesets are being transferred to or from a bundle.

10.7.3.2. {2 e £ = 2 MR 8 — i 72 hig A% FE Y M 1t

When possible, Mercuria will tell a hook the location of the “far side” of an activity that transfers
changeset data between repositories. Thisis provided by Mercurial in a Python parameter named ur |,
or an environment variable named HG_URL.

This information is not aways known. If a hook is invoked in a repository that is being served via
http or ssh, Mercurial cannot tell where the remote repository is, but it may know where the client is
connecting from. In such cases, the URL will take one of the following forms:

e renote: ssh: 1. 2. 3. 4—remote ssh client, at thelP address 1. 2. 3. 4.

e renote: http: 1. 2. 3. 4—remote http client, at the IPaddress 1. 2. 3. 4. If the client isusing
SSL, thiswill be of theformr enot e: htt ps: 1. 2. 3. 4.

» Empty—no information could be discovered about the remote client.

108. 4 F 5%

10.8.1. changegr oup—& iR E N EZF

This hook is run after a group of pre-existing changesets has been added to the repository, for
example viaa hg pull or hg unbundle. This hook is run once per operation that added one or more
changesets. Thisisin contrast to thei ncom ng hook, which is run once per changeset, regardless of
whether the changesets arrive in a group.

Some possible uses for this hook include kicking off an automated build or test of the added
changesets, updating a bug database, or notifying subscribers that a repository contains new changes.

Parameters to this hook:

* node: A changeset ID. The changeset ID of the first changeset in the group that was added.
All changesets between thisand t i p, inclusive, were added by a single hg pull, hg push or hg
unbundle.

» sour ce: A string. The source of these changes. See #; 10.7.3.1 5 “{& %4 ¢ kysi” for detals.

* url: A URL. Thelocation of the remote repository, if known. See 5 10.7.3.2 45 “f& 2 4 2 3|
W B —378 P2 f A e [y Mk 7 for more information.

See adso: incomng (& 1083 Ay “incom ng— S E Y G)

prechangegroup (& 1085 45 “prechangegr oup—¥ s Fis e £E 2 77),
pr et xnchangegr oup (z5 10.8.9 45 “pr et xnchangegr oup—=5z jf #8417 B i 42 2 757)

134

A5 B Aab B RAS B A

10.8.2. comm t —fI| E#FHHIENEZF

This hook is run after a new changeset has been created.
Parameters to this hook:
* node: A changeset ID. The changeset ID of the newly committed changeset.
* parent 1: A changeset ID. The changeset ID of the first parent of the newly committed changeset.

» parent 2: A changeset ID. The changeset ID of the second parent of the newly committed
changeset.

See also: preconmi t (5 10.8.6 75 “preconm t —4E3 & K22 /i), pret xncommi t
(% 10.8.10 %y “pr et xncomm t —52 45 2 Fi 7)

10.8.3. 1 ncom ng—&EhniE 8 EZRFE

This hook is run after a pre-existing changeset has been added to the repository, for example via
ahg push. If agroup of changesets was added in a single operation, this hook is called once for each
added changeset.

You can use this hook for the same purposes as the changegr oup hook (%5 10.8.1 ¥
“changegr oup—#a i Fiis 42 J5 7); it's simply more convenient sometimes to run a hook
once per group of changesets, while other times it's handier once per changeset.

Parameters to this hook:
* node: A changeset ID. The ID of the newly added changeset.
» sour ce: A string. The source of these changes. See #; 10.7.3.1 45 “{& %4 ¢ kys” for detals.

* url: A URL. Thelocation of the remote repository, if known. See # 10.7.3.2 35 “f& 2 A 3 3|
W L —7s PR A J2E f¥g g1l 7 for more information.

See dso: changegroup (&5 1081 % “changegroup—# T FiE i
J57) prechangegroup (35 1085 <5 “prechangegr oup—uifyt stk i~),
pr et xnchangegr oup (&5 10.8.9 4% “pr et xnchangegr oup—== g8 hm Fs i 4E 2 577)

10.8.4. out goil ng— LB E M EZ S

Thishook isrun after agroup of changesets hasbeen propagated out of thisrepository, for example
by ahg push or hg bundle command.

One possible use for this hook is to notify administrators that changes have been pulled.
Parameters to this hook:

* node: A changeset ID. The changeset ID of the first changeset of the group that was sent.

135

A5 B Aab B RAS B A

» sour ce: A string. The source of the of the operation (see %5 10.7.3.1 45 “f& M4 kyg”). If a
remoteclient pulled changesfrom thisrepository, sour ce will beser ve. If theclient that obtained
changes from this repository was local, sour ce will be bundl e, pul | , or push, depending on
the operation the client performed.

» url: A URL. Thelocation of the remote repository, if known. See 45 10.7.3.2 4§ “ /& A2 55 5
W R —7e R i A P2 iy st ik 7 for more information.

See dso: pr eout goi ng (% 10.8.7 75 “pr eout goi Ng—AL (& 4L BT 7)

10.8.5. pr echangegr oup—i& 402 (& E Z |

This controlling hook is run before Mercurial begins to add a group of changesets from another
repository.

This hook does not have any information about the changesets to be added, because it is run
before transmission of those changesetsis allowed to begin. If this hook fails, the changesets will not
be transmitted.

Oneusefor thishook isto prevent external changesfrom being added to arepository. For example,
you could use thisto “freeze” a server-hosted branch temporarily or permanently so that users cannot
push to it, while still allowing alocal administrator to modify the repository.

Parameters to this hook:
* sour ce: A string. The source of these changes. See 45 10.7.3.1 75 “{& K4k ys” for detals.

» url: A URL. Thelocation of the remote repository, if known. See %5 10.7.3.2 -5 “{& = FL 3]
W R —7e R A 2 [y st ik 7 for more information.

See dso: changegroup (% 10.81 45 “changegroup—#é s tEr J5”7)
incom ng (% 10.8.3 -y “i ncom ng—ihEfE4EY 5”7), pretxnchangegr oup
(3 10.8.9 75 “pr et xnchangegr oup—75¢ it iz B e de 2 7)

10.8.6. precomm t —iE &M E ZHI

This hook is run before Mercurial begins to commit a new changeset. It is run before Mercurial
has any of the metadata for the commit, such as the files to be committed, the commit message, or
the commit date.

One use for this hook is to disable the ability to commit new changesets, while still allowing
incoming changesets. Another isto run abuild or test, and only allow the commit to begin if the build
or test succeeds.

Parameters to this hook:
e parent 1: A changeset ID. The changeset ID of the first parent of the working directory.

» parent 2: A changeset ID. The changeset ID of the second parent of the working directory.

136

A5 B Aab B RAS B A

If the commit proceeds, the parents of the working directory will become the parents of the new
changeset.

See aso: commit (i 10.8.2 5 “commi t —GE SN J5”), Pretxnconmit
(% 10.8.10 4y “pr et xncomm t —5z G447 2 {7)

10.8.7. pr eout goi Nng—{EIHF & M E Z Al

This hook isinvoked before Mercurial knows the identities of the changesets to be transmitted.

One use for this hook isto prevent changes from being transmitted to another repository.
Parameters to this hook:

* source: A string. The source of the operation that is attempting to obtain changes from this
repository (see % 10.7.3.1 45 “fx M 4Efr ks ”). See the documentation for the sour ce
parameter to theout goi ng hook, in % 10.8.4 4% “out goi ng—L k&M 4E J5 7 , for possible
values of this parameter.

« url: A URL. Thelocation of the remote repository, if known. See i 10.7.3.2 4 “ & % 42 35 5]
W R —7t o f A 2 [y st kil 7 for more information.

See dso: out goi ng (%5 10.8.4 4% “out goi NQ—(LRIE KLY 57)

10.8.8. pr et ag— | B HrE Z Hi

This controlling hook is run before a tag is created. If the hook succeeds, creation of the tag
proceeds. If the hook fails, the tag is not created.

Parameters to this hook:

* | ocal : A boolean. Whether the tag is local to this repository instance (i.e. stored in . hg/
| ocal t ags) or managed by Mercuria (storedin. hgt ags).

* node: A changeset ID. The ID of the changeset to be tagged.
* tag: A string. The name of the tag to be created.

If the tag to be created is revision-controlled, the preconmi t and pr et xnconmmi t hooks
(% 10.8.2 411‘[4 “comm t—ﬁu@%ﬁ{%&%z}ﬁ » and % 10.8.10 % “pr et xnconmi t—%ﬁi%\%i
2 5”7) will also be run.

Seealso: t ag (i 10.8.12 45 “t ag—A i kr L2 57)
l_L_l . . \ —_— O Y N
10.8.9. pr et xnchangegr oup—35e g T2 B M E >
2
Ell
This controlling hook is run before a transaction—that manages the addition of a group of new
changesets from outside the repository—completes. If the hook succeeds, the transaction compl etes,

137

A5 B Aab B RAS B A

and all of the changesets become permanent within this repository. If the hook fails, the transaction is
rolled back, and the data for the changesetsis erased.

Thishook can access the metadata associated with the almost-added changesets, but it should not
do anything permanent with this data. It must also not modify the working directory.

While this hook is running, if other Mercurial processes access this repository, they will be able
to see the almost-added changesets as if they are permanent. This may lead to race conditions if you
do not take stepsto avoid them.

This hook can be used to automatically vet a group of changesets. If the hook fails, all of the
changesets are “rejected” when the transaction rolls back.

Parameters to this hook:

* node: A changeset ID. The changeset ID of the first changeset in the group that was added.
All changesets between thisand t i p, inclusive, were added by a single hg pull, hg push or hg
unbundle.

» sour ce: A string. The source of these changes. See 4 10.7.3.1 75 “{& K4 kys” for detals.

* url: A URL. Thelocation of the remote repository, if known. See % 10.7.3.2 45 “f& i 4 2 5|
W R —7e A f A 2 i st k7 for more information.

See dso: changegroup (5 1081 -5 “changegroup— s iiEZr 5”7)
incomng (3 1083 Hy “incom ng—ihnmiEEMEY 5”7), prechangegroup
(3 10.8.5 1 “pr echangegr oup—H4 it B 2 i~)

10.8.10. pret xncomm t —52 5123 Z B

This controlling hook isrun before a transaction—that manages anew commit—completes. If the
hook succeeds, the transaction compl etes and the changeset becomes permanent within thisrepository.
If the hook fails, the transaction is rolled back, and the commit data is erased.

This hook can access the metadata associated with the almost-new changeset, but it should not
do anything permanent with this data. It must also not modify the working directory.

While this hook is running, if other Mercurial processes access this repository, they will be able
to see the amost-new changeset asiif it is permanent. This may lead to race conditions if you do not
take stepsto avoid them.

Parameters to this hook:
* node: A changeset ID. The changeset ID of the newly committed changeset.
» parent 1: A changeset ID. The changeset ID of the first parent of the newly committed changeset.

* parent 2: A changeset ID. The changeset ID of the second parent of the newly committed
changeset.

Z . preconm t (i 10.8.6 45 “precomm t —LGAEMEEY T)

138

A5 B Aab B RAS B A

10.8.11. pr eupdat e—F K A H LB F 2 i

This controlling hook is run before an update or merge of the working directory begins. It isrun
only if Mercuria's normal pre-update checks determine that the update or merge can proceed. If the
hook succeeds, the update or merge may proceed; if it fails, the update or merge does not start.

Parameters to this hook:

* parent 1: A changeset ID. The ID of the parent that the working directory is to be updated to. If
the working directory is being merged, it will not change this parent.

* par ent 2: A changeset ID. Only set if theworking directory isbeing merged. ThelD of therevision
that the working directory is being merged with.

Seealso: updat e (% 10.8.13 5 “updat e—yi ek S T/HEH 2)G)

10.8.12. t ag—4l|iEt S22 G

This hook is run after atag has been created.
Parameters to this hook:

* | ocal : A boolean. Whether the new tag is local to this repository instance (i.e. stored in . hg/
| ocal t ags) or managed by Mercurial (stored in. hgt ags).

* node: A changeset ID. The ID of the changeset that was tagged.
* tag: A string. The name of the tag that was created.

If the created tag is revision-controlled, the conmi t hook (section % 10.8.2 -5 “commi t —f|
EEs M J5 7) isrun before this hook.

Z . pretag (5 10.8.8 4y “pret ag—4 il brE 2 1”7)

10.8.13. updat e—EFHFHEHTIEHREZRHE

This hook isrun after an update or merge of the working directory completes. Since amerge can
fail (if the externa hgmerge command fails to resolve conflicts in a file), this hook communicates
whether the update or merge completed cleanly.

e error: A boolean. Indicates whether the update or merge completed successfully.

* parent 1: A changeset ID. The ID of the parent that the working directory was updated to. If the
working directory was merged, it will not have changed this parent.

e parent 2: A changeset ID. Only set if the working directory was merged. The ID of the revision
that the working directory was merged with.

Seealso: pr eupdat e (z5 10.8.11 45 “pr eupdat e—i el &3 T/ Hsr 2017)

139

% 11 = w4 Mercurial gy&

Mercuria provides a powerful mechanism to let you control how it displays information. The
mechanism is based on templates. You can use templates to generate specific output for a single
command, or to customize the entire appearance of the built-in web interface.

111 (e X a4 5K

Packaged with Mercurial are some output styles that you can use immediately. A styleis simply
a precanned template that someone wrote and installed somewhere that Mercurial can find.

Before we take alook at Mercurial's bundled styles, let's review its normal output.

$ hg log -r1

changeset : 1: 3741654e9c04

tag: nyt ag

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Wed Aug 11 06: 06: 24 2010 +0000
sunmmary: added line to end of <<hello>> file

Thisis somewhat informative, but it takes up alot of space—five lines of output per changeset.
Theconpact stylereducesthisto three lines, presented in a sparse manner.

$ hg log --style conpact
3[tip] 94ec7d7197f7 2010-08-11 06: 06 +0000 bos
Added tag vO0.1 for changeset 06fc0Ob4d5db5

2[vO. 1] 06f cOb4d5db5 2010-08-11 06: 06 +0000 bos
Added tag nytag for changeset 3741654e9c04

1[nyt ag] 3741654e9c04 2010-08-11 06: 06 +0000 bos
added line to end of <<hello>> file.

0 69a298a205834 2010-08-11 06: 06 +0000 bos
added hell o

Thechangel og style hints at the expressive power of Mercurial's templating engine. Thisstyle
attempts to follow the GNU Project's changel og guidelines| web:changel og].

$ hg log --style changel og
2010-08-11 Bryan O Sullivan <bos@erpentine.con>

* . hgtags
Added tag v0.1 for changeset 06fcOb4d5db5
[94ec7d7197f7] [tip]

* . hgtags
Added tag nmytag for changeset 3741654e9c04
[06f cOb4d5db5] [vO0. 1]

* goodbye, hello:
added line to end of <<hello>> file.

in addition, added a file with the hel pful name (at |east i hope
that some might consider it so) of goodbye
[3741654€9c04] [nyt ag]

* hel |l o:
added hello
[69298a205834]

140

7 i) Mercurial ity

Y ou will not be shocked to learn that Mercurial's default output style is named def aul t .

1111w EEOAER

You can modify the output style that Mercurial will use for every command by editing your
~/ . hgr c file, naming the style you would prefer to use.

[ui]

styl e = conpact

If you write a style of your own, you can use it by either providing the path to your style file,
or copying your style file into a location where Mercurial can find it (typically the t enpl at es
subdirectory of your Mercuria install directory).

11.2. ¥R R ar 2

All of Mercuria's*“l og-like” commands let you use styles and templates: hg incoming, hg log,
hg outgoing, and hg tip.

Asl writethismanual, these are so far the only commands that support styles and templates. Since
these are the most important commands that need customizable output, there has been little pressure
from the Mercurial user community to add style and template support to other commands.

11.3. #&hi £ itk

Atitssimplest, aMercurial templateisapiece of text. Some of the text never changes, while other
parts are expanded, or replaced with new text, when necessary.

Before we continue, let's ook again at a simple example of Mercurial's normal output.

$ hg log -r1

changeset : 1: 3741654e9c04

tag: nyt ag

user: Bryan O Sul li van <bos@er penti ne. con>
dat e: Wed Aug 11 06: 06: 24 2010 +0000
sunmmary: added line to end of <<hello>> file

Now, let's run the same command, but using a template to change its output.

$ hg log -rl --tenplate 'i saw a changeset\n
i saw a changeset

The example aboveillustrates the simplest possible template; it'sjust a piece of static text, printed
once for each changeset. The - - t enpl at e option to the hg log command tells Mercurial to use the
given text as the template when printing each changeset.

Notice that the template string above endswith the text “\ n”. Thisis an escape sequence, telling
Mercurial to print anewline at the end of each template item. If you omit this newline, Mercuria will
run each piece of output together. See & 11.5 45 “i#£ Y Jx%1|” for more details of escape sequences.

A template that prints afixed string of text all the time isn't very useful; let's try something a bit
more complex.

141

7 i) Mercurial ity

$ hg log --tenplate 'i saw a changeset: {desc}\n'

i saw a changeset: Added tag vO0.1 for changeset 06fc0b4d5db5
i saw a changeset: Added tag nytag for changeset 3741654e9c04
i saw a changeset: added line to end of <<hello>> file.

in addition, added a file with the hel pful name (at |east i hope that some might consider it so) of
goodbye.
i saw a changeset: added hello

As you can see, the string “{ desc} " in the template has been replaced in the output with the
description of each changeset. Every time Mercuria findstext enclosed in curly braces (*{” and “} "),
it will try to replace the braces and text with the expansion of whatever isinside. To print aliteral curly
brace, you must escape it, as described in &5 11.5 45 “#L L F51)” .

11.4. ¥ R HE =

Y ou can start writing simple templates immediately using the keywords below.
» aut hor : String. The unmodified author of the changeset.

* br anches: String. The name of the branch on which the changeset was committed. Will be empty
if the branch namewasdef aul t .

» dat e: Dateinformation. The date when the changeset was committed. Thisis not human-readable;
you must pass it through afilter that will render it appropriately. See % 11.6 45«3 iof s g 4t
ks M 45 5L for more information on filters. The date is expressed as a pair of numbers.

Thefirst number isaUnix UTC timestamp (seconds since January 1, 1970); the second is the offset
of the committer's timezone from UTC, in seconds.

» desc: String. Thetext of the changeset description.

o fil es:Listof strings. All files modified, added, or removed by this changeset.

o fil e_adds: Listof strings. Files added by this changeset.

o file_del s:Listof strings. Filesremoved by this changeset.

* node: String. The changeset identification hash, as a 40-character hexadecimal string.
* parent s: List of strings. The parents of the changeset.

* rev: Integer. The repository-local changeset revision number.

» tags: Listof strings. Any tags associated with the changeset.

A few simple experiments will show us what to expect when we use these keywords; you can
see the results below.

$ hg log -rl --tenplate "author: {author}\n'
aut hor: Bryan O Sullivan <bos@er pentine. conr
$ hg log -rl --tenplate 'desc:\n{desc}\n'
desc:

added |ine to end of <<hello>> file.

in addition, added a file with the hel pful name (at |east i hope that some might consider it so) of
goodbye.

142

7 i) Mercurial ity

$ hg log -rl --tenplate 'files: {files}\n'

files: goodbye hello

$ hg log -rl --tenplate 'file_adds: {file_adds}\n'
file_adds: goodbye

$ hg log -rl --tenplate 'file_dels: {file_dels}\n'
file_dels:

$ hg log -rl --tenplate 'node: {node}\n'

node: 3741654e9c046ff 94el197ab4f 8lef ec8e09b99ce

$ hg log -rl --tenplate 'parents: {parents}\n'

parent s:

$ hg log -rl --tenplate 'rev: {rev}i\n'
rev: 1

$ hg log -rl --tenplate 'tags: {tags}\n'
tags: mytag

Aswe noted above, the date keyword does not produce human-readable output, so we must treat
it specialy. Thisinvolves using afilter, about which morein % 11.6 45 i b o g et ok A& 14
CIRSECE

$ hg log -rl1 --tenplate 'date: {date}\n'

date: 1281506784. 00

$ hg log -rl1 --tenplate 'date: {date|isodate}\n'
date: 2010-08-11 06: 06 +0000

11.5. % 3 751

Mercurial's templating engine recognises the most commonly used escape sequences in strings.
When it sees a backdlash (“\ ”) character, it looks at the following character and substitutes the two
characters with a single replacement, as described below.

\ : Backdlash, “\ ", ASCII 134.
* \ n: Newline, ASCII 12.

* \r: Carriage return, ASCII 15.

\'t: Tab, ASCII 11.

\ v: Vertical tab, ASCII 13.

e \ {: Open curly brace, “{”, ASCII 173.

\ }: Close curly brace, “} 7, ASCII 175.

Asindicated above, if you want the expansion of atemplate to contain aliteral “\ ", “{”, or “{”
character, you must escape it.

11.6. 350 38 3 SR SR B 1 4 R

Some of the results of template expansion are not immediately easy to use. Mercurial lets you
specify an optional chain of filters to modify the result of expanding a keyword. Y ou have already
seen acommon filter, i sodat e, in action above, to make a date readable.

Below isalist of the most commonly used filters that Mercurial supports. While somefilters can
be applied to any text, others can only be used in specific circumstances. The name of each filter is
followed first by an indication of where it can be used, then a description of its effect.

143

7 i) Mercurial ity

addbr eaks: Any text. Add an XHTML “<br / >” tag before the end of every line except the last.
For example, “f oo\ nbar ” becomes“f oo<br/ >\ nbar ”.

age: dat e keyword. Render the age of the date, relative to the current time. Yields a string like
“10 m nutes”.

basenane: Any text, but most useful for thef i | es keyword and itsrelatives. Treat the text asa
path, and return the basename. For example, “f oo/ bar / baz” becomes*“baz”.

dat e: dat e keyword. Render a date in a similar format to the Unix dat e command, but with
timezone included. Yieldsastring like“Mon Sep 04 15:13: 13 2006 -0700".

domai n: Any text, but most useful for the aut hor keyword. Finds the first string that looks like
an email address, and extract just the domain component. For example, “Bryan O Sul | i van
<bos@er pent i ne. conk” becomes“ser pent i ne. cont.

emai | : Any text, but most useful for the aut hor keyword. Extract the first string that looks like
an email address. For example, “Bryan O Sul | i van <bos@er penti ne. con»” becomes
“bos@er penti ne. cont.

escape: Any text. Replace the special XML/XHTML characters “&”, “<” and “>" with XML
entities.

fill68: Any text. Wrap the text to fit in 68 columns. Thisis useful before you pass text through
thet abi ndent filter, and still want it to fit in an 80-column fixed-font window.
fill76:Anytext. Wrap thetext to fit in 76 columns.

firstline: Any text. Yield thefirst line of text, without any trailing newlines.

hgdat e: dat e keyword. Render the date as a pair of readable numbers. Yields a string like
“1157407993 25200".

I sodat e: dat e keyword. Render the date as atext string in 1SO 8601 format. Yieldsastring like
“2006- 09- 04 15:13:13 -0700".

obf uscat e: Any text, but most useful for the aut hor keyword. Yield the input text rendered
as a sequence of XML entities. This helps to defeat some particularly stupid screen-scraping email
harvesting spambots.

per son: Any text, but most useful for the aut hor keyword. Yield the text before an email
address. For example, “Bryan O Sul | i van <bos@er penti ne. con®” becomes“Br yan
O Sul livan”.

rf c822dat e: dat e keyword. Render a date using the same format used in email headers. Yields
astring like“Mon, 04 Sep 2006 15:13:13 -0700".

short : Changeset hash. Yield the short form of a changeset hash, i.e. a 12-character hexadecimal
string.

short dat e: dat e keyword. Render the year, month, and day of the date. Yields a string like
“2006- 09- 04".

144

52 1] Mercurial 1%y

e strip: Any text. Strip al leading and trailing whitespace from the string.
* tabi ndent : Any text. Yield the text, with every line except the first starting with atab character.

* url escape: Any text. Escape all characters that are considered “special” by URL parsers. For
example, f oo bar becomesf oo%20bar .

» user : Any text, but most useful for the aut hor keyword. Return the “user” portion of an email
address. For example, “Bryan O Sul | i van <bos@er penti ne. cont” becomes“bos”.

$ hg log -rl --tenplate '{author}\n'

Bryan O Sul | i van <bos@er penti ne. con>

$ hg log -rl --tenplate '{author|domain}\n'

ser penti ne.com

$ hg log -rl --tenplate '{author|emil}\n'

bos@er penti ne. com

$ hg log -rl --tenplate '{author|obfuscate}\n" | cut -c-76
8#66; &H#114; y a n O ' S u l l i
$ hg log -rl --tenplate '{author|person}\n'

Bryan O Sul |ivan

$ hg log -rl --tenplate '{author|user}\n'

bos

$ hg log -rl --tenplate 'l ooks alnost right, but actually garbage: {date}\n'
| ooks al nost right, but actually garbage: 1281506784. 00

$ hg log -rl --tenplate '{date|age}\n'

2 seconds ago

$ hg log -rl --tenplate '{date|date}\n’

Wed Aug 11 06: 06: 24 2010 +0000

$ hg log -rl --tenplate '{date|hgdate}\n'

1281506784 0

$ hg log -rl --tenplate '{date|isodate}\n'

2010- 08-11 06: 06 +0000

$ hg log -rl --tenplate '{date|rfc822date}\n’

Wed, 11 Aug 2010 06: 06: 24 +0000

$ hg log -rl --tenplate '{date|shortdate}\n’

2010- 08- 11

$ hg log -rl --tenplate '{desc}\n' | cut -c-76

added |line to end of <<hello>> file.

in addition, added a file with the hel pful name (at |east i hope that some m
$ hg log -rl --tenplate '{desc|addbreaks}\n' | cut -c-76

added |line to end of <<hello>> file.

in addition, added a file with the hel pful name (at |east i hope that some m
$ hg log -rl --tenplate '{desc|escape}\n' | cut -c-76

added line to end of & t;& t;hello>&yt; file.

in addition, added a file with the hel pful name (at |east i hope that some m
$ hg log -rl --tenplate '{desc|fill68}\n'
added |line to end of <<hello>> file.

in addition, added a file with the hel pful name (at |east i hope
t hat some might consider it so) of goodbye.

$ hg log -rl --tenplate '{desc|fill76}\n'

added |line to end of <<hello>> file.

in addition, added a file with the hel pful name (at |east i hope that sone
m ght consider it so) of goodbye.

$ hg log -rl --tenplate '{desc|firstline}\n'

added |line to end of <<hello>> file.

$ hg log -rl --tenplate '{desc|strip}\n" | cut -c-76

added |ine to end of <<hello>> file.

in addition, added a file with the hel pful name (at |east i hope that some m
$ hg log -rl --tenplate '{desc|tabindent}\n'" | expand | cut -c-76
added |ine to end of <<hello>> file.

in addition, added a file with the hel pful name (at |east i hope tha
$ hg log -r1 --tenplate '{node}\n’

145

7 i) Mercurial ity

3741654e9c046f f 94e197ab4f 81lef ec8e09b99ce
$ hg log -r1l --tenplate '{node|short}\n

3741654€9c04
==
=

If you try to apply afilter to a piece of datathat it cannot process, Mercuria will fail and
print a Python exception. For example, trying to run the output of the desc keyword into
thei sodat e filter isnot agood idea.

A E B
11.6.1. {AA TR
It is easy to combine filters to yield output in the form you would like. The following chain of
filters tidies up a description, then makes sure that it fits cleanly into 68 columns, then indentsit by a
further 8 characters (at least on Unix-like systems, where atab is conventionally 8 characters wide).

$ hg log -rl --tenplate 'description:\n\t{desc|strip|fill68|tabindent}\n
descri ption
added line to end of <<hello>> file.

in addition, added a file with the hel pful name (at |east i hope
that sonme might consider it so) of goodbye

Notetheuseof “\ t ” (atab character) in the template to force the first line to be indented; thisis
necessary sincet abi ndent indents all lines except thefirst.

Keep in mind that the order of filtersin achainissignificant. Thefirst filter isapplied to theresult
of the keyword; the second to the result of the first filter; and so on. For example, using fi | | 68|
t abi ndent givesvery different resultsfromt abi ndent | fil | 68.

11.7. N=h 24K

A command line template provides a quick and simple way to format some output. Templates can
become verbose, though, and it's useful to be able to give atemplate aname. A stylefileisatemplate
with aname, stored in afile.

More than that, using a style file unlocks the power of Mercuria's templating engine in ways that
are not possible using the command line- - t enpl at e option.

11.7.1. mim g pysEl e

Our smple style file contains just one line:

$ echo 'changeset = "rev: {revi\n"' > rev
$ hg log -11 --style ./rev
rev: 3

Thistells Mercurial, “if you're printing a changeset, use the text on the right as the template”.

11.7.2. # SO B

The syntax rules for astylefile are smple.

146

7 i) Mercurial ity

11.

a

Thefileis processed oneline at atime.
Leading and trailing white space are ignored.
Empty lines are skipped.

If aline starts with either of the characters “#” or “; ”, the entire line is treated as a comment, and
skipped asif empty.

A line starts with a keyword. This must start with an alphabetic character or underscore, and can
subsequently contain any alphanumeric character or underscore. (In regexp notation, a keyword
must match [A- Za-z_] [A-Za-z0-9] *))

The next element must be an “=" character, which can be preceded or followed by an arbitrary
amount of white space.

If the rest of the line starts and ends with matching quote characters (either single or double quote),
it istreated as a template body.

If the rest of the line does not start with a quote character, it is treated as the name of afile; the
contents of thisfile will be read and used as atemplate body.

8. X+

To illustrate how to write a style file, we will construct a few by example. Rather than provide
complete style file and walk through it, well mirror the usual process of developing a style file

by starting with something very simple, and walking through a series of successively more complete
examples.

11.8.1. AR X HHEMRIR

If Mercurial encountersaproblemin astylefileyou areworking on, it prints aterse error message

that, once you figure out what it means, is actually quite useful.

$

changeset =

cat broken.style

Noticethat br oken. st yl e attemptsto defineachangeset keyword, but forgetsto give any

content for it. When instructed to use this style file, Mercurial promptly complains.

$

Ik %
Ik %
Ik %
Ik %

Ik %

Tr

hg log -rl1 --style broken.style

unknown exception encountered, details follow

report bug details to http://nercurial.selenic.combts/

or mercurial @el eni c. com

Mercurial Distributed SCM (version 1.5.2)

Ext ensi ons | oaded

aceback (nobst recent call |ast)

File "/usr/bin/hg", line 27, in <nodul e>
mercuri al . di spatch. run()

File "/usr/lib/pynmodul es/ python2. 6/ mercurial/dispatch.py”, line 16, in run
sys. exit(dispatch(sys.argv[1:]))

File "/usr/lib/pynmodul es/ python2. 6/ mercurial/dispatch.py”, line 30, in dispatch
return _runcatch(u, args)

File "/usr/lib/pymodul es/ python2. 6/ mercurial/dispatch.py”, line 50, in _runcatch
return _dispatch(ui, args)

File "/usr/lib/pynmodul es/ python2. 6/ mercurial/dispatch.py”, line 470, in _dispatch

147

52 1] Mercurial 1%y

return runconmmand(lui, repo, cnd, fullargs, ui, options, d)

File "/usr/lib/pymodul es/ python2. 6/ mercurial /di spatch. py", line 340, in runconmand
ret = _runconmand(ui, options, cnd, d)

File "/usr/lib/pynmodul es/ python2. 6/ mercurial/dispatch. py", line 521, in _runconmand
return checkargs()

File "/usr/lib/pymodul es/ python2. 6/ mercurial /dispatch.py", line 475, in checkargs
return cmdfunc()

File "/usr/lib/pymodul es/ python2. 6/ mercurial /di spatch. py", line 469, in <l|anbda>
d = lanbda: util.checksignature(func)(ui, *args, **cndoptions)

File "/usr/lib/pynmodul es/python2.6/ mercurial/util.py", line 401, in check
return func(*args, **kwargs)

File "/usr/lib/pymodul es/ python2. 6/ mercurial /comrands. py", line 2134, in |og
di spl ayer = cndutil.show changeset(ui, repo, opts, True, nmatchfn)

File "/usr/lib/pymodul es/ python2. 6/ mercurial/cndutil.py”, line 925, in show_changeset
t = changeset _tenplater(ui, repo, patch, opts, mapfile, buffered)

File "/usr/lib/pynmodul es/ python2. 6/ mercurial/cndutil.py", line 796, in __init__
cache=def aul ttenpl)

File "/usr/lib/pynmodul es/ python2.6/ mercurial/tenplater.py”, line 166, in __init__
if val[0] in ""\"":

| ndexError: string index out of range

This error message looks intimidating, but it is not too hard to follow.

The first component is simply Mercurial's way of saying “I am giving up”.

L__abort___: broken. styl e: 1: parse error

» Next comes the name of the style file that contains the error.

pbort: ___broken.style__ _:1: parse error

Following the file name is the line number where the error was encountered.

pbort: br oken. styl e: 1 . parse error

Finally, a description of what went wrong.

labort: broken.style:1: __ parse error___ |

» The description of the problem is not always clear (asin this case), but even when it is cryptic, itis
almost alwaystrivial to visually inspect the offending line in the style file and see what is wrong.

11.8.2. R ZK EE B ME— R iR

If you would like to be able to identify a Mercuria repository “fairly uniquely” using a short
string as an identifier, you can use thefirst revision in the repository.

$ hg log -r0 --tenplate '{node}"
34f cbeb94e61a23c014a5adf 651d560d8af 20dd9

Thisislikely to be unique, and so it is useful in many cases. There are afew caveats.

* It will not work in acompletely empty repository, because such arepository doesnot havearevision
zero.

» Neither will it work in the (extremely rare) case where a repository is a merge of two or more
formerly independent repositories, and you still have those repositories around.

Here are some uses to which you could put this identifier:

* Asakey into atable for a database that manages repositories on a server.

148

7 i) Mercurial ity

* As haf of a{repository ID, revision ID} tuple. Save this information away when you run an
automated build or other activity, so that you can “replay” the build later if necessary.

11.8.3. G475 — 30

Suppose we want to list the files changed by a changeset, one per line, with alittle indentation
before each file name.

$ cat > multiline << EOF
> changeset = "Changed in {node|short}:\n{files}"
> file =" {file}\n"
> EOF
$ hg log --style nultiline
Changed in 99b0f 00lbadc:
. bashrc
.hgrc
test.c

11.8.4. t&455 Subversion ghi

Let'stry to emulate the default output format used by another revision control tool, Subversion.

r9653 | sean. hefty | 2006-09-27 14:39:55 -0700 (Wed, 27 Sep 2006) | 5 lines

On reporting a route error, also include the status for the error,
rather than indicating a status of 0 when an error has occurred.

Si gned- of f-by: Sean Hefty <sean. hefty@ntel.con>

Since Subversion's output styleis fairly simple, it is easy to copy-and-paste a hunk of its output
into afile, and replace the text produced above by Subversion with the template values we'd like to
see expanded.

$ cat svn.tenplate
r{rev} | {author|user} | {date|isodate} ({date|rfc822date})

{desc|strip|fill 76}

There are a few small ways in which this template deviates from the output produced by
Subversion.

» Subversion printsa“readable’ date (the“Wed, 27 Sep 2006” inthe example output above) in
parentheses. Mercurial's templating engine does not provide a way to display a date in this format
without also printing the time and time zone.

* Weemulate Subversion's printing of “separator” linesfull of “- " characters by ending the template
with such aline. We use the templating engine's header keyword to print a separator line as the
first line of output (see below), thus achieving similar output to Subversion.

» Subversion's output includes a count in the header of the number of lines in the commit message.
We cannot replicate thisin Mercurial; the templating engine does not currently provide afilter that
counts the number of lines the template generates.

149

7 i) Mercurial ity

It took me no more than a minute or two of work to replace literal text from an example of
Subversion's output with some keywords and filters to give the template above. The style file simply
refers to the template.

$ cat svn.style
LT =] T \n\n'
changeset = svn.tenplate

We could have included the text of the template file directly in the style file by enclosing it in
guotes and replacing the newlines with “\ n” sequences, but it would have made the style file too
difficult to read. Readability isagood guide when you're trying to decide whether sometext belongsin
astylefile, or in atemplatefilethat the style file pointsto. If the style filewill look too big or cluttered
if you insert aliteral piece of text, drop it into atemplate instead.

150

%12 = £ MQ &2
12.1. %M T B9 E T2 0] i

Hereisacommon scenario: you need to install a software package from source, but you find abug
that you must fix in the source before you can start using the package. Y ou make your changes, forget
about the package for a while, and a few months later you need to upgrade to a newer version of the
package. If the newer version of the package still has the bug, you must extract your fix from the older
sourcetree and apply it against the newer version. Thisisatedioustask, and it's easy to make mistakes.

Thisis asimple case of the *patch management” problem. Y ou have an “upstream” source tree
that you can't change; you need to make some local changes on top of the upstream tree; and you'd
like to be able to keep those changes separate, so that you can apply them to newer versions of the
upstream source.

The patch management problem arisesin many situations. Probably the most visibleisthat auser
of an open source software project will contribute a bug fix or new feature to the project's maintainers
in the form of a patch.

Distributors of operating systems that include open source software often need to make changes
to the packages they distribute so that they will build properly in their environments.

When you have few changes to maintain, it is easy to manage a single patch using the standard
diff and patch programs (see & 12.4 -5 “sifw«] 7 for adiscussion of these tools). Once the
number of changes grows, it starts to make sense to maintain patches as discrete “ chunks of work,” so
that for example asingle patch will contain only one bug fix (the patch might modify several files, but
it's doing “only one thing”), and you may have a number of such patches for different bugs you need
fixed and local changes you require. In this situation, if you submit a bug fix patch to the upstream
maintainers of a package and they include your fix in a subsequent release, you can smply drop that
single patch when you're updating to the newer release.

Maintaining a single patch against an upstream tree is a little tedious and error-prone, but not
difficult. However, the complexity of the problem growsrapidly as the number of patchesyou haveto
maintain increases. With more than a tiny number of patches in hand, understanding which ones you
have applied and maintaining them moves from messy to overwhelming.

Fortunately, Mercurial includes a powerful extension, Mercurial Queues (or ssimply “MQ”), that
massively simplifies the patch management problem.

12.2. MQ g/ &

During the late 1990s, severa Linux kernel developers started to maintain “patch series’ that
modified the behavior of the Linux kernel. Some of these series were focused on stability, some on
feature coverage, and others were more specul ative.

The sizes of these patch seriesgrew rapidly. In 2002, Andrew Morton published some shell scripts
he had been using to automate the task of managing his patch queues. Andrew was successfully using
these scripts to manage hundreds (sometimes thousands) of patches on top of the Linux kernel.

151

i MQ &K

12.2.1. A patchwork quilt

In early 2003, Andreas Gruenbacher and Martin Quinson borrowed the approach of
Andrew's scripts and published a tool called “patchwork quilt” [web:quilt], or simply “quilt”
(see [gruenbacher:2005] for a paper describing it). Because quilt substantially automated patch
management, it rapidly gained alarge following among open source software devel opers.

Quilt manages a stack of patches on top of a directory tree. To begin, you tell quilt to manage
adirectory tree, and tell it which files you want to manage; it stores away the names and contents of
those files. To fix abug, you create a new patch (using a single command), edit the files you need to
fix, then “refresh” the patch.

The refresh step causes quilt to scan the directory tree; it updates the patch with all of the changes
you have made. Y ou can create another patch on top of the first, which will track the changes required
to modify the tree from “tree with one patch applied” to “tree with two patches applied”.

Y ou can change which patches are applied to the tree. If you “pop” a patch, the changes made
by that patch will vanish from the directory tree. Quilt remembers which patches you have popped,
though, so you can “push” a popped patch again, and the directory tree will be restored to contain the
modifications in the patch. Most importantly, you can run the “refresh” command at any time, and
the topmost applied patch will be updated. This means that you can, at any time, change both which
patches are applied and what modifications those patches make.

Quilt knows nothing about revision control tools, so it works equally well on top of an unpacked
tarball or a Subversion working copy.

12.2.2. J\ patchwork quilt | MQ

In mid-2005, Chris Mason took the features of quilt and wrote an extension that he called
Mercurial Queues, which added quilt-like behavior to Mercurial.

The key difference between quilt and MQ is that quilt knows nothing about revision control
systems, whileMQisintegrated into Mercurial. Each patch that you pushisrepresented asaMercurial
changeset. Pop a patch, and the changeset goes away.

Because quilt does not care about revision control tools, it is still atremendously useful piece of
software to know about for situations where you cannot use Mercurial and MQ.

12.3. MQ kB A Hist

| cannot overstate the value that M Q offersthrough the unification of patchesand revision control.

A major reason that patches have persisted in the free software and open source world—in spite of
the availability of increasingly capable revision control tools over the years—is the agility they offer.

Traditional revision control tools make a permanent, irreversible record of everything that you do.
Whilethis has great value, it's also somewhat stifling. If you want to perform awild-eyed experiment,
you have to be careful in how you go about it, or you risk leaving unneeded—or worse, misleading or
destabilising—traces of your missteps and errors in the permanent revision record.

152

i MQ &K

By contrast, MQ's marriage of distributed revision control with patches makes it much easier
to isolate your work. Your patches live on top of normal revision history, and you can make them
disappear or reappear at will. If you don't like apatch, you can dropit. If apatch isn't quite asyou want
it to be, smply fix it—as many times as you need to, until you have refined it into the form you desire.

As an example, the integration of patches with revision control makes understanding patches
and debugging their effects—and their interplay with the code they're based on—enor mously easier.
Since every applied patch has an associated changeset, you can give hg log afile name to see which
changesets and patches affected thefile. Y ou can use the hg bisect command to binary-search through
all changesets and applied patches to see where a bug got introduced or fixed. Y ou can use the hg
annotate command to see which changeset or patch modified a particular line of a source file. And
so on.

12.4. FARAN T

Because MQ doesn't hide its patch-oriented nature, it is helpful to understand what patches are,
and alittle about the tools that work with them.

The traditional Unix diff command compares two files, and prints a list of differences between
them. The patch command understands these differences as modifications to make to afile. Take a
look below for a simple example of these commandsin action.

$ echo "this is ny original thought' > oldfile
$ echo 'i have changed ny mind > newfile
$ diff -u oldfile newfile > tiny.patch
$ cat tiny.patch
- oldfile 2010-08-11 06: 06: 10. 000000000 +0000
+++ newfile 2010-08-11 06: 06: 10. 000000000 +0000
a@-1 +1 @@
-this is ny original thought
+i have changed ny m nd
$ patch < tiny.patch
patching file oldfile
$ cat oldfile
i have changed ny mnd

Thetypeof filethat diff generates (and patch takesasinput) iscalled a“ patch” or a“diff”; thereis
no difference between apatch and adiff. (We'll use the term “patch”, sinceit's more commonly used.)

A patch file can start with arbitrary text; the patch command ignores this text, but MQ uses it
as the commit message when creating changesets. To find the beginning of the patch content, patch
searches for thefirst line that starts with the string “di f f - .

MQ works with unified diffs (patch can accept severa other diff formats, but MQ doesn't). A
unified diff containstwo kinds of header. Thefile header describesthefile being modified; it contains
the name of the file to modify. When patch sees a new file header, it looks for a file with that name
to start modifying.

After the file header comes a series of hunks. Each hunk starts with a header; thisidentifies the
range of line numbers within the file that the hunk should modify. Following the header, a hunk starts
and ends with afew (usually three) lines of text from the unmodified file; these are called the context
for the hunk. If there's only a small amount of context between successive hunks, diff doesn't print a
new hunk header; it just runs the hunks together, with afew lines of context between modifications.

153

i MQ &K

Each line of context begins with a space character. Within the hunk, aline that begins with
means “remove this ling,” while a line that begins with “+” means “insert this line.” For example, a
line that is modified is represented by one deletion and one insertion.

We will return to some of the more subtle aspects of patches later (in &5 12.6 45 “ T4 T 1
(= H”), but you should have enough information now to use MQ.

[EP Y

12.5. FiaER MQ

Because MQ is implemented as an extension, you must explicitly enable before you can use it.
(You don't need to download anything; MQ ships with the standard Mercuria distribution.) To enable
MQ, edit your ~/ . hgr c file, and add the lines below.

[ext ensi ons]
hgext.my =

Once the extension is enabled, it will make a number of new commands available. To verify that
the extension is working, you can use hg help to seeif the ginit command is now available.

$ hg help qginit
hg qinit [-c]

init a new queue repository (DEPRECATED)
The queue repository is unversioned by default. If -c/--create-repo is
specified, ginit will create a separate nested repository for patches
(ginit -c may also be run later to convert an unversioned patch repository
into a versioned one). You can use qconmit to commit changes to this queue
repository

This comand is deprecated. Wthout -c, it's inplied by other rel evant
comands. Wth -c, use hg init --nqg instead

opt i ons

-c --create-repo create queue repository

use "hg -v help qginit" to show gl obal options

You can use MQ with any Mercurial repository, and its commands only operate within that
repository. To get started, simply prepare the repository using the ginit command.

$ hg init ng-sandbox

$ cd ng- sandbox

$ echo 'line 1' > filel

$ echo '"another line 1' > file2
$ hg add filel file2

$ hg commit -mfirst change

$ hg qinit

This command creates an empty directory caled . hg/ pat ches, where MQ will keep its
metadata. As with many Mercurial commands, the ginit command prints nothing if it succeeds.

12.5.1. Q2 EH#T

To begin work on a new patch, use the gnew command. This command takes one argument, the
name of the patch to create.

MQ will use this as the name of an actual filein the . hg/ pat ches directory, as you can see
below.

154

i MQ &K

$ hg tip

changeset : 0: 9e3e5192243d

t ag: tip

user: Bryan O Sul | i van <bos@er penti ne. con»
dat e: Wed Aug 11 06:06:17 2010 +0000
sunmary: first change

$ hg gnew first.patch

$ hg tip

changeset : 1: 7014b8797398

t ag: qgtip

t ag: first.patch

t ag: tip

t ag: ghase

user: Bryan O Sul | i van <bos@er penti ne. con>
dat e: Wed Aug 11 06:06:17 2010 +0000
sunmary: [mg]: first.patch

$ |'s . hg/patches
first.patch series status

Also newly present in the . hg/ pat ches directory are two other files, seri es and st at us.
Theseri es filelists al of the patches that MQ knows about for this repository, with one patch per
line. Mercurial uses the st at us file for internal book-keeping; it tracks all of the patches that MQ
has applied in this repository.

==
=

You may sometimes want to edit the ser i es file by hand; for example, to change the
sequence in which some patches are applied. However, manually editing the st at us file
isalmost aways abad idea, asit's easy to corrupt MQ's idea of what is happening.

Once you have created your new patch, you can edit filesin the working directory as you usually
would. All of the normal Mercurial commands, such as hg diff and hg annotate, work exactly asthey
did before.

12.5.2. RIZFah T

When you reach a point where you want to save your work, use the gr efr esh command to update
the patch you are working on.

$ echo 'line 2° >> filel
$ hg diff
di ff -r 7014b8797398 filel
- a/filel Wed Aug 11 06:06:17 2010 +0000
+++ b/filel Wed Aug 11 06:06: 17 2010 +0000
an-1,1 +1,2 @@
line 1
+line 2
$ hg qrefresh
$ hg diff
$ hg tip --styl e=conpact --patch
1[qtip,first.patch,tip, gbase] 2447d1e6fc79 2010-08-11 06: 06 +0000 bos
[mg]: first.patch

di ff -r 9e3e5192243d -r 2447dle6fc79 filel
- a/filel Wed Aug 11 06:06:17 2010 +0000
+++ b/filel Wed Aug 11 06:06: 17 2010 +0000
an-1,1 +1,2 @@
line 1
+line 2

155

i MQ &K

This command folds the changes you have made in the working directory into your patch, and
updates its corresponding changeset to contain those changes.

Y ou can run grefresh as often asyou like, so it'sagood way to “checkpoint” your work. Refresh
your patch at an opportune time; try an experiment; and if the experiment doesn't work out, hg revert
your modifications back to the last time you refreshed.

$ echo 'line 3' >> filel
$ hg status
Mfilel

$ hg qrefresh

$ hg tip --style=conpact --patch

1[qgtip,first.patch,tip, gbase] 95247bda57b6 2010-08-11 06: 06 +0000 bos
[my]: first.patch

di ff -r 9e3e5192243d -r 95247bda57b6 filel
- a/filel Wed Aug 11 06:06:17 2010 +0000

+++ b/filel Wed Aug 11 06: 06: 18 2010 +0000

a@-1,1 +1,3 @@

line 1

+line 2

+line 3

12.5.3. B FNIRIFAN T

Once you have finished working on a patch, or need to work on another, you can use the gnew
command again to create a new patch. Mercurial will apply this patch on top of your existing patch.

$ hg gnew second. pat ch

$ hg log --style=conpact --limit=2

2[qti p, second. pat ch, ti p] 23df 32832b9b 2010-08-11 06: 06 +0000 bos
[mg] : second. pat ch

1[first. patch, gbase] 95247bda57b6 2010-08-11 06: 06 +0000 bos
[mg]: first.patch

$ echo 'line 4 >> filel

$ hg qrefresh

$ hg tip --style=conpact --patch

2[qti p, second. pat ch, ti p] 3a323a14226b 2010-08-11 06: 06 +0000 bos
[mg] : second. pat ch

di ff -r 95247bda57b6 -r 3a323al4226b filel
- a/filel Wd Aug 11 06: 06:18 2010 +0000
+++ b/filel Wed Aug 11 06: 06: 18 2010 +0000
a@-1,3 +1,4 @@
l'ine
l'ine
l'ine
+line

A WN P

$ hg annotate filel
0: line 1
1. line 2
1. line 3
2: line 4

Notice that the patch contains the changes in our prior patch as part of its context (you can see
this more clearly in the output of hg annotate).

So far, with the exception of gnew and qr efr esh, we've been careful to only useregular Mercurial
commands. However, MQ provides many commandsthat are easier to use when you are thinking about
patches, asillustrated below.

156

i MQ &K

$ hg qgseries
first.patch
second. pat ch
$ hg qapplied
first.patch
second. pat ch

» The gseries command lists every patch that MQ knows about in this repository, from oldest to
newest (most recently created).

* Theqgapplied command lists every patch that MQ has applied in this repository, again from oldest
to newest (most recently applied).

12.5.4. 124 T Hekk

The previous discussion implied that there must be a difference between “known” and “ applied”
patches, and thereis. MQ can manage a patch without it being applied in the repository.

An applied patch has a corresponding changeset in the repository, and the effects of the patch
and changeset are visible in the working directory. Y ou can undo the application of a patch using the
gpop command. MQ still knows about, or manages, a popped patch, but the patch no longer has a
corresponding changeset in the repository, and the working directory does not contain the changes
made by the patch. 121 “4g MQ T i v B A« 17 illustrates the difference
between applied and tracked patches.

12.1. 72 MQ T Hedk o B2 FRFNSEHAN T

present in series, { forbid-illegal-params.patch

but not applied fix-memory-leak.patch

topmost
applied patch

patches applied,
changesets present

_ 126b84e593ae
_ e50d5%aaea3a

Y ou can reapply an unapplied, or popped, patch using the gpush command. This creates a new
changeset to correspond to the patch, and the patch's changes once again become present in theworking
directory. See below for examples of gpop and gpush in action.

$ hg qapplied
first.patch
second. pat ch

$ hg gpop

poppi ng second. pat ch
now at: first.patch
$ hg gseries
first.patch
second. pat ch

$ hg qapplied
first.patch

$ cat filel

157

i MQ &K

line 1
line 2
line 3

Notice that once we have popped a patch or two patches, the output of gseries remains the same,
while that of qapplied has changed.

12.55. EASBH S AT

While gpush and gpop each operate on asingle patch at atime by default, you can push and pop
many patches in one go. The - a option to gpush causes it to push all unapplied patches, while the
- a option to gpop causes it to pop al applied patches. (For some more ways to push and pop many
patches, see & 12.8 45 “MQ g7 below.)

$ hg gpush -a
appl yi ng second. pat ch
now at: second. patch
$ cat filel

line 1

line 2

line 3

line 4

125.6. 20T, AREZEL]

Several MQ commands check the working directory before they do anything, and fail if they find
any modifications. They do thisto ensure that you won't lose any changes that you have made, but not
yet incorporated into a patch. The example below illustrates this; the gnew command will not create a
new patch if there are outstanding changes, caused in this case by thehgadd of fi | e3.

$ echo 'file 3, line 1' >> file3

$ hg gnew add-fil e3. patch

$ hg gnew -f add-file3.patch

abort: patch "add-file3.patch" already exists

Commands that check the working directory all take an “1 know what I'm doing” option, which
is always named - f . The exact meaning of - f depends on the command. For example, hg gnew -
f will incorporate any outstanding changes into the new patch it creates, but hg qpop - f will revert
modifications to any files affected by the patch that it is popping. Be sure to read the documentation
for acommand's- f option before you useit!

12.5.7. B IBE N4 T

The grefresh command always refreshes the topmost applied patch. This means that you can
suspend work on one patch (by refreshing it), pop or push to make a different patch the top, and work
on that patch for awhile.

Here's an example that illustrates how you can use this ability. Let's say you're developing a new
feature as two patches. Thefirst is a change to the core of your software, and the second—Ilayered on
top of the first—changes the user interface to use the code you just added to the core. If you notice a
bug in the core while you're working on the Ul patch, it's easy to fix the core. Simply qr efr esh the Ul
patch to save your in-progress changes, and gpop down to the core patch. Fix the core bug, qrefresh
the core patch, and qpush back to the Ul patch to continue where you left off.

158

i MQ &K

126. X FHTHEZER

MQ uses the GNU patch command to apply patches, so it's helpful to know afew more detailed
aspects of how patch works, and about patches themselves.

12.6.1. {&8745

If you look at the file headersin a patch, you will notice that the pathnames usually have an extra
component on the front that isn't present in the actual path name. This is a holdover from the way
that people used to generate patches (people still do this, but it's somewhat rare with modern revision
control tools).

Alicewould unpack atarball, edit her files, then decide that she wanted to create a patch. So she'd
rename her working directory, unpack the tarball again (hence the need for the rename), and use the
-r and - N options to diff to recursively generate a patch between the unmodified directory and the
modified one. The result would be that the name of the unmodified directory would be at the front of
the left-hand path in every file header, and the name of the modified directory would be at the front
of the right-hand path.

Since someone receiving a patch from the Alices of the net would be unlikely to have unmodified
and modified directories with exactly the same names, the patch command has a - p option that
indicates the number of leading path name components to strip when trying to apply a patch. This
number is called the strip count.

Anoptionof “- p1” means* useastrip count of one”. If patch seesafilenamef oo/ bar/ baz in
afileheader, itwill stripf oo andtry to patch afilenamed bar / baz. (Strictly speaking, the strip count
refersto the number of path separ ator s (and the components that go with them) to strip. A strip count
of onewill turnf oo/ bar into bar , but/ f oo/ bar (noticethe extraleading slash) into f oo/ bar .)

The “standard” strip count for patches is one; amost all patches contain one leading path name
component that needs to be stripped. Mercuria's hg diff command generates path namesin thisform,
and the hg import command and MQ expect patches to have a strip count of one.

If you receive a patch from someone that you want to add to your patch queue, and the patch
needs a strip count other than one, you cannot just gimport the patch, because gimport does not yet
have a- p option (seeissue 311 [http://www.selenic.com/mercurial/bts/issue311]). Your best bet isto
gnew apatch of your own, then use patch -pN to apply their patch, followed by hg addremoveto pick
up any files added or removed by the patch, followed by hg qrefresh. This complexity may become
unnecessary; seeissue 311 [http://www.selenic.com/mercurial/bts/issue311] for details.

12.6.2. N RAANT BYZREE

When patch appliesahunk, it triesahandful of successively lessaccurate strategiesto try to make
the hunk apply. This falling-back technique often makesit possible to take a patch that was generated
against an old version of afile, and apply it against a newer version of that file.

First, patch tries an exact match, where the line numbers, the context, and the text to be modified
must apply exactly. If it cannot make an exact match, it tries to find an exact match for the context,

159

http://www.selenic.com/mercurial/bts/issue311
http://www.selenic.com/mercurial/bts/issue311
http://www.selenic.com/mercurial/bts/issue311
http://www.selenic.com/mercurial/bts/issue311

i MQ &K

without honouring the line numbering information. If this succeeds, it prints a line of output saying
that the hunk was applied, but at some offset from the original line number.

If a context-only match fails, patch removes the first and last lines of the context, and tries a
reduced context-only match. If the hunk with reduced context succeeds, it prints a message saying
that it applied the hunk with afuzz factor (the number after the fuzz factor indicates how many lines
of context patch had to trim before the patch applied).

When neither of these techniques works, patch prints a message saying that the hunk in question
was rejected. It saves rejected hunks (also ssmply called “rejects’) to a file with the same name, and
an added . r ej extension. It also saves an unmodified copy of the filewith a. or i g extension; the
copy of thefilewithout any extensionswill contain any changes made by hunksthat did apply cleanly.
If you have a patch that modifies f 0o with six hunks, and one of them fails to apply, you will have:
anunmodified f 0o. ori g, af 0o. r ej containing one hunk, and f 00, containing the changes made
by the five successful hunks.

12.6.3. ¥p T By—Lt4E 14

There are afew useful things to know about how patch works with files.

This should aready be obvious, but patch cannot handle binary files.
* Neither doesit care about the executable bit; it creates new files as readable, but not executable.

* patch treats the removal of afile as a diff between the file to be removed and the empty file. So
your ideaof “I deleted thisfile” looks like “every line of thisfile was deleted” in a patch.

* |t treats the addition of afile asadiff between the empty file and the file to be added. So in a patch,
your idea of “I added thisfile” looks like “every line of thisfile was added”.

* Ittreatsarenamed file astheremoval of the old name, and the addition of the new name. This means
that renamed files have a big footprint in patches. (Note also that Mercurial does not currently try
to infer when files have been renamed or copied in apatch.)

 patch cannot represent empty files, so you cannot use a patch to represent the notion “1 added this
empty fileto thetree”.

12.6.4. 2.0 E

While applying a hunk at an offset, or with a fuzz factor, will often be completely successful,
these inexact techniques naturally leave open the possibility of corrupting the patched file. The most
common cases typically involve applying a patch twice, or at an incorrect location in thefile. If patch
or gpush ever mentions an offset or fuzz factor, you should make sure that the modified files are
correct afterwards.

It's often agood ideato refresh apatch that has applied with an offset or fuzz factor; refreshing the
patch generates new context information that will make it apply cleanly. | say “often,” not “aways,”
because sometimes refreshing a patch will make it fail to apply against a different revision of the
underlying files. In some cases, such aswhen you're maintaining apatch that must sit on top of multiple

160

i MQ &K

versions of asourcetree, it's acceptabl e to have a patch apply with some fuzz, provided you've verified
the results of the patching process in such cases.

12.6.5. AbFR4E 4

If gpush fails to apply a patch, it will print an error message and exit. If it has left . r ej files
behind, it is usually best to fix up the rejected hunks before you push more patches or do any further
work.

If your patch used to apply cleanly, and no longer does because you've changed the underlying
code that your patches are based on, Mercurial Queues can help; see & 12.9 45 “ 4 ELpff L i 2 A5

I, SEFTAN Ty for details.

Unfortunately, there aren't any great techniquesfor dealing with rejected hunks. Most often, you'll
need to view the.. r e] file and edit the target file, applying the rejected hunks by hand.

A Linux kernel hacker, ChrisMason (the author of Mercurial Queues), wrote atool called mpatch
(http://oss.oracle.com/~mason/mpatch/), which takes a simple approach to automating the application
of hunks rejected by patch. The mpatch command can help with four common reasons that a hunk
may be rejected:

» The context in the middle of a hunk has changed.

* A hunk is missing some context at the beginning or end.

» A large hunk might apply better—either entirely or in part—if it was broken up into smaller hunks.
* A hunk removes lines with slightly different content than those currently present in the file.

If you use mpatch, you should be doubly careful to check your results when you're done. In fact,
mpatch enforces this method of double-checking the tool's output, by automatically dropping you into
amerge program when it has done its job, so that you can verify itswork and finish off any remaining
merges.

12.7. b T EIRHM

Asyou grow familiar with MQ, you will find yourself wanting to perform other kinds of patch
management operations.

12.7.1. MIBRAFEZBIANT

If you want to get rid of a patch, use the hg gdelete command to delete the patch file and remove
its entry from the patch series. If you try to delete a patch that is still applied, hg gdelete will refuse.

hg init nyrepo

cd nyrepo

hg qinit

hg gnew bad. pat ch
echo a > a

hg add a

hg qrefresh

hg qdel et e bad. patch

R R R R TR AT

161

http://oss.oracle.com/~mason/mpatch/

i MQ &K

abort: cannot del ete applied patch bad. patch
$ hg gpop

poppi ng bad. pat ch

pat ch queue now enpty

$ hg qdel ete bad. patch

12.7.2. 5 AMRARIEE iR

Once you're done working on a patch and want to turn it into a permanent changeset, use the hg
gfinish command. Pass a revision to the command to identify the patch that you want to turn into a
regular changeset; this patch must already be applied.

hg gnew good. pat ch

echo a > a

hg add a

hg grefresh -m' Good change

hg gfinish tip

hg gappl i ed

hg tip --styl e=conpact

o[tip] 1a9425cb46d6 2010-08-11 06: 05 +0000 bos
Good change

R R R R

The hg gfinish command acceptsan - - al | or - a option, which turns all applied patches into
regular changesets.

It is also possible to turn an existing changeset into a patch, by passing the - r option to hg
gimport.

$ hg qginport -r tip
$ hg qapplied
0.diff

Note that it only makes sense to convert a changeset into a patch if you have not propagated that
changeset into any other repositories. The imported changeset's ID will change every time you refresh
the patch, which will make Mercurial treat it as unrelated to the original changeset if you have pushed
it somewhere else.

12.8. MQ Hyit 4

MQ isvery efficient at handling alarge number of patches. | ran some performance experiments
in mid-2006 for atalk that | gave at the 2006 EuroPython conference (on modern hardware, you should
expect better performance than you'll see below). | used as my data set the Linux 2.6.17-mm1 patch
series, which consists of 1,738 patches. | applied these on top of aLinux kernel repository containing
al 27,472 revisions between Linux 2.6.12-rc2 and Linux 2.6.17.

Onmy old, slow laptop, | was ableto hg gpush - a all 1,738 patchesin 3.5 minutes, and hg qpop
- a them al in 30 seconds. (On a newer laptop, the time to push all patches dropped to two minutes.)
| could grefresh one of the biggest patches (which made 22,779 lines of changes to 287 files) in 6.6
seconds.

Clearly, MQ iswell suited to working in large trees, but there are afew tricks you can use to get
the best performance of it.

First of all, try to“batch” operationstogether. Every timeyou run gpush or gpop, these commands
scan the working directory once to make sure you haven't made some changes and then forgotten to

162

i MQ &K

run grefresh. On a small tree, the time that this scan takes is unnoticeable. However, on a medium-
sized tree (containing tens of thousands of files), it can take a second or more.

The gpush and gqpop commands allow you to push and pop multiple patches at a time. You
can identify the “destination patch” that you want to end up at. When you gpush with a destination
specified, it will push patches until that patch is at the top of the applied stack. When you gpop to a
destination, MQ will pop patches until the destination patch is at the top.

Y ou can identify a destination patch using either the name of the patch, or by number. If you use
numeric addressing, patches are counted from zero; this means that the first patch is zero, the second
isone, and so on.

12.9. AR TR, BT BIAE

It's common to have a stack of patches on top of an underlying repository that you don't modify
directly. If you'reworking on changesto third-party code, or on afeaturethat istaking longer to develop
than the rate of change of the code beneath, you will often need to sync up with the underlying code,
and fix up any hunksin your patches that no longer apply. Thisis called rebasing your patch series.

The simplest way to do thisisto hg gpop hg - a your patches, then hg pull changes into the
underlying repository, and finally hg gpush - a your patches again. MQ will stop pushing any time it
runs across a patch that failsto apply during conflicts, alowing you to fix your conflicts, gr efr esh the
affected patch, and continue pushing until you have fixed your entire stack.

This approach is easy to use and works well if you don't expect changes to the underlying code
to affect how well your patches apply. If your patch stack touches code that is modified frequently or
invasively in the underlying repository, however, fixing up rejected hunks by hand quickly becomes
tiresome.

It's possibleto partially automate the rebasing process. If your patches apply cleanly against some
revision of the underlying repo, MQ can use this information to help you to resolve conflicts between
your patches and a different revision.

The processisalittle involved.

1. To begin, hg gpush -a all of your patches on top of the revision where you know that they apply
cleanly.

2. Save a backup copy of your patch directory using hg gsave hg - e hg - c. This prints the name
of the directory that it has saved the patches in. It will save the patchesto a directory called . hg/
pat ches. N, where Nisasmall integer. It also commits a“ save changeset” on top of your applied
patches; thisisfor internal book-keeping, and records the states of theser i es and st at us files.

3. Use hg pull to bring new changes into the underlying repository. (Don't run hg pull -u; see below
for why.)

4. Update to the new tip revision, using hg update - Cto override the patches you have pushed.

5. Merge al patches using hg gpush -m -a. The - moption to gpush tells MQ to perform athree-way
merge if the patch failsto apply.

163

i MQ &K

Duringthehg gpush hg - meachpatchintheser i es fileisapplied normally. If apatch applies
with fuzz or rejects, MQ looks at the queue you gsaved, and performs a three-way merge with the
corresponding changeset. This merge uses Mercurial's normal merge machinery, so it may pop up a
GUI merge tool to help you to resolve problems.

When you finish resolving the effects of a patch, MQ refreshes your patch based on the result
of the merge.

At the end of this process, your repository will have one extra head from the old patch queue,
and a copy of the old patch queue will bein. hg/ pat ches. N. You can remove the extrahead using
hg gpop -a -n patches.N or hg strip. You can delete . hg/ pat ches. N once you are sure that you
no longer need it as a backup.

12.10. #Ri24%MT

MQ commands that work with patches let you refer to a patch either by using its name or by a
number. By name is obvious enough; pass the name f 00. pat ch to qpush, for example, and it will
push patches until f 0o. pat ch isapplied.

As ashortcut, you can refer to a patch using both a name and a numeric offset; f 0o. pat ch- 2
means “two patches before f 0o. pat ch”, while bar. pat ch+4 means “four patches after
bar . patch”.

Referring to a patch by index isn't much different. The first patch printed in the output of qseries
is patch zero (yes, it's one of those start-at-zero counting systems); the second is patch one; and so on.

MQ also makes it easy to work with patches when you are using normal Mercurial commands.
Every command that accepts a changeset 1D will also accept the name of an applied patch. MQ
augments the tags normally in the repository with an eponymous one for each applied patch. In
addition, the special tagsgbase and gt i p identify the “bottom-most” and topmost applied patches,
respectively.

These additions to Mercurial's normal tagging capabilities make dealing with patches even more
of abreeze.

* Want to patchbomb a mailing list with your latest series of changes?

lhg emai | gbase: gtip |

(Don't know what “patchbombing” is? See i 14.4 45 “{fif¥™ £ pat chbonb jfjt email %

EiEs”)
» Need to see dl of the patches since f 00. pat ch that have touched files in a subdirectory of your
tree?

lhg Tog -r foo.patch:gtip subdir |

Because MQ makes the names of patches available to the rest of Mercuria through its normal
internal tag machinery, you don't need to type in the entire name of a patch when you want to identify
it by name.

164

i MQ &K

Another nice consequence of representing patch names as tags is that when you run the hg log
command, it will display a patch'sname asatag, smply as part of itsnormal output. Thismakesit easy
to visually distinguish applied patches from underlying “normal” revisions. The following example
shows afew normal Mercurial commands in use with applied patches.

$ hg qapplied

first.patch

second. pat ch

$ hg log -r gbase:qtip
changeset : 1: 353af 906e4b5

t ag: first.patch

t ag: gbase

user: Bryan O Sul | i van <bos@er penti ne. con
dat e: Wed Aug 11 06:06: 13 2010 +0000
sunmary: [mg]: first.patch

changeset : 2:a7d5ed081364

t ag: gtip

t ag: second. pat ch

t ag: tip

user: Bryan O Sul | i van <bos@er penti ne. con
dat e: Wed Aug 11 06:06: 14 2010 +0000
sunmary: [mg] : second. pat ch

$ hg export second. patch

HG changeset patch

User Bryan O Sullivan <bos@erpenti ne. conp

Date 1281506774 0

Node | D a7d5ed08136415c5f 58847c49f 53f 253ba70c850
Parent 353af 906e4b546c9e85910a9c8f 75a638f f 620b7
[

mg] : second. pat ch

di ff -r 353af906e4b5 -r a7d5ed081364 ot her.c
- /dev/null Thu Jan 01 00: 00: 00 1970 +0000

+++ b/other.c Wed Aug 11 06: 06: 14 2010 +0000

@»-0,0 +1,1 @@

+doubl e u

12.11. HEEE T RHEH

There are anumber of aspects of MQ usage that don't fit tidily into sections of their own, but that
are good to know. Here they are, in one place.

'II

» Normally, when you gpop a patch and gpush it again, the changeset that represents the patch after
the pop/push will have adiffer ent identity than the changeset that represented the hash beforehand.
See 5 B.1.14 A “qpush— b | F) Mk~ for information asto why thisis.

* It'snot agood ideato hg mer ge changes from another branch with a patch changeset, at least if you
want to maintain the “patchiness’ of that changeset and changesets below it on the patch stack. If
you try to do this, it will appear to succeed, but MQ will become confused.

12.12. M AREEIRANT

Because MQ's . hg/ pat ches directory resides outside a Mercurial repository's working
directory, the “underlying” Mercuria repository knows nothing about the management or presence
of patches.

This presents the interesting possibility of managing the contents of the patch directory as a
Mercurial repository in its own right. This can be a useful way to work. For example, you can work

165

i MQ &K

on a patch for awhile, grefresh it, then hg commit the current state of the patch. This lets you “roll
back” to that version of the patch later on.

You can then share different versions of the same patch stack among multiple underlying
repositories. | usethiswhen | am developing aLinux kernel feature. | have a pristine copy of my kernel
sources for each of severa CPU architectures, and a cloned repository under each that contains the
patches | am working on. When | want to test a change on a different architecture, | push my current
patches to the patch repository associated with that kernel tree, pop and push all of my patches, and
build and test that kernel.

Managing patches in a repository makes it possible for multiple devel opers to work on the same
patch series without colliding with each other, al on top of an underlying source base that they may
or may not control.

12.12.1. MQ S ##M T M A B

MQ helps you to work with the . hg/ pat ches directory as a repository; when you prepare a
repository for working with patches using ginit, you can passthe hg - ¢ option to create the . hg/
pat ches directory asaMercurial repository.

==
=

If youforgettousethehg - c option, you cansimply gointothe. hg/ pat ches directory
at any time and run hg init. Don't forget to add an entry for the st at us file to the
. hgi gnor e file, though

(hg qinit hg - ¢ does this for you automatically); you really don't want to manage the
st at us file.

As a convenience, if MQ notices that the . hg/ pat ches directory is a repository, it will
automatically hg add every patch that you create and import.

MQ provides a shortcut command, gcommit, that runs hg commit in the . hg/ pat ches
directory. This saves some bothersome typing.

Finally, as a convenience to manage the patch directory, you can define the alias mg on Unix
systems. For example, on Linux systems using the bash shell, you can include the following snippet
inyour ~/ . bashrc.

flias my="hg -R $(hg root)/. hg/ pat ches' |

Y ou can then issue commands of the form mq pull from the main repository.

12.12.2. FEIEIEMEE

MQ's support for working with arepository full of patchesislimited in afew small respects.

MQ cannot automatically detect changes that you make to the patch directory. If you hg pull,
manually edit, or hg update changesto patchesor theser i es file, you will haveto hg gpop - a and

166

i MQ &K

then hg gpush - a in the underlying repository to see those changes show up there. If you forget to do
this, you can confuse MQ's idea of which patches are applied.

12.15. B4 THIE=A TR

Once you've been working with patches for awhile, you'll find yourself hungry for tools that will
help you to understand and manipulate the patches you're dealing with.

The diffstat command [web:diffstat] generates a histogram of the modifications made to each
file in a patch. It provides a good way to “get a sense of” a patch—which files it affects, and how
much change it introduces to each file and as awhole. (I find that it's a good idea to use diffstat's -
p option as a matter of course, as otherwise it will try to do clever things with prefixes of file names
that inevitably confuse at least me.)

$ diffstat -pl renpve-redundant-null-checks. patch

drivers/char/agp/sgi-agp.c | 5 ++---
drivers/char/hvcs. c 11 +++++------
drivers/ message/ fusion/nptfc.c 6 ++----
drivers/ message/ f usi on/ nptsas. c 3 +--

|

|

|
drivers/net/fs_enet/fs_enet-mi.c | 3 +--

|

|

|

drivers/net/wrel ess/ipw2200.c 22 Attt oo
drivers/scsil/libata-scsi.c 4 +---
drivers/video/ aull00fb. c 3 +--

8 files changed, 19 insertions(+), 38 deletions(-)
$ filterdiff -i '*/video/*' renpve-redundant-null-checks. patch

- aldrivers/video/ aull00f b. c~r enove-redundant - nul | - checks- before-free-in-drivers
+++ a/drivers/video/aull00fb. c
@®-743,8 +743,7 @void __exit aullOOfb_cl eanup(void)

{
driver_unregi ster(&ull00fb_driver)

- if (drv_info.opt_node)
kfree(drv_info. opt_node)
+ kfree(drv_info.opt_node)

}

nmodul e_i ni t (aull00fb_init)

Thepat chut i | s package [web:patchutils] isinvaluable. It provides a set of small utilities that
follow the“ Unix philosophy;” each does one useful thing with apatch. Thepat chut i | s command |
use most isfilter diff, which extracts subsets from apatch file. For example, given apatch that modifies
hundreds of files across dozens of directories, a single invocation of filter diff can generate a smaller
patch that only touches files whose names match a particular glob pattern. See 45 13.9.2 45 “s3 %

¥ T s for another example.

12.14. $&4E%M T BYGF IR

Whether you are working on a patch series to submit to a free software or open source project,
or a series that you intend to treat as a sequence of regular changesets when you're done, you can use
some simple techniques to keep your work well organized.

Give your patches descriptive names. A good name for a patch might be r ewor k- devi ce-
al | oc. pat ch, because it will immediately give you a hint what the purpose of the patch is. Long
names shouldn't be a problem; you won't be typing the names often, but you will be running commands
like gapplied and qtop over and over. Good naming becomes especially important when you have a

167

i MQ &K

number of patches to work with, or if you are juggling a number of different tasks and your patches
only get afraction of your attention.

Be aware of what patch you're working on. Use the gtop command and skim over the text of
your patches frequently—for example, using hgtip - p)—to be sure of whereyou stand. | have several
times worked on and qr efr eshed a patch other than the one | intended, and it's often tricky to migrate
changes into the right patch after making them in the wrong one.

For thisreason, it is very much worth investing alittle time to learn how to use some of the third-
party tools| describedin & 12.13 45 “#a/Exh T s =5 T.H 7 , particularly diffstat and filter diff.
The former will give you aquick idea of what changes your patch is making, while the latter makesit
easy to splice hunks selectively out of one patch and into another.

12.15. MQ F#3
12.15.1. &8 “THRERy” #p T

Because the overhead of dropping filesinto a new Mercurial repository is so low, it makes alot
of sense to manage patches thisway even if you simply want to make afew changes to a source tarball
that you downloaded.

Begin by downloading and unpacking the sourcetarball, and turningitinto aMercurial repository.

$ downl oad netplug-1.2.5.tar. bz2

$ tar jxf netplug-1.2.5.tar.bz2

$ cd netplug-1.2.5

$ hg init

$ hg commt -q --addrenpve --nessage netplug-1.2.5
$ cd .

$

hg clone netplug-1.2.5 netplug
updating to branch default
18 files updated, O files nerged, O files renoved, O files unresol ved

Continue by creating a patch stack and making your changes.

$ cd netplug

$ hg qginit

$ hg gnew -m ' fix build problemw th gcc 4' build-fix.patch
$ perl -pi -e 's/int addr_|l en/socklen_t addr_len/' netlink.c
$ hg qrefresh

$ hg tip -p

changeset : 1: 2¢2585f 725af

tag: gtip

tag: bui | d-fi x. patch

tag: tip

t ag: gbase

user: Bryan O Sul | i van <bos@er penti ne. con

dat e: Wed Aug 11 06:06: 15 2010 +0000

sunmary: fix build problemw th gcc 4

di ff -r b3007d8408ac -r 2c2585f725af netlink.c
- a/netlink.c Wed Aug 11 06: 06: 14 2010 +0000
+++ b/netlink.c Wed Aug 11 06: 06: 15 2010 +0000
@@ -275,7 +275,7 @@
exit(1)
}

int addr_l en = sizeof (addr)
+ sockl en_t addr_l en = sizeof (addr)

168

i MQ &K

if (getsockname(fd, (struct sockaddr *) &addr, &addr_len) == -1) {
do_| og(LOG ERR, "Coul d not get socket details: %);

Let'ssay afew weeks or months pass, and your package author releasesanew version. First, bring
their changes into the repository.

$ hg qpop -a

poppi ng build-fix. patch

pat ch queue now enpty

$ cd .

$ downl oad netplug-1.2.8.tar.bz2

$ hg clone netplug-1.2.5 netplug-1.2.8

updating to branch default

18 files updated, O files nerged, O files renpved, O files unresol ved
cd netplug-1.2.8

hg locate -0 | xargs -0 rm

cd .

tar jxf netplug-1.2.8.tar.bz2

cd netplug-1.2.8

hg commt --addrenove --nessage netplug-1.2.8

R R R R TR

The pipeline starting with hg locate above deletes al files in the working directory, so that hg
commit's- - addr enpove option can actually tell which files have really been removed in the newer
version of the source.

Finaly, you can apply your patches on top of the new tree.

$ cd ../netplug

$ hg pull ../netplug-1.2.8

pulling from../netplug-1.2.8

sear ching for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 12 changes to 12 files
(run 'hg update' to get a working copy)
$ hg gpush -a

(working directory not at a head)
appl yi ng build-fix. patch

now at: build-fix.patch

12.15.2. 41 &2 EBRORNT

MQ providesacommand, gfold that lets you combine entire patches. This“folds’ the patchesyou
name, in the order you name them, into the topmost applied patch, and concatenates their descriptions
onto the end of its description. The patches that you fold must be unapplied before you fold them.

The order in which you fold patches matters. If your topmost applied patchisf 0o, and you gfold
bar and quux into it, you will end up with a patch that has the same effect as if you applied first
f 00, then bar , followed by quux.

12.153. 4N TR ARE HEAXNT

Merging part of one patch into another is more difficult than combining entire patches.

If you want to move changes to entire files, you can usefilterdiff's- i and - x options to choose
the modifications to snip out of one patch, concatenating its output onto the end of the patch you want
to merge into. Y ou usually won't need to modify the patch you've merged the changes from. Instead,

169

i MQ &K

MQ will report some rejected hunks when you gpush it (from the hunks you moved into the other
patch), and you can simply qr efr esh the patch to drop the duplicate hunks.

If you

have a patch that has multiple hunks modifying a file, and you only want to move a few

of those hunks, the job becomes more messy, but you can still partly automate it. Use Isdiff -nvv to
print some metadata about the patch.

$ Isdiff -nv
22 File #1
24 Hunk #1
37 File #2
39 Hunk #1
53 Hunk #2
69 File #3
71 Hunk #1
85 File #4
87 Hunk #1
98 File #5
100 Hunk #1
111 File #6
113 Hunk #1
126 Hunk #2
140 Hunk #3
150 Hunk #4
164 File #7
166 Hunk #1
178 File #8
180 Hunk #1

v renove-redundant - nul | - checks. patch
a/ drivers/char/agp/sgi-agp. c
static int __devinit agp_sgi_init(void)
a/ drivers/char/hvcs. c
static struct tty_operations hvcs_ops =
static int hves_alloc_index_list(int n)
a/ drivers/nessage/fusion/mptfc.c
nmpt f c_Get FcDevPageO(MPT_ADAPTER *ioc, in
a/ drivers/ nessage/ fusi on/ npt sas. c
npt sas_probe_hba_phys(MPT_ADAPTER *i oc)
a/drivers/net/fs_enet/fs_enet-mi.c
static struct fs_enet_mi_bus *create_bu
a/drivers/net/wrel ess/ipw2200.c
static struct ipw fw error *ipw_ alloc_er
static ssize_t clear_error(struct device
static void ipw_irqg_tasklet(struct ipw_p
static void i pw_pci_renove(struct pci_de
a/drivers/scsi/libata-scsi.c
int ata_cnd_ioctl(struct scsi_device *sc
a/ drivers/video/aull00fb. c
void __exit aullOOfb_cl eanup(voi d)

This command prints three different kinds of number:

* (inthefir

st column) afile number to identify each file modified in the patch;

* (on the next line, indented) the line number within amodified file where a hunk starts; and

* (onthe sameline) ahunk number to identify that hunk.

You'll have to use some visual inspection, and reading of the patch, to identify the file and hunk

numbers yo

u'll want, but you can then pass them to to filterdiff's- - f i | es and - - hunks options,

to select exactly the file and hunk you want to extract.

Once you have this hunk, you can concatenate it onto the end of your destination patch and
continue with the remainder of 45 12.15.2 4“4 & 434N T 7 -

12.16. MQ 5 quilt gy %I

If you

are aready familiar with quilt, MQ provides a similar command set. There are a few

differences in the way that it works.

Y ou will already have noticed that most quilt commands have MQ counterparts that simply begin

witha“q”. Theexceptionsare quilt'sadd and r enove commands, the counterparts for which arethe

normal Mer
command.

curial hg add and hg remove commands. There is no MQ equivalent of the quilt edi t

170

YaYay = — ~
% 13 & MQ WER A%
Whileit's easy to pick up straightforward uses of Mercurial Queues, use of alittle discipline and

some of MQ'sless frequently used capabilities makesit possible to work in complicated devel opment
environments.

In this chapter, | will use as an example a technique | have used to manage the development of
an Infiniband device driver for the Linux kernel. The driver in questionislarge (at least asdrivers go),
with 25,000 lines of code spread across 35 sourcefiles. It ismaintained by a small team of developers.

While much of the material in this chapter is specific to Linux, the same principles apply to any
code base for which you're not the primary owner, and upon which you need to do alot of devel opment.

13.1. Z-Bray el

The Linux kernel changes rapidly, and has never been internally stable; developers frequently
make drastic changes between releases. This means that aversion of the driver that works well with a
particular released version of the kernel will not even compile correctly against, typically, any other
version.

To maintain adriver, we have to keep a number of distinct versions of Linux in mind.

» Onetarget isthe main Linux kernel devel opment tree. Maintenance of the codeisin this case partly
shared by other developers in the kernel community, who make “drive-by” modifications to the
driver asthey develop and refine kernel subsystems.

* We also maintain a number of “backports’ to older versions of the Linux kernel, to support the
needs of customers who are running older Linux distributions that do not incorporate our drivers.
(To backport a piece of code isto modify it to work in an older version of its target environment
than the version it was developed for.)

» Finaly, we make software releases on a schedul e that is necessarily not aligned with those used by
Linux distributors and kernel developers, so that we can deliver new features to customers without
forcing them to upgrade their entire kernels or distributions.

13.1.1. TERFRIE AN

There are two “ standard” ways to maintain a piece of software that has to target many different
environments.

Thefirst isto maintain a number of branches, each intended for a single target. The trouble with
this approach is that you must maintain iron discipline in the flow of changes between repositories. A
new feature or bug fix must start life in a “pristing” repository, then percolate out to every backport
repository. Backport changes are more limited in the branches they should propagate to; a backport
changethat isapplied to abranch where it doesn't belong will probably stop the driver from compiling.

The second isto maintain a single source tree filled with conditional statements that turn chunks
of code on or off depending on the intended target. Because these “ifdefs’ are not allowed in the Linux

171

MQ fry e 1V

kernel tree, amanual or automatic process must be followed to strip them out and yield aclean tree. A
code base maintained in thisfashion rapidly becomesarat's nest of conditional blocksthat are difficult
to understand and maintain.

Neither of these approachesiswell suited to asituation where you don't “own” the canonical copy
of asource tree. In the case of a Linux driver that is distributed with the standard kernel, Linus's tree
contains the copy of the code that will be treated by the world as canonical. The upstream version of
“my” driver can be modified by people | don't know, without me even finding out about it until after
the changes show up in Linuss tree.

These approaches have the added weakness of making it difficult to generate well-formed patches
to submit upstream.

In principle, Mercuria Queues seems like a good candidate to manage a development scenario
such as the above. While thisisindeed the case, MQ contains a few added features that make the job
more pleasant.

13.2. BEFRMNANT

Perhaps the best way to maintain sanity with so many targets is to be able to choose specific
patches to apply for a given situation. MQ provides a feature called “guards’ (which originates
with quilt's guar ds command) that does just this. To start off, let's create a simple repository for
experimenting in.

hg qinit

hg gnew hel | o. pat ch
echo hello > hello

hg add hello

hg qrefresh

hg gnew goodbye. pat ch
echo goodbye > goodbye
hg add goodbye

hg qrefresh

LR R R R R A T

Thisgivesusatiny repository that containstwo patches that don't have any dependencies on each
other, because they touch different files.

Theideabehind conditional applicationisthat you can“tag” apatch withaguard, whichissimply
atext string of your choosing, then tell MQ to select specific guards to use when applying patches. MQ
will then either apply, or skip over, aguarded patch, depending on the guards that you have selected.

A patch can have an arbitrary number of guards; each one is positive (“apply this patch if this
guard is selected”) or negative (“skip this patch if this guard is selected”). A patch with no guards
isaways applied.

13.3. =% T B9 A =14

The qguard command lets you determine which guards should apply to a patch, or display the
guardsthat are already in effect. Without any arguments, it displays the guards on the current topmost
patch.

[$ hg qguard |

172

MQ fry e 1V

poodbye.patch: unguar ded

To set a positive guard on a patch, prefix the name of the guard with a“+”.

$ hg qguard +foo
$ hg qguard
goodbye. pat ch: +f oo

To set anegative guard on a patch, prefix the name of the guard with a“- ”.

$ hg qguard -- hello.patch -quux
$ hg qguard hello. patch
hel | 0. patch: -quux

Notice that we prefixed the arguments to the hg qguard command with a - - here, so that
Mercurial would not interpret the text - quux as an option.

Setting vs. modifying

The gguard command sets the guards on a patch; it doesn't modify them. What this means
isthat if you run hg gqguard +a +b on a patch, then hg qguard +c on the same patch, the
only guard that will be set on it afterwardsis +c.

Mercurial stores guards in the ser i es file; the form in which they are stored is easy both to
understand and to edit by hand. (In other words, you don't have to use the qguard command if you
don't want to; it's okay to simply edit theser i es file)

$ cat .hg/patches/series
hel | 0. pat ch #- quux
goodbye. pat ch #+f oo

13.4. J4%E AR & 4

The gselect command determines which guards are active at a given time. The effect of thisis
to determine which patches MQ will apply the next time you run gpush. It has no other effect; in
particular, it doesn't do anything to patches that are already applied.

With no arguments, the gsel ect command liststhe guards currently in effect, one per line of output.
Each argument is treated as the name of a guard to apply.

$ hg qpop -a

poppi ng goodbye. pat ch

poppi ng hel |l o. pat ch

pat ch queue now enpty

$ hg gsel ect

no active guards

$ hg gsel ect foo

nunmber of unguarded, unapplied patches has changed from1l to 2
$ hg gsel ect

f oo

In case you're interested, the currently selected guards are stored in the guar ds file.

$ cat .hg/ patches/guards
f 0o

We can see the effect the selected guards have when we run gpush.

|6 hg gpush -a

173

MQ fry e 1V

appl yi ng hel |l o. patch
appl yi ng goodbye. pat ch
now at: goodbye. patch

A guard cannot start with a“+” or “- " character. The name of a guard must not contain white
space, but most other characters are acceptable. If you try to use a guard with an invalid name, MQ
will complain:

$ hg gsel ect +foo
abort: guard '+foo' starts with invalid character: '+

Changing the selected guards changes the patches that are applied.

$ hg gsel ect quux

nunber of guarded, applied patches has changed fromO0 to 2
$ hg qpop -a

poppi ng goodbye. pat ch

poppi ng hel | o. patch

pat ch queue now enpty

$ hg gpush -a

patch series already fully applied

Y ou can see in the example below that negative guards take precedence over positive guards.

$ hg gsel ect foo bar

nunmber of unguarded, unapplied patches has changed fromO to 2
$ hg qpop -a

no patches applied

$ hg gqpush -a

appl yi ng hel |l o. patch

appl yi ng goodbye. pat ch

now at: goodbye. patch

13.5. MQ [z f#h T 4407

The rules that MQ uses when deciding whether to apply a patch are as follows.

A patch that has no guards is always applied.

If the patch has any negative guard that matches any currently selected guard, the patch is skipped.

If the patch has any positive guard that matches any currently selected guard, the patch is applied.

If the patch has positive or negative guards, but none matches any currently selected guard, the patch
is skipped.

13.6. {251 TAEINIR

In working on the device driver | mentioned earlier, | don't apply the patches to a normal Linux
kernel tree. Instead, | use a repository that contains only a snapshot of the source files and headers
that are relevant to Infiniband development. This repository is 1% the size of a kernel repository, so
it's easier to work with.

| then choose a“base” version on top of which the patches are applied. Thisis a snapshot of the
Linux kernel tree as of arevision of my choosing. When | take the snapshot, | record the changeset
ID from the kernel repository in the commit message. Since the snapshot preserves the “shape” and

174

MQ fry e 1V

content of therelevant partsof thekernel tree, | can apply my patches on top of either my tiny repository
or anormal kernel tree.

Normally, the base tree atop which the patches apply should be a snapshot of a very recent
upstream tree. This best facilitates the development of patches that can easily be submitted upstream
with few or no modifications.

13.7. 34T 7

| categorise the patchesintheser i es fileinto anumber of logical groups. Each section of like
patches begins with ablock of comments that describes the purpose of the patches that follow.

The sequence of patch groups that | maintain follows. The ordering of these groupsisimportant;
I'll describe why after | introduce the groups.

» The “accepted” group. Patches that the development team has submitted to the maintainer of the
Infiniband subsystem, and which he has accepted, but which are not present in the snapshot that the
tiny repository is based on. These are “read only” patches, present only to transform the tree into a
similar state as it isin the upstream maintainer's repository.

* The“rework” group. Patchesthat | have submitted, but that the upstream maintainer has requested
modifications to before he will accept them.

» The“pending” group. Patches that | have not yet submitted to the upstream maintainer, but which
we have finished working on. These will be “read only” for a while. If the upstream maintainer
accepts them upon submission, I'll move them to the end of the “ accepted” group. If he requests that
I modify any, I'll move them to the beginning of the “rework” group.

» The “in progress’ group. Patches that are actively being developed, and should not be submitted
anywhere yet.

» The“backport” group. Patches that adapt the source tree to older versions of the kernel tree.

» The “do not ship” group. Patches that for some reason should never be submitted upstream. For
example, one such patch might change embedded driver identification strings to make it easier to
distinguish, in the field, between an out-of-tree version of the driver and a version shipped by a
distribution vendor.

Now to return to the reasons for ordering groups of patchesin thisway. We would like the lowest
patches in the stack to be as stable as possible, so that we will not need to rework higher patches due
to changes in context. Putting patches that will never be changed first inthe ser i es file servesthis
purpose.

Wewould also like the patches that we know we'll need to modify to be applied on top of asource
tree that resembles the upstream tree as closely as possible. This is why we keep accepted patches
around for awhile.

The “backport” and “do not ship” patches float at the end of the seri es file. The backport
patches must be applied on top of all other patches, and the “do not ship” patches might as well stay
out of harm's way.

175

MQ fry e 1V

13.8. 4 4ph T 271

In my work, | use anumber of guards to control which patches are to be applied.

“Accepted” patches are guarded with accept ed. | enable this guard most of the time. When I'm
applying the patches on top of atree where the patches are already present, | can turn this patch off,
and the patches that follow it will apply cleanly.

» Patches that are “finished”, but not yet submitted, have no guards. If I'm applying the patch stack
to a copy of the upstream tree, | don't need to enable any guards in order to get a reasonably safe
source tree.

» Those patches that need reworking before being resubmitted are guarded with r ewor k.
* For those patches that are still under development, | usedevel .

* A backport patch may have several guards, one for each version of the kernel to which it applies.
For example, a patch that backports a piece of codeto 2.6.9 will havea2. 6. 9 guard.

This variety of guards gives me considerable flexibility in determining what kind of source tree
| want to end up with. For most situations, the selection of appropriate guards is automated during the
build process, but | can manually tune the guards to use for less common circumstances.

13.8.1. mEEFHENTHER

Using MQ, writing a backport patch is a simple process. All such a patch has to do is modify a
piece of code that uses akernel feature not present in the older version of the kernel, so that the driver
continues to work correctly under that older version.

A useful goal when writing a good backport patch is to make your code look as if it was written
for the older version of the kernel you're targeting. The less obtrusive the patch, the easier it will be
to understand and maintain. If you're writing a collection of backport patches to avoid the “rat's nest”
effect of lots of #i f def s (hunks of source code that are only used conditionally) in your code, don't
introduce version-dependent #i f def sinto the patches. Instead, write several patches, each of which
makes unconditional changes, and control their application using guards.

There are two reasons to divide backport patches into a distinct group, away from the “regular”
patches whose effects they modify. Thefirst isthat intermingling the two makesit more difficult to use
atool likethe pat chbomnb extension to automate the process of submitting the patchesto an upstream
maintainer. The second isthat abackport patch could perturb the context in which a subsequent regular
patch is applied, making it impossible to apply the regular patch cleanly without the earlier backport

patch already being applied.

13.9. {8 MQ F 4. By$LI5
13.9.1. B3 THEBI LB RSP

If you're working on a substantial project with MQ, it's not difficult to accumulate alarge number
of patches. For example, | have one patch repository that contains over 250 patches.

176

MQ fry e 1V

If you can group these patches into separate logical categories, you can if you like store them in
different directories; MQ has no problems with patch names that contain path separators.

13.9.2. BEXNTHHE

If you're developing a set of patches over a long time, it's a good idea to maintain them in a
repository, asdiscussed in % 12.12 45 “fEpAZEs kT 7 . If you do so, you'll quickly discover
that using the hg diff command to look at the history of changes to a patch is unworkable. Thisisin
part because you're looking at the second derivative of the rea code (a diff of adiff), but also because
MQ adds noise to the process by modifying time stamps and directory names when it updates a patch.

However, you can use the ext di f f extension, which is bundled with Mercuria, to turn a diff
of two versions of a patch into something readable. To do this, you will need a third-party package
caled pat chut i | s [web:patchutils]. This provides a command named inter diff, which shows the
differences between two diffs as a diff. Used on two versions of the same diff, it generates a diff that
represents the diff from the first to the second version.

You can enabletheext di f f extension in the usual way, by adding alineto theext ensi ons
section of your ~/ . hgr c.

[ext ensi ons]
extdi ff =

Theinter diff command expectsto be passed the names of two files, but theext di f f extension
passes the program it runs a pair of directories, each of which can contain an arbitrary number of files.
We thus need asmall program that will run inter diff on each pair of filesin these two directories. This
program is available ashg- i nt er di f f inthe exanpl es directory of the source code repository
that accompanies this book.

With the hg-i nt erdi ff program in your shell's search path, you can run it as follows, from
inside an MQ patch directory:

hg extdiff -p hg-interdiff -r A B ny-change. patch |

Since you'll probably want to use this long-winded command alot, you can get hgext to make
it available as anormal Mercurial command, again by editing your ~/ . hgr c.

[extdiff]
cmd.interdiff = hg-interdiff

This directs hgext to makeani nt erdi ff command available, so you can now shorten the
previous invocation of extdiff to something alittle more wieldy.

hg interdiff -r A:B ny-change. patch |

S ==
3
=

The interdiff command works well only if the underlying files against which versions of
a patch are generated remain the same. If you create a patch, modify the underlying files,
and then regenerate the patch, inter diff may not produce useful output.

The ext di ff extension is useful for more than merely improving the presentation of MQ
patches. To read more about it, goto &5 14.2 4y “ffify fm extdi ff Dy EEim e .

177

£ 145 (ERT RIENINEE

While the core of Mercuria is quite complete from a functionality standpoint, it's deliberately
shorn of fancy features. This approach of preserving simplicity keeps the software easy to dea with
for both maintainers and users.

However, Mercurial doesn't box you in with an inflexible command set: you can add featuresto
it as extensions (sometimes known as plugins). We've already discussed a few of these extensions
in earlier chapters.

o 5 33 “Fitkii-& -)y coversthe f et ch extension; this combines pulling new
changes and merging them with local changesinto a single command, fetch.

* In % 10 25 {F A FA IR R A FE =214, we covered several extensions that are useful for hook-
relatedfunctlonallty acl adds access control lists; bugzi | | a adds integration with the Bugzilla
bug tracking system; and not i f y sends notification emails on new changes.

» The Mercurial Queues patch management extension is so invaluable that it merits two chapters and
an appendix all toitself. 2 12 ¥ (& | MQ & 38& 24 coversthebasics; i 13 ¥ MQ gy =% AL
discusses advanced topics; and [t 5% B, Mercurial A %i£ 3% goesinto detail on each command.

In this chapter, we'lll cover some of the other extensions that are available for Mercurial, and
briefly touch on some of the machinery you'll need to know about if you want to write an extension
of your own.

e In & 141 4y “ffify 2 inotify D3gskae” , well discuss the possibility of huge
performance improvements using thei not i fy extens on.

14.1. ERy R inotify LURSMERE

Are you interested in having some of the most common Mercurial operations run as much as a
hundred times faster? Read on!

Mercurial has great performance under normal circumstances. For example, when you run the hg
status command, Mercuria has to scan almost every directory and file in your repository so that it
can display file status. Many other Mercurial commands need to do the same work behind the scenes;
for example, the hg diff command uses the status machinery to avoid doing an expensive comparison
operation on files that obviously haven't changed.

Because obtaining file status is crucial to good performance, the authors of Mercurial have
optimised thiscodeto within aninch of itslife. However, there's no avoiding the fact that when you run
hg status, Mercurial is going to have to perform at least one expensive system call for each managed
file to determine whether it's changed since the last time Mercuria checked. For a sufficiently large
repository, this can take along time.

To put a number on the magnitude of this effect, | created a repository containing 150,000
managed files. | timed hg status as taking ten seconds to run, even when none of those files had been
modified.

178

Y T hé

Many modern operating systems contain a file notification facility. If a program signs up to an
appropriate service, the operating system will notify it every time afile of interest is created, modified,
or deleted. On Linux systems, the kernel component that doesthisiscaledi noti fy.

Mercuria'si not i fy extensiontalkstothekernel'si not i f y component to optimise hg status
commands. The extension has two components. A daemon sits in the background and receives
notifications from the i not i fy subsystem. It also listens for connections from a regular Mercurial
command. The extension modifies Mercurial's behavior so that instead of scanning the filesystem,
it queries the daemon. Since the daemon has perfect information about the state of the repository, it
can respond with a result instantaneously, avoiding the need to scan every directory and file in the
repository.

Recall the ten seconds that | measured plain Mercuria as taking to run hg status on a 150,000
file repository. With the i not i f y extension enabled, the time dropped to 0.1 seconds, a factor of
one hundred faster.

Before we continue, please pay attention to some caveats.

* Theinotify extension is Linux-specific. Because it interfaces directly to the Linux kernel's
i not i fy subsystem, it does not work on other operating systems.

* It should work on any Linux distribution that was released after early 2005. Older distributions are
likely to have akernel that lacksi not i fy, or aversion of gl i bc that does not have the necessary
interfacing support.

* Not al filesystems are suitable for use with the i not i fy extension. Network filesystems such
as NFS are a non-starter, for example, particularly if you're running Mercurial on several systems,
all mounting the same network filesystem. The kernel'si not i fy system has no way of knowing
about changes made on another system. Most local filesystems (e.g. ext3, XFS, ReiserFS) should
work fine.

Thei noti fy extension is not yet shipped with Mercurial as of May 2007, so it's alittle more
involved to set up than other extensions. But the performance improvement is worth it!

The extension currently comes in two parts. a set of patches to the Mercuria source code, and a
library of Python bindingsto thei not i f y subsystem.

==
=

Therearetwo Pythoni not i fy binding libraries. One of themiscalled pyi noti fy, and
is packaged by some Linux distributionsas pyt hon-i not i f y. Thisisnot the oneyou'll
need, asit istoo buggy and inefficient to be practical.

To get going, it's best to already have a functioning copy of Mercuria installed.

S ==
~
=

If you follow the instructions below, you'll be replacing and overwriting any existing
instalation of Mercurial that you might already have, using the latest “bleeding edge”
Mercurial code. Don't say you weren't warned!

179

Y T hé

1. Clonethe Pythoni not i fy binding repository. Build and install it.

hg clone http://hg. kubl ai . com python/inotify
cd inotify

pyt hon setup.py build --force

sudo python setup.py install --skip-build

2. Clone the cr ew Mercuria repository. Clone the i not i fy patch repository so that Mercurial
Queues will be able to apply patches to your cope of the cr ewrepository.

hg clone http://hg.intevation.org/ mercurial/crew
hg clone crew inotify
hg clone http://hg. kubl ai . com nercurial / patches/inotify inotify/.hg/patches

3. Make sure that you have the Mercurial Queues extension, ntj, enabled. If you've never used MQ,
read i 12.5 45 “Jr4448 FH MQ” to get started quickly.

4. Go into thei not i fy repo, and apply al of thei noti fy patches using the hg - a option to
the gpush command.

cd inotify
hg gpush -a

5. If you get an error message from gpush, you should not continue. Instead, ask for help.

6. Build and install the patched version of Mercurial.

pyt hon setup.py build --force
sudo python setup.py install --skip-build

Once you've build a suitably patched version of Mercurial, al you need to do to enable the
i noti fy extensionisadd an entry to your ~/ . hgrc.

[extensions] inotify =

When the i not i fy extension is enabled, Mercurial will automatically and transparently start
the status daemon the first time you run acommand that needs statusin arepository. It runs one status
daemon per repository.

The status daemon is started silently, and runs in the background. If you look at a list of
running processes after you've enabled thei not i f y extension and run afew commands in different
repositories, you'll thus see afew hg processes sitting around, waiting for updates from the kernel and
gueries from Mercurial.

The first time you run a Mercurial command in a repository when you have the i noti fy
extension enabled, it will run with about the same performance as anormal Mercurial command. This
is because the status daemon needs to perform a normal status scan so that it has a baseline against
which to apply later updates from the kernel. However, every subsequent command that does any
kind of status check should be noticeably faster on repositories of even fairly modest size. Better yet,
the bigger your repository is, the greater a performance advantage you'll see. Thei not i f y daemon
makes status operations almost instantaneous on repositories of all sizes!

If you like, you can manually start a status daemon using the inser ve command. This gives you
dlightly finer control over how the daemon ought to run. Thiscommand will of courseonly be available
whenthei not i f y extension is enabled.

180

Y T hé

Whenyou'reusingthei not i f y extension, you should notice no differenceat all in Mercurial's
behavior, with the sole exception of status-related commands running awhole lot faster than they used
to. Y ou should specifically expect that commands will not print different output; neither should they
give different results. If either of these situations occurs, please report a bug.

142 FRTEextdi ff D RERTH

Mercurial iy % 4 ha diff [yttt 155522 AT

$ hg diff
di ff -r deec2c947edc nyfile

- a/nyfile Wed Aug 11 06: 06: 03 2010 +0000
+++ b/ nyfile Wed Aug 11 06: 06: 03 2010 +0000
an-1,1 +1,2 @@
The first |ine.
+The second |ine

If you would liketo use an external tool to display modifications, you'll want to usetheext di f f
extension. Thiswill let you use, for example, agraphical diff tool.

Theext di ff extension isbundled with Mercurial, so it's easy to set up. In the ext ensi ons
section of your ~/ . hgr ¢, ssimply add a one-line entry to enable the extension.

[ext ensi ons]
extdiff =

Thisintroduces acommand named extdiff, which by default uses your system's diff command to
generate a unified diff in the same form as the built-in hg diff command.

$ hg extdiff
- a.deec2c947edc/ nyfile 2010-08-11 06: 06: 03. 000000000 +0000
+++ /tnp/ extdiffkwdl Gv/a/nyfile 2010-08-11 06: 06: 03. 000000000 +0000
am-1 +1,2 @@
The first |ine.

+The second |ine

The result won't be exactly the same as with the built-in hg diff variations, because the output of
diff varies from one system to another, even when passed the same options.

As the “maki ng snapshot” lines of output above imply, the extdiff command works by
creating two snapshots of your source tree. The first snapshot is of the source revision; the second, of
thetarget revision or working directory. The extdiff command generatesthese snapshotsin atemporary
directory, passes the name of each directory to an external diff viewer, then deletes the temporary
directory. For efficiency, it only snapshots the directories and files that have changed between the two
revisions.

Snapshot directory names have the same base name as your repository. If your repository path is
/ quux/ bar/ f oo, then f oo will be the name of each snapshot directory. Each snapshot directory
name has its changeset ID appended, if appropriate. If a snapshot is of revison a631acal083f,
the directory will be named f 00. a631acal083f . A snapshot of the working directory won't have
a changeset 1D appended, so it would just be f 00 in this example. To see what this looks like in
practice, ook again at the extdiff example above. Notice that the diff has the snapshot directory names
embedded in its header.

The extdiff command accepts two important options. The hg - p option lets you choose a
program to view differences with, instead of diff. Withthehg - o option, you can change the options

181

Y T hé

that extdiff passes to the program (by default, these options are “- Npr u”, which only make sense
if you're running diff). In other respects, the extdiff command acts similarly to the built-in hg diff
command: you use the same option names, syntax, and arguments to specify the revisions you want,
the files you want, and so on.

As an example, here's how to run the normal system diff command, getting it to generate context
diffs (using the - ¢ option) instead of unified diffs, and fivelines of context instead of the default three
(passing 5 as the argument to the - C option).

$ hg extdiff -o -NprcCs
*** a.deec2c947edc/ nyfile Wed Aug 11 06: 06: 03 2010
- /tnp/extdiffkwsl Gv/a/nyfile Wed Aug 11 06: 06: 03 2010

kkkkkkdhkdkkhkhkkkxkx
k * % 1 * k% %

- 1,2 ----

The first |ine.
+ The second |ine.

Launching avisual diff tool isjust as easy. Here's how to launch the kdiff3 viewer.

hg extdiff -p kdiff3 -o |

If your diff viewing command can't deal with directories, you can easily work around this with
a little scripting. For an example of such scripting in action with the ng extension and the inter diff

command, see 5 13.9.2 75 “SCEAN Ik -

14.2.1. EX S5 Z

It can be cumbersome to remember the options to both the extdiff command and the diff viewer
you want to use, sotheext di f f extension lets you define new commands that will invoke your diff
viewer with exactly the right options.

All youneedtodoisedityour ~/ . hgr ¢, and add asection named ext di f f . Insidethissection,
you can define multiple commands. Here'show to add akdi f f 3 command. Once you've defined this,
you can type“hg kdi f f 3” andtheext di f f extension will run kdiff3 for you.

[extdiff]
crd. kdi ff3 =

If you leave the right hand side of the definition empty, as above, the ext di f f extension uses
the name of the command you defined as the name of the external program to run. But these names
don't have to be the same. Here, we define acommand named “hg wi bbl e”, which runs kdiff3.

[extdiff]
crd. wi bbl e = kdiff3

Y ou can also specify the default options that you want to invoke your diff viewing program with.
The prefix touseis“opt s. ”, followed by the name of the command to which the options apply. This
exampledefinesa“hg vi ndi f f 7 command that runsthe vim editor'sDi r Di f f extension.

[extdiff]
cnd. vindi ff = vim
opts.vinmdiff = -f '+next' '+execute "DirDiff" argv(0) argv(1)'

14.3. £ Ay R transpl ant LIgkizfgg

Need to have along chat with Brendan about this.

182

Y T hé

14.4. {FFH¥ & pat chbonb &3 email %%
(35

Many projects have a culture of “change review”, in which people send their modifications to
amailing list for others to read and comment on before they commit the final version to a shared
repository. Some projects have people who act as gatekeepers;, they apply changes from other people
to arepository to which those others don't have access.

Mercurial makesit easy to send changes over email for review or application, viaitspat chbonb
extension. The extension is so named because changes are formatted as patches, and it's usua to
send one changeset per email message. Sending a long series of changes by email is thus much like
“bombing” the recipient's inbox, hence “ patchbomb”.

As usual, the basic configuration of the pat chbonb extension takes just one or two lines in
your /. hgrc.

[ext ensi ons]
pat chbonmb =

Once you've enabled the extension, you will have a new command available, named email.

The safest and best way to invoke the email command isto always run it first with thehg - n
option. Thiswill show you what the command would send, without actually sending anything. Once
you've had a quick glance over the changes and verified that you are sending the right ones, you can
rerun the same command, with thehg - n option removed.

The email command acceptsthe samekind of revision syntax as every other Mercurial command.
For example, this command will send every revision between 7 and t i p, inclusive.

hg email -n 7:tip |

Y ou can also specify arepository to compare with. If you provide arepository but no revisions,
the email command will send all revisions in the local repository that are not present in the remote
repository. If you additionally specify revisions or abranch name (the latter using thehg - b option),
thiswill constrain the revisions sent.

It's perfectly safe to run the email command without the names of the people you want to send to:
if youdothis, it will just prompt you for those valuesinteractively. (If you'reusing aLinux or Unix-like
system, you should have enhanced r eadl i ne-style editing capabilities when entering those headers,
too, which isuseful.)

When you are sending just one revision, the email command will by default use the first line of
the changeset description as the subject of the single email message it sends.

If you send multiple revisions, the email command will usually send one message per changeset.
It will preface the series with an introductory message, in which you should describe the purpose of
the series of changes you're sending.

183

Y T hé

14.4.1. &g patchbomb gy47%4

Not every project has exactly the same conventions for sending changes in email; the

pat chbonb extension tries to accommodate a number of variations through command line options.

Y ou can write asubject for the introductory message on the command line using thehg - s option.
This takes one argument, the text of the subject to use.

To change the email address from which the messages originate, usethehg - f option. Thistakes
one argument, the email address to use.

The default behavior isto send unified diffs (see & 12.4 45 “piifgxp]~ for adescription of the
format), one per message. Y ou can send a binary bundle instead with thehg - b option.

Unified diffs are normally prefaced with a metadata header. Y ou can omit this, and send unadorned
diffs, withthehg - - pl ai n option.

Diffs are normally sent “inline”, in the same body part as the description of a patch. This makes it
easiest for the largest number of readersto quote and respond to parts of adiff, as some mail clients
will only quote the first MIME body part in a message. If you'd prefer to send the description and
the diff in separate body parts, usethehg - a option.

Instead of sending mail messages, you can write them to an mbox-format mail folder using the hg
- moption. That option takes one argument, the name of the file to write to.

If you would like to add a diffstat-format summary to each patch, and one to the introductory
message, usethehg - d option. Thediffstat command displays atable containing the name of each
file patched, the number of lines affected, and a histogram showing how much each fileis modified.
This gives readers a qualitative glance at how complex apatch is.

184

Misg A. 1% Mercurial

A common way to test the waters with anew revision control tool isto experiment with switching
an existing project, rather than starting a new project from scratch.

In this appendix, we discuss how to import a project's history into Mercurial, and what to look
out for if you are used to adifferent revision control system.

Al NEERKREZEFHRGESANHE

Mercurial shipswith an extension named conver t , which can import project history from most
popular revision control systems. At the time this book was written, it could import history from the
following systems:

» Subversion
« CVS

* it

» Darcs

» Bazaar

* Monotone
* GNU Arch
* Mercurial

(To seewhy Mercurial itself is supported as asource, see &5 A. 1.3 75 “JEHH M7 .)

PRl A H I 72X, gdi har o SOk XA R

[ext ensi ons]
convert =

Thiswill make ahg convert command available. The command is easy to use. For instance, this
command will import the Subversion history for the Nose unit testing framework into Mercurial.

@ hg convert http://python-nose. googl ecode. conif svn/trunk

Theconvert extension operates incrementally. In other words, after you have run hg convert
once, running it again will import any new revisions committed after the first run began. Incremental
conversion will only work if you run hg convert in the same Mercurial repository that you originally
used, because the convert extension saves some private metadata in a non-revision-controlled file
named . hg/ shamap inside the target repository.

When you want to start making changes using Mercurial, it's best to clone the tree in which you
are doing your conversions, and leave the original tree for future incremental conversions. Thisisthe

185

iF# 31| Mercuria

safest way to let you pull and merge future commits from the source revision control system into your
newly active Mercurial project.

ALL BB NI

The hg convert command given above converts only the history of the t r unk branch of the
Subversion repository. If weinstead usethe URL ht t p: // pyt hon- nose. googl ecode. cont
svn, Mercuria will automatically detect thet r unk, t ags and br anches layout that Subversion
projects usually use, and it will import each as a separate Mercurial branch.

By default, each Subversion branch imported into Mercurial is given a branch name. After the
conversion completes, you can get alist of the active branch names in the Mercurial repository using
hg branches -a. If you would prefer to import the Subversion branches without names, pass the - -
config convert. hg. usebranchnanmes=f al se option to hg convert.

Once you have converted your tree, if you want to follow the usual Mercurial practice of
working in atree that contains a single branch, you can clone that single branch using hg clone -r
mybranchname.

A.1.2. BRETF P AR

Some revision control tools save only short usernames with commits, and these can be difficult
to interpret. The norm with Mercurial isto save acommitter's name and email address, which is much
more useful for talking to them after the fact.

If you are converting a tree from a revision control system that uses short names, you can map
those namesto longer equivalentsby passing a- - aut hor s option to hg convert. Thisoption accepts
afile name that should contain entries of the following form.

arist = Aristotle <aristotle@hil.exanple.gr>
soc = Socrates <socrates@hil.exanple.gr>

Whenever conver t encountersacommit with the usernamear i st inthe source repository, it
will usethename Ari stotl e <aristotl e@bhil.exanpl e. gr>intheconverted Mercuriad
revision. If no match isfound for aname, it is used verbatim.

A.1.3. EE B Ekt

Not al projects have pristine history. There may be a directory that should never have been
checked in, afile that istoo big, or awhole hierarchy that needs to be refactored.

The convert extension supports the idea of a “file map” that can reorganize the files and
directoriesin aproject asit importsthe project's history. Thisisuseful not only when importing history
from other revision control systems, but also to prune or refactor aMercurial tree.

To specify afile map, usethe- - fi | emap option and supply afile name. A file map contains
lines of the following forms.

This is a comment.
Enpty lines are ignored.

186

iF# 31| Mercuria

i ncl ude path/to/file
excl ude path/to/file

renane from sonme/ path to/somne/other/place

Thei ncl ude directivecausesafile, or al filesunder adirectory, to beincluded in the destination
repository. Thisalso excludesall other files and dirs not explicitely included. Theexcl ude directive
causes files or directories to be omitted, and others not explicitly mentioned to be included.

To move afile or directory from one location to another, use ther enane directive. If you need
to move a file or directory from a subdirectory into the root of the repository, use . as the second
argument to ther enane directive.

A.1.4. M3# Subversion ghitntge

Y ou will often need severa attempts before you hit the perfect combination of user map, file map,
and other conversion parameters. Converting a Subversion repository over an access protocol likessh
or ht t p can proceed thousands of times more slowly than Mercurial is capable of actually operating,
due to network delays. This can make tuning that perfect conversion recipe very painful.

The svnsync [http://svn.collab.net/repos/svn/trunk/notes/svnsync.txt] command can greatly
speed up the conversion of a Subversion repository. It isaread-only mirroring program for Subversion
repositories. Theideaisthat you create alocal mirror of your Subversion tree, then convert the mirror
into aMercurial repository.

Suppose we want to convert the Subversion repository for the popular Memcached project into a
Mercurial tree. First, we create alocal Subversion repository.

|$ svnadm n create nencached-mrror |

Next, we set up a Subversion hook that svnsync needs.

$ echo '#!/bin/sh" > mentached-m rror/hooks/pre-revprop-change
$ chnod +x nencached-m rror/hooks/ pre-revprop-change

Wethen initialize svnsync in this repository.

$ svnsync --init file:// pwd /nencached-mrror \
http://code. si xapart. conif svn/ nencached

Our next step is to begin the svnsync mirroring process.

|$ svnsync sync file:// pwd /mencached-mrror

Finally, we import the history of our local Subversion mirror into Mercurial.

6 hg convert nencached-nirror |

We can use this processincrementally if the Subversion repository is still in use. We run svnsync
to pull new changesinto our mirror, then hg convert to import them into our Mercuria tree.

There are two advantages to doing a two-stage import with svnsync. Thefirst isthat it uses more
efficient Subversion network syncing code than hg convert, so it transfers less data over the network.
The second isthat theimport from alocal Subversiontreeisso fast that you can tweak your conversion

187

http://svn.collab.net/repos/svn/trunk/notes/svnsync.txt
http://svn.collab.net/repos/svn/trunk/notes/svnsync.txt

iF# 31| Mercuria

setup repeatedly without having to sit through a painfully slow network-based conversion process each
time.

A.2.)\ Subversion %%

Subversion is currently the most popular open source revision control system. Although there
are many differences between Mercurial and Subversion, making the transition from Subversion to
Mercuria is not particularly difficult. The two have similar command sets and generally uniform
interfaces.

A2.1 LS

The fundamental difference between Subversion and Mercuria is of course that Subversion is
centralized, while Mercurial is distributed. Since Mercurial stores all of a project's history on your
local drive, it only needs to perform a network access when you want to explicitly communicate with
another repository. In contrast, Subversion stores very little information locally, and the client must
thus contact its server for many common operations.

Subversion more or less gets away without a well-defined notion of a branch: which portion of
a server's namespace qualifies as a branch is a matter of convention, with the software providing no
enforcement. Mercurial treats arepository as the unit of branch management.

A2.1.1. &4ERE

Since Subversion doesn't know what parts of its namespace are really branches, it treats most
commands as requests to operate at and below whatever directory you are currently visiting. For
instance, if you run svn log, you'll get the history of whatever part of the tree you're looking at, not
thetree asawhole.

Mercurial's commands behave differently, by defaulting to operating over an entire repository. Run
hg log and it will tell you the history of the entire tree, no matter what part of the working directory
you're visiting at the time. If you want the history of just a particular file or directory, smply supply
it by name, e.g. hglog src.

From my own experience, this difference in default behaviors is probably the most likely to trip you
up if you have to switch back and forth frequently between the two tools.

A212. ZHP#IESR:

With Subversion, it is normal (though slightly frowned upon) for multiple people to collaborate in a
single branch. If Alice and Bob are working together, and Alice commits some changesto their shared
branch, Bob must update his client's view of the branch before he can commit. Since at this time he
has no permanent record of the changes he has made, he can corrupt or lose his modifications during
and after his update.

Mercurial encourages a commit-then-merge model instead. Bob commits his changes locally before
pulling changes from, or pushing them to, the server that he shares with Alice. If Alice pushed her
changes before Bob triesto push his, hewill not be able to push his changes until he pulls hers, merges

188

iF# 31| Mercuria

with them, and commits the result of the merge. If he makes a mistake during the merge, he still has
the option of reverting to the commit that recorded his changes.

It is worth emphasizing that these are the common ways of working with these tools. Subversion
supports a safer work-in-your-own-branch model, but it is cumbersome enough in practice to not be
widely used. Mercurial can support the less safe mode of allowing changes to be pulled in and merged
on top of uncommitted edits, but thisis considered highly unusual.

A2.1.3. BAHEHEMEARHIESK

A Subversion svn commit command immediately publishes changes to a server, where they can be
seen by everyone who has read access.

With Mercurial, commits are always local, and must be published viaahg push command afterwards.

Each approach has its advantages and disadvantages. The Subversion model means that changes are
published, and hence reviewable and usable, immediately. On the other hand, this means that a user
must have commit access to a repository in order to use the software in a normal way, and commit
accessis not lightly given out by most open source projects.

The Mercurial approach allows anyone who can clone a repository to commit changes without the
need for someone else's permission, and they can then publish their changes and continue to participate
however they see fit. The distinction between committing and pushing does open up the possibility
of someone committing changes to their laptop and walking away for afew days having forgotten to
push them, which in rare cases might leave collaborators temporarily stuck.

A22. lhiES %

%= A.L Subversion ;4

5 Mercurial 338835

Subversion Mercurial #F

svn add hg add

svn blame hg annotate

svn cat hg cat

svn checkout hg clone

svn cleanup n/a ANFE s

svn commit hg commit; hg push AT JEAd A hg push % 4
svn copy hg clone QIAEFTAN T

svn copy hg copy STHISCAREE H
svn delete (svn remove) hg remove

svn diff hg diff

svn export hg archive

svn help hg help

svn import hg addremove; hg commit

189

iF# 31| Mercuria

Subversion Mercurial £

svn info hg parents R R L
svn info hg showconfig paths.parent | 5 s Hi i) URL

svn list hg manifest

svn log hg log

svn merge hg merge

svn mkdir n/a Mercurial AR iz H 5%
svn move (svn rename) hg rename

svn resolved hg resolve -m

svn revert hg revert

svn status hg status

svn update hg pull -u

A3 FIFEET RIS

Under some revision control systems, printing a diff for a single committed revision can be
painful. For instance, with Subversion, to see what changed in revision 104654, you must type svn diff
-r104653:104654. Mercurial eliminates the need to type the revision ID twice in this common case.
For aplain diff, hg export 104654. For alog message followed by a diff, hg log -r 104654 -p.

When you run hg status without any arguments, it prints the status of the entire tree, with paths
relative to the root of the repository. This makes it tricky to copy a file name from the output of hg
status into the command line. If you supply afile or directory name to hg status, it will print paths
relative to your current location instead. So to get tree-wide status from hg status, with paths that are
relative to your current directory and not the root of the repository, feed the output of hg root into hg
status. You can easily do this as follows on a Unix-like system:

6 hg status “hg root"

190

Misg B. Mercurial p\%1| &3
B.1.MQ &#:45%

For an overview of the commands provided by MQ, use the command hg help mq.

B.1.1. qapplied—R R E R AA*M T

The gapplied command prints the current stack of applied patches. Patches are printed in ol dest-
to-newest order, so the last patch in the list is the “top” patch.

B.1.2. qcommit—4g 33 A5 R B9 &2

The gcommit command commits any outstanding changes in the . hg/ pat ches repository.
Thiscommand only worksif the. hg/ pat ches directory isarepository, i.e. you created the directory
using hg ginit - ¢ or ran hg init in the directory after running ginit.

This command is shorthand for hg commit --cwd .hg/patches.

B.1.3. qdelete—)\ 3244 seri es Ffjpaxp T

The gdelete command removestheentry for apatchfromtheseri es fileinthe. hg/ pat ches
directory. It does not pop the patch if the patch is aready applied. By default, it does not delete the
patch file; usethe - f option to do that.

&I :
o -f: Deletethe patchfile.

B.L.4. qdiff— R B E Ak T HIE 5

The qdiff command prints a diff of the topmost applied patch. It is equivalent to hg diff -r-2:-1.

B.1.5. qfold—i& B iz A AY4h T 2 32 | My A B

The hg gfinish command converts the specified applied patches into permanent changes by
moving them out of MQ's control so that they will be treated as normal repository history.

B.1.6. gfold Ta#(HRE7 H—

The gfold command merges multiple patches into the topmost applied patch, so that the topmost
applied patch makes the union of all of the changes in the patches in question.

The patchesto fold must not be applied; gfold will exit with an error if any is. The order in which
patches are folded is significant; hg gfold a b means “apply the current topmost patch, followed by
a, followed by b”.

191

Mercurial [\ %15 %

The comments from the folded patches are appended to the comments of the destination patch,
with each block of comments separated by three asterisk (“*) characters. Use the - e option to edit
the commit message for the combined patch/changeset after the folding has compl eted.

LT :
* - B AN AN T R A AR BRI RN T U .
o - L E L R SO B N B S G RN TR R AT A ERTRR T U

» - m Usethe given text as the new commit message and patch description for the folded patch.

B.1.7. gheader—& i#h T kBt A

Thegheader command printsthe header, or description, of apatch. By default, it printsthe header
of the topmost applied patch. Given an argument, it prints the header of the named patch.

B.1.8. qimport—{§ 2 = 7% T S AT

The gimport command adds an entry for an external patch to the ser i es file, and copies the
patchintothe. hg/ pat ches directory. It addsthe entry immediately after the topmost applied patch,
but does not push the patch.

If the . hg/ pat ches directory is a repository, gimport automatically does an hg add of the
imported patch.

B.1.9. ginit—}{F B MQ fif B kg A=

The qinit command prepares a repository to work with MQ. It creates a directory called . hg/
pat ches.

T

» -c: Create . hg/ pat ches as arepository in its own right. Also creates a. hgi gnor e file that
will ignorethe st at us file.

When the . hg/ pat ches directory is a repository, the gimport and gnew commands
automatically hg add new patches.

B.1.10. qnew—agI| ZE i T

The gnew command creates a new patch. It takes one mandatory argument, the name to use for
the patch file. The newly created patch is created empty by default. Itisadded totheser i es fileafter
the current topmost applied patch, and isimmediately pushed on top of that patch.

If gnew finds modified files in the working directory, it will refuse to create a new patch unless
the-f option is used (see below). This behavior allows you to grefresh your topmost applied patch
before you apply a new patch on top of it.

192

Mercurial [\ %1% %

T :

o -f: Create a new patch if the contents of the working directory are modified. Any outstanding
modifications are added to the newly created patch, so after this command compl etes, the working
directory will no longer be modified.

* - m Usethegiven text as the commit message. Thistext will be stored at the beginning of the patch
file, before the patch data.

B.1.11. gnext—R /R T4 T BY & FR

The gnext command prints the name name of the next patchintheser i es file after the topmost
applied patch. This patch will become the topmost applied patch if you run gpush.

B.1.12. qpop—fiFR AL TR ERBI %M T

The gpop command removes applied patches from the top of the stack of applied patches. By
default, it removes only one patch.

Thiscommand removes the changesets that represent the popped patches from the repository, and
updates the working directory to undo the effects of the patches.

This command takes an optional argument, which it uses as the name or index of the patch to
pop to. If given a name, it will pop patches until the named patch is the topmost applied patch. If
given a number, qpop treats the number as an index into the entries in the series file, counting from
zero (empty lines and lines containing only comments do not count). It pops patches until the patch
identified by the given index is the topmost applied patch.

The gpop command does not read or write patches or the ser i es file. It is thus safe to gpop
a patch that you have removed from the ser i es file, or a patch that you have renamed or deleted
entirely. In the latter two cases, use the name of the patch asit was when you applied it.

By default, the gpop command will not pop any patches if the working directory has been
modified. Y ou can override this behavior using the - f option, which reverts all modifications in the
working directory.

LI :
» - a: Pop al applied patches. This returns the repository to its state before you applied any patches.
» - f: Forcibly revert any modifications to the working directory when popping.
* - n: Pop apatch from the named queue.

The gpop command removes one linefrom the end of thest at us filefor each patch that it pops.

B.1.13. qprev—R /R EM 4T BYE R

The gprev command prints the name of the patch in the seri es file that comes before the
topmost applied patch. Thiswill become the topmost applied patch if you run gpop.

193

Mercurial [\ %1% %

B.1.14. qpush—& & T 2%
The gpush command adds patches onto the applied stack. By default, it adds only one patch.

This command creates anew changeset to represent each applied patch, and updates the working
directory to apply the effects of the patches.

The default data used when creating a changeset are as follows:

» The commit date and time zone are the current date and time zone. Because these data are used to
compute the identity of a changeset, this means that if you gpop a patch and gpush it again, the
changeset that you push will have a different identity than the changeset you popped.

» Theauthor isthe same as the default used by the hg commit command.

» The commit message is any text from the patch file that comes before the first diff header. If there
is no such text, a default commit message is used that identifies the name of the patch.

If a patch contains a Mercurial patch header, the information in the patch header overrides these
defaults.

T :

- a: Push all unapplied patchesfromtheser i es file until there are none left to push.

- | : Add the name of the patch to the end of the commit message.

- m If apatch fails to apply cleanly, use the entry for the patch in another saved queue to compute
the parameters for a three-way merge, and perform a three-way merge using the normal Mercurial
merge machinery. Use the resolution of the merge as the new patch content.

* - n: Usethe named queue if merging while pushing.

The gpush command reads, but does not modify, the ser i es file. It appends one line to the hg
statusfile for each patch that it pushes.

B.1.15. grefresh—E Fm Eag%p T

The grefresh command updates the topmost applied patch. It modifiesthe patch, removestheold
changeset that represented the patch, and creates a new changeset to represent the modified patch.

The qrefresh command looks for the following modifications:

» Changesto the commit message, i.e. thetext beforethefirst diff header inthe patchfile, arereflected
in the new changeset that represents the patch.

* Modificationsto tracked filesin the working directory are added to the patch.

+ Changes to the files tracked using hg add, hg copy, hg remove, or hg rename. Added files and
copy and rename destinations are added to the patch, while removed files and rename sources are
removed.

194

Mercurial [\ %15 %

Evenif qrefresh detects no changes, it still recreates the changeset that represents the patch. This
causes the identity of the changeset to differ from the previous changeset that identified the patch.

LTI :
* - e: Modify the commit and patch description, using the preferred text editor.
* - m Modify the commit message and patch description, using the given text.

» - | : Modify the commit message and patch description, using text from the given file.

B.1.16. grename—gg Z%p T

The grename command renames a patch, and changesthe entry for the patchintheser i es file.

With a single argument, grename renames the topmost applied patch. With two arguments, it
renames its first argument to its second.

B.1.17. gseries—R& =M T &5

The gseries command prints the entire patch series from the ser i es file. It prints only patch
names, not empty lines or comments. It prints in order from first to be applied to last.

B.1.18. qtop—RE /RS aih T BY 2 FR

The qtop prints the name of the topmost currently applied patch.

B.1.19. qunapplied—R R & KRN ARIANT

The qunapplied command prints the names of patches from the ser i es file that are not yet
applied. It prints them in order from the next patch that will be pushed to the last.

B.1.20. hg strip—fis— Bz 5 2L 5 4%

The hg strip command removes a revision, and all of its descendants, from the repository. It
undoes the effects of the removed revisions from the repository, and updates the working directory to
the first parent of the removed revision.

The hg strip command saves a backup of the removed changesets in a bundle, so that they can
be reapplied if removed in error.

LI :
» - b: Saveunrelated changesetsthat areintermixed with the stripped changesetsin the backup bundle.
» - f:If abranch has multiple heads, remove all heads.

* - n: Do not save abackup bundle.

195

Mercurial [\ %1% %

B.2. MQ xx#45&%
B.2.1. gt

Theser i es filecontainsalist of the names of all patchesthat MQ can apply. It isrepresented as
alist of names, with one name saved per line. Leading and trailing white spacein each line areignored.

Lines may contain comments. A comment begins with the “#” character, and extends to the end
of the line. Empty lines, and lines that contain only comments, are ignored.

Y ou will often need to edit theser i es file by hand, hence the support for comments and empty
lines noted above. For example, you can comment out a patch temporarily, and gpush will skip over
that patch when applying patches. You can aso change the order in which patches are applied by
reordering their entriesintheseri es file.

Placing theser i es file under revision control is also supported; it isagood ideato place al of
the patches that it refers to under revision control, as well. If you create a patch directory using the -
c option to qginit, thiswill be done for you automatically.

B.2.2. %?.";.‘\i'ﬁ:

The st at us file contains the names and changeset hashes of al patches that MQ currently has
applied. Unlike the ser i es file, thisfile is not intended for editing. Y ou should not place this file
under revision control, or modify it in any way. It isused by MQ strictly for internal book-keeping.

196

MiE C. ME{CREZ3E Mercurial
C.1. 22 Unix &4
WA UniX 245, I BLAT 9% Python (2.3 53r) , ARG 23 Mercurial
ST

1.)\ http://www.selenic.com/mercurial/download T 25 & 57 1YL .

2. fRJE:

|gzip -dc nercurial -MYVERSION.tar.gz | tar xf -

3. BENUEAIS H 3%, PATREHAR . XM EE Mercurial, Z3EFIRIIH H 3.

cd mercuri al - MYVERSI ON
pyt hon setup.py install --force --honme=$HOVE

GRGEMSG, Mercurial LT H &M bin 7 H . AR XA H A BIRIY
AT AR B AR

IRAI RERR B B PYTHONPATH, L) fg Mercurial mf i f7 30 1A 4k %] Mercuria
o i, fERMEICARE T, wkE) [home/ bos/1ibl python, frageafd i i
M T Python kgt 5o, IR Gtk WAURANHE, AFaNg8E L e B A
Hi, KA mercurial H i iy 5 e B g .

C.2. Windows &%

£ Windows rufy gt il 2z Mercurial SREiscfh TR, MM ZIERT 5, LLE B i
Lo WERRZE A “HIH)7, BARP BRI Tk Bsm UL] 1l 2 he e,
BRAEPRARR AT Mercurial A5

If you areintent on building Mercurial from source on Windows, follow the*“hard way” directions
ontheMercuria wiki at http://www.selenic.com/mercurial/wiki/index.cgi/Windowsl nstall, and expect
the processto involve alot of fiddly work.

197

http://www.selenic.com/mercurial/download
http://www.selenic.com/mercurial/wiki/index.cgi/WindowsInstall

fi s D. FFAH R iaY

JRAS 1.0, 1999 4E 6 H 8 [,

D.1. Requirements on both unmodified and
modified versions

The Open Publication works may be reproduced and distributed inwholeor in part, in any medium
physical or electronic, provided that the terms of this license are adhered to, and that this license or an
incorporation of it by reference (with any options el ected by the author(s) and/or publisher) isdisplayed
in the reproduction.

Proper form for an incorporation by reference is asfollows:

Copyright (c) year by author's name or designee. This material may be distributed
only subject to the terms and conditions set forth in the Open Publication License,
vx.y or later (the latest version is presently available at http://www.opencontent.org/
openpuby/).

The reference must be immediately followed with any options elected by the author(s) and/or
publisher of the document (see %5 D.6 =5 “License options’).

Commercial redistribution of Open Publication-licensed material is permitted.

Any publication in standard (paper) book form shall require the citation of the original publisher
and author. The publisher and author's names shall appear on all outer surfaces of the book. On all
outer surfaces of the book the original publisher's name shall be as large as the title of the work and
cited as possessive with respect to thetitle.

D.2. Copyright

The copyright to each Open Publication is owned by its author(s) or designee.

D.3. Scope of license

The following license terms apply to all Open Publication works, unless otherwise explicitly
stated in the document.

Mere aggregation of Open Publication works or aportion of an Open Publication work with other
works or programs on the same media shall not cause this license to apply to those other works. The
aggregate work shall contain a notice specifying the inclusion of the Open Publication material and
appropriate copyright notice.

Severability. If any part of this license is found to be unenforceable in any jurisdiction, the
remaining portions of the license remain in force.

198

http://www.opencontent.org/openpub/
http://www.opencontent.org/openpub/

T HBCHE B

No warranty. Open Publication works are licensed and provided “asis’ without warranty of any

kind, express or implied, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose or awarranty of non-infringement.

D.4. Requirements on modified works

All modified versions of documents covered by this license, including trand ations, anthologies,

compilations and partial documents, must meet the following requirements:

1.

2.

The modified version must be labeled as such.

The person making the modifications must be identified and the modifications dated.

. Acknowledgement of the original author and publisher if applicable must be retained according to

normal academic citation practices.
The location of the original unmodified document must be identified.

The original author's (or authors) name(s) may not be used to assert or imply endorsement of the
resulting document without the original author's (or authors) permission.

D.5. Good-practice recommendations

In addition to the requirements of this license, it is requested from and strongly recommended

of redistributors that:

1.

2.

If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email
notification to the authors of your intent to redistribute at least thirty days before your manuscript
or media freeze, to give the authors time to provide updated documents. This notification should
describe modifications, if any, made to the document.

All substantive modifications (including deletions) be either clearly marked up in the document or
el se described in an attachment to the document.

Finally, whileit is not mandatory under thislicense, it is considered good form to offer afree copy
of any hardcopy and CD-ROM expression of an Open Publication-licensed work to its author(s).

D.6. License options

The author(s) and/or publisher of an Open Publication-licensed document may elect certain

options by appending language to the reference to or copy of the license. These options are considered
part of the license instance and must be included with the license (or its incorporation by reference)
in derived works.

1.

To prohibit distribution of substantively modified versions without the explicit permission of
the author(s). “ Substantive modification” is defined as a change to the semantic content of the
document, and excludes mere changes in format or typographical corrections.

199

T HBCHE B

2. To accomplish this, add the phrase “Distribution of substantively modified versions of this
document is prohibited without the explicit permission of the copyright holder.” to the license
reference or copy.

3. To prohibit any publication of thiswork or derivative works in whole or in part in standard (paper)
book form for commercial purposes is prohibited unless prior permission is obtained from the
copyright holder.

4. To accomplish this, add the phrase “Distribution of the work or derivative of the work in any
standard (paper) book form is prohibited unless prior permission is obtained from the copyright
holder.” to the license reference or copy.

200

	Mercurial 权威指南
	目录
	序言
	1. 技术背景
	2. 谢谢你支持 Mercurial
	3. 致谢
	4. 本书的约定
	5. 使用样例代码
	6. Safari® 在线书库
	7. 联系我们

	第 1 章 写在前面
	1.1. 为什么使用版本控制? 为什么使用 Mercurial?
	1.1.1. 为什么使用版本控制?
	1.1.2. 版本控制的别名

	1.2. 本书的例子
	1.3. 版本控制的发展趋势
	1.4. 分布版本控制的优点
	1.4.1. 开源项目的优点
	1.4.1.1. 分支不是问题

	1.4.2. 商业项目的优点

	1.5. 为什么选择 Mercurial?
	1.6. Mercurial 与其它工具的比较
	1.6.1. Subversion
	1.6.2. Git
	1.6.3. CVS
	1.6.4. 商业工具
	1.6.5. 选择版本控制工具

	1.7. 从其它工具切换到 Mercurial
	1.8. 版本控制简史

	第 2 章 Mercurial 教程: 基础知识
	2.1. 安装 Mercurial
	2.1.1. Windows
	2.1.2. Mac OS X
	2.1.3. Linux
	2.1.4. Solaris

	2.2. 开始
	2.2.1. 内置帮助

	2.3. 使用版本库
	2.3.1. 创建版本库的工作副本
	2.3.2. 什么是版本库?

	2.4. 回溯历史
	2.4.1. 变更集，版本，与其它用户交互
	2.4.2. 查看指定版本
	2.4.3. 更详细的信息

	2.5. 命令选项
	2.6. 创建和复审变更
	2.7. 在新修改集中记录修改
	2.7.1. 配置用户名称
	2.7.1.1. 创建 Mercurial 的配置文件
	2.7.1.2. 选择用户名称

	2.7.2. 写提交日志
	2.7.3. 写高质量的提交日志
	2.7.4. 终止提交
	2.7.5. 欣赏我们的成果

	2.8. 分享修改
	2.8.1. 从其它版本库取得变更
	2.8.2. 更新工作目录
	2.8.3. 发布修改到其它版本库
	2.8.4. 默认位置
	2.8.5. 通过网络共享修改

	2.9. 开始新项目

	第 3 章 Mercurial 教程: 合并工作
	3.1. 合并的流程
	3.1.1. 顶点修改集
	3.1.2. 执行合并
	3.1.3. 提交合并结果

	3.2. 合并有冲突的变更
	3.2.1. 使用图形合并工具
	3.2.2. 合并实例

	3.3. 简化拉-合并-提交程序
	3.4. 重命名，复制与合并

	第 4 章 Mercurial 内幕
	4.1. Mercurial 的历史记录
	4.1.1. 跟踪单一文件的历史
	4.1.2. 管理跟踪的文件
	4.1.3. 记录修改集信息
	4.1.4. 版本之间的关系

	4.2. 安全，高效的存储
	4.2.1. 高效存储
	4.2.2. 安全操作
	4.2.3. 快速检索
	4.2.3.1. 旁白: 视频压缩的影响

	4.2.4. 鉴别和强完整性

	4.3. 修订历史，分支与合并
	4.4. 工作目录
	4.4.1. 当你提交时发生的事情
	4.4.2. 创建新顶点
	4.4.3. 合并修改
	4.4.4. 合并与重命名

	4.5. 其它有趣的设计特性
	4.5.1. 智能压缩
	4.5.1.1. 网络重新压缩

	4.5.2. 读写顺序与原子性
	4.5.3. 并发访问
	4.5.3.1. 安全的目录状态访问

	4.5.4. 避免查找
	4.5.5. 目录状态的其它内容

	第 5 章 Mercurial 的日常使用
	5.1. 告诉 Mercurial 要跟踪哪些文件
	5.1.1. 明确与隐含文件命名
	5.1.2. Mercurial 只跟踪文件，不跟踪目录

	5.2. 如何停止跟踪文件
	5.2.1. 删除文件不影响历史
	5.2.2. 丢失的文件
	5.2.3. 旁白: 为什么要明确告诉 Mercurial 删除文件?
	5.2.4. 有用的技巧—一个步骤添加和删除文件

	5.3. 拷贝文件
	5.3.1. 合并后拷贝文件的内容
	5.3.2. 为什么要传递变更?
	5.3.3. 如何禁止变更传递?
	5.3.4. 命令hg copy的行为

	5.4. 重命名文件
	5.4.1. 重命名文件与合并变更
	5.4.2. 分歧的更名与合并
	5.4.3. 收敛重命名与合并
	5.4.4. 其它名称相关的信息

	5.5. 从错误恢复
	5.6. 合并的技巧
	5.6.1. 文件的解决状态
	5.6.2. 解决文件合并

	5.7. 差异的更多技巧
	5.8. 哪些文件需要管理，那些不需要
	5.9. 备份与镜像

	第 6 章 团体协作
	6.1. Mercurial 的 web 接口
	6.2. 协作模型
	6.2.1. 要牢记的因素
	6.2.2. 无政府状态
	6.2.3. 单一中央版本库
	6.2.4. 托管的中央版本库
	6.2.5. 使用多个分支工作
	6.2.6. 特性分支
	6.2.7. 发布列车
	6.2.8. Linux 内核模型
	6.2.9. 只读与共享写协作
	6.2.10. 协作与分支管理

	6.3. 共享的技术因素
	6.4. 使用 hg serve 进行非正式共享
	6.4.1. 要牢记的几件事

	6.5. 使用 ssh 协议
	6.5.1. 如何读写 ssh 路径
	6.5.2. 为你的系统寻找 ssh 客户端
	6.5.3. 产生密钥对
	6.5.4. 使用认证代理
	6.5.5. 正确配置服务器端
	6.5.6. 通过 ssh 使用压缩

	6.6. 使用 CGI 通过 HTTP 提供服务
	6.6.1. Web 服务器配置检查表
	6.6.2. 基本 CGI 配置
	6.6.2.1. 什么可能会出错?
	6.6.2.2. 配置 lighttpd

	6.6.3. 使用一个 CGI 脚本共享多个版本库
	6.6.3.1. 明确指出要发布的版本库

	6.6.4. 下载源代码档案包
	6.6.5. Web 配置选项
	6.6.5.1. 针对单个版本库的选项
	6.6.5.2. 命令 hg serve 的选项
	6.6.5.3. 选择正确的 ~/.hgrc 文件增加到 web 条目

	6.7. 全局配置
	6.7.1. 让 Mercurial 更可信

	第 7 章 文件名称与模式匹配
	7.1. 简单文件名称
	7.2. 不提供文件名称的执行命令
	7.3. 告诉你正在做什么
	7.4. 使用模式标识文件
	7.4.1. 外壳风格的 glob 模式
	7.4.1.1. 千万小心！

	7.4.2. 使用 re 模式的正则表达式匹配

	7.5. 过滤文件
	7.6. 始终忽略不需要的文件和目录
	7.7. 大小写敏感性
	7.7.1. 安全，可移植的版本库存储
	7.7.2. 检测大小写冲突
	7.7.3. 修正大小写冲突

	第 8 章 发布管理与分支开发
	8.1. 给版本指定一个永久的名称
	8.1.1. 在合并期间处理标签冲突
	8.1.2. 标签与克隆
	8.1.3. 当永久标签太多的时候

	8.2. 修改流程—宏观与微观
	8.3. 在版本库中管理分支
	8.4. 不要重复劳动：在分支间合并
	8.5. 版本库中的命名分支
	8.6. 在版本库中处理多个命名分支
	8.7. 分支名称与合并
	8.8. 分支名称通常都很有用

	第 9 章 查找和修改错误
	9.1. 销毁本地历史
	9.1.1. 意外的提交
	9.1.2. 回滚一个事务
	9.1.3. 错误的抓取
	9.1.4. 当完成推送后，回滚是无效的
	9.1.5. 你只能回滚一次

	9.2. 撤销错误的修改
	9.2.1. 文件管理错误

	9.3. 处理已经提交的修改
	9.3.1. 恢复一个修改集
	9.3.2. 恢复顶点修改集
	9.3.3. 恢复非顶点的修改
	9.3.3.1. 始终使用选项 --merge

	9.3.4. 在恢复处理中获得更多控制
	9.3.5. hg backout 的内幕

	9.4. 不该发生的修改
	9.4.1. 撤销一个合并
	9.4.2. 使用“校验”修改来保护你自己
	9.4.3. 处理敏感信息泄漏的方法

	9.5. 查找问题的根源
	9.5.1. 使用命令 hg bisect
	9.5.2. 搜索后的清理

	9.6. 有效查找问题的技巧
	9.6.1. 给出一致的输入
	9.6.2. 尽量自动
	9.6.3. 检查你的结果
	9.6.4. 谨防问题之间的冲突
	9.6.5. 减少你的查找工作

	第 10 章 使用钩子处理版本库事件
	10.1. Mercurial 钩子概述
	10.2. 钩子与安全性
	10.2.1. 钩子以你的特权执行
	10.2.2. 钩子不会传播
	10.2.3. 钩子可以被覆盖
	10.2.4. 确保关键钩子的执行

	10.3. 使用钩子的简短指南
	10.3.1. 每个事件执行多个操作
	10.3.2. 控制处理的活动

	10.4. 编写钩子
	10.4.1. 选择钩子的执行方式
	10.4.2. 钩子的参数
	10.4.3. 钩子的返回值与活动控制
	10.4.4. 编写外部钩子
	10.4.5. 让 Mercurial 使用进程内钩子
	10.4.6. 编写进程内钩子

	10.5. 钩子样例
	10.5.1. 编写有意义的提交日志
	10.5.2. 检查行尾空格

	10.6. 内置的钩子
	10.6.1. acl—版本库的访问控制
	10.6.1.1. 配置 acl 钩子
	10.6.1.2. 测试与问题处理

	10.6.2. bugzilla—与 Bugzilla 的集成
	10.6.2.1. 配置 bugzilla 钩子
	10.6.2.2. 提交者的名称与 Bugzilla 用户名称的映射
	10.6.2.3. 配置增加到问题中的正文
	10.6.2.4. 测试与问题处理

	10.6.3. notify—邮件通知
	10.6.3.1. 配置 notify 钩子
	10.6.3.2. 测试与问题处理

	10.7. 编写钩子的信息
	10.7.1. 进程内钩子的执行
	10.7.2. 外部钩子的执行
	10.7.3. 检查修改集来自何处
	10.7.3.1. 修改集的来源
	10.7.3.2. 修改集要到哪里—远程版本库的地址

	10.8. 钩子参考
	10.8.1. changegroup—增加远程修改集之后
	10.8.2. commit—创建新修改集之后
	10.8.3. incoming—增加远程修改集之后
	10.8.4. outgoing—传播修改集之后
	10.8.5. prechangegroup—增加远程修改集之前
	10.8.6. precommit—提交修改集之前
	10.8.7. preoutgoing—传播修改集之前
	10.8.8. pretag—创建标签之前
	10.8.9. pretxnchangegroup—完成增加远程修改集之前
	10.8.10. pretxncommit—完成提交之前
	10.8.11. preupdate—更新或合并工作目录之前
	10.8.12. tag—创建标签之后
	10.8.13. update—更新或合并工作目录之后

	第 11 章 定制 Mercurial 的输出
	11.1. 使用预定义的输出样式
	11.1.1. 设置默认样式

	11.2. 支持样式和模版的命令
	11.3. 模版基础
	11.4. 模版关键字
	11.5. 转义序列
	11.6. 通过过滤关键字来修改输出结果
	11.6.1. 组合过滤器

	11.7. 从模版到样式
	11.7.1. 最简单的样式文件
	11.7.2. 样式文件语法

	11.8. 样式文件例子
	11.8.1. 在样式文件中定位错误
	11.8.2. 版本库的唯一标识
	11.8.3. 每行列出一个文件
	11.8.4. 模仿 Subversion 的输出

	第 12 章 使用 MQ 管理修改
	12.1. 补丁的管理问题
	12.2. MQ 的历史
	12.2.1. A patchwork quilt
	12.2.2. 从 patchwork quilt 到 MQ

	12.3. MQ 的巨大优势
	12.4. 理解补丁
	12.5. 开始使用 MQ
	12.5.1. 创建新补丁
	12.5.2. 刷新补丁
	12.5.3. 堆叠和跟踪补丁
	12.5.4. 操作补丁堆栈
	12.5.5. 压入或弹出多个补丁
	12.5.6. 安全的检查，然后覆盖它们
	12.5.7. 同时处理多个补丁

	12.6. 关于补丁的更多信息
	12.6.1. 修剪计数
	12.6.2. 应用补丁的策略
	12.6.3. 补丁的一些特性
	12.6.4. 当心毛刺
	12.6.5. 处理拒绝

	12.7. 补丁管理进阶
	12.7.1. 删除不需要的补丁
	12.7.2. 与持久版本的相互转换

	12.8. MQ 的性能
	12.9. 当基础代码改变时，更新补丁的方法
	12.10. 标识补丁
	12.11. 其它需要了解的东西
	12.12. 在版本库管理补丁
	12.12.1. MQ 支持补丁版本库
	12.12.2. 需要注意的事情

	12.13. 操作补丁的第三方工具
	12.14. 操作补丁的好习惯
	12.15. MQ 手册
	12.15.1. 管理“琐碎的”补丁
	12.15.2. 组合全部的补丁
	12.15.3. 合并补丁的部分内容到其它补丁

	12.16. MQ 与 quilt 的区别

	第 13 章 MQ 的高级用法
	13.1. 多个目标的问题
	13.1.1. 工作不好的诱人方法

	13.2. 有条件的应用补丁
	13.3. 控制补丁的应用条件
	13.4. 选择使用的条件
	13.5. MQ 应用补丁的规则
	13.6. 修剪工作环境
	13.7. 分类补丁系列
	13.8. 维护补丁系列
	13.8.1. 编写向后移植补丁的艺术

	13.9. 使用 MQ 开发的技巧
	13.9.1. 将补丁放到几个目录中
	13.9.2. 察看补丁的历史

	第 14 章 使用扩展增加功能
	14.1. 使用扩展 inotify 以提高性能
	14.2. 使用扩展 extdiff 以扩展差异支持
	14.2.1. 定义命令的别名

	14.3. 使用扩展 transplant 以挑选修改
	14.4. 使用扩展 patchbomb 通过 email 发送修改
	14.4.1. 修改 patchbomb 的行为

	附录 A. 迁移到 Mercurial
	A.1. 从其它版本控制系统导入历史
	A.1.1. 转换多个分支
	A.1.2. 映射用户名称
	A.1.3. 清理目录树
	A.1.4. 改进 Subversion 的转换性能

	A.2. 从 Subversion 迁移
	A.2.1. 哲学的差别
	A.2.1.1. 命令作用域
	A.2.1.2. 多用户操作与安全
	A.2.1.3. 已发布的修改与本地修改

	A.2.2. 快速参考

	A.3. 新手需要了解的技巧

	附录 B. Mercurial 队列参考
	B.1. MQ 命令参考
	B.1.1. qapplied—显示已应用的补丁
	B.1.2. qcommit—提交队列中的修改
	B.1.3. qdelete—从文件 series 中删除补丁
	B.1.4. qdiff—显示最新应用补丁的差异
	B.1.5. qfold—将已应用的补丁提交到版本库
	B.1.6. qfold—将多个补丁合并(“折叠”)成一个
	B.1.7. qheader—显示补丁头部描述
	B.1.8. qimport—将第三方补丁导入队列
	B.1.9. qinit—为使用 MQ 配置版本库
	B.1.10. qnew—创建新补丁
	B.1.11. qnext—显示下个补丁的名称
	B.1.12. qpop—删除堆栈顶部的补丁
	B.1.13. qprev—显示上个补丁的名称
	B.1.14. qpush—增加补丁到堆栈
	B.1.15. qrefresh—更新最新的补丁
	B.1.16. qrename—改名补丁
	B.1.17. qseries—显示补丁序列
	B.1.18. qtop—显示当前补丁的名称
	B.1.19. qunapplied—显示尚未应用的补丁
	B.1.20. hg strip—删除一个版本及其后继

	B.2. MQ 文件参考
	B.2.1. 序列文件
	B.2.2. 状态文件

	附录 C. 从源代码安装 Mercurial
	C.1. 类 Unix 系统
	C.2. Windows 系统

	附录 D. 开放出版协议
	D.1. Requirements on both unmodified and modified versions
	D.2. Copyright
	D.3. Scope of license
	D.4. Requirements on modified works
	D.5. Good-practice recommendations
	D.6. License options

