
Mercurial 权威指南

编译自 7764de86d22f (2009-12-28)

Bryan O'Sullivan

ii

目录

序言 ... xii
1. 技术背景 ... xii
2. 谢谢你支持 Mercurial ... xii
3. 致谢 ... xii
4. 本书的约定 .. xiii
5. 使用样例代码 .. xiii
6. Safari® 在线书库 ... xiv
7. 联系我们 .. xiv

1. 写在前面 ... 1
1.1. 为什么使用版本控制? 为什么使用 Mercurial? .. 1

1.1.1. 为什么使用版本控制? ... 1
1.1.2. 版本控制的别名 ... 2

1.2. 本书的例子 .. 2
1.3. 版本控制的发展趋势 .. 3
1.4. 分布版本控制的优点 .. 3

1.4.1. 开源项目的优点 ... 3
1.4.2. 商业项目的优点 ... 4

1.5. 为什么选择 Mercurial? .. 5
1.6. Mercurial 与其它工具的比较 .. 5

1.6.1. Subversion .. 5
1.6.2. Git .. 6
1.6.3. CVS .. 6
1.6.4. 商业工具 ... 7
1.6.5. 选择版本控制工具 ... 7

1.7. 从其它工具切换到 Mercurial .. 7
1.8. 版本控制简史 .. 8

2. Mercurial 教程: 基础知识 .. 10
2.1. 安装 Mercurial .. 10

2.1.1. Windows .. 10
2.1.2. Mac OS X .. 10
2.1.3. Linux ... 10
2.1.4. Solaris ... 10

2.2. 开始 ... 11
2.2.1. 内置帮助 .. 11

2.3. 使用版本库 ... 11
2.3.1. 创建版本库的工作副本 ... 11
2.3.2. 什么是版本库? .. 12

2.4. 回溯历史 ... 12
2.4.1. 变更集，版本，与其它用户交互 ... 14
2.4.2. 查看指定版本 .. 14
2.4.3. 更详细的信息 .. 15

2.5. 命令选项 ... 16
2.6. 创建和复审变更 ... 17
2.7. 在新修改集中记录修改 .. 18

2.7.1. 配置用户名称 .. 18
2.7.2. 写提交日志 .. 19

Mercurial 权威指南

iii

2.7.3. 写高质量的提交日志 ... 20
2.7.4. 终止提交 .. 20
2.7.5. 欣赏我们的成果 .. 20

2.8. 分享修改 ... 21
2.8.1. 从其它版本库取得变更 ... 21
2.8.2. 更新工作目录 .. 22
2.8.3. 发布修改到其它版本库 ... 23
2.8.4. 默认位置 .. 24
2.8.5. 通过网络共享修改 ... 24

2.9. 开始新项目 ... 25
3. Mercurial 教程: 合并工作 .. 26

3.1. 合并的流程 ... 26
3.1.1. 顶点修改集 .. 27
3.1.2. 执行合并 .. 28
3.1.3. 提交合并结果 .. 29

3.2. 合并有冲突的改变 ... 30
3.2.1. 使用图形合并工具 ... 31
3.2.2. 合并实例 .. 32

3.3. 简化拉-合并-提交程序 .. 34
3.4. 改名，复制与合并 ... 35

4. Mercurial 内幕 ... 36
4.1. Mercurial 的历史记录 .. 36

4.1.1. 跟踪单一文件的历史 ... 36
4.1.2. 管理跟踪的文件 .. 37
4.1.3. 记录修改集信息 .. 37
4.1.4. 版本之间的关系 .. 37

4.2. 安全，高效的存储 ... 38
4.2.1. 高效存储 .. 38
4.2.2. 安全操作 .. 38
4.2.3. 快速检索 .. 38
4.2.4. 鉴别和强完整性 .. 39

4.3. 修订历史，分支与合并 .. 40
4.4. 工作目录 ... 41

4.4.1. 当你提交时发生的事情 ... 42
4.4.2. 创建新顶点 .. 43
4.4.3. 合并修改 .. 45
4.4.4. 合并与改名 .. 46

4.5. 其它有趣的设计特性 .. 46
4.5.1. 智能压缩 .. 46
4.5.2. 读写顺序与原子性 ... 47
4.5.3. 并发访问 .. 47
4.5.4. 避免查找 .. 48
4.5.5. 目录状态的其它内容 ... 48

5. Mercurial 的日常使用 ... 50
5.1. 告诉 Mercurial 要跟踪哪些文件 ... 50

5.1.1. 明确与隐含文件命名 ... 50
5.1.2. Mercurial 只跟踪文件，不跟踪目录 ... 51

5.2. 如何停止跟踪文件 ... 51

Mercurial 权威指南

iv

5.2.1. 删除文件不影响历史 ... 52
5.2.2. 丢失的文件 .. 52
5.2.3. 旁白: 为什么要明确告诉 Mercurial 删除文件? ... 53
5.2.4. 有用的速记—一个步骤添加和删除文件 ... 53

5.3. 复制文件 ... 53
5.3.1. 合并期间的复制结果 ... 53
5.3.2. 为什么复制后需要后续修改? ... 54
5.3.3. 如何让复制后不修改? ... 55
5.3.4. 命令 hg copy 的特性 .. 55

5.4. 改名文件 ... 56
5.4.1. 改名文件与合并修改 ... 56
5.4.2. 改名与合并的分歧 ... 57
5.4.3. 收敛改名与合并 .. 58
5.4.4. 其它名称相关的角落 ... 58

5.5. 从错误恢复 ... 58
5.6. 合并的技巧 ... 59

5.6.1. 文件的解决状态 .. 60
5.6.2. 合并文件 .. 61

5.7. 更有用的差异 ... 61
5.8. 需要管理哪些文件，应该避免的事情 .. 62
5.9. 备份与镜像 ... 63

6. 团体协作 .. 64
6.1. Mercurial 的 web 接口 .. 64
6.2. 协作模型 ... 65

6.2.1. 要牢记的因素 .. 65
6.2.2. 无政府状态 .. 65
6.2.3. 单一中央版本库 .. 66
6.2.4. 托管的中央版本库 ... 66
6.2.5. 使用多个分支工作 ... 66
6.2.6. 特性分支 .. 68
6.2.7. 发布列车 .. 69
6.2.8. Linux 内核模型 .. 69
6.2.9. 只读与共享写协作 ... 70
6.2.10. 协作与分支管理 .. 70

6.3. 共享的技术因素 ... 71
6.4. 使用 hg serve 进行非正式共享 .. 71

6.4.1. 要牢记的几件事 .. 71
6.5. 使用 ssh 协议 ... 72

6.5.1. 如何读写 ssh 路径 .. 72
6.5.2. 为你的系统寻找 ssh 客户端 ... 73
6.5.3. 产生密钥对 .. 73
6.5.4. 使用认证代理 .. 73
6.5.5. 正确配置服务器端 ... 74
6.5.6. 通过 ssh 使用压缩 .. 76

6.6. 使用 CGI 通过 HTTP 提供服务 ... 76
6.6.1. Web 服务器配置检查表 .. 77
6.6.2. 基本 CGI 配置 .. 77
6.6.3. 使用一个 CGI 脚本共享多个版本库 ... 79

Mercurial 权威指南

v

6.6.4. 下载源代码档案包 ... 81
6.6.5. Web 配置选项 .. 81

6.7. 全局配置 ... 83
6.7.1. 让 Mercurial 更可信 .. 83

7. 文件名称与模式匹配 ... 85
7.1. 简单文件名称 ... 85
7.2. 不提供文件名称的执行命令 .. 85
7.3. 告诉你正在做什么 ... 86
7.4. 使用模式标识文件 ... 86

7.4.1. 外壳风格的 glob 模式 ... 87
7.4.2. 使用 re 模式的正则表达式匹配 .. 88

7.5. 过滤文件 ... 88
7.6. 始终忽略不需要的文件和目录 .. 89
7.7. 大小写敏感性 ... 90

7.7.1. 安全，可移植的版本库存储 ... 90
7.7.2. 检测大小写冲突 .. 90
7.7.3. 修正大小写冲突 .. 91

8. 发布管理与分支开发 ... 92
8.1. 给版本指定一个永久的名称 .. 92

8.1.1. 在合并期间处理标签冲突 ... 94
8.1.2. 标签与克隆 .. 94
8.1.3. 当永久标签太多的时候 ... 95

8.2. 修改流程—宏观与微观 .. 95
8.3. 在版本库中管理分支 .. 95
8.4. 不要重复劳动：在分支间合并 .. 96
8.5. 版本库中的命名分支 .. 97
8.6. 在版本库中处理多个命名分支 .. 99
8.7. 分支名称与合并 ... 100
8.8. 分支名称通常都很有用 ... 101

9. 查找和修改错误 .. 102
9.1. 销毁本地历史 ... 102

9.1.1. 意外的提交 .. 102
9.1.2. 回滚一个事务 .. 102
9.1.3. 错误的抓取 .. 103
9.1.4. 当完成推送后，回滚是无效的 ... 103
9.1.5. 你只能回滚一次 .. 104

9.2. 撤销错误的修改 ... 104
9.2.1. 文件管理错误 .. 105

9.3. 处理已经提交的修改 ... 106
9.3.1. 恢复一个修改集 .. 106
9.3.2. 恢复顶点修改集 .. 106
9.3.3. 恢复非顶点的修改 .. 107
9.3.4. 在恢复处理中获得更多控制 .. 109
9.3.5. hg backout 的内幕 ... 111

9.4. 不该发生的修改 ... 112
9.4.1. 撤销一个合并 .. 113
9.4.2. 使用“校验”修改来保护你自己 ... 116
9.4.3. 处理敏感信息泄漏的方法 .. 117

Mercurial 权威指南

vi

9.5. 查找问题的根源 ... 117
9.5.1. 使用命令 hg bisect ... 118
9.5.2. 搜索后的清理 .. 121

9.6. 有效查找问题的技巧 ... 121
9.6.1. 给出一致的输入 .. 121
9.6.2. 尽量自动 .. 122
9.6.3. 检查你的结果 .. 122
9.6.4. 谨防问题之间的冲突 .. 122
9.6.5. 减少你的查找工作 .. 123

10. 使用钩子处理版本库事件 .. 124
10.1. Mercurial 钩子概述 ... 124
10.2. 钩子与安全性 ... 125

10.2.1. 钩子以你的特权执行 .. 125
10.2.2. 钩子不会传播 .. 125
10.2.3. 钩子可以被覆盖 .. 126
10.2.4. 确保关键钩子的执行 .. 126

10.3. 使用钩子的简短指南 ... 126
10.3.1. 每个事件执行多个操作 .. 127
10.3.2. 控制处理的活动 .. 127

10.4. 编写钩子 ... 128
10.4.1. 选择钩子的执行方式 .. 128
10.4.2. 钩子的参数 .. 128
10.4.3. 钩子的返回值与活动控制 .. 129
10.4.4. 编写外部钩子 .. 129
10.4.5. 让 Mercurial 使用进程内钩子 .. 129
10.4.6. 编写进程内钩子 .. 129

10.5. 钩子样例 ... 130
10.5.1. 编写有意义的提交日志 .. 130
10.5.2. 检查行尾空格 .. 130

10.6. 内置的钩子 ... 132
10.6.1. acl—版本库的访问控制 ... 132
10.6.2. bugzilla—与 Bugzilla 的集成 ... 133
10.6.3. notify—邮件通知 .. 137

10.7. 编写钩子的信息 ... 139
10.7.1. 进程内钩子的执行 .. 139
10.7.2. 外部钩子的执行 .. 139
10.7.3. 检查修改集来自何处 .. 140

10.8. 钩子参考 ... 140
10.8.1. changegroup—增加远程修改集之后 .. 140
10.8.2. commit—创建新修改集之后 .. 141
10.8.3. incoming—增加远程修改集之后 ... 141
10.8.4. outgoing—传播修改集之后 ... 142
10.8.5. prechangegroup—增加远程修改集之前 ... 142
10.8.6. precommit—提交修改集之前 ... 143
10.8.7. preoutgoing—传播修改集之前 .. 143
10.8.8. pretag—创建标签之前 .. 143
10.8.9. pretxnchangegroup—完成增加远程修改集之前 144
10.8.10. pretxncommit—完成提交之前 ... 145

Mercurial 权威指南

vii

10.8.11. preupdate—更新或合并工作目录之前 ... 145
10.8.12. tag—创建标签之后 ... 145
10.8.13. update—更新或合并工作目录之后 .. 146

11. 定制 Mercurial 的输出 ... 147
11.1. 使用预定义的输出样式 ... 147

11.1.1. 设置默认样式 .. 148
11.2. 支持样式和模版的命令 ... 148
11.3. 模版基础 ... 148
11.4. 模版关键字 ... 149
11.5. 转义序列 ... 150
11.6. 通过过滤关键字来修改输出结果 ... 150

11.6.1. 组合过滤器 .. 153
11.7. 从模版到样式 ... 153

11.7.1. 最简单的样式文件 .. 153
11.7.2. 样式文件语法 .. 154

11.8. 样式文件例子 ... 154
11.8.1. 在样式文件中定位错误 .. 154
11.8.2. 版本库的唯一标识 .. 155
11.8.3. 每行列出一个文件 .. 156
11.8.4. 模仿 Subversion 的输出 ... 156

12. 使用 MQ 管理修改 .. 158
12.1. 补丁的管理问题 ... 158
12.2. MQ 的历史 .. 158

12.2.1. A patchwork quilt ... 159
12.2.2. 从 patchwork quilt 到 MQ .. 159

12.3. MQ 的巨大优势 .. 159
12.4. 理解补丁 ... 160
12.5. 开始使用 MQ .. 161

12.5.1. 创建新补丁 .. 162
12.5.2. 刷新补丁 .. 162
12.5.3. 堆叠和跟踪补丁 .. 163
12.5.4. 操作补丁堆栈 .. 164
12.5.5. 压入或弹出多个补丁 .. 165
12.5.6. 安全的检查，然后覆盖它们 .. 165
12.5.7. 同时处理多个补丁 .. 165

12.6. 关于补丁的更多信息 ... 166
12.6.1. 修剪计数 .. 166
12.6.2. 应用补丁的策略 .. 167
12.6.3. 补丁的一些特性 .. 167
12.6.4. 当心毛刺 .. 167
12.6.5. 处理拒绝 .. 168

12.7. 补丁管理进阶 ... 168
12.7.1. 删除不需要的补丁 .. 169
12.7.2. 与持久版本的相互转换 .. 169

12.8. MQ 的性能 .. 169
12.9. 当基础代码改变时，更新补丁的方法 ... 170
12.10. 标识补丁 ... 171
12.11. 其它需要了解的东西 ... 172

Mercurial 权威指南

viii

12.12. 在版本库管理补丁 ... 173
12.12.1. MQ 支持补丁版本库 ... 173
12.12.2. 需要注意的事情 .. 174

12.13. 操作补丁的第三方工具 ... 174
12.14. 操作补丁的好习惯 ... 175
12.15. MQ 手册 .. 175

12.15.1. 管理“琐碎的”补丁 .. 175
12.15.2. 组合全部的补丁 .. 176
12.15.3. 合并补丁的部分内容到其它补丁 .. 177

12.16. MQ 与 quilt 的区别 .. 178
13. MQ 的高级用法 ... 179

13.1. 多个目标的问题 ... 179
13.1.1. 工作不好的诱人方法 .. 179

13.2. 有条件的应用补丁 ... 180
13.3. 控制补丁的应用条件 ... 181
13.4. 选择使用的条件 ... 181
13.5. MQ 应用补丁的规则 .. 182
13.6. 修剪工作环境 ... 182
13.7. 分类补丁系列 ... 183
13.8. 维护补丁系列 ... 184

13.8.1. 编写向后移植补丁的艺术 .. 184
13.9. 使用 MQ 开发的技巧 ... 185

13.9.1. 将补丁放到几个目录中 .. 185
13.9.2. 察看补丁的历史 .. 185

14. 使用扩展增加功能 .. 187
14.1. 使用扩展 inotify 以提高性能 .. 187
14.2. 使用扩展 extdiff 以扩展差异支持 .. 190

14.2.1. 定义命令的别名 .. 191
14.3. 使用扩展 transplant 以挑选修改 ... 192
14.4. 使用扩展 patchbomb 通过 email 发送修改 .. 192

14.4.1. 修改 patchbomb 的行为 ... 193
A. 迁移到 Mercurial .. 194

A.1. 从其它版本控制系统导入历史 ... 194
A.1.1. 转换多个分支 .. 195
A.1.2. 映射用户名称 .. 195
A.1.3. 清理目录树 .. 195
A.1.4. 改进 Subversion 的转换性能 ... 196

A.2. 从 Subversion 迁移 .. 197
A.2.1. 哲学的差别 .. 197
A.2.2. 快速参考 .. 198

A.3. 新手需要了解的技巧 ... 199
B. Mercurial 队列参考 .. 200

B.1. MQ 命令参考 .. 200
B.1.1. qapplied—显示已应用的补丁 .. 200
B.1.2. qcommit—提交队列中的修改 .. 200
B.1.3. qdelete—从文件 series 中删除补丁 .. 200
B.1.4. qdiff—显示最新应用补丁的差异 .. 200
B.1.5. qfold—将已应用的补丁提交到版本库 ... 200

Mercurial 权威指南

ix

B.1.6. qfold—将多个补丁合并(“折叠”)成一个 .. 200
B.1.7. qheader—显示补丁头部描述 ... 201
B.1.8. qimport—将第三方补丁导入队列 ... 201
B.1.9. qinit—为使用 MQ 配置版本库 ... 201
B.1.10. qnew—创建新补丁 .. 201
B.1.11. qnext—显示下个补丁的名称 .. 202
B.1.12. qpop—删除堆栈顶部的补丁 ... 202
B.1.13. qprev—显示上个补丁的名称 ... 203
B.1.14. qpush—增加补丁到堆栈 ... 203
B.1.15. qrefresh—更新最新的补丁 .. 203
B.1.16. qrename—改名补丁 ... 204
B.1.17. qseries—显示补丁序列 ... 204
B.1.18. qtop—显示当前补丁的名称 .. 204
B.1.19. qunapplied—显示尚未应用的补丁 ... 204
B.1.20. hg strip—删除一个版本及其后继 .. 204

B.2. MQ 文件参考 .. 205
B.2.1. 序列文件 .. 205
B.2.2. 状态文件 .. 205

C. 从源代码安装 Mercurial ... 206
C.1. 类 Unix 系统 ... 206
C.2. Windows 系统 .. 206

D. 开放出版协议 .. 207
D.1. Requirements on both unmodified and modified versions .. 207
D.2. Copyright .. 207
D.3. Scope of license ... 207
D.4. Requirements on modified works .. 208
D.5. Good-practice recommendations ... 208
D.6. License options .. 208

x

插图清单

2.1. 版本库 hello 的历史图 ... 14
3.1. my-hello 与 my-new-hello 最新的历史分叉 ... 27
3.2. 从 my-hello 拉到 my-new-hello 之后版本库的内容 .. 28
3.3. 在合并期间，以及提交之后的工作目录与版本库 .. 30
3.4. 冲突的修改 ... 30
3.5. 使用 kdiff3 合并文件的不同版本 .. 32
4.1. 工作目录中的文件与版本库中的文件日志之间的关系 .. 36
4.2. 元数据之间的关系 ... 37
4.3. 版本日志的快照，以及增量差异 .. 39
4.4. 版本日志的设计结构 .. 41
4.5. 工作目录可以有两个父亲 .. 42
4.6. 提交之后，工作目录的父亲就改变了 .. 43
4.7. 同步到旧修改集的工作目录 .. 44
4.8. 对同步到旧修改集的工作目录提交之后 .. 44
4.9. 合并两个顶点 ... 45
6.1. 特性分支 ... 69
9.1. 使用 hg backout 恢复一个修改 ... 107
9.2. 使用 hg backout 自动恢复非顶点的修改 ... 108
9.3. 使用 hg backout 恢复一个修改 ... 110
9.4. 手工合并恢复修改 ... 111
9.5. 错误的合并 ... 113
9.6. 拆除合并，关注一个父亲 ... 114
9.7. 拆除合并，关注其它父亲 ... 114
9.8. 合并拆除 ... 115
9.9. 合并拆除 ... 116
12.1. 在 MQ 补丁堆栈中应用和撤销补丁 ... 164

xi

表格清单

A.1. Subversion 命令与 Mercurial 对照表 .. 198

xii

序言

1. 技术背景
数年之前，当我想解释为什么我相信分布式版本控制非常重要的时候，这个领域实在太

新了，几乎没有公开的文献供人们参考。

虽然在那个时候，我已经在Mercurial的内核上花了一些时间，我转而写这本书是因为我
发现这可能是帮助软件吸引更多用户，和让大家接受版本控制本质上就应该是分布式的最有
效的方式，我把这本书在网上以自由许可的方式发布也是基于同样的原因：让大家都了解。

一本好的关于软件的书应该和讲故事类似：这是个什么东西？为什么需要它？它会怎样
帮助我？我怎么使用它？本书中，我会为分布式版本控制回答这些问题，特别是Mercurial。

2. 谢谢你支持 Mercurial
通过购买此书，你支持了开源和自由软件的持续发展和自由，特别是

Mercurial。O'Reilly Media和我将本书的收入捐献给Software Freedom Conservancy (http://
www.softwarefreedom.org/) ,这个组织为Mercurial和其他一些有潜力和价值的开源软件项目
提供了办公和法律支持。

3. 致谢
没有Matt Mackall，Mercurial项目的开发者和领导的努力，这本书不可能存在。他得到

了全球数以百计的志愿者的帮助。

我的孩子Cian和Ruairi总是站在我旁边帮我解决奇妙的疯狂小男孩游戏。我同样也要感谢
我的前妻Shannon的帮助。

我的同事和朋友以各种方式提供了帮助和支持，这里的名单非常不全：Stephen Hahn,
Karyn Ritter, Bonnie Corwin, James Vasile, Matt Norwood, Eben Moglen, Bradley Kuhn, Robert
Walsh, Jeremy Fitzhardinge, Rachel Chalmers.

我以开放的方式完成了本书，当我完成各章的草稿后，就将其放在了网上。读者可以使
用我开发的一个网络程序提交反馈。到我完成本书时，有100多人提交了评论。考虑到评论
系统是在写作完成之前两个月才开放的，这是一个惊人的数字。

我特别希望认识以下人员，他们中有的人提交了超过总数三分之一的评论。我要感谢他
们的关心和努力，提供了那么多详细的反馈。

Martin Geisler, Damien Cassou, Alexey Bakhirkin, Till Plewe, Dan Himes, Paul Sargent,
Gokberk Hamurcu, Matthijs van der Vleuten, Michael Chermside, John Mulligan, Jordi Fita, Jon
Parise.

我同样要感谢许多在书中找出错误和提供了有帮助的建议的人。

http://www.softwarefreedom.org/
http://www.softwarefreedom.org/

序言

xiii

Jeremy W. Sherman, Brian Mearns, Vincent Furia, Iwan Luijks, Billy Edwards, Andreas
Sliwka, Paweł Sołyga, Eric Hanchrow, Steve Nicolai, Michał Masłowski, Kevin Fitch, Johan
Holmberg, Hal Wine, Volker Simonis, Thomas P Jakobsen, Ted Stresen-Reuter, Stephen Rasku,
Raphael Das Gupta, Ned Batchelder, Lou Keeble, Li Linxiao, Kao Cardoso Félix, Joseph Wecker, Jon
Prescot, Jon Maken, John Yeary, Jason Harris, Geoffrey Zheng, Fredrik Jonson, Ed Davies, David
Zumbrunnen, David Mercer, David Cabana, Ben Karel, Alan Franzoni, Yousry Abdallah, Whitney
Young, Vinay Sajip, Tom Towle, Tim Ottinger, Thomas Schraitle, Tero Saarni, Ted Mielczarek,
Svetoslav Agafonkin, Shaun Rowland, Rocco Rutte, Polo-Francois Poli, Philip Jenvey, Petr Tesałék,
Peter R. Annema, Paul Bonser, Olivier Scherler, Olivier Fournier, Nick Parker, Nick Fabry, Nicholas
Guarracino, Mike Driscoll, Mike Coleman, Mietek Bák, Michael Maloney, László Nagy, Kent
Johnson, Julio Nobrega, Jord Fita, Jonathan March, Jonas Nockert, Jim Tittsler, Jeduan Cornejo
Legorreta, Jan Larres, James Murphy, Henri Wiechers, Hagen Möbius, Gábor Farkas, Fabien
Engels, Evert Rol, Evan Willms, Eduardo Felipe Castegnaro, Dennis Decker Jensen, Deniz Dogan,
David Smith, Daed Lee, Christine Slotty, Charles Merriam, Guillaume Catto, Brian Dorsey, Bob
Nystrom, Benoit Boissinot, Avi Rosenschein, Andrew Watts, Andrew Donkin, Alexey Rodriguez,
Ahmed Chaudhary.

4. 本书的约定
本书使用如下的印刷约定：

斜体
标识新术语，URL，电子邮件地址，文件名称与扩展名。

等宽
用于程序列表，以及段内引用的程序元素，例如变量、函数名称、数据库、数据类型、环
境变量、声明和关键字。

等宽粗体
标识命令或者其它用户应该逐字输入的文本。

等宽斜体
标识应该被用户提供的值或者取决于上下文的值替换的文本。

提示

此图标表示提示，建议或者一般的的注释。

小心

此图标表示警告。

5. 使用样例代码
本书的目的是帮助你完成工作。基本上，你可以将书中的代码用于你的程序或文档。无

需取得我们的许可，除非你直接复制大量的代码。举例来说，在程序中使用几段书中的代码
无需许可。出售或发布含有O'Reilly书中示例的CD-ROM则需经许可。引用本书中的叙述或示
例代码来回答问题无需许可。将书中的大量代码合并到你的产品文档中则需经许可。

序言

xiv

虽然我们并不要求在引用本书的时候做版权归属声明，但如果你这样做了，我们将非常
感激。版权归属声明通常包含标题，作者，发行者和ISBN。例如： “书名 某人著。 版权所有
2008 O’Reilly Media，Inc.， 978-0-596-xxxx-x。”

如果你觉得你对书中示例代码的使用超出了正常范围，或者不符合以上描述的许可，尽
管用电子邮件跟我们联系：<permissions@oreilly.com>。

6. Safari® 在线书库
注意

如果你在喜欢的技术图书的封面上看见Safari® Books Online的图标，这表示你你可
以通过O'Reilly Network Safari Bookshelf在网上使用此书。

Safari提供了一个比电子书更好的解决方案。它是一所虚拟图书馆，你可以在上面轻松搜
索上千种顶级的技术书籍，剪切和复制示例代码，下载章节，当你需要最准确、最新的信息
时，让你更快地找到答案。可以通过下面链接免费试用http://my.safaribooksonline.com
[http://my.safaribooksonline.com/?portal=oreilly]。

7. 联系我们
关于本书的任何问题或评论请发邮件给出版商：

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707 829-0104 (fax)

我们将提供一个关于本书的主页，在那上面提供勘误表、示例以及其它附加信息。你可
以从这里访问到它：

http://www.oreilly.com/catalog/<catalog page>
Don’t forget to update the <url> attribute, too.

关于本书的任何技术问题或评论请发邮件给出版商：

<bookquestions@oreilly.com>

如果想了解关于我们的图书、会议、资源中心以及O'Reilly Network的更多信息，可以浏
览以下站点：

http://www.oreilly.com

http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/<catalog page>
http://www.oreilly.com

1

第 1 章 写在前面

1.1. 为什么使用版本控制? 为什么使用
Mercurial?

版本控制是管理一些信息的多个版本的过程。它最简单的形式莫过于：每次你修改一个
文件后都重新命名保存，文件名中包含一个数字，每次修改后这个数字都增加。这通常是许
多人手工完成的。

然而，手工管理即使是一个文件的多个版本也是很容易出错的，所以很早就有软件工具
来使这个过程自动化。最早的自动化软件管理工具的目标是帮助一个用户管理一个文件的版
本。在过去的几十年里，版本控制工具的范围得到极大扩展；现在它们可以管理多个文件，
帮助许多人一起工作。最新的版本控制工具可以支持上包含成数十万个文件，几千个人一起
工作的项目。

分布式版本控制是最近才出现的，但是由于人们愿意探索新的疆域，目前这一新的领域
已经得到了长足的发展

我写这本关于分布式版本控制的书是因为我相信这个领域应该有一个指南。我选择
Mercurial是因为它是在这个领域中学习最容易上手的工具，并且它能够满足真实的，挑战性
的环境的要求，而其他版本控制工具只能望而兴叹。

1.1.1. 为什么使用版本控制?
为什么你或者你的团队可能需要在项目中使用自动化版本控制工具呢？有很多理由。

• 因为它能记录你的项目的历史和演化，所以你不必再给每个变更都记录日志，谁做的；为
什么他们这样做；什么时候做的；做了什么修改。

• 当你和其他人一起工作的时候，版本控制工具让你合作的更容易。例如,当许多人或多或少
的同时进行有可能冲突的修改的时候，软件可以帮助你确定和解决这些冲突。

• 它能帮助你修正错误。如果你做了一个修改，但是后来发现这是个错误，你能恢复到一个
或者多个文件以前的版本。实际上，一个相当好的版本控制工具甚至会帮助你找出什么什
么是时候引入的这个问题（详细信息参考第 9.5 节 “查找问题的根源”）。

• 它能帮助你同时工作于项目的多个版本，并管理它们的差异。

大多数这些理由都是等效的—至少在理论上—不管你是一个人做项目还是和几百个人一
起。

版本控制在在不同尺度上（“单个黑客”和“一个大项目组”）实践的一个关键问题是
它的性价比怎么样。一个很难理解和使用的版本控制工具会让你的代价很高。

如果没有版本控制工具和过程，一个五百人的项目很快就可能就将自己压垮。在这种情
况下，版本控制的代价基本上不用考虑，因为没有它，失败几乎是一定的。

写在前面

2

另一方面，一个人的“快速编程”看起来并不适合使用版本控制工具，因为使用一个版
本控制工具的代价就是整个项目的代价，对吧？

Mercurial的独特之处就是它同时支持这两种尺度的开发。你可以在几分钟之内学会基本
的使用，因为代价很小，你可以很方便的在最小的项目上应用版本管理。它的简洁性意味着
不会有很多艰深的概念和命令干扰你真正的工作。同时，Mercurial高性能和点对点的特性可
以让你轻易的应对大的项目。

没有一个版本控制工具能拯救一个糟糕的项目，但是在项目中选择好的工具会大大的提
高效率，正是工欲善其事，必先利其器。

1.1.2. 版本控制的别名
版本控制是一个各自为政的领域，以至于有很多名称和缩略语，下面是你可能遇到的一

些常用的术语：

• 版本控制(RCS)

• 软件配置管理(SCM)，或配置管理

• 源代码管理

• 源代码控制，或源控制

• 版本控制(VCS)

有些人声称这些术语有不同的含义，但实际上它们的含义太重叠了，根本没有一致的，
甚至有用的方式来区别它们。

1.2. 本书的例子
本书采用了一种非同寻常的示例编程方法。每个例子都是“活的”—每一个示例都是一

个shell脚本执行的实际结果，这个脚本执行了你看到的Mercurial命令。每次从源代码构建本
书的映像时，所有的示例脚本都自动执行，然后将预期结果和实际执行结果比较。

这种方法的优点是每个例子都是永远精确的，它们是本书前面描述的Mercurial版本的实
际运行结果。如果我更新了描述的Mercurial的版本，同时有些命令的输出变化了，创建就会
失败。

这种方法也有小的缺点，就是你在示例中看见的日期和时间被“压缩”了，看起来这些
命令不是人输入的。人不可能再一秒之内执行一条以上的命令，相应的时间戳都应该展开，
我的自动化脚本中一秒之内可以执行很多命令。

举例来说，示例中的几个连续的提交可能显示发生于同一秒之内。你可以在bisect 示
例中看到例子第 9.5 节 “查找问题的根源”。

所以当你研究这些例子的时候，不要太注意命令输出的日期和时间。但是要保证你看到
的结果是一致的和可以再现的。

写在前面

3

1.3. 版本控制的发展趋势
在过去的四十年中，随着人们越来越熟悉他们的工具的能力和限制，开发和使用版本控

制工具出现了明确的趋势。

第一代软件开始于在个人计算机，人们用这些软件管理单个文件。虽然这些工具比手工
管理版本有了巨大的飞跃。但是加锁模型和依赖于单个计算机限制了他们使用范围，只用于
小的，组织严密的团队。

第二代软件放松了这些限制，因为它们采用了以网络为中心的结构，并且能够一次管理
整个项目。随着项目增长，又出现了新的问题。客户需要频繁的和服务器交互，服务器的可
伸缩性成为大项目的主要问题。不可靠的网络会妨碍客户和服务器的交互。随着开源项目开
始开放只读权限给匿名用户，没有提交权限的用户发现他们不能以自然的方式使用工具和项
目交互，因为他们不能记录他们的修改。

新一代的版本控制工具本质上是点对点的。所有的这些系统都抛弃了对单个中央服务器
的依赖，允许用户将他们的版本控制数据发布到任何需要的地方。通过互联网的协作摆脱了
技术的限制，走向选择和审查。现代的工具可以进行自治的，不受限制的离线操作。只需要
在有网络的时候和其他的版本库同步即可。

1.4. 分布版本控制的优点
与它们的上一代竞争者相比，虽然分布式版本控制工具多年来已经很稳定和实用了，但

是旧的工具的使用者还没有完全了解它们的优点，分布式的工具在很多方面明显由于集中式
的工具。

对于个人开发者，分布式工具几乎永远比集中式工具快的多。原因很简单：集中式工具
的很多操作需要网络交互，因为大部分元数据都只在中央服务器上有一份拷贝。而一个分布
式工具将所有的元数据保存在本地。其他的相同，通过网络的交互增加了集中式工具的负
担。不要低估了反应迅速的工具的价值：你要花很多时间和你的版本控制软件交互。

分布式工具对你的服务器结构并不感冒，因为他们在将元数据复制到很多地方。如果你
的集中式系统和你的服务器着火了，你最好希望你的备份介质是可靠的，同时你最后的备份
是最近的，而且还能用。而对于分布式工具，你在贡献者的计算机上有很多备份。

网络的可靠性对分布式工具的影响要远远小于集中式工具。如果没有网络你根本不能使
用集中式工具，除了少数几个功能有限命令。而对于分布式工具，即使在你工作的时候网络
瘫痪了，你可能根本不会注意到。你不能做的事情仅仅是不能和其它计算机上的版本库交互
了，这种情况在本地操作相当罕见。而如果你的团队有异地的人员，那这就很有可能了。

1.4.1. 开源项目的优点
如果你喜欢一个开源项目并且决定准备开始改进它，同时这个项目使用分布式版本控制

工具的话，你立刻可以和其他人一样认为自己成为项目的“核心”。如果他们发布了他们的
版本库，你可以立即拷贝他们的项目。开始修改，记录你自己的工作，和内部人员一样使用
同样的工具。相比之下，如果使用集中式工具，除非有人给你向中央服务器提交修改的权

写在前面

4

限，你只能用只读的方式使用软件。这样，你就不能记录你的修改，而且当你从版本库更新
的时候，本地的修改随时有崩溃的可能。

1.4.1.1. 分支不是问题
有人说分布式版本控制工具给开源项目带来了某种风险，因为在项目的发展过程中很容易出
现“分支”。当不同组的开发人员有不同的意见和看法，决定不再一起工作的时候，就会产
生新的分支，每个组的人都或多或少的获得项目代码的完整拷贝，然后向自己的方向发展。

有时候，不同分支的阵营决定协调他们之间的分歧。如果使用了集中式版本控制系统 技术上
的问题使协调过程非常痛苦，大部分需要手动解决。你必须决定那个版本历史“赢”了，然
后将其它团队的更改合并到代码中。这通常造成别的团队某些或者全部版本历史丢失。

分布式工具认为分支是项目开发的唯一方式。每个单独的变更都是潜在的分支点。这种方法
的巨大力量在于，分布式版本控制工具非常善于合并分支，因为分支是非常基本的操作：它
们随时都在发生。

如果所有的人在任何时候的做任何工作都这样使用合并和分支，那么对开源世界来讲，“分
支”就变成了纯粹的社会事件。如果真的有什么影响到话，就是分布式工具降低了分支的可
能性：

• 消除了集中式工具带来的社会级别：有内部人员（有提交权限）和外部人员（没有权限）
之分。

• 在社会性分支之后很容易和解，因为从版本控制工具的角度来讲这仅仅是一次新的合并而
已。

有些人拒绝分布式工具因为他们想保持对项目的控制，他们相信集中式工具会给他们这种控
制。如果你这种想法，并你将CVS或者Subversion版本库向大众发布了，那么别人可用现有的
很多工具将整个项目的历史抓取出来（可能很慢），在其它你控制不了的地方重建版本库。
这时你的控制只不过是一种幻觉罢了，一些人被迫从你的版本库创建映像和分支，而你失去
了和他们协作的机会。

1.4.2. 商业项目的优点
遍布全球的团队正在进行许多商业项目。远离中央服务器的贡献者会发现执行命令速度

很慢同时不怎么可靠。商业的版本控制系统改善这个问题的办法就是让你购买远程复制插
件，这通常很昂贵，并且很难管理。分布式系统首先不会有这样的问题。其次，你可以很容
易的建立多个授权服务器，假设每个站点一个，这样可以避免在昂贵的长途线路上的冗余的
通讯。

集中式的版本控制系统的扩展性相对较低。只要不多的并行用户的组合负载就可以将一
个昂贵的中央服务器压垮。同样，典型的反应就是昂贵笨重的复制设备。因为中央服务器的
最大负载—如果你有的话—比分布式工具低很多（因为所有的数据要北复制到其它地方），
一个廉价的服务器就可以满足一个相当大的团队的要求，为平衡负载而进行的复制只需要简
单的脚本就够了。

如果你有员工需要在客户方解决问题，那么他们会受益于分布式版本控制。工具允许他
们创建定制的环境，互相独立的尝试不同的解决方案。并且可以高效的从历史代码中查找
bug的根源，在客户环境中进行回归，所有的这些都不需要连接公司的网络。

写在前面

5

1.5. 为什么选择 Mercurial?
Mercurial是一个非常好的版本控制系统，因为它有很多独一无二的特点。

• 它易学易用。

• 它轻量级。

• 它扩展性很好。

• 它很容易定制。

如果你熟悉版本控制系统，你在五分钟之内只能就可以使用Mercurial工作了。即使你不
熟悉，也不过是再多花几分钟。Mercurial的命令和功能集非常统一一致，你只要遵守几个通
用的规则就够了，很少有例外。

在很小的项目上，你马上就可以使用Mercurial开始工作。创建新的修改和分支；到处交
换修改（不管本机还是通过网络）；获取历史和状态数据非常快。Mercurial努力保持小巧灵
活，在眨眼之间就能完成操作。

不仅小的项目可以使用Mercurial：有成百上千的贡献者的项目也在使用它，这些项目每
个都有上万个文件和几百兆的源码。

如果觉得Mercurial的核心功能不能满足要求，你很容易在现有基础上开发。Mercurial
非常适合于脚本任务，它的核心简洁，并且用Python实现，用扩展的方式增加新的功能非常
方便，现在已经有很多流行和有用的扩展了，像帮助你确定bug或者提高性能等。

1.6. Mercurial 与其它工具的比较
在你继续阅读之前，请理解本节完全反映了我的个人经验，兴趣，和偏好（我敢说）。

下面列的每个版本控制工具我都使用过，大多数情况下都用过好几年。

1.6.1. Subversion
Subversion是一个流行的版本控制工具，是用来替代CVS的，它采用的是集中式的客户/

服务器结构。

Subversion和Mercurial相同操作的命令的命名上非常相似，所以如果你熟悉一个，很容
易学会另外一个，两个工具都可以在大多数平台上运行。

在1.5版之前，Subversion对合并的支持并不好。在我写本书的时候，它刚新增了并跟踪
的功能，出名的复杂和容易出错 [http://svnbook.red-bean.com/nightly/en/
svn.branchmerge.advanced.html#svn.branchmerge.advanced.finalword]。

在我测量过的每个版本控制操作上Mercurial都比Subversion有很大的性能优势。差距从
两个数量级到六个数量级不等，我用的是Subversion 1.4.3的ra_local文件存储方式，这是已知
的最快的存取方式了。在实际的部署中包括网络存储，那么Subversion的劣势更大。因为很
多Subversion命令必须和主机交互，并且因为Subversion没有好的复制机制，使得对于中的等
大小的项目而言，服务器容量和网络带宽成为主要瓶颈。

http://svnbook.red-bean.com/nightly/en/svn.branchmerge.advanced.html#svn.branchmerge.advanced.finalword
http://svnbook.red-bean.com/nightly/en/svn.branchmerge.advanced.html#svn.branchmerge.advanced.finalword
http://svnbook.red-bean.com/nightly/en/svn.branchmerge.advanced.html#svn.branchmerge.advanced.finalword

写在前面

6

另外，Subversion以在客户端使用了更多存储空间的方法，换取降低几个常用操作的网
络负载，例如查找修改过的文件（status）和显示对于当前版本的更改（diff）。结果
Subversion的工作副本经常和Mercurial的版本库和工作目录一样大，或者更大，虽然
Mercurial的版本库包括了项目的完整历史。

Subversion有很多的第三方工具支持。Mercurial现在在这方面稍微欠缺。然而差距正在
逐渐缩小，实际上一些有Mercurial的GUI工具比Subversion类似工具还略胜一筹。和
Mercurial一样，Subversion也有完善的用户手册。

Subversion并不在客户端存储版本历史，所以它很适合管理那些有很多大的二进制文件
的项目。如果你对一个未压缩的10MB文件检入了五十次，Subversion客户端的占用的磁盘
空间基本上保持不变。而对于分布式SCM软件，磁盘空间会随着版本数量的增加成而迅速增
长，因为每个版本之间的差异非常大。

另外，合并不同版本的二进制文件非常困难，换句话说，基本上不可能。Subversion提
供了锁定功能，用户可以锁定一个文件，这样他就取得了对这个文件临时的独占的提交权，
这对于广泛使用二进制文件的项目而言是个明显优势。

Mercurial可以从Subversion的版本库中导入历史版本。它也可以向Subversion的版本库
输出历史版本。这样在决定转换之前很容易先“试一下水”，同时并行的使用Mercurial和
Subversion。版本史的转换是递增的，你可以先构造一个初始版本，每次有了新的更改后加
入一个小的转换。

1.6.2. Git
Git是为了管理Linux内核代码而开发的一个分布式版本控制工具。它和Mercurial一样在

设计上受了Monotone的影响。

Git有非常大的命令集，1.5.0版本提供了139个单独的命令。它以难学而闻名于世。与
Git相比，Mercurial力求简洁。

就性能而言，Git非常快。在很多情况下它都比Mercurial快，至少是在Linux上，但
Mercurial在其它操作上有优势。而在Windows上，Git不管是性能还是提供的支持，都比
Mercurial差很多，至少在本书写作的时候是这样。

Mercurial的版本库不需要维护，但Git的版本库需要频繁的手工维护，将其元数
据“repacks”，如果不这样做，性能就会下降，磁盘空间也会迅速增加。有多个Git版本库的服
务器需要严格和频繁的重新打包，否则在备份的时候就会成为严重的瓶颈，曾经有过运行每
日备份超过24小时的例子。一个新打包的Git版本库比Mercurial稍小一些，但是未打包的版本
库则会大几个数量级。

Git的核心由C语言编写，许多Git命令是用shell或者perl脚本实现的，这些脚本的质量差
别很大。我碰到过好几次这样的情况，明明已经出现了致命错误了，脚本还在盲目的执行。

Mercurial可以从Git的版本库中导入版本历史。

1.6.3. CVS
CVS可能是世界上使用最广泛的版本控制工具。因为它是太古老和内部实现很混乱，许

多年来都处于维护状态。

写在前面

7

CVS采用的是集中式客户/服务器结构。它不会将相关的文件变更一起作为原子提交，这
使得它很容易“破坏构建”：一个人成功的提交了一部分更改，然后要停下来处理合并，这
使得其他人只能看见他们的部分工作。这样也会影响你和项目历史的工作方式。如果你想看
到其他人针对他的那部分任务做的全部修改，你必须手动检查每个受影响的文件的变更描述
和时间戳（假如你知道是哪些文件）。

CVS的分支和标签的概念实在是太混乱了，我都不想给你介绍。它也不支持文件和目录
的重命名。这使得版本库非常容易崩溃。它几乎没任何的内部一致性检查功能，所以通常你
不可能知道版本库是不是崩溃了。不管是新项目还是老项目，我都不推荐使用CVS。

Mercurial可以导入CVS的版本历史。然而，这里面有很多限制；对其版本控制工具的CVS
导入程序也是一样。因为CVS缺少原子更改并且不支持文件系统层次的版本控制，所以不可
能完全精确的重建CVS的历史。有些需要猜测，重命名通常发现不了。因为CVS的很多的高级
管理功能必须手动完成，因此非常容易出错。碰到崩溃的版本库，CVS导入程序通常会出现很
多问题(完全伪造的版本时间戳，若干文件被锁定十多年，这是我个人经历的两个不太有趣的
问题）。

Mercurial可以从CVS版本库导入版本历史。

1.6.4. 商业工具
Perforce采用的是集中式客户/服务器结构，客户端不缓存任何数据。和现代的版本控制

工具不同，每次想要编辑的一个文件，用户必须运行一个命令通知Perforce服务器。

对于小的团队而言，Perforce相当好，但是当用户数目超过数十个以后，性能急剧下
降。中等大小Perforce安装需要部署代理来处理用户产生的负载。

1.6.5. 选择版本控制工具
除了CVS之外，以上列出的所有工具都各有所长，没有一个版本控制工具适合所有情

况。

比如说，因为采用集中式的结构并且支持文件锁定，Subversion非常适合频繁编辑二进
制文件的场合。

我已经使用Mercurial很多年了，个人认为它有简洁，高性能，良好的合并支持诸多特
点。

1.7. 从其它工具切换到 Mercurial
Mercurial包括一个叫convert的扩展，它可以递增的从几个其他的版本控制工具导入版

本历史。 “增量”的意思是你可以在某天将整个项目历史转换，以后再次进行转换获得初始
版本以后新增的变更。

convert 支持的版本控制工具有:

• Subversion

• CVS

写在前面

8

• Git

• Darcs

另外convert可以从Mercurial向Subversion导出历史，这可以让你在切换之前让
Mercurial和Subversion并行工作，而不会丢失任何工作。

convert命令非常简单。只要给出源版本库的URL或者路径，给出目标版本库的名称（可
选），它就开始工作了。第一次转换之后，只要运行同样的命令就可以导入新的变更。

1.8. 版本控制简史
最有名史前的版本控制工具是SCCS（源代码控制系统），它是由Marc Rochkind于七十年

代在贝尔实验室完成的。SCCS只能控制单个文件，这就要求项目组人员只能使用一个系统上
的共享工作空间。任何时候一个文件只能由一个人修改；通过加锁来保证。人们很容易锁定
一个文件，然后忘了解锁，没有管理员的帮助，任何人都不能修改那些文件。

Walter Tichy在八十年代早期开发了一个开源的SCCS替代软件；他称之RCS（版本控制系
统）。和SCCS一样，RCS要求开发人员在一个共享的工作空间工作，同时锁定文件，以防止
多个人他同时修改。

八十年代后期，Dick Grune在RCS的基础上开发了一套脚本，他开始称之为cmt，后来又
改名为CVS（并行版本系统）。CVS的最大的创新在于让开发人员可以在自己的工作空间里同
时而且独立的工作。私人的工作空间防止了开发人员总是互相干扰，这在SCCS和RCS的使用
中很常见。项目中的每个文件，开发者都有自己的拷贝，可以独立的修改自己的拷贝。他们
可以在提交到中央版本库之前合并更改。

Brian Berliner接管了Grune的脚本，用C重写了一遍，并在1989年发布了这些代码，现在
的CVS就是从那时逐渐发展起来的。CVS随后增加了网络的功能，形成了客户/服务器结
构。CVS的结构是集中式的；仅在服务器上保存一份项目的历史拷贝。客户工作空间仅包含项
目中的文件的最近版本的拷贝，一些元数据告诉它们服务器的地址。CVS获得了极大成功；它
可能是世界上应用最广泛的版本控制系统。

90年代早期，Sun公司开发了一个早期的分布式版本控制系统，叫做
TeamWeare。TeamWare的工作空间包括项目历史的完整拷贝。TeamWare没有中央版本库的概
念。（CVS使用RCS存储其历史，TeamWare使用SCCS。

在90年代中，随着时间的流逝，CVS逐渐暴露出很多问题。它对多个文件同时发生的变
更不能一起记录，不能按照层次管理文件；对目录和文件的重命名很容易破坏版本库。更糟
的是，它的源代码很难阅读和维护，修复这些架构上的问题的非常困难。

2001年，原来维护过CVS的两个开发者Jim Blandy和Karl Fogel，开始了一个新项目，其
目标是替代CVS，新的软件将采用更好的架构和更整洁的代码。于是Subversion诞生了，它并
保留了CVS集中式的客户/服务器模型，但是增加了多文件原子提交，更好的命名空间管理，
和其他一些功能。总而言之，它比CVS好的多。Subversion在发布后迅速流行起来。

大概相同时间，Graydon Hoare开始了一个野心勃勃的分布式版本控制项目，他称之为
Monotone。Monotone解决了很多CVS设计上的漏洞并且采用了点对点的架构，它在创新方面
比以前（和以后）的版本控制系统走的更远。它使用加密哈希作为标识符，并且对于不同源
的代码有了完整的 “信任”概念。

写在前面

9

Mercurial诞生于2005年。设计方面受了Monotone的一些影响，Mercurial的目标是易
用，高性能，对大的项目的良好扩展性。

10

第 2 章 Mercurial 教程: 基础知识

2.1. 安装 Mercurial
对于每种流行的操作系统，都有已经构建的二进制软件包。这让在你的计算机上开始使

用 Mercurial 变得很容易。

2.1.1. Windows
Windows 中最好的 Mercurial 版本是TortoiseHg，它的主页地址是 http://bitbucket.org/

tortoisehg/stable/wiki/Home。这个软件没有外部依赖，它可以“独立工作”，同时提供了
命令行和图形用户界面。

2.1.2. Mac OS X
Lee Cantey 为 Mac OS X 在 http://mercurial.berkwood.com 发布了 Mercurial 安装程序。

2.1.3. Linux

由于每种 Linux 发行版都有自己的包管理工具，开发策略和进度，从而很难给出安装
Mercurial 二进制包的全面说明。你安装的 Mercurial 版本，在很大程度上依赖于你所使用的
发行版的 Mercurial 维护者的活跃程度。

为了让事情简单，我会致力于说明在最流行的 Linux 发行版中，从命令行安装 Mercurial
的方法。这些发行版都提供了图形界面的包管理器，让你通过点击鼠标安装 Mercurial；寻
找的包名称是 mercurial。

• Ubuntu 与 Debian:

apt-get install mercurial

• Fedora:

yum install mercurial

• OpenSUSE:

zypper install mercurial

• Gentoo:

emerge mercurial

2.1.4. Solaris

位于 http://www.sunfreeware.com 的 SunFreeWare 提供了 Mercurial 的二进制安装包。

http://bitbucket.org/tortoisehg/stable/wiki/Home
http://bitbucket.org/tortoisehg/stable/wiki/Home
http://mercurial.berkwood.com
http://www.sunfreeware.com

Mercurial 教程: 基础知识

11

2.2. 开始
首先，我们使用 hg version 命令检查 Mercurial 是否已经正确安装。它打印出来的实际版

本信息并不重要；我们只关心它是否能够运行，打印出信息。

$ hg version
Mercurial Distributed SCM (version 1.3.1)

Copyright (C) 2005-2009 Matt Mackall <mpm@selenic.com> and others
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

2.2.1. 内置帮助
Mercurial 内置了帮助系统。当你不记得如何执行一个命令时，它会给你重要的帮助。如

果你完全没有头绪，那就直接运行 hg help；它会给出命令的简短列表，还描述了每个命令的
作用。如果你需要具体命令的帮助(下述)，它会给出更详细的信息。

$ hg help init
hg init [-e CMD] [--remotecmd CMD] [DEST]

create a new repository in the given directory

 Initialize a new repository in the given directory. If the given
 directory does not exist, it will be created.

 If no directory is given, the current directory is used.

 It is possible to specify an ssh:// URL as the destination.
 See 'hg help urls' for more information.

options:

 -e --ssh specify ssh command to use
 --remotecmd specify hg command to run on the remote side

use "hg -v help init" to show global options

要获得更多的详细信息(通常不需要)，可以执行 hg help -v。选项 -v 是 --verbose 的
短格式，告诉 Mercurial 要打印通常不需要的更多信息。

2.3. 使用版本库
在Mercurial中，所有的操作都在版本库中进行。项目的版本库包括了属于该项目的所有

文件和这些文件的历史记录。

版本库没有什么神秘的地方；仅仅是你系统中的一个目录树，Mercurial会将它们特殊处
理。你可以在任何喜欢的时候使用命令行或者文件浏览器删除版本库或者给它改名。

2.3.1. 创建版本库的工作副本
拷贝版本库有点特殊。虽然你可以使用文件拷贝命令来复制一般版本库，最好还是用

Mercurial内置的命令。这个命令叫做 hg clone，因为它创建了一个原来版本库的拷贝。
$ hg clone http://hg.serpentine.com/tutorial/hello

Mercurial 教程: 基础知识

12

destination directory: hello
requesting all changes
adding changesets
adding manifests
adding file changes
added 5 changesets with 5 changes to 2 files
updating working directory
2 files updated, 0 files merged, 0 files removed, 0 files unresolved

如上所示，使用hg clone的好处在于它能够让你通过网络克隆版本库。另外一个好处你
它会记得这个版本库是从哪里克隆的，稍后会看到，当我们想从其他的版本库获取新的变更
的时候这点这会非常有用。

如果我们克隆成功，我们会得到一个本地目录，叫做 hello。这个目录会包括一些文
件。

$ ls -l
total 0
drwxr-xr-x 3 dongsheng g11n 45 Oct 23 01:38 hello
$ ls hello
Makefile hello.c

这个版本库中的文件和我们刚才克隆的版本库中的文件相同的内容和版本历史

每个Mercurial版本库都是完整的，自包含的，独立的。它包含了项目文件的一份私有拷
贝和全部历史。我们刚才已经提到，克隆的版本库会记住它克隆的那个版本库的地址，但是
Mercurial不会和那个或者其他任何一个版本库通信，除非你给它命令。

这意味着，我们可以随意的在我们的版本库中做实验，非常安全，因为它是一个私有
的“沙盒”，不会影响任何人。

2.3.2. 什么是版本库?
当我们仔细观察版本库内部时，我们会发现它有一个叫.hg的目录。这就是Mercurial为

版本库保存所有元数据的地方。

$ cd hello
$ ls -a
. .. .hg Makefile hello.c

目录.hg中的内容和其子目录是Mercurial私有的。版本库中的其他任何文件和目录你都
可以随意操作。

介绍一点术语， .hg目录是“真正的”版本库，所有其他的文件和目录称为工作目录一
个简单的区分的方法就是版本库中包含了项目的历史，而 工作目录则是项目组一个特定历史
点上的快照。

2.4. 回溯历史
对于一个新的，我们不熟悉的版本库，我们想做的第一件事就是了解它的历史。命令hg

log可以让我们浏览版本库中的历史变更。
$ hg log
changeset: 4:2278160e78d4

Mercurial 教程: 基础知识

13

tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:16:53 2008 +0200
summary: Trim comments.

changeset: 3:0272e0d5a517
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:08:02 2008 +0200
summary: Get make to generate the final binary from a .o file.

changeset: 2:fef857204a0c
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:05:04 2008 +0200
summary: Introduce a typo into hello.c.

changeset: 1:82e55d328c8c
user: mpm@selenic.com
date: Fri Aug 26 01:21:28 2005 -0700
summary: Create a makefile

changeset: 0:0a04b987be5a
user: mpm@selenic.com
date: Fri Aug 26 01:20:50 2005 -0700
summary: Create a standard "hello, world" program

缺省情况下，这个命令对项目中记录的每个变更都输出一段简介，在Mercurial的术语
中，我们将这些记录的事件成为变更集，因为每个记录都可能包括几个文件的变更。

hg log输出记录的各个字段的意义如下。

• changeset：这个字段包括一个数字，接着一个冒号，然后是是一个十六进制字符串。这
是这个变更的标识符。十六进制字符串是唯一标识符：在这个版本库的任何一个拷贝中，
同一个字符串总是对应同一个变更集。数字更短并且比十六进制字符串更容易书写，但它
不是唯一的：一个版本库的两个不同的的克隆中的同一个数字可能对应不同的变更集。

• user：这个字段标识是谁创建了这个变更集。这个字段格式可以自由定义，通常是一个人
的姓名加上电子邮件地址。

• date：这是变更集创建的日期和时间，还有时区。（日期和时间是相对于时区的；他们显
示了创建变更的人的日期和时间。）

• summary：创建者对该变更集的描述的第一行文本信息。

• 有些变更集，像上面的第一个，有一个标签字段。标签是区分变更集的另外一种方法，给
它一个容易记得名字。（叫做tip的标签有特殊意义：总是指向版本库中的最新的变
更。）

缺省情况下，hg log的输出仅仅是个摘要，没有更详细的信息。

图 2.1 “版本库 hello 的历史图”以图形化方式显示了版本库hello的历史，这样很容
易看出历史的“流向”。在本章和下面的章节中，我们会多次使用这个图。

Mercurial 教程: 基础知识

14

图 2.1. 版本库 hello 的历史图

2.4.1. 变更集，版本，与其它用户交互
英语是一种非常随便的语言，计算机史上也向来以混乱的术语为荣（如能用四个词为什

么要用一个呢？），就版本控制而言，有很多词和短语有相同的意思。如果你和别人讨论
Mercurial版本库的历史，你会发现“变更集”这个词常常被简化成“变更”或者（写的时
候）“cset”,有时候变更集也指一个“版本”或者“rev”。

实际上，用哪个词来描述“变更集”的概念并不重要，重要的是如何用标识符来标
识“一个特定的变更集”。回忆一下hg log命令的输出，changeset字段里用一个数字和一
个十六进制字符串来标识一个变更集。

• 版本号是一个方便的标识，它仅在当前版本库中有效。

• 十六进制字符串是永久的，不变的标识，它在该版本库的所有拷贝中都指向同一个变更
集。

这个区别很重要。如果你通过邮件和别人讨论“版本33”，很有可能他们的版本33和你
的不一样。原因在于版本号依赖于相应变更进入版本库的顺序。，不能保证同一个变更在不
同的版本库中会有相同的次序。有可能三个变更a,b,c在一个版本库中的次序是0,1,2，而
在另外一个版本库中则变成0,2,1

Mercurial使用版本号纯粹是为了有些命令的方便，如果你要和别人讨论变更集，或者由
于某些原因为一个变更集做记录（如在bug报告中），请使用十六进制标识符。

2.4.2. 查看指定版本
如果只想用hg log查看一个版本的日志使用-r（或者--rev）选项。版本号和十六进制

标识符都可以来指定版本，可以一次指定任意多个版本。

$ hg log -r 3
changeset: 3:0272e0d5a517
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:08:02 2008 +0200
summary: Get make to generate the final binary from a .o file.

Mercurial 教程: 基础知识

15

$ hg log -r 0272e0d5a517
changeset: 3:0272e0d5a517
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:08:02 2008 +0200
summary: Get make to generate the final binary from a .o file.

$ hg log -r 1 -r 4
changeset: 1:82e55d328c8c
user: mpm@selenic.com
date: Fri Aug 26 01:21:28 2005 -0700
summary: Create a makefile

changeset: 4:2278160e78d4
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:16:53 2008 +0200
summary: Trim comments.

如果你想显示几个版本历史，但是不想一个一个的列出来，可以使用 范围标记；它会显
示包括abc和def，以及它们之间的所有版本的版本历史。

$ hg log -r 2:4
changeset: 2:fef857204a0c
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:05:04 2008 +0200
summary: Introduce a typo into hello.c.

changeset: 3:0272e0d5a517
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:08:02 2008 +0200
summary: Get make to generate the final binary from a .o file.

changeset: 4:2278160e78d4
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:16:53 2008 +0200
summary: Trim comments.

Mercurial还可以指定版本的输出顺序，如hg log -r 2:4输出2，3，4。而hg log -r 4:2则输
出4，3，2。

2.4.3. 更详细的信息
当你知道你在找那个版本的时候，hg log输出的摘要是非常有用的，但有时候你不知道

要找哪个版本，你想看到变更的完整描述，或者修改过的文件的列表，hg log命令的-v（--
verbose）选项会给出更详细的信息。

$ hg log -v -r 3
changeset: 3:0272e0d5a517
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:08:02 2008 +0200
files: Makefile
description:
Get make to generate the final binary from a .o file.

如果你想同时看到变更的描述和内容，增加-p（--patch）选项。这会将变更的内容
以unified diff的格式显示（如果你不知道unified diff，请参考第 12.4 节 “理解补丁”。
$ hg log -v -p -r 2
changeset: 2:fef857204a0c
user: Bryan O'Sullivan <bos@serpentine.com>

Mercurial 教程: 基础知识

16

date: Sat Aug 16 22:05:04 2008 +0200
files: hello.c
description:
Introduce a typo into hello.c.

diff -r 82e55d328c8c -r fef857204a0c hello.c
--- a/hello.c Fri Aug 26 01:21:28 2005 -0700
+++ b/hello.c Sat Aug 16 22:05:04 2008 +0200
@@ -11,6 +11,6 @@

 int main(int argc, char **argv)
 {
- printf("hello, world!\n");
+ printf("hello, world!\");
 return 0;
 }

-p选项非常有用，所以一定要记住。

2.5. 命令选项
我们休息一下，先不讨论Mercurial命令了，而是来看看它们工作的模式；这对以后的学

习会非常有帮助。

Mercurial处理传递给它的命令选项的方法简单一致。它遵从现代Linux和Unix对选项的处
理习惯。

• 每个选项有一个长名。例如，我们已经看到了，hg log命令接受--rev选项。

• 大多数选项还有短名，除了使用--rev，我们还可以用-r。（有些选项没有短名的原因是
他们很少用到。）

• Long options start with two dashes (e.g. --rev), while short options start with one (e.g. -r).

• Option naming and usage is consistent across commands. For example, every command that
lets you specify a changeset ID or revision number accepts both -r and --rev arguments.

• 如果使用短选项，你可以把它们放在一起以减少输入。例如，命令hg log -v -p -r 2 可以写
成 hg log -vpr2。

在本书的例子中，我通常使用短选项，很少用长选项。这仅仅是我个人的习惯，你不一
定要这样。

Most commands that print output of some kind will print more output when passed a -v
(or --verbose) option, and less when passed -q (or --quiet).

选项命名的一致性

Almost always, Mercurial commands use consistent option names to refer to the same
concepts. For instance, if a command deals with changesets, you'll always identify
them with --rev or -r. This consistent use of option names makes it easier to
remember what options a particular command takes.

Mercurial 教程: 基础知识

17

2.6. 创建和复审变更
现在我们已经对查看Mercurial的版本历史有了一些了解，现在我们开始做些修改并且检

查这些修改。

The first thing we'll do is isolate our experiment in a repository of its own. We use the hg
clone command, but we don't need to clone a copy of the remote repository. Since we already
have a copy of it locally, we can just clone that instead. This is much faster than cloning over the
network, and cloning a local repository uses less disk space in most cases, too1.
$ cd ..
$ hg clone hello my-hello
updating working directory
2 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd my-hello

说句题外话，保留远程版本库的一份“原始”拷贝是一个很好的习惯，这样你就可以为
每个任务都创建临时的克隆作为沙盒。直到认务完成并且你准备好提交到版本库, 每个任务
都和其他的独立，这样你可以并行工作。因为本地的克隆很方便，在任何时候克隆和销毁一
个版本库都只有很小的开销。

在我们的my-hello版本库中，有一个叫hello.c的文件，它包含了经典的“hello,
world”程序。
$ cat hello.c
/*
 * Placed in the public domain by Bryan O'Sullivan. This program is
 * not covered by patents in the United States or other countries.
 */

#include <stdio.h>

int main(int argc, char **argv)
{
 printf("hello, world!\");
 return 0;
}

我们编辑这个文件，让它打印第二行输出。

... edit edit edit ...
$ cat hello.c
/*
 * Placed in the public domain by Bryan O'Sullivan. This program is
 * not covered by patents in the United States or other countries.
 */

#include <stdio.h>

int main(int argc, char **argv)
{
 printf("hello, world!\");
 printf("hello again!\n");
 return 0;
}

Mercurial的hg status命令能告诉我们它对版本库中的文件有多少了解。

1
如果版本库的源和目标都在同一个文件系统上，将会节省很多空间。这种情况下，Mercurial会使用硬链接的方式来共享
内部元数据，并使用写时拷贝的机制。如果你不明白这句话的意思，没有关系：所有的事情都是自动和透明的，你不需要
知道它们。

Mercurial 教程: 基础知识

18

$ ls
Makefile hello.c
$ hg status
M hello.c

hg status命令对有些文件没有输出信息，但是对文件hello.c，有一行以“M”为开头的
输出。除非你明确告诉它，命令hg status不会输出那些没有修改的文件的信息。

“M”表明Mercurial已经发现我们修改了hello.c。我们不需要在改文件之前，或者在修
改完之后通知Mercurial;它自己能处理。

知道文件hello.c被修改了很有用，但有时候我们想知道做了什么样的修改。这时，我
们应该使用 hg diff命令。
$ hg diff
diff -r 2278160e78d4 hello.c
--- a/hello.c Sat Aug 16 22:16:53 2008 +0200
+++ b/hello.c Fri Oct 23 01:38:05 2009 +0000
@@ -8,5 +8,6 @@
 int main(int argc, char **argv)
 {
 printf("hello, world!\");
+ printf("hello again!\n");
 return 0;
 }

理解补丁

如果你不知道如何理解以上信息，请参考第 12.4 节 “理解补丁”。

2.7. 在新修改集中记录修改
我们可以修改文件，创建并测试我们的修改，使用命令hg status和hg diff复审修改，直

到我们对修改满意，同时也达到了一个自然的停止点，然后用一个新的变更集记录我们的工
作。

我们用命令hg commit创建新的变更集；我们通常把这个称为“做一次提交”或者“提
交”。

2.7.1. 配置用户名称
当你准备第一次运行hg commit命令时，不一定会成功。对于你提交的每个变

更，Mercurial都会记录你的名字和邮件地址，这样你和其他人以后就能分开是谁做的哪个变
更。Mercurial会自动尝试找出一个有意义的用户名来提交。它会依次尝试以下方法：

1. 如果你给hg commit命令加上了-u选项，接着是一个用户名，Mercurial会使用这个用户
名，这是最高的优先级。

2. 接下来测试你是否设定了HGUSER环境变量。

3. 如果你在主目录创建了名字为.hgrc的文件，其中包括username条目，那就用它。如果
想知道这个文件的格式，请参考下面的第 2.7.1.1 节 “创建 Mercurial 的配置文件”。

4. 如果你设置了EMAIL环境变量，那就用它。

Mercurial 教程: 基础知识

19

5. Mercurial会查询你的系统，找出主机名和你的用户名，然后用他们创建一个用户名。这样
的用户名不怎么有用，所以在只能这样生成用户名的时候，它会打印出一条告警信息。

如果所有的这些机制都失败了，Mercurial会执行失败退出，打印出一条错误信息这种情
况下，只有你设定了用户名之后才能提交。

当你需要覆盖Mercurial缺省的用户时，可以考虑HGUSER环境变量和hg commit命令的-
u选项。正常使用的情况下，最简单实用的方法就是创建.hgrc文件来设定用户名；步骤如
下。

2.7.1.1. 创建 Mercurial 的配置文件

设定用户名的时候，使用你最喜欢的编辑器在你的主目录创建一个名为.hgrc的文
件。Mercurial将会从这个文件中查找你的个人配置信息。你的.hgrc开始的时候应该是这样
子。

Windows上的“主目录”

英文版的Windows的主目录通常是C:\Documents and Settings下你的用户名
的那个文件夹。如果要找出你的主目录的确切位置，可以打开一个命令行窗口，运
行以下命令。

C:\> echo %UserProfile%

This is a Mercurial configuration file.
[ui]
username = Firstname Lastname <email.address@example.net>

配置文件中“[ui]”这行标识着一个字段的开始,“username = ...”这行的意思是在ui字段
中设定项username的值。当出现一个新的字段或者到达文件结尾的时候，当前的字段才结
束。

2.7.1.2. 选择用户名称
username配置项的值可以是你喜欢的任意文字，因为这项信息主要是给其他用户阅读的，
所以Mercurial不会去解释它。大多数人的习惯是采用用户名加上邮件地址的格式，就像上面
的例子一样。

注意

Mercurial内置的网络服务器会混淆邮件地址，让垃圾邮件发送者用的邮件地址抓
取工具很难获取你的邮件地址。当你把Mercurial的版本库在网路上发布的时候，
这可以减小你接收到垃圾邮件的风险。

2.7.2. 写提交日志
我们提交一个变更的时候，Mercurial会打开一个编辑器，让我们输入一些信息来描述这

个变更集做的更改。这就是提交日志。它会告诉读者我们改了什么以及修改的原因，我们提
交之后，命令hg log会输出这些信息。
$ hg commit

Mercurial 教程: 基础知识

20

hg commit命令打开的编辑器包括一两个空行，接着是以“HG:”开始的行。

This is where I type my commit comment.

HG: Enter commit message. Lines beginning with 'HG:' are removed.
HG: --
HG: user: Bryan O'Sullivan <bos@serpentine.com>
HG: branch 'default'
HG: changed hello.c

Mercurial会忽略以“HG:”为开始的行；它仅仅用来告诉我们这个变更集中包括哪些文
件。修改或者删除这行没有任何影响。

2.7.3. 写高质量的提交日志
因为hg log命令在缺省情况下仅会输出提交日志的第一行，所以日志第一行最好是单独

的一行。下面是一个日志的实例，它没有遵守这个规则，因此摘要可读性很差。

changeset: 73:584af0e231be
user: Censored Person <censored.person@example.org>
date: Tue Sep 26 21:37:07 2006 -0700
summary: include buildmeister/commondefs. Add exports.

至于日志的其他部分的内容，没有严格的规定。Mercurial并不解释或者关心日志的内
容，虽然你的项目可能有某种格式的规定。

我个人喜欢简短，而又信息量大的日志，它能告诉我一些我不能通过快速浏览hg log --
patch的输出而得到的信息。

如果我们运行hg commit命令的时候没有指定文件，它会提交我们做的所有修改，与hg
status和hg diff这两个命令的输出一样。

Subversion用户的困惑

和所有的Mercurial命令一样，如果我们不明确指出hg commit命令要提交的文件
名，它会在整个版本库的工作目录上执行操作。如果你以前使用过CVS或者
Subversion，那一定要注意，你可能仅仅希望提交当前目录与其子目录的修改。

2.7.4. 终止提交
如果你在编辑日志的时候决定不再提交，只要退出编辑器同时不保存文件就可以了。这

对版本库和当前目录都没有任何影响。

2.7.5. 欣赏我们的成果
提交完成后，我们就可以用hg tip命令显示刚刚创建的变更集。这个命令和hg log的输出

一样，但是只显示版本库中最新的版本。

$ hg tip -vp
changeset: 5:cfb10a77c108
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:38:05 2009 +0000

Mercurial 教程: 基础知识

21

files: hello.c
description:
Added an extra line of output

diff -r 2278160e78d4 -r cfb10a77c108 hello.c
--- a/hello.c Sat Aug 16 22:16:53 2008 +0200
+++ b/hello.c Fri Oct 23 01:38:05 2009 +0000
@@ -8,5 +8,6 @@
 int main(int argc, char **argv)
 {
 printf("hello, world!\");
+ printf("hello again!\n");
 return 0;
 }

我们通常把版本库中最新的版本称为tip版本或者简称为tip。

顺便提一下，hg tip命令可以接受很多和hg log命令一样的选项。如-v选项的意思是“详
细的”。-p的意思是“输出补丁”。使用-p输出补丁也是我们前面提到的一致性的另外一个
例子。

2.8. 分享修改
前面我们曾经提到Mercurial的版本库是自包含的。这意味着我们刚才创建的变更集仅仅

存在于我们的my-hello版本库中。下面我们会看到几种将变更传播到其他版本库的方法。

2.8.1. 从其它版本库取得变更
首先，我们克隆原始版本的hello版本库，它不包含我们刚刚提交的变更。我们将这个

临时版本库称为hello。

$ cd ..
$ hg clone hello hello-pull
updating working directory
2 files updated, 0 files merged, 0 files removed, 0 files unresolved

我们用hg pull命令将变更从my-hello拖到hello-pull。然而，不管三七二十一将不
了解的变更拖进版本库也实在是冒险。Mercurial提供了hg incoming命令，它会告诉我们hg
pull将会把哪些变更拖进版本库，但不会真正的执行。
$ cd hello-pull
$ hg incoming ../my-hello
comparing with ../my-hello
searching for changes
changeset: 5:cfb10a77c108
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:38:05 2009 +0000
summary: Added an extra line of output

运行hg pull命令将变更拖进版本库非常简单，你可以指定从那个版本库拖变更。
$ hg tip
changeset: 4:2278160e78d4
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:16:53 2008 +0200
summary: Trim comments.

Mercurial 教程: 基础知识

22

$ hg pull ../my-hello
pulling from ../my-hello
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files
(run 'hg update' to get a working copy)
$ hg tip
changeset: 5:cfb10a77c108
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:38:05 2009 +0000
summary: Added an extra line of output

从前后的hg tip的输出可以看出，我们成功将变更拖进了我们的版本库。然
而，Mercurial将拖变更和更新当前工作目录分成两个操作。在看到在当前目录中我们刚拖进
的变更之前，还有一步要完成。

提取指定的修改

因为在运行hg incoming和hg pull之间可能存在延时,你可能不能看到从其他版本
库中的所有导入进来的变更集。假如你正在通过网络从其他地方的版本库拖变更。
当你查看hg incoming的输出，还没有拖这些变更的时候，其他人向这个版本库提
交了一些东西。这意味着你可能拖进来比你用hg incoming看见的多的变更。

如果你仅希望将hg incoming命令列出的变更拖进来，或者由于其他原因希望得到
变更的一个子集，那么你可以明确的指定变更集的ID，比如hg pull -r7e95bb。

2.8.2. 更新工作目录
现在我们已经对版本库和它的工作目录之间的关系有了粗略的了解。我们在第 2.8.1 节

“从其它版本库取得变更”一节运行的hg pull命令会将变更拖进版本库，但是如果我们检查
一下的话，就会发现工作目录并没有变化。这是因为hg pull命令并不会影响工作目录。实际
上，我们需要hg update命令来完成这个工作。
$ grep printf hello.c
 printf("hello, world!\");
$ hg update tip
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ grep printf hello.c
 printf("hello, world!\");
 printf("hello again!\n");

hg pull命令并不会自动更新工作目录，这看起来有点奇怪。但实际上这样做是有原因
的：你可以用hg update来更新工作目录，切换到版本库中的任意一个版本。假设你将工作目
录切换到一个老的版本—假如说是为了追踪一个bug—然后运行了hg pull命令。它自动将工
作目录更新到新版本，这可能并不是你想要的结果。

因为拖然后更新是个非常常用的操作顺序，Mercurial允许你将这两个操作组合在一起，
只要给hg pull命令加上-u选项就可以了。

如果回顾第 2.8.1 节 “从其它版本库取得变更”一节，我们运行hg pull而又没有加上-
u选项时，你可能会发现它输出了一条很有用的提示，我们还需要执行一个操作，才能更新
工作目录。

Mercurial 教程: 基础知识

23

如果想知道工作目录的版本，可以使用hg parents命令。
$ hg parents
changeset: 5:cfb10a77c108
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:38:05 2009 +0000
summary: Added an extra line of output

如果回顾图 2.1 “版本库 hello 的历史图”一节，你会看到箭头连着每个变更集。箭
头离开的节点是父版本，箭头指向的是子版本。工作目录的父版本也是一样的方式；它是工
作目录包含的变更集。

如果需要将工作目录切换到一个特定版本，给hg update命令加上版本号或者变更集标识
符就可以了。

$ hg update 2
2 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ hg parents
changeset: 2:fef857204a0c
user: Bryan O'Sullivan <bos@serpentine.com>
date: Sat Aug 16 22:05:04 2008 +0200
summary: Introduce a typo into hello.c.

$ hg update
2 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ hg parents
changeset: 5:cfb10a77c108
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:38:05 2009 +0000
summary: Added an extra line of output

如果没有明确指出版本，hg update会更新到tip版，就像上面例子hg update第二次执行
的结果一样。

2.8.3. 发布修改到其它版本库
我们可以将变更从当前所在的版本库推到其他的版本库。与上面的hgpull例子一样，我

们可以创建一个临时的版本库存放我们的变更。

$ cd ..
$ hg clone hello hello-push
updating working directory
2 files updated, 0 files merged, 0 files removed, 0 files unresolved

hg outgoing命令可以告诉我们那些变更将会被推到另外一个版本库。
$ cd my-hello
$ hg outgoing ../hello-push
comparing with ../hello-push
searching for changes
changeset: 5:cfb10a77c108
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:38:05 2009 +0000
summary: Added an extra line of output

而hg push命令则会执行真正的推操作。
$ hg push ../hello-push

Mercurial 教程: 基础知识

24

pushing to ../hello-push
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files

与hg pull一样，在变更推送之后，hg push命令并不会更新版本库的工作目录，与hg
pull命令不同，hg push并不提供-u选项来更新其他版本库的工作目录。这一不对称是有目
的的：我们推送的版本库可能是一个远端的服务器，并且很多人共享使用它。如果在其他人
正在工作的时候，我们更新了工作目录，那么他们的工作很可能被破坏。

如果我们向一个已经包含了这些变更的版本库推送或者拉这些变更会发生什么事情
呢？，什么也不会发生。

$ hg push ../hello-push
pushing to ../hello-push
searching for changes
no changes found

2.8.4. 默认位置
在我们克隆版本库的时候，Mercurial会在新的版本库的.hg/hgrc文件中记录下版本库

的位置，如果我们对hg pull没有指定来源，或者对于hg push 没有指定目标，那么这些命令
就会使用缺省位置。hg incoming和hg outgoing命令也是如此。

如果你用文本编辑器打开版本库的.hg/hgrc文件，你会看到如下内容。

[paths]
default = http://www.selenic.com/repo/hg

有可能—并且常常很有用—hg push和hg outgoing的缺省位置与hg pull和hg incoming的
位置不同。我们可以给.hg/hgrc文件的[paths]节加上default-push条目，如下所示。

[paths]
default = http://www.selenic.com/repo/hg
default-push = http://hg.example.com/hg

2.8.5. 通过网络共享修改
前面几节我们介绍的命令不仅可以用于本地版本库，还可以用于网络；只要传递的参数

从本地路径变成URL就可以了。
$ hg outgoing http://hg.serpentine.com/tutorial/hello
comparing with http://hg.serpentine.com/tutorial/hello
searching for changes
changeset: 5:cfb10a77c108
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:38:05 2009 +0000
summary: Added an extra line of output

在本例中，我们可以看到准备向远程版本库推送的变更，但是该版本库并不允许匿名用
户推送。

$ hg push http://hg.serpentine.com/tutorial/hello
pushing to http://hg.serpentine.com/tutorial/hello
searching for changes

Mercurial 教程: 基础知识

25

ssl required

2.9. 开始新项目
开始一个新项目和使用一个已有项目一样简单。hg init命令可以创建一个新的，空的

Mercurial版本库。
$ hg init myproject

在当前目录创建一个名为myproject的版本库就是这么简单。

$ ls -l
total 8
-rw-r--r-- 1 dongsheng g11n 47 Oct 23 01:37 goodbye.c
-rw-r--r-- 1 dongsheng g11n 45 Oct 23 01:37 hello.c
drwxr-xr-x 3 dongsheng g11n 16 Oct 23 01:37 myproject

我们确信myproject是一个Mercurial版本库， 因为它包含了.hg目录。
$ ls -al myproject
total 0
drwxr-xr-x 3 dongsheng g11n 16 Oct 23 01:37 .
drwx------ 3 dongsheng g11n 78 Oct 23 01:37 ..
drwxr-xr-x 3 dongsheng g11n 53 Oct 23 01:37 .hg

如果想将一些已有的文件加入版本库，我们可以将它们拷贝到目录下，然后执行hg
add命令，告诉Mercurial开始管理它们。
$ cd myproject
$ cp ../hello.c .
$ cp ../goodbye.c .
$ hg add
adding goodbye.c
adding hello.c
$ hg status
A goodbye.c
A hello.c

当对项目的状况满意时，我们就提交的变更。

$ hg commit -m 'Initial commit'

只需要几分钟就可以在一个新的项目上使用Mercurial，这时它的魅力之一。现在版本控
制做起来非常方便，我们可以在很小的不需要复杂工具的项目上使用它。

26

第 3 章 Mercurial 教程: 合并工作
We've now covered cloning a repository, making changes in a repository, and pulling or

pushing changes from one repository into another. Our next step is merging changes from
separate repositories.

3.1. 合并的流程
Merging is a fundamental part of working with a distributed revision control tool. Here are

a few cases in which the need to merge work arises.

• Alice and Bob each have a personal copy of a repository for a project they're collaborating
on. Alice fixes a bug in her repository; Bob adds a new feature in his. They want the shared
repository to contain both the bug fix and the new feature.

• Cynthia frequently works on several different tasks for a single project at once, each safely
isolated in its own repository. Working this way means that she often needs to merge one piece
of her own work with another.

Because we need to merge often, Mercurial makes the process easy. Let's walk through a
merge. We'll begin by cloning yet another repository (see how often they spring up?) and making
a change in it.

$ cd ..
$ hg clone hello my-new-hello
updating working directory
2 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd my-new-hello
Make some simple edits to hello.c.
$ my-text-editor hello.c
$ hg commit -m 'A new hello for a new day.'

We should now have two copies of hello.c with different contents. The histories of the
two repositories have also diverged, as illustrated in 图 3.1 “my-hello 与 my-new-hello 最
新的历史分叉”. Here is a copy of our file from one repository.

$ cat hello.c
/*
 * Placed in the public domain by Bryan O'Sullivan. This program is
 * not covered by patents in the United States or other countries.
 */

#include <stdio.h>

int main(int argc, char **argv)
{
 printf("once more, hello.\n");
 printf("hello, world!\");
 printf("hello again!\n");
 return 0;
}

And here is our slightly different version from the other repository.

$ cat ../my-hello/hello.c

Mercurial 教程: 合并工作

27

/*
 * Placed in the public domain by Bryan O'Sullivan. This program is
 * not covered by patents in the United States or other countries.
 */

#include <stdio.h>

int main(int argc, char **argv)
{
 printf("hello, world!\");
 printf("hello again!\n");
 return 0;
}

图 3.1. my-hello 与 my-new-hello 最新的历史分叉

We already know that pulling changes from our my-hello repository will have no effect
on the working directory.

$ hg pull ../my-hello
pulling from ../my-hello
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)

However, the hg pull command says something about “heads”.

3.1.1. 顶点修改集
Remember that Mercurial records what the parent of each change is. If a change has a parent,

we call it a child or descendant of the parent. A head is a change that has no children. The tip
revision is thus a head, because the newest revision in a repository doesn't have any children.
There are times when a repository can contain more than one head.

Mercurial 教程: 合并工作

28

图 3.2. 从 my-hello 拉到 my-new-hello 之后版本库的内容

In 图 3.2 “从 my-hello 拉到 my-new-hello 之后版本库的内容”, you can see the effect
of the pull from my-hello into my-new-hello. The history that was already present in my-
new-hello is untouched, but a new revision has been added. By referring to 图 3.1 “my-hello
与 my-new-hello 最新的历史分叉”, we can see that the changeset ID remains the same in
the new repository, but the revision number has changed. (This, incidentally, is a fine example
of why it's not safe to use revision numbers when discussing changesets.) We can view the heads
in a repository using the hg heads command.

$ hg heads
changeset: 6:cfb10a77c108
tag: tip
parent: 4:2278160e78d4
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:38:05 2009 +0000
summary: Added an extra line of output

changeset: 5:acf466dc3272
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:38:09 2009 +0000
summary: A new hello for a new day.

3.1.2. 执行合并
What happens if we try to use the normal hg update command to update to the new tip?

$ hg update
abort: crosses branches (use 'hg merge' or 'hg update -C')

Mercurial is telling us that the hg update command won't do a merge; it won't update the
working directory when it thinks we might want to do a merge, unless we force it to do so.
(Incidentally, forcing the update with hg update -C would revert any uncommitted changes in
the working directory.)

Mercurial 教程: 合并工作

29

我们使用 hg merge 命令来合并两个顶点。
$ hg merge
merging hello.c
0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)

We resolve the contents of hello.c This updates the working directory so that it contains
changes from both heads, which is reflected in both the output of hg parents and the contents
of hello.c.
$ hg parents
changeset: 5:acf466dc3272
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:38:09 2009 +0000
summary: A new hello for a new day.

changeset: 6:cfb10a77c108
tag: tip
parent: 4:2278160e78d4
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:38:05 2009 +0000
summary: Added an extra line of output

$ cat hello.c
/*
 * Placed in the public domain by Bryan O'Sullivan. This program is
 * not covered by patents in the United States or other countries.
 */

#include <stdio.h>

int main(int argc, char **argv)
{
 printf("once more, hello.\n");
 printf("hello, world!\");
 printf("hello again!\n");
 return 0;
}

3.1.3. 提交合并结果
Whenever we've done a merge, hg parents will display two parents until we hg commit the

results of the merge.
$ hg commit -m 'Merged changes'

We now have a new tip revision; notice that it has both of our former heads as its parents.
These are the same revisions that were previously displayed by hg parents.
$ hg tip
changeset: 7:a8fcbc2b9caf
tag: tip
parent: 5:acf466dc3272
parent: 6:cfb10a77c108
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:38:10 2009 +0000
summary: Merged changes

In 图 3.3 “在合并期间，以及提交之后的工作目录与版本库”, you can see a
representation of what happens to the working directory during the merge, and how this affects
the repository when the commit happens. During the merge, the working directory has two
parent changesets, and these become the parents of the new changeset.

Mercurial 教程: 合并工作

30

图 3.3. 在合并期间，以及提交之后的工作目录与版本库

We sometimes talk about a merge having sides: the left side is the first parent in the output
of hg parents, and the right side is the second. If the working directory was at e.g. revision 5
before we began a merge, that revision will become the left side of the merge.

3.2. 合并有冲突的改变
Most merges are simple affairs, but sometimes you'll find yourself merging changes where

each side modifies the same portions of the same files. Unless both modifications are identical,
this results in a conflict, where you have to decide how to reconcile the different changes into
something coherent.

图 3.4. 冲突的修改

图 3.4 “冲突的修改” illustrates an instance of two conflicting changes to a document. We
started with a single version of the file; then we made some changes; while someone else made
different changes to the same text. Our task in resolving the conflicting changes is to decide what
the file should look like.

Mercurial 教程: 合并工作

31

Mercurial doesn't have a built-in facility for handling conflicts. Instead, it runs an external
program, usually one that displays some kind of graphical conflict resolution interface. By default,
Mercurial tries to find one of several different merging tools that are likely to be installed on
your system. It first tries a few fully automatic merging tools; if these don't succeed (because the
resolution process requires human guidance) or aren't present, it tries a few different graphical
merging tools.

It's also possible to get Mercurial to run a specific program or script, by setting the HGMERGE
environment variable to the name of your preferred program.

3.2.1. 使用图形合并工具
My preferred graphical merge tool is kdiff3, which I'll use to describe the features that are

common to graphical file merging tools. You can see a screenshot of kdiff3 in action in 图 3.5
“使用 kdiff3 合并文件的不同版本”. The kind of merge it is performing is called a three-way
merge, because there are three different versions of the file of interest to us. The tool thus splits
the upper portion of the window into three panes:

• At the left is the base version of the file, i.e. the most recent version from which the two versions
we're trying to merge are descended.

• In the middle is “our” version of the file, with the contents that we modified.

• On the right is “their” version of the file, the one that from the changeset that we're trying to
merge with.

In the pane below these is the current result of the merge. Our task is to replace all of the red
text, which indicates unresolved conflicts, with some sensible merger of the “ours” and “theirs”
versions of the file.

All four of these panes are locked together; if we scroll vertically or horizontally in any of
them, the others are updated to display the corresponding sections of their respective files.

Mercurial 教程: 合并工作

32

图 3.5. 使用 kdiff3 合并文件的不同版本

For each conflicting portion of the file, we can choose to resolve the conflict using some
combination of text from the base version, ours, or theirs. We can also manually edit the merged
file at any time, in case we need to make further modifications.

There are many file merging tools available, too many to cover here. They vary in which
platforms they are available for, and in their particular strengths and weaknesses. Most are tuned
for merging files containing plain text, while a few are aimed at specialised file formats (generally
XML).

3.2.2. 合并实例
In this example, we will reproduce the file modification history of 图 3.4 “冲突的修改”

above. Let's begin by creating a repository with a base version of our document.
$ cat > letter.txt <<EOF
> Greetings!
> I am Mariam Abacha, the wife of former
> Nigerian dictator Sani Abacha.
> EOF
$ hg add letter.txt
$ hg commit -m '419 scam, first draft'

We'll clone the repository and make a change to the file.
$ cd ..
$ hg clone scam scam-cousin
updating working directory
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd scam-cousin
$ cat > letter.txt <<EOF

Mercurial 教程: 合并工作

33

> Greetings!
> I am Shehu Musa Abacha, cousin to the former
> Nigerian dictator Sani Abacha.
> EOF
$ hg commit -m '419 scam, with cousin'

And another clone, to simulate someone else making a change to the file. (This hints at
the idea that it's not all that unusual to merge with yourself when you isolate tasks in separate
repositories, and indeed to find and resolve conflicts while doing so.)
$ cd ..
$ hg clone scam scam-son
updating working directory
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd scam-son
$ cat > letter.txt <<EOF
> Greetings!
> I am Alhaji Abba Abacha, son of the former
> Nigerian dictator Sani Abacha.
> EOF
$ hg commit -m '419 scam, with son'

Having created two different versions of the file, we'll set up an environment suitable for
running our merge.
$ cd ..
$ hg clone scam-cousin scam-merge
updating working directory
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd scam-merge
$ hg pull -u ../scam-son
pulling from ../scam-son
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
not updating, since new heads added
(run 'hg heads' to see heads, 'hg merge' to merge)

In this example, I'll set HGMERGE to tell Mercurial to use the non-interactive merge
command. This is bundled with many Unix-like systems. (If you're following this example on your
computer, don't bother setting HGMERGE. You'll get dropped into a GUI file merge tool instead,
which is much preferable.)
$ export HGMERGE=merge
$ hg merge
merging letter.txt
sh: merge: command not found
merging letter.txt failed!
0 files updated, 0 files merged, 0 files removed, 1 files unresolved
use 'hg resolve' to retry unresolved file merges or 'hg up --clean' to abandon
$ cat letter.txt
Greetings!
I am Shehu Musa Abacha, cousin to the former
Nigerian dictator Sani Abacha.

Because merge can't resolve the conflicting changes, it leaves merge markers inside the file
that has conflicts, indicating which lines have conflicts, and whether they came from our version
of the file or theirs.

Mercurial can tell from the way merge exits that it wasn't able to merge successfully, so it
tells us what commands we'll need to run if we want to redo the merging operation. This could be

Mercurial 教程: 合并工作

34

useful if, for example, we were running a graphical merge tool and quit because we were confused
or realised we had made a mistake.

If automatic or manual merges fail, there's nothing to prevent us from “fixing up” the affected
files ourselves, and committing the results of our merge:
$ cat > letter.txt <<EOF
> Greetings!
> I am Bryan O'Sullivan, no relation of the former
> Nigerian dictator Sani Abacha.
> EOF
$ hg resolve -m letter.txt
$ hg commit -m 'Send me your money'
$ hg tip
changeset: 3:e16d77b1e039
tag: tip
parent: 1:06a49da8146c
parent: 2:472b72d30abb
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:38:11 2009 +0000
summary: Send me your money

在哪里能找到 hg resolve 命令?

The hg resolve command was introduced in Mercurial 1.1, which was released in
December 2008. If you are using an older version of Mercurial (run hg version to
see), this command will not be present. If your version of Mercurial is older than 1.1,
you should strongly consider upgrading to a newer version before trying to tackle
complicated merges.

3.3. 简化拉-合并-提交程序
The process of merging changes as outlined above is straightforward, but requires running

three commands in sequence.
hg pull -u
hg merge
hg commit -m 'Merged remote changes'

In the case of the final commit, you also need to enter a commit message, which is almost
always going to be a piece of uninteresting “boilerplate” text.

It would be nice to reduce the number of steps needed, if this were possible. Indeed,
Mercurial is distributed with an extension called fetch that does just this.

Mercurial provides a flexible extension mechanism that lets people extend its functionality,
while keeping the core of Mercurial small and easy to deal with. Some extensions add new
commands that you can use from the command line, while others work “behind the scenes,” for
example adding capabilities to Mercurial's built-in server mode.

The fetch extension adds a new command called, not surprisingly, hg fetch. This extension
acts as a combination of hg pull -u, hg merge and hg commit. It begins by pulling changes from
another repository into the current repository. If it finds that the changes added a new head to
the repository, it updates to the new head, begins a merge, then (if the merge succeeded) commits

Mercurial 教程: 合并工作

35

the result of the merge with an automatically-generated commit message. If no new heads were
added, it updates the working directory to the new tip changeset.

Enabling the fetch extension is easy. Edit the .hgrc file in your home directory, and either
go to the extensions section or create an extensions section. Then add a line that simply
reads “fetch=”.
[extensions]
fetch =

(Normally, the right-hand side of the “=” would indicate where to find the extension, but
since the fetch extension is in the standard distribution, Mercurial knows where to search for
it.)

3.4. 改名，复制与合并
During the life of a project, we will often want to change the layout of its files and directories.

This can be as simple as renaming a single file, or as complex as restructuring the entire hierarchy
of files within the project.

Mercurial supports these kinds of complex changes fluently, provided we tell it what we're
doing. If we want to rename a file, we should use the hg rename1 command to rename it, so that
Mercurial can do the right thing later when we merge.

We will cover the use of these commands in more detail in 第 5.3 节 “复制文件”.

1If you're a Unix user, you'll be glad to know that the hg rename command can be abbreviated as hg mv.

36

第 4 章 Mercurial 内幕
Unlike many revision control systems, the concepts upon which Mercurial is built are simple

enough that it's easy to understand how the software really works. Knowing these details
certainly isn't necessary, so it is certainly safe to skip this chapter. However, I think you will get
more out of the software with a “mental model” of what's going on.

Being able to understand what's going on behind the scenes gives me confidence that
Mercurial has been carefully designed to be both safe and efficient. And just as importantly, if it's
easy for me to retain a good idea of what the software is doing when I perform a revision control
task, I'm less likely to be surprised by its behavior.

In this chapter, we'll initially cover the core concepts behind Mercurial's design, then
continue to discuss some of the interesting details of its implementation.

4.1. Mercurial 的历史记录
4.1.1. 跟踪单一文件的历史

When Mercurial tracks modifications to a file, it stores the history of that file in a metadata
object called a filelog. Each entry in the filelog contains enough information to reconstruct
one revision of the file that is being tracked. Filelogs are stored as files in the .hg/store/
data directory. A filelog contains two kinds of information: revision data, and an index to help
Mercurial to find a revision efficiently.

A file that is large, or has a lot of history, has its filelog stored in separate data (“.d” suffix)
and index (“.i” suffix) files. For small files without much history, the revision data and index are
combined in a single “.i” file. The correspondence between a file in the working directory and
the filelog that tracks its history in the repository is illustrated in 图 4.1 “工作目录中的文件与
版本库中的文件日志之间的关系”.

图 4.1. 工作目录中的文件与版本库中的文件日志之间的关系

Mercurial 内幕

37

4.1.2. 管理跟踪的文件
Mercurial uses a structure called a manifest to collect together information about the files

that it tracks. Each entry in the manifest contains information about the files present in a single
changeset. An entry records which files are present in the changeset, the revision of each file, and
a few other pieces of file metadata.

4.1.3. 记录修改集信息
The changelog contains information about each changeset. Each revision records who

committed a change, the changeset comment, other pieces of changeset-related information, and
the revision of the manifest to use.

4.1.4. 版本之间的关系
Within a changelog, a manifest, or a filelog, each revision stores a pointer to its immediate

parent (or to its two parents, if it's a merge revision). As I mentioned above, there are also
relationships between revisions across these structures, and they are hierarchical in nature.

For every changeset in a repository, there is exactly one revision stored in the changelog.
Each revision of the changelog contains a pointer to a single revision of the manifest. A revision
of the manifest stores a pointer to a single revision of each filelog tracked when that changeset
was created. These relationships are illustrated in 图 4.2 “元数据之间的关系”.

图 4.2. 元数据之间的关系

As the illustration shows, there is not a “one to one” relationship between revisions in
the changelog, manifest, or filelog. If a file that Mercurial tracks hasn't changed between two
changesets, the entry for that file in the two revisions of the manifest will point to the same
revision of its filelog1.

1It is possible (though unusual) for the manifest to remain the same between two changesets, in which case the changelog
entries for those changesets will point to the same revision of the manifest.

Mercurial 内幕

38

4.2. 安全，高效的存储
The underpinnings of changelogs, manifests, and filelogs are provided by a single structure

called the revlog.

4.2.1. 高效存储
The revlog provides efficient storage of revisions using a delta mechanism. Instead of storing

a complete copy of a file for each revision, it stores the changes needed to transform an older
revision into the new revision. For many kinds of file data, these deltas are typically a fraction of
a percent of the size of a full copy of a file.

Some obsolete revision control systems can only work with deltas of text files. They must
either store binary files as complete snapshots or encoded into a text representation, both of
which are wasteful approaches. Mercurial can efficiently handle deltas of files with arbitrary
binary contents; it doesn't need to treat text as special.

4.2.2. 安全操作
Mercurial only ever appends data to the end of a revlog file. It never modifies a section of a

file after it has written it. This is both more robust and efficient than schemes that need to modify
or rewrite data.

In addition, Mercurial treats every write as part of a transaction that can span a number of
files. A transaction is atomic: either the entire transaction succeeds and its effects are all visible
to readers in one go, or the whole thing is undone. This guarantee of atomicity means that if you're
running two copies of Mercurial, where one is reading data and one is writing it, the reader will
never see a partially written result that might confuse it.

The fact that Mercurial only appends to files makes it easier to provide this transactional
guarantee. The easier it is to do stuff like this, the more confident you should be that it's done
correctly.

4.2.3. 快速检索
Mercurial cleverly avoids a pitfall common to all earlier revision control systems: the

problem of inefficient retrieval. Most revision control systems store the contents of a revision
as an incremental series of modifications against a “snapshot”. (Some base the snapshot on the
oldest revision, others on the newest.) To reconstruct a specific revision, you must first read the
snapshot, and then every one of the revisions between the snapshot and your target revision.
The more history that a file accumulates, the more revisions you must read, hence the longer it
takes to reconstruct a particular revision.

Mercurial 内幕

39

图 4.3. 版本日志的快照，以及增量差异

The innovation that Mercurial applies to this problem is simple but effective. Once the
cumulative amount of delta information stored since the last snapshot exceeds a fixed threshold,
it stores a new snapshot (compressed, of course), instead of another delta. This makes it possible
to reconstruct any revision of a file quickly. This approach works so well that it has since been
copied by several other revision control systems.

图 4.3 “版本日志的快照，以及增量差异” illustrates the idea. In an entry in a revlog's
index file, Mercurial stores the range of entries from the data file that it must read to reconstruct
a particular revision.

4.2.3.1. 旁白: 视频压缩的影响

If you're familiar with video compression or have ever watched a TV feed through a digital cable
or satellite service, you may know that most video compression schemes store each frame of
video as a delta against its predecessor frame.

Mercurial borrows this idea to make it possible to reconstruct a revision from a snapshot and a
small number of deltas.

4.2.4. 鉴别和强完整性
Along with delta or snapshot information, a revlog entry contains a cryptographic hash of

the data that it represents. This makes it difficult to forge the contents of a revision, and easy to
detect accidental corruption.

Hashes provide more than a mere check against corruption; they are used as the identifiers
for revisions. The changeset identification hashes that you see as an end user are from revisions
of the changelog. Although filelogs and the manifest also use hashes, Mercurial only uses these
behind the scenes.

Mercurial 内幕

40

Mercurial verifies that hashes are correct when it retrieves file revisions and when it pulls
changes from another repository. If it encounters an integrity problem, it will complain and stop
whatever it's doing.

In addition to the effect it has on retrieval efficiency, Mercurial's use of periodic snapshots
makes it more robust against partial data corruption. If a revlog becomes partly corrupted due
to a hardware error or system bug, it's often possible to reconstruct some or most revisions from
the uncorrupted sections of the revlog, both before and after the corrupted section. This would
not be possible with a delta-only storage model.

4.3. 修订历史，分支与合并
Every entry in a Mercurial revlog knows the identity of its immediate ancestor revision,

usually referred to as its parent. In fact, a revision contains room for not one parent, but two.
Mercurial uses a special hash, called the “null ID”, to represent the idea “there is no parent here”.
This hash is simply a string of zeroes.

In 图 4.4 “版本日志的设计结构”, you can see an example of the conceptual structure of
a revlog. Filelogs, manifests, and changelogs all have this same structure; they differ only in the
kind of data stored in each delta or snapshot.

The first revision in a revlog (at the bottom of the image) has the null ID in both of its
parent slots. For a “normal” revision, its first parent slot contains the ID of its parent revision,
and its second contains the null ID, indicating that the revision has only one real parent. Any two
revisions that have the same parent ID are branches. A revision that represents a merge between
branches has two normal revision IDs in its parent slots.

Mercurial 内幕

41

图 4.4. 版本日志的设计结构

4.4. 工作目录
In the working directory, Mercurial stores a snapshot of the files from the repository as of

a particular changeset.

The working directory “knows” which changeset it contains. When you update the working
directory to contain a particular changeset, Mercurial looks up the appropriate revision of the
manifest to find out which files it was tracking at the time that changeset was committed, and
which revision of each file was then current. It then recreates a copy of each of those files, with
the same contents it had when the changeset was committed.

The dirstate is a special structure that contains Mercurial's knowledge of the working
directory. It is maintained as a file named .hg/dirstate inside a repository. The dirstate
details which changeset the working directory is updated to, and all of the files that Mercurial is
tracking in the working directory. It also lets Mercurial quickly notice changed files, by recording
their checkout times and sizes.

Mercurial 内幕

42

Just as a revision of a revlog has room for two parents, so that it can represent either a
normal revision (with one parent) or a merge of two earlier revisions, the dirstate has slots for
two parents. When you use the hg update command, the changeset that you update to is stored in
the “first parent” slot, and the null ID in the second. When you hg merge with another changeset,
the first parent remains unchanged, and the second parent is filled in with the changeset you're
merging with. The hg parents command tells you what the parents of the dirstate are.

4.4.1. 当你提交时发生的事情
The dirstate stores parent information for more than just book-keeping purposes. Mercurial

uses the parents of the dirstate as the parents of a new changeset when you perform a commit.

图 4.5. 工作目录可以有两个父亲

图 4.5 “工作目录可以有两个父亲” shows the normal state of the working directory,
where it has a single changeset as parent. That changeset is the tip, the newest changeset in the
repository that has no children.

Mercurial 内幕

43

图 4.6. 提交之后，工作目录的父亲就改变了

It's useful to think of the working directory as “the changeset I'm about to commit”. Any files
that you tell Mercurial that you've added, removed, renamed, or copied will be reflected in that
changeset, as will modifications to any files that Mercurial is already tracking; the new changeset
will have the parents of the working directory as its parents.

After a commit, Mercurial will update the parents of the working directory, so that the first
parent is the ID of the new changeset, and the second is the null ID. This is shown in 图 4.6 “提
交之后，工作目录的父亲就改变了”. Mercurial doesn't touch any of the files in the working
directory when you commit; it just modifies the dirstate to note its new parents.

4.4.2. 创建新顶点
It's perfectly normal to update the working directory to a changeset other than the current

tip. For example, you might want to know what your project looked like last Tuesday, or you
could be looking through changesets to see which one introduced a bug. In cases like this, the
natural thing to do is update the working directory to the changeset you're interested in, and then
examine the files in the working directory directly to see their contents as they were when you
committed that changeset. The effect of this is shown in 图 4.7 “同步到旧修改集的工作目录”.

Mercurial 内幕

44

图 4.7. 同步到旧修改集的工作目录

Having updated the working directory to an older changeset, what happens if you make
some changes, and then commit? Mercurial behaves in the same way as I outlined above. The
parents of the working directory become the parents of the new changeset. This new changeset
has no children, so it becomes the new tip. And the repository now contains two changesets that
have no children; we call these heads. You can see the structure that this creates in 图 4.8 “对
同步到旧修改集的工作目录提交之后”.

图 4.8. 对同步到旧修改集的工作目录提交之后

注意

If you're new to Mercurial, you should keep in mind a common “error”, which is to use
the hg pull command without any options. By default, the hg pull command does not
update the working directory, so you'll bring new changesets into your repository, but
the working directory will stay synced at the same changeset as before the pull. If you
make some changes and commit afterwards, you'll thus create a new head, because
your working directory isn't synced to whatever the current tip is. To combine the
operation of a pull, followed by an update, run hg pull -u.

Mercurial 内幕

45

I put the word “error” in quotes because all that you need to do to rectify the situation
where you created a new head by accident is hg merge, then hg commit. In other
words, this almost never has negative consequences; it's just something of a surprise
for newcomers. I'll discuss other ways to avoid this behavior, and why Mercurial
behaves in this initially surprising way, later on.

4.4.3. 合并修改
When you run the hg merge command, Mercurial leaves the first parent of the working

directory unchanged, and sets the second parent to the changeset you're merging with, as shown
in 图 4.9 “合并两个顶点”.

图 4.9. 合并两个顶点

Mercurial also has to modify the working directory, to merge the files managed in the two
changesets. Simplified a little, the merging process goes like this, for every file in the manifests
of both changesets.

• If neither changeset has modified a file, do nothing with that file.

• If one changeset has modified a file, and the other hasn't, create the modified copy of the file
in the working directory.

• If one changeset has removed a file, and the other hasn't (or has also deleted it), delete the file
from the working directory.

• If one changeset has removed a file, but the other has modified the file, ask the user what to
do: keep the modified file, or remove it?

• If both changesets have modified a file, invoke an external merge program to choose the new
contents for the merged file. This may require input from the user.

• If one changeset has modified a file, and the other has renamed or copied the file, make sure
that the changes follow the new name of the file.

Mercurial 内幕

46

There are more details—merging has plenty of corner cases—but these are the most
common choices that are involved in a merge. As you can see, most cases are completely
automatic, and indeed most merges finish automatically, without requiring your input to resolve
any conflicts.

When you're thinking about what happens when you commit after a merge, once again
the working directory is “the changeset I'm about to commit”. After the hg merge command
completes, the working directory has two parents; these will become the parents of the new
changeset.

Mercurial lets you perform multiple merges, but you must commit the results of each
individual merge as you go. This is necessary because Mercurial only tracks two parents for both
revisions and the working directory. While it would be technically feasible to merge multiple
changesets at once, Mercurial avoids this for simplicity. With multi-way merges, the risks of
user confusion, nasty conflict resolution, and making a terrible mess of a merge would grow
intolerable.

4.4.4. 合并与改名
A surprising number of revision control systems pay little or no attention to a file's name

over time. For instance, it used to be common that if a file got renamed on one side of a merge,
the changes from the other side would be silently dropped.

Mercurial records metadata when you tell it to perform a rename or copy. It uses this
metadata during a merge to do the right thing in the case of a merge. For instance, if I rename a
file, and you edit it without renaming it, when we merge our work the file will be renamed and
have your edits applied.

4.5. 其它有趣的设计特性
In the sections above, I've tried to highlight some of the most important aspects of

Mercurial's design, to illustrate that it pays careful attention to reliability and performance.
However, the attention to detail doesn't stop there. There are a number of other aspects of
Mercurial's construction that I personally find interesting. I'll detail a few of them here, separate
from the “big ticket” items above, so that if you're interested, you can gain a better idea of the
amount of thinking that goes into a well-designed system.

4.5.1. 智能压缩
When appropriate, Mercurial will store both snapshots and deltas in compressed form. It

does this by always trying to compress a snapshot or delta, but only storing the compressed
version if it's smaller than the uncompressed version.

This means that Mercurial does “the right thing” when storing a file whose native form is
compressed, such as a zip archive or a JPEG image. When these types of files are compressed a
second time, the resulting file is usually bigger than the once-compressed form, and so Mercurial
will store the plain zip or JPEG.

Mercurial 内幕

47

Deltas between revisions of a compressed file are usually larger than snapshots of the file,
and Mercurial again does “the right thing” in these cases. It finds that such a delta exceeds the
threshold at which it should store a complete snapshot of the file, so it stores the snapshot, again
saving space compared to a naive delta-only approach.

4.5.1.1. 网络重新压缩
When storing revisions on disk, Mercurial uses the “deflate” compression algorithm (the same
one used by the popular zip archive format), which balances good speed with a respectable
compression ratio. However, when transmitting revision data over a network connection,
Mercurial uncompresses the compressed revision data.

If the connection is over HTTP, Mercurial recompresses the entire stream of data using a
compression algorithm that gives a better compression ratio (the Burrows-Wheeler algorithm
from the widely used bzip2 compression package). This combination of algorithm and
compression of the entire stream (instead of a revision at a time) substantially reduces the
number of bytes to be transferred, yielding better network performance over most kinds of
network.

If the connection is over ssh, Mercurial doesn't recompress the stream, because ssh can already
do this itself. You can tell Mercurial to always use ssh's compression feature by editing the .hgrc
file in your home directory as follows.
[ui]
ssh = ssh -C

4.5.2. 读写顺序与原子性
Appending to files isn't the whole story when it comes to guaranteeing that a reader won't

see a partial write. If you recall 图 4.2 “元数据之间的关系”, revisions in the changelog point
to revisions in the manifest, and revisions in the manifest point to revisions in filelogs. This
hierarchy is deliberate.

A writer starts a transaction by writing filelog and manifest data, and doesn't write any
changelog data until those are finished. A reader starts by reading changelog data, then manifest
data, followed by filelog data.

Since the writer has always finished writing filelog and manifest data before it writes to the
changelog, a reader will never read a pointer to a partially written manifest revision from the
changelog, and it will never read a pointer to a partially written filelog revision from the manifest.

4.5.3. 并发访问
The read/write ordering and atomicity guarantees mean that Mercurial never needs to lock

a repository when it's reading data, even if the repository is being written to while the read is
occurring. This has a big effect on scalability; you can have an arbitrary number of Mercurial
processes safely reading data from a repository all at once, no matter whether it's being written
to or not.

The lockless nature of reading means that if you're sharing a repository on a multi-user
system, you don't need to grant other local users permission to write to your repository in order

Mercurial 内幕

48

for them to be able to clone it or pull changes from it; they only need read permission. (This is
not a common feature among revision control systems, so don't take it for granted! Most require
readers to be able to lock a repository to access it safely, and this requires write permission on
at least one directory, which of course makes for all kinds of nasty and annoying security and
administrative problems.)

Mercurial uses locks to ensure that only one process can write to a repository at a time (the
locking mechanism is safe even over filesystems that are notoriously hostile to locking, such as
NFS). If a repository is locked, a writer will wait for a while to retry if the repository becomes
unlocked, but if the repository remains locked for too long, the process attempting to write will
time out after a while. This means that your daily automated scripts won't get stuck forever and
pile up if a system crashes unnoticed, for example. (Yes, the timeout is configurable, from zero
to infinity.)

4.5.3.1. 安全的目录状态访问
As with revision data, Mercurial doesn't take a lock to read the dirstate file; it does acquire a lock
to write it. To avoid the possibility of reading a partially written copy of the dirstate file, Mercurial
writes to a file with a unique name in the same directory as the dirstate file, then renames the
temporary file atomically to dirstate. The file named dirstate is thus guaranteed to be
complete, not partially written.

4.5.4. 避免查找
Critical to Mercurial's performance is the avoidance of seeks of the disk head, since any seek

is far more expensive than even a comparatively large read operation.

This is why, for example, the dirstate is stored in a single file. If there were a dirstate file
per directory that Mercurial tracked, the disk would seek once per directory. Instead, Mercurial
reads the entire single dirstate file in one step.

Mercurial also uses a “copy on write” scheme when cloning a repository on local storage.
Instead of copying every revlog file from the old repository into the new repository, it makes
a “hard link”, which is a shorthand way to say “these two names point to the same file”. When
Mercurial is about to write to one of a revlog's files, it checks to see if the number of names
pointing at the file is greater than one. If it is, more than one repository is using the file, so
Mercurial makes a new copy of the file that is private to this repository.

A few revision control developers have pointed out that this idea of making a complete
private copy of a file is not very efficient in its use of storage. While this is true, storage is
cheap, and this method gives the highest performance while deferring most book-keeping to the
operating system. An alternative scheme would most likely reduce performance and increase the
complexity of the software, but speed and simplicity are key to the “feel” of day-to-day use.

4.5.5. 目录状态的其它内容
Because Mercurial doesn't force you to tell it when you're modifying a file, it uses the dirstate

to store some extra information so it can determine efficiently whether you have modified a file.

Mercurial 内幕

49

For each file in the working directory, it stores the time that it last modified the file itself, and the
size of the file at that time.

When you explicitly hg add, hg remove, hg rename or hg copy files, Mercurial updates the
dirstate so that it knows what to do with those files when you commit.

The dirstate helps Mercurial to efficiently check the status of files in a repository.

• When Mercurial checks the state of a file in the working directory, it first checks a file's
modification time against the time in the dirstate that records when Mercurial last wrote the
file. If the last modified time is the same as the time when Mercurial wrote the file, the file must
not have been modified, so Mercurial does not need to check any further.

• If the file's size has changed, the file must have been modified. If the modification time has
changed, but the size has not, only then does Mercurial need to actually read the contents of
the file to see if it has changed.

Storing the modification time and size dramatically reduces the number of read operations
that Mercurial needs to perform when we run commands like hg status. This results in large
performance improvements.

50

第 5 章 Mercurial 的日常使用

5.1. 告诉 Mercurial 要跟踪哪些文件
Mercurial does not work with files in your repository unless you tell it to manage them. The

hg status command will tell you which files Mercurial doesn't know about; it uses a “?” to display
such files.

To tell Mercurial to track a file, use the hg add command. Once you have added a file, the
entry in the output of hg status for that file changes from “?” to “A”.

$ hg init add-example
$ cd add-example
$ echo a > myfile.txt
$ hg status
? myfile.txt
$ hg add myfile.txt
$ hg status
A myfile.txt
$ hg commit -m 'Added one file'
$ hg status

After you run a hg commit, the files that you added before the commit will no longer be
listed in the output of hg status. The reason for this is that by default, hg status only tells you
about “interesting” files—those that you have (for example) modified, removed, or renamed. If
you have a repository that contains thousands of files, you will rarely want to know about files
that Mercurial is tracking, but that have not changed. (You can still get this information; we'll
return to this later.)

Once you add a file, Mercurial doesn't do anything with it immediately. Instead, it will take a
snapshot of the file's state the next time you perform a commit. It will then continue to track the
changes you make to the file every time you commit, until you remove the file.

5.1.1. 明确与隐含文件命名
A useful behavior that Mercurial has is that if you pass the name of a directory to a command,

every Mercurial command will treat this as “I want to operate on every file in this directory and
its subdirectories”.

$ mkdir b
$ echo b > b/somefile.txt
$ echo c > b/source.cpp
$ mkdir b/d
$ echo d > b/d/test.h
$ hg add b
adding b/d/test.h
adding b/somefile.txt
adding b/source.cpp
$ hg commit -m 'Added all files in subdirectory'

Notice in this example that Mercurial printed the names of the files it added, whereas it didn't
do so when we added the file named myfile.txt in the earlier example.

Mercurial 的日常使用

51

What's going on is that in the former case, we explicitly named the file to add on the
command line. The assumption that Mercurial makes in such cases is that we know what we are
doing, and it doesn't print any output.

However, when we imply the names of files by giving the name of a directory, Mercurial takes
the extra step of printing the name of each file that it does something with. This makes it more
clear what is happening, and reduces the likelihood of a silent and nasty surprise. This behavior
is common to most Mercurial commands.

5.1.2. Mercurial 只跟踪文件，不跟踪目录
Mercurial does not track directory information. Instead, it tracks the path to a file. Before

creating a file, it first creates any missing directory components of the path. After it deletes a
file, it then deletes any empty directories that were in the deleted file's path. This sounds like a
trivial distinction, but it has one minor practical consequence: it is not possible to represent a
completely empty directory in Mercurial.

Empty directories are rarely useful, and there are unintrusive workarounds that you can use
to achieve an appropriate effect. The developers of Mercurial thus felt that the complexity that
would be required to manage empty directories was not worth the limited benefit this feature
would bring.

If you need an empty directory in your repository, there are a few ways to achieve this. One
is to create a directory, then hg add a “hidden” file to that directory. On Unix-like systems, any
file name that begins with a period (“.”) is treated as hidden by most commands and GUI tools.
This approach is illustrated below.
$ hg init hidden-example
$ cd hidden-example
$ mkdir empty
$ touch empty/.hidden
$ hg add empty/.hidden
$ hg commit -m 'Manage an empty-looking directory'
$ ls empty
$ cd ..
$ hg clone hidden-example tmp
updating working directory
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ ls tmp
empty
$ ls tmp/empty

Another way to tackle a need for an empty directory is to simply create one in your
automated build scripts before they will need it.

5.2. 如何停止跟踪文件
Once you decide that a file no longer belongs in your repository, use the hg remove

command. This deletes the file, and tells Mercurial to stop tracking it (which will occur at the next
commit). A removed file is represented in the output of hg status with a “R”.
$ hg init remove-example
$ cd remove-example
$ echo a > a
$ mkdir b

Mercurial 的日常使用

52

$ echo b > b/b
$ hg add a b
adding b/b
$ hg commit -m 'Small example for file removal'
$ hg remove a
$ hg status
R a
$ hg remove b
removing b/b

After you hg remove a file, Mercurial will no longer track changes to that file, even if you
recreate a file with the same name in your working directory. If you do recreate a file with the
same name and want Mercurial to track the new file, simply hg add it. Mercurial will know that
the newly added file is not related to the old file of the same name.

5.2.1. 删除文件不影响历史
It is important to understand that removing a file has only two effects.

• It removes the current version of the file from the working directory.

• It stops Mercurial from tracking changes to the file, from the time of the next commit.

Removing a file does not in any way alter the history of the file.

If you update the working directory to a changeset that was committed when it was still
tracking a file that you later removed, the file will reappear in the working directory, with the
contents it had when you committed that changeset. If you then update the working directory to
a later changeset, in which the file had been removed, Mercurial will once again remove the file
from the working directory.

5.2.2. 丢失的文件
Mercurial considers a file that you have deleted, but not used hg remove to delete, to be

missing. A missing file is represented with “!” in the output of hg status. Mercurial commands
will not generally do anything with missing files.
$ hg init missing-example
$ cd missing-example
$ echo a > a
$ hg add a
$ hg commit -m 'File about to be missing'
$ rm a
$ hg status
! a

If your repository contains a file that hg status reports as missing, and you want the file to
stay gone, you can run hg remove --after at any time later on, to tell Mercurial that you really
did mean to remove the file.
$ hg remove --after a
$ hg status
R a

On the other hand, if you deleted the missing file by accident, give hg revert the name of the
file to recover. It will reappear, in unmodified form.

Mercurial 的日常使用

53

$ hg revert a
$ cat a
a
$ hg status

5.2.3. 旁白: 为什么要明确告诉 Mercurial 删除文件?
You might wonder why Mercurial requires you to explicitly tell it that you are deleting a file.

Early during the development of Mercurial, it let you delete a file however you pleased; Mercurial
would notice the absence of the file automatically when you next ran a hg commit, and stop
tracking the file. In practice, this made it too easy to accidentally remove a file without noticing.

5.2.4. 有用的速记—一个步骤添加和删除文件
Mercurial offers a combination command, hg addremove, that adds untracked files and

marks missing files as removed.
$ hg init addremove-example
$ cd addremove-example
$ echo a > a
$ echo b > b
$ hg addremove
adding a
adding b

The hg commit command also provides a -A option that performs this same add-and-
remove, immediately followed by a commit.
$ echo c > c
$ hg commit -A -m 'Commit with addremove'
adding c

5.3. 复制文件
Mercurial provides a hg copy command that lets you make a new copy of a file. When you

copy a file using this command, Mercurial makes a record of the fact that the new file is a copy of
the original file. It treats these copied files specially when you merge your work with someone
else's.

5.3.1. 合并期间的复制结果
What happens during a merge is that changes “follow” a copy. To best illustrate what this

means, let's create an example. We'll start with the usual tiny repository that contains a single file.
$ hg init my-copy
$ cd my-copy
$ echo line > file
$ hg add file
$ hg commit -m 'Added a file'

We need to do some work in parallel, so that we'll have something to merge. So let's clone
our repository.
$ cd ..
$ hg clone my-copy your-copy
updating working directory

Mercurial 的日常使用

54

1 files updated, 0 files merged, 0 files removed, 0 files unresolved

Back in our initial repository, let's use the hg copy command to make a copy of the first file
we created.
$ cd my-copy
$ hg copy file new-file

If we look at the output of the hg status command afterwards, the copied file looks just like
a normal added file.
$ hg status
A new-file

But if we pass the -C option to hg status, it prints another line of output: this is the file that
our newly-added file was copied from.
$ hg status -C
A new-file
 file
$ hg commit -m 'Copied file'

Now, back in the repository we cloned, let's make a change in parallel. We'll add a line of
content to the original file that we created.
$ cd ../your-copy
$ echo 'new contents' >> file
$ hg commit -m 'Changed file'

Now we have a modified file in this repository. When we pull the changes from the first
repository, and merge the two heads, Mercurial will propagate the changes that we made locally
to file into its copy, new-file.
$ hg pull ../my-copy
pulling from ../my-copy
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)
$ hg merge
merging file and new-file to new-file
0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)
$ cat new-file
line
new contents

5.3.2. 为什么复制后需要后续修改?
This behavior—of changes to a file propagating out to copies of the file—might seem

esoteric, but in most cases it's highly desirable.

First of all, remember that this propagation only happens when you merge. So if you hg copy
a file, and subsequently modify the original file during the normal course of your work, nothing
will happen.

The second thing to know is that modifications will only propagate across a copy as long as
the changeset that you're merging changes from hasn't yet seen the copy.

Mercurial 的日常使用

55

The reason that Mercurial does this is as follows. Let's say I make an important bug fix in
a source file, and commit my changes. Meanwhile, you've decided to hg copy the file in your
repository, without knowing about the bug or having seen the fix, and you have started hacking
on your copy of the file.

If you pulled and merged my changes, and Mercurial didn't propagate changes across copies,
your new source file would now contain the bug, and unless you knew to propagate the bug fix
by hand, the bug would remain in your copy of the file.

By automatically propagating the change that fixed the bug from the original file to the copy,
Mercurial prevents this class of problem. To my knowledge, Mercurial is the only revision control
system that propagates changes across copies like this.

Once your change history has a record that the copy and subsequent merge occurred, there's
usually no further need to propagate changes from the original file to the copied file, and that's
why Mercurial only propagates changes across copies at the first merge, and not afterwards.

5.3.3. 如何让复制后不修改?
If, for some reason, you decide that this business of automatically propagating changes

across copies is not for you, simply use your system's normal file copy command (on Unix-like
systems, that's cp) to make a copy of a file, then hg add the new copy by hand. Before you do so,
though, please do reread 第 5.3.2 节 “为什么复制后需要后续修改?”, and make an informed
decision that this behavior is not appropriate to your specific case.

5.3.4. 命令 hg copy 的特性
When you use the hg copy command, Mercurial makes a copy of each source file as it

currently stands in the working directory. This means that if you make some modifications to a
file, then hg copy it without first having committed those changes, the new copy will also contain
the modifications you have made up until that point. (I find this behavior a little counterintuitive,
which is why I mention it here.)

The hg copy command acts similarly to the Unix cp command (you can use the hg cp
alias if you prefer). We must supply two or more arguments, of which the last is treated as the
destination, and all others are sources.

If you pass hg copy a single file as the source, and the destination does not exist, it creates
a new file with that name.
$ mkdir k
$ hg copy a k
$ ls k
a

If the destination is a directory, Mercurial copies its sources into that directory.
$ mkdir d
$ hg copy a b d
$ ls d
a b

Copying a directory is recursive, and preserves the directory structure of the source.

Mercurial 的日常使用

56

$ hg copy z e
copying z/a/c to e/a/c

If the source and destination are both directories, the source tree is recreated in the
destination directory.
$ hg copy z d
copying z/a/c to d/z/a/c

As with the hg remove command, if you copy a file manually and then want Mercurial to
know that you've copied the file, simply use the --after option to hg copy.
$ cp a n
$ hg copy --after a n

5.4. 改名文件
It's rather more common to need to rename a file than to make a copy of it. The reason I

discussed the hg copy command before talking about renaming files is that Mercurial treats a
rename in essentially the same way as a copy. Therefore, knowing what Mercurial does when you
copy a file tells you what to expect when you rename a file.

When you use the hg rename command, Mercurial makes a copy of each source file, then
deletes it and marks the file as removed.
$ hg rename a b

The hg status command shows the newly copied file as added, and the copied-from file as
removed.
$ hg status
A b
R a

As with the results of a hg copy, we must use the -C option to hg status to see that the added
file is really being tracked by Mercurial as a copy of the original, now removed, file.
$ hg status -C
A b
 a
R a

As with hg remove and hg copy, you can tell Mercurial about a rename after the fact using
the --after option. In most other respects, the behavior of the hg rename command, and the
options it accepts, are similar to the hg copy command.

If you're familiar with the Unix command line, you'll be glad to know that hg rename
command can be invoked as hg mv.

5.4.1. 改名文件与合并修改
Since Mercurial's rename is implemented as copy-and-remove, the same propagation of

changes happens when you merge after a rename as after a copy.

If I modify a file, and you rename it to a new name, and then we merge our respective
changes, my modifications to the file under its original name will be propagated into the file under

Mercurial 的日常使用

57

its new name. (This is something you might expect to “simply work,” but not all revision control
systems actually do this.)

Whereas having changes follow a copy is a feature where you can perhaps nod and say “yes,
that might be useful,” it should be clear that having them follow a rename is definitely important.
Without this facility, it would simply be too easy for changes to become orphaned when files are
renamed.

5.4.2. 改名与合并的分歧
The case of diverging names occurs when two developers start with a file—let's call it foo—

in their respective repositories.
$ hg clone orig anne
updating working directory
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ hg clone orig bob
updating working directory
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

Anne renames the file to bar.
$ cd anne
$ hg rename foo bar
$ hg ci -m 'Rename foo to bar'

Meanwhile, Bob renames it to quux. (Remember that hg mv is an alias for hg rename.)
$ cd ../bob
$ hg mv foo quux
$ hg ci -m 'Rename foo to quux'

I like to think of this as a conflict because each developer has expressed different intentions
about what the file ought to be named.

What do you think should happen when they merge their work? Mercurial's actual behavior
is that it always preserves both names when it merges changesets that contain divergent
renames.
See http://www.selenic.com/mercurial/bts/issue455
$ cd ../orig
$ hg pull -u ../anne
pulling from ../anne
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files
1 files updated, 0 files merged, 1 files removed, 0 files unresolved
$ hg pull ../bob
pulling from ../bob
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)
$ hg merge
warning: detected divergent renames of foo to:
 bar
 quux

Mercurial 的日常使用

58

1 files updated, 0 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)
$ ls
bar quux

Notice that while Mercurial warns about the divergent renames, it leaves it up to you to do
something about the divergence after the merge.

5.4.3. 收敛改名与合并
Another kind of rename conflict occurs when two people choose to rename different source

files to the same destination. In this case, Mercurial runs its normal merge machinery, and lets
you guide it to a suitable resolution.

5.4.4. 其它名称相关的角落
Mercurial has a longstanding bug in which it fails to handle a merge where one side has a

file with a given name, while another has a directory with the same name. This is documented as
issue 29 [http://www.selenic.com/mercurial/bts/issue29].
$ hg init issue29
$ cd issue29
$ echo a > a
$ hg ci -Ama
adding a
$ echo b > b
$ hg ci -Amb
adding b
$ hg up 0
0 files updated, 0 files merged, 1 files removed, 0 files unresolved
$ mkdir b
$ echo b > b/b
$ hg ci -Amc
adding b/b
created new head
$ hg merge
abort: Is a directory: /tmp/issue29C-mmLm/issue29/b

5.5. 从错误恢复
Mercurial has some useful commands that will help you to recover from some common

mistakes.

The hg revert command lets you undo changes that you have made to your working
directory. For example, if you hg add a file by accident, just run hg revert with the name of the
file you added, and while the file won't be touched in any way, it won't be tracked for adding by
Mercurial any longer, either. You can also use hg revert to get rid of erroneous changes to a file.

It is helpful to remember that the hg revert command is useful for changes that you have
not yet committed. Once you've committed a change, if you decide it was a mistake, you can still
do something about it, though your options may be more limited.

For more information about the hg revert command, and details about how to deal with
changes you have already committed, see 第 9 章 查找和修改错误.

http://www.selenic.com/mercurial/bts/issue29
http://www.selenic.com/mercurial/bts/issue29

Mercurial 的日常使用

59

5.6. 合并的技巧
In a complicated or large project, it's not unusual for a merge of two changesets to result in

some headaches. Suppose there's a big source file that's been extensively edited by each side of
a merge: this is almost inevitably going to result in conflicts, some of which can take a few tries
to sort out.

Let's develop a simple case of this and see how to deal with it. We'll start off with a repository
containing one file, and clone it twice.
$ hg init conflict
$ cd conflict
$ echo first > myfile.txt
$ hg ci -A -m first
adding myfile.txt
$ cd ..
$ hg clone conflict left
updating working directory
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ hg clone conflict right
updating working directory
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

In one clone, we'll modify the file in one way.
$ cd left
$ echo left >> myfile.txt
$ hg ci -m left

In another, we'll modify the file differently.
$ cd ../right
$ echo right >> myfile.txt
$ hg ci -m right

Next, we'll pull each set of changes into our original repo.
$ cd ../conflict
$ hg pull -u ../left
pulling from ../left
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ hg pull -u ../right
pulling from ../right
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
not updating, since new heads added
(run 'hg heads' to see heads, 'hg merge' to merge)

We expect our repository to now contain two heads.
$ hg heads
changeset: 2:fbd21f143433
tag: tip
parent: 0:377e11164601
user: Bryan O'Sullivan <bos@serpentine.com>

Mercurial 的日常使用

60

date: Fri Oct 23 01:37:44 2009 +0000
summary: right

changeset: 1:a0d80121baf1
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:43 2009 +0000
summary: left

Normally, if we run hg merge at this point, it will drop us into a GUI that will let us manually
resolve the conflicting edits to myfile.txt. However, to simplify things for presentation here,
we'd like the merge to fail immediately instead. Here's one way we can do so.
$ export HGMERGE=false

We've told Mercurial's merge machinery to run the command false (which, as we desire,
fails immediately) if it detects a merge that it can't sort out automatically.

If we now fire up hg merge, it should grind to a halt and report a failure.
$ hg merge
merging myfile.txt
merging myfile.txt failed!
0 files updated, 0 files merged, 0 files removed, 1 files unresolved
use 'hg resolve' to retry unresolved file merges or 'hg up --clean' to abandon

Even if we don't notice that the merge failed, Mercurial will prevent us from accidentally
committing the result of a failed merge.
$ hg commit -m 'Attempt to commit a failed merge'
abort: unresolved merge conflicts (see hg resolve)

When hg commit fails in this case, it suggests that we use the unfamiliar hg resolve
command. As usual, hg help resolve will print a helpful synopsis.

5.6.1. 文件的解决状态
When a merge occurs, most files will usually remain unmodified. For each file where

Mercurial has to do something, it tracks the state of the file.

• A resolved file has been successfully merged, either automatically by Mercurial or manually
with human intervention.

• An unresolved file was not merged successfully, and needs more attention.

If Mercurial sees any file in the unresolved state after a merge, it considers the merge to have
failed. Fortunately, we do not need to restart the entire merge from scratch.

The --list or -l option to hg resolve prints out the state of each merged file.
$ hg resolve -l
U myfile.txt

In the output from hg resolve, a resolved file is marked with R, while an unresolved file is
marked with U. If any files are listed with U, we know that an attempt to commit the results of
the merge will fail.

Mercurial 的日常使用

61

5.6.2. 合并文件
We have several options to move a file from the unresolved into the resolved state. By far

the most common is to rerun hg resolve. If we pass the names of individual files or directories, it
will retry the merges of any unresolved files present in those locations. We can also pass the --
all or -a option, which will retry the merges of all unresolved files.

Mercurial also lets us modify the resolution state of a file directly. We can manually mark
a file as resolved using the --mark option, or as unresolved using the --unmark option. This
allows us to clean up a particularly messy merge by hand, and to keep track of our progress with
each file as we go.

5.7. 更有用的差异
The default output of the hg diff command is backwards compatible with the regular diff

command, but this has some drawbacks.

设想我们使用 hg rename 命令来改名文件。
$ hg rename a b
$ hg diff
diff -r 5fb9f2b12c1d a
--- a/a Fri Oct 23 01:37:43 2009 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-a
diff -r 5fb9f2b12c1d b
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/b Fri Oct 23 01:37:43 2009 +0000
@@ -0,0 +1,1 @@
+a

The output of hg diff above obscures the fact that we simply renamed a file. The hg
diff command accepts an option, --git or -g, to use a newer diff format that displays such
information in a more readable form.
$ hg diff -g
diff --git a/a b/b
rename from a
rename to b

This option also helps with a case that can otherwise be confusing: a file that appears to be
modified according to hg status, but for which hg diff prints nothing. This situation can arise if
we change the file's execute permissions.
$ chmod +x a
$ hg st
M a
$ hg diff

The normal diff command pays no attention to file permissions, which is why hg diff prints
nothing by default. If we supply it with the -g option, it tells us what really happened.
$ hg diff -g
diff --git a/a b/a
old mode 100644
new mode 100755

Mercurial 的日常使用

62

5.8. 需要管理哪些文件，应该避免的事情
Revision control systems are generally best at managing text files that are written by

humans, such as source code, where the files do not change much from one revision to the next.
Some centralized revision control systems can also deal tolerably well with binary files, such as
bitmap images.

For instance, a game development team will typically manage both its source code and all of
its binary assets (e.g. geometry data, textures, map layouts) in a revision control system.

Because it is usually impossible to merge two conflicting modifications to a binary file,
centralized systems often provide a file locking mechanism that allow a user to say “I am the only
person who can edit this file”.

Compared to a centralized system, a distributed revision control system changes some of
the factors that guide decisions over which files to manage and how.

For instance, a distributed revision control system cannot, by its nature, offer a file locking
facility. There is thus no built-in mechanism to prevent two people from making conflicting
changes to a binary file. If you have a team where several people may be editing binary files
frequently, it may not be a good idea to use Mercurial—or any other distributed revision control
system—to manage those files.

When storing modifications to a file, Mercurial usually saves only the differences between
the previous and current versions of the file. For most text files, this is extremely efficient.
However, some files (particularly binary files) are laid out in such a way that even a small change
to a file's logical content results in many or most of the bytes inside the file changing. For instance,
compressed files are particularly susceptible to this. If the differences between each successive
version of a file are always large, Mercurial will not be able to store the file's revision history
very efficiently. This can affect both local storage needs and the amount of time it takes to clone
a repository.

To get an idea of how this could affect you in practice, suppose you want to use Mercurial
to manage an OpenOffice document. OpenOffice stores documents on disk as compressed zip
files. Edit even a single letter of your document in OpenOffice, and almost every byte in the entire
file will change when you save it. Now suppose that file is 2MB in size. Because most of the
file changes every time you save, Mercurial will have to store all 2MB of the file every time you
commit, even though from your perspective, perhaps only a few words are changing each time.
A single frequently-edited file that is not friendly to Mercurial's storage assumptions can easily
have an outsized effect on the size of the repository.

Even worse, if both you and someone else edit the OpenOffice document you're working on,
there is no useful way to merge your work. In fact, there isn't even a good way to tell what the
differences are between your respective changes.

There are thus a few clear recommendations about specific kinds of files to be very careful
with.

• Files that are very large and incompressible, e.g. ISO CD-ROM images, will by virtue of sheer
size make clones over a network very slow.

Mercurial 的日常使用

63

• Files that change a lot from one revision to the next may be expensive to store if you edit them
frequently, and conflicts due to concurrent edits may be difficult to resolve.

5.9. 备份与镜像
Since Mercurial maintains a complete copy of history in each clone, everyone who uses

Mercurial to collaborate on a project can potentially act as a source of backups in the event of a
catastrophe. If a central repository becomes unavailable, you can construct a replacement simply
by cloning a copy of the repository from one contributor, and pulling any changes they may not
have seen from others.

It is simple to use Mercurial to perform off-site backups and remote mirrors. Set up a
periodic job (e.g. via the cron command) on a remote server to pull changes from your master
repositories every hour. This will only be tricky in the unlikely case that the number of master
repositories you maintain changes frequently, in which case you'll need to do a little scripting to
refresh the list of repositories to back up.

If you perform traditional backups of your master repositories to tape or disk, and you want
to back up a repository named myrepo, use hg clone -U myrepo myrepo.bak to create a clone
of myrepo before you start your backups. The -U option doesn't check out a working directory
after the clone completes, since that would be superfluous and make the backup take longer.

If you then back up myrepo.bak instead of myrepo, you will be guaranteed to have a
consistent snapshot of your repository that won't be pushed to by an insomniac developer in
mid-backup.

64

第 6 章 团体协作
As a completely decentralised tool, Mercurial doesn't impose any policy on how people ought

to work with each other. However, if you're new to distributed revision control, it helps to have
some tools and examples in mind when you're thinking about possible workflow models.

6.1. Mercurial 的 web 接口
Mercurial has a powerful web interface that provides several useful capabilities.

For interactive use, the web interface lets you browse a single repository or a collection of
repositories. You can view the history of a repository, examine each change (comments and diffs),
and view the contents of each directory and file. You can even get a view of history that gives a
graphical view of the relationships between individual changes and merges.

Also for human consumption, the web interface provides Atom and RSS feeds of the changes
in a repository. This lets you “subscribe” to a repository using your favorite feed reader, and be
automatically notified of activity in that repository as soon as it happens. I find this capability
much more convenient than the model of subscribing to a mailing list to which notifications are
sent, as it requires no additional configuration on the part of whoever is serving the repository.

The web interface also lets remote users clone a repository, pull changes from it, and (when
the server is configured to permit it) push changes back to it. Mercurial's HTTP tunneling protocol
aggressively compresses data, so that it works efficiently even over low-bandwidth network
connections.

The easiest way to get started with the web interface is to use your web browser to visit an
existing repository, such as the master Mercurial repository at http://www.selenic.com/repo/
hg.

If you're interested in providing a web interface to your own repositories, there are several
good ways to do this.

The easiest and fastest way to get started in an informal environment is to use the hg serve
command, which is best suited to short-term “lightweight” serving. See 第 6.4 节 “使用 hg serve
进行非正式共享” below for details of how to use this command.

For longer-lived repositories that you'd like to have permanently available, there are several
public hosting services available. Some are free to open source projects, while others offer paid
commercial hosting. An up-to-date list is available at http://www.selenic.com/mercurial/wiki/
index.cgi/MercurialHosting.

If you would prefer to host your own repositories, Mercurial has built-in support for several
popular hosting technologies, most notably CGI (Common Gateway Interface), and WSGI (Web
Services Gateway Interface). See 第 6.6 节 “使用 CGI 通过 HTTP 提供服务” for details of CGI
and WSGI configuration.

http://www.selenic.com/repo/hg
http://www.selenic.com/repo/hg
http://www.selenic.com/mercurial/wiki/index.cgi/MercurialHosting
http://www.selenic.com/mercurial/wiki/index.cgi/MercurialHosting

团体协作

65

6.2. 协作模型
With a suitably flexible tool, making decisions about workflow is much more of a social

engineering challenge than a technical one. Mercurial imposes few limitations on how you can
structure the flow of work in a project, so it's up to you and your group to set up and live with a
model that matches your own particular needs.

6.2.1. 要牢记的因素
The most important aspect of any model that you must keep in mind is how well it matches

the needs and capabilities of the people who will be using it. This might seem self-evident; even
so, you still can't afford to forget it for a moment.

I once put together a workflow model that seemed to make perfect sense to me, but that
caused a considerable amount of consternation and strife within my development team. In spite
of my attempts to explain why we needed a complex set of branches, and how changes ought to
flow between them, a few team members revolted. Even though they were smart people, they
didn't want to pay attention to the constraints we were operating under, or face the consequences
of those constraints in the details of the model that I was advocating.

Don't sweep foreseeable social or technical problems under the rug. Whatever scheme you
put into effect, you should plan for mistakes and problem scenarios. Consider adding automated
machinery to prevent, or quickly recover from, trouble that you can anticipate. As an example, if
you intend to have a branch with not-for-release changes in it, you'd do well to think early about
the possibility that someone might accidentally merge those changes into a release branch. You
could avoid this particular problem by writing a hook that prevents changes from being merged
from an inappropriate branch.

6.2.2. 无政府状态
I wouldn't suggest an “anything goes” approach as something sustainable, but it's a model

that's easy to grasp, and it works perfectly well in a few unusual situations.

As one example, many projects have a loose-knit group of collaborators who rarely physically
meet each other. Some groups like to overcome the isolation of working at a distance by
organizing occasional “sprints”. In a sprint, a number of people get together in a single location
(a company's conference room, a hotel meeting room, that kind of place) and spend several days
more or less locked in there, hacking intensely on a handful of projects.

A sprint or a hacking session in a coffee shop are the perfect places to use the hg serve
command, since hg serve does not require any fancy server infrastructure. You can get started
with hg serve in moments, by reading 第 6.4 节 “使用 hg serve 进行非正式共享” below. Then
simply tell the person next to you that you're running a server, send the URL to them in an instant
message, and you immediately have a quick-turnaround way to work together. They can type
your URL into their web browser and quickly review your changes; or they can pull a bugfix from
you and verify it; or they can clone a branch containing a new feature and try it out.

团体协作

66

The charm, and the problem, with doing things in an ad hoc fashion like this is that only
people who know about your changes, and where they are, can see them. Such an informal
approach simply doesn't scale beyond a handful people, because each individual needs to know
about n different repositories to pull from.

6.2.3. 单一中央版本库
For smaller projects migrating from a centralised revision control tool, perhaps the easiest

way to get started is to have changes flow through a single shared central repository. This is also
the most common “building block” for more ambitious workflow schemes.

Contributors start by cloning a copy of this repository. They can pull changes from it
whenever they need to, and some (perhaps all) developers have permission to push a change
back when they're ready for other people to see it.

Under this model, it can still often make sense for people to pull changes directly from each
other, without going through the central repository. Consider a case in which I have a tentative
bug fix, but I am worried that if I were to publish it to the central repository, it might subsequently
break everyone else's trees as they pull it. To reduce the potential for damage, I can ask you
to clone my repository into a temporary repository of your own and test it. This lets us put off
publishing the potentially unsafe change until it has had a little testing.

If a team is hosting its own repository in this kind of scenario, people will usually use the ssh
protocol to securely push changes to the central repository, as documented in 第 6.5 节 “使用
ssh 协议”. It's also usual to publish a read-only copy of the repository over HTTP, as in 第 6.6 节
“使用 CGI 通过 HTTP 提供服务”. Publishing over HTTP satisfies the needs of people who don't
have push access, and those who want to use web browsers to browse the repository's history.

6.2.4. 托管的中央版本库
A wonderful thing about public hosting services like Bitbucket [http://bitbucket.org/] is

that not only do they handle the fiddly server configuration details, such as user accounts,
authentication, and secure wire protocols, they provide additional infrastructure to make this
model work well.

For instance, a well-engineered hosting service will let people clone their own copies of a
repository with a single click. This lets people work in separate spaces and share their changes
when they're ready.

In addition, a good hosting service will let people communicate with each other, for instance
to say “there are changes ready for you to review in this tree”.

6.2.5. 使用多个分支工作
Projects of any significant size naturally tend to make progress on several fronts

simultaneously. In the case of software, it's common for a project to go through periodic official
releases. A release might then go into “maintenance mode” for a while after its first publication;

http://bitbucket.org/
http://bitbucket.org/

团体协作

67

maintenance releases tend to contain only bug fixes, not new features. In parallel with these
maintenance releases, one or more future releases may be under development. People normally
use the word “branch” to refer to one of these many slightly different directions in which
development is proceeding.

Mercurial is particularly well suited to managing a number of simultaneous, but not
identical, branches. Each “development direction” can live in its own central repository, and you
can merge changes from one to another as the need arises. Because repositories are independent
of each other, unstable changes in a development branch will never affect a stable branch unless
someone explicitly merges those changes into the stable branch.

Here's an example of how this can work in practice. Let's say you have one “main branch”
on a central server.
$ hg init main
$ cd main
$ echo 'This is a boring feature.' > myfile
$ hg commit -A -m 'We have reached an important milestone!'
adding myfile

People clone it, make changes locally, test them, and push them back.

Once the main branch reaches a release milestone, you can use the hg tag command to give
a permanent name to the milestone revision.
$ hg tag v1.0
$ hg tip
changeset: 1:13566bd528e9
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:42 2009 +0000
summary: Added tag v1.0 for changeset 7645a955f751

$ hg tags
tip 1:13566bd528e9
v1.0 0:7645a955f751

Let's say some ongoing development occurs on the main branch.
$ cd ../main
$ echo 'This is exciting and new!' >> myfile
$ hg commit -m 'Add a new feature'
$ cat myfile
This is a boring feature.
This is exciting and new!

Using the tag that was recorded at the milestone, people who clone that repository at any
time in the future can use hg update to get a copy of the working directory exactly as it was when
that tagged revision was committed.
$ cd ..
$ hg clone -U main main-old
$ cd main-old
$ hg update v1.0
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cat myfile
This is a boring feature.

In addition, immediately after the main branch is tagged, we can then clone the main branch
on the server to a new “stable” branch, also on the server.

团体协作

68

$ cd ..
$ hg clone -rv1.0 main stable
requesting all changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files
updating working directory
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

If we need to make a change to the stable branch, we can then clone that repository, make
our changes, commit, and push our changes back there.

$ hg clone stable stable-fix
updating working directory
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd stable-fix
$ echo 'This is a fix to a boring feature.' > myfile
$ hg commit -m 'Fix a bug'
$ hg push
pushing to /tmp/branching6Z6CMu/stable
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files

Because Mercurial repositories are independent, and Mercurial doesn't move changes
around automatically, the stable and main branches are isolated from each other. The changes
that we made on the main branch don't “leak” to the stable branch, and vice versa.

We'll often want all of our bugfixes on the stable branch to show up on the main branch, too.
Rather than rewrite a bugfix on the main branch, we can simply pull and merge changes from the
stable to the main branch, and Mercurial will bring those bugfixes in for us.

$ cd ../main
$ hg pull ../stable
pulling from ../stable
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)
$ hg merge
merging myfile
0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)
$ hg commit -m 'Bring in bugfix from stable branch'
$ cat myfile
This is a fix to a boring feature.
This is exciting and new!

The main branch will still contain changes that are not on the stable branch, but it will also
contain all of the bugfixes from the stable branch. The stable branch remains unaffected by these
changes, since changes are only flowing from the stable to the main branch, and not the other way.

6.2.6. 特性分支
For larger projects, an effective way to manage change is to break up a team into smaller

groups. Each group has a shared branch of its own, cloned from a single “master” branch used

团体协作

69

by the entire project. People working on an individual branch are typically quite isolated from
developments on other branches.

图 6.1. 特性分支

When a particular feature is deemed to be in suitable shape, someone on that feature team
pulls and merges from the master branch into the feature branch, then pushes back up to the
master branch.

6.2.7. 发布列车
Some projects are organized on a “train” basis: a release is scheduled to happen every few

months, and whatever features are ready when the “train” is ready to leave are allowed in.

This model resembles working with feature branches. The difference is that when a feature
branch misses a train, someone on the feature team pulls and merges the changes that went
out on that train release into the feature branch, and the team continues its work on top of that
release so that their feature can make the next release.

6.2.8. Linux 内核模型
The development of the Linux kernel has a shallow hierarchical structure, surrounded by a

cloud of apparent chaos. Because most Linux developers use git, a distributed revision control
tool with capabilities similar to Mercurial, it's useful to describe the way work flows in that
environment; if you like the ideas, the approach translates well across tools.

At the center of the community sits Linus Torvalds, the creator of Linux. He publishes a single
source repository that is considered the “authoritative” current tree by the entire developer
community. Anyone can clone Linus's tree, but he is very choosy about whose trees he pulls from.

Linus has a number of “trusted lieutenants”. As a general rule, he pulls whatever changes
they publish, in most cases without even reviewing those changes. Some of those lieutenants are
generally agreed to be “maintainers”, responsible for specific subsystems within the kernel. If a
random kernel hacker wants to make a change to a subsystem that they want to end up in Linus's
tree, they must find out who the subsystem's maintainer is, and ask that maintainer to take their
change. If the maintainer reviews their changes and agrees to take them, they'll pass them along
to Linus in due course.

Individual lieutenants have their own approaches to reviewing, accepting, and publishing
changes; and for deciding when to feed them to Linus. In addition, there are several well known

团体协作

70

branches that people use for different purposes. For example, a few people maintain “stable”
repositories of older versions of the kernel, to which they apply critical fixes as needed. Some
maintainers publish multiple trees: one for experimental changes; one for changes that they are
about to feed upstream; and so on. Others just publish a single tree.

This model has two notable features. The first is that it's “pull only”. You have to ask,
convince, or beg another developer to take a change from you, because there are almost no trees
to which more than one person can push, and there's no way to push changes into a tree that
someone else controls.

The second is that it's based on reputation and acclaim. If you're an unknown, Linus will
probably ignore changes from you without even responding. But a subsystem maintainer will
probably review them, and will likely take them if they pass their criteria for suitability. The more
“good” changes you contribute to a maintainer, the more likely they are to trust your judgment
and accept your changes. If you're well-known and maintain a long-lived branch for something
Linus hasn't yet accepted, people with similar interests may pull your changes regularly to keep
up with your work.

Reputation and acclaim don't necessarily cross subsystem or “people” boundaries. If you're
a respected but specialised storage hacker, and you try to fix a networking bug, that change will
receive a level of scrutiny from a network maintainer comparable to a change from a complete
stranger.

To people who come from more orderly project backgrounds, the comparatively chaotic
Linux kernel development process often seems completely insane. It's subject to the whims of
individuals; people make sweeping changes whenever they deem it appropriate; and the pace of
development is astounding. And yet Linux is a highly successful, well-regarded piece of software.

6.2.9. 只读与共享写协作
A perpetual source of heat in the open source community is whether a development model

in which people only ever pull changes from others is “better than” one in which multiple people
can push changes to a shared repository.

Typically, the backers of the shared-push model use tools that actively enforce this approach.
If you're using a centralised revision control tool such as Subversion, there's no way to make a
choice over which model you'll use: the tool gives you shared-push, and if you want to do anything
else, you'll have to roll your own approach on top (such as applying a patch by hand).

A good distributed revision control tool will support both models. You and your
collaborators can then structure how you work together based on your own needs and
preferences, not on what contortions your tools force you into.

6.2.10. 协作与分支管理
Once you and your team set up some shared repositories and start propagating changes

back and forth between local and shared repos, you begin to face a related, but slightly different
challenge: that of managing the multiple directions in which your team may be moving at once.

团体协作

71

Even though this subject is intimately related to how your team collaborates, it's dense enough
to merit treatment of its own, in 第 8 章 发布管理与分支开发.

6.3. 共享的技术因素
The remainder of this chapter is devoted to the question of sharing changes with your

collaborators.

6.4. 使用 hg serve 进行非正式共享
Mercurial's hg serve command is wonderfully suited to small, tight-knit, and fast-paced

group environments. It also provides a great way to get a feel for using Mercurial commands over
a network.

Run hg serve inside a repository, and in under a second it will bring up a specialised HTTP
server; this will accept connections from any client, and serve up data for that repository until
you terminate it. Anyone who knows the URL of the server you just started, and can talk to your
computer over the network, can then use a web browser or Mercurial to read data from that
repository. A URL for a hg serve instance running on a laptop is likely to look something like
http://my-laptop.local:8000/.

The hg serve command is not a general-purpose web server. It can do only two things:

• Allow people to browse the history of the repository it's serving, from their normal web
browsers.

• Speak Mercurial's wire protocol, so that people can hg clone or hg pull changes from that
repository.

In particular, hg serve won't allow remote users to modify your repository. It's intended
for read-only use.

If you're getting started with Mercurial, there's nothing to prevent you from using hg serve
to serve up a repository on your own computer, then use commands like hg clone, hg incoming,
and so on to talk to that server as if the repository was hosted remotely. This can help you to
quickly get acquainted with using commands on network-hosted repositories.

6.4.1. 要牢记的几件事
Because it provides unauthenticated read access to all clients, you should only use hg serve

in an environment where you either don't care, or have complete control over, who can access
your network and pull data from your repository.

The hg serve command knows nothing about any firewall software you might have installed
on your system or network. It cannot detect or control your firewall software. If other people are
unable to talk to a running hg serve instance, the second thing you should do (after you make
sure that they're using the correct URL) is check your firewall configuration.

团体协作

72

By default, hg serve listens for incoming connections on port 8000. If another process is
already listening on the port you want to use, you can specify a different port to listen on using
the -p option.

Normally, when hg serve starts, it prints no output, which can be a bit unnerving. If you'd
like to confirm that it is indeed running correctly, and find out what URL you should send to your
collaborators, start it with the -v option.

6.5. 使用 ssh 协议
You can pull and push changes securely over a network connection using the Secure Shell

(ssh) protocol. To use this successfully, you may have to do a little bit of configuration on the
client or server sides.

If you're not familiar with ssh, it's the name of both a command and a network protocol that
let you securely communicate with another computer. To use it with Mercurial, you'll be setting
up one or more user accounts on a server so that remote users can log in and execute commands.

(If you are familiar with ssh, you'll probably find some of the material that follows to be
elementary in nature.)

6.5.1. 如何读写 ssh 路径
An ssh URL tends to look like this:

ssh://bos@hg.serpentine.com:22/hg/hgbook

1. The “ssh://” part tells Mercurial to use the ssh protocol.

2. The “bos@” component indicates what username to log into the server as. You can leave this
out if the remote username is the same as your local username.

3. The “hg.serpentine.com” gives the hostname of the server to log into.

4. The “:22” identifies the port number to connect to the server on. The default port is 22, so you
only need to specify a colon and port number if you're not using port 22.

5. The remainder of the URL is the local path to the repository on the server.

There's plenty of scope for confusion with the path component of ssh URLs, as there is
no standard way for tools to interpret it. Some programs behave differently than others when
dealing with these paths. This isn't an ideal situation, but it's unlikely to change. Please read the
following paragraphs carefully.

Mercurial treats the path to a repository on the server as relative to the remote user's home
directory. For example, if user foo on the server has a home directory of /home/foo, then an
ssh URL that contains a path component of bar really refers to the directory /home/foo/bar.

If you want to specify a path relative to another user's home directory, you can use a path that
starts with a tilde character followed by the user's name (let's call them otheruser), like this.
ssh://server/~otheruser/hg/repo

团体协作

73

And if you really want to specify an absolute path on the server, begin the path component
with two slashes, as in this example.
ssh://server//absolute/path

6.5.2. 为你的系统寻找 ssh 客户端
Almost every Unix-like system comes with OpenSSH preinstalled. If you're using such a

system, run which ssh to find out if the ssh command is installed (it's usually in /usr/bin).
In the unlikely event that it isn't present, take a look at your system documentation to figure out
how to install it.

On Windows, the TortoiseHg package is bundled with a version of Simon Tatham's excellent
plink command, and you should not need to do any further configuration.

6.5.3. 产生密钥对
To avoid the need to repetitively type a password every time you need to use your ssh client,

I recommend generating a key pair.

Key pairs are not mandatory

Mercurial knows nothing about ssh authentication or key pairs. You can, if you like,
safely ignore this section and the one that follows until you grow tired of repeatedly
typing ssh passwords.

• On a Unix-like system, the ssh-keygen command will do the trick.

On Windows, if you're using TortoiseHg, you may need to download a command named
puttygen from the PuTTY web site [http://www.chiark.greenend.org.uk/~sgtatham/putty]
to generate a key pair. See the puttygen documentation [http://the.earth.li/~sgtatham/
putty/0.60/htmldoc/Chapter8.html#pubkey-puttygen] for details of how use the command.

When you generate a key pair, it's usually highly advisable to protect it with a passphrase.
(The only time that you might not want to do this is when you're using the ssh protocol for
automated tasks on a secure network.)

Simply generating a key pair isn't enough, however. You'll need to add the public key to
the set of authorised keys for whatever user you're logging in remotely as. For servers using
OpenSSH (the vast majority), this will mean adding the public key to a list in a file called
authorized_keys in their .ssh directory.

On a Unix-like system, your public key will have a .pub extension. If you're using puttygen
on Windows, you can save the public key to a file of your choosing, or paste it from the window
it's displayed in straight into the authorized_keys file.

6.5.4. 使用认证代理
An authentication agent is a daemon that stores passphrases in memory (so it will forget

passphrases if you log out and log back in again). An ssh client will notice if it's running, and

http://www.chiark.greenend.org.uk/~sgtatham/putty
http://www.chiark.greenend.org.uk/~sgtatham/putty
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter8.html#pubkey-puttygen
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter8.html#pubkey-puttygen
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter8.html#pubkey-puttygen

团体协作

74

query it for a passphrase. If there's no authentication agent running, or the agent doesn't store
the necessary passphrase, you'll have to type your passphrase every time Mercurial tries to
communicate with a server on your behalf (e.g. whenever you pull or push changes).

The downside of storing passphrases in an agent is that it's possible for a well-prepared
attacker to recover the plain text of your passphrases, in some cases even if your system has been
power-cycled. You should make your own judgment as to whether this is an acceptable risk. It
certainly saves a lot of repeated typing.

• On Unix-like systems, the agent is called ssh-agent, and it's often run automatically for you
when you log in. You'll need to use the ssh-add command to add passphrases to the agent's
store.

• On Windows, if you're using TortoiseHg, the pageant command acts as the agent. As
with puttygen, you'll need to download pageant [http://www.chiark.greenend.org.uk/
%7Esgtatham/putty/download.html] from the PuTTY web site and read its documentation
[http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter9.html#pageant]. The pageant
command adds an icon to your system tray that will let you manage stored passphrases.

6.5.5. 正确配置服务器端
Because ssh can be fiddly to set up if you're new to it, a variety of things can go wrong.

Add Mercurial on top, and there's plenty more scope for head-scratching. Most of these potential
problems occur on the server side, not the client side. The good news is that once you've gotten
a configuration working, it will usually continue to work indefinitely.

Before you try using Mercurial to talk to an ssh server, it's best to make sure that you can use
the normal ssh or putty command to talk to the server first. If you run into problems with using
these commands directly, Mercurial surely won't work. Worse, it will obscure the underlying
problem. Any time you want to debug ssh-related Mercurial problems, you should drop back to
making sure that plain ssh client commands work first, before you worry about whether there's
a problem with Mercurial.

The first thing to be sure of on the server side is that you can actually log in from another
machine at all. If you can't use ssh or putty to log in, the error message you get may give you a
few hints as to what's wrong. The most common problems are as follows.

• If you get a “connection refused” error, either there isn't an SSH daemon running on the server
at all, or it's inaccessible due to firewall configuration.

• If you get a “no route to host” error, you either have an incorrect address for the server or a
seriously locked down firewall that won't admit its existence at all.

• If you get a “permission denied” error, you may have mistyped the username on the server, or
you could have mistyped your key's passphrase or the remote user's password.

In summary, if you're having trouble talking to the server's ssh daemon, first make sure
that one is running at all. On many systems it will be installed, but disabled, by default. Once
you're done with this step, you should then check that the server's firewall is configured to allow

http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter9.html#pageant
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter9.html#pageant

团体协作

75

incoming connections on the port the ssh daemon is listening on (usually 22). Don't worry about
more exotic possibilities for misconfiguration until you've checked these two first.

If you're using an authentication agent on the client side to store passphrases for your
keys, you ought to be able to log into the server without being prompted for a passphrase or a
password. If you're prompted for a passphrase, there are a few possible culprits.

• You might have forgotten to use ssh-add or pageant to store the passphrase.

• You might have stored the passphrase for the wrong key.

If you're being prompted for the remote user's password, there are another few possible
problems to check.

• Either the user's home directory or their .ssh directory might have excessively liberal
permissions. As a result, the ssh daemon will not trust or read their authorized_keys file.
For example, a group-writable home or .ssh directory will often cause this symptom.

• The user's authorized_keys file may have a problem. If anyone other than the user owns
or can write to that file, the ssh daemon will not trust or read it.

In the ideal world, you should be able to run the following command successfully, and it
should print exactly one line of output, the current date and time.
ssh myserver date

If, on your server, you have login scripts that print banners or other junk even when
running non-interactive commands like this, you should fix them before you continue, so that
they only print output if they're run interactively. Otherwise these banners will at least clutter
up Mercurial's output. Worse, they could potentially cause problems with running Mercurial
commands remotely. Mercurial tries to detect and ignore banners in non-interactive ssh sessions,
but it is not foolproof. (If you're editing your login scripts on your server, the usual way to see
if a login script is running in an interactive shell is to check the return code from the command
tty -s.)

Once you've verified that plain old ssh is working with your server, the next step is to ensure
that Mercurial runs on the server. The following command should run successfully:
ssh myserver hg version

If you see an error message instead of normal hg version output, this is usually because you
haven't installed Mercurial to /usr/bin. Don't worry if this is the case; you don't need to do
that. But you should check for a few possible problems.

• Is Mercurial really installed on the server at all? I know this sounds trivial, but it's worth
checking!

• Maybe your shell's search path (usually set via the PATH environment variable) is simply
misconfigured.

• Perhaps your PATH environment variable is only being set to point to the location of the hg
executable if the login session is interactive. This can happen if you're setting the path in the
wrong shell login script. See your shell's documentation for details.

团体协作

76

• The PYTHONPATH environment variable may need to contain the path to the Mercurial Python
modules. It might not be set at all; it could be incorrect; or it may be set only if the login is
interactive.

If you can run hg version over an ssh connection, well done! You've got the server and
client sorted out. You should now be able to use Mercurial to access repositories hosted by that
username on that server. If you run into problems with Mercurial and ssh at this point, try using
the --debug option to get a clearer picture of what's going on.

6.5.6. 通过 ssh 使用压缩
Mercurial does not compress data when it uses the ssh protocol, because the ssh protocol

can transparently compress data. However, the default behavior of ssh clients is not to request
compression.

Over any network other than a fast LAN (even a wireless network), using compression
is likely to significantly speed up Mercurial's network operations. For example, over a WAN,
someone measured compression as reducing the amount of time required to clone a particularly
large repository from 51 minutes to 17 minutes.

Both ssh and plink accept a -C option which turns on compression. You can easily edit your
~/.hgrc to enable compression for all of Mercurial's uses of the ssh protocol. Here is how to do
so for regular ssh on Unix-like systems, for example.
[ui]
ssh = ssh -C

If you use ssh on a Unix-like system, you can configure it to always use compression when
talking to your server. To do this, edit your .ssh/config file (which may not yet exist), as
follows.
Host hg
 Compression yes
 HostName hg.example.com

This defines a hostname alias, hg. When you use that hostname on the ssh command line
or in a Mercurial ssh-protocol URL, it will cause ssh to connect to hg.example.com and use
compression. This gives you both a shorter name to type and compression, each of which is a
good thing in its own right.

6.6. 使用 CGI 通过 HTTP 提供服务
The simplest way to host one or more repositories in a permanent way is to use a web server

and Mercurial's CGI support.

Depending on how ambitious you are, configuring Mercurial's CGI interface can take
anything from a few moments to several hours.

We'll begin with the simplest of examples, and work our way towards a more complex
configuration. Even for the most basic case, you're almost certainly going to need to read and
modify your web server's configuration.

团体协作

77

High pain tolerance required

Configuring a web server is a complex, fiddly, and highly system-dependent activity. I
can't possibly give you instructions that will cover anything like all of the cases you will
encounter. Please use your discretion and judgment in following the sections below. Be
prepared to make plenty of mistakes, and to spend a lot of time reading your server's
error logs.

If you don't have a strong stomach for tweaking configurations over and over, or a
compelling need to host your own services, you might want to try one of the public
hosting services that I mentioned earlier.

6.6.1. Web 服务器配置检查表
Before you continue, do take a few moments to check a few aspects of your system's setup.

1. Do you have a web server installed at all? Mac OS X and some Linux distributions ship with
Apache, but many other systems may not have a web server installed.

2. If you have a web server installed, is it actually running? On most systems, even if one is
present, it will be disabled by default.

3. Is your server configured to allow you to run CGI programs in the directory where you plan to
do so? Most servers default to explicitly disabling the ability to run CGI programs.

If you don't have a web server installed, and don't have substantial experience configuring
Apache, you should consider using the lighttpd web server instead of Apache. Apache has
a well-deserved reputation for baroque and confusing configuration. While lighttpd is less
capable in some ways than Apache, most of these capabilities are not relevant to serving
Mercurial repositories. And lighttpd is undeniably much easier to get started with than
Apache.

6.6.2. 基本 CGI 配置
On Unix-like systems, it's common for users to have a subdirectory named something like

public_html in their home directory, from which they can serve up web pages. A file named
foo in this directory will be accessible at a URL of the form http://www.example.com/
username/foo.

To get started, find the hgweb.cgi script that should be present in your Mercurial
installation. If you can't quickly find a local copy on your system, simply download one from the
master Mercurial repository at http://www.selenic.com/repo/hg/raw-file/tip/hgweb.cgi.

You'll need to copy this script into your public_html directory, and ensure that it's
executable.
cp .../hgweb.cgi ~/public_html
chmod 755 ~/public_html/hgweb.cgi

The 755 argument to chmod is a little more general than just making the script executable:
it ensures that the script is executable by anyone, and that “group” and “other” write permissions

http://www.selenic.com/repo/hg/raw-file/tip/hgweb.cgi

团体协作

78

are not set. If you were to leave those write permissions enabled, Apache's suexec subsystem
would likely refuse to execute the script. In fact, suexec also insists that the directory in which
the script resides must not be writable by others.
chmod 755 ~/public_html

6.6.2.1. 什么可能会出错?
Once you've copied the CGI script into place, go into a web browser, and try to open the URL
http://myhostname/~myuser/hgweb.cgi, but brace yourself for instant failure. There's
a high probability that trying to visit this URL will fail, and there are many possible reasons for
this. In fact, you're likely to stumble over almost every one of the possible errors below, so please
read carefully. The following are all of the problems I ran into on a system running Fedora 7, with
a fresh installation of Apache, and a user account that I created specially to perform this exercise.

Your web server may have per-user directories disabled. If you're using Apache, search your
config file for a UserDir directive. If there's none present, per-user directories will be disabled.
If one exists, but its value is disabled, then per-user directories will be disabled. Otherwise,
the string after UserDir gives the name of the subdirectory that Apache will look in under your
home directory, for example public_html.

Your file access permissions may be too restrictive. The web server must be able to traverse your
home directory and directories under your public_html directory, and read files under the
latter too. Here's a quick recipe to help you to make your permissions more appropriate.
chmod 755 ~
find ~/public_html -type d -print0 | xargs -0r chmod 755
find ~/public_html -type f -print0 | xargs -0r chmod 644

The other possibility with permissions is that you might get a completely empty window when
you try to load the script. In this case, it's likely that your access permissions are too permissive.
Apache's suexec subsystem won't execute a script that's group- or world-writable, for example.

Your web server may be configured to disallow execution of CGI programs in your per-user web
directory. Here's Apache's default per-user configuration from my Fedora system.
<Directory /home/*/public_html>
 AllowOverride FileInfo AuthConfig Limit
 Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
 <Limit GET POST OPTIONS>
 Order allow,deny
 Allow from all
 </Limit>
 <LimitExcept GET POST OPTIONS>
 Order deny,allow Deny from all
 </LimitExcept>
</Directory>

If you find a similar-looking Directory group in your Apache configuration, the directive to
look at inside it is Options. Add ExecCGI to the end of this list if it's missing, and restart the
web server.

If you find that Apache serves you the text of the CGI script instead of executing it, you may need
to either uncomment (if already present) or add a directive like this.
AddHandler cgi-script .cgi

团体协作

79

The next possibility is that you might be served with a colourful Python backtrace claiming
that it can't import a mercurial-related module. This is actually progress! The server is now
capable of executing your CGI script. This error is only likely to occur if you're running a private
installation of Mercurial, instead of a system-wide version. Remember that the web server runs
the CGI program without any of the environment variables that you take for granted in an
interactive session. If this error happens to you, edit your copy of hgweb.cgi and follow the
directions inside it to correctly set your PYTHONPATH environment variable.

Finally, you are certain to be served with another colourful Python backtrace: this one will
complain that it can't find /path/to/repository. Edit your hgweb.cgi script and replace
the /path/to/repository string with the complete path to the repository you want to serve
up.

At this point, when you try to reload the page, you should be presented with a nice HTML view
of your repository's history. Whew!

6.6.2.2. 配置 lighttpd
To be exhaustive in my experiments, I tried configuring the increasingly popular lighttpd web
server to serve the same repository as I described with Apache above. I had already overcome
all of the problems I outlined with Apache, many of which are not server-specific. As a result, I
was fairly sure that my file and directory permissions were good, and that my hgweb.cgi script
was properly edited.

Once I had Apache running, getting lighttpd to serve the repository was a snap (in other
words, even if you're trying to use lighttpd, you should read the Apache section). I first had to
edit the mod_access section of its config file to enable mod_cgi and mod_userdir, both of
which were disabled by default on my system. I then added a few lines to the end of the config
file, to configure these modules.
userdir.path = "public_html"
cgi.assign = (".cgi" => "")

With this done, lighttpd ran immediately for me. If I had configured lighttpd before Apache,
I'd almost certainly have run into many of the same system-level configuration problems as I did
with Apache. However, I found lighttpd to be noticeably easier to configure than Apache, even
though I've used Apache for over a decade, and this was my first exposure to lighttpd.

6.6.3. 使用一个 CGI 脚本共享多个版本库
The hgweb.cgi script only lets you publish a single repository, which is an annoying

restriction. If you want to publish more than one without wracking yourself with multiple copies
of the same script, each with different names, a better choice is to use the hgwebdir.cgi script.

The procedure to configure hgwebdir.cgi is only a little more involved than for
hgweb.cgi. First, you must obtain a copy of the script. If you don't have one handy, you can
download a copy from the master Mercurial repository at http://www.selenic.com/repo/hg/
raw-file/tip/hgwebdir.cgi.

You'll need to copy this script into your public_html directory, and ensure that it's
executable.

http://www.selenic.com/repo/hg/raw-file/tip/hgwebdir.cgi
http://www.selenic.com/repo/hg/raw-file/tip/hgwebdir.cgi

团体协作

80

cp .../hgwebdir.cgi ~/public_html
chmod 755 ~/public_html ~/public_html/hgwebdir.cgi

With basic configuration out of the way, try to visit http://myhostname/~myuser/
hgwebdir.cgi in your browser. It should display an empty list of repositories. If you get a blank
window or error message, try walking through the list of potential problems in 第 6.6.2.1 节 “什
么可能会出错?”.

The hgwebdir.cgi script relies on an external configuration file. By default, it searches
for a file named hgweb.config in the same directory as itself. You'll need to create this file, and
make it world-readable. The format of the file is similar to a Windows “ini” file, as understood by
Python's ConfigParser [web:configparser] module.

The easiest way to configure hgwebdir.cgi is with a section named collections. This
will automatically publish every repository under the directories you name. The section should
look like this:
[collections]
/my/root = /my/root

Mercurial interprets this by looking at the directory name on the right hand side of the “=”
sign; finding repositories in that directory hierarchy; and using the text on the left to strip off
matching text from the names it will actually list in the web interface. The remaining component
of a path after this stripping has occurred is called a “virtual path”.

Given the example above, if we have a repository whose local path is /my/root/
this/repo, the CGI script will strip the leading /my/root from the name, and publish
the repository with a virtual path of this/repo. If the base URL for our CGI script is
http://myhostname/~myuser/hgwebdir.cgi, the complete URL for that repository will
be http://myhostname/~myuser/hgwebdir.cgi/this/repo.

If we replace /my/root on the left hand side of this example with /my, then
hgwebdir.cgi will only strip off /my from the repository name, and will give us a virtual path
of root/this/repo instead of this/repo.

The hgwebdir.cgi script will recursively search each directory listed in the
collections section of its configuration file, but it will not recurse into the repositories it
finds.

The collections mechanism makes it easy to publish many repositories in a “fire and
forget” manner. You only need to set up the CGI script and configuration file one time. Afterwards,
you can publish or unpublish a repository at any time by simply moving it into, or out of, the
directory hierarchy in which you've configured hgwebdir.cgi to look.

6.6.3.1. 明确指出要发布的版本库

In addition to the collections mechanism, the hgwebdir.cgi script allows you to publish a
specific list of repositories. To do so, create a paths section, with contents of the following form.
[paths]
repo1 = /my/path/to/some/repo
repo2 = /some/path/to/another

团体协作

81

In this case, the virtual path (the component that will appear in a URL) is on the left hand side of
each definition, while the path to the repository is on the right. Notice that there does not need
to be any relationship between the virtual path you choose and the location of a repository in
your filesystem.

If you wish, you can use both the collections and paths mechanisms simultaneously in a
single configuration file.

Beware duplicate virtual paths

If several repositories have the same virtual path, hgwebdir.cgi will not report an
error. Instead, it will behave unpredictably.

6.6.4. 下载源代码档案包
Mercurial's web interface lets users download an archive of any revision. This archive will

contain a snapshot of the working directory as of that revision, but it will not contain a copy of
the repository data.

By default, this feature is not enabled. To enable it, you'll need to add an allow_archive
item to the web section of your ~/.hgrc; see below for details.

6.6.5. Web 配置选项
Mercurial's web interfaces (the hg serve command, and the hgweb.cgi and

hgwebdir.cgi scripts) have a number of configuration options that you can set. These belong
in a section named web.

• allow_archive: Determines which (if any) archive download mechanisms Mercurial
supports. If you enable this feature, users of the web interface will be able to download an
archive of whatever revision of a repository they are viewing. To enable the archive feature,
this item must take the form of a sequence of words drawn from the list below.

• bz2: A tar archive, compressed using bzip2 compression. This has the best compression
ratio, but uses the most CPU time on the server.

• gz: A tar archive, compressed using gzip compression.

• zip: A zip archive, compressed using LZW compression. This format has the worst
compression ratio, but is widely used in the Windows world.

If you provide an empty list, or don't have an allow_archive entry at all, this feature will
be disabled. Here is an example of how to enable all three supported formats.
[web]
allow_archive = bz2 gz zip

• allowpull: Boolean. Determines whether the web interface allows remote users to hg pull
and hg clone this repository over HTTP. If set to no or false, only the “human-oriented”
portion of the web interface is available.

团体协作

82

• contact: String. A free-form (but preferably brief) string identifying the person or group in
charge of the repository. This often contains the name and email address of a person or mailing
list. It often makes sense to place this entry in a repository's own .hg/hgrc file, but it can
make sense to use in a global ~/.hgrc if every repository has a single maintainer.

• maxchanges: Integer. The default maximum number of changesets to display in a single page
of output.

• maxfiles: Integer. The default maximum number of modified files to display in a single page
of output.

• stripes: Integer. If the web interface displays alternating “stripes” to make it easier to
visually align rows when you are looking at a table, this number controls the number of rows
in each stripe.

• style: Controls the template Mercurial uses to display the web interface. Mercurial ships with
several web templates.

• coal is monochromatic.

• gitweb emulates the visual style of git's web interface.

• monoblue uses solid blues and greys.

• paper is the default.

• spartan was the default for a long time.

You can also specify a custom template of your own; see 第 11 章 定制 Mercurial 的输出 for
details. Here, you can see how to enable the gitweb style.
[web]
style = gitweb

• templates: Path. The directory in which to search for template files. By default, Mercurial
searches in the directory in which it was installed.

If you are using hgwebdir.cgi, you can place a few configuration items in a web section
of the hgweb.config file instead of a ~/.hgrc file, for convenience. These items are motd
and style.

6.6.5.1. 针对单个版本库的选项

A few web configuration items ought to be placed in a repository's local .hg/hgrc, rather than
a user's or global ~/.hgrc.

• description: String. A free-form (but preferably brief) string that describes the contents or
purpose of the repository.

• name: String. The name to use for the repository in the web interface. This overrides the default
name, which is the last component of the repository's path.

团体协作

83

6.6.5.2. 命令 hg serve 的选项
Some of the items in the web section of a ~/.hgrc file are only for use with the hg serve
command.

• accesslog: Path. The name of a file into which to write an access log. By default, the hg serve
command writes this information to standard output, not to a file. Log entries are written in
the standard “combined” file format used by almost all web servers.

• address: String. The local address on which the server should listen for incoming
connections. By default, the server listens on all addresses.

• errorlog: Path. The name of a file into which to write an error log. By default, the hg serve
command writes this information to standard error, not to a file.

• ipv6: Boolean. Whether to use the IPv6 protocol. By default, IPv6 is not used.

• port: Integer. The TCP port number on which the server should listen. The default port
number used is 8000.

6.6.5.3. 选择正确的 ~/.hgrc 文件增加到 web 条目
It is important to remember that a web server like Apache or lighttpd will run under a user
ID that is different to yours. CGI scripts run by your server, such as hgweb.cgi, will usually also
run under that user ID.

If you add web items to your own personal ~/.hgrc file, CGI scripts won't read that ~/.hgrc
file. Those settings will thus only affect the behavior of the hg serve command when you run it.
To cause CGI scripts to see your settings, either create a ~/.hgrc file in the home directory of
the user ID that runs your web server, or add those settings to a system-wide hgrc file.

6.7. 全局配置
On Unix-like systems shared by multiple users (such as a server to which people publish

changes), it often makes sense to set up some global default behaviors, such as what theme to
use in web interfaces.

If a file named /etc/mercurial/hgrc exists, Mercurial will read it at startup time
and apply any configuration settings it finds in that file. It will also look for files ending in a
.rc extension in a directory named /etc/mercurial/hgrc.d, and apply any configuration
settings it finds in each of those files.

6.7.1. 让 Mercurial 更可信
One situation in which a global hgrc can be useful is if users are pulling changes owned by

other users. By default, Mercurial will not trust most of the configuration items in a .hg/hgrc
file inside a repository that is owned by a different user. If we clone or pull changes from such a
repository, Mercurial will print a warning stating that it does not trust their .hg/hgrc.

团体协作

84

If everyone in a particular Unix group is on the same team and should trust each other's
configuration settings, or we want to trust particular users, we can override Mercurial's skeptical
defaults by creating a system-wide hgrc file such as the following:
Save this as e.g. /etc/mercurial/hgrc.d/trust.rc
[trusted]
Trust all entries in any hgrc file owned by the "editors" or
"www-data" groups.
groups = editors, www-data

Trust entries in hgrc files owned by the following users.
users = apache, bobo

85

第 7 章 文件名称与模式匹配
Mercurial provides mechanisms that let you work with file names in a consistent and

expressive way.

7.1. 简单文件名称
Mercurial uses a unified piece of machinery “under the hood” to handle file names. Every

command behaves uniformly with respect to file names. The way in which commands work with
file names is as follows.

If you explicitly name real files on the command line, Mercurial works with exactly those
files, as you would expect.

$ hg add COPYING README examples/simple.py

When you provide a directory name, Mercurial will interpret this as “operate on every
file in this directory and its subdirectories”. Mercurial traverses the files and subdirectories
in a directory in alphabetical order. When it encounters a subdirectory, it will traverse that
subdirectory before continuing with the current directory.
$ hg status src
? src/main.py
? src/watcher/_watcher.c
? src/watcher/watcher.py
? src/xyzzy.txt

7.2. 不提供文件名称的执行命令
Mercurial's commands that work with file names have useful default behaviors when you

invoke them without providing any file names or patterns. What kind of behavior you should
expect depends on what the command does. Here are a few rules of thumb you can use to predict
what a command is likely to do if you don't give it any names to work with.

• Most commands will operate on the entire working directory. This is what the hg add
command does, for example.

• If the command has effects that are difficult or impossible to reverse, it will force you to
explicitly provide at least one name or pattern (see below). This protects you from accidentally
deleting files by running hg remove with no arguments, for example.

It's easy to work around these default behaviors if they don't suit you. If a command normally
operates on the whole working directory, you can invoke it on just the current directory and its
subdirectories by giving it the name “.”.
$ cd src
$ hg add -n
adding ../MANIFEST.in
adding ../examples/performant.py
adding ../setup.py
adding main.py
adding watcher/_watcher.c
adding watcher/watcher.py
adding xyzzy.txt

文件名称与模式匹配

86

$ hg add -n .
adding main.py
adding watcher/_watcher.c
adding watcher/watcher.py
adding xyzzy.txt

Along the same lines, some commands normally print file names relative to the root of the
repository, even if you're invoking them from a subdirectory. Such a command will print file
names relative to your subdirectory if you give it explicit names. Here, we're going to run hg
status from a subdirectory, and get it to operate on the entire working directory while printing
file names relative to our subdirectory, by passing it the output of the hg root command.
$ hg status
A COPYING
A README
A examples/simple.py
? MANIFEST.in
? examples/performant.py
? setup.py
? src/main.py
? src/watcher/_watcher.c
? src/watcher/watcher.py
? src/xyzzy.txt
$ hg status `hg root`
A ../COPYING
A ../README
A ../examples/simple.py
? ../MANIFEST.in
? ../examples/performant.py
? ../setup.py
? main.py
? watcher/_watcher.c
? watcher/watcher.py
? xyzzy.txt

7.3. 告诉你正在做什么
The hg add example in the preceding section illustrates something else that's helpful about

Mercurial commands. If a command operates on a file that you didn't name explicitly on the
command line, it will usually print the name of the file, so that you will not be surprised what's
going on.

The principle here is of least surprise. If you've exactly named a file on the command line,
there's no point in repeating it back at you. If Mercurial is acting on a file implicitly, e.g. because
you provided no names, or a directory, or a pattern (see below), it is safest to tell you what files
it's operating on.

For commands that behave this way, you can silence them using the -q option. You can also
get them to print the name of every file, even those you've named explicitly, using the -v option.

7.4. 使用模式标识文件
In addition to working with file and directory names, Mercurial lets you use patterns to

identify files. Mercurial's pattern handling is expressive.

On Unix-like systems (Linux, MacOS, etc.), the job of matching file names to patterns
normally falls to the shell. On these systems, you must explicitly tell Mercurial that a name is a

文件名称与模式匹配

87

pattern. On Windows, the shell does not expand patterns, so Mercurial will automatically identify
names that are patterns, and expand them for you.

To provide a pattern in place of a regular name on the command line, the mechanism is
simple:
syntax:patternbody

That is, a pattern is identified by a short text string that says what kind of pattern this is,
followed by a colon, followed by the actual pattern.

Mercurial supports two kinds of pattern syntax. The most frequently used is called glob;
this is the same kind of pattern matching used by the Unix shell, and should be familiar to
Windows command prompt users, too.

When Mercurial does automatic pattern matching on Windows, it uses glob syntax. You can
thus omit the “glob:” prefix on Windows, but it's safe to use it, too.

The re syntax is more powerful; it lets you specify patterns using regular expressions, also
known as regexps.

By the way, in the examples that follow, notice that I'm careful to wrap all of my patterns in
quote characters, so that they won't get expanded by the shell before Mercurial sees them.

7.4.1. 外壳风格的 glob 模式
This is an overview of the kinds of patterns you can use when you're matching on glob

patterns.

The “*” character matches any string, within a single directory.
$ hg add 'glob:*.py'
adding main.py

The “**” pattern matches any string, and crosses directory boundaries. It's not a standard
Unix glob token, but it's accepted by several popular Unix shells, and is very useful.
$ cd ..
$ hg status 'glob:**.py'
A examples/simple.py
A src/main.py
? examples/performant.py
? setup.py
? src/watcher/watcher.py

The “?” pattern matches any single character.
$ hg status 'glob:**.?'
? src/watcher/_watcher.c

The “[” character begins a character class. This matches any single character within the
class. The class ends with a “]” character. A class may contain multiple ranges of the form “a-
f”, which is shorthand for “abcdef”.
$ hg status 'glob:**[nr-t]'
? MANIFEST.in

文件名称与模式匹配

88

? src/xyzzy.txt

If the first character after the “[” in a character class is a “!”, it negates the class, making it
match any single character not in the class.

A “{” begins a group of subpatterns, where the whole group matches if any subpattern in
the group matches. The “,” character separates subpatterns, and “}” ends the group.
$ hg status 'glob:*.{in,py}'
? MANIFEST.in
? setup.py

7.4.1.1. 千万小心！
Don't forget that if you want to match a pattern in any directory, you should not be using the “*”
match-any token, as this will only match within one directory. Instead, use the “**” token. This
small example illustrates the difference between the two.
$ hg status 'glob:*.py'
? setup.py
$ hg status 'glob:**.py'
A examples/simple.py
A src/main.py
? examples/performant.py
? setup.py
? src/watcher/watcher.py

7.4.2. 使用 re 模式的正则表达式匹配
Mercurial accepts the same regular expression syntax as the Python programming language

(it uses Python's regexp engine internally). This is based on the Perl language's regexp syntax,
which is the most popular dialect in use (it's also used in Java, for example).

I won't discuss Mercurial's regexp dialect in any detail here, as regexps are not often used.
Perl-style regexps are in any case already exhaustively documented on a multitude of web sites,
and in many books. Instead, I will focus here on a few things you should know if you find yourself
needing to use regexps with Mercurial.

A regexp is matched against an entire file name, relative to the root of the repository. In other
words, even if you're already in subbdirectory foo, if you want to match files under this directory,
your pattern must start with “foo/”.

One thing to note, if you're familiar with Perl-style regexps, is that Mercurial's are rooted.
That is, a regexp starts matching against the beginning of a string; it doesn't look for a match
anywhere within the string. To match anywhere in a string, start your pattern with “.*”.

7.5. 过滤文件
Not only does Mercurial give you a variety of ways to specify files; it lets you further winnow

those files using filters. Commands that work with file names accept two filtering options.

• -I, or --include, lets you specify a pattern that file names must match in order to be
processed.

文件名称与模式匹配

89

• -X, or --exclude, gives you a way to avoid processing files, if they match this pattern.

You can provide multiple -I and -X options on the command line, and intermix them as you
please. Mercurial interprets the patterns you provide using glob syntax by default (but you can
use regexps if you need to).

You can read a -I filter as “process only the files that match this filter”.
$ hg status -I '*.in'
? MANIFEST.in

The -X filter is best read as “process only the files that don't match this pattern”.
$ hg status -X '**.py' src
? src/watcher/_watcher.c
? src/xyzzy.txt

7.6. 始终忽略不需要的文件和目录
When you create a new repository, the chances are that over time it will grow to contain files

that ought to not be managed by Mercurial, but which you don't want to see listed every time
you run hg status. For instance, “build products” are files that are created as part of a build but
which should not be managed by a revision control system. The most common build products
are output files produced by software tools such as compilers. As another example, many text
editors litter a directory with lock files, temporary working files, and backup files, which it also
makes no sense to manage.

To have Mercurial permanently ignore such files, create a file named .hgignore in the
root of your repository. You should hg add this file so that it gets tracked with the rest of your
repository contents, since your collaborators will probably find it useful too.

By default, the .hgignore file should contain a list of regular expressions, one per line.
Empty lines are skipped. Most people prefer to describe the files they want to ignore using the
“glob” syntax that we described above, so a typical .hgignore file will start with this directive:
syntax: glob

This tells Mercurial to interpret the lines that follow as glob patterns, not regular
expressions.

Here is a typical-looking .hgignore file.
syntax: glob
This line is a comment, and will be skipped.
Empty lines are skipped too.

Backup files left behind by the Emacs editor.
*~

Lock files used by the Emacs editor.
Notice that the "#" character is quoted with a backslash.
This prevents it from being interpreted as starting a comment.
.\#*

Temporary files used by the vim editor.
.*.swp

A hidden file created by the Mac OS X Finder.

文件名称与模式匹配

90

.DS_Store

7.7. 大小写敏感性
If you're working in a mixed development environment that contains both Linux (or other

Unix) systems and Macs or Windows systems, you should keep in the back of your mind the
knowledge that they treat the case (“N” versus “n”) of file names in incompatible ways. This is
not very likely to affect you, and it's easy to deal with if it does, but it could surprise you if you
don't know about it.

Operating systems and filesystems differ in the way they handle the case of characters in
file and directory names. There are three common ways to handle case in names.

• Completely case insensitive. Uppercase and lowercase versions of a letter are treated as
identical, both when creating a file and during subsequent accesses. This is common on older
DOS-based systems.

• Case preserving, but insensitive. When a file or directory is created, the case of its name is
stored, and can be retrieved and displayed by the operating system. When an existing file is
being looked up, its case is ignored. This is the standard arrangement on Windows and MacOS.
The names foo and FoO identify the same file. This treatment of uppercase and lowercase
letters as interchangeable is also referred to as case folding.

• Case sensitive. The case of a name is significant at all times. The names foo and FoO identify
different files. This is the way Linux and Unix systems normally work.

On Unix-like systems, it is possible to have any or all of the above ways of handling case in
action at once. For example, if you use a USB thumb drive formatted with a FAT32 filesystem on
a Linux system, Linux will handle names on that filesystem in a case preserving, but insensitive,
way.

7.7.1. 安全，可移植的版本库存储
Mercurial's repository storage mechanism is case safe. It translates file names so that they

can be safely stored on both case sensitive and case insensitive filesystems. This means that you
can use normal file copying tools to transfer a Mercurial repository onto, for example, a USB
thumb drive, and safely move that drive and repository back and forth between a Mac, a PC
running Windows, and a Linux box.

7.7.2. 检测大小写冲突
When operating in the working directory, Mercurial honours the naming policy of the

filesystem where the working directory is located. If the filesystem is case preserving, but
insensitive, Mercurial will treat names that differ only in case as the same.

An important aspect of this approach is that it is possible to commit a changeset on a case
sensitive (typically Linux or Unix) filesystem that will cause trouble for users on case insensitive
(usually Windows and MacOS) users. If a Linux user commits changes to two files, one named

文件名称与模式匹配

91

myfile.c and the other named MyFile.C, they will be stored correctly in the repository. And
in the working directories of other Linux users, they will be correctly represented as separate
files.

If a Windows or Mac user pulls this change, they will not initially have a problem, because
Mercurial's repository storage mechanism is case safe. However, once they try to hg update the
working directory to that changeset, or hg merge with that changeset, Mercurial will spot the
conflict between the two file names that the filesystem would treat as the same, and forbid the
update or merge from occurring.

7.7.3. 修正大小写冲突
If you are using Windows or a Mac in a mixed environment where some of your collaborators

are using Linux or Unix, and Mercurial reports a case folding conflict when you try to hg update
or hg merge, the procedure to fix the problem is simple.

Just find a nearby Linux or Unix box, clone the problem repository onto it, and use
Mercurial's hg rename command to change the names of any offending files or directories so
that they will no longer cause case folding conflicts. Commit this change, hg pull or hg push it
across to your Windows or MacOS system, and hg update to the revision with the non-conflicting
names.

The changeset with case-conflicting names will remain in your project's history, and you still
won't be able to hg update your working directory to that changeset on a Windows or MacOS
system, but you can continue development unimpeded.

92

第 8 章 发布管理与分支开发
Mercurial provides several mechanisms for you to manage a project that is making progress

on multiple fronts at once. To understand these mechanisms, let's first take a brief look at a fairly
normal software project structure.

Many software projects issue periodic “major” releases that contain substantial new
features. In parallel, they may issue “minor” releases. These are usually identical to the major
releases off which they're based, but with a few bugs fixed.

In this chapter, we'll start by talking about how to keep records of project milestones such
as releases. We'll then continue on to talk about the flow of work between different phases of a
project, and how Mercurial can help you to isolate and manage this work.

8.1. 给版本指定一个永久的名称
Once you decide that you'd like to call a particular revision a “release”, it's a good idea to

record the identity of that revision. This will let you reproduce that release at a later date, for
whatever purpose you might need at the time (reproducing a bug, porting to a new platform, etc).

$ hg init mytag
$ cd mytag
$ echo hello > myfile
$ hg commit -A -m 'Initial commit'
adding myfile

Mercurial lets you give a permanent name to any revision using the hg tag command. Not
surprisingly, these names are called “tags”.
$ hg tag v1.0

A tag is nothing more than a “symbolic name” for a revision. Tags exist purely for your
convenience, so that you have a handy permanent way to refer to a revision; Mercurial doesn't
interpret the tag names you use in any way. Neither does Mercurial place any restrictions on the
name of a tag, beyond a few that are necessary to ensure that a tag can be parsed unambiguously.
A tag name cannot contain any of the following characters:

• Colon (ASCII 58, “:”)

• Carriage return (ASCII 13, “\r”)

• Newline (ASCII 10, “\n”)

You can use the hg tags command to display the tags present in your repository. In the
output, each tagged revision is identified first by its name, then by revision number, and finally
by the unique hash of the revision.
$ hg tags
tip 1:4dc10c08590c
v1.0 0:83289cdde130

Notice that tip is listed in the output of hg tags. The tip tag is a special “floating” tag, which
always identifies the newest revision in the repository.

发布管理与分支开发

93

In the output of the hg tags command, tags are listed in reverse order, by revision number.
This usually means that recent tags are listed before older tags. It also means that tip is always
going to be the first tag listed in the output of hg tags.

When you run hg log, if it displays a revision that has tags associated with it, it will print
those tags.
$ hg log
changeset: 1:4dc10c08590c
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:59 2009 +0000
summary: Added tag v1.0 for changeset 83289cdde130

changeset: 0:83289cdde130
tag: v1.0
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:59 2009 +0000
summary: Initial commit

Any time you need to provide a revision ID to a Mercurial command, the command will
accept a tag name in its place. Internally, Mercurial will translate your tag name into the
corresponding revision ID, then use that.
$ echo goodbye > myfile2
$ hg commit -A -m 'Second commit'
adding myfile2
$ hg log -r v1.0
changeset: 0:83289cdde130
tag: v1.0
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:59 2009 +0000
summary: Initial commit

There's no limit on the number of tags you can have in a repository, or on the number of tags
that a single revision can have. As a practical matter, it's not a great idea to have “too many” (a
number which will vary from project to project), simply because tags are supposed to help you
to find revisions. If you have lots of tags, the ease of using them to identify revisions diminishes
rapidly.

For example, if your project has milestones as frequent as every few days, it's perfectly
reasonable to tag each one of those. But if you have a continuous build system that makes sure
every revision can be built cleanly, you'd be introducing a lot of noise if you were to tag every
clean build. Instead, you could tag failed builds (on the assumption that they're rare!), or simply
not use tags to track buildability.

If you want to remove a tag that you no longer want, use hg tag --remove.
$ hg tag --remove v1.0
$ hg tags
tip 3:d8b7ef9deb34

You can also modify a tag at any time, so that it identifies a different revision, by simply
issuing a new hg tag command. You'll have to use the -f option to tell Mercurial that you really
want to update the tag.
$ hg tag -r 1 v1.1
$ hg tags

发布管理与分支开发

94

tip 4:cfda50679c4f
v1.1 1:4dc10c08590c
$ hg tag -r 2 v1.1
abort: tag 'v1.1' already exists (use -f to force)
$ hg tag -f -r 2 v1.1
$ hg tags
tip 5:51f13094e592
v1.1 2:010d93439a02

There will still be a permanent record of the previous identity of the tag, but Mercurial will
no longer use it. There's thus no penalty to tagging the wrong revision; all you have to do is turn
around and tag the correct revision once you discover your error.

Mercurial stores tags in a normal revision-controlled file in your repository. If you've created
any tags, you'll find them in a file in the root of your repository named .hgtags. When you run
the hg tag command, Mercurial modifies this file, then automatically commits the change to it.
This means that every time you run hg tag, you'll see a corresponding changeset in the output
of hg log.
$ hg tip
changeset: 5:51f13094e592
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:59 2009 +0000
summary: Added tag v1.1 for changeset 010d93439a02

8.1.1. 在合并期间处理标签冲突
You won't often need to care about the .hgtags file, but it sometimes makes its presence

known during a merge. The format of the file is simple: it consists of a series of lines. Each line
starts with a changeset hash, followed by a space, followed by the name of a tag.

If you're resolving a conflict in the .hgtags file during a merge, there's one twist to
modifying the .hgtags file: when Mercurial is parsing the tags in a repository, it never reads
the working copy of the .hgtags file. Instead, it reads the most recently committed revision
of the file.

An unfortunate consequence of this design is that you can't actually verify that your merged
.hgtags file is correct until after you've committed a change. So if you find yourself resolving a
conflict on .hgtags during a merge, be sure to run hg tags after you commit. If it finds an error
in the .hgtags file, it will report the location of the error, which you can then fix and commit.
You should then run hg tags again, just to be sure that your fix is correct.

8.1.2. 标签与克隆
You may have noticed that the hg clone command has a -r option that lets you clone an

exact copy of the repository as of a particular changeset. The new clone will not contain any
project history that comes after the revision you specified. This has an interaction with tags that
can surprise the unwary.

Recall that a tag is stored as a revision to the .hgtags file. When you create a tag, the
changeset in which its recorded refers to an older changeset. When you run hg clone -r foo to
clone a repository as of tag foo, the new clone will not contain any revision newer than the

发布管理与分支开发

95

one the tag refers to, including the revision where the tag was created. The result is that
you'll get exactly the right subset of the project's history in the new repository, but not the tag
you might have expected.

8.1.3. 当永久标签太多的时候
Since Mercurial's tags are revision controlled and carried around with a project's history,

everyone you work with will see the tags you create. But giving names to revisions has uses
beyond simply noting that revision 4237e45506ee is really v2.0.2. If you're trying to track
down a subtle bug, you might want a tag to remind you of something like “Anne saw the symptoms
with this revision”.

For cases like this, what you might want to use are local tags. You can create a local tag with
the -l option to the hg tag command. This will store the tag in a file called .hg/localtags.
Unlike .hgtags, .hg/localtags is not revision controlled. Any tags you create using -l
remain strictly local to the repository you're currently working in.

8.2. 修改流程—宏观与微观
To return to the outline I sketched at the beginning of the chapter, let's think about a project

that has multiple concurrent pieces of work under development at once.

There might be a push for a new “main” release; a new minor bugfix release to the last main
release; and an unexpected “hot fix” to an old release that is now in maintenance mode.

The usual way people refer to these different concurrent directions of development is as
“branches”. However, we've already seen numerous times that Mercurial treats all of history as
a series of branches and merges. Really, what we have here is two ideas that are peripherally
related, but which happen to share a name.

• “Big picture” branches represent the sweep of a project's evolution; people give them names,
and talk about them in conversation.

• “Little picture” branches are artefacts of the day-to-day activity of developing and merging
changes. They expose the narrative of how the code was developed.

8.3. 在版本库中管理分支
The easiest way to isolate a “big picture” branch in Mercurial is in a dedicated repository. If

you have an existing shared repository—let's call it myproject—that reaches a “1.0” milestone,
you can start to prepare for future maintenance releases on top of version 1.0 by tagging the
revision from which you prepared the 1.0 release.
$ cd myproject
$ hg tag v1.0

You can then clone a new shared myproject-1.0.1 repository as of that tag.
$ cd ..

发布管理与分支开发

96

$ hg clone myproject myproject-1.0.1
updating working directory
2 files updated, 0 files merged, 0 files removed, 0 files unresolved

Afterwards, if someone needs to work on a bug fix that ought to go into an upcoming 1.0.1
minor release, they clone the myproject-1.0.1 repository, make their changes, and push
them back.
$ hg clone myproject-1.0.1 my-1.0.1-bugfix
updating working directory
2 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd my-1.0.1-bugfix
$ echo 'I fixed a bug using only echo!' >> myfile
$ hg commit -m 'Important fix for 1.0.1'
$ hg push
pushing to /tmp/branch-repoOhzc-o/myproject-1.0.1
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files

Meanwhile, development for the next major release can continue, isolated and unabated, in
the myproject repository.
$ cd ..
$ hg clone myproject my-feature
updating working directory
2 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd my-feature
$ echo 'This sure is an exciting new feature!' > mynewfile
$ hg commit -A -m 'New feature'
adding mynewfile
$ hg push
pushing to /tmp/branch-repoOhzc-o/myproject
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files

8.4. 不要重复劳动：在分支间合并
In many cases, if you have a bug to fix on a maintenance branch, the chances are good that

the bug exists on your project's main branch (and possibly other maintenance branches, too). It's
a rare developer who wants to fix the same bug multiple times, so let's look at a few ways that
Mercurial can help you to manage these bugfixes without duplicating your work.

In the simplest instance, all you need to do is pull changes from your maintenance branch
into your local clone of the target branch.
$ cd ..
$ hg clone myproject myproject-merge
updating working directory
3 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd myproject-merge
$ hg pull ../myproject-1.0.1
pulling from ../myproject-1.0.1
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)

发布管理与分支开发

97

(run 'hg heads' to see heads, 'hg merge' to merge)

You'll then need to merge the heads of the two branches, and push back to the main branch.
$ hg merge
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)
$ hg commit -m 'Merge bugfix from 1.0.1 branch'
$ hg push
pushing to /tmp/branch-repoOhzc-o/myproject
searching for changes
adding changesets
adding manifests
adding file changes
added 2 changesets with 1 changes to 1 files

8.5. 版本库中的命名分支
In most instances, isolating branches in repositories is the right approach. Its simplicity

makes it easy to understand; and so it's hard to make mistakes. There's a one-to-one relationship
between branches you're working in and directories on your system. This lets you use normal
(non-Mercurial-aware) tools to work on files within a branch/repository.

If you're more in the “power user” category (and your collaborators are too), there is an
alternative way of handling branches that you can consider. I've already mentioned the human-
level distinction between “small picture” and “big picture” branches. While Mercurial works with
multiple “small picture” branches in a repository all the time (for example after you pull changes
in, but before you merge them), it can also work with multiple “big picture” branches.

The key to working this way is that Mercurial lets you assign a persistent name to a branch.
There always exists a branch named default. Even before you start naming branches yourself,
you can find traces of the default branch if you look for them.

As an example, when you run the hg commit command, and it pops up your editor so that
you can enter a commit message, look for a line that contains the text “HG: branch default”
at the bottom. This is telling you that your commit will occur on the branch named default.

To start working with named branches, use the hg branches command. This command lists
the named branches already present in your repository, telling you which changeset is the tip
of each.
$ hg tip
changeset: 0:715668acd13f
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:39 2009 +0000
summary: Initial commit

$ hg branches
default 0:715668acd13f

Since you haven't created any named branches yet, the only one that exists is default.

To find out what the “current” branch is, run the hg branch command, giving it no
arguments. This tells you what branch the parent of the current changeset is on.
$ hg branch

发布管理与分支开发

98

default

To create a new branch, run the hg branch command again. This time, give it one argument:
the name of the branch you want to create.
$ hg branch foo
marked working directory as branch foo
$ hg branch
foo

After you've created a branch, you might wonder what effect the hg branch command has
had. What do the hg status and hg tip commands report?
$ hg status
$ hg tip
changeset: 0:715668acd13f
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:39 2009 +0000
summary: Initial commit

Nothing has changed in the working directory, and there's been no new history created. As
this suggests, running the hg branch command has no permanent effect; it only tells Mercurial
what branch name to use the next time you commit a changeset.

When you commit a change, Mercurial records the name of the branch on which you
committed. Once you've switched from the default branch to another and committed, you'll
see the name of the new branch show up in the output of hg log, hg tip, and other commands
that display the same kind of output.
$ echo 'hello again' >> myfile
$ hg commit -m 'Second commit'
$ hg tip
changeset: 1:642a4b0775af
branch: foo
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:40 2009 +0000
summary: Second commit

The hg log-like commands will print the branch name of every changeset that's not on the
default branch. As a result, if you never use named branches, you'll never see this information.

Once you've named a branch and committed a change with that name, every subsequent
commit that descends from that change will inherit the same branch name. You can change the
name of a branch at any time, using the hg branch command.
$ hg branch
foo
$ hg branch bar
marked working directory as branch bar
$ echo new file > newfile
$ hg commit -A -m 'Third commit'
adding newfile
$ hg tip
changeset: 2:6f05b20405c9
branch: bar
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:40 2009 +0000

发布管理与分支开发

99

summary: Third commit

In practice, this is something you won't do very often, as branch names tend to have fairly
long lifetimes. (This isn't a rule, just an observation.)

8.6. 在版本库中处理多个命名分支
If you have more than one named branch in a repository, Mercurial will remember the branch

that your working directory is on when you start a command like hg update or hg pull -u. It will
update the working directory to the tip of this branch, no matter what the “repo-wide” tip is. To
update to a revision that's on a different named branch, you may need to use the -C option to
hg update.

This behavior is a little subtle, so let's see it in action. First, let's remind ourselves what
branch we're currently on, and what branches are in our repository.
$ hg parents
changeset: 2:6f05b20405c9
branch: bar
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:40 2009 +0000
summary: Third commit

$ hg branches
bar 2:6f05b20405c9
foo 1:642a4b0775af (inactive)
default 0:715668acd13f (inactive)

We're on the bar branch, but there also exists an older hg foo branch.

We can hg update back and forth between the tips of the foo and bar branches without
needing to use the -C option, because this only involves going backwards and forwards linearly
through our change history.
$ hg update foo
0 files updated, 0 files merged, 1 files removed, 0 files unresolved
$ hg parents
changeset: 1:642a4b0775af
branch: foo
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:40 2009 +0000
summary: Second commit

$ hg update bar
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ hg parents
changeset: 2:6f05b20405c9
branch: bar
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:40 2009 +0000
summary: Third commit

If we go back to the foo branch and then run hg update, it will keep us on foo, not move
us to the tip of bar.
$ hg update foo
0 files updated, 0 files merged, 1 files removed, 0 files unresolved

发布管理与分支开发

100

$ hg update
0 files updated, 0 files merged, 0 files removed, 0 files unresolved

Committing a new change on the foo branch introduces a new head.
$ echo something > somefile
$ hg commit -A -m 'New file'
adding somefile
created new head
$ hg heads
changeset: 3:bbf4b9bcd723
branch: foo
tag: tip
parent: 1:642a4b0775af
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:40 2009 +0000
summary: New file

changeset: 2:6f05b20405c9
branch: bar
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:40 2009 +0000
summary: Third commit

8.7. 分支名称与合并
As you've probably noticed, merges in Mercurial are not symmetrical. Let's say our

repository has two heads, 17 and 23. If I hg update to 17 and then hg merge with 23, Mercurial
records 17 as the first parent of the merge, and 23 as the second. Whereas if I hg update to 23
and then hg merge with 17, it records 23 as the first parent, and 17 as the second.

This affects Mercurial's choice of branch name when you merge. After a merge, Mercurial
will retain the branch name of the first parent when you commit the result of the merge. If your
first parent's branch name is foo, and you merge with bar, the branch name will still be foo
after you merge.

It's not unusual for a repository to contain multiple heads, each with the same branch name.
Let's say I'm working on the foo branch, and so are you. We commit different changes; I pull your
changes; I now have two heads, each claiming to be on the foo branch. The result of a merge will
be a single head on the foo branch, as you might hope.

But if I'm working on the bar branch, and I merge work from the foo branch, the result will
remain on the bar branch.
$ hg branch
bar
$ hg merge foo
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)
$ hg commit -m 'Merge'
$ hg tip
changeset: 4:91b85cc57691
branch: bar
tag: tip
parent: 2:6f05b20405c9
parent: 3:bbf4b9bcd723
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:41 2009 +0000
summary: Merge

发布管理与分支开发

101

To give a more concrete example, if I'm working on the bleeding-edge branch, and I
want to bring in the latest fixes from the stable branch, Mercurial will choose the “right”
(bleeding-edge) branch name when I pull and merge from stable.

8.8. 分支名称通常都很有用
You shouldn't think of named branches as applicable only to situations where you have

multiple long-lived branches cohabiting in a single repository. They're very useful even in the
one-branch-per-repository case.

In the simplest case, giving a name to each branch gives you a permanent record of which
branch a changeset originated on. This gives you more context when you're trying to follow the
history of a long-lived branchy project.

If you're working with shared repositories, you can set up a pretxnchangegroup hook
on each that will block incoming changes that have the “wrong” branch name. This provides a
simple, but effective, defence against people accidentally pushing changes from a “bleeding edge”
branch to a “stable” branch. Such a hook might look like this inside the shared repo's /.hgrc.
[hooks]
pretxnchangegroup.branch = hg heads --template '{branches} ' | grep mybranch

102

第 9 章 查找和修改错误
To err might be human, but to really handle the consequences well takes a top-notch revision

control system. In this chapter, we'll discuss some of the techniques you can use when you find
that a problem has crept into your project. Mercurial has some highly capable features that will
help you to isolate the sources of problems, and to handle them appropriately.

9.1. 销毁本地历史
9.1.1. 意外的提交

I have the occasional but persistent problem of typing rather more quickly than I can think,
which sometimes results in me committing a changeset that is either incomplete or plain wrong.
In my case, the usual kind of incomplete changeset is one in which I've created a new source file,
but forgotten to hg add it. A “plain wrong” changeset is not as common, but no less annoying.

9.1.2. 回滚一个事务
In 第 4.2.2 节 “安全操作”, I mentioned that Mercurial treats each modification of a

repository as a transaction. Every time you commit a changeset or pull changes from another
repository, Mercurial remembers what you did. You can undo, or roll back, exactly one of these
actions using the hg rollback command. (See 第 9.1.4 节 “当完成推送后，回滚是无效的” for
an important caveat about the use of this command.)

Here's a mistake that I often find myself making: committing a change in which I've created
a new file, but forgotten to hg add it.
$ hg status
M a
$ echo b > b
$ hg commit -m 'Add file b'

Looking at the output of hg status after the commit immediately confirms the error.
$ hg status
? b
$ hg tip
changeset: 1:0c21f9019983
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:58 2009 +0000
summary: Add file b

The commit captured the changes to the file a, but not the new file b. If I were to push this
changeset to a repository that I shared with a colleague, the chances are high that something in
a would refer to b, which would not be present in their repository when they pulled my changes.
I would thus become the object of some indignation.

However, luck is with me—I've caught my error before I pushed the changeset. I use the hg
rollback command, and Mercurial makes that last changeset vanish.

查找和修改错误

103

$ hg rollback
rolling back last transaction
$ hg tip
changeset: 0:15088b425761
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:58 2009 +0000
summary: First commit

$ hg status
M a
? b

Notice that the changeset is no longer present in the repository's history, and the working
directory once again thinks that the file a is modified. The commit and rollback have left the
working directory exactly as it was prior to the commit; the changeset has been completely
erased. I can now safely hg add the file b, and rerun my commit.
$ hg add b
$ hg commit -m 'Add file b, this time for real'

9.1.3. 错误的抓取
It's common practice with Mercurial to maintain separate development branches of a project

in different repositories. Your development team might have one shared repository for your
project's “0.9” release, and another, containing different changes, for the “1.0” release.

Given this, you can imagine that the consequences could be messy if you had a local “0.9”
repository, and accidentally pulled changes from the shared “1.0” repository into it. At worst,
you could be paying insufficient attention, and push those changes into the shared “0.9” tree,
confusing your entire team (but don't worry, we'll return to this horror scenario later). However,
it's more likely that you'll notice immediately, because Mercurial will display the URL it's pulling
from, or you will see it pull a suspiciously large number of changes into the repository.

The hg rollback command will work nicely to expunge all of the changesets that you just
pulled. Mercurial groups all changes from one hg pull into a single transaction, so one hg
rollback is all you need to undo this mistake.

9.1.4. 当完成推送后，回滚是无效的
The value of the hg rollback command drops to zero once you've pushed your changes to

another repository. Rolling back a change makes it disappear entirely, but only in the repository
in which you perform the hg rollback. Because a rollback eliminates history, there's no way for
the disappearance of a change to propagate between repositories.

If you've pushed a change to another repository—particularly if it's a shared repository—it
has essentially “escaped into the wild,” and you'll have to recover from your mistake in a different
way. If you push a changeset somewhere, then roll it back, then pull from the repository you
pushed to, the changeset you thought you'd gotten rid of will simply reappear in your repository.

(If you absolutely know for sure that the change you want to roll back is the most recent
change in the repository that you pushed to, and you know that nobody else could have pulled it
from that repository, you can roll back the changeset there, too, but you really should not expect

查找和修改错误

104

this to work reliably. Sooner or later a change really will make it into a repository that you don't
directly control (or have forgotten about), and come back to bite you.)

9.1.5. 你只能回滚一次
Mercurial stores exactly one transaction in its transaction log; that transaction is the most

recent one that occurred in the repository. This means that you can only roll back one transaction.
If you expect to be able to roll back one transaction, then its predecessor, this is not the behavior
you will get.

$ hg rollback
rolling back last transaction
$ hg rollback
no rollback information available

Once you've rolled back one transaction in a repository, you can't roll back again in that
repository until you perform another commit or pull.

9.2. 撤销错误的修改
If you make a modification to a file, and decide that you really didn't want to change the file

at all, and you haven't yet committed your changes, the hg revert command is the one you'll need.
It looks at the changeset that's the parent of the working directory, and restores the contents of
the file to their state as of that changeset. (That's a long-winded way of saying that, in the normal
case, it undoes your modifications.)

Let's illustrate how the hg revert command works with yet another small example. We'll
begin by modifying a file that Mercurial is already tracking.

$ cat file
original content
$ echo unwanted change >> file
$ hg diff file
diff -r 650f5ea1d139 file
--- a/file Fri Oct 23 01:37:49 2009 +0000
+++ b/file Fri Oct 23 01:37:49 2009 +0000
@@ -1,1 +1,2 @@
 original content
+unwanted change

If we don't want that change, we can simply hg revert the file.

$ hg status
M file
$ hg revert file
$ cat file
original content

The hg revert command provides us with an extra degree of safety by saving our modified
file with a .orig extension.

$ hg status
? file.orig
$ cat file.orig
original content
unwanted change

查找和修改错误

105

小心 .orig 文件

It's extremely unlikely that you are either using Mercurial to manage files with .orig
extensions or that you even care about the contents of such files. Just in case, though,
it's useful to remember that hg revert will unconditionally overwrite an existing file
with a .orig extension. For instance, if you already have a file named foo.orig
when you revert foo, the contents of foo.orig will be clobbered.

Here is a summary of the cases that the hg revert command can deal with. We will describe
each of these in more detail in the section that follows.

• If you modify a file, it will restore the file to its unmodified state.

• If you hg add a file, it will undo the “added” state of the file, but leave the file itself untouched.

• If you delete a file without telling Mercurial, it will restore the file to its unmodified contents.

• If you use the hg remove command to remove a file, it will undo the “removed” state of the file,
and restore the file to its unmodified contents.

9.2.1. 文件管理错误
The hg revert command is useful for more than just modified files. It lets you reverse the

results of all of Mercurial's file management commands—hg add, hg remove, and so on.

If you hg add a file, then decide that in fact you don't want Mercurial to track it, use hg revert
to undo the add. Don't worry; Mercurial will not modify the file in any way. It will just “unmark”
the file.
$ echo oops > oops
$ hg add oops
$ hg status oops
A oops
$ hg revert oops
$ hg status
? oops

Similarly, if you ask Mercurial to hg remove a file, you can use hg revert to restore it to the
contents it had as of the parent of the working directory.

$ hg remove file
$ hg status
R file
$ hg revert file
$ hg status
$ ls file
file

This works just as well for a file that you deleted by hand, without telling Mercurial (recall that
in Mercurial terminology, this kind of file is called “missing”).
$ rm file
$ hg status
! file
$ hg revert file
$ ls file

查找和修改错误

106

file

If you revert a hg copy, the copied-to file remains in your working directory afterwards,
untracked. Since a copy doesn't affect the copied-from file in any way, Mercurial doesn't do
anything with the copied-from file.
$ hg copy file new-file
$ hg revert new-file
$ hg status
? new-file

9.3. 处理已经提交的修改
Consider a case where you have committed a change a, and another change b on top of it;

you then realise that change a was incorrect. Mercurial lets you “back out” an entire changeset
automatically, and building blocks that let you reverse part of a changeset by hand.

Before you read this section, here's something to keep in mind: the hg backout command
undoes the effect of a change by adding to your repository's history, not by modifying or erasing
it. It's the right tool to use if you're fixing bugs, but not if you're trying to undo some change that
has catastrophic consequences. To deal with those, see 第 9.4 节 “不该发生的修改”.

9.3.1. 恢复一个修改集
The hg backout command lets you “undo” the effects of an entire changeset in an automated

fashion. Because Mercurial's history is immutable, this command does not get rid of the
changeset you want to undo. Instead, it creates a new changeset that reverses the effect of the
to-be-undone changeset.

The operation of the hg backout command is a little intricate, so let's illustrate it with some
examples. First, we'll create a repository with some simple changes.
$ hg init myrepo
$ cd myrepo
$ echo first change >> myfile
$ hg add myfile
$ hg commit -m 'first change'
$ echo second change >> myfile
$ hg commit -m 'second change'

The hg backout command takes a single changeset ID as its argument; this is the changeset
to back out. Normally, hg backout will drop you into a text editor to write a commit message, so
you can record why you're backing the change out. In this example, we provide a commit message
on the command line using the -m option.

9.3.2. 恢复顶点修改集
We're going to start by backing out the last changeset we committed.

$ hg backout -m 'back out second change' tip
reverting myfile
changeset 2:8a75ee27d71e backs out changeset 1:2105a6a51c1f
$ cat myfile

查找和修改错误

107

first change

You can see that the second line from myfile is no longer present. Taking a look at the
output of hg log gives us an idea of what the hg backout command has done.

$ hg log --style compact
2[tip] 8a75ee27d71e 2009-10-23 01:37 +0000 bos
 back out second change

1 2105a6a51c1f 2009-10-23 01:37 +0000 bos
 second change

0 41b7bfc2bd4f 2009-10-23 01:37 +0000 bos
 first change

Notice that the new changeset that hg backout has created is a child of the changeset we
backed out. It's easier to see this in 图 9.1 “使用 hg backout 恢复一个修改”, which presents
a graphical view of the change history. As you can see, the history is nice and linear.

图 9.1. 使用 hg backout 恢复一个修改

9.3.3. 恢复非顶点的修改
If you want to back out a change other than the last one you committed, pass the --merge

option to the hg backout command.
$ cd ..
$ hg clone -r1 myrepo non-tip-repo
requesting all changes
adding changesets
adding manifests
adding file changes
added 2 changesets with 2 changes to 1 files
updating working directory
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd non-tip-repo

This makes backing out any changeset a “one-shot” operation that's usually simple and fast.
$ echo third change >> myfile
$ hg commit -m 'third change'

查找和修改错误

108

$ hg backout --merge -m 'back out second change' 1
reverting myfile
created new head
changeset 3:8a75ee27d71e backs out changeset 1:2105a6a51c1f
merging with changeset 3:8a75ee27d71e
merging myfile
0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)

If you take a look at the contents of myfile after the backout finishes, you'll see that the
first and third changes are present, but not the second.
$ cat myfile
first change
third change

As the graphical history in 图 9.2 “使用 hg backout 自动恢复非顶点的修改” illustrates,
Mercurial still commits one change in this kind of situation (the box-shaped node is the ones that
Mercurial commits automatically), but the revision graph now looks different. Before Mercurial
begins the backout process, it first remembers what the current parent of the working directory
is. It then backs out the target changeset, and commits that as a changeset. Finally, it merges back
to the previous parent of the working directory, but notice that it does not commit the result of
the merge. The repository now contains two heads, and the working directory is in a merge state.

图 9.2. 使用 hg backout 自动恢复非顶点的修改

The result is that you end up “back where you were”, only with some extra history that
undoes the effect of the changeset you wanted to back out.

You might wonder why Mercurial does not commit the result of the merge that it performed.
The reason lies in Mercurial behaving conservatively: a merge naturally has more scope for error
than simply undoing the effect of the tip changeset, so your work will be safest if you first inspect
(and test!) the result of the merge, then commit it.

查找和修改错误

109

9.3.3.1. 始终使用选项 --merge

In fact, since the --merge option will do the “right thing” whether or not the changeset you're
backing out is the tip (i.e. it won't try to merge if it's backing out the tip, since there's no need),
you should always use this option when you run the hg backout command.

9.3.4. 在恢复处理中获得更多控制
While I've recommended that you always use the --merge option when backing out a

change, the hg backout command lets you decide how to merge a backout changeset. Taking
control of the backout process by hand is something you will rarely need to do, but it can be useful
to understand what the hg backout command is doing for you automatically. To illustrate this,
let's clone our first repository, but omit the backout change that it contains.
$ cd ..
$ hg clone -r1 myrepo newrepo
requesting all changes
adding changesets
adding manifests
adding file changes
added 2 changesets with 2 changes to 1 files
updating working directory
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd newrepo

As with our earlier example, We'll commit a third changeset, then back out its parent, and
see what happens.
$ echo third change >> myfile
$ hg commit -m 'third change'
$ hg backout -m 'back out second change' 1
reverting myfile
created new head
changeset 3:b8d31274f884 backs out changeset 1:2105a6a51c1f
the backout changeset is a new head - do not forget to merge
(use "backout --merge" if you want to auto-merge)

Our new changeset is again a descendant of the changeset we backout out; it's thus a new
head, not a descendant of the changeset that was the tip. The hg backout command was quite
explicit in telling us this.
$ hg log --style compact
3[tip]:1 b8d31274f884 2009-10-23 01:37 +0000 bos
 back out second change

2 0f1ef2b8f1db 2009-10-23 01:37 +0000 bos
 third change

1 2105a6a51c1f 2009-10-23 01:37 +0000 bos
 second change

0 41b7bfc2bd4f 2009-10-23 01:37 +0000 bos
 first change

Again, it's easier to see what has happened by looking at a graph of the revision history, in
图 9.3 “使用 hg backout 恢复一个修改”. This makes it clear that when we use hg backout to
back out a change other than the tip, Mercurial adds a new head to the repository (the change
it committed is box-shaped).

查找和修改错误

110

图 9.3. 使用 hg backout 恢复一个修改

After the hg backout command has completed, it leaves the new “backout” changeset as the
parent of the working directory.
$ hg parents
changeset: 2:0f1ef2b8f1db
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:36 2009 +0000
summary: third change

Now we have two isolated sets of changes.
$ hg heads
changeset: 3:b8d31274f884
tag: tip
parent: 1:2105a6a51c1f
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:36 2009 +0000
summary: back out second change

changeset: 2:0f1ef2b8f1db
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:36 2009 +0000
summary: third change

Let's think about what we expect to see as the contents of myfile now. The first change
should be present, because we've never backed it out. The second change should be missing, as
that's the change we backed out. Since the history graph shows the third change as a separate
head, we don't expect to see the third change present in myfile.
$ cat myfile
first change

To get the third change back into the file, we just do a normal merge of our two heads.
$ hg merge
abort: outstanding uncommitted changes (use 'hg status' to list changes)
$ hg commit -m 'merged backout with previous tip'
$ cat myfile
first change

Afterwards, the graphical history of our repository looks like 图 9.4 “手工合并恢复修改”.

查找和修改错误

111

图 9.4. 手工合并恢复修改

9.3.5. hg backout 的内幕
Here's a brief description of how the hg backout command works.

1. It ensures that the working directory is “clean”, i.e. that the output of hg status would be
empty.

2. It remembers the current parent of the working directory. Let's call this changeset orig.

3. It does the equivalent of a hg update to sync the working directory to the changeset you want
to back out. Let's call this changeset backout.

4. It finds the parent of that changeset. Let's call that changeset parent.

5. For each file that the backout changeset affected, it does the equivalent of a hg revert -r
parent on that file, to restore it to the contents it had before that changeset was committed.

6. It commits the result as a new changeset. This changeset has backout as its parent.

7. If you specify --merge on the command line, it merges with orig, and commits the result
of the merge.

An alternative way to implement the hg backout command would be to hg export the to-
be-backed-out changeset as a diff, then use the --reverse option to the patch command to
reverse the effect of the change without fiddling with the working directory. This sounds much
simpler, but it would not work nearly as well.

查找和修改错误

112

The reason that hg backout does an update, a commit, a merge, and another commit is to
give the merge machinery the best chance to do a good job when dealing with all the changes
between the change you're backing out and the current tip.

If you're backing out a changeset that's 100 revisions back in your project's history, the
chances that the patch command will be able to apply a reverse diff cleanly are not good, because
intervening changes are likely to have “broken the context” that patch uses to determine whether
it can apply a patch (if this sounds like gibberish, see 第 12.4 节 “理解补丁” for a discussion of
the patch command). Also, Mercurial's merge machinery will handle files and directories being
renamed, permission changes, and modifications to binary files, none of which patch can deal
with.

9.4. 不该发生的修改
Most of the time, the hg backout command is exactly what you need if you want to undo the

effects of a change. It leaves a permanent record of exactly what you did, both when committing
the original changeset and when you cleaned up after it.

On rare occasions, though, you may find that you've committed a change that really should
not be present in the repository at all. For example, it would be very unusual, and usually
considered a mistake, to commit a software project's object files as well as its source files. Object
files have almost no intrinsic value, and they're big, so they increase the size of the repository
and the amount of time it takes to clone or pull changes.

Before I discuss the options that you have if you commit a “brown paper bag” change (the
kind that's so bad that you want to pull a brown paper bag over your head), let me first discuss
some approaches that probably won't work.

Since Mercurial treats history as accumulative—every change builds on top of all changes
that preceded it—you generally can't just make disastrous changes disappear. The one exception
is when you've just committed a change, and it hasn't been pushed or pulled into another
repository. That's when you can safely use the hg rollback command, as I detailed in 第 9.1.2 节
“回滚一个事务”.

After you've pushed a bad change to another repository, you could still use hg rollback to
make your local copy of the change disappear, but it won't have the consequences you want. The
change will still be present in the remote repository, so it will reappear in your local repository
the next time you pull.

If a situation like this arises, and you know which repositories your bad change has
propagated into, you can try to get rid of the change from every one of those repositories. This is,
of course, not a satisfactory solution: if you miss even a single repository while you're expunging,
the change is still “in the wild”, and could propagate further.

If you've committed one or more changes after the change that you'd like to see disappear,
your options are further reduced. Mercurial doesn't provide a way to “punch a hole” in history,
leaving changesets intact.

查找和修改错误

113

9.4.1. 撤销一个合并
Since merges are often complicated, it is not unheard of for a merge to be mangled badly,

but committed erroneously. Mercurial provides an important safeguard against bad merges by
refusing to commit unresolved files, but human ingenuity guarantees that it is still possible to
mess a merge up and commit it.

Given a bad merge that has been committed, usually the best way to approach it is to simply
try to repair the damage by hand. A complete disaster that cannot be easily fixed up by hand ought
to be very rare, but the hg backout command may help in making the cleanup easier. It offers a
--parent option, which lets you specify which parent to revert to when backing out a merge.

图 9.5. 错误的合并

Suppose we have a revision graph like that in 图 9.5 “错误的合并”. What we'd like is to
redo the merge of revisions 2 and 3.

One way to do so would be as follows.

1. Call hg backout --rev=4 --parent=2. This tells hg backout to back out revision 4, which is
the bad merge, and to when deciding which revision to prefer, to choose parent 2, one of the
parents of the merge. The effect can be seen in 图 9.6 “拆除合并，关注一个父亲”.

查找和修改错误

114

图 9.6. 拆除合并，关注一个父亲

2. Call hg backout --rev=4 --parent=3. This tells hg backout to back out revision 4 again, but
this time to choose parent 3, the other parent of the merge. The result is visible in 图 9.7 “拆
除合并，关注其它父亲”, in which the repository now contains three heads.

图 9.7. 拆除合并，关注其它父亲

查找和修改错误

115

3. Redo the bad merge by merging the two backout heads, which reduces the number of heads
in the repository to two, as can be seen in 图 9.8 “合并拆除”.

图 9.8. 合并拆除

4. Merge with the commit that was made after the bad merge, as shown in 图 9.9 “合并拆除”.

查找和修改错误

116

图 9.9. 合并拆除

9.4.2. 使用“校验”修改来保护你自己
If you've committed some changes to your local repository and they've been pushed or

pulled somewhere else, this isn't necessarily a disaster. You can protect yourself ahead of time
against some classes of bad changeset. This is particularly easy if your team usually pulls changes
from a central repository.

By configuring some hooks on that repository to validate incoming changesets (see chapter
第 10 章 使用钩子处理版本库事件), you can automatically prevent some kinds of bad changeset
from being pushed to the central repository at all. With such a configuration in place, some kinds
of bad changeset will naturally tend to “die out” because they can't propagate into the central
repository. Better yet, this happens without any need for explicit intervention.

查找和修改错误

117

For instance, an incoming change hook that verifies that a changeset will actually compile
can prevent people from inadvertently “breaking the build”.

9.4.3. 处理敏感信息泄漏的方法
Even a carefully run project can suffer an unfortunate event such as the committing and

uncontrolled propagation of a file that contains important passwords.

If something like this happens to you, and the information that gets accidentally propagated
is truly sensitive, your first step should be to mitigate the effect of the leak without trying to
control the leak itself. If you are not 100% certain that you know exactly who could have seen the
changes, you should immediately change passwords, cancel credit cards, or find some other way
to make sure that the information that has leaked is no longer useful. In other words, assume that
the change has propagated far and wide, and that there's nothing more you can do.

You might hope that there would be mechanisms you could use to either figure out who has
seen a change or to erase the change permanently everywhere, but there are good reasons why
these are not possible.

Mercurial does not provide an audit trail of who has pulled changes from a repository,
because it is usually either impossible to record such information or trivial to spoof it. In a multi-
user or networked environment, you should thus be extremely skeptical of yourself if you think
that you have identified every place that a sensitive changeset has propagated to. Don't forget that
people can and will send bundles by email, have their backup software save data offsite, carry
repositories on USB sticks, and find other completely innocent ways to confound your attempts
to track down every copy of a problematic change.

Mercurial also does not provide a way to make a file or changeset completely disappear
from history, because there is no way to enforce its disappearance; someone could easily modify
their copy of Mercurial to ignore such directives. In addition, even if Mercurial provided such a
capability, someone who simply hadn't pulled a “make this file disappear” changeset wouldn't
be affected by it, nor would web crawlers visiting at the wrong time, disk backups, or other
mechanisms. Indeed, no distributed revision control system can make data reliably vanish.
Providing the illusion of such control could easily give a false sense of security, and be worse than
not providing it at all.

9.5. 查找问题的根源
While it's all very well to be able to back out a changeset that introduced a bug, this requires

that you know which changeset to back out. Mercurial provides an invaluable command, called
hg bisect, that helps you to automate this process and accomplish it very efficiently.

The idea behind the hg bisect command is that a changeset has introduced some change
of behavior that you can identify with a simple pass/fail test. You don't know which piece of
code introduced the change, but you know how to test for the presence of the bug. The hg bisect
command uses your test to direct its search for the changeset that introduced the code that
caused the bug.

查找和修改错误

118

Here are a few scenarios to help you understand how you might apply this command.

• The most recent version of your software has a bug that you remember wasn't present a few
weeks ago, but you don't know when it was introduced. Here, your binary test checks for the
presence of that bug.

• You fixed a bug in a rush, and now it's time to close the entry in your team's bug database. The
bug database requires a changeset ID when you close an entry, but you don't remember which
changeset you fixed the bug in. Once again, your binary test checks for the presence of the bug.

• Your software works correctly, but runs 15% slower than the last time you measured it. You
want to know which changeset introduced the performance regression. In this case, your
binary test measures the performance of your software, to see whether it's “fast” or “slow”.

• The sizes of the components of your project that you ship exploded recently, and you suspect
that something changed in the way you build your project.

From these examples, it should be clear that the hg bisect command is not useful only
for finding the sources of bugs. You can use it to find any “emergent property” of a repository
(anything that you can't find from a simple text search of the files in the tree) for which you can
write a binary test.

We'll introduce a little bit of terminology here, just to make it clear which parts of the search
process are your responsibility, and which are Mercurial's. A test is something that you run when
hg bisect chooses a changeset. A probe is what hg bisect runs to tell whether a revision is good.
Finally, we'll use the word “bisect”, as both a noun and a verb, to stand in for the phrase “search
using the hg bisect command”.

One simple way to automate the searching process would be simply to probe every
changeset. However, this scales poorly. If it took ten minutes to test a single changeset, and you
had 10,000 changesets in your repository, the exhaustive approach would take on average 35
days to find the changeset that introduced a bug. Even if you knew that the bug was introduced
by one of the last 500 changesets, and limited your search to those, you'd still be looking at over
40 hours to find the changeset that introduced your bug.

What the hg bisect command does is use its knowledge of the “shape” of your project's
revision history to perform a search in time proportional to the logarithm of the number of
changesets to check (the kind of search it performs is called a dichotomic search). With this
approach, searching through 10,000 changesets will take less than three hours, even at ten
minutes per test (the search will require about 14 tests). Limit your search to the last hundred
changesets, and it will take only about an hour (roughly seven tests).

The hg bisect command is aware of the “branchy” nature of a Mercurial project's revision
history, so it has no problems dealing with branches, merges, or multiple heads in a repository. It
can prune entire branches of history with a single probe, which is how it operates so efficiently.

9.5.1. 使用命令 hg bisect
Here's an example of hg bisect in action.

查找和修改错误

119

注意

In versions 0.9.5 and earlier of Mercurial, hg bisect was not a core command: it
was distributed with Mercurial as an extension. This section describes the built-in
command, not the old extension.

Now let's create a repository, so that we can try out the hg bisect command in isolation.
$ hg init mybug
$ cd mybug

We'll simulate a project that has a bug in it in a simple-minded way: create trivial changes in a
loop, and nominate one specific change that will have the “bug”. This loop creates 35 changesets,
each adding a single file to the repository. We'll represent our “bug” with a file that contains the
text “i have a gub”.
$ buggy_change=22
$ for ((i = 0; i < 35; i++)); do
> if [[$i = $buggy_change]]; then
> echo 'i have a gub' > myfile$i
> hg commit -q -A -m 'buggy changeset'
> else
> echo 'nothing to see here, move along' > myfile$i
> hg commit -q -A -m 'normal changeset'
> fi
> done

The next thing that we'd like to do is figure out how to use the hg bisect command. We can
use Mercurial's normal built-in help mechanism for this.
$ hg help bisect
hg bisect [-gbsr] [-c CMD] [REV]

subdivision search of changesets

 This command helps to find changesets which introduce problems. To
 use, mark the earliest changeset you know exhibits the problem as
 bad, then mark the latest changeset which is free from the problem
 as good. Bisect will update your working directory to a revision
 for testing (unless the -U/--noupdate option is specified). Once
 you have performed tests, mark the working directory as good or
 bad, and bisect will either update to another candidate changeset
 or announce that it has found the bad revision.

 As a shortcut, you can also use the revision argument to mark a
 revision as good or bad without checking it out first.

 If you supply a command, it will be used for automatic bisection.
 Its exit status will be used to mark revisions as good or bad:
 status 0 means good, 125 means to skip the revision, 127
 (command not found) will abort the bisection, and any other
 non-zero exit status means the revision is bad.

options:

 -r --reset reset bisect state
 -g --good mark changeset good
 -b --bad mark changeset bad
 -s --skip skip testing changeset
 -c --command use command to check changeset state
 -U --noupdate do not update to target

use "hg -v help bisect" to show global options

The hg bisect command works in steps. Each step proceeds as follows.

查找和修改错误

120

1. You run your binary test.

• 当测试成功后，使用 hg bisect --good 命令告诉 hg bisect 命令。

• 如果失败，执行 hg bisect --bad 命令。

2. The command uses your information to decide which changeset to test next.

3. It updates the working directory to that changeset, and the process begins again.

The process ends when hg bisect identifies a unique changeset that marks the point where
your test transitioned from “succeeding” to “failing”.

To start the search, we must run the hg bisect --reset command.
$ hg bisect --reset

In our case, the binary test we use is simple: we check to see if any file in the repository
contains the string “i have a gub”. If it does, this changeset contains the change that “caused the
bug”. By convention, a changeset that has the property we're searching for is “bad”, while one
that doesn't is “good”.

Most of the time, the revision to which the working directory is synced (usually the tip)
already exhibits the problem introduced by the buggy change, so we'll mark it as “bad”.
$ hg bisect --bad

Our next task is to nominate a changeset that we know doesn't have the bug; the hg bisect
command will “bracket” its search between the first pair of good and bad changesets. In our case,
we know that revision 10 didn't have the bug. (I'll have more words about choosing the first
“good” changeset later.)
$ hg bisect --good 10
Testing changeset 22:cb13b00c1c55 (24 changesets remaining, ~4 tests)
0 files updated, 0 files merged, 12 files removed, 0 files unresolved

Notice that this command printed some output.

• It told us how many changesets it must consider before it can identify the one that introduced
the bug, and how many tests that will require.

• It updated the working directory to the next changeset to test, and told us which changeset
it's testing.

We now run our test in the working directory. We use the grep command to see if our “bad”
file is present in the working directory. If it is, this revision is bad; if not, this revision is good.

$ if grep -q 'i have a gub' *
> then
> result=bad
> else
> result=good
> fi
$ echo this revision is $result
this revision is bad
$ hg bisect --$result
Testing changeset 16:313d3356dd34 (12 changesets remaining, ~3 tests)
0 files updated, 0 files merged, 6 files removed, 0 files unresolved

查找和修改错误

121

This test looks like a perfect candidate for automation, so let's turn it into a shell function.
$ mytest() {
> if grep -q 'i have a gub' *
> then
> result=bad
> else
> result=good
> fi
> echo this revision is $result
> hg bisect --$result
> }

We can now run an entire test step with a single command, mytest.
$ mytest
this revision is good
Testing changeset 19:594022a60292 (6 changesets remaining, ~2 tests)
3 files updated, 0 files merged, 0 files removed, 0 files unresolved

A few more invocations of our canned test step command, and we're done.
$ mytest
this revision is good
Testing changeset 20:829bca46faf1 (3 changesets remaining, ~1 tests)
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ mytest
this revision is good
Testing changeset 21:387335ef29e3 (2 changesets remaining, ~1 tests)
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ mytest
this revision is good
The first bad revision is:
changeset: 22:cb13b00c1c55
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:38 2009 +0000
summary: buggy changeset

Even though we had 40 changesets to search through, the hg bisect command let us find the
changeset that introduced our “bug” with only five tests. Because the number of tests that the
hg bisect command performs grows logarithmically with the number of changesets to search,
the advantage that it has over the “brute force” search approach increases with every changeset
you add.

9.5.2. 搜索后的清理
When you're finished using the hg bisect command in a repository, you can use the hg bisect

--reset command to drop the information it was using to drive your search. The command doesn't
use much space, so it doesn't matter if you forget to run this command. However, hg bisect won't
let you start a new search in that repository until you do a hg bisect --reset.
$ hg bisect --reset

9.6. 有效查找问题的技巧
9.6.1. 给出一致的输入

The hg bisect command requires that you correctly report the result of every test you
perform. If you tell it that a test failed when it really succeeded, it might be able to detect the

查找和修改错误

122

inconsistency. If it can identify an inconsistency in your reports, it will tell you that a particular
changeset is both good and bad. However, it can't do this perfectly; it's about as likely to report
the wrong changeset as the source of the bug.

9.6.2. 尽量自动
When I started using the hg bisect command, I tried a few times to run my tests by hand, on

the command line. This is an approach that I, at least, am not suited to. After a few tries, I found
that I was making enough mistakes that I was having to restart my searches several times before
finally getting correct results.

My initial problems with driving the hg bisect command by hand occurred even with simple
searches on small repositories; if the problem you're looking for is more subtle, or the number of
tests that hg bisect must perform increases, the likelihood of operator error ruining the search
is much higher. Once I started automating my tests, I had much better results.

The key to automated testing is twofold:

• always test for the same symptom, and

• always feed consistent input to the hg bisect command.

In my tutorial example above, the grep command tests for the symptom, and the if
statement takes the result of this check and ensures that we always feed the same input to the
hg bisect command. The mytest function marries these together in a reproducible way, so that
every test is uniform and consistent.

9.6.3. 检查你的结果
Because the output of a hg bisect search is only as good as the input you give it, don't take the

changeset it reports as the absolute truth. A simple way to cross-check its report is to manually
run your test at each of the following changesets:

• The changeset that it reports as the first bad revision. Your test should still report this as bad.

• The parent of that changeset (either parent, if it's a merge). Your test should report this
changeset as good.

• A child of that changeset. Your test should report this changeset as bad.

9.6.4. 谨防问题之间的冲突
It's possible that your search for one bug could be disrupted by the presence of another. For

example, let's say your software crashes at revision 100, and worked correctly at revision 50.
Unknown to you, someone else introduced a different crashing bug at revision 60, and fixed it at
revision 80. This could distort your results in one of several ways.

It is possible that this other bug completely “masks” yours, which is to say that it occurs
before your bug has a chance to manifest itself. If you can't avoid that other bug (for example, it

查找和修改错误

123

prevents your project from building), and so can't tell whether your bug is present in a particular
changeset, the hg bisect command cannot help you directly. Instead, you can mark a changeset
as untested by running hg bisect --skip.

A different problem could arise if your test for a bug's presence is not specific enough. If you
check for “my program crashes”, then both your crashing bug and an unrelated crashing bug that
masks it will look like the same thing, and mislead hg bisect.

Another useful situation in which to use hg bisect --skip is if you can't test a revision
because your project was in a broken and hence untestable state at that revision, perhaps because
someone checked in a change that prevented the project from building.

9.6.5. 减少你的查找工作
Choosing the first “good” and “bad” changesets that will mark the end points of your search

is often easy, but it bears a little discussion nevertheless. From the perspective of hg bisect, the
“newest” changeset is conventionally “bad”, and the older changeset is “good”.

If you're having trouble remembering when a suitable “good” change was, so that you can
tell hg bisect, you could do worse than testing changesets at random. Just remember to eliminate
contenders that can't possibly exhibit the bug (perhaps because the feature with the bug isn't
present yet) and those where another problem masks the bug (as I discussed above).

Even if you end up “early” by thousands of changesets or months of history, you will only
add a handful of tests to the total number that hg bisect must perform, thanks to its logarithmic
behavior.

124

第 10 章 使用钩子处理版本库事件
Mercurial offers a powerful mechanism to let you perform automated actions in response

to events that occur in a repository. In some cases, you can even control Mercurial's response to
those events.

The name Mercurial uses for one of these actions is a hook. Hooks are called “triggers” in
some revision control systems, but the two names refer to the same idea.

10.1. Mercurial 钩子概述
Here is a brief list of the hooks that Mercurial supports. We will revisit each of these hooks

in more detail later, in 第 10.7 节 “编写钩子的信息”.

Each of the hooks whose description begins with the word “Controlling” has the ability to
determine whether an activity can proceed. If the hook succeeds, the activity may proceed; if it
fails, the activity is either not permitted or undone, depending on the hook.

• changegroup: This is run after a group of changesets has been brought into the repository
from elsewhere.

• commit: This is run after a new changeset has been created in the local repository.

• incoming: This is run once for each new changeset that is brought into the repository
from elsewhere. Notice the difference from changegroup, which is run once per group of
changesets brought in.

• outgoing: This is run after a group of changesets has been transmitted from this repository.

• prechangegroup: This is run before starting to bring a group of changesets into the
repository.

• precommit: Controlling. This is run before starting a commit.

• preoutgoing: Controlling. This is run before starting to transmit a group of changesets from
this repository.

• pretag: Controlling. This is run before creating a tag.

• pretxnchangegroup: Controlling. This is run after a group of changesets has been brought
into the local repository from another, but before the transaction completes that will make the
changes permanent in the repository.

• pretxncommit: Controlling. This is run after a new changeset has been created in the local
repository, but before the transaction completes that will make it permanent.

• preupdate: Controlling. This is run before starting an update or merge of the working
directory.

使用钩子处理版本库事件

125

• tag: This is run after a tag is created.

• update: This is run after an update or merge of the working directory has finished.

10.2. 钩子与安全性
10.2.1. 钩子以你的特权执行

When you run a Mercurial command in a repository, and the command causes a hook to
run, that hook runs on your system, under your user account, with your privilege level. Since
hooks are arbitrary pieces of executable code, you should treat them with an appropriate level
of suspicion. Do not install a hook unless you are confident that you know who created it and
what it does.

In some cases, you may be exposed to hooks that you did not install yourself. If you work
with Mercurial on an unfamiliar system, Mercurial will run hooks defined in that system's global
~/.hgrc file.

If you are working with a repository owned by another user, Mercurial can run hooks defined
in that user's repository, but it will still run them as “you”. For example, if you hg pull from that
repository, and its .hg/hgrc defines a local outgoing hook, that hook will run under your
user account, even though you don't own that repository.

注意

This only applies if you are pulling from a repository on a local or network filesystem. If
you're pulling over http or ssh, any outgoing hook will run under whatever account
is executing the server process, on the server.

To see what hooks are defined in a repository, use the hg showconfig hooks command. If
you are working in one repository, but talking to another that you do not own (e.g. using hg pull
or hg incoming), remember that it is the other repository's hooks you should be checking, not
your own.

10.2.2. 钩子不会传播
In Mercurial, hooks are not revision controlled, and do not propagate when you clone, or

pull from, a repository. The reason for this is simple: a hook is a completely arbitrary piece of
executable code. It runs under your user identity, with your privilege level, on your machine.

It would be extremely reckless for any distributed revision control system to implement
revision-controlled hooks, as this would offer an easily exploitable way to subvert the accounts
of users of the revision control system.

Since Mercurial does not propagate hooks, if you are collaborating with other people on a
common project, you should not assume that they are using the same Mercurial hooks as you are,
or that theirs are correctly configured. You should document the hooks you expect people to use.

使用钩子处理版本库事件

126

In a corporate intranet, this is somewhat easier to control, as you can for example provide
a “standard” installation of Mercurial on an NFS filesystem, and use a site-wide ~/.hgrc file to
define hooks that all users will see. However, this too has its limits; see below.

10.2.3. 钩子可以被覆盖
Mercurial allows you to override a hook definition by redefining the hook. You can disable

it by setting its value to the empty string, or change its behavior as you wish.

If you deploy a system- or site-wide ~/.hgrc file that defines some hooks, you should thus
understand that your users can disable or override those hooks.

10.2.4. 确保关键钩子的执行
Sometimes you may want to enforce a policy that you do not want others to be able to work

around. For example, you may have a requirement that every changeset must pass a rigorous
set of tests. Defining this requirement via a hook in a site-wide ~/.hgrc won't work for remote
users on laptops, and of course local users can subvert it at will by overriding the hook.

Instead, you can set up your policies for use of Mercurial so that people are expected to
propagate changes through a well-known “canonical” server that you have locked down and
configured appropriately.

One way to do this is via a combination of social engineering and technology. Set up a
restricted-access account; users can push changes over the network to repositories managed
by this account, but they cannot log into the account and run normal shell commands. In this
scenario, a user can commit a changeset that contains any old garbage they want.

When someone pushes a changeset to the server that everyone pulls from, the server will
test the changeset before it accepts it as permanent, and reject it if it fails to pass the test suite.
If people only pull changes from this filtering server, it will serve to ensure that all changes that
people pull have been automatically vetted.

10.3. 使用钩子的简短指南
It is easy to write a Mercurial hook. Let's start with a hook that runs when you finish a hg

commit, and simply prints the hash of the changeset you just created. The hook is called commit.

All hooks follow the pattern in this example.
$ hg init hook-test
$ cd hook-test
$ echo '[hooks]' >> .hg/hgrc
$ echo 'commit = echo committed $HG_NODE' >> .hg/hgrc
$ cat .hg/hgrc
[hooks]
commit = echo committed $HG_NODE
$ echo a > a
$ hg add a
$ hg commit -m 'testing commit hook'
committed c79dd86aa70ed92447baffeceda6acd3ce878982

使用钩子处理版本库事件

127

You add an entry to the hooks section of your ~/.hgrc. On the left is the name of the event
to trigger on; on the right is the action to take. As you can see, you can run an arbitrary shell
command in a hook. Mercurial passes extra information to the hook using environment variables
(look for HG_NODE in the example).

10.3.1. 每个事件执行多个操作
Quite often, you will want to define more than one hook for a particular kind of event, as

shown below.
$ echo 'commit.when = echo -n "date of commit: "; date' >> .hg/hgrc
$ echo a >> a
$ hg commit -m 'i have two hooks'
committed 54f1f1437586a510d8df6076c89ec9976098c392
date of commit: Fri Oct 23 01:37:52 GMT 2009

Mercurial lets you do this by adding an extension to the end of a hook's name. You extend a
hook's name by giving the name of the hook, followed by a full stop (the “.” character), followed
by some more text of your choosing. For example, Mercurial will run both commit.foo and
commit.bar when the commit event occurs.

To give a well-defined order of execution when there are multiple hooks defined for an event,
Mercurial sorts hooks by extension, and executes the hook commands in this sorted order. In the
above example, it will execute commit.bar before commit.foo, and commit before both.

It is a good idea to use a somewhat descriptive extension when you define a new hook. This
will help you to remember what the hook was for. If the hook fails, you'll get an error message
that contains the hook name and extension, so using a descriptive extension could give you an
immediate hint as to why the hook failed (see 第 10.3.2 节 “控制处理的活动” for an example).

10.3.2. 控制处理的活动
In our earlier examples, we used the commit hook, which is run after a commit has

completed. This is one of several Mercurial hooks that run after an activity finishes. Such hooks
have no way of influencing the activity itself.

Mercurial defines a number of events that occur before an activity starts; or after it starts,
but before it finishes. Hooks that trigger on these events have the added ability to choose whether
the activity can continue, or will abort.

The pretxncommit hook runs after a commit has all but completed. In other words, the
metadata representing the changeset has been written out to disk, but the transaction has not
yet been allowed to complete. The pretxncommit hook has the ability to decide whether the
transaction can complete, or must be rolled back.

If the pretxncommit hook exits with a status code of zero, the transaction is allowed
to complete; the commit finishes; and the commit hook is run. If the pretxncommit hook
exits with a non-zero status code, the transaction is rolled back; the metadata representing the
changeset is erased; and the commit hook is not run.
$ cat check_bug_id
#!/bin/sh

使用钩子处理版本库事件

128

check that a commit comment mentions a numeric bug id
hg log -r $1 --template {desc} | grep -q "\<bug *[0-9]"
$ echo 'pretxncommit.bug_id_required = ./check_bug_id $HG_NODE' >> .hg/hgrc
$ echo a >> a
$ hg commit -m 'i am not mentioning a bug id'
transaction abort!
rollback completed
abort: pretxncommit.bug_id_required hook exited with status 1
$ hg commit -m 'i refer you to bug 666'
committed 4d5d46af37128acd6bb745048a3fd9a028ca9946
date of commit: Fri Oct 23 01:37:52 GMT 2009

The hook in the example above checks that a commit comment contains a bug ID. If it does,
the commit can complete. If not, the commit is rolled back.

10.4. 编写钩子
When you are writing a hook, you might find it useful to run Mercurial either with the -v

option, or the verbose config item set to “true”. When you do so, Mercurial will print a message
before it calls each hook.

10.4.1. 选择钩子的执行方式
You can write a hook either as a normal program—typically a shell script—or as a Python

function that is executed within the Mercurial process.

Writing a hook as an external program has the advantage that it requires no knowledge of
Mercurial's internals. You can call normal Mercurial commands to get any added information you
need. The trade-off is that external hooks are slower than in-process hooks.

An in-process Python hook has complete access to the Mercurial API, and does not “shell out”
to another process, so it is inherently faster than an external hook. It is also easier to obtain much
of the information that a hook requires by using the Mercurial API than by running Mercurial
commands.

If you are comfortable with Python, or require high performance, writing your hooks in
Python may be a good choice. However, when you have a straightforward hook to write and you
don't need to care about performance (probably the majority of hooks), a shell script is perfectly
fine.

10.4.2. 钩子的参数
Mercurial calls each hook with a set of well-defined parameters. In Python, a parameter is

passed as a keyword argument to your hook function. For an external program, a parameter is
passed as an environment variable.

Whether your hook is written in Python or as a shell script, the hook-specific parameter
names and values will be the same. A boolean parameter will be represented as a boolean value
in Python, but as the number 1 (for “true”) or 0 (for “false”) as an environment variable for an
external hook. If a hook parameter is named foo, the keyword argument for a Python hook will
also be named foo, while the environment variable for an external hook will be named HG_FOO.

使用钩子处理版本库事件

129

10.4.3. 钩子的返回值与活动控制
A hook that executes successfully must exit with a status of zero if external, or return boolean

“false” if in-process. Failure is indicated with a non-zero exit status from an external hook, or an
in-process hook returning boolean “true”. If an in-process hook raises an exception, the hook is
considered to have failed.

For a hook that controls whether an activity can proceed, zero/false means “allow”, while
non-zero/true/exception means “deny”.

10.4.4. 编写外部钩子
When you define an external hook in your ~/.hgrc and the hook is run, its value is passed

to your shell, which interprets it. This means that you can use normal shell constructs in the body
of the hook.

An executable hook is always run with its current directory set to a repository's root
directory.

Each hook parameter is passed in as an environment variable; the name is upper-cased, and
prefixed with the string “HG_”.

With the exception of hook parameters, Mercurial does not set or modify any environment
variables when running a hook. This is useful to remember if you are writing a site-wide hook
that may be run by a number of different users with differing environment variables set. In multi-
user situations, you should not rely on environment variables being set to the values you have in
your environment when testing the hook.

10.4.5. 让 Mercurial 使用进程内钩子
The ~/.hgrc syntax for defining an in-process hook is slightly different than for an

executable hook. The value of the hook must start with the text “python:”, and continue with
the fully-qualified name of a callable object to use as the hook's value.

The module in which a hook lives is automatically imported when a hook is run. So long as
you have the module name and PYTHONPATH right, it should “just work”.

The following ~/.hgrc example snippet illustrates the syntax and meaning of the notions
we just described.
[hooks]
commit.example = python:mymodule.submodule.myhook

When Mercurial runs the commit.example hook, it imports mymodule.submodule,
looks for the callable object named myhook, and calls it.

10.4.6. 编写进程内钩子
The simplest in-process hook does nothing, but illustrates the basic shape of the hook API:

使用钩子处理版本库事件

130

def myhook(ui, repo, **kwargs):
 pass

The first argument to a Python hook is always a ui object. The second is a repository object;
at the moment, it is always an instance of localrepository. Following these two arguments
are other keyword arguments. Which ones are passed in depends on the hook being called, but
a hook can ignore arguments it doesn't care about by dropping them into a keyword argument
dict, as with **kwargs above.

10.5. 钩子样例
10.5.1. 编写有意义的提交日志

It's hard to imagine a useful commit message being very short. The simple pretxncommit
hook of the example below will prevent you from committing a changeset with a message that
is less than ten bytes long.
$ cat .hg/hgrc
[hooks]
pretxncommit.msglen = test `hg tip --template {desc} | wc -c` -ge 10
$ echo a > a
$ hg add a
$ hg commit -A -m 'too short'
transaction abort!
rollback completed
abort: pretxncommit.msglen hook exited with status 1
$ hg commit -A -m 'long enough'

10.5.2. 检查行尾空格
An interesting use of a commit-related hook is to help you to write cleaner code. A simple

example of “cleaner code” is the dictum that a change should not add any new lines of text that
contain “trailing whitespace”. Trailing whitespace is a series of space and tab characters at the
end of a line of text. In most cases, trailing whitespace is unnecessary, invisible noise, but it is
occasionally problematic, and people often prefer to get rid of it.

You can use either the precommit or pretxncommit hook to tell whether you have a
trailing whitespace problem. If you use the precommit hook, the hook will not know which
files you are committing, so it will have to check every modified file in the repository for trailing
white space. If you want to commit a change to just the file foo, but the file bar contains trailing
whitespace, doing a check in the precommit hook will prevent you from committing foo due
to the problem with bar. This doesn't seem right.

Should you choose the pretxncommit hook, the check won't occur until just before the
transaction for the commit completes. This will allow you to check for problems only the exact
files that are being committed. However, if you entered the commit message interactively and the
hook fails, the transaction will roll back; you'll have to re-enter the commit message after you fix
the trailing whitespace and run hg commit again.
$ cat .hg/hgrc
[hooks]
pretxncommit.whitespace = hg export tip | (! egrep -q '^\+.*[\t]$')
$ echo 'a ' > a
$ hg commit -A -m 'test with trailing whitespace'

使用钩子处理版本库事件

131

adding a
transaction abort!
rollback completed
abort: pretxncommit.whitespace hook exited with status 1
$ echo 'a' > a
$ hg commit -A -m 'drop trailing whitespace and try again'

In this example, we introduce a simple pretxncommit hook that checks for trailing
whitespace. This hook is short, but not very helpful. It exits with an error status if a change adds
a line with trailing whitespace to any file, but does not print any information that might help
us to identify the offending file or line. It also has the nice property of not paying attention to
unmodified lines; only lines that introduce new trailing whitespace cause problems.
#!/usr/bin/env python
#
save as .hg/check_whitespace.py and make executable

import re

def trailing_whitespace(difflines):
 #
 linenum, header = 0, False

 for line in difflines:
 if header:
 # remember the name of the file that this diff affects
 m = re.match(r'(?:---|\+\+\+) ([^\t]+)', line)
 if m and m.group(1) != '/dev/null':
 filename = m.group(1).split('/', 1)[-1]
 if line.startswith('+++ '):
 header = False
 continue
 if line.startswith('diff '):
 header = True
 continue
 # hunk header - save the line number
 m = re.match(r'@@ -\d+,\d+ \+(\d+),', line)
 if m:
 linenum = int(m.group(1))
 continue
 # hunk body - check for an added line with trailing whitespace
 m = re.match(r'\+.*\s$', line)
 if m:
 yield filename, linenum
 if line and line[0] in ' +':
 linenum += 1

if __name__ == '__main__':
 import os, sys

 added = 0
 for filename, linenum in trailing_whitespace(os.popen('hg export tip')):
 print >> sys.stderr, ('%s, line %d: trailing whitespace added' %
 (filename, linenum))
 added += 1
 if added:
 # save the commit message so we don't need to retype it
 os.system('hg tip --template "{desc}" > .hg/commit.save')
 print >> sys.stderr, 'commit message saved to .hg/commit.save'
 sys.exit(1)

The above version is much more complex, but also more useful. It parses a unified diff to
see if any lines add trailing whitespace, and prints the name of the file and the line number of
each such occurrence. Even better, if the change adds trailing whitespace, this hook saves the
commit comment and prints the name of the save file before exiting and telling Mercurial to roll
the transaction back, so you can use the -l filename option to hg commit to reuse the saved
commit message once you've corrected the problem.

使用钩子处理版本库事件

132

$ cat .hg/hgrc
[hooks]
pretxncommit.whitespace = .hg/check_whitespace.py
$ echo 'a ' >> a
$ hg commit -A -m 'add new line with trailing whitespace'
a, line 2: trailing whitespace added
commit message saved to .hg/commit.save
transaction abort!
rollback completed
abort: pretxncommit.whitespace hook exited with status 1
$ sed -i 's, *$,,' a
$ hg commit -A -m 'trimmed trailing whitespace'
a, line 2: trailing whitespace added
commit message saved to .hg/commit.save
transaction abort!
rollback completed
abort: pretxncommit.whitespace hook exited with status 1

As a final aside, note in the example above the use of sed's in-place editing feature to get rid
of trailing whitespace from a file. This is concise and useful enough that I will reproduce it here
(using perl for good measure).
perl -pi -e 's,\s+$,,' filename

10.6. 内置的钩子
Mercurial ships with several bundled hooks. You can find them in the hgext directory of a

Mercurial source tree. If you are using a Mercurial binary package, the hooks will be located in
the hgext directory of wherever your package installer put Mercurial.

10.6.1. acl—版本库的访问控制
The acl extension lets you control which remote users are allowed to push changesets to a

networked server. You can protect any portion of a repository (including the entire repo), so that
a specific remote user can push changes that do not affect the protected portion.

This extension implements access control based on the identity of the user performing a
push, not on who committed the changesets they're pushing. It makes sense to use this hook only
if you have a locked-down server environment that authenticates remote users, and you want to
be sure that only specific users are allowed to push changes to that server.

10.6.1.1. 配置 acl 钩子

In order to manage incoming changesets, the acl hook must be used as a
pretxnchangegroup hook. This lets it see which files are modified by each incoming
changeset, and roll back a group of changesets if they modify “forbidden” files. Example:
[hooks]
pretxnchangegroup.acl = python:hgext.acl.hook

The acl extension is configured using three sections.

The acl section has only one entry, sources, which lists the sources of incoming changesets
that the hook should pay attention to. You don't normally need to configure this section.

使用钩子处理版本库事件

133

• serve: Control incoming changesets that are arriving from a remote repository over http or
ssh. This is the default value of sources, and usually the only setting you'll need for this
configuration item.

• pull: Control incoming changesets that are arriving via a pull from a local repository.

• push: Control incoming changesets that are arriving via a push from a local repository.

• bundle: Control incoming changesets that are arriving from another repository via a bundle.

The acl.allow section controls the users that are allowed to add changesets to the repository.
If this section is not present, all users that are not explicitly denied are allowed. If this section
is present, all users that are not explicitly allowed are denied (so an empty section means that
all users are denied).

The acl.deny section determines which users are denied from adding changesets to the
repository. If this section is not present or is empty, no users are denied.

The syntaxes for the acl.allow and acl.deny sections are identical. On the left of each entry
is a glob pattern that matches files or directories, relative to the root of the repository; on the
right, a user name.

In the following example, the user docwriter can only push changes to the docs subtree of the
repository, while intern can push changes to any file or directory except source/sensitive.
[acl.allow]
docs/** = docwriter
[acl.deny]
source/sensitive/** = intern

10.6.1.2. 测试与问题处理

If you want to test the acl hook, run it with Mercurial's debugging output enabled. Since you'll
probably be running it on a server where it's not convenient (or sometimes possible) to pass in
the --debug option, don't forget that you can enable debugging output in your ~/.hgrc:
[ui]
debug = true

With this enabled, the acl hook will print enough information to let you figure out why it is
allowing or forbidding pushes from specific users.

10.6.2. bugzilla—与 Bugzilla 的集成
The bugzilla extension adds a comment to a Bugzilla bug whenever it finds a reference

to that bug ID in a commit comment. You can install this hook on a shared server, so that any time
a remote user pushes changes to this server, the hook gets run.

It adds a comment to the bug that looks like this (you can configure the contents of the
comment—see below):
Changeset aad8b264143a, made by Joe User

使用钩子处理版本库事件

134

 <joe.user@domain.com> in the frobnitz repository, refers
 to this bug. For complete details, see
 http://hg.domain.com/frobnitz?cmd=changeset;node=aad8b264143a
 Changeset description: Fix bug 10483 by guarding against some
 NULL pointers

The value of this hook is that it automates the process of updating a bug any time a changeset
refers to it. If you configure the hook properly, it makes it easy for people to browse straight from
a Bugzilla bug to a changeset that refers to that bug.

You can use the code in this hook as a starting point for some more exotic Bugzilla integration
recipes. Here are a few possibilities:

• Require that every changeset pushed to the server have a valid bug ID in its commit comment.
In this case, you'd want to configure the hook as a pretxncommit hook. This would allow the
hook to reject changes that didn't contain bug IDs.

• Allow incoming changesets to automatically modify the state of a bug, as well as simply adding
a comment. For example, the hook could recognise the string “fixed bug 31337” as indicating
that it should update the state of bug 31337 to “requires testing”.

10.6.2.1. 配置 bugzilla 钩子

You should configure this hook in your server's ~/.hgrc as an incoming hook, for example
as follows:
[hooks]
incoming.bugzilla = python:hgext.bugzilla.hook

Because of the specialised nature of this hook, and because Bugzilla was not written with this
kind of integration in mind, configuring this hook is a somewhat involved process.

Before you begin, you must install the MySQL bindings for Python on the host(s) where you'll be
running the hook. If this is not available as a binary package for your system, you can download
it from [web:mysql-python].

Configuration information for this hook lives in the bugzilla section of your ~/.hgrc.

• version: The version of Bugzilla installed on the server. The database schema that Bugzilla
uses changes occasionally, so this hook has to know exactly which schema to use.

• host: The hostname of the MySQL server that stores your Bugzilla data. The database must be
configured to allow connections from whatever host you are running the bugzilla hook on.

• user: The username with which to connect to the MySQL server. The database must be
configured to allow this user to connect from whatever host you are running the bugzilla
hook on. This user must be able to access and modify Bugzilla tables. The default value of this
item is bugs, which is the standard name of the Bugzilla user in a MySQL database.

• password: The MySQL password for the user you configured above. This is stored as plain
text, so you should make sure that unauthorised users cannot read the ~/.hgrc file where
you store this information.

使用钩子处理版本库事件

135

• db: The name of the Bugzilla database on the MySQL server. The default value of this item is
bugs, which is the standard name of the MySQL database where Bugzilla stores its data.

• notify: If you want Bugzilla to send out a notification email to subscribers after this hook
has added a comment to a bug, you will need this hook to run a command whenever it updates
the database. The command to run depends on where you have installed Bugzilla, but it
will typically look something like this, if you have Bugzilla installed in /var/www/html/
bugzilla:
cd /var/www/html/bugzilla &&
 ./processmail %s nobody@nowhere.com

• The Bugzilla processmail program expects to be given a bug ID (the hook replaces “%s”
with the bug ID) and an email address. It also expects to be able to write to some files in the
directory that it runs in. If Bugzilla and this hook are not installed on the same machine, you
will need to find a way to run processmail on the server where Bugzilla is installed.

10.6.2.2. 提交者的名称与 Bugzilla 用户名称的映射
By default, the bugzilla hook tries to use the email address of a changeset's committer as the
Bugzilla user name with which to update a bug. If this does not suit your needs, you can map
committer email addresses to Bugzilla user names using a usermap section.

Each item in the usermap section contains an email address on the left, and a Bugzilla user name
on the right.
[usermap]
jane.user@example.com = jane

You can either keep the usermap data in a normal ~/.hgrc, or tell the bugzilla hook to read
the information from an external usermap file. In the latter case, you can store usermap data
by itself in (for example) a user-modifiable repository. This makes it possible to let your users
maintain their own usermap entries. The main ~/.hgrc file might look like this:
regular hgrc file refers to external usermap file
[bugzilla]
usermap = /home/hg/repos/userdata/bugzilla-usermap.conf

While the usermap file that it refers to might look like this:
bugzilla-usermap.conf - inside a hg repository
[usermap] stephanie@example.com = steph

10.6.2.3. 配置增加到问题中的正文
You can configure the text that this hook adds as a comment; you specify it in the form of
a Mercurial template. Several ~/.hgrc entries (still in the bugzilla section) control this
behavior.

• strip: The number of leading path elements to strip from a repository's path name to
construct a partial path for a URL. For example, if the repositories on your server live under /
home/hg/repos, and you have a repository whose path is /home/hg/repos/app/tests,
then setting strip to 4 will give a partial path of app/tests. The hook will make this partial
path available when expanding a template, as webroot.

使用钩子处理版本库事件

136

• template: The text of the template to use. In addition to the usual changeset-related
variables, this template can use hgweb (the value of the hgweb configuration item above) and
webroot (the path constructed using strip above).

In addition, you can add a baseurl item to the web section of your ~/.hgrc. The bugzilla
hook will make this available when expanding a template, as the base string to use when
constructing a URL that will let users browse from a Bugzilla comment to view a changeset.
Example:

[web]
baseurl = http://hg.domain.com/

Here is an example set of bugzilla hook config information.

[bugzilla]
host = bugzilla.example.com
password = mypassword version = 2.16
server-side repos live in /home/hg/repos, so strip 4 leading
separators
strip = 4
hgweb = http://hg.example.com/
usermap = /home/hg/repos/notify/bugzilla.conf
template = Changeset {node|short}, made by {author} in the {webroot}
 repo, refers to this bug.\n
 For complete details, see
 {hgweb}{webroot}?cmd=changeset;node={node|short}\n
 Changeset description:\n
 \t{desc|tabindent}

10.6.2.4. 测试与问题处理

The most common problems with configuring the bugzilla hook relate to running Bugzilla's
processmail script and mapping committer names to user names.

Recall from 第 10.6.2.1 节 “配置 bugzilla 钩子” above that the user that runs the Mercurial
process on the server is also the one that will run the processmail script. The processmail
script sometimes causes Bugzilla to write to files in its configuration directory, and Bugzilla's
configuration files are usually owned by the user that your web server runs under.

You can cause processmail to be run with the suitable user's identity using the sudo
command. Here is an example entry for a sudoers file.

hg_user = (httpd_user)
NOPASSWD: /var/www/html/bugzilla/processmail-wrapper %s

This allows the hg_user user to run a processmail-wrapper program under the identity
of httpd_user.

This indirection through a wrapper script is necessary, because processmail expects to be run
with its current directory set to wherever you installed Bugzilla; you can't specify that kind of
constraint in a sudoers file. The contents of the wrapper script are simple:

#!/bin/sh
cd `dirname $0` && ./processmail "$1" nobody@example.com

It doesn't seem to matter what email address you pass to processmail.

使用钩子处理版本库事件

137

If your usermap is not set up correctly, users will see an error message from the bugzilla
hook when they push changes to the server. The error message will look like this:
cannot find bugzilla user id for john.q.public@example.com

What this means is that the committer's address, john.q.public@example.com, is not a
valid Bugzilla user name, nor does it have an entry in your usermap that maps it to a valid
Bugzilla user name.

10.6.3. notify—邮件通知
Although Mercurial's built-in web server provides RSS feeds of changes in every repository,

many people prefer to receive change notifications via email. The notify hook lets you send
out notifications to a set of email addresses whenever changesets arrive that those subscribers
are interested in.

As with the bugzilla hook, the notify hook is template-driven, so you can customise the
contents of the notification messages that it sends.

By default, the notify hook includes a diff of every changeset that it sends out; you can
limit the size of the diff, or turn this feature off entirely. It is useful for letting subscribers review
changes immediately, rather than clicking to follow a URL.

10.6.3.1. 配置 notify 钩子
You can set up the notify hook to send one email message per incoming changeset, or one per
incoming group of changesets (all those that arrived in a single pull or push).
[hooks]
send one email per group of changes
changegroup.notify = python:hgext.notify.hook
send one email per change
incoming.notify = python:hgext.notify.hook

Configuration information for this hook lives in the notify section of a ~/.hgrc file.

• test: By default, this hook does not send out email at all; instead, it prints the message that
it would send. Set this item to false to allow email to be sent. The reason that sending of
email is turned off by default is that it takes several tries to configure this extension exactly
as you would like, and it would be bad form to spam subscribers with a number of “broken”
notifications while you debug your configuration.

• config: The path to a configuration file that contains subscription information. This is kept
separate from the main ~/.hgrc so that you can maintain it in a repository of its own. People
can then clone that repository, update their subscriptions, and push the changes back to your
server.

• strip: The number of leading path separator characters to strip from a repository's path,
when deciding whether a repository has subscribers. For example, if the repositories on your
server live in /home/hg/repos, and notify is considering a repository named /home/hg/
repos/shared/test, setting strip to 4 will cause notify to trim the path it considers
down to shared/test, and it will match subscribers against that.

使用钩子处理版本库事件

138

• template: The template text to use when sending messages. This specifies both the contents
of the message header and its body.

• maxdiff: The maximum number of lines of diff data to append to the end of a message. If a
diff is longer than this, it is truncated. By default, this is set to 300. Set this to 0 to omit diffs
from notification emails.

• sources: A list of sources of changesets to consider. This lets you limit notify to only
sending out email about changes that remote users pushed into this repository via a server, for
example. See 第 10.7.3.1 节 “修改集的来源” for the sources you can specify here.

If you set the baseurl item in the web section, you can use it in a template; it will be available
as webroot.

Here is an example set of notify configuration information.
[notify]
really send email
test = false
subscriber data lives in the notify repo
config = /home/hg/repos/notify/notify.conf
repos live in /home/hg/repos on server, so strip 4 "/" chars
strip = 4
template = X-Hg-Repo: {webroot}\n
 Subject: {webroot}: {desc|firstline|strip}\n
 From: {author}
 \n\n
 changeset {node|short} in {root}
 \n\ndetails:
 {baseurl}{webroot}?cmd=changeset;node={node|short}
 description: {desc|tabindent|strip}

[web]
baseurl =
http://hg.example.com/

This will produce a message that looks like the following:
X-Hg-Repo: tests/slave
Subject: tests/slave: Handle error case when slave has no buffers
Date: Wed, 2 Aug 2006 15:25:46 -0700 (PDT)

changeset 3cba9bfe74b5 in /home/hg/repos/tests/slave

details:
http://hg.example.com/tests/slave?cmd=changeset;node=3cba9bfe74b5

description: Handle error case when slave has no buffers

diffs (54 lines):
diff -r 9d95df7cf2ad -r 3cba9bfe74b5 include/tests.h
--- a/include/tests.h Wed Aug 02 15:19:52 2006 -0700
+++ b/include/tests.h Wed Aug 02 15:25:26 2006 -0700
@@ -212,6 +212,15 @@ static __inline__
void test_headers(void *h)
[...snip...]

10.6.3.2. 测试与问题处理
Do not forget that by default, the notify extension will not send any mail until you explicitly
configure it to do so, by setting test to false. Until you do that, it simply prints the message
it would send.

使用钩子处理版本库事件

139

10.7. 编写钩子的信息
10.7.1. 进程内钩子的执行

An in-process hook is called with arguments of the following form:
def myhook(ui, repo, **kwargs): pass

The ui parameter is a ui object. The repo parameter is a localrepository object. The
names and values of the **kwargs parameters depend on the hook being invoked, with the
following common features:

• If a parameter is named node or parentN, it will contain a hexadecimal changeset ID. The
empty string is used to represent “null changeset ID” instead of a string of zeroes.

• If a parameter is named url, it will contain the URL of a remote repository, if that can be
determined.

• Boolean-valued parameters are represented as Python bool objects.

An in-process hook is called without a change to the process's working directory (unlike
external hooks, which are run in the root of the repository). It must not change the process's
working directory, or it will cause any calls it makes into the Mercurial API to fail.

If a hook returns a boolean “false” value, it is considered to have succeeded. If it returns a
boolean “true” value or raises an exception, it is considered to have failed. A useful way to think
of the calling convention is “tell me if you fail”.

Note that changeset IDs are passed into Python hooks as hexadecimal strings, not the binary
hashes that Mercurial's APIs normally use. To convert a hash from hex to binary, use the bin
function.

10.7.2. 外部钩子的执行
An external hook is passed to the shell of the user running Mercurial. Features of that shell,

such as variable substitution and command redirection, are available. The hook is run in the root
directory of the repository (unlike in-process hooks, which are run in the same directory that
Mercurial was run in).

Hook parameters are passed to the hook as environment variables. Each environment
variable's name is converted in upper case and prefixed with the string “HG_”. For example, if
the name of a parameter is “node”, the name of the environment variable representing that
parameter will be “HG_NODE”.

A boolean parameter is represented as the string “1” for “true”, “0” for “false”. If
an environment variable is named HG_NODE, HG_PARENT1 or HG_PARENT2, it contains a
changeset ID represented as a hexadecimal string. The empty string is used to represent “null
changeset ID” instead of a string of zeroes. If an environment variable is named HG_URL, it will
contain the URL of a remote repository, if that can be determined.

使用钩子处理版本库事件

140

If a hook exits with a status of zero, it is considered to have succeeded. If it exits with a non-
zero status, it is considered to have failed.

10.7.3. 检查修改集来自何处
A hook that involves the transfer of changesets between a local repository and another may

be able to find out information about the “far side”. Mercurial knows how changes are being
transferred, and in many cases where they are being transferred to or from.

10.7.3.1. 修改集的来源
Mercurial will tell a hook what means are, or were, used to transfer changesets between
repositories. This is provided by Mercurial in a Python parameter named source, or an
environment variable named HG_SOURCE.

• serve: Changesets are transferred to or from a remote repository over http or ssh.

• pull: Changesets are being transferred via a pull from one repository into another.

• push: Changesets are being transferred via a push from one repository into another.

• bundle: Changesets are being transferred to or from a bundle.

10.7.3.2. 修改集要到哪里—远程版本库的地址
When possible, Mercurial will tell a hook the location of the “far side” of an activity that transfers
changeset data between repositories. This is provided by Mercurial in a Python parameter named
url, or an environment variable named HG_URL.

This information is not always known. If a hook is invoked in a repository that is being served
via http or ssh, Mercurial cannot tell where the remote repository is, but it may know where the
client is connecting from. In such cases, the URL will take one of the following forms:

• remote:ssh:1.2.3.4—remote ssh client, at the IP address 1.2.3.4.

• remote:http:1.2.3.4—remote http client, at the IP address 1.2.3.4. If the client is
using SSL, this will be of the form remote:https:1.2.3.4.

• Empty—no information could be discovered about the remote client.

10.8. 钩子参考
10.8.1. changegroup—增加远程修改集之后

This hook is run after a group of pre-existing changesets has been added to the repository,
for example via a hg pull or hg unbundle. This hook is run once per operation that added one
or more changesets. This is in contrast to the incoming hook, which is run once per changeset,
regardless of whether the changesets arrive in a group.

使用钩子处理版本库事件

141

Some possible uses for this hook include kicking off an automated build or test of the added
changesets, updating a bug database, or notifying subscribers that a repository contains new
changes.

Parameters to this hook:

• node: A changeset ID. The changeset ID of the first changeset in the group that was added.
All changesets between this and tip, inclusive, were added by a single hg pull, hg push or
hg unbundle.

• source: A string. The source of these changes. See 第 10.7.3.1 节 “修改集的来源” for
details.

• url: A URL. The location of the remote repository, if known. See 第 10.7.3.2 节 “修改集要到
哪里—远程版本库的地址” for more information.

See also: incoming (第 10.8.3 节 “incoming—增加远程修改集之后”),
prechangegroup (第 10.8.5 节 “prechangegroup—增加远程修改集之前”),
pretxnchangegroup (第 10.8.9 节 “pretxnchangegroup—完成增加远程修改集之前”)

10.8.2. commit—创建新修改集之后
This hook is run after a new changeset has been created.

Parameters to this hook:

• node: A changeset ID. The changeset ID of the newly committed changeset.

• parent1: A changeset ID. The changeset ID of the first parent of the newly committed
changeset.

• parent2: A changeset ID. The changeset ID of the second parent of the newly committed
changeset.

See also: precommit (第 10.8.6 节 “precommit—提交修改集之前”), pretxncommit
(第 10.8.10 节 “pretxncommit—完成提交之前”)

10.8.3. incoming—增加远程修改集之后
This hook is run after a pre-existing changeset has been added to the repository, for example

via a hg push. If a group of changesets was added in a single operation, this hook is called once
for each added changeset.

You can use this hook for the same purposes as the changegroup hook (第 10.8.1 节
“changegroup—增加远程修改集之后”); it's simply more convenient sometimes to run a
hook once per group of changesets, while other times it's handier once per changeset.

Parameters to this hook:

• node: A changeset ID. The ID of the newly added changeset.

使用钩子处理版本库事件

142

• source: A string. The source of these changes. See 第 10.7.3.1 节 “修改集的来源” for
details.

• url: A URL. The location of the remote repository, if known. See 第 10.7.3.2 节 “修改集要到
哪里—远程版本库的地址” for more information.

See also: changegroup (第 10.8.1 节 “changegroup—增加远程修改集之
后”) prechangegroup (第 10.8.5 节 “prechangegroup—增加远程修改集之前”),
pretxnchangegroup (第 10.8.9 节 “pretxnchangegroup—完成增加远程修改集之前”)

10.8.4. outgoing—传播修改集之后
This hook is run after a group of changesets has been propagated out of this repository, for

example by a hg push or hg bundle command.

One possible use for this hook is to notify administrators that changes have been pulled.

Parameters to this hook:

• node: A changeset ID. The changeset ID of the first changeset of the group that was sent.

• source: A string. The source of the of the operation (see 第 10.7.3.1 节 “修改集的来源”). If
a remote client pulled changes from this repository, source will be serve. If the client that
obtained changes from this repository was local, source will be bundle, pull, or push,
depending on the operation the client performed.

• url: A URL. The location of the remote repository, if known. See 第 10.7.3.2 节 “修改集要到
哪里—远程版本库的地址” for more information.

See also: preoutgoing (第 10.8.7 节 “preoutgoing—传播修改集之前”)

10.8.5. prechangegroup—增加远程修改集之前
This controlling hook is run before Mercurial begins to add a group of changesets from

another repository.

This hook does not have any information about the changesets to be added, because it is run
before transmission of those changesets is allowed to begin. If this hook fails, the changesets will
not be transmitted.

One use for this hook is to prevent external changes from being added to a repository. For
example, you could use this to “freeze” a server-hosted branch temporarily or permanently so
that users cannot push to it, while still allowing a local administrator to modify the repository.

Parameters to this hook:

• source: A string. The source of these changes. See 第 10.7.3.1 节 “修改集的来源” for
details.

• url: A URL. The location of the remote repository, if known. See 第 10.7.3.2 节 “修改集要到
哪里—远程版本库的地址” for more information.

使用钩子处理版本库事件

143

See also: changegroup (第 10.8.1 节 “changegroup—增加远程修改集之后”),
incoming (第 10.8.3 节 “incoming—增加远程修改集之后”), pretxnchangegroup
(第 10.8.9 节 “pretxnchangegroup—完成增加远程修改集之前”)

10.8.6. precommit—提交修改集之前
This hook is run before Mercurial begins to commit a new changeset. It is run before

Mercurial has any of the metadata for the commit, such as the files to be committed, the commit
message, or the commit date.

One use for this hook is to disable the ability to commit new changesets, while still allowing
incoming changesets. Another is to run a build or test, and only allow the commit to begin if the
build or test succeeds.

Parameters to this hook:

• parent1: A changeset ID. The changeset ID of the first parent of the working directory.

• parent2: A changeset ID. The changeset ID of the second parent of the working directory.

If the commit proceeds, the parents of the working directory will become the parents of the
new changeset.

See also: commit (第 10.8.2 节 “commit—创建新修改集之后”), pretxncommit
(第 10.8.10 节 “pretxncommit—完成提交之前”)

10.8.7. preoutgoing—传播修改集之前
This hook is invoked before Mercurial knows the identities of the changesets to be

transmitted.

One use for this hook is to prevent changes from being transmitted to another repository.

Parameters to this hook:

• source: A string. The source of the operation that is attempting to obtain changes from this
repository (see 第 10.7.3.1 节 “修改集的来源”). See the documentation for the source
parameter to the outgoing hook, in 第 10.8.4 节 “outgoing—传播修改集之后”, for
possible values of this parameter.

• url: A URL. The location of the remote repository, if known. See 第 10.7.3.2 节 “修改集要到
哪里—远程版本库的地址” for more information.

See also: outgoing (第 10.8.4 节 “outgoing—传播修改集之后”)

10.8.8. pretag—创建标签之前
This controlling hook is run before a tag is created. If the hook succeeds, creation of the tag

proceeds. If the hook fails, the tag is not created.

使用钩子处理版本库事件

144

Parameters to this hook:

• local: A boolean. Whether the tag is local to this repository instance (i.e. stored in .hg/
localtags) or managed by Mercurial (stored in .hgtags).

• node: A changeset ID. The ID of the changeset to be tagged.

• tag: A string. The name of the tag to be created.

If the tag to be created is revision-controlled, the precommit and pretxncommit hooks
(第 10.8.2 节 “commit—创建新修改集之后” and 第 10.8.10 节 “pretxncommit—完成提交
之前”) will also be run.

See also: tag (第 10.8.12 节 “tag—创建标签之后”)

10.8.9. pretxnchangegroup—完成增加远程修改集之
前

This controlling hook is run before a transaction—that manages the addition of a group of
new changesets from outside the repository—completes. If the hook succeeds, the transaction
completes, and all of the changesets become permanent within this repository. If the hook fails,
the transaction is rolled back, and the data for the changesets is erased.

This hook can access the metadata associated with the almost-added changesets, but it
should not do anything permanent with this data. It must also not modify the working directory.

While this hook is running, if other Mercurial processes access this repository, they will
be able to see the almost-added changesets as if they are permanent. This may lead to race
conditions if you do not take steps to avoid them.

This hook can be used to automatically vet a group of changesets. If the hook fails, all of the
changesets are “rejected” when the transaction rolls back.

Parameters to this hook:

• node: A changeset ID. The changeset ID of the first changeset in the group that was added.
All changesets between this and tip, inclusive, were added by a single hg pull, hg push or
hg unbundle.

• source: A string. The source of these changes. See 第 10.7.3.1 节 “修改集的来源” for
details.

• url: A URL. The location of the remote repository, if known. See 第 10.7.3.2 节 “修改集要到
哪里—远程版本库的地址” for more information.

See also: changegroup (第 10.8.1 节 “changegroup—增加远程修改集之后”),
incoming (第 10.8.3 节 “incoming—增加远程修改集之后”), prechangegroup
(第 10.8.5 节 “prechangegroup—增加远程修改集之前”)

使用钩子处理版本库事件

145

10.8.10. pretxncommit—完成提交之前
This controlling hook is run before a transaction—that manages a new commit—completes.

If the hook succeeds, the transaction completes and the changeset becomes permanent within
this repository. If the hook fails, the transaction is rolled back, and the commit data is erased.

This hook can access the metadata associated with the almost-new changeset, but it should
not do anything permanent with this data. It must also not modify the working directory.

While this hook is running, if other Mercurial processes access this repository, they will be
able to see the almost-new changeset as if it is permanent. This may lead to race conditions if
you do not take steps to avoid them.

Parameters to this hook:

• node: A changeset ID. The changeset ID of the newly committed changeset.

• parent1: A changeset ID. The changeset ID of the first parent of the newly committed
changeset.

• parent2: A changeset ID. The changeset ID of the second parent of the newly committed
changeset.

参见: precommit (第 10.8.6 节 “precommit—提交修改集之前”)

10.8.11. preupdate—更新或合并工作目录之前
This controlling hook is run before an update or merge of the working directory begins.

It is run only if Mercurial's normal pre-update checks determine that the update or merge can
proceed. If the hook succeeds, the update or merge may proceed; if it fails, the update or merge
does not start.

Parameters to this hook:

• parent1: A changeset ID. The ID of the parent that the working directory is to be updated to.
If the working directory is being merged, it will not change this parent.

• parent2: A changeset ID. Only set if the working directory is being merged. The ID of the
revision that the working directory is being merged with.

See also: update (第 10.8.13 节 “update—更新或合并工作目录之后”)

10.8.12. tag—创建标签之后
This hook is run after a tag has been created.

Parameters to this hook:

• local: A boolean. Whether the new tag is local to this repository instance (i.e. stored in .hg/
localtags) or managed by Mercurial (stored in .hgtags).

使用钩子处理版本库事件

146

• node: A changeset ID. The ID of the changeset that was tagged.

• tag: A string. The name of the tag that was created.

If the created tag is revision-controlled, the commit hook (section 第 10.8.2 节 “commit—
创建新修改集之后”) is run before this hook.

参见: pretag (第 10.8.8 节 “pretag—创建标签之前”)

10.8.13. update—更新或合并工作目录之后
This hook is run after an update or merge of the working directory completes. Since a

merge can fail (if the external hgmerge command fails to resolve conflicts in a file), this hook
communicates whether the update or merge completed cleanly.

• error: A boolean. Indicates whether the update or merge completed successfully.

• parent1: A changeset ID. The ID of the parent that the working directory was updated to. If
the working directory was merged, it will not have changed this parent.

• parent2: A changeset ID. Only set if the working directory was merged. The ID of the revision
that the working directory was merged with.

See also: preupdate (第 10.8.11 节 “preupdate—更新或合并工作目录之前”)

147

第 11 章 定制 Mercurial 的输出
Mercurial provides a powerful mechanism to let you control how it displays information.

The mechanism is based on templates. You can use templates to generate specific output for a
single command, or to customize the entire appearance of the built-in web interface.

11.1. 使用预定义的输出样式
Packaged with Mercurial are some output styles that you can use immediately. A style is

simply a precanned template that someone wrote and installed somewhere that Mercurial can
find.

Before we take a look at Mercurial's bundled styles, let's review its normal output.
$ hg log -r1
changeset: 1:5091da73f50d
tag: mytag
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:38:00 2009 +0000
summary: added line to end of <<hello>> file.

This is somewhat informative, but it takes up a lot of space—five lines of output per
changeset. The compact style reduces this to three lines, presented in a sparse manner.
$ hg log --style compact
3[tip] 080b2af90ba0 2009-10-23 01:38 +0000 bos
 Added tag v0.1 for changeset 39a310dd2fc5

2[v0.1] 39a310dd2fc5 2009-10-23 01:38 +0000 bos
 Added tag mytag for changeset 5091da73f50d

1[mytag] 5091da73f50d 2009-10-23 01:38 +0000 bos
 added line to end of <<hello>> file.

0 ed412b32ad81 2009-10-23 01:38 +0000 bos
 added hello

The changelog style hints at the expressive power of Mercurial's templating engine. This
style attempts to follow the GNU Project's changelog guidelines[web:changelog].
$ hg log --style changelog
2009-10-23 Bryan O'Sullivan <bos@serpentine.com>

 * .hgtags:
 Added tag v0.1 for changeset 39a310dd2fc5
 [080b2af90ba0] [tip]

 * .hgtags:
 Added tag mytag for changeset 5091da73f50d
 [39a310dd2fc5] [v0.1]

 * goodbye, hello:
 added line to end of <<hello>> file.

 in addition, added a file with the helpful name (at least i hope
 that some might consider it so) of goodbye.
 [5091da73f50d] [mytag]

 * hello:
 added hello
 [ed412b32ad81]

定制 Mercurial 的输出

148

You will not be shocked to learn that Mercurial's default output style is named default.

11.1.1. 设置默认样式
You can modify the output style that Mercurial will use for every command by editing your

~/.hgrc file, naming the style you would prefer to use.
[ui]
style = compact

If you write a style of your own, you can use it by either providing the path to your style file,
or copying your style file into a location where Mercurial can find it (typically the templates
subdirectory of your Mercurial install directory).

11.2. 支持样式和模版的命令
All of Mercurial's “log-like” commands let you use styles and templates: hg incoming, hg

log, hg outgoing, and hg tip.

As I write this manual, these are so far the only commands that support styles and templates.
Since these are the most important commands that need customizable output, there has been
little pressure from the Mercurial user community to add style and template support to other
commands.

11.3. 模版基础
At its simplest, a Mercurial template is a piece of text. Some of the text never changes, while

other parts are expanded, or replaced with new text, when necessary.

Before we continue, let's look again at a simple example of Mercurial's normal output.
$ hg log -r1
changeset: 1:5091da73f50d
tag: mytag
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:38:00 2009 +0000
summary: added line to end of <<hello>> file.

Now, let's run the same command, but using a template to change its output.
$ hg log -r1 --template 'i saw a changeset\n'
i saw a changeset

The example above illustrates the simplest possible template; it's just a piece of static text,
printed once for each changeset. The --template option to the hg log command tells Mercurial
to use the given text as the template when printing each changeset.

Notice that the template string above ends with the text “\n”. This is an escape sequence,
telling Mercurial to print a newline at the end of each template item. If you omit this newline,
Mercurial will run each piece of output together. See 第 11.5 节 “转义序列” for more details
of escape sequences.

定制 Mercurial 的输出

149

A template that prints a fixed string of text all the time isn't very useful; let's try something
a bit more complex.
$ hg log --template 'i saw a changeset: {desc}\n'
i saw a changeset: Added tag v0.1 for changeset 39a310dd2fc5
i saw a changeset: Added tag mytag for changeset 5091da73f50d
i saw a changeset: added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some might consider it so) of
 goodbye.
i saw a changeset: added hello

As you can see, the string “{desc}” in the template has been replaced in the output with
the description of each changeset. Every time Mercurial finds text enclosed in curly braces (“{”
and “}”), it will try to replace the braces and text with the expansion of whatever is inside. To
print a literal curly brace, you must escape it, as described in 第 11.5 节 “转义序列”.

11.4. 模版关键字
You can start writing simple templates immediately using the keywords below.

• author: String. The unmodified author of the changeset.

• branches: String. The name of the branch on which the changeset was committed. Will be
empty if the branch name was default.

• date: Date information. The date when the changeset was committed. This is not human-
readable; you must pass it through a filter that will render it appropriately. See 第 11.6 节 “通
过过滤关键字来修改输出结果” for more information on filters. The date is expressed as a
pair of numbers. The first number is a Unix UTC timestamp (seconds since January 1, 1970);
the second is the offset of the committer's timezone from UTC, in seconds.

• desc: String. The text of the changeset description.

• files: List of strings. All files modified, added, or removed by this changeset.

• file_adds: List of strings. Files added by this changeset.

• file_dels: List of strings. Files removed by this changeset.

• node: String. The changeset identification hash, as a 40-character hexadecimal string.

• parents: List of strings. The parents of the changeset.

• rev: Integer. The repository-local changeset revision number.

• tags: List of strings. Any tags associated with the changeset.

A few simple experiments will show us what to expect when we use these keywords; you
can see the results below.
$ hg log -r1 --template 'author: {author}\n'
author: Bryan O'Sullivan <bos@serpentine.com>
$ hg log -r1 --template 'desc:\n{desc}\n'
desc:

定制 Mercurial 的输出

150

added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some might consider it so) of
 goodbye.
$ hg log -r1 --template 'files: {files}\n'
files: goodbye hello
$ hg log -r1 --template 'file_adds: {file_adds}\n'
file_adds: goodbye
$ hg log -r1 --template 'file_dels: {file_dels}\n'
file_dels:
$ hg log -r1 --template 'node: {node}\n'
node: 5091da73f50defec11b2d79a63fbafd5bcd6cabf
$ hg log -r1 --template 'parents: {parents}\n'
parents:
$ hg log -r1 --template 'rev: {rev}\n'
rev: 1
$ hg log -r1 --template 'tags: {tags}\n'
tags: mytag

As we noted above, the date keyword does not produce human-readable output, so we must
treat it specially. This involves using a filter, about which more in 第 11.6 节 “通过过滤关键字
来修改输出结果”.
$ hg log -r1 --template 'date: {date}\n'
date: 1256261880.00
$ hg log -r1 --template 'date: {date|isodate}\n'
date: 2009-10-23 01:38 +0000

11.5. 转义序列
Mercurial's templating engine recognises the most commonly used escape sequences in

strings. When it sees a backslash (“\”) character, it looks at the following character and
substitutes the two characters with a single replacement, as described below.

• \: Backslash, “\”, ASCII 134.

• \n: Newline, ASCII 12.

• \r: Carriage return, ASCII 15.

• \t: Tab, ASCII 11.

• \v: Vertical tab, ASCII 13.

• \{: Open curly brace, “{”, ASCII 173.

• \}: Close curly brace, “}”, ASCII 175.

As indicated above, if you want the expansion of a template to contain a literal “\”, “{”, or
“{” character, you must escape it.

11.6. 通过过滤关键字来修改输出结果
Some of the results of template expansion are not immediately easy to use. Mercurial lets

you specify an optional chain of filters to modify the result of expanding a keyword. You have
already seen a common filter, isodate, in action above, to make a date readable.

定制 Mercurial 的输出

151

Below is a list of the most commonly used filters that Mercurial supports. While some filters
can be applied to any text, others can only be used in specific circumstances. The name of each
filter is followed first by an indication of where it can be used, then a description of its effect.

• addbreaks: Any text. Add an XHTML “
” tag before the end of every line except the last.
For example, “foo\nbar” becomes “foo
\nbar”.

• age: date keyword. Render the age of the date, relative to the current time. Yields a string
like “10 minutes”.

• basename: Any text, but most useful for the files keyword and its relatives. Treat the text
as a path, and return the basename. For example, “foo/bar/baz” becomes “baz”.

• date: date keyword. Render a date in a similar format to the Unix date command, but with
timezone included. Yields a string like “Mon Sep 04 15:13:13 2006 -0700”.

• domain: Any text, but most useful for the author keyword. Finds the first string that
looks like an email address, and extract just the domain component. For example, “Bryan
O'Sullivan <bos@serpentine.com>” becomes “serpentine.com”.

• email: Any text, but most useful for the author keyword. Extract the first string that looks
like an email address. For example, “Bryan O'Sullivan <bos@serpentine.com>”
becomes “bos@serpentine.com”.

• escape: Any text. Replace the special XML/XHTML characters “&”, “<” and “>” with XML
entities.

• fill68: Any text. Wrap the text to fit in 68 columns. This is useful before you pass text through
the tabindent filter, and still want it to fit in an 80-column fixed-font window.

• fill76: Any text. Wrap the text to fit in 76 columns.

• firstline: Any text. Yield the first line of text, without any trailing newlines.

• hgdate: date keyword. Render the date as a pair of readable numbers. Yields a string like
“1157407993 25200”.

• isodate: date keyword. Render the date as a text string in ISO 8601 format. Yields a string
like “2006-09-04 15:13:13 -0700”.

• obfuscate: Any text, but most useful for the author keyword. Yield the input text rendered
as a sequence of XML entities. This helps to defeat some particularly stupid screen-scraping
email harvesting spambots.

• person: Any text, but most useful for the author keyword. Yield the text before an email
address. For example, “Bryan O'Sullivan <bos@serpentine.com>” becomes “Bryan
O'Sullivan”.

• rfc822date: date keyword. Render a date using the same format used in email headers.
Yields a string like “Mon, 04 Sep 2006 15:13:13 -0700”.

定制 Mercurial 的输出

152

• short: Changeset hash. Yield the short form of a changeset hash, i.e. a 12-character
hexadecimal string.

• shortdate: date keyword. Render the year, month, and day of the date. Yields a string like
“2006-09-04”.

• strip: Any text. Strip all leading and trailing whitespace from the string.

• tabindent: Any text. Yield the text, with every line except the first starting with a tab
character.

• urlescape: Any text. Escape all characters that are considered “special” by URL parsers. For
example, foo bar becomes foo%20bar.

• user: Any text, but most useful for the author keyword. Return the “user” portion of an email
address. For example, “Bryan O'Sullivan <bos@serpentine.com>” becomes “bos”.

$ hg log -r1 --template '{author}\n'
Bryan O'Sullivan <bos@serpentine.com>
$ hg log -r1 --template '{author|domain}\n'
serpentine.com
$ hg log -r1 --template '{author|email}\n'
bos@serpentine.com
$ hg log -r1 --template '{author|obfuscate}\n' | cut -c-76
Bryan O'Sulli
$ hg log -r1 --template '{author|person}\n'
Bryan O'Sullivan
$ hg log -r1 --template '{author|user}\n'
bos
$ hg log -r1 --template 'looks almost right, but actually garbage: {date}\n'
looks almost right, but actually garbage: 1256261880.00
$ hg log -r1 --template '{date|age}\n'
1 second
$ hg log -r1 --template '{date|date}\n'
Fri Oct 23 01:38:00 2009 +0000
$ hg log -r1 --template '{date|hgdate}\n'
1256261880 0
$ hg log -r1 --template '{date|isodate}\n'
2009-10-23 01:38 +0000
$ hg log -r1 --template '{date|rfc822date}\n'
Fri, 23 Oct 2009 01:38:00 +0000
$ hg log -r1 --template '{date|shortdate}\n'
2009-10-23
$ hg log -r1 --template '{desc}\n' | cut -c-76
added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some m
$ hg log -r1 --template '{desc|addbreaks}\n' | cut -c-76
added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some m
$ hg log -r1 --template '{desc|escape}\n' | cut -c-76
added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some m
$ hg log -r1 --template '{desc|fill68}\n'
added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope
that some might consider it so) of goodbye.
$ hg log -r1 --template '{desc|fill76}\n'
added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some
might consider it so) of goodbye.

定制 Mercurial 的输出

153

$ hg log -r1 --template '{desc|firstline}\n'
added line to end of <<hello>> file.
$ hg log -r1 --template '{desc|strip}\n' | cut -c-76
added line to end of <<hello>> file.

in addition, added a file with the helpful name (at least i hope that some m
$ hg log -r1 --template '{desc|tabindent}\n' | expand | cut -c-76
added line to end of <<hello>> file.

 in addition, added a file with the helpful name (at least i hope tha
$ hg log -r1 --template '{node}\n'
5091da73f50defec11b2d79a63fbafd5bcd6cabf
$ hg log -r1 --template '{node|short}\n'
5091da73f50d

注意

If you try to apply a filter to a piece of data that it cannot process, Mercurial will fail and
print a Python exception. For example, trying to run the output of the desc keyword
into the isodate filter is not a good idea.

11.6.1. 组合过滤器
It is easy to combine filters to yield output in the form you would like. The following chain of

filters tidies up a description, then makes sure that it fits cleanly into 68 columns, then indents it
by a further 8 characters (at least on Unix-like systems, where a tab is conventionally 8 characters
wide).
$ hg log -r1 --template 'description:\n\t{desc|strip|fill68|tabindent}\n'
description:
 added line to end of <<hello>> file.

 in addition, added a file with the helpful name (at least i hope
 that some might consider it so) of goodbye.

Note the use of “\t” (a tab character) in the template to force the first line to be indented;
this is necessary since tabindent indents all lines except the first.

Keep in mind that the order of filters in a chain is significant. The first filter is applied to the
result of the keyword; the second to the result of the first filter; and so on. For example, using
fill68|tabindent gives very different results from tabindent|fill68.

11.7. 从模版到样式
A command line template provides a quick and simple way to format some output. Templates

can become verbose, though, and it's useful to be able to give a template a name. A style file is a
template with a name, stored in a file.

More than that, using a style file unlocks the power of Mercurial's templating engine in ways
that are not possible using the command line --template option.

11.7.1. 最简单的样式文件
Our simple style file contains just one line:

定制 Mercurial 的输出

154

$ echo 'changeset = "rev: {rev}\n"' > rev
$ hg log -l1 --style ./rev
rev: 3

This tells Mercurial, “if you're printing a changeset, use the text on the right as the template”.

11.7.2. 样式文件语法
The syntax rules for a style file are simple.

• The file is processed one line at a time.

• Leading and trailing white space are ignored.

• Empty lines are skipped.

• If a line starts with either of the characters “#” or “;”, the entire line is treated as a comment,
and skipped as if empty.

• A line starts with a keyword. This must start with an alphabetic character or underscore, and
can subsequently contain any alphanumeric character or underscore. (In regexp notation, a
keyword must match [A-Za-z_][A-Za-z0-9_]*.)

• The next element must be an “=” character, which can be preceded or followed by an arbitrary
amount of white space.

• If the rest of the line starts and ends with matching quote characters (either single or double
quote), it is treated as a template body.

• If the rest of the line does not start with a quote character, it is treated as the name of a file;
the contents of this file will be read and used as a template body.

11.8. 样式文件例子
To illustrate how to write a style file, we will construct a few by example. Rather than provide

a complete style file and walk through it, we'll mirror the usual process of developing a style
file by starting with something very simple, and walking through a series of successively more
complete examples.

11.8.1. 在样式文件中定位错误
If Mercurial encounters a problem in a style file you are working on, it prints a terse error

message that, once you figure out what it means, is actually quite useful.
$ cat broken.style
changeset =

Notice that broken.style attempts to define a changeset keyword, but forgets to give
any content for it. When instructed to use this style file, Mercurial promptly complains.
$ hg log -r1 --style broken.style

定制 Mercurial 的输出

155

** unknown exception encountered, details follow
** report bug details to http://mercurial.selenic.com/bts/
** or mercurial@selenic.com
** Mercurial Distributed SCM (version 1.3.1)
** Extensions loaded:
Traceback (most recent call last):
 File "/usr/bin/hg", line 27, in <module>
 mercurial.dispatch.run()
 File "/usr/lib/pymodules/python2.5/mercurial/dispatch.py", line 16, in run
 sys.exit(dispatch(sys.argv[1:]))
 File "/usr/lib/pymodules/python2.5/mercurial/dispatch.py", line 27, in dispatch
 return _runcatch(u, args)
 File "/usr/lib/pymodules/python2.5/mercurial/dispatch.py", line 43, in _runcatch
 return _dispatch(ui, args)
 File "/usr/lib/pymodules/python2.5/mercurial/dispatch.py", line 449, in _dispatch
 return runcommand(lui, repo, cmd, fullargs, ui, options, d)
 File "/usr/lib/pymodules/python2.5/mercurial/dispatch.py", line 317, in runcommand
 ret = _runcommand(ui, options, cmd, d)
 File "/usr/lib/pymodules/python2.5/mercurial/dispatch.py", line 501, in _runcommand
 return checkargs()
 File "/usr/lib/pymodules/python2.5/mercurial/dispatch.py", line 454, in checkargs
 return cmdfunc()
 File "/usr/lib/pymodules/python2.5/mercurial/dispatch.py", line 448, in <lambda>
 d = lambda: util.checksignature(func)(ui, *args, **cmdoptions)
 File "/usr/lib/pymodules/python2.5/mercurial/util.py", line 402, in check
 return func(*args, **kwargs)
 File "/usr/lib/pymodules/python2.5/mercurial/commands.py", line 2025, in log
 displayer = cmdutil.show_changeset(ui, repo, opts, True, matchfn)
 File "/usr/lib/pymodules/python2.5/mercurial/cmdutil.py", line 981, in show_changeset
 t = changeset_templater(ui, repo, patch, opts, mapfile, buffered)
 File "/usr/lib/pymodules/python2.5/mercurial/cmdutil.py", line 745, in __init__
 'filecopy': '{name} ({source})'})
 File "/usr/lib/pymodules/python2.5/mercurial/templater.py", line 160, in __init__
 if val[0] in "'\"":
IndexError: string index out of range

This error message looks intimidating, but it is not too hard to follow.

• The first component is simply Mercurial's way of saying “I am giving up”.
___abort___: broken.style:1: parse error

• Next comes the name of the style file that contains the error.
abort: ___broken.style___:1: parse error

• Following the file name is the line number where the error was encountered.
abort: broken.style:___1___: parse error

• Finally, a description of what went wrong.
abort: broken.style:1: ___parse error___

• The description of the problem is not always clear (as in this case), but even when it is cryptic,
it is almost always trivial to visually inspect the offending line in the style file and see what
is wrong.

11.8.2. 版本库的唯一标识
If you would like to be able to identify a Mercurial repository “fairly uniquely” using a short

string as an identifier, you can use the first revision in the repository.
$ hg log -r0 --template '{node}'

定制 Mercurial 的输出

156

8aa4172cf8be0adafcfec7f9106a5cf33ed4cd00

This is likely to be unique, and so it is useful in many cases. There are a few caveats.

• It will not work in a completely empty repository, because such a repository does not have a
revision zero.

• Neither will it work in the (extremely rare) case where a repository is a merge of two or more
formerly independent repositories, and you still have those repositories around.

Here are some uses to which you could put this identifier:

• As a key into a table for a database that manages repositories on a server.

• As half of a {repository ID, revision ID} tuple. Save this information away when you run an
automated build or other activity, so that you can “replay” the build later if necessary.

11.8.3. 每行列出一个文件
Suppose we want to list the files changed by a changeset, one per line, with a little

indentation before each file name.
$ cat > multiline << EOF
> changeset = "Changed in {node|short}:\n{files}"
> file = " {file}\n"
> EOF
$ hg log --style multiline
Changed in 18beb2d18c79:
 .bashrc
 .hgrc
 test.c

11.8.4. 模仿 Subversion 的输出
Let's try to emulate the default output format used by another revision control tool,

Subversion.
$ svn log -r9653
--
r9653 | sean.hefty | 2006-09-27 14:39:55 -0700 (Wed, 27 Sep 2006) | 5 lines

On reporting a route error, also include the status for the error,
rather than indicating a status of 0 when an error has occurred.

Signed-off-by: Sean Hefty <sean.hefty@intel.com>

--

Since Subversion's output style is fairly simple, it is easy to copy-and-paste a hunk of its
output into a file, and replace the text produced above by Subversion with the template values
we'd like to see expanded.
$ cat svn.template
r{rev} | {author|user} | {date|isodate} ({date|rfc822date})

{desc|strip|fill76}

--

定制 Mercurial 的输出

157

There are a few small ways in which this template deviates from the output produced by
Subversion.

• Subversion prints a “readable” date (the “Wed, 27 Sep 2006” in the example output above)
in parentheses. Mercurial's templating engine does not provide a way to display a date in this
format without also printing the time and time zone.

• We emulate Subversion's printing of “separator” lines full of “-” characters by ending the
template with such a line. We use the templating engine's header keyword to print a separator
line as the first line of output (see below), thus achieving similar output to Subversion.

• Subversion's output includes a count in the header of the number of lines in the commit
message. We cannot replicate this in Mercurial; the templating engine does not currently
provide a filter that counts the number of lines the template generates.

It took me no more than a minute or two of work to replace literal text from an example
of Subversion's output with some keywords and filters to give the template above. The style file
simply refers to the template.
$ cat svn.style
header = '--\n\n'
changeset = svn.template

We could have included the text of the template file directly in the style file by enclosing it
in quotes and replacing the newlines with “\n” sequences, but it would have made the style file
too difficult to read. Readability is a good guide when you're trying to decide whether some text
belongs in a style file, or in a template file that the style file points to. If the style file will look too
big or cluttered if you insert a literal piece of text, drop it into a template instead.

158

第 12 章 使用 MQ 管理修改
12.1. 补丁的管理问题

Here is a common scenario: you need to install a software package from source, but you
find a bug that you must fix in the source before you can start using the package. You make your
changes, forget about the package for a while, and a few months later you need to upgrade to
a newer version of the package. If the newer version of the package still has the bug, you must
extract your fix from the older source tree and apply it against the newer version. This is a tedious
task, and it's easy to make mistakes.

This is a simple case of the “patch management” problem. You have an “upstream” source
tree that you can't change; you need to make some local changes on top of the upstream tree;
and you'd like to be able to keep those changes separate, so that you can apply them to newer
versions of the upstream source.

The patch management problem arises in many situations. Probably the most visible is that
a user of an open source software project will contribute a bug fix or new feature to the project's
maintainers in the form of a patch.

Distributors of operating systems that include open source software often need to make
changes to the packages they distribute so that they will build properly in their environments.

When you have few changes to maintain, it is easy to manage a single patch using the
standard diff and patch programs (see 第 12.4 节 “理解补丁” for a discussion of these tools).
Once the number of changes grows, it starts to make sense to maintain patches as discrete
“chunks of work,” so that for example a single patch will contain only one bug fix (the patch might
modify several files, but it's doing “only one thing”), and you may have a number of such patches
for different bugs you need fixed and local changes you require. In this situation, if you submit a
bug fix patch to the upstream maintainers of a package and they include your fix in a subsequent
release, you can simply drop that single patch when you're updating to the newer release.

Maintaining a single patch against an upstream tree is a little tedious and error-prone, but
not difficult. However, the complexity of the problem grows rapidly as the number of patches
you have to maintain increases. With more than a tiny number of patches in hand, understanding
which ones you have applied and maintaining them moves from messy to overwhelming.

Fortunately, Mercurial includes a powerful extension, Mercurial Queues (or simply “MQ”),
that massively simplifies the patch management problem.

12.2. MQ 的历史
During the late 1990s, several Linux kernel developers started to maintain “patch series”

that modified the behavior of the Linux kernel. Some of these series were focused on stability,
some on feature coverage, and others were more speculative.

The sizes of these patch series grew rapidly. In 2002, Andrew Morton published some shell
scripts he had been using to automate the task of managing his patch queues. Andrew was

使用 MQ 管理修改

159

successfully using these scripts to manage hundreds (sometimes thousands) of patches on top
of the Linux kernel.

12.2.1. A patchwork quilt
In early 2003, Andreas Gruenbacher and Martin Quinson borrowed the approach of

Andrew's scripts and published a tool called “patchwork quilt” [web:quilt], or simply “quilt”
(see [gruenbacher:2005] for a paper describing it). Because quilt substantially automated patch
management, it rapidly gained a large following among open source software developers.

Quilt manages a stack of patches on top of a directory tree. To begin, you tell quilt to manage
a directory tree, and tell it which files you want to manage; it stores away the names and contents
of those files. To fix a bug, you create a new patch (using a single command), edit the files you
need to fix, then “refresh” the patch.

The refresh step causes quilt to scan the directory tree; it updates the patch with all of the
changes you have made. You can create another patch on top of the first, which will track the
changes required to modify the tree from “tree with one patch applied” to “tree with two patches
applied”.

You can change which patches are applied to the tree. If you “pop” a patch, the changes
made by that patch will vanish from the directory tree. Quilt remembers which patches you have
popped, though, so you can “push” a popped patch again, and the directory tree will be restored
to contain the modifications in the patch. Most importantly, you can run the “refresh” command
at any time, and the topmost applied patch will be updated. This means that you can, at any time,
change both which patches are applied and what modifications those patches make.

Quilt knows nothing about revision control tools, so it works equally well on top of an
unpacked tarball or a Subversion working copy.

12.2.2. 从 patchwork quilt 到 MQ
In mid-2005, Chris Mason took the features of quilt and wrote an extension that he called

Mercurial Queues, which added quilt-like behavior to Mercurial.

The key difference between quilt and MQ is that quilt knows nothing about revision control
systems, while MQ is integrated into Mercurial. Each patch that you push is represented as a
Mercurial changeset. Pop a patch, and the changeset goes away.

Because quilt does not care about revision control tools, it is still a tremendously useful piece
of software to know about for situations where you cannot use Mercurial and MQ.

12.3. MQ 的巨大优势
I cannot overstate the value that MQ offers through the unification of patches and revision

control.

A major reason that patches have persisted in the free software and open source world—
in spite of the availability of increasingly capable revision control tools over the years—is the
agility they offer.

使用 MQ 管理修改

160

Traditional revision control tools make a permanent, irreversible record of everything that
you do. While this has great value, it's also somewhat stifling. If you want to perform a wild-
eyed experiment, you have to be careful in how you go about it, or you risk leaving unneeded
—or worse, misleading or destabilising—traces of your missteps and errors in the permanent
revision record.

By contrast, MQ's marriage of distributed revision control with patches makes it much easier
to isolate your work. Your patches live on top of normal revision history, and you can make them
disappear or reappear at will. If you don't like a patch, you can drop it. If a patch isn't quite as
you want it to be, simply fix it—as many times as you need to, until you have refined it into the
form you desire.

As an example, the integration of patches with revision control makes understanding
patches and debugging their effects—and their interplay with the code they're based on
—enormously easier. Since every applied patch has an associated changeset, you can give hg
log a file name to see which changesets and patches affected the file. You can use the hg bisect
command to binary-search through all changesets and applied patches to see where a bug got
introduced or fixed. You can use the hg annotate command to see which changeset or patch
modified a particular line of a source file. And so on.

12.4. 理解补丁
Because MQ doesn't hide its patch-oriented nature, it is helpful to understand what patches

are, and a little about the tools that work with them.

The traditional Unix diff command compares two files, and prints a list of differences
between them. The patch command understands these differences as modifications to make to
a file. Take a look below for a simple example of these commands in action.
$ echo 'this is my original thought' > oldfile
$ echo 'i have changed my mind' > newfile
$ diff -u oldfile newfile > tiny.patch
$ cat tiny.patch
--- oldfile 2009-10-23 01:37:53.200684076 +0000
+++ newfile 2009-10-23 01:37:53.200684076 +0000
@@ -1 +1 @@
-this is my original thought
+i have changed my mind
$ patch < tiny.patch
patching file oldfile
$ cat oldfile
i have changed my mind

The type of file that diff generates (and patch takes as input) is called a “patch” or a “diff”;
there is no difference between a patch and a diff. (We'll use the term “patch”, since it's more
commonly used.)

A patch file can start with arbitrary text; the patch command ignores this text, but MQ uses
it as the commit message when creating changesets. To find the beginning of the patch content,
patch searches for the first line that starts with the string “diff -”.

MQ works with unified diffs (patch can accept several other diff formats, but MQ doesn't).
A unified diff contains two kinds of header. The file header describes the file being modified; it

使用 MQ 管理修改

161

contains the name of the file to modify. When patch sees a new file header, it looks for a file with
that name to start modifying.

After the file header comes a series of hunks. Each hunk starts with a header; this identifies
the range of line numbers within the file that the hunk should modify. Following the header, a
hunk starts and ends with a few (usually three) lines of text from the unmodified file; these are
called the context for the hunk. If there's only a small amount of context between successive
hunks, diff doesn't print a new hunk header; it just runs the hunks together, with a few lines of
context between modifications.

Each line of context begins with a space character. Within the hunk, a line that begins with “-”
means “remove this line,” while a line that begins with “+” means “insert this line.” For example,
a line that is modified is represented by one deletion and one insertion.

We will return to some of the more subtle aspects of patches later (in 第 12.6 节 “关于补
丁的更多信息”), but you should have enough information now to use MQ.

12.5. 开始使用 MQ
Because MQ is implemented as an extension, you must explicitly enable before you can use

it. (You don't need to download anything; MQ ships with the standard Mercurial distribution.) To
enable MQ, edit your ~/.hgrc file, and add the lines below.
[extensions]
hgext.mq =

Once the extension is enabled, it will make a number of new commands available. To verify
that the extension is working, you can use hg help to see if the qinit command is now available.
$ hg help qinit
hg qinit [-c]

init a new queue repository

 The queue repository is unversioned by default. If
 -c/--create-repo is specified, qinit will create a separate nested
 repository for patches (qinit -c may also be run later to convert
 an unversioned patch repository into a versioned one). You can use
 qcommit to commit changes to this queue repository.

options:

 -c --create-repo create queue repository

use "hg -v help qinit" to show global options

You can use MQ with any Mercurial repository, and its commands only operate within that
repository. To get started, simply prepare the repository using the qinit command.
$ hg init mq-sandbox
$ cd mq-sandbox
$ echo 'line 1' > file1
$ echo 'another line 1' > file2
$ hg add file1 file2
$ hg commit -m'first change'
$ hg qinit

This command creates an empty directory called .hg/patches, where MQ will keep its
metadata. As with many Mercurial commands, the qinit command prints nothing if it succeeds.

使用 MQ 管理修改

162

12.5.1. 创建新补丁
To begin work on a new patch, use the qnew command. This command takes one argument,

the name of the patch to create.

MQ will use this as the name of an actual file in the .hg/patches directory, as you can see
below.
$ hg tip
changeset: 0:4527d91966e1
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:56 2009 +0000
summary: first change

$ hg qnew first.patch
$ hg tip
changeset: 1:758e30a1c866
tag: qtip
tag: first.patch
tag: tip
tag: qbase
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:56 2009 +0000
summary: [mq]: first.patch

$ ls .hg/patches
first.patch series status

Also newly present in the .hg/patches directory are two other files, series and
status. The series file lists all of the patches that MQ knows about for this repository, with
one patch per line. Mercurial uses the status file for internal book-keeping; it tracks all of the
patches that MQ has applied in this repository.

注意

You may sometimes want to edit the series file by hand; for example, to change the
sequence in which some patches are applied. However, manually editing the status
file is almost always a bad idea, as it's easy to corrupt MQ's idea of what is happening.

Once you have created your new patch, you can edit files in the working directory as you
usually would. All of the normal Mercurial commands, such as hg diff and hg annotate, work
exactly as they did before.

12.5.2. 刷新补丁
When you reach a point where you want to save your work, use the qrefresh command to

update the patch you are working on.
$ echo 'line 2' >> file1
$ hg diff
diff -r 758e30a1c866 file1
--- a/file1 Fri Oct 23 01:37:56 2009 +0000
+++ b/file1 Fri Oct 23 01:37:56 2009 +0000
@@ -1,1 +1,2 @@
 line 1
+line 2
$ hg qrefresh
$ hg diff
$ hg tip --style=compact --patch

使用 MQ 管理修改

163

1[qtip,first.patch,tip,qbase] 2153b5f05765 2009-10-23 01:37 +0000 bos
 [mq]: first.patch

diff -r 4527d91966e1 -r 2153b5f05765 file1
--- a/file1 Fri Oct 23 01:37:56 2009 +0000
+++ b/file1 Fri Oct 23 01:37:56 2009 +0000
@@ -1,1 +1,2 @@
 line 1
+line 2

This command folds the changes you have made in the working directory into your patch,
and updates its corresponding changeset to contain those changes.

You can run qrefresh as often as you like, so it's a good way to “checkpoint” your work.
Refresh your patch at an opportune time; try an experiment; and if the experiment doesn't work
out, hg revert your modifications back to the last time you refreshed.
$ echo 'line 3' >> file1
$ hg status
M file1
$ hg qrefresh
$ hg tip --style=compact --patch
1[qtip,first.patch,tip,qbase] adf411d6a741 2009-10-23 01:37 +0000 bos
 [mq]: first.patch

diff -r 4527d91966e1 -r adf411d6a741 file1
--- a/file1 Fri Oct 23 01:37:56 2009 +0000
+++ b/file1 Fri Oct 23 01:37:57 2009 +0000
@@ -1,1 +1,3 @@
 line 1
+line 2
+line 3

12.5.3. 堆叠和跟踪补丁
Once you have finished working on a patch, or need to work on another, you can use the

qnew command again to create a new patch. Mercurial will apply this patch on top of your
existing patch.
$ hg qnew second.patch
$ hg log --style=compact --limit=2
2[qtip,second.patch,tip] 2e36955c52be 2009-10-23 01:37 +0000 bos
 [mq]: second.patch

1[first.patch,qbase] adf411d6a741 2009-10-23 01:37 +0000 bos
 [mq]: first.patch

$ echo 'line 4' >> file1
$ hg qrefresh
$ hg tip --style=compact --patch
2[qtip,second.patch,tip] 9570fd69b3f8 2009-10-23 01:37 +0000 bos
 [mq]: second.patch

diff -r adf411d6a741 -r 9570fd69b3f8 file1
--- a/file1 Fri Oct 23 01:37:57 2009 +0000
+++ b/file1 Fri Oct 23 01:37:57 2009 +0000
@@ -1,3 +1,4 @@
 line 1
 line 2
 line 3
+line 4

$ hg annotate file1
0: line 1

使用 MQ 管理修改

164

1: line 2
1: line 3
2: line 4

Notice that the patch contains the changes in our prior patch as part of its context (you can
see this more clearly in the output of hg annotate).

So far, with the exception of qnew and qrefresh, we've been careful to only use regular
Mercurial commands. However, MQ provides many commands that are easier to use when you
are thinking about patches, as illustrated below.
$ hg qseries
first.patch
second.patch
$ hg qapplied
first.patch
second.patch

• The qseries command lists every patch that MQ knows about in this repository, from oldest
to newest (most recently created).

• The qapplied command lists every patch that MQ has applied in this repository, again from
oldest to newest (most recently applied).

12.5.4. 操作补丁堆栈
The previous discussion implied that there must be a difference between “known” and

“applied” patches, and there is. MQ can manage a patch without it being applied in the repository.

An applied patch has a corresponding changeset in the repository, and the effects of the
patch and changeset are visible in the working directory. You can undo the application of a
patch using the qpop command. MQ still knows about, or manages, a popped patch, but the
patch no longer has a corresponding changeset in the repository, and the working directory
does not contain the changes made by the patch. 图 12.1 “在 MQ 补丁堆栈中应用和撤销补丁”
illustrates the difference between applied and tracked patches.

图 12.1. 在 MQ 补丁堆栈中应用和撤销补丁

You can reapply an unapplied, or popped, patch using the qpush command. This creates a
new changeset to correspond to the patch, and the patch's changes once again become present
in the working directory. See below for examples of qpop and qpush in action.
$ hg qapplied

使用 MQ 管理修改

165

first.patch
second.patch
$ hg qpop
now at: first.patch
$ hg qseries
first.patch
second.patch
$ hg qapplied
first.patch
$ cat file1
line 1
line 2
line 3

Notice that once we have popped a patch or two patches, the output of qseries remains the
same, while that of qapplied has changed.

12.5.5. 压入或弹出多个补丁
While qpush and qpop each operate on a single patch at a time by default, you can push

and pop many patches in one go. The -a option to qpush causes it to push all unapplied patches,
while the -a option to qpop causes it to pop all applied patches. (For some more ways to push
and pop many patches, see 第 12.8 节 “MQ 的性能” below.)
$ hg qpush -a
applying second.patch
now at: second.patch
$ cat file1
line 1
line 2
line 3
line 4

12.5.6. 安全的检查，然后覆盖它们
Several MQ commands check the working directory before they do anything, and fail if

they find any modifications. They do this to ensure that you won't lose any changes that you
have made, but not yet incorporated into a patch. The example below illustrates this; the qnew
command will not create a new patch if there are outstanding changes, caused in this case by the
hg add of file3.
$ echo 'file 3, line 1' >> file3
$ hg qnew add-file3.patch
$ hg qnew -f add-file3.patch
abort: patch "add-file3.patch" already exists

Commands that check the working directory all take an “I know what I'm doing” option,
which is always named -f. The exact meaning of -f depends on the command. For example, hg
qnew -f will incorporate any outstanding changes into the new patch it creates, but hg qpop -
f will revert modifications to any files affected by the patch that it is popping. Be sure to read the
documentation for a command's -f option before you use it!

12.5.7. 同时处理多个补丁
The qrefresh command always refreshes the topmost applied patch. This means that you

can suspend work on one patch (by refreshing it), pop or push to make a different patch the top,
and work on that patch for a while.

使用 MQ 管理修改

166

Here's an example that illustrates how you can use this ability. Let's say you're developing a
new feature as two patches. The first is a change to the core of your software, and the second—
layered on top of the first—changes the user interface to use the code you just added to the core.
If you notice a bug in the core while you're working on the UI patch, it's easy to fix the core. Simply
qrefresh the UI patch to save your in-progress changes, and qpop down to the core patch. Fix the
core bug, qrefresh the core patch, and qpush back to the UI patch to continue where you left off.

12.6. 关于补丁的更多信息
MQ uses the GNU patch command to apply patches, so it's helpful to know a few more

detailed aspects of how patch works, and about patches themselves.

12.6.1. 修剪计数
If you look at the file headers in a patch, you will notice that the pathnames usually have an

extra component on the front that isn't present in the actual path name. This is a holdover from
the way that people used to generate patches (people still do this, but it's somewhat rare with
modern revision control tools).

Alice would unpack a tarball, edit her files, then decide that she wanted to create a patch. So
she'd rename her working directory, unpack the tarball again (hence the need for the rename),
and use the -r and -N options to diff to recursively generate a patch between the unmodified
directory and the modified one. The result would be that the name of the unmodified directory
would be at the front of the left-hand path in every file header, and the name of the modified
directory would be at the front of the right-hand path.

Since someone receiving a patch from the Alices of the net would be unlikely to have
unmodified and modified directories with exactly the same names, the patch command has a -p
option that indicates the number of leading path name components to strip when trying to apply
a patch. This number is called the strip count.

An option of “-p1” means “use a strip count of one”. If patch sees a file name foo/bar/baz
in a file header, it will strip foo and try to patch a file named bar/baz. (Strictly speaking, the
strip count refers to the number of path separators (and the components that go with them) to
strip. A strip count of one will turn foo/bar into bar, but /foo/bar (notice the extra leading
slash) into foo/bar.)

The “standard” strip count for patches is one; almost all patches contain one leading path
name component that needs to be stripped. Mercurial's hg diff command generates path names
in this form, and the hg import command and MQ expect patches to have a strip count of one.

If you receive a patch from someone that you want to add to your patch queue, and the patch
needs a strip count other than one, you cannot just qimport the patch, because qimport does not
yet have a -p option (see issue 311 [http://www.selenic.com/mercurial/bts/issue311]). Your
best bet is to qnew a patch of your own, then use patch -pN to apply their patch, followed by hg
addremove to pick up any files added or removed by the patch, followed by hg qrefresh. This
complexity may become unnecessary; see issue 311 [http://www.selenic.com/mercurial/bts/
issue311] for details.

http://www.selenic.com/mercurial/bts/issue311
http://www.selenic.com/mercurial/bts/issue311
http://www.selenic.com/mercurial/bts/issue311
http://www.selenic.com/mercurial/bts/issue311
http://www.selenic.com/mercurial/bts/issue311

使用 MQ 管理修改

167

12.6.2. 应用补丁的策略
When patch applies a hunk, it tries a handful of successively less accurate strategies to try

to make the hunk apply. This falling-back technique often makes it possible to take a patch that
was generated against an old version of a file, and apply it against a newer version of that file.

First, patch tries an exact match, where the line numbers, the context, and the text to be
modified must apply exactly. If it cannot make an exact match, it tries to find an exact match for
the context, without honouring the line numbering information. If this succeeds, it prints a line
of output saying that the hunk was applied, but at some offset from the original line number.

If a context-only match fails, patch removes the first and last lines of the context, and tries
a reduced context-only match. If the hunk with reduced context succeeds, it prints a message
saying that it applied the hunk with a fuzz factor (the number after the fuzz factor indicates how
many lines of context patch had to trim before the patch applied).

When neither of these techniques works, patch prints a message saying that the hunk in
question was rejected. It saves rejected hunks (also simply called “rejects”) to a file with the same
name, and an added .rej extension. It also saves an unmodified copy of the file with a .orig
extension; the copy of the file without any extensions will contain any changes made by hunks
that did apply cleanly. If you have a patch that modifies foo with six hunks, and one of them fails
to apply, you will have: an unmodified foo.orig, a foo.rej containing one hunk, and foo,
containing the changes made by the five successful hunks.

12.6.3. 补丁的一些特性
There are a few useful things to know about how patch works with files.

• This should already be obvious, but patch cannot handle binary files.

• Neither does it care about the executable bit; it creates new files as readable, but not
executable.

• patch treats the removal of a file as a diff between the file to be removed and the empty file.
So your idea of “I deleted this file” looks like “every line of this file was deleted” in a patch.

• It treats the addition of a file as a diff between the empty file and the file to be added. So in a
patch, your idea of “I added this file” looks like “every line of this file was added”.

• It treats a renamed file as the removal of the old name, and the addition of the new name. This
means that renamed files have a big footprint in patches. (Note also that Mercurial does not
currently try to infer when files have been renamed or copied in a patch.)

• patch cannot represent empty files, so you cannot use a patch to represent the notion “I added
this empty file to the tree”.

12.6.4. 当心毛刺
While applying a hunk at an offset, or with a fuzz factor, will often be completely successful,

these inexact techniques naturally leave open the possibility of corrupting the patched file. The

使用 MQ 管理修改

168

most common cases typically involve applying a patch twice, or at an incorrect location in the file.
If patch or qpush ever mentions an offset or fuzz factor, you should make sure that the modified
files are correct afterwards.

It's often a good idea to refresh a patch that has applied with an offset or fuzz factor;
refreshing the patch generates new context information that will make it apply cleanly. I say
“often,” not “always,” because sometimes refreshing a patch will make it fail to apply against a
different revision of the underlying files. In some cases, such as when you're maintaining a patch
that must sit on top of multiple versions of a source tree, it's acceptable to have a patch apply
with some fuzz, provided you've verified the results of the patching process in such cases.

12.6.5. 处理拒绝
If qpush fails to apply a patch, it will print an error message and exit. If it has left .rej files

behind, it is usually best to fix up the rejected hunks before you push more patches or do any
further work.

If your patch used to apply cleanly, and no longer does because you've changed the
underlying code that your patches are based on, Mercurial Queues can help; see 第 12.9 节 “当
基础代码改变时，更新补丁的方法” for details.

Unfortunately, there aren't any great techniques for dealing with rejected hunks. Most often,
you'll need to view the .rej file and edit the target file, applying the rejected hunks by hand.

A Linux kernel hacker, Chris Mason (the author of Mercurial Queues), wrote a tool
called mpatch (http://oss.oracle.com/~mason/mpatch/), which takes a simple approach to
automating the application of hunks rejected by patch. The mpatch command can help with four
common reasons that a hunk may be rejected:

• The context in the middle of a hunk has changed.

• A hunk is missing some context at the beginning or end.

• A large hunk might apply better—either entirely or in part—if it was broken up into smaller
hunks.

• A hunk removes lines with slightly different content than those currently present in the file.

If you use mpatch, you should be doubly careful to check your results when you're done.
In fact, mpatch enforces this method of double-checking the tool's output, by automatically
dropping you into a merge program when it has done its job, so that you can verify its work and
finish off any remaining merges.

12.7. 补丁管理进阶
As you grow familiar with MQ, you will find yourself wanting to perform other kinds of patch

management operations.

http://oss.oracle.com/~mason/mpatch/

使用 MQ 管理修改

169

12.7.1. 删除不需要的补丁
If you want to get rid of a patch, use the hg qdelete command to delete the patch file and

remove its entry from the patch series. If you try to delete a patch that is still applied, hg qdelete
will refuse.
$ hg init myrepo
$ cd myrepo
$ hg qinit
$ hg qnew bad.patch
$ echo a > a
$ hg add a
$ hg qrefresh
$ hg qdelete bad.patch
abort: cannot delete applied patch bad.patch
$ hg qpop
patch queue now empty
$ hg qdelete bad.patch

12.7.2. 与持久版本的相互转换
Once you're done working on a patch and want to turn it into a permanent changeset, use

the hg qfinish command. Pass a revision to the command to identify the patch that you want to
turn into a regular changeset; this patch must already be applied.
$ hg qnew good.patch
$ echo a > a
$ hg add a
$ hg qrefresh -m 'Good change'
$ hg qfinish tip
$ hg qapplied
$ hg tip --style=compact
0[tip] 0bd26be1ef8f 2009-10-23 01:37 +0000 bos
 Good change

The hg qfinish command accepts an --all or -a option, which turns all applied patches
into regular changesets.

It is also possible to turn an existing changeset into a patch, by passing the -r option to hg
qimport.
$ hg qimport -r tip
$ hg qapplied
0.diff

Note that it only makes sense to convert a changeset into a patch if you have not propagated
that changeset into any other repositories. The imported changeset's ID will change every time
you refresh the patch, which will make Mercurial treat it as unrelated to the original changeset
if you have pushed it somewhere else.

12.8. MQ 的性能
MQ is very efficient at handling a large number of patches. I ran some performance

experiments in mid-2006 for a talk that I gave at the 2006 EuroPython conference (on modern
hardware, you should expect better performance than you'll see below). I used as my data set the

使用 MQ 管理修改

170

Linux 2.6.17-mm1 patch series, which consists of 1,738 patches. I applied these on top of a Linux
kernel repository containing all 27,472 revisions between Linux 2.6.12-rc2 and Linux 2.6.17.

On my old, slow laptop, I was able to hg qpush -a all 1,738 patches in 3.5 minutes, and hg
qpop -a them all in 30 seconds. (On a newer laptop, the time to push all patches dropped to two
minutes.) I could qrefresh one of the biggest patches (which made 22,779 lines of changes to
287 files) in 6.6 seconds.

Clearly, MQ is well suited to working in large trees, but there are a few tricks you can use to
get the best performance of it.

First of all, try to “batch” operations together. Every time you run qpush or qpop, these
commands scan the working directory once to make sure you haven't made some changes and
then forgotten to run qrefresh. On a small tree, the time that this scan takes is unnoticeable.
However, on a medium-sized tree (containing tens of thousands of files), it can take a second or
more.

The qpush and qpop commands allow you to push and pop multiple patches at a time.
You can identify the “destination patch” that you want to end up at. When you qpush with a
destination specified, it will push patches until that patch is at the top of the applied stack. When
you qpop to a destination, MQ will pop patches until the destination patch is at the top.

You can identify a destination patch using either the name of the patch, or by number. If you
use numeric addressing, patches are counted from zero; this means that the first patch is zero,
the second is one, and so on.

12.9. 当基础代码改变时，更新补丁的方法
It's common to have a stack of patches on top of an underlying repository that you don't

modify directly. If you're working on changes to third-party code, or on a feature that is taking
longer to develop than the rate of change of the code beneath, you will often need to sync up with
the underlying code, and fix up any hunks in your patches that no longer apply. This is called
rebasing your patch series.

The simplest way to do this is to hg qpop hg -a your patches, then hg pull changes into
the underlying repository, and finally hg qpush -a your patches again. MQ will stop pushing any
time it runs across a patch that fails to apply during conflicts, allowing you to fix your conflicts,
qrefresh the affected patch, and continue pushing until you have fixed your entire stack.

This approach is easy to use and works well if you don't expect changes to the underlying
code to affect how well your patches apply. If your patch stack touches code that is modified
frequently or invasively in the underlying repository, however, fixing up rejected hunks by hand
quickly becomes tiresome.

It's possible to partially automate the rebasing process. If your patches apply cleanly against
some revision of the underlying repo, MQ can use this information to help you to resolve conflicts
between your patches and a different revision.

The process is a little involved.

使用 MQ 管理修改

171

1. To begin, hg qpush -a all of your patches on top of the revision where you know that they
apply cleanly.

2. Save a backup copy of your patch directory using hg qsave hg -e hg -c. This prints the
name of the directory that it has saved the patches in. It will save the patches to a directory
called .hg/patches.N, where N is a small integer. It also commits a “save changeset” on
top of your applied patches; this is for internal book-keeping, and records the states of the
series and status files.

3. Use hg pull to bring new changes into the underlying repository. (Don't run hg pull -u; see
below for why.)

4. Update to the new tip revision, using hg update -C to override the patches you have pushed.

5. Merge all patches using hg qpush -m -a. The -m option to qpush tells MQ to perform a three-
way merge if the patch fails to apply.

During the hg qpush hg -m, each patch in the series file is applied normally. If a patch
applies with fuzz or rejects, MQ looks at the queue you qsaved, and performs a three-way merge
with the corresponding changeset. This merge uses Mercurial's normal merge machinery, so it
may pop up a GUI merge tool to help you to resolve problems.

When you finish resolving the effects of a patch, MQ refreshes your patch based on the result
of the merge.

At the end of this process, your repository will have one extra head from the old patch queue,
and a copy of the old patch queue will be in .hg/patches.N. You can remove the extra head
using hg qpop -a -n patches.N or hg strip. You can delete .hg/patches.N once you are sure
that you no longer need it as a backup.

12.10. 标识补丁
MQ commands that work with patches let you refer to a patch either by using its name or by

a number. By name is obvious enough; pass the name foo.patch to qpush, for example, and it
will push patches until foo.patch is applied.

As a shortcut, you can refer to a patch using both a name and a numeric offset;
foo.patch-2 means “two patches before foo.patch”, while bar.patch+4 means “four
patches after bar.patch”.

Referring to a patch by index isn't much different. The first patch printed in the output of
qseries is patch zero (yes, it's one of those start-at-zero counting systems); the second is patch
one; and so on.

MQ also makes it easy to work with patches when you are using normal Mercurial
commands. Every command that accepts a changeset ID will also accept the name of an applied
patch. MQ augments the tags normally in the repository with an eponymous one for each applied
patch. In addition, the special tags qbase and qtip identify the “bottom-most” and topmost
applied patches, respectively.

使用 MQ 管理修改

172

These additions to Mercurial's normal tagging capabilities make dealing with patches even
more of a breeze.

• Want to patchbomb a mailing list with your latest series of changes?
hg email qbase:qtip

(Don't know what “patchbombing” is? See 第 14.4 节 “使用扩展 patchbomb 通过 email 发
送修改”.)

• Need to see all of the patches since foo.patch that have touched files in a subdirectory of
your tree?
hg log -r foo.patch:qtip subdir

Because MQ makes the names of patches available to the rest of Mercurial through its normal
internal tag machinery, you don't need to type in the entire name of a patch when you want to
identify it by name.

Another nice consequence of representing patch names as tags is that when you run the hg
log command, it will display a patch's name as a tag, simply as part of its normal output. This
makes it easy to visually distinguish applied patches from underlying “normal” revisions. The
following example shows a few normal Mercurial commands in use with applied patches.
$ hg qapplied
first.patch
second.patch
$ hg log -r qbase:qtip
changeset: 1:7e1acbd2d96d
tag: first.patch
tag: qbase
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:54 2009 +0000
summary: [mq]: first.patch

changeset: 2:c36924610f18
tag: qtip
tag: second.patch
tag: tip
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:54 2009 +0000
summary: [mq]: second.patch

$ hg export second.patch
HG changeset patch
User Bryan O'Sullivan <bos@serpentine.com>
Date 1256261874 0
Node ID c36924610f18f5c7c08459a1f2103d547696ce14
Parent 7e1acbd2d96d38f1c843910bf9a2d80f7daf21e4
[mq]: second.patch

diff -r 7e1acbd2d96d -r c36924610f18 other.c
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/other.c Fri Oct 23 01:37:54 2009 +0000
@@ -0,0 +1,1 @@
+double u;

12.11. 其它需要了解的东西
There are a number of aspects of MQ usage that don't fit tidily into sections of their own, but

that are good to know. Here they are, in one place.

使用 MQ 管理修改

173

• Normally, when you qpop a patch and qpush it again, the changeset that represents the patch
after the pop/push will have a different identity than the changeset that represented the hash
beforehand. See 第 B.1.14 节 “qpush—增加补丁到堆栈” for information as to why this is.

• It's not a good idea to hg merge changes from another branch with a patch changeset, at least
if you want to maintain the “patchiness” of that changeset and changesets below it on the patch
stack. If you try to do this, it will appear to succeed, but MQ will become confused.

12.12. 在版本库管理补丁
Because MQ's .hg/patches directory resides outside a Mercurial repository's working

directory, the “underlying” Mercurial repository knows nothing about the management or
presence of patches.

This presents the interesting possibility of managing the contents of the patch directory as
a Mercurial repository in its own right. This can be a useful way to work. For example, you can
work on a patch for a while, qrefresh it, then hg commit the current state of the patch. This lets
you “roll back” to that version of the patch later on.

You can then share different versions of the same patch stack among multiple underlying
repositories. I use this when I am developing a Linux kernel feature. I have a pristine copy of my
kernel sources for each of several CPU architectures, and a cloned repository under each that
contains the patches I am working on. When I want to test a change on a different architecture, I
push my current patches to the patch repository associated with that kernel tree, pop and push
all of my patches, and build and test that kernel.

Managing patches in a repository makes it possible for multiple developers to work on the
same patch series without colliding with each other, all on top of an underlying source base that
they may or may not control.

12.12.1. MQ 支持补丁版本库
MQ helps you to work with the .hg/patches directory as a repository; when you prepare

a repository for working with patches using qinit, you can pass the hg -c option to create the
.hg/patches directory as a Mercurial repository.

注意

If you forget to use the hg -c option, you can simply go into the .hg/patches
directory at any time and run hg init. Don't forget to add an entry for the status file
to the .hgignore file, though

(hg qinit hg -c does this for you automatically); you really don't want to manage
the status file.

As a convenience, if MQ notices that the .hg/patches directory is a repository, it will
automatically hg add every patch that you create and import.

MQ provides a shortcut command, qcommit, that runs hg commit in the .hg/patches
directory. This saves some bothersome typing.

使用 MQ 管理修改

174

Finally, as a convenience to manage the patch directory, you can define the alias mq on
Unix systems. For example, on Linux systems using the bash shell, you can include the following
snippet in your ~/.bashrc.
alias mq=`hg -R $(hg root)/.hg/patches'

You can then issue commands of the form mq pull from the main repository.

12.12.2. 需要注意的事情
MQ's support for working with a repository full of patches is limited in a few small respects.

MQ cannot automatically detect changes that you make to the patch directory. If you hg pull,
manually edit, or hg update changes to patches or the series file, you will have to hg qpop -
a and then hg qpush -a in the underlying repository to see those changes show up there. If you
forget to do this, you can confuse MQ's idea of which patches are applied.

12.13. 操作补丁的第三方工具
Once you've been working with patches for a while, you'll find yourself hungry for tools that

will help you to understand and manipulate the patches you're dealing with.

The diffstat command [web:diffstat] generates a histogram of the modifications made to
each file in a patch. It provides a good way to “get a sense of” a patch—which files it affects, and
how much change it introduces to each file and as a whole. (I find that it's a good idea to use
diffstat's -p option as a matter of course, as otherwise it will try to do clever things with prefixes
of file names that inevitably confuse at least me.)
$ diffstat -p1 remove-redundant-null-checks.patch
 drivers/char/agp/sgi-agp.c | 5 ++---
 drivers/char/hvcs.c | 11 +++++------
 drivers/message/fusion/mptfc.c | 6 ++----
 drivers/message/fusion/mptsas.c | 3 +--
 drivers/net/fs_enet/fs_enet-mii.c | 3 +--
 drivers/net/wireless/ipw2200.c | 22 ++++++----------------
 drivers/scsi/libata-scsi.c | 4 +---
 drivers/video/au1100fb.c | 3 +--
 8 files changed, 19 insertions(+), 38 deletions(-)
$ filterdiff -i '*/video/*' remove-redundant-null-checks.patch
--- a/drivers/video/au1100fb.c~remove-redundant-null-checks-before-free-in-drivers
+++ a/drivers/video/au1100fb.c
@@ -743,8 +743,7 @@ void __exit au1100fb_cleanup(void)
 {
 driver_unregister(&au1100fb_driver);

- if (drv_info.opt_mode)
- kfree(drv_info.opt_mode);
+ kfree(drv_info.opt_mode);
 }

 module_init(au1100fb_init);

The patchutils package [web:patchutils] is invaluable. It provides a set of small utilities
that follow the “Unix philosophy;” each does one useful thing with a patch. The patchutils
command I use most is filterdiff, which extracts subsets from a patch file. For example, given a
patch that modifies hundreds of files across dozens of directories, a single invocation of filterdiff

使用 MQ 管理修改

175

can generate a smaller patch that only touches files whose names match a particular glob pattern.
See 第 13.9.2 节 “察看补丁的历史” for another example.

12.14. 操作补丁的好习惯
Whether you are working on a patch series to submit to a free software or open source

project, or a series that you intend to treat as a sequence of regular changesets when you're done,
you can use some simple techniques to keep your work well organized.

Give your patches descriptive names. A good name for a patch might be rework-device-
alloc.patch, because it will immediately give you a hint what the purpose of the patch is. Long
names shouldn't be a problem; you won't be typing the names often, but you will be running
commands like qapplied and qtop over and over. Good naming becomes especially important
when you have a number of patches to work with, or if you are juggling a number of different
tasks and your patches only get a fraction of your attention.

Be aware of what patch you're working on. Use the qtop command and skim over the text of
your patches frequently—for example, using hg tip -p)—to be sure of where you stand. I have
several times worked on and qrefreshed a patch other than the one I intended, and it's often
tricky to migrate changes into the right patch after making them in the wrong one.

For this reason, it is very much worth investing a little time to learn how to use some of the
third-party tools I described in 第 12.13 节 “操作补丁的第三方工具”, particularly diffstat and
filterdiff. The former will give you a quick idea of what changes your patch is making, while the
latter makes it easy to splice hunks selectively out of one patch and into another.

12.15. MQ 手册
12.15.1. 管理“琐碎的”补丁

Because the overhead of dropping files into a new Mercurial repository is so low, it makes
a lot of sense to manage patches this way even if you simply want to make a few changes to a
source tarball that you downloaded.

Begin by downloading and unpacking the source tarball, and turning it into a Mercurial
repository.
$ download netplug-1.2.5.tar.bz2
$ tar jxf netplug-1.2.5.tar.bz2
$ cd netplug-1.2.5
$ hg init
$ hg commit -q --addremove --message netplug-1.2.5
$ cd ..
$ hg clone netplug-1.2.5 netplug
updating working directory
18 files updated, 0 files merged, 0 files removed, 0 files unresolved

Continue by creating a patch stack and making your changes.
$ cd netplug
$ hg qinit
$ hg qnew -m 'fix build problem with gcc 4' build-fix.patch
$ perl -pi -e 's/int addr_len/socklen_t addr_len/' netlink.c

使用 MQ 管理修改

176

$ hg qrefresh
$ hg tip -p
changeset: 1:3fbcde568e69
tag: qtip
tag: build-fix.patch
tag: tip
tag: qbase
user: Bryan O'Sullivan <bos@serpentine.com>
date: Fri Oct 23 01:37:55 2009 +0000
summary: fix build problem with gcc 4

diff -r c85ed5f56d80 -r 3fbcde568e69 netlink.c
--- a/netlink.c Fri Oct 23 01:37:55 2009 +0000
+++ b/netlink.c Fri Oct 23 01:37:55 2009 +0000
@@ -275,7 +275,7 @@
 exit(1);
 }

- int addr_len = sizeof(addr);
+ socklen_t addr_len = sizeof(addr);

 if (getsockname(fd, (struct sockaddr *) &addr, &addr_len) == -1) {
 do_log(LOG_ERR, "Could not get socket details: %m");

Let's say a few weeks or months pass, and your package author releases a new version. First,
bring their changes into the repository.
$ hg qpop -a
patch queue now empty
$ cd ..
$ download netplug-1.2.8.tar.bz2
$ hg clone netplug-1.2.5 netplug-1.2.8
updating working directory
18 files updated, 0 files merged, 0 files removed, 0 files unresolved
$ cd netplug-1.2.8
$ hg locate -0 | xargs -0 rm
$ cd ..
$ tar jxf netplug-1.2.8.tar.bz2
$ cd netplug-1.2.8
$ hg commit --addremove --message netplug-1.2.8

The pipeline starting with hg locate above deletes all files in the working directory, so that
hg commit's --addremove option can actually tell which files have really been removed in the
newer version of the source.

Finally, you can apply your patches on top of the new tree.
$ cd ../netplug
$ hg pull ../netplug-1.2.8
pulling from ../netplug-1.2.8
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 12 changes to 12 files
(run 'hg update' to get a working copy)
$ hg qpush -a
(working directory not at a head)
applying build-fix.patch
now at: build-fix.patch

12.15.2. 组合全部的补丁
MQ provides a command, qfold that lets you combine entire patches. This “folds” the patches

you name, in the order you name them, into the topmost applied patch, and concatenates their

使用 MQ 管理修改

177

descriptions onto the end of its description. The patches that you fold must be unapplied before
you fold them.

The order in which you fold patches matters. If your topmost applied patch is foo, and you
qfold bar and quux into it, you will end up with a patch that has the same effect as if you applied
first foo, then bar, followed by quux.

12.15.3. 合并补丁的部分内容到其它补丁
Merging part of one patch into another is more difficult than combining entire patches.

If you want to move changes to entire files, you can use filterdiff's -i and -x options to
choose the modifications to snip out of one patch, concatenating its output onto the end of the
patch you want to merge into. You usually won't need to modify the patch you've merged the
changes from. Instead, MQ will report some rejected hunks when you qpush it (from the hunks
you moved into the other patch), and you can simply qrefresh the patch to drop the duplicate
hunks.

If you have a patch that has multiple hunks modifying a file, and you only want to move a
few of those hunks, the job becomes more messy, but you can still partly automate it. Use lsdiff
-nvv to print some metadata about the patch.
$ lsdiff -nvv remove-redundant-null-checks.patch
22 File #1 a/drivers/char/agp/sgi-agp.c
 24 Hunk #1 static int __devinit agp_sgi_init(void)
37 File #2 a/drivers/char/hvcs.c
 39 Hunk #1 static struct tty_operations hvcs_ops =
 53 Hunk #2 static int hvcs_alloc_index_list(int n)
69 File #3 a/drivers/message/fusion/mptfc.c
 71 Hunk #1 mptfc_GetFcDevPage0(MPT_ADAPTER *ioc, in
85 File #4 a/drivers/message/fusion/mptsas.c
 87 Hunk #1 mptsas_probe_hba_phys(MPT_ADAPTER *ioc)
98 File #5 a/drivers/net/fs_enet/fs_enet-mii.c
 100 Hunk #1 static struct fs_enet_mii_bus *create_bu
111 File #6 a/drivers/net/wireless/ipw2200.c
 113 Hunk #1 static struct ipw_fw_error *ipw_alloc_er
 126 Hunk #2 static ssize_t clear_error(struct device
 140 Hunk #3 static void ipw_irq_tasklet(struct ipw_p
 150 Hunk #4 static void ipw_pci_remove(struct pci_de
164 File #7 a/drivers/scsi/libata-scsi.c
 166 Hunk #1 int ata_cmd_ioctl(struct scsi_device *sc
178 File #8 a/drivers/video/au1100fb.c
 180 Hunk #1 void __exit au1100fb_cleanup(void)

This command prints three different kinds of number:

• (in the first column) a file number to identify each file modified in the patch;

• (on the next line, indented) the line number within a modified file where a hunk starts; and

• (on the same line) a hunk number to identify that hunk.

You'll have to use some visual inspection, and reading of the patch, to identify the file and
hunk numbers you'll want, but you can then pass them to to filterdiff's --files and --hunks
options, to select exactly the file and hunk you want to extract.

Once you have this hunk, you can concatenate it onto the end of your destination patch and
continue with the remainder of 第 12.15.2 节 “组合全部的补丁”.

使用 MQ 管理修改

178

12.16. MQ 与 quilt 的区别
If you are already familiar with quilt, MQ provides a similar command set. There are a few

differences in the way that it works.

You will already have noticed that most quilt commands have MQ counterparts that simply
begin with a “q”. The exceptions are quilt's add and remove commands, the counterparts for
which are the normal Mercurial hg add and hg remove commands. There is no MQ equivalent
of the quilt edit command.

179

第 13 章 MQ 的高级用法
While it's easy to pick up straightforward uses of Mercurial Queues, use of a little discipline

and some of MQ's less frequently used capabilities makes it possible to work in complicated
development environments.

In this chapter, I will use as an example a technique I have used to manage the development
of an Infiniband device driver for the Linux kernel. The driver in question is large (at least as
drivers go), with 25,000 lines of code spread across 35 source files. It is maintained by a small
team of developers.

While much of the material in this chapter is specific to Linux, the same principles apply to
any code base for which you're not the primary owner, and upon which you need to do a lot of
development.

13.1. 多个目标的问题
The Linux kernel changes rapidly, and has never been internally stable; developers

frequently make drastic changes between releases. This means that a version of the driver that
works well with a particular released version of the kernel will not even compile correctly
against, typically, any other version.

To maintain a driver, we have to keep a number of distinct versions of Linux in mind.

• One target is the main Linux kernel development tree. Maintenance of the code is in this case
partly shared by other developers in the kernel community, who make “drive-by” modifications
to the driver as they develop and refine kernel subsystems.

• We also maintain a number of “backports” to older versions of the Linux kernel, to support
the needs of customers who are running older Linux distributions that do not incorporate our
drivers. (To backport a piece of code is to modify it to work in an older version of its target
environment than the version it was developed for.)

• Finally, we make software releases on a schedule that is necessarily not aligned with those used
by Linux distributors and kernel developers, so that we can deliver new features to customers
without forcing them to upgrade their entire kernels or distributions.

13.1.1. 工作不好的诱人方法
There are two “standard” ways to maintain a piece of software that has to target many

different environments.

The first is to maintain a number of branches, each intended for a single target. The trouble
with this approach is that you must maintain iron discipline in the flow of changes between
repositories. A new feature or bug fix must start life in a “pristine” repository, then percolate out
to every backport repository. Backport changes are more limited in the branches they should

MQ 的高级用法

180

propagate to; a backport change that is applied to a branch where it doesn't belong will probably
stop the driver from compiling.

The second is to maintain a single source tree filled with conditional statements that turn
chunks of code on or off depending on the intended target. Because these “ifdefs” are not allowed
in the Linux kernel tree, a manual or automatic process must be followed to strip them out
and yield a clean tree. A code base maintained in this fashion rapidly becomes a rat's nest of
conditional blocks that are difficult to understand and maintain.

Neither of these approaches is well suited to a situation where you don't “own” the canonical
copy of a source tree. In the case of a Linux driver that is distributed with the standard kernel,
Linus's tree contains the copy of the code that will be treated by the world as canonical. The
upstream version of “my” driver can be modified by people I don't know, without me even finding
out about it until after the changes show up in Linus's tree.

These approaches have the added weakness of making it difficult to generate well-formed
patches to submit upstream.

In principle, Mercurial Queues seems like a good candidate to manage a development
scenario such as the above. While this is indeed the case, MQ contains a few added features that
make the job more pleasant.

13.2. 有条件的应用补丁
Perhaps the best way to maintain sanity with so many targets is to be able to choose specific

patches to apply for a given situation. MQ provides a feature called “guards” (which originates
with quilt's guards command) that does just this. To start off, let's create a simple repository
for experimenting in.

$ hg qinit
$ hg qnew hello.patch
$ echo hello > hello
$ hg add hello
$ hg qrefresh
$ hg qnew goodbye.patch
$ echo goodbye > goodbye
$ hg add goodbye
$ hg qrefresh

This gives us a tiny repository that contains two patches that don't have any dependencies
on each other, because they touch different files.

The idea behind conditional application is that you can “tag” a patch with a guard, which is
simply a text string of your choosing, then tell MQ to select specific guards to use when applying
patches. MQ will then either apply, or skip over, a guarded patch, depending on the guards that
you have selected.

A patch can have an arbitrary number of guards; each one is positive (“apply this patch if
this guard is selected”) or negative (“skip this patch if this guard is selected”). A patch with no
guards is always applied.

MQ 的高级用法

181

13.3. 控制补丁的应用条件
The qguard command lets you determine which guards should apply to a patch, or display

the guards that are already in effect. Without any arguments, it displays the guards on the current
topmost patch.
$ hg qguard
goodbye.patch: unguarded

To set a positive guard on a patch, prefix the name of the guard with a “+”.
$ hg qguard +foo
$ hg qguard
goodbye.patch: +foo

To set a negative guard on a patch, prefix the name of the guard with a “-”.
$ hg qguard -- hello.patch -quux
$ hg qguard hello.patch
hello.patch: -quux

Notice that we prefixed the arguments to the hg qguard command with a -- here, so that
Mercurial would not interpret the text -quux as an option.

Setting vs. modifying

The qguard command sets the guards on a patch; it doesn't modify them. What this
means is that if you run hg qguard +a +b on a patch, then hg qguard +c on the same
patch, the only guard that will be set on it afterwards is +c.

Mercurial stores guards in the series file; the form in which they are stored is easy both
to understand and to edit by hand. (In other words, you don't have to use the qguard command
if you don't want to; it's okay to simply edit the series file.)
$ cat .hg/patches/series
hello.patch #-quux
goodbye.patch #+foo

13.4. 选择使用的条件
The qselect command determines which guards are active at a given time. The effect of this

is to determine which patches MQ will apply the next time you run qpush. It has no other effect;
in particular, it doesn't do anything to patches that are already applied.

With no arguments, the qselect command lists the guards currently in effect, one per line
of output. Each argument is treated as the name of a guard to apply.
$ hg qpop -a
patch queue now empty
$ hg qselect
no active guards
$ hg qselect foo
number of unguarded, unapplied patches has changed from 1 to 2
$ hg qselect
foo

MQ 的高级用法

182

In case you're interested, the currently selected guards are stored in the guards file.
$ cat .hg/patches/guards
foo

We can see the effect the selected guards have when we run qpush.
$ hg qpush -a
applying hello.patch
applying goodbye.patch
now at: goodbye.patch

A guard cannot start with a “+” or “-” character. The name of a guard must not contain white
space, but most other characters are acceptable. If you try to use a guard with an invalid name,
MQ will complain:
$ hg qselect +foo
abort: guard '+foo' starts with invalid character: '+'

Changing the selected guards changes the patches that are applied.
$ hg qselect quux
number of guarded, applied patches has changed from 0 to 2
$ hg qpop -a
patch queue now empty
$ hg qpush -a
patch series already fully applied

You can see in the example below that negative guards take precedence over positive guards.
$ hg qselect foo bar
number of unguarded, unapplied patches has changed from 0 to 2
$ hg qpop -a
no patches applied
$ hg qpush -a
applying hello.patch
applying goodbye.patch
now at: goodbye.patch

13.5. MQ 应用补丁的规则
The rules that MQ uses when deciding whether to apply a patch are as follows.

• A patch that has no guards is always applied.

• If the patch has any negative guard that matches any currently selected guard, the patch is
skipped.

• If the patch has any positive guard that matches any currently selected guard, the patch is
applied.

• If the patch has positive or negative guards, but none matches any currently selected guard,
the patch is skipped.

13.6. 修剪工作环境
In working on the device driver I mentioned earlier, I don't apply the patches to a normal

Linux kernel tree. Instead, I use a repository that contains only a snapshot of the source files and

MQ 的高级用法

183

headers that are relevant to Infiniband development. This repository is 1% the size of a kernel
repository, so it's easier to work with.

I then choose a “base” version on top of which the patches are applied. This is a snapshot
of the Linux kernel tree as of a revision of my choosing. When I take the snapshot, I record the
changeset ID from the kernel repository in the commit message. Since the snapshot preserves
the “shape” and content of the relevant parts of the kernel tree, I can apply my patches on top of
either my tiny repository or a normal kernel tree.

Normally, the base tree atop which the patches apply should be a snapshot of a very recent
upstream tree. This best facilitates the development of patches that can easily be submitted
upstream with few or no modifications.

13.7. 分类补丁系列
I categorise the patches in the series file into a number of logical groups. Each section

of like patches begins with a block of comments that describes the purpose of the patches that
follow.

The sequence of patch groups that I maintain follows. The ordering of these groups is
important; I'll describe why after I introduce the groups.

• The “accepted” group. Patches that the development team has submitted to the maintainer
of the Infiniband subsystem, and which he has accepted, but which are not present in the
snapshot that the tiny repository is based on. These are “read only” patches, present only to
transform the tree into a similar state as it is in the upstream maintainer's repository.

• The “rework” group. Patches that I have submitted, but that the upstream maintainer has
requested modifications to before he will accept them.

• The “pending” group. Patches that I have not yet submitted to the upstream maintainer, but
which we have finished working on. These will be “read only” for a while. If the upstream
maintainer accepts them upon submission, I'll move them to the end of the “accepted” group.
If he requests that I modify any, I'll move them to the beginning of the “rework” group.

• The “in progress” group. Patches that are actively being developed, and should not be
submitted anywhere yet.

• The “backport” group. Patches that adapt the source tree to older versions of the kernel tree.

• The “do not ship” group. Patches that for some reason should never be submitted upstream.
For example, one such patch might change embedded driver identification strings to make it
easier to distinguish, in the field, between an out-of-tree version of the driver and a version
shipped by a distribution vendor.

Now to return to the reasons for ordering groups of patches in this way. We would like the
lowest patches in the stack to be as stable as possible, so that we will not need to rework higher
patches due to changes in context. Putting patches that will never be changed first in the series
file serves this purpose.

MQ 的高级用法

184

We would also like the patches that we know we'll need to modify to be applied on top of a
source tree that resembles the upstream tree as closely as possible. This is why we keep accepted
patches around for a while.

The “backport” and “do not ship” patches float at the end of the series file. The backport
patches must be applied on top of all other patches, and the “do not ship” patches might as well
stay out of harm's way.

13.8. 维护补丁系列
In my work, I use a number of guards to control which patches are to be applied.

• “Accepted” patches are guarded with accepted. I enable this guard most of the time. When
I'm applying the patches on top of a tree where the patches are already present, I can turn this
patch off, and the patches that follow it will apply cleanly.

• Patches that are “finished”, but not yet submitted, have no guards. If I'm applying the patch
stack to a copy of the upstream tree, I don't need to enable any guards in order to get a
reasonably safe source tree.

• Those patches that need reworking before being resubmitted are guarded with rework.

• For those patches that are still under development, I use devel.

• A backport patch may have several guards, one for each version of the kernel to which it applies.
For example, a patch that backports a piece of code to 2.6.9 will have a 2.6.9 guard.

This variety of guards gives me considerable flexibility in determining what kind of
source tree I want to end up with. For most situations, the selection of appropriate guards is
automated during the build process, but I can manually tune the guards to use for less common
circumstances.

13.8.1. 编写向后移植补丁的艺术
Using MQ, writing a backport patch is a simple process. All such a patch has to do is modify

a piece of code that uses a kernel feature not present in the older version of the kernel, so that
the driver continues to work correctly under that older version.

A useful goal when writing a good backport patch is to make your code look as if it was
written for the older version of the kernel you're targeting. The less obtrusive the patch, the easier
it will be to understand and maintain. If you're writing a collection of backport patches to avoid
the “rat's nest” effect of lots of #ifdefs (hunks of source code that are only used conditionally) in
your code, don't introduce version-dependent #ifdefs into the patches. Instead, write several
patches, each of which makes unconditional changes, and control their application using guards.

There are two reasons to divide backport patches into a distinct group, away from the
“regular” patches whose effects they modify. The first is that intermingling the two makes it more
difficult to use a tool like the patchbomb extension to automate the process of submitting the
patches to an upstream maintainer. The second is that a backport patch could perturb the context

MQ 的高级用法

185

in which a subsequent regular patch is applied, making it impossible to apply the regular patch
cleanly without the earlier backport patch already being applied.

13.9. 使用 MQ 开发的技巧
13.9.1. 将补丁放到几个目录中

If you're working on a substantial project with MQ, it's not difficult to accumulate a large
number of patches. For example, I have one patch repository that contains over 250 patches.

If you can group these patches into separate logical categories, you can if you like store them
in different directories; MQ has no problems with patch names that contain path separators.

13.9.2. 察看补丁的历史
If you're developing a set of patches over a long time, it's a good idea to maintain them

in a repository, as discussed in 第 12.12 节 “在版本库管理补丁”. If you do so, you'll quickly
discover that using the hg diff command to look at the history of changes to a patch is unworkable.
This is in part because you're looking at the second derivative of the real code (a diff of a diff),
but also because MQ adds noise to the process by modifying time stamps and directory names
when it updates a patch.

However, you can use the extdiff extension, which is bundled with Mercurial, to turn a diff
of two versions of a patch into something readable. To do this, you will need a third-party package
called patchutils [web:patchutils]. This provides a command named interdiff, which shows
the differences between two diffs as a diff. Used on two versions of the same diff, it generates a
diff that represents the diff from the first to the second version.

You can enable the extdiff extension in the usual way, by adding a line to the
extensions section of your ~/.hgrc.
[extensions]
extdiff =

The interdiff command expects to be passed the names of two files, but the extdiff
extension passes the program it runs a pair of directories, each of which can contain an arbitrary
number of files. We thus need a small program that will run interdiff on each pair of files in these
two directories. This program is available as hg-interdiff in the examples directory of the
source code repository that accompanies this book.

With the hg-interdiff program in your shell's search path, you can run it as follows,
from inside an MQ patch directory:
hg extdiff -p hg-interdiff -r A:B my-change.patch

Since you'll probably want to use this long-winded command a lot, you can get hgext to
make it available as a normal Mercurial command, again by editing your ~/.hgrc.
[extdiff]
cmd.interdiff = hg-interdiff

MQ 的高级用法

186

This directs hgext to make an interdiff command available, so you can now shorten
the previous invocation of extdiff to something a little more wieldy.
hg interdiff -r A:B my-change.patch

注意

The interdiff command works well only if the underlying files against which versions
of a patch are generated remain the same. If you create a patch, modify the underlying
files, and then regenerate the patch, interdiff may not produce useful output.

The extdiff extension is useful for more than merely improving the presentation of MQ
patches. To read more about it, go to 第 14.2 节 “使用扩展 extdiff 以扩展差异支持”.

187

第 14 章 使用扩展增加功能
While the core of Mercurial is quite complete from a functionality standpoint, it's

deliberately shorn of fancy features. This approach of preserving simplicity keeps the software
easy to deal with for both maintainers and users.

However, Mercurial doesn't box you in with an inflexible command set: you can add features
to it as extensions (sometimes known as plugins). We've already discussed a few of these
extensions in earlier chapters.

• 第 3.3 节 “简化拉-合并-提交程序” covers the fetch extension; this combines pulling new
changes and merging them with local changes into a single command, fetch.

• In 第 10 章 使用钩子处理版本库事件, we covered several extensions that are useful for hook-
related functionality: acl adds access control lists; bugzilla adds integration with the
Bugzilla bug tracking system; and notify sends notification emails on new changes.

• The Mercurial Queues patch management extension is so invaluable that it merits two chapters
and an appendix all to itself. 第 12 章 使用 MQ 管理修改 covers the basics; 第 13 章 MQ 的
高级用法 discusses advanced topics; and 附录 B, Mercurial 队列参考 goes into detail on each
command.

In this chapter, we'll cover some of the other extensions that are available for Mercurial,
and briefly touch on some of the machinery you'll need to know about if you want to write an
extension of your own.

• In 第 14.1 节 “使用扩展 inotify 以提高性能”, we'll discuss the possibility of huge
performance improvements using the inotify extension.

14.1. 使用扩展 inotify 以提高性能
Are you interested in having some of the most common Mercurial operations run as much

as a hundred times faster? Read on!

Mercurial has great performance under normal circumstances. For example, when you run
the hg status command, Mercurial has to scan almost every directory and file in your repository
so that it can display file status. Many other Mercurial commands need to do the same work
behind the scenes; for example, the hg diff command uses the status machinery to avoid doing
an expensive comparison operation on files that obviously haven't changed.

Because obtaining file status is crucial to good performance, the authors of Mercurial have
optimised this code to within an inch of its life. However, there's no avoiding the fact that when
you run hg status, Mercurial is going to have to perform at least one expensive system call for
each managed file to determine whether it's changed since the last time Mercurial checked. For
a sufficiently large repository, this can take a long time.

To put a number on the magnitude of this effect, I created a repository containing 150,000
managed files. I timed hg status as taking ten seconds to run, even when none of those files had
been modified.

使用扩展增加功能

188

Many modern operating systems contain a file notification facility. If a program signs up to
an appropriate service, the operating system will notify it every time a file of interest is created,
modified, or deleted. On Linux systems, the kernel component that does this is called inotify.

Mercurial's inotify extension talks to the kernel's inotify component to optimise hg
status commands. The extension has two components. A daemon sits in the background and
receives notifications from the inotify subsystem. It also listens for connections from a regular
Mercurial command. The extension modifies Mercurial's behavior so that instead of scanning
the filesystem, it queries the daemon. Since the daemon has perfect information about the state
of the repository, it can respond with a result instantaneously, avoiding the need to scan every
directory and file in the repository.

Recall the ten seconds that I measured plain Mercurial as taking to run hg status on a
150,000 file repository. With the inotify extension enabled, the time dropped to 0.1 seconds,
a factor of one hundred faster.

Before we continue, please pay attention to some caveats.

• The inotify extension is Linux-specific. Because it interfaces directly to the Linux kernel's
inotify subsystem, it does not work on other operating systems.

• It should work on any Linux distribution that was released after early 2005. Older distributions
are likely to have a kernel that lacks inotify, or a version of glibc that does not have the
necessary interfacing support.

• Not all filesystems are suitable for use with the inotify extension. Network filesystems
such as NFS are a non-starter, for example, particularly if you're running Mercurial on several
systems, all mounting the same network filesystem. The kernel's inotify system has no
way of knowing about changes made on another system. Most local filesystems (e.g. ext3, XFS,
ReiserFS) should work fine.

The inotify extension is not yet shipped with Mercurial as of May 2007, so it's a little more
involved to set up than other extensions. But the performance improvement is worth it!

The extension currently comes in two parts: a set of patches to the Mercurial source code,
and a library of Python bindings to the inotify subsystem.

注意

There are two Python inotify binding libraries. One of them is called pyinotify,
and is packaged by some Linux distributions as python-inotify. This is not the
one you'll need, as it is too buggy and inefficient to be practical.

To get going, it's best to already have a functioning copy of Mercurial installed.

注意

If you follow the instructions below, you'll be replacing and overwriting any existing
installation of Mercurial that you might already have, using the latest “bleeding edge”
Mercurial code. Don't say you weren't warned!

使用扩展增加功能

189

1. Clone the Python inotify binding repository. Build and install it.
hg clone http://hg.kublai.com/python/inotify
cd inotify
python setup.py build --force
sudo python setup.py install --skip-build

2. Clone the crew Mercurial repository. Clone the inotify patch repository so that Mercurial
Queues will be able to apply patches to your cope of the crew repository.
hg clone http://hg.intevation.org/mercurial/crew
hg clone crew inotify
hg clone http://hg.kublai.com/mercurial/patches/inotify inotify/.hg/patches

3. Make sure that you have the Mercurial Queues extension, mq, enabled. If you've never used
MQ, read 第 12.5 节 “开始使用 MQ” to get started quickly.

4. Go into the inotify repo, and apply all of the inotify patches using the hg -a option to
the qpush command.
cd inotify
hg qpush -a

5. If you get an error message from qpush, you should not continue. Instead, ask for help.

6. Build and install the patched version of Mercurial.
python setup.py build --force
sudo python setup.py install --skip-build

Once you've build a suitably patched version of Mercurial, all you need to do to enable the
inotify extension is add an entry to your ~/.hgrc.
[extensions] inotify =

When the inotify extension is enabled, Mercurial will automatically and transparently
start the status daemon the first time you run a command that needs status in a repository. It
runs one status daemon per repository.

The status daemon is started silently, and runs in the background. If you look at a list of
running processes after you've enabled the inotify extension and run a few commands in
different repositories, you'll thus see a few hg processes sitting around, waiting for updates from
the kernel and queries from Mercurial.

The first time you run a Mercurial command in a repository when you have the inotify
extension enabled, it will run with about the same performance as a normal Mercurial command.
This is because the status daemon needs to perform a normal status scan so that it has a baseline
against which to apply later updates from the kernel. However, every subsequent command that
does any kind of status check should be noticeably faster on repositories of even fairly modest
size. Better yet, the bigger your repository is, the greater a performance advantage you'll see. The
inotify daemon makes status operations almost instantaneous on repositories of all sizes!

If you like, you can manually start a status daemon using the inserve command. This gives
you slightly finer control over how the daemon ought to run. This command will of course only
be available when the inotify extension is enabled.

使用扩展增加功能

190

When you're using the inotify extension, you should notice no difference at all in
Mercurial's behavior, with the sole exception of status-related commands running a whole lot
faster than they used to. You should specifically expect that commands will not print different
output; neither should they give different results. If either of these situations occurs, please
report a bug.

14.2. 使用扩展 extdiff 以扩展差异支持
Mercurial 内置命令 hg diff 的输出与统一差异不同。

$ hg diff
diff -r 17a45ade0680 myfile
--- a/myfile Fri Oct 23 01:37:50 2009 +0000
+++ b/myfile Fri Oct 23 01:37:50 2009 +0000
@@ -1,1 +1,2 @@
 The first line.
+The second line.

If you would like to use an external tool to display modifications, you'll want to use the
extdiff extension. This will let you use, for example, a graphical diff tool.

The extdiff extension is bundled with Mercurial, so it's easy to set up. In the extensions
section of your ~/.hgrc, simply add a one-line entry to enable the extension.
[extensions]
extdiff =

This introduces a command named extdiff, which by default uses your system's diff
command to generate a unified diff in the same form as the built-in hg diff command.
$ hg extdiff
--- a.17a45ade0680/myfile 2009-10-23 01:37:51.028602723 +0000
+++ /tmp/extdiffe-J9UD/a/myfile 2009-10-23 01:37:50.924903453 +0000
@@ -1 +1,2 @@
 The first line.
+The second line.

The result won't be exactly the same as with the built-in hg diff variations, because the
output of diff varies from one system to another, even when passed the same options.

As the “making snapshot” lines of output above imply, the extdiff command works
by creating two snapshots of your source tree. The first snapshot is of the source revision;
the second, of the target revision or working directory. The extdiff command generates these
snapshots in a temporary directory, passes the name of each directory to an external diff viewer,
then deletes the temporary directory. For efficiency, it only snapshots the directories and files
that have changed between the two revisions.

Snapshot directory names have the same base name as your repository. If your repository
path is /quux/bar/foo, then foo will be the name of each snapshot directory. Each snapshot
directory name has its changeset ID appended, if appropriate. If a snapshot is of revision
a631aca1083f, the directory will be named foo.a631aca1083f. A snapshot of the working
directory won't have a changeset ID appended, so it would just be foo in this example. To see
what this looks like in practice, look again at the extdiff example above. Notice that the diff has
the snapshot directory names embedded in its header.

使用扩展增加功能

191

The extdiff command accepts two important options. The hg -p option lets you choose a
program to view differences with, instead of diff. With the hg -o option, you can change the
options that extdiff passes to the program (by default, these options are “-Npru”, which only
make sense if you're running diff). In other respects, the extdiff command acts similarly to the
built-in hg diff command: you use the same option names, syntax, and arguments to specify the
revisions you want, the files you want, and so on.

As an example, here's how to run the normal system diff command, getting it to generate
context diffs (using the -c option) instead of unified diffs, and five lines of context instead of the
default three (passing 5 as the argument to the -C option).
$ hg extdiff -o -NprcC5
*** a.17a45ade0680/myfile Fri Oct 23 01:37:51 2009
--- /tmp/extdiffe-J9UD/a/myfile Fri Oct 23 01:37:50 2009

*** 1 ****
--- 1,2 ----
 The first line.
+ The second line.

Launching a visual diff tool is just as easy. Here's how to launch the kdiff3 viewer.
hg extdiff -p kdiff3 -o

If your diff viewing command can't deal with directories, you can easily work around this
with a little scripting. For an example of such scripting in action with the mq extension and the
interdiff command, see 第 13.9.2 节 “察看补丁的历史”.

14.2.1. 定义命令的别名
It can be cumbersome to remember the options to both the extdiff command and the diff

viewer you want to use, so the extdiff extension lets you define new commands that will
invoke your diff viewer with exactly the right options.

All you need to do is edit your ~/.hgrc, and add a section named extdiff. Inside this
section, you can define multiple commands. Here's how to add a kdiff3 command. Once you've
defined this, you can type “hg kdiff3” and the extdiff extension will run kdiff3 for you.
[extdiff]
cmd.kdiff3 =

If you leave the right hand side of the definition empty, as above, the extdiff extension
uses the name of the command you defined as the name of the external program to run. But these
names don't have to be the same. Here, we define a command named “hg wibble”, which runs
kdiff3.
[extdiff]
 cmd.wibble = kdiff3

You can also specify the default options that you want to invoke your diff viewing program
with. The prefix to use is “opts.”, followed by the name of the command to which the options
apply. This example defines a “hg vimdiff” command that runs the vim editor's DirDiff
extension.
[extdiff]
 cmd.vimdiff = vim

使用扩展增加功能

192

opts.vimdiff = -f '+next' '+execute "DirDiff" argv(0) argv(1)'

14.3. 使用扩展 transplant 以挑选修改
Need to have a long chat with Brendan about this.

14.4. 使用扩展 patchbomb 通过 email 发送修
改

Many projects have a culture of “change review”, in which people send their modifications to
a mailing list for others to read and comment on before they commit the final version to a shared
repository. Some projects have people who act as gatekeepers; they apply changes from other
people to a repository to which those others don't have access.

Mercurial makes it easy to send changes over email for review or application, via its
patchbomb extension. The extension is so named because changes are formatted as patches,
and it's usual to send one changeset per email message. Sending a long series of changes by email
is thus much like “bombing” the recipient's inbox, hence “patchbomb”.

As usual, the basic configuration of the patchbomb extension takes just one or two lines
in your /.hgrc.
[extensions]
patchbomb =

Once you've enabled the extension, you will have a new command available, named email.

The safest and best way to invoke the email command is to always run it first with the hg -
n option. This will show you what the command would send, without actually sending anything.
Once you've had a quick glance over the changes and verified that you are sending the right ones,
you can rerun the same command, with the hg -n option removed.

The email command accepts the same kind of revision syntax as every other Mercurial
command. For example, this command will send every revision between 7 and tip, inclusive.
hg email -n 7:tip

You can also specify a repository to compare with. If you provide a repository but no
revisions, the email command will send all revisions in the local repository that are not present
in the remote repository. If you additionally specify revisions or a branch name (the latter using
the hg -b option), this will constrain the revisions sent.

It's perfectly safe to run the email command without the names of the people you want to
send to: if you do this, it will just prompt you for those values interactively. (If you're using a
Linux or Unix-like system, you should have enhanced readline-style editing capabilities when
entering those headers, too, which is useful.)

When you are sending just one revision, the email command will by default use the first line
of the changeset description as the subject of the single email message it sends.

使用扩展增加功能

193

If you send multiple revisions, the email command will usually send one message per
changeset. It will preface the series with an introductory message, in which you should describe
the purpose of the series of changes you're sending.

14.4.1. 修改 patchbomb 的行为
Not every project has exactly the same conventions for sending changes in email; the

patchbomb extension tries to accommodate a number of variations through command line
options.

• You can write a subject for the introductory message on the command line using the hg -s
option. This takes one argument, the text of the subject to use.

• To change the email address from which the messages originate, use the hg -f option. This
takes one argument, the email address to use.

• The default behavior is to send unified diffs (see 第 12.4 节 “理解补丁” for a description of
the format), one per message. You can send a binary bundle instead with the hg -b option.

• Unified diffs are normally prefaced with a metadata header. You can omit this, and send
unadorned diffs, with the hg --plain option.

• Diffs are normally sent “inline”, in the same body part as the description of a patch. This makes
it easiest for the largest number of readers to quote and respond to parts of a diff, as some
mail clients will only quote the first MIME body part in a message. If you'd prefer to send the
description and the diff in separate body parts, use the hg -a option.

• Instead of sending mail messages, you can write them to an mbox-format mail folder using the
hg -m option. That option takes one argument, the name of the file to write to.

• If you would like to add a diffstat-format summary to each patch, and one to the introductory
message, use the hg -d option. The diffstat command displays a table containing the name
of each file patched, the number of lines affected, and a histogram showing how much each file
is modified. This gives readers a qualitative glance at how complex a patch is.

194

附录 A. 迁移到 Mercurial
A common way to test the waters with a new revision control tool is to experiment with

switching an existing project, rather than starting a new project from scratch.

In this appendix, we discuss how to import a project's history into Mercurial, and what to
look out for if you are used to a different revision control system.

A.1. 从其它版本控制系统导入历史
Mercurial ships with an extension named convert, which can import project history from

most popular revision control systems. At the time this book was written, it could import history
from the following systems:

• Subversion

• CVS

• git

• Darcs

• Bazaar

• Monotone

• GNU Arch

• Mercurial

(To see why Mercurial itself is supported as a source, see 第 A.1.3 节 “清理目录树”.)

你可以通过常用的方式，编辑~./hgrc文件来使用这个扩展。

[extensions]
convert =

This will make a hg convert command available. The command is easy to use. For instance,
this command will import the Subversion history for the Nose unit testing framework into
Mercurial.
$ hg convert http://python-nose.googlecode.com/svn/trunk

The convert extension operates incrementally. In other words, after you have run hg
convert once, running it again will import any new revisions committed after the first run began.
Incremental conversion will only work if you run hg convert in the same Mercurial repository
that you originally used, because the convert extension saves some private metadata in a non-
revision-controlled file named .hg/shamap inside the target repository.

When you want to start making changes using Mercurial, it's best to clone the tree in which
you are doing your conversions, and leave the original tree for future incremental conversions.

迁移到 Mercurial

195

This is the safest way to let you pull and merge future commits from the source revision control
system into your newly active Mercurial project.

A.1.1. 转换多个分支
The hg convert command given above converts only the history of the trunk

branch of the Subversion repository. If we instead use the URL http://python-
nose.googlecode.com/svn, Mercurial will automatically detect the trunk, tags and
branches layout that Subversion projects usually use, and it will import each as a separate
Mercurial branch.

By default, each Subversion branch imported into Mercurial is given a branch name. After the
conversion completes, you can get a list of the active branch names in the Mercurial repository
using hg branches -a. If you would prefer to import the Subversion branches without names,
pass the --config convert.hg.usebranchnames=false option to hg convert.

Once you have converted your tree, if you want to follow the usual Mercurial practice of
working in a tree that contains a single branch, you can clone that single branch using hg clone
-r mybranchname.

A.1.2. 映射用户名称
Some revision control tools save only short usernames with commits, and these can be

difficult to interpret. The norm with Mercurial is to save a committer's name and email address,
which is much more useful for talking to them after the fact.

If you are converting a tree from a revision control system that uses short names, you can
map those names to longer equivalents by passing a --authors option to hg convert. This
option accepts a file name that should contain entries of the following form.
arist = Aristotle <aristotle@phil.example.gr>
soc = Socrates <socrates@phil.example.gr>

Whenever convert encounters a commit with the username arist in the source
repository, it will use the name Aristotle <aristotle@phil.example.gr> in the
converted Mercurial revision. If no match is found for a name, it is used verbatim.

A.1.3. 清理目录树
Not all projects have pristine history. There may be a directory that should never have been

checked in, a file that is too big, or a whole hierarchy that needs to be refactored.

The convert extension supports the idea of a “file map” that can reorganize the files and
directories in a project as it imports the project's history. This is useful not only when importing
history from other revision control systems, but also to prune or refactor a Mercurial tree.

To specify a file map, use the --filemap option and supply a file name. A file map contains
lines of the following forms.
This is a comment.

迁移到 Mercurial

196

Empty lines are ignored.

include path/to/file

exclude path/to/file

rename from/some/path to/some/other/place

The include directive causes a file, or all files under a directory, to be included in the
destination repository. This also excludes all other files and dirs not explicitely included. The
exclude directive causes files or directories to be omitted, and others not explicitly mentioned
to be included.

To move a file or directory from one location to another, use the rename directive. If you
need to move a file or directory from a subdirectory into the root of the repository, use . as the
second argument to the rename directive.

A.1.4. 改进 Subversion 的转换性能
You will often need several attempts before you hit the perfect combination of user map,

file map, and other conversion parameters. Converting a Subversion repository over an access
protocol like ssh or http can proceed thousands of times more slowly than Mercurial is capable
of actually operating, due to network delays. This can make tuning that perfect conversion recipe
very painful.

The svnsync [http://svn.collab.net/repos/svn/trunk/notes/svnsync.txt] command can
greatly speed up the conversion of a Subversion repository. It is a read-only mirroring program
for Subversion repositories. The idea is that you create a local mirror of your Subversion tree,
then convert the mirror into a Mercurial repository.

Suppose we want to convert the Subversion repository for the popular Memcached project
into a Mercurial tree. First, we create a local Subversion repository.
$ svnadmin create memcached-mirror

Next, we set up a Subversion hook that svnsync needs.
$ echo '#!/bin/sh' > memcached-mirror/hooks/pre-revprop-change
$ chmod +x memcached-mirror/hooks/pre-revprop-change

We then initialize svnsync in this repository.
$ svnsync --init file://`pwd`/memcached-mirror \
http://code.sixapart.com/svn/memcached

Our next step is to begin the svnsync mirroring process.
$ svnsync sync file://`pwd`/memcached-mirror

Finally, we import the history of our local Subversion mirror into Mercurial.
$ hg convert memcached-mirror

We can use this process incrementally if the Subversion repository is still in use. We run
svnsync to pull new changes into our mirror, then hg convert to import them into our Mercurial
tree.

http://svn.collab.net/repos/svn/trunk/notes/svnsync.txt
http://svn.collab.net/repos/svn/trunk/notes/svnsync.txt

迁移到 Mercurial

197

There are two advantages to doing a two-stage import with svnsync. The first is that it uses
more efficient Subversion network syncing code than hg convert, so it transfers less data over
the network. The second is that the import from a local Subversion tree is so fast that you can
tweak your conversion setup repeatedly without having to sit through a painfully slow network-
based conversion process each time.

A.2. 从 Subversion 迁移
Subversion is currently the most popular open source revision control system. Although

there are many differences between Mercurial and Subversion, making the transition from
Subversion to Mercurial is not particularly difficult. The two have similar command sets and
generally uniform interfaces.

A.2.1. 哲学的差别
The fundamental difference between Subversion and Mercurial is of course that Subversion

is centralized, while Mercurial is distributed. Since Mercurial stores all of a project's history
on your local drive, it only needs to perform a network access when you want to explicitly
communicate with another repository. In contrast, Subversion stores very little information
locally, and the client must thus contact its server for many common operations.

Subversion more or less gets away without a well-defined notion of a branch: which portion
of a server's namespace qualifies as a branch is a matter of convention, with the software
providing no enforcement. Mercurial treats a repository as the unit of branch management.

A.2.1.1. 命令作用域

Since Subversion doesn't know what parts of its namespace are really branches, it treats most
commands as requests to operate at and below whatever directory you are currently visiting. For
instance, if you run svn log, you'll get the history of whatever part of the tree you're looking at,
not the tree as a whole.

Mercurial's commands behave differently, by defaulting to operating over an entire repository.
Run hg log and it will tell you the history of the entire tree, no matter what part of the working
directory you're visiting at the time. If you want the history of just a particular file or directory,
simply supply it by name, e.g. hg log src.

From my own experience, this difference in default behaviors is probably the most likely to trip
you up if you have to switch back and forth frequently between the two tools.

A.2.1.2. 多用户操作与安全

With Subversion, it is normal (though slightly frowned upon) for multiple people to collaborate
in a single branch. If Alice and Bob are working together, and Alice commits some changes to
their shared branch, Bob must update his client's view of the branch before he can commit. Since
at this time he has no permanent record of the changes he has made, he can corrupt or lose his
modifications during and after his update.

迁移到 Mercurial

198

Mercurial encourages a commit-then-merge model instead. Bob commits his changes locally
before pulling changes from, or pushing them to, the server that he shares with Alice. If Alice
pushed her changes before Bob tries to push his, he will not be able to push his changes until he
pulls hers, merges with them, and commits the result of the merge. If he makes a mistake during
the merge, he still has the option of reverting to the commit that recorded his changes.

It is worth emphasizing that these are the common ways of working with these tools. Subversion
supports a safer work-in-your-own-branch model, but it is cumbersome enough in practice to
not be widely used. Mercurial can support the less safe mode of allowing changes to be pulled in
and merged on top of uncommitted edits, but this is considered highly unusual.

A.2.1.3. 已发布的修改与本地修改
A Subversion svn commit command immediately publishes changes to a server, where they can
be seen by everyone who has read access.

With Mercurial, commits are always local, and must be published via a hg push command
afterwards.

Each approach has its advantages and disadvantages. The Subversion model means that changes
are published, and hence reviewable and usable, immediately. On the other hand, this means that
a user must have commit access to a repository in order to use the software in a normal way, and
commit access is not lightly given out by most open source projects.

The Mercurial approach allows anyone who can clone a repository to commit changes without
the need for someone else's permission, and they can then publish their changes and continue to
participate however they see fit. The distinction between committing and pushing does open up
the possibility of someone committing changes to their laptop and walking away for a few days
having forgotten to push them, which in rare cases might leave collaborators temporarily stuck.

A.2.2. 快速参考

表 A.1. Subversion 命令与 Mercurial 对照表

Subversion Mercurial 备注

svn add hg add
svn blame hg annotate
svn cat hg cat
svn checkout hg clone
svn cleanup n/a 不需要清理

svn commit hg commit; hg push 提交后使用 hg push 发布
svn copy hg clone 创建新补丁

svn copy hg copy 复制文件或目录

svn delete (svn remove) hg remove
svn diff hg diff

迁移到 Mercurial

199

Subversion Mercurial 备注

svn export hg archive
svn help hg help
svn import hg addremove; hg commit
svn info hg parents 显示检出的版本信息

svn info hg showconfig paths.parent 显示检出的 URL
svn list hg manifest
svn log hg log
svn merge hg merge
svn mkdir n/a Mercurial 不跟踪目录
svn move (svn rename) hg rename
svn resolved hg resolve -m
svn revert hg revert
svn status hg status
svn update hg pull -u

A.3. 新手需要了解的技巧
Under some revision control systems, printing a diff for a single committed revision can be

painful. For instance, with Subversion, to see what changed in revision 104654, you must type
svn diff -r104653:104654. Mercurial eliminates the need to type the revision ID twice in this
common case. For a plain diff, hg export 104654. For a log message followed by a diff, hg log
-r104654 -p.

When you run hg status without any arguments, it prints the status of the entire tree, with
paths relative to the root of the repository. This makes it tricky to copy a file name from the output
of hg status into the command line. If you supply a file or directory name to hg status, it will
print paths relative to your current location instead. So to get tree-wide status from hg status,
with paths that are relative to your current directory and not the root of the repository, feed the
output of hg root into hg status. You can easily do this as follows on a Unix-like system:
$ hg status `hg root`

200

附录 B. Mercurial 队列参考

B.1. MQ 命令参考
For an overview of the commands provided by MQ, use the command hg help mq.

B.1.1. qapplied—显示已应用的补丁
The qapplied command prints the current stack of applied patches. Patches are printed in

oldest-to-newest order, so the last patch in the list is the “top” patch.

B.1.2. qcommit—提交队列中的修改
The qcommit command commits any outstanding changes in the .hg/patches

repository. This command only works if the .hg/patches directory is a repository, i.e. you
created the directory using hg qinit -c or ran hg init in the directory after running qinit.

This command is shorthand for hg commit --cwd .hg/patches.

B.1.3. qdelete—从文件 series 中删除补丁
The qdelete command removes the entry for a patch from the series file in the .hg/

patches directory. It does not pop the patch if the patch is already applied. By default, it does
not delete the patch file; use the -f option to do that.

选项:

• -f: Delete the patch file.

B.1.4. qdiff—显示最新应用补丁的差异
The qdiff command prints a diff of the topmost applied patch. It is equivalent to hg diff -

r-2:-1.

B.1.5. qfold—将已应用的补丁提交到版本库
The hg qfinish command converts the specified applied patches into permanent changes by

moving them out of MQ's control so that they will be treated as normal repository history.

B.1.6. qfold—将多个补丁合并(“折叠”)成一个
The qfold command merges multiple patches into the topmost applied patch, so that the

topmost applied patch makes the union of all of the changes in the patches in question.

Mercurial 队列参考

201

The patches to fold must not be applied; qfold will exit with an error if any is. The order
in which patches are folded is significant; hg qfold a b means “apply the current topmost patch,
followed by a, followed by b”.

The comments from the folded patches are appended to the comments of the destination
patch, with each block of comments separated by three asterisk (“*”) characters. Use the -
e option to edit the commit message for the combined patch/changeset after the folding has
completed.

选项:

• -e:为新创建的补丁编辑提交信息和补丁说明。

• -l: 使用给定文件的内容作为创建补丁新的提交信息和补丁说明。

• -m: Use the given text as the new commit message and patch description for the folded patch.

B.1.7. qheader—显示补丁头部描述
The qheader command prints the header, or description, of a patch. By default, it prints the

header of the topmost applied patch. Given an argument, it prints the header of the named patch.

B.1.8. qimport—将第三方补丁导入队列
The qimport command adds an entry for an external patch to the series file, and copies

the patch into the .hg/patches directory. It adds the entry immediately after the topmost
applied patch, but does not push the patch.

If the .hg/patches directory is a repository, qimport automatically does an hg add of the
imported patch.

B.1.9. qinit—为使用 MQ 配置版本库
The qinit command prepares a repository to work with MQ. It creates a directory called

.hg/patches.

选项:

• -c: Create .hg/patches as a repository in its own right. Also creates a .hgignore file that
will ignore the status file.

When the .hg/patches directory is a repository, the qimport and qnew commands
automatically hg add new patches.

B.1.10. qnew—创建新补丁
The qnew command creates a new patch. It takes one mandatory argument, the name to use

for the patch file. The newly created patch is created empty by default. It is added to the series
file after the current topmost applied patch, and is immediately pushed on top of that patch.

Mercurial 队列参考

202

If qnew finds modified files in the working directory, it will refuse to create a new patch
unless the -f option is used (see below). This behavior allows you to qrefresh your topmost
applied patch before you apply a new patch on top of it.

选项:

• -f: Create a new patch if the contents of the working directory are modified. Any outstanding
modifications are added to the newly created patch, so after this command completes, the
working directory will no longer be modified.

• -m: Use the given text as the commit message. This text will be stored at the beginning of the
patch file, before the patch data.

B.1.11. qnext—显示下个补丁的名称
The qnext command prints the name name of the next patch in the series file after the

topmost applied patch. This patch will become the topmost applied patch if you run qpush.

B.1.12. qpop—删除堆栈顶部的补丁
The qpop command removes applied patches from the top of the stack of applied patches.

By default, it removes only one patch.

This command removes the changesets that represent the popped patches from the
repository, and updates the working directory to undo the effects of the patches.

This command takes an optional argument, which it uses as the name or index of the patch
to pop to. If given a name, it will pop patches until the named patch is the topmost applied patch.
If given a number, qpop treats the number as an index into the entries in the series file, counting
from zero (empty lines and lines containing only comments do not count). It pops patches until
the patch identified by the given index is the topmost applied patch.

The qpop command does not read or write patches or the series file. It is thus safe to
qpop a patch that you have removed from the series file, or a patch that you have renamed or
deleted entirely. In the latter two cases, use the name of the patch as it was when you applied it.

By default, the qpop command will not pop any patches if the working directory has been
modified. You can override this behavior using the -f option, which reverts all modifications in
the working directory.

选项:

• -a: Pop all applied patches. This returns the repository to its state before you applied any
patches.

• -f: Forcibly revert any modifications to the working directory when popping.

• -n: Pop a patch from the named queue.

The qpop command removes one line from the end of the status file for each patch that
it pops.

Mercurial 队列参考

203

B.1.13. qprev—显示上个补丁的名称
The qprev command prints the name of the patch in the series file that comes before the

topmost applied patch. This will become the topmost applied patch if you run qpop.

B.1.14. qpush—增加补丁到堆栈
The qpush command adds patches onto the applied stack. By default, it adds only one patch.

This command creates a new changeset to represent each applied patch, and updates the
working directory to apply the effects of the patches.

The default data used when creating a changeset are as follows:

• The commit date and time zone are the current date and time zone. Because these data are used
to compute the identity of a changeset, this means that if you qpop a patch and qpush it again,
the changeset that you push will have a different identity than the changeset you popped.

• The author is the same as the default used by the hg commit command.

• The commit message is any text from the patch file that comes before the first diff header. If
there is no such text, a default commit message is used that identifies the name of the patch.

If a patch contains a Mercurial patch header, the information in the patch header overrides
these defaults.

选项:

• -a: Push all unapplied patches from the series file until there are none left to push.

• -l: Add the name of the patch to the end of the commit message.

• -m: If a patch fails to apply cleanly, use the entry for the patch in another saved queue to
compute the parameters for a three-way merge, and perform a three-way merge using the
normal Mercurial merge machinery. Use the resolution of the merge as the new patch content.

• -n: Use the named queue if merging while pushing.

The qpush command reads, but does not modify, the series file. It appends one line to the
hg status file for each patch that it pushes.

B.1.15. qrefresh—更新最新的补丁
The qrefresh command updates the topmost applied patch. It modifies the patch, removes

the old changeset that represented the patch, and creates a new changeset to represent the
modified patch.

The qrefresh command looks for the following modifications:

Mercurial 队列参考

204

• Changes to the commit message, i.e. the text before the first diff header in the patch file, are
reflected in the new changeset that represents the patch.

• Modifications to tracked files in the working directory are added to the patch.

• Changes to the files tracked using hg add, hg copy, hg remove, or hg rename. Added files and
copy and rename destinations are added to the patch, while removed files and rename sources
are removed.

Even if qrefresh detects no changes, it still recreates the changeset that represents the patch.
This causes the identity of the changeset to differ from the previous changeset that identified the
patch.

选项:

• -e: Modify the commit and patch description, using the preferred text editor.

• -m: Modify the commit message and patch description, using the given text.

• -l: Modify the commit message and patch description, using text from the given file.

B.1.16. qrename—改名补丁
The qrename command renames a patch, and changes the entry for the patch in the series

file.

With a single argument, qrename renames the topmost applied patch. With two arguments,
it renames its first argument to its second.

B.1.17. qseries—显示补丁序列
The qseries command prints the entire patch series from the series file. It prints only

patch names, not empty lines or comments. It prints in order from first to be applied to last.

B.1.18. qtop—显示当前补丁的名称
The qtop prints the name of the topmost currently applied patch.

B.1.19. qunapplied—显示尚未应用的补丁
The qunapplied command prints the names of patches from the series file that are not

yet applied. It prints them in order from the next patch that will be pushed to the last.

B.1.20. hg strip—删除一个版本及其后继
The hg strip command removes a revision, and all of its descendants, from the repository.

It undoes the effects of the removed revisions from the repository, and updates the working
directory to the first parent of the removed revision.

Mercurial 队列参考

205

The hg strip command saves a backup of the removed changesets in a bundle, so that they
can be reapplied if removed in error.

选项:

• -b: Save unrelated changesets that are intermixed with the stripped changesets in the backup
bundle.

• -f: If a branch has multiple heads, remove all heads.

• -n: Do not save a backup bundle.

B.2. MQ 文件参考
B.2.1. 序列文件

The series file contains a list of the names of all patches that MQ can apply. It is represented
as a list of names, with one name saved per line. Leading and trailing white space in each line
are ignored.

Lines may contain comments. A comment begins with the “#” character, and extends to the
end of the line. Empty lines, and lines that contain only comments, are ignored.

You will often need to edit the series file by hand, hence the support for comments and
empty lines noted above. For example, you can comment out a patch temporarily, and qpush will
skip over that patch when applying patches. You can also change the order in which patches are
applied by reordering their entries in the series file.

Placing the series file under revision control is also supported; it is a good idea to place
all of the patches that it refers to under revision control, as well. If you create a patch directory
using the -c option to qinit, this will be done for you automatically.

B.2.2. 状态文件
The status file contains the names and changeset hashes of all patches that MQ currently

has applied. Unlike the series file, this file is not intended for editing. You should not place this
file under revision control, or modify it in any way. It is used by MQ strictly for internal book-
keeping.

206

附录 C. 从源代码安装 Mercurial

C.1. 类 Unix 系统
如果你使用类 Unix 系统，并且有足够新的 Python (2.3 更新)，从源代码安装 Mercurial 就

很容易了。

1. 从 http://www.selenic.com/mercurial/download 下载最新的源代码。

2. 解压：
gzip -dc mercurial-MYVERSION.tar.gz | tar xf -

3. 进入源代码目录，执行安装教本。这会构建 Mercurial，安装到你的家目录。
cd mercurial-MYVERSION
python setup.py install --force --home=$HOME

安装完成后，Mercurial 就位于家目录的 bin 子目录。不要忘记将这个目录加入到你的
可执行文件搜索路径中。

你可能需要设置环境变量 PYTHONPATH，以便 Mercurial 可执行文件能找到 Mercurial
包。例如，在我的笔记本电脑中，必须设置为 /home/bos/lib/python。你需要使用的路
径依赖于 Python 的构建方式，这很容易找出来。如果你不确定，仔细察看上面的安装脚本输
出，检查包含 mercurial 目录的内容的安装位置。

C.2. Windows 系统
在 Windows 中构建和安装 Mercurial 需要各种工具，相当多的技术背景，以及足够的耐

心。如果你是一个“初级用户”，我很不赞成这个方法。我强烈建议你使用二进制安装包，
除非你想深入研究 Mercurial 本身。

If you are intent on building Mercurial from source on Windows, follow the “hard
way” directions on the Mercurial wiki at http://www.selenic.com/mercurial/wiki/index.cgi/
WindowsInstall, and expect the process to involve a lot of fiddly work.

http://www.selenic.com/mercurial/download
http://www.selenic.com/mercurial/wiki/index.cgi/WindowsInstall
http://www.selenic.com/mercurial/wiki/index.cgi/WindowsInstall

207

附录 D. 开放出版协议
版本 1.0，1999 年 6 月 8 日。

D.1. Requirements on both unmodified and
modified versions

The Open Publication works may be reproduced and distributed in whole or in part, in any
medium physical or electronic, provided that the terms of this license are adhered to, and that
this license or an incorporation of it by reference (with any options elected by the author(s) and/
or publisher) is displayed in the reproduction.

Proper form for an incorporation by reference is as follows:

Copyright (c) year by author's name or designee. This material may be
distributed only subject to the terms and conditions set forth in the Open
Publication License, vx.y or later (the latest version is presently available at http://
www.opencontent.org/openpub/).

The reference must be immediately followed with any options elected by the author(s) and/
or publisher of the document (see 第 D.6 节 “License options”).

Commercial redistribution of Open Publication-licensed material is permitted.

Any publication in standard (paper) book form shall require the citation of the original
publisher and author. The publisher and author's names shall appear on all outer surfaces of the
book. On all outer surfaces of the book the original publisher's name shall be as large as the title
of the work and cited as possessive with respect to the title.

D.2. Copyright
The copyright to each Open Publication is owned by its author(s) or designee.

D.3. Scope of license
The following license terms apply to all Open Publication works, unless otherwise explicitly

stated in the document.

Mere aggregation of Open Publication works or a portion of an Open Publication work with
other works or programs on the same media shall not cause this license to apply to those other
works. The aggregate work shall contain a notice specifying the inclusion of the Open Publication
material and appropriate copyright notice.

Severability. If any part of this license is found to be unenforceable in any jurisdiction, the
remaining portions of the license remain in force.

http://www.opencontent.org/openpub/
http://www.opencontent.org/openpub/

开放出版协议

208

No warranty. Open Publication works are licensed and provided “as is” without warranty
of any kind, express or implied, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose or a warranty of non-infringement.

D.4. Requirements on modified works
All modified versions of documents covered by this license, including translations,

anthologies, compilations and partial documents, must meet the following requirements:

1. The modified version must be labeled as such.

2. The person making the modifications must be identified and the modifications dated.

3. Acknowledgement of the original author and publisher if applicable must be retained
according to normal academic citation practices.

4. The location of the original unmodified document must be identified.

5. The original author's (or authors') name(s) may not be used to assert or imply endorsement
of the resulting document without the original author's (or authors') permission.

D.5. Good-practice recommendations
In addition to the requirements of this license, it is requested from and strongly

recommended of redistributors that:

1. If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email
notification to the authors of your intent to redistribute at least thirty days before your
manuscript or media freeze, to give the authors time to provide updated documents. This
notification should describe modifications, if any, made to the document.

2. All substantive modifications (including deletions) be either clearly marked up in the
document or else described in an attachment to the document.

3. Finally, while it is not mandatory under this license, it is considered good form to offer a free
copy of any hardcopy and CD-ROM expression of an Open Publication-licensed work to its
author(s).

D.6. License options
The author(s) and/or publisher of an Open Publication-licensed document may elect certain

options by appending language to the reference to or copy of the license. These options are
considered part of the license instance and must be included with the license (or its incorporation
by reference) in derived works.

1. To prohibit distribution of substantively modified versions without the explicit permission of
the author(s). “Substantive modification” is defined as a change to the semantic content of the
document, and excludes mere changes in format or typographical corrections.

开放出版协议

209

2. To accomplish this, add the phrase “Distribution of substantively modified versions of this
document is prohibited without the explicit permission of the copyright holder.” to the license
reference or copy.

3. To prohibit any publication of this work or derivative works in whole or in part in standard
(paper) book form for commercial purposes is prohibited unless prior permission is obtained
from the copyright holder.

4. To accomplish this, add the phrase “Distribution of the work or derivative of the work in
any standard (paper) book form is prohibited unless prior permission is obtained from the
copyright holder.” to the license reference or copy.

	Mercurial 权威指南
	目录
	序言
	1. 技术背景
	2. 谢谢你支持 Mercurial
	3. 致谢
	4. 本书的约定
	5. 使用样例代码
	6. Safari® 在线书库
	7. 联系我们

	第 1 章 写在前面
	1.1. 为什么使用版本控制? 为什么使用 Mercurial?
	1.1.1. 为什么使用版本控制?
	1.1.2. 版本控制的别名

	1.2. 本书的例子
	1.3. 版本控制的发展趋势
	1.4. 分布版本控制的优点
	1.4.1. 开源项目的优点
	1.4.1.1. 分支不是问题

	1.4.2. 商业项目的优点

	1.5. 为什么选择 Mercurial?
	1.6. Mercurial 与其它工具的比较
	1.6.1. Subversion
	1.6.2. Git
	1.6.3. CVS
	1.6.4. 商业工具
	1.6.5. 选择版本控制工具

	1.7. 从其它工具切换到 Mercurial
	1.8. 版本控制简史

	第 2 章 Mercurial 教程: 基础知识
	2.1. 安装 Mercurial
	2.1.1. Windows
	2.1.2. Mac OS X
	2.1.3. Linux
	2.1.4. Solaris

	2.2. 开始
	2.2.1. 内置帮助

	2.3. 使用版本库
	2.3.1. 创建版本库的工作副本
	2.3.2. 什么是版本库?

	2.4. 回溯历史
	2.4.1. 变更集，版本，与其它用户交互
	2.4.2. 查看指定版本
	2.4.3. 更详细的信息

	2.5. 命令选项
	2.6. 创建和复审变更
	2.7. 在新修改集中记录修改
	2.7.1. 配置用户名称
	2.7.1.1. 创建 Mercurial 的配置文件
	2.7.1.2. 选择用户名称

	2.7.2. 写提交日志
	2.7.3. 写高质量的提交日志
	2.7.4. 终止提交
	2.7.5. 欣赏我们的成果

	2.8. 分享修改
	2.8.1. 从其它版本库取得变更
	2.8.2. 更新工作目录
	2.8.3. 发布修改到其它版本库
	2.8.4. 默认位置
	2.8.5. 通过网络共享修改

	2.9. 开始新项目

	第 3 章 Mercurial 教程: 合并工作
	3.1. 合并的流程
	3.1.1. 顶点修改集
	3.1.2. 执行合并
	3.1.3. 提交合并结果

	3.2. 合并有冲突的改变
	3.2.1. 使用图形合并工具
	3.2.2. 合并实例

	3.3. 简化拉-合并-提交程序
	3.4. 改名，复制与合并

	第 4 章 Mercurial 内幕
	4.1. Mercurial 的历史记录
	4.1.1. 跟踪单一文件的历史
	4.1.2. 管理跟踪的文件
	4.1.3. 记录修改集信息
	4.1.4. 版本之间的关系

	4.2. 安全，高效的存储
	4.2.1. 高效存储
	4.2.2. 安全操作
	4.2.3. 快速检索
	4.2.3.1. 旁白: 视频压缩的影响

	4.2.4. 鉴别和强完整性

	4.3. 修订历史，分支与合并
	4.4. 工作目录
	4.4.1. 当你提交时发生的事情
	4.4.2. 创建新顶点
	4.4.3. 合并修改
	4.4.4. 合并与改名

	4.5. 其它有趣的设计特性
	4.5.1. 智能压缩
	4.5.1.1. 网络重新压缩

	4.5.2. 读写顺序与原子性
	4.5.3. 并发访问
	4.5.3.1. 安全的目录状态访问

	4.5.4. 避免查找
	4.5.5. 目录状态的其它内容

	第 5 章 Mercurial 的日常使用
	5.1. 告诉 Mercurial 要跟踪哪些文件
	5.1.1. 明确与隐含文件命名
	5.1.2. Mercurial 只跟踪文件，不跟踪目录

	5.2. 如何停止跟踪文件
	5.2.1. 删除文件不影响历史
	5.2.2. 丢失的文件
	5.2.3. 旁白: 为什么要明确告诉 Mercurial 删除文件?
	5.2.4. 有用的速记—一个步骤添加和删除文件

	5.3. 复制文件
	5.3.1. 合并期间的复制结果
	5.3.2. 为什么复制后需要后续修改?
	5.3.3. 如何让复制后不修改?
	5.3.4. 命令 hg copy 的特性

	5.4. 改名文件
	5.4.1. 改名文件与合并修改
	5.4.2. 改名与合并的分歧
	5.4.3. 收敛改名与合并
	5.4.4. 其它名称相关的角落

	5.5. 从错误恢复
	5.6. 合并的技巧
	5.6.1. 文件的解决状态
	5.6.2. 合并文件

	5.7. 更有用的差异
	5.8. 需要管理哪些文件，应该避免的事情
	5.9. 备份与镜像

	第 6 章 团体协作
	6.1. Mercurial 的 web 接口
	6.2. 协作模型
	6.2.1. 要牢记的因素
	6.2.2. 无政府状态
	6.2.3. 单一中央版本库
	6.2.4. 托管的中央版本库
	6.2.5. 使用多个分支工作
	6.2.6. 特性分支
	6.2.7. 发布列车
	6.2.8. Linux 内核模型
	6.2.9. 只读与共享写协作
	6.2.10. 协作与分支管理

	6.3. 共享的技术因素
	6.4. 使用 hg serve 进行非正式共享
	6.4.1. 要牢记的几件事

	6.5. 使用 ssh 协议
	6.5.1. 如何读写 ssh 路径
	6.5.2. 为你的系统寻找 ssh 客户端
	6.5.3. 产生密钥对
	6.5.4. 使用认证代理
	6.5.5. 正确配置服务器端
	6.5.6. 通过 ssh 使用压缩

	6.6. 使用 CGI 通过 HTTP 提供服务
	6.6.1. Web 服务器配置检查表
	6.6.2. 基本 CGI 配置
	6.6.2.1. 什么可能会出错?
	6.6.2.2. 配置 lighttpd

	6.6.3. 使用一个 CGI 脚本共享多个版本库
	6.6.3.1. 明确指出要发布的版本库

	6.6.4. 下载源代码档案包
	6.6.5. Web 配置选项
	6.6.5.1. 针对单个版本库的选项
	6.6.5.2. 命令 hg serve 的选项
	6.6.5.3. 选择正确的 ~/.hgrc 文件增加到 web 条目

	6.7. 全局配置
	6.7.1. 让 Mercurial 更可信

	第 7 章 文件名称与模式匹配
	7.1. 简单文件名称
	7.2. 不提供文件名称的执行命令
	7.3. 告诉你正在做什么
	7.4. 使用模式标识文件
	7.4.1. 外壳风格的 glob 模式
	7.4.1.1. 千万小心！

	7.4.2. 使用 re 模式的正则表达式匹配

	7.5. 过滤文件
	7.6. 始终忽略不需要的文件和目录
	7.7. 大小写敏感性
	7.7.1. 安全，可移植的版本库存储
	7.7.2. 检测大小写冲突
	7.7.3. 修正大小写冲突

	第 8 章 发布管理与分支开发
	8.1. 给版本指定一个永久的名称
	8.1.1. 在合并期间处理标签冲突
	8.1.2. 标签与克隆
	8.1.3. 当永久标签太多的时候

	8.2. 修改流程—宏观与微观
	8.3. 在版本库中管理分支
	8.4. 不要重复劳动：在分支间合并
	8.5. 版本库中的命名分支
	8.6. 在版本库中处理多个命名分支
	8.7. 分支名称与合并
	8.8. 分支名称通常都很有用

	第 9 章 查找和修改错误
	9.1. 销毁本地历史
	9.1.1. 意外的提交
	9.1.2. 回滚一个事务
	9.1.3. 错误的抓取
	9.1.4. 当完成推送后，回滚是无效的
	9.1.5. 你只能回滚一次

	9.2. 撤销错误的修改
	9.2.1. 文件管理错误

	9.3. 处理已经提交的修改
	9.3.1. 恢复一个修改集
	9.3.2. 恢复顶点修改集
	9.3.3. 恢复非顶点的修改
	9.3.3.1. 始终使用选项 --merge

	9.3.4. 在恢复处理中获得更多控制
	9.3.5. hg backout 的内幕

	9.4. 不该发生的修改
	9.4.1. 撤销一个合并
	9.4.2. 使用“校验”修改来保护你自己
	9.4.3. 处理敏感信息泄漏的方法

	9.5. 查找问题的根源
	9.5.1. 使用命令 hg bisect
	9.5.2. 搜索后的清理

	9.6. 有效查找问题的技巧
	9.6.1. 给出一致的输入
	9.6.2. 尽量自动
	9.6.3. 检查你的结果
	9.6.4. 谨防问题之间的冲突
	9.6.5. 减少你的查找工作

	第 10 章 使用钩子处理版本库事件
	10.1. Mercurial 钩子概述
	10.2. 钩子与安全性
	10.2.1. 钩子以你的特权执行
	10.2.2. 钩子不会传播
	10.2.3. 钩子可以被覆盖
	10.2.4. 确保关键钩子的执行

	10.3. 使用钩子的简短指南
	10.3.1. 每个事件执行多个操作
	10.3.2. 控制处理的活动

	10.4. 编写钩子
	10.4.1. 选择钩子的执行方式
	10.4.2. 钩子的参数
	10.4.3. 钩子的返回值与活动控制
	10.4.4. 编写外部钩子
	10.4.5. 让 Mercurial 使用进程内钩子
	10.4.6. 编写进程内钩子

	10.5. 钩子样例
	10.5.1. 编写有意义的提交日志
	10.5.2. 检查行尾空格

	10.6. 内置的钩子
	10.6.1. acl—版本库的访问控制
	10.6.1.1. 配置 acl 钩子
	10.6.1.2. 测试与问题处理

	10.6.2. bugzilla—与 Bugzilla 的集成
	10.6.2.1. 配置 bugzilla 钩子
	10.6.2.2. 提交者的名称与 Bugzilla 用户名称的映射
	10.6.2.3. 配置增加到问题中的正文
	10.6.2.4. 测试与问题处理

	10.6.3. notify—邮件通知
	10.6.3.1. 配置 notify 钩子
	10.6.3.2. 测试与问题处理

	10.7. 编写钩子的信息
	10.7.1. 进程内钩子的执行
	10.7.2. 外部钩子的执行
	10.7.3. 检查修改集来自何处
	10.7.3.1. 修改集的来源
	10.7.3.2. 修改集要到哪里—远程版本库的地址

	10.8. 钩子参考
	10.8.1. changegroup—增加远程修改集之后
	10.8.2. commit—创建新修改集之后
	10.8.3. incoming—增加远程修改集之后
	10.8.4. outgoing—传播修改集之后
	10.8.5. prechangegroup—增加远程修改集之前
	10.8.6. precommit—提交修改集之前
	10.8.7. preoutgoing—传播修改集之前
	10.8.8. pretag—创建标签之前
	10.8.9. pretxnchangegroup—完成增加远程修改集之前
	10.8.10. pretxncommit—完成提交之前
	10.8.11. preupdate—更新或合并工作目录之前
	10.8.12. tag—创建标签之后
	10.8.13. update—更新或合并工作目录之后

	第 11 章 定制 Mercurial 的输出
	11.1. 使用预定义的输出样式
	11.1.1. 设置默认样式

	11.2. 支持样式和模版的命令
	11.3. 模版基础
	11.4. 模版关键字
	11.5. 转义序列
	11.6. 通过过滤关键字来修改输出结果
	11.6.1. 组合过滤器

	11.7. 从模版到样式
	11.7.1. 最简单的样式文件
	11.7.2. 样式文件语法

	11.8. 样式文件例子
	11.8.1. 在样式文件中定位错误
	11.8.2. 版本库的唯一标识
	11.8.3. 每行列出一个文件
	11.8.4. 模仿 Subversion 的输出

	第 12 章 使用 MQ 管理修改
	12.1. 补丁的管理问题
	12.2. MQ 的历史
	12.2.1. A patchwork quilt
	12.2.2. 从 patchwork quilt 到 MQ

	12.3. MQ 的巨大优势
	12.4. 理解补丁
	12.5. 开始使用 MQ
	12.5.1. 创建新补丁
	12.5.2. 刷新补丁
	12.5.3. 堆叠和跟踪补丁
	12.5.4. 操作补丁堆栈
	12.5.5. 压入或弹出多个补丁
	12.5.6. 安全的检查，然后覆盖它们
	12.5.7. 同时处理多个补丁

	12.6. 关于补丁的更多信息
	12.6.1. 修剪计数
	12.6.2. 应用补丁的策略
	12.6.3. 补丁的一些特性
	12.6.4. 当心毛刺
	12.6.5. 处理拒绝

	12.7. 补丁管理进阶
	12.7.1. 删除不需要的补丁
	12.7.2. 与持久版本的相互转换

	12.8. MQ 的性能
	12.9. 当基础代码改变时，更新补丁的方法
	12.10. 标识补丁
	12.11. 其它需要了解的东西
	12.12. 在版本库管理补丁
	12.12.1. MQ 支持补丁版本库
	12.12.2. 需要注意的事情

	12.13. 操作补丁的第三方工具
	12.14. 操作补丁的好习惯
	12.15. MQ 手册
	12.15.1. 管理“琐碎的”补丁
	12.15.2. 组合全部的补丁
	12.15.3. 合并补丁的部分内容到其它补丁

	12.16. MQ 与 quilt 的区别

	第 13 章 MQ 的高级用法
	13.1. 多个目标的问题
	13.1.1. 工作不好的诱人方法

	13.2. 有条件的应用补丁
	13.3. 控制补丁的应用条件
	13.4. 选择使用的条件
	13.5. MQ 应用补丁的规则
	13.6. 修剪工作环境
	13.7. 分类补丁系列
	13.8. 维护补丁系列
	13.8.1. 编写向后移植补丁的艺术

	13.9. 使用 MQ 开发的技巧
	13.9.1. 将补丁放到几个目录中
	13.9.2. 察看补丁的历史

	第 14 章 使用扩展增加功能
	14.1. 使用扩展 inotify 以提高性能
	14.2. 使用扩展 extdiff 以扩展差异支持
	14.2.1. 定义命令的别名

	14.3. 使用扩展 transplant 以挑选修改
	14.4. 使用扩展 patchbomb 通过 email 发送修改
	14.4.1. 修改 patchbomb 的行为

	附录 A. 迁移到 Mercurial
	A.1. 从其它版本控制系统导入历史
	A.1.1. 转换多个分支
	A.1.2. 映射用户名称
	A.1.3. 清理目录树
	A.1.4. 改进 Subversion 的转换性能

	A.2. 从 Subversion 迁移
	A.2.1. 哲学的差别
	A.2.1.1. 命令作用域
	A.2.1.2. 多用户操作与安全
	A.2.1.3. 已发布的修改与本地修改

	A.2.2. 快速参考

	A.3. 新手需要了解的技巧

	附录 B. Mercurial 队列参考
	B.1. MQ 命令参考
	B.1.1. qapplied—显示已应用的补丁
	B.1.2. qcommit—提交队列中的修改
	B.1.3. qdelete—从文件 series 中删除补丁
	B.1.4. qdiff—显示最新应用补丁的差异
	B.1.5. qfold—将已应用的补丁提交到版本库
	B.1.6. qfold—将多个补丁合并(“折叠”)成一个
	B.1.7. qheader—显示补丁头部描述
	B.1.8. qimport—将第三方补丁导入队列
	B.1.9. qinit—为使用 MQ 配置版本库
	B.1.10. qnew—创建新补丁
	B.1.11. qnext—显示下个补丁的名称
	B.1.12. qpop—删除堆栈顶部的补丁
	B.1.13. qprev—显示上个补丁的名称
	B.1.14. qpush—增加补丁到堆栈
	B.1.15. qrefresh—更新最新的补丁
	B.1.16. qrename—改名补丁
	B.1.17. qseries—显示补丁序列
	B.1.18. qtop—显示当前补丁的名称
	B.1.19. qunapplied—显示尚未应用的补丁
	B.1.20. hg strip—删除一个版本及其后继

	B.2. MQ 文件参考
	B.2.1. 序列文件
	B.2.2. 状态文件

	附录 C. 从源代码安装 Mercurial
	C.1. 类 Unix 系统
	C.2. Windows 系统

	附录 D. 开放出版协议
	D.1. Requirements on both unmodified and modified versions
	D.2. Copyright
	D.3. Scope of license
	D.4. Requirements on modified works
	D.5. Good-practice recommendations
	D.6. License options

