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Abstract

Can Haskell benefit from tracing JIT optimization techniques, and is
the RPython translation toolchain suitable for purely functional, lazy
languages such as Haskell? RPython has been used to implement VMs
for many different programming languages, but not for any purely func-
tional or lazy languages. Haskell has achieved impressive speed with
ahead-of-time optimizations. Attempts at trace-based JIT optimiza-
tions of Haskell have so far not achieved greater speed than static com-
pilation. PyHaskell, a prototype Haskell VM with a meta-tracing JIT
compiler written in RPython, shows that the RPython toolchain is suit-
able for Haskell. While the meta-tracer greatly speeds up PyHaskell, it
does not yet beat GHC.
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Oppsummering (Norwegian abstract)

Kan Haskell bli raskere med hjelp av trace-baserte JIT optimiserings-
teknikker, og er RPython translation toolchain egnet for rent funksjonelle
og “late” språk som Haskell?

RPython har blitt brukt til å lage virtuelle maskiner for mange
forskjellige programmeringsspråk, men ikke for noen rent funksjonelle
eller “late” språk. Haskell har oppnådd imponerende hastighet med
statiske optimaliseringer, mens forsøk på trace-baserte JIT optimalis-
eringer har vært mislykket.

PyHaskell, en virtuell maskin-prototype for Haskell med en meta-
tracing JIT-kompilator skrevet i RPython, viser at RPython toolchain
er egnet for Haskell. Selv om meta-traceren øker PyHaskells hastighet
kraftig, kan den enda ikke slå GHC.
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CHAPTER 1

Introduction

Both dynamic and functional programming languages have in recent years increased
greatly in popularity. The functional language Haskell is home to exciting language
research, while the PyPy project is a very interesting development on the dynamic
language front. The PyPy project has built an environment for creating dynamic
virtual machines (VMs) in a high-level language called RPython.

Haskell has received much research on improving its execution speed, almost all
of it as static compilation techniques; most as high-level transformations that take
advantage of its functional nature [25]. The PyPy project has however directed its
efforts on improving the execution speed of dynamic languages, with the help of
trace-based just-in-time (JIT) compilation [40]. The PyPy environment is called
the RPython translation toolchain, which include a meta-tracing JIT that can be
reused by any VM written in RPython [7].

The RPython meta-tracer has been used successfully on dynamic languages
such as Python, Prolog, PHP, R, and JavaScript [8, 17, 18, 26]. The toolchain is
very effective on object-oriented languages and the impressive results of the PyPy
project motivates us to test if the RPython toolchain can be suited for purely
functional, lazy languages, e.g., Haskell [26]. We believe the meta-tracing JIT can
compete with state of the art ahead-of-time Haskell compilers. While Haskell is
heavily optimized at compile-time, more information is available at runtime that
a JIT compiler may exploit. This report therefore set out to answer two research
questions:

• Is the RPython translation toolchain suitable for purely functional and lazy
languages, e.g., the Haskell language?

• Can Haskell benefit from trace-based JIT optimization techniques?

1



2 CHAPTER 1. INTRODUCTION

Trace-based optimization of Haskell is a very recent development, only after the
start of this report have two papers been published. Peixotto [25] has attempted a
trace-based binary optimization technique with DynamoRIO, which was abandoned
as the approach added too much overhead from just finding traces. Peixotto also
attempted a trace-based ahead-of-time approach with LLVM, which was able to
achieve an average speed up of 5% [25]. Schilling [38] has created a tracing JIT
prototype that adopt ideas from LuaJIT 2 that is still in development, but with
promising early results. This report describe the first attempt at optimizing Haskell
with a meta-tracing JIT compiler.

PyHaskell, a new prototype backend for the Glasgow Haskell Compiler (GHC)
has been created. GHC desugar Haskell to the Core language, hence PyHaskell
is a VM for the Core language. As PyHaskell is written in RPython, it includes
the RPython meta-tracing JIT compiler. PyHaskell’s runtime performance will
determine the answer to the two research questions stated in this report.

If the performance of our VM is reasonable, it will show that the RPython trans-
lation toolchain is suited for purely functional, lazy languages, and if PyHaskell can
beat GHC on some benchmarks, Haskell should benefit from trace-based JIT opti-
mizations.

Most programming paradigms have already been implemented in RPython, e.g.,
object-oriented, declarative, imperative, procedural, and more. Purely functional
and lazy are needed to round out the paradigms the RPython toolchain has been
tested on, hence the need for PyHaskell.

A goal for PyHaskell was to support both the GHC test suite and the nofib bench-
mark suite. This would require supporting the Haskell standard library, named
Haskell Prelude. GHC can serialize the Core intermediate representation into a
parsable syntax. Unfortunately, this functionality has not been sufficiently main-
tained. Therefore PyHaskell cannot reuse GHC’s Prelude, and the goal mentioned
above was not achieved.

1.1 Summary of contributions
The report starts by describing Haskell and GHC in chapter 2. It explains concepts
such as PyPy, RPython, and meta-tracing JIT compilation in chapter 3. Issues that
prevent PyHaskell from supporting the Haskell Prelude, and two viable solutions to
these issues are described in chapter 4. Related works are described in chapter 11.

PyHaskell description and improvements After GHC has produced an ex-
ternal representation of Core, the core2js program converts it to JSCore, a
JavaScript Object Notation (JSON) representation. The PyHaskell VM then parses
JSCore to create constructs based on semantics for lazy languages designed by
Launchbury [21]. These constructs are then evaluated, which represent the execu-
tion of Haskell code. Detailed description of PyHaskell can be found in chapter 5.

To be able to support more advanced benchmarks, PyHaskell required a number
of improvements, which are presented in section 5.5. PyHaskell’s support of the
Haskell language has been summarized in section 5.6.
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RPython hints The RPython meta-tracing JIT compiler can perform some JIT
optimizations techniques, which are enabled with hints placed in the source code
of VMs. These techniques can improve the performance of PyHaskell, but they
are badly documented. Some hints are described in a few research papers [7, 9];
some in blog posts [4], but many were not documented at all. Chapter 6 therefore
document the RPython hints and optimization techniques, how they can be used
and for what purpose.

PyHaskell optimizations RPython can produce logs of JIT-traces, which can
be used to spot optimization opportunities. This feature of RPython is not doc-
umented, hence chapter 7 starts with a description of RPython JIT trace-logs.
Optimizations are crucial for PyHaskell’s performance to reach GHC’s. Chapter 7
present the efforts undertaken to optimize PyHaskell. The effects of individual
types of hints on PyHaskell are summarized in section 7.4.

PyHaskell benchmark and evaluation A collection of benchmarks have been
created to answer the research questions asked in this report. The benchmarks and
their results are described in Chapter 8, and are further discussed in Chapter 9.
Chapter 10 contains the conclusion and further work.

Utility As mentioned, parts of the RPython translation toolchain is not docu-
mented, especially the parts regarding optimization with source code hints. There-
fore I believe this report (chapter 6 and chapter 7) should prove useful for anyone
who wish to write a VM in RPython.
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CHAPTER 2

Haskell and GHC

This chapter describes: The Haskell programming language (section 2.1); GHC,
the main implementation of Haskell (section 2.2); and Core, a GHC intermediate
language (section 2.3).

2.1 Haskell language
Haskell is a purely functional, lazy programming language. Purely functional means
functions cannot have side effects or mutate data. Lazy means evaluation is delayed
until required, e.g., function arguments are passed unevaluated and then evaluated
on demand. Delaying evaluation comes with several costs, e.g., being less efficient
and making it hard to predict space behavior of programs. Purity is pretty much
required for lazy languages, but I/O is very clumsy in pure languages, so monadic
I/O was invented for Haskell to solve this problem [19]. A monad is a powerful
abstraction that consists of a type constructor and a pair of functions: return
and bind. Monads provide syntax to express structured procedures that are not
otherwise supported by functional languages. Haskell also introduced type classes
to support overloading of built-in numeric operators. Type classes define behavior
of types (which behave similar to Java’s interfaces) to provide support for ad-hoc
polymorphism [19, 22].

Other notable Haskell features include pattern matching, list comprehensions,
and type inference. Type inference means type annotations are rarely needed
despite Haskell being statically typed. Haskell’s list comprehensions have been
adopted by both Python and JavaScript [19, 22, 35].

Type classes and Monads are perhaps Haskell’s most distinctive design features,
which have influenced many other programming languages. For example: Scala,
Coq, and Rust have adopted both monads and type classes, while C#’s Language

5



6 CHAPTER 2. HASKELL AND GHC

Integrated Query (LINQ) was directly inspired by Haskell’s monad comprehen-
sions [19].

Haskell was created to consolidate more than a dozen similar functional lan-
guages that was started in late 1970s and early 1980s. A meeting in January 1988
defined six goals for Haskell [19, p. 4]:

1. It should be suitable for teaching, research, and applications, including build-
ing large systems.

2. It should be completely described via the publication of a formal syntax and
semantics.

3. It should be freely available. Anyone should be permitted to implement the
language and distribute it to whomever they please.

4. It should be usable as a basis for further language research.

5. It should be based on ideas that enjoy a wide consensus.

6. It should reduce unnecessary diversity in functional programming languages.

The second goal was not realized as Haskell’s syntax and semantics have never
been formally described. The plan for the last goal was to base Haskell on an
existing functional language called OL. This plan was abandoned early. Haskell
has successfully achieved most of the remaining goals, although some features such
as type classes were added without regard for goal five [19].

As Haskell is designed by committee, it is a rather big language, and there are
usually more than one way to do something in Haskell. As the language grew it also
quickly evolved, which was problematic for teaching and application that require
stability. The committee consequently defined a stable version of the language,
“Haskell 98”, that implementations committed to support indefinitely. In 2005
design of Haskell´ (pronounced Haskell Prime) was started, to succeed Haskell 98
and to cover heavily used extensions [19]. Haskell 2010 is the latest stable version
of the Haskell programming language [23].

2.2 The Glasgow Haskell Compiler
Glasgow Haskell Compiler (GHC) is the most fully featured Haskell compiler to-
day, and has been the main Haskell implementation since the release of “Haskell
Report 1.0” in 1990 [19]. Marlow and Peyton Jones states that today “GHC re-
leases are downloaded by hundreds of thousands of people, the online repository of
Haskell libraries has over 3,000 packages, GHC is used to teach Haskell in many
undergraduate courses” [22, p. 1].

GHC can be divided into three distinct parts:

• The compiler, a Haskell program that converts Haskell source code to machine
code.

• The boot libraries that the compiler depend on.
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• The runtime system. Large library of C code that handles running the com-
piled Haskell code, dealing with important runtime tasks such as garbage
collection, threads, and exceptions. [22]

The compiler itself is also divided into three parts:

• The compilation manager, which manages compilation of multiple Haskell
files, the order of compilation, and check which modules require recompila-
tion.

• The Haskell Compiler, which compiles a single Haskell file to machine code,
depending on the selected backend.

• The pipeline, which handles Haskell code that interface with or require ex-
ternal programs. For example if a source file require preprocessing with a C
preprocessor. [22]

The compiler is also a library, called GHC application programming interface
(API), which provides access to internal parts of GHC and allows working with
Haskell code.

2.2.1 Compilation process
GHC’s compilation process is a linear process divided into the frontend and backend
with several optimization passes in the middle. Figure 2.1 provides an overview of
this process [22].

The frontend starts with parsing Haskell source files with a fully functional
parser that produces an abstract syntax tree (AST) where identifiers are simple
strings. The second step is called renaming, where identifiers are turned into fully
qualified names. This step also spots duplicate declarations, rearrange infix ex-
pressions, collect the equations of functions together, and more. The third step
of frontend process is type checking. Any program that passes the type checker is
type-safe and guaranteed to not crash at runtime. The last step of the frontend is
desugaring, where all “syntactic sugar” is removed and the full Haskell syntax is
converted into a much smaller intermediate language called Core. Core is further
described in section 2.3.

The optimization stage, which joins the frontend and the backend process, con-
sists of several passes where code represented as Core is transformed into more
optimized code (which is still Core). These optimizations, and other optimizations
performed by GHC, are described in subsection 2.2.2.

After the optimization stage the code can either be turned over to the back-
end to generate low-level code or it can be turned into bytecode. The bytecode is
used by the interactive Haskell interpreter, GHC’s interactive environment (GHCi).
Before code generation, Core is transformed into another intermediate representa-
tion called Spineless Tagless G-machine (STG). STG is an A-normalized lambda
calculus that defines GHC’s execution model [31].
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Figure 2.1: GHC’s compilation process
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The next step is the actual code generation, which converts STG into another
intermediate representation, C minus minus (Cmm). Cmm is a variant of the C-
- language, and is almost a subset of C that support proper tail calls [22, 47].
All remaining non-strict and functional aspects of Haskell are removed during code
generation, which allow Cmm to be a simple intermediate language. Cmm is finally
the input for one of three object code generating backends:

• The C code generator, which pretty-print Cmm to C code. The C code is
then compiled with GNU Compiler Collection (GCC). Is very portable, as
it can be used on most architectures that support GCC, but the produced
code is not as fast as the other two backends and the compilation process is
significantly slower. The C backend was deprecated around GHC 7.0.

• The native code generator (NCG) that only support a few architectures, but
produces faster code than the C backend.

• The LLVM code generator, which produce LLVM intermediate representation
(IR) that is compiled with LLVM. This backend is described in more detail
in section 11.1 on page 55.

An overview over the process of these code generator backends can be seen in
Figure 2.2 [22, 47].

2.2.2 Optimizations
GHC starts the optimization process after syntactic sugar is removed and Haskell
is transformed to Core. As can be seen in Figure 2.3, there are several different op-
timization steps, and the simplifier is run in between. The simplifier applies a lot of
small, local optimizations such as let-to-case transformation and case elimination.
The actual steps taken depend on optimization level specified, where one can trade
compilation speed for generated code with is faster [22, 32]. During these steps
GHC performs traditional optimizations such as common sub-expression elimina-
tion, unboxing, inlining, and more [29].

The strictness analyzer finds variables and arguments that can be treated
strictly, which enable optimizations such as unboxing that would not be allowed
for lazy arguments [30]. Let-floating moves let bindings closer to where they are
used, which avoids unnecessary allocations if they are on a branch that is never exe-
cuted [33]. Constructor specialization enables specialization based on call-patterns,
which specialize recursive functions according to their argument shapes [27].

GHC also do some optimizations at later stages of the compilation process.
For example code generation include the tables-next-to-code (TNTC) optimization,
which places meta-data of closures right before the code for the closure. TNTC
allow accessing both closure meta-data and code from a single pointer [25, 47].

2.2.3 Extensibility
GHC support extensibility in several ways, the most significant is probably with
the GHC API. In other words, GHC has been built as a Haskell library, and the
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Figure 2.2: Code generator backends included with GHC
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Figure 2.3: Optimizations steps performed by GHC

GHC executable is just a small Main module linked with this library. GHC’s
functionality is exposed through an API, which provide access to: the steps of the
compilation process; data structures; and intermediate representations.

Another extensibility of GHC is external Core, which is a runtime option for
GHC to serialize Core into an external human-readable representation. This option
is further described in chapter 4 on page 19.

2.3 Core intermediate language
While Haskell is a very large implicitly-typed language, it can be fully translated
into Core, an explicitly- and statically-typed intermediate language.

The theory behind Core has changed over the years, and the Core name is used
for the implementation of the intermediate language in GHC. Currently Core is
the implementation of System F ↑

C (which have been recently defined formally in a
technical paper by Eisenberg [15]).

Core was initially based on lambda calculus. To be able to decorate Core with
types, it was upgraded to a polymorphic lambda calculus, System Fω, and then
extended with data types, let-expressions, and case expressions [19]. System Fω is
based on System F , which was originally developed as a foundational calculus for
typed computation. To support type equality constraints and safe coercions, Core
was further extended to System FC [44, 48, 50]. System FC also provide simple
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support for kinds (the type of a type). Weirich et al. [51] introduced System FC2,
which simplified System FC and decorated kinds with roles to mark type contexts.
System F ↑

C is Core’s most recent upgrade, which has more complex kinds that pro-
vide better support for type families and generalized algebraic data types
(GADT) [50, 52].



CHAPTER 3

RPython and PyPy

This chapter describes concepts related to JIT compilation and RPython, such
as: The PyPy project (section 3.2); RPython language and RPython translation
toolchain (section 3.4); and trace-based JIT compiling (section 3.5).

3.1 Python
Python is a high-level, dynamic programming language that supports several pro-
gramming paradigms, such as imperative, object-oriented and functional [5, 26]. It
is highly regarded for its simplicity and ease of use [16].

The original Python implementation, CPython, is a traditional bytecode in-
terpreter written in C [26]. While several alternative implementations have been
created since then, CPython is still the official or standard Python implementa-
tion [41]. Other well-known Python implementations are [26]:

• Jython1, which is written in Java and runs on Java Virtual Machine (JVM).

• IronPython2, which is written in C# and interfaces with Microsoft’s .NET
framework.

• PyPy, a Python interpreter implemented in Python itself.

3.2 PyPy project
The PyPy project consist of two major components: The Python interpreter PyPy
and the RPython translation toolchain. PyPy is built with the help of the RPython

1Jython homepage: http://www.jython.org/
2IronPython homepage: http://ironpython.net/

13
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Figure 3.1: PyPy interpreter speed evolution [45]

translation toolchain [26]. These two components map directly to the two main
goals of the PyPy project:

• Provide a faster Python implementation [5, 14].

• Be an environment for implementing fast, complex dynamic languages that
support multiple platforms [7, 36, 40].

Traditionally one must implement one VM for each platform one wish to sup-
port. By implementing the PyPy VMs in a high level language it can support
several very different platforms with one implementation [36]. High level lan-
guages also help keep the implementation free of low-level details such as object
layout, threading model, and memory management [7]. The RPython toolchain
used by PyPy achieve the second goal. The disadvantage of a VM implemented
in a high-level language is lack of speed, so to achieve the first goal PyPy has
developed a meta-tracing JIT compiler that is a part of the RPython translation
toolchain [5, 9, 36]. Meta-tracing is explained in section 3.5.

The PyPy interpreter has achieved its goals. PyPy is a fully compatible al-
ternative Python interpreter that is quite fast. Peterson writes that “PyPy is a
geometric average of five times faster than CPython on a comprehensive suite of
benchmarks” [26, p. 287]. The current and historic status of the speed difference
of PyPy against CPython 2.7.2 can be seen in Figure 3.13 [45].

RPython has been used to implement a number of programming languages. An
overview over these implementations can be seen in Table 3.14. Only the PyPy

3PyPy speed progress (Figure 3.1) is taken from http://speed.pypy.org, which also has per-
formance result of each benchmark.

4Hippy VM RPython implementation: http://bitbucket.org/fijal/hippyvm/
RPython JavaScript implementation: http://bitbucket.org/pypy/lang-js/
RPython Scheme implementation: http://bitbucket.org/pypy/lang-scheme/

http://speed.pypy.org
http://bitbucket.org/fijal/hippyvm/
http://bitbucket.org/pypy/lang-js/
http://bitbucket.org/pypy/lang-scheme/
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interpreter and Tratt’s Converge [5] are considered complete, while the rest are in
different stages of development or abandoned as they have fulfilled their goals. A
few of them does not include RPython’s JIT compiler [6, 8, 12, 17, 18, 39].

Table 3.1: Overview over virtual machines implemented with RPython

Development

VM Name Language JIT Started Stopped Status

Converge Converge Yes 2011 Complete
HappyJIT PHP Yes 2011 Partial
Hippy VM PHP Yes 2012 Partial
io Io No 2009 2011 Partial
js JavaScript Yes 2006 Partial
PyGirl Game Boy No 2008 2009 Almost complete
PyHaskell Haskell No 2011 Partial
PyPy Python Yes 2004 Complete
Pyrolog Prolog Yes 2006 Almost complete
Rapydo R Yes 2012 Partial
Spy Smalltalk No 2007 2011 Almost complete
Scheme Scheme No 2006 2012 Partial

3.3 Just-in-time compilation
A just-in-time (JIT) compiler converts code to compiled machine code dynamically
at runtime, in contrast to static compilation, which compile code to machine code
beforehand. A JIT system must limit the time it uses on optimization during
compilation, as execution is paused during compilation. Static compilation can
devote as much time as they want on program analysis and optimization. JITs can
in some instances provide better performance than static compilation, as it has
access to runtime information, e.g., control flow, input parameters, and specifics of
the target machine [3].

JIT compilation can be divided into two categories, method-based and trace-
based. Method-based JIT compilers convert code one method at a time, while
trace-based JIT compilers compile frequently executed loops to machine code.
Tracing JITs can greatly speed up programs if they spend most of their time in
loops where they take similar code paths [7]. Tracing JITs are further explained in
section 3.5.

Trace-based JIT has been used with success by both dynamically and statically
typed languages, such as Python [7], Lua, JavaScript, Java, and C# [38].

3.4 RPython
The PyPy project has defined a subset of the Python language as the RPython lan-
guage, short for Restricted Python. RPython is a statically typed object-oriented
programming language. The PyPy interpreter is written in RPython, and other
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VM that wish to use the RPython environment must also be written in RPython.
The toolchain itself is also written in RPython [40].

As RPython is a strict subset of the Python language and the RPython trans-
lation toolchain is run on top of a Python interpreter, RPython VMs can also be
run on Python interpreters. This allows debugging with Python tools and quick
testing without translating with the toolchain [26].

The RPython language is selected in such a way that it is possible to do type
inference on it [9]. The RPython language is not defined formally, but considered
informally as any Python code that the RPython translation toolchain can handle.
The restrictions imposed by RPython together with type inference makes it possible
to translate RPython programs directly to low-level languages like C [9]. These
restrictions are mainly:

• Variables need to be type consistent, for example a variable cannot hold an
integer and then later a string [26].

• Types of all variables in the code must be inferable [12].

• Functions cannot be created at runtime [26].

• Bindings in classes and global namespaces are assumed to be constant [36].

• Runtime reflection is not supported [12].

Despite its restrictions, RPython is a high-level language that supports: garbage
collection; single inheritance5; exceptions; classes with virtual functions; first class
functions and class values; runtime isinstance and type checks; and good built-in
data structures [6, 8, 9, 12].

One goal behind the RPython translation toolchain was to allow compilation
of RPython programs to various environments, such as C, JVM, and Common
Language Runtime (CLR) [7, 36]. Another goal was to automatically create VMs
with JITs through meta-tracing [5].

The toolchain performs step wise translations from the RPython source of a
VM until it reaches the low-level code of a target platform. Each level has a cor-
responding type system and uses a generic type interference engine, and each level
adds support for features that were assumed primitive by the previous level [36].

The translator toolchain starts with an abstract interpretation phase, which
builds flow-graphs from RPython source code. The flow-graphs consist of linked
blocks where each block has input arguments and a list of operations. These flow-
graphs are in static single assignment (SSA) form [26].

Next is the annotation phase, where type information is assigned to the argu-
ments and result of each operation. The annotation phase performs type inference
on the whole program [26].

RTyping is the next phase, which uses type information to expand high-level
flow-graph operations into low-level operations. After RTyping several optimiza-
tions are performed on the low-level flow-graphs. Traditional optimizations such

5RPython support most of the advantages of multiple inheritance with explicitly declared
mixins [1, 6].
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as constant folding, dead code removal and more complex ones such as function
inlining and malloc removal [26].

The final phase is the backend, which generates source code from low-level flow-
graphs. The C backend emits C code, but must first add explicit garbage collection
and exception handling. The generated C code is compiled as the final step of the
C backend. There is an alternative object-oriented backend for generating code
that runs on JVM and CLR [7, 26].

Writing RPython code can be time-consuming and challenging as there is little
documentation on RPython, how to use it and what is valid RPython. To discover
if an operation is valid RPython, one must translate it with the toolchain. Invalid
code will generate error messages, which can be quite cryptic and contain a limited
amount of useful information. During my work I discovered three major RPython
restrictions that were not explicitly detailed by PyPy research papers:

• Only a subset of built-in functions is available.

• Only a subset of built-in data structures is available.

• Python’s standard library is not available as RPython. RPython has its
own standard library, pypy.rlib sub-package, where a very limited part of
Python’s library is implemented in RPython.

3.5 RPython’s meta-tracing just-in-time compiler
As mentioned in section 3.3, JITs improves the speed of a language by compiling
frequently used code-paths into assembly at runtime [26]. Many dynamic languages
have two main challenges that a JIT might solve: a) overhead from the interpreter,
for example bytecode dispatch and interpreter’s data structures; and b) overhead
from boxing of primitive types [10].

A tracing JIT observes the running program to detect commonly executed con-
crete paths [9, 10]. Detected paths are called a trace, and contains the history
of executed operations. A trace is first optimized with well-known compiler op-
timizations, before compilation into machine code. As a trace is linear, many
optimizations are easy to do and generating machine code for the trace is straight-
forward [2].

RPython’s JIT optimizer does “a few classical compiler optimizations and many
optimizations specialized for dynamic languages” [26, p. 285]. Virtuals and virtual-
izables are among the most important optimizing techniques according to Peterson
[26]. Virtuals are objects that can be stored in registers and on the stack without
allocation. Virtualizables are similar to virtuals, except virtualizables may escape
the trace so they must be handled during tracing, while virtuals are handled during
trace optimization [26].

As a trace is a path of the code, any branching along that path is protected with
guards. If a different path is used, a guard will trigger that returns control back
to the VM. If a guard fails often, the tracing JIT will start a new trace from the
failed guard [10]. Schneider and Bolz have found that in the context of RPython’s
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JIT, “guards account for about 14% to 22% of the operations before and for about
15% to 20% of the operations after optimizing the traces generated for different
benchmarks” [40, p. 1].

While a tracing JIT compiler normally traces the user program that runs on
top of an interpreter, RPython’s JIT traces the execution of the interpreter itself,
which is why it is called a meta-tracing JIT. RPython’s meta-tracing JIT can
be used, almost automatically, by all VMs written in RPython. Only two hints
in the source code of a VM is required by the meta-tracer: can_enter_jit and
merge_point. The former hint specifies where in the interpreter a loop starts, and
the latter says where it is safe to return to the interpreter from the JIT [5, 7, 26].
There are also other optional hints one can use to help improve the performance of
the meta-tracing JIT. RPython hints are described further in chapter 6 on page 33.



CHAPTER 4

External Core

This chapter describes GHC’s current implementation of external Core (section 4.1);
issues and limitations hindering PyHaskell’s support of the Haskell language (sec-
tion 4.2; and possible solutions to these issues section 4.3.

PyHaskell use GHC to type-check and desugar Haskell source code into Core,
and to create an external representation of Core. PyHaskell then convert external
Core into a JSON representation, which our can VM parse and evaluate. Py-
Haskell’s pipeline is further described in section 5.3 on page 27.

4.1 Current implementation
External Core is an external representation of the Core data structure used in
GHC’s compilation process1. As explained in section 2.2, GHC desugar Haskell to
Core, after which GHC’s main optimizations are performed as semantic-preserving
transformations on Core. The Core language, which the Core data structure im-
plements, is described in section 2.3.

External Core is designed as a round-trip in GHC, where Core is first converted
to an external Core data type. This data type is then printed into the concrete
syntax of external Core. The syntax is parsable by a parser that converts external
Core into the Iface Core data type. GHC can then convert Iface Core into Core
again [28].

Identifiers in external Core is Z-encoded, according to the rules in Table D.1,
as explained in Appendix D on page 73.

External Core representation of a Haskell source file is produced by giving GHC

1GHC’s compilation process can be seen in Figure 2.1 on page 8.
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the flag -fext-core, and the extcore2 package support parsing and working with
external Core in Haskell.

4.2 Issues and limitations
While Core has been improved and upgraded to different iterations based of System
F (currently System F ↑

C), external Core has been neglected and drifted out of sync
with Core.

Eisenberg [15] have presented a formal definition of Core and System F ↑
C for the

latest GHC version, 7.6. Tolmach et al. [48] describe a precise definition of external
Core that was last updated for GHC version 6.10. The time period between these
two versions are about four years. In these four years Core has seen significant
work, while external Core has only received minor improvements. For example,
external Core does not support GADT, type families, integer literals, and left and
right coercion.

It is not only external Core that causes problems for PyHaskell. The extcore
package has been abandoned, and was last updated over a year ago. According to
HackageDB2, Haskell’s online package library, extcore support GHC version 7.0 or
older. Therefor there is some things external Core support that is not supported
by extcore.

The extcore package also has some unwanted behavior. For example, it con-
vert lambda-statements that have more than one variable into several lambda-
statements with one variable each.

The core2js-program in Skrede [43]’s pipeline also has some issues, such as the
JSON-encoding of external Core is too verbose. It is more verbose than what is
required to encode it as JSON.

Appendix C list an example where extcore split a lambda into two lambdas.
Line six and seven of Listing C.2 is a two-variable lambda, which is two single-
variable lambdas in line 9 to 12 of Listing C.3. Listing C.3 also show the verbosity
of JSCore, as it has double the lines of Listing C.2, and almost eight times the size.
These examples also show how a simple function is represented in external Core as
one lambda with two case-expressions.

Improvements to core2js would not be very beneficial until the problems fur-
ther up the pipeline are solved. When other, larger issues are removed, it might be
better to completely scrap core2js, and write a new parser that can parse external
Core directly.

Hudak et al. [19] note that Haskell has gained “dozens of language extensions
(notably in the type system)” [19, p. 29]. In the newer versions of the Haskell
Prelude, these language extensions are used in great number. For example, the
GHC.Base-module that is imported by almost all modules the Prelude use the fol-
lowing extensions: NoImplicitPrelude, BangPatterns, ExplicitForAll, MagicHash,
UnboxedTuples, ExistentialQuantification, and RankNTypes. While most of these

2External Core parser package, extcore, on HackageDB:
http://hackage.haskell.org/package/extcore

http://hackage.haskell.org/package/extcore
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are removed by GHC before Core, some leave their marks in the code produced by
external Core [34].

Skrede, who designed and implemented PyHaskell’s pipeline, concluded that:
“the serialization of Haskell programs into the JSCore format have several problems.
It is dependent on a buggy part of GHC, and on a poorly maintained package
(extcore).” [43, p. 43].

4.2.1 Improvements

With small improvements of external Core, such as support for new integer literals
and left and right coercion, a few parts of Haskell Prelude can be converted to
external Core [34].

These improvements are not yet included in any GHC release, so to use them
require building a custom version. As the extcore package is outdated, it is best to
pull them onto the 7.4 branch of GHC, before building.

PyHaskell handles the Prelude by compiling parts of it to external Core before-
hand, with a custom built GHC version. Other parts are implemented in PyHaskell
with RPython code. If an unknown identifier is requested, PyHaskell will try to
load the external Core file for its module. If it is not there, it will exit with an
error [11].

As described in subsection 4.3.1, GHC’s core developers believe external Core
should be rewritten. I strongly agree with them as I have reached the same con-
clusion, which is explained in section 4.4,

4.3 Possible solutions
Core and external Core must be re-synced before PyHaskell can support a larger
part of the Haskell language, and more importantly the Haskell standard library
Haskell Prelude. There are two obvious solutions to this problem: a) rewrite
external Core support in GHC; or, b) use the GHC API.

4.3.1 Rewrite external Core

Peyton Jones and Fischer [28] suggest how GHC’s external Core support should be
rewritten. The external Core data type should be dropped. Instead external Core
should be based directly on Iface Core, as GHC already can convert Core into Iface
Core. A new printer should be written that takes Iface Core and converts it into
the current external Core syntax. This new printer could be based on an already
existing Iface Core printer, BinIface, which support serialization and deserialization
of Iface Core.

As GHC’s external Core support has almost no tests, a first step of rewriting it
must be to create tests, to ensure the rewrite generates the same grammar as the
current implementation.
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4.3.2 GHC API
External Core is not the only way to use GHC as a frontend. As described in
subsection 2.2.3, the GHC API provide a Haskell interface to GHC’s internal data
structures, such as Core.

For PyHaskell to use GHC API instead of external Core, it would need to
create a Haskell program that interface with Core and serialize it to an external
representation. Just from this description, it should be obvious that this is the
main goal of GHC’s external Core support.

The main benefit from this approach would be that PyHaskell could use Core
after the CorePrep transformation pass, which have more invariants than external
Core, such as [37]:

• Function call arguments are atoms, either variable or literal.

• Case always means evaluation.

• Let always means allocation

We would also be able to remove kinds and types without an extra step, as our
current approach has in the core2js program.

Lambdachine, an experimental tracing JIT backend for GHC under develop-
ment by Schilling [38], use the GHC API. Lambdachine serialize Core to bytecode,
which is further explained in section 11.3. Lambdachine struggles with some of the
same issues as PyHaskell, even though it uses GHC API instead of external Core.
Both can so far only support a very limited subset of the Haskell Prelude.

4.4 Discussion
While external Core support a large number of Haskell language features, it does
not support the Haskell Prelude. Therefor PyHaskell cannot support GHC’s test
suite nor the nofib benchmark suite. It would require one of the solutions mentioned
earlier, and even then it would probably be parts of the Haskell Prelude PyHaskell
cannot support.

“Over the fifteen years of its life so far, GHC has grown a huge number of
features (. . . ) This makes GHC a dauntingly complex beast to understand and
modify and, mainly for that reason, development of the core GHC functionality
remains with Peyton Jones and Simon Marlow.” [19, p. 29]

In my attempts at improving GHC’s external Core, I must agree that under-
standing and modifying GHC is a huge undertaking, which is further complicated
by the complexity of the Haskell language itself. I have been unable to complete
either of the two possible solutions, because of my inexperience with Haskell and
the complexity of GHC, but also because of trouble with building GHC. It has
been a time-consuming undertaking that has not been fruitful, lot of time required
to understand the issues and how to solve them.

It is my opinion that the best solution would be based on the GHC API. To
use it to serialize Core after the CorePrep transformation pass, in a format based
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on the current external Core grammar. This would allow a new parser to be useful
for both solutions. If GHC core developers decide to rewrite external Core them-
selves, we could see which solution is/was better. Furthermore I believe the current
pipeline should be scrapped, and a new parser should be written, as the current
jscparser-module is designed for JSCore, which is too verbose. As an educated
guess, either solution would require one to two work months for an experienced
Haskell programmer to complete.
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CHAPTER 5

PyHaskell

This chapter describes an RPython implementation of Haskell called PyHaskell,
which more specifically is a tracing JIT backend for GHC (section 5.2). The Haskell-
Python project started the work that led to the PyHaskell VM (section 5.1). GHC
and our VM are connected with a pipeline (section 5.3) that has several problems
and limitations (section 5.4). Some of these issues have been fixed during previous
and current work. section 5.5 detail improvements that was required to support
more advanced benchmarks, while section 5.6 describe our VM’s current support
of the Haskell language and the Haskell Prelude.

5.1 Haskell-Python project
Launchbury [21] designed an operational semantic for lazy languages with a heap
as the only computational structure. The semantics are divided into two stages:

• A static transformation where creating and sharing of closures are explicit,
all bound variables are distinct, and all applications are of an expression to
a variable.

• A dynamic semantics with a heap binding variable names to expressions.
Evaluation involves adding new bindings to the heap, or updating based on
a reduction rule.

Bolz, Fischer, and Christiansen [11] implemented an RPython VM1 for an
extended lambda calculus, based on Launchbury’s semantic for lazy languages.

1Haskell-Python’s implementation of Launchbury’s semantics can be found in the clean2
branch of Haskell-Python’s repository [11].

25
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Lambda calculus is a system for expressing computations with variable bindings
and substitution.

How GHC’s external Core are translated to PyHaskell’s implementation the
natural semantics have been described by Skrede [43].

5.2 The PyHaskell virtual machine
As a GHC backend, PyHaskell only need to implement a VM for the Core lan-
guage (see section 2.3), as opposed to the very large Haskell language. The goal
of supporting the Haskell test suite and the nofib [24] benchmark suite demand
support for a large part of the Haskell Prelude. Implementing the Prelude in
RPython would be a colossal undertaking, instead PyHaskell hope to reuse GHC’s
implementation of the Prelude, which is written mostly in Haskell.

PyHaskell consists of the operational semantics described in section 5.1; the
pipeline described in section 5.3; the JSCore parser in the jscparser-module; a
bunch of primitive operations and data types; and a set of built-in libraries imple-
menting a small subset of Haskell and Haskell Prelude. These primitive operations
and data types cannot be implemented in Haskell, and are instead provided through
the virtual module GHC.Prim.

In GHC, the primitive operations are implemented2 after the Core stage, hence
PyHaskell must provide an implementation of them written in RPython. The
implementation is provided by the prim and primtype-modules [11].

Launchbury’s semantics have been implemented in the haskell-module of Py-
Haskell, including Launchbury’s Constructors and Constants extensions. The
haskell-module contains the following constructs:

• Var, a variable

• Rule, patterns that match an expression.

• Function, a named collection of rules.

• PrimFuncton, a function that is written in RPython.

• Application, the evaluation of a function.

• Constructor, a symbol and zero or more variables.

• Substitution, a functions body where variables are replaced with values.

• Thunk, an unevaluated application.

The evaluation of these constructs consist of a “todo” stack of expression to eval-
uate, as can be seen in Listing 7.6. Apply involves replacing variables with values
in functions and applications, while step progress the evaluation one step further
by removing or replacing an element on the stack.

2More details about GHC’s primitive operations can be found in GHC wiki:
http://hackage.haskell.org/trac/ghc/wiki/Commentary/PrimOps

http://hackage.haskell.org/trac/ghc/wiki/Commentary/PrimOps
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GHC’s Cmm representation is used as input for the backends included in GHC,
but PyHaskell use the Core intermediate representation. Therefore some of GHC’s
optimizations are unavailable to PyHaskell, such as TNTC. Other optimizations are
incomplete, only half-done, e.g., unboxing. This can be seen in external Core output
where unboxed types end with # (see Listing C.2). GHC unbox extensively for
performance reasons [29]. Optimizations performed by GHC are further described
in subsection 2.2.2.

One aspect of the Haskell language not mentioned yet, is that functions may
be applied to fewer or more arguments than the function arity. This is known as
partial application and over-application. It must be handled at runtime [38]. While
PyHaskell tries to support partial application, it does not support over-application.

5.3 PyHaskell pipeline
Skrede [42] extended the Haskell-Python project by designing and implementing
PyHaskell’s pipeline, which use GHC as a frontend and the lambda calculus VM
created by Bolz et al. as backend. The structure of this pipeline can be seen in
Figure 5.1. The GHC frontend handle parsing and type-checking of Haskell source
code before it desugars Haskell into the Core intermediate representation. GHC
then serialize Core into external Core, which is written to a “hcr” file3.

External Core is converted to JSON with the core2js program, which core2js
use the extcore package4 to parse external Core. Core, now in a JSON representa-
tion called JSCore, is written to a “hcj” file [42].

The JSCore file is then interpreted by the PyHaskell VM. First the file is parsed
with the jscparser-module, which create lambda calculus operations based on
Launchbury’s semantic. These operations are implemented in the haskell-module,
and the final step of the PyHaskell pipeline is evaluation of the operations cre-
ated [11].

It is easier for compilers to do type-checking and error-checking after synthetic
sugar is removed, but GHC is unusual as it perform type-checking both before
and after it desugar Haskell into Core [19]. PyHaskell therefore knows its input is
type-safe.

Examples of the different representations that Haskell source code goes through
before being fed to our VM can be seen in Appendix C on page 69. First, as Haskell
code in Listing C.1. Then as external Core in Listing C.2, which core2js convert
to JSCore as seen in Listing C.3.

5.4 Pipeline issues and previous work
The PyHaskell pipeline implemented by Skrede was incomplete, with three impor-
tant limitations:

3GHC frontend is described in subsection 2.2.1 on page 7, while external Core is described in
chapter 4 on page 19.

4extcore package: http://hackage.haskell.org/package/extcore

http://hackage.haskell.org/package/extcore
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Figure 5.1: Haskell-Python’s pipeline by Skrede [42]
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1. Some issues related to GHC’s external Core support and the extcore package,
as explained in section 4.2. My attempt at fixing these issues are described
in chapter 4.

2. The jscparser-module was written in Python, and not RPython, which meant
it could not be translated with the RPython toolchain to C, and it could not
use the RPython meta-tracing JIT.

3. The jscparser-module only supports a limited subset of the Haskell language.

I had to completely rewrite the jscparser-module in RPython to fix the second
limitation. The code that walked the AST used different functions depending on
the type of the node visited, and these functions failed to have compatible type
signatures, as required by the RPython type system and its limitations.

I extended PyHaskell with support for Constructors; type aliases; a number
of built-in Haskell functionality from the Haskell Prelude; and more. While this
work improved PyHaskell’s support of Haskell, the last limitation of the pipeline is
still a work in progress, where progress is dictated by the needs of benchmarks. An
overview over the current status can be seen in section 5.6. I also Z-decoded (see
Appendix D) external Core identifiers in core2js; and removed kinds and some
type information from the JSCore output of core2js.

5.5 Improvements
This section describe improvements undertaken to be able to run more advanced
benchmarks with PyHaskell.

5.5.1 jscparser
My first bug fix was in the jscparser-module, where the code assumed that an
atomic expression was one of: a variable; a data constructor; a literal; or a nested
atomic expression. Obviously, it would be meaningless to nest an atomic expression
if it could only be one of those, and the correction was to allow an atomic expression
to be a nested expression. A small change that also allowed removal of a type check
on all atomic expression nodes in the AST.

5.5.2 putStrLn
putStrLn is a simple function that takes a list of Char’s (a string), and the prints
them (with a newline) to stdout. The type of putStrLn is defined in Haskell
Prelude as:

String -> IO ()

While it was implemented with the correct behavior, in as far as it printed correctly
to stdout, it returned the Char list instead of IO (). It was done this way to
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avoid having to implement parts such as IO, but it pushed the list further down
the evaluation stack, which could be problematic.

Consider the simple example of printing the string “Hey” to stdout:

main = putStrLn "Hey"

In the external Core output produced by GHC (Listing 5.15), one might see that
the example simply calls putStrLn with the unpacked string “Hey”. PyHaskell
converts this to a set of operations that it evaluates, and in line six of Listing 5.2
the string is printed. The argument to putStrLn can be seen again in line seven,
and it is given to runMainIO in line eight, where evaluation ends.

1%module main :Main
2main :Main . main : : ( ghc−prim :GHC. Types . IO
3ghc−prim :GHC. Tuple . ( ) ) =
4base : System . IO . putStrLn
5( ghc−prim :GHC. CString . unpackCString#
6( "Hey " : : ghc−prim :GHC. Prim . Addr#));
7main : : Main . main : : ( ghc−prim :GHC. Types . IO
8ghc−prim :GHC. Tuple . ( ) ) =
9base :GHC. TopHandler . runMainIO @ ghc−prim :GHC. Tuple . ( )
10main :Main . main ;

Listing 5.1: putStrLn example: GHC external Core output

1runMainIO putStrLn unpackCString# Hey =>
2putStrLn unpackCString# Hey =>
3unpackCString# Hey =>
4( Constr : H, ( Constr : e , ( Constr : y , ( Constr [ ] ) ) ) ) =>
5putStrLn ( Constr : H, ( Constr : e , ( Constr : y , ( Constr [ ] ) ) ) ) =>
6Hey
7( Constr : H, ( Constr : e , ( Constr : y , ( Constr [ ] ) ) ) ) =>
8runMainIO ( Constr : H, ( Constr : e , ( Constr : y , ( Constr [ ] ) ) ) ) =>

Listing 5.2: putStrLn example: PyHaskell evaluation log

I fixed this by having putStrLn create an IO () constructor, and return it
instead. This can be seen in Listing 5.3, where I show only the last two lines that
now have the correct behavior.

7( Constr IO ( Constr ( ) ) ) =>
8runMainIO ( Constr IO ( Constr ( ) ) ) =>

Listing 5.3: putStrLn example: PyHaskell evaluation after

5Listing 5.1 has been Z-decoded according to Table D.1 on page 74.
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5.5.3 runMainIO
runMainIO is a simple wrapper around Main.main that should catch otherwise
uncaught exceptions, and should also flush standard output (stdout) and standard
error (stderr) before exiting. Similarly to putStrLn, it would incorrectly return the
argument it was given. I changed it to return the unit Constructor instead.

5.5.4 Show
The class Show and its instances implement the function show, which convert a value
to a string. For values of type Int show will return a string with the value inside
it. For example calling show with the value 10 returns the string “10”:

show 10 = "10"

Show was only implemented for Int values, and in a very incorrect way. The
show function simply returned the argument it was given, and “$fShowInt” con-
verted an Int into a list of characters. $fShowInt should be a typeclass argument
to the show method, telling it the type of the argument to show. I fixed this, as
well as implement show for Integer and Char. Show for Lists has not been imple-
mented, as it takes one more argument than regular show, and PyHaskell does not
support over-application [11].

5.5.5 Built-in libraries
To be able to support more advanced benchmarks and tests, I’ve had to extend the
support of the Haskell Prelude by adding functionality implemented in RPython.
The list module have been extended with the functions length, replicate, and
index. The num and prim modules were extended with integer division.

5.6 Summary of current status
This section describes the current status of PyHaskell. The Haskell language fea-
tures are listed6 in Table 5.1. Some features from the Haskell Prelude are listed at
bottom of the table. The table also shows what did not work before7 the work on
this report was started.

External Core issues, as mentioned in chapter 4, are the main reason for some of
these shortcomings. Still, a few elements of external Core are not yet implemented
in the jscparser-module, i.e., cast, note, label, external ccall, and dynexternal ccall.
Type coercion should not be necessary as we throw away type information, and C
calls are a challenge we considered unimportant at this stage.

6The features are tested with Haskell source code from either PyHaskell’s test suite
(branch “even”) [11], or the feature-folder of the thesis-benchmarks repository:
http://bitbucket.org/eventh/thesis-benchmarks

7“Before” in Table 5.1 refers to PyHaskell revision 73ee6331dc5c [11]

http://bitbucket.org/eventh/thesis-benchmarks
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Table 5.1: Overview over Haskell features PyHaskell support

Feature tested Before Now Note

Hello world! Yes Yes
Case expression Yes Yes
Let expression Yes Yes
Data constructor Yes Yes
Partial function application Yes Yes
Recursive function Yes Yes
List concatenation ‘++’ Yes Yes
Cons operator ‘:’ Yes Yes
Function composition operator ‘.’ Yes Yes
Function application operator ‘$’ Yes Yes
Indexing operator ‘!!’ No Yes
Pattern matching No Yes
Guards No No External Core error
Enumerations No No Missing “GHC.Enum” support
Recursive let expression No No Missing “%let” support
List comprehension No No Missing “%let” support

Int division No Yes
List take No Yes
List replicate No Yes
Show for Char No Yes
Show for Integer No Yes



CHAPTER 6

RPython hints and just-in-time optimization techniques

This chapter describes RPython hints that enable JIT optimization techniques.
Hints are placed in the source code of VMs written in RPython, often in the
form of decorators or function calls. While some of the hints are explained in
research papers and blog posts, other hints are not described anywhere and I had
to investigate the RPython source code to be able to explain how and why these
RPython hints are used.

Chapter 7, and especially section 7.3, describes where these hints are used in
PyHaskell. The consequence of these hints on the VM’s performance can be seen
in section 7.4.

6.1 Can enter JIT and merge point
RPython’s meta-tracing JIT compiler require two hints to work: can_enter_jit
and merge_point. The first hint specify the start of a loop, and the second state
where it is safe to return control from the JIT to the interpreter.

During translation can_enter_jit and merge_point are replaced with calls
that invokes the JIT during runtime.

Tracing starts and ends at can_enter_jit hints. After a trace is detected to be
hot, the list of operations in the trace is passed to the optimizer, before compilation
to assembly. The can_enter_jit and merge_point hints are thus not like other
RPython hints that turn on optimization techniques. Instead they enable tracing
that makes it possible to use these JIT optimization techniques.

Guards often fail in between merge points, which according to Peterson, “is
one of the most difficult parts of JIT implementation, since the interpreter state
has to be reconstructed from the register and stack state at the point the guard
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failed” [26, p. 286]. A blackhole interpreter then execute “jitcodes” (operations
recorded at translation time, not runtime) until a merge point is reached.

To place these two hints in the source code of a VM, one must first create
an JitDriver-instance1, and give it two parameters, which list variable names
split into two groups: “green” variables that represent a position in the inter-
preted program, which for bytecode-based interpreters are typically the program
counter; while the remaining variables are “red” [7, 8]. JitDriver accept more
arguments when instantiated, e.g., virtualizables; a function for printing debug in-
formation; and more. The can_enter_jit and merge_point hints are methods on
the JitDriver-object.

6.2 Promotion
A variable is constant if its value is statically known by the optimizer. Literal
values such as 1 or 2 are obvious constants, but also a variable can be constant,
depending on its context. For example, in a trace, if a variable is protected by a
guard it must be constant (from SSA), or the guard would fail.

Promotion is a technique to turn an arbitrary variable into a constant, which
can be very powerful when used by JIT compilers. Promoting variables to constants
gives the opportunity for optimization by constant folding. There are often places
where a lot of computations depend on the value of a variable.

Bolz et al. [9] describe the promotion technique, and how it can be used in a
VM written in RPython. The RPython source code hint promote is a function
that accepts one argument, the variable that should be promoted.

Bolz et al. describe an example usage of the promotion technique, which can
be seen in Listing 6.1, Listing 6.2, and Listing 6.3. The function f1, written in
RPython, are shown in Listing 6.1. The example assumes that the variable x rarely
change, and is therefore turned into a constant with the promote call. With x as
the value 4, we can see the unoptimized trace of f1 in Listing 6.2, while the same
trace after constant-folding optimization can be seen in Listing 6.3.

If the value of x, in the above example, is not 4, the guard fails and execution
return to the interpreter. A promotion hint will never produce wrong results,
but if a variable changes often it will require repeated tracing and produce too
much machine code. Therefore, promotion can slow down the VM when it used
incorrectly.

def f1(x, y): 1

promote(x) 2

z = x * 2 + 1 3

return z + y 4

Listing 6.1: Promotion example: RPython code — Bolz et al. [9, p. 4]

1The JitDriver class comes from the pypy.rlib.jit module of the PyPy source tree.
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1guard (x1 == 4)
2v1 = x1 ∗ 2
3z1 = v1 + 1
4v2 = z1 + y1
5return (v2 )

Listing 6.2: Promotion example: unoptimized trace — Bolz et al. [9, p. 4]

1guard (x1 == 4)
2v2 = 9 + y1
3return (v2 )

Listing 6.3: Promotion example: optimized trace — Bolz et al. [9, p. 4]

6.3 Trace-elidable
A function is trace-elidable if “during execution of the program, successive calls to
the function with identical arguments always returns the same result. In addition
the function needs to have no side effects or idempotent side effects” [9, p. 4]. The
RPython decorator @elidable is used to mark functions as trace-elidable. In a
trace a call to a function decorated with the hint can be replaced with the result
of the call.

An example of trace-elidable can be seen in Listing 6.4, which uses both promote
and elidable hints. The unoptimized trace of the call a.f(val) (where a is an
instance of class A) can be seen in Listing 6.5. The two hints allows the JIT to
optimize the trace, as seen in Listing 6.6. The call to a.c() is replaced with the
result of the call as the method is decorated as elidable. Furthermore the promote
introduces a guard2 on the instance, and constant-fold the value of a.x to 4. In this
example, promote without the elidable hint would not remove the calculations
in a.c() as a.x is not proven constant.

The elidable hint, as opposed to promote, will produce wrong code if it is
used incorrectly. If any of the requirements for trace-elidable is broken, very subtle
bugs will be introduced that are hard to debug.

6.4 Loop unrolling
If the RPython JIT tracer encounter a function call it must decide if it should inline
it by tracing into the function, or just record the function call as an operation
in the trace. Bolz explains that the default behavior is to “trace as much as
possible (everything by default) except the functions which loops where tracing
would produce code that is less general than it could be” [4].

Unrolling loops can be harmful, if the loop is large or consist of many iterations,
the unrolled loop would produce an excessively large trace. Also, many functions
should not be unrolled as it would specialize them in the trace for a specific behav-

2The value 0xb73984a8 is the address of the instance of a protected by the guard.
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class A(object): 1

def __init__(self, x, y): 2

self.x = x 3

self.y = y 4

5

def f(self, val): 6

promote(self) 7

self.y = self.c() + val 8

9

@elidable 10

def c(self): 11

return self.x * 2 + 1 12

Listing 6.4: Elidable example: RPython code — Bolz et al. [9, p. 4]

1x1 = a1 . x
2v1 = x1 ∗ 2
3v2 = v1 + 1
4v3 = v2 + val1
5a1 . y = v3

Listing 6.5: Elidable example: unoptimized trace — Bolz et al. [9, p. 4]

1guard (a1 == 0xb73984a8 )
2v2 = 9 + val1
3a1 . y = v2

Listing 6.6: Elidable example: optimized trace — Bolz et al. [9, p. 5]
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ior. For example, a function that loops over elements in a list, would be specialized
for a list of a specific size. The optimized and compiled trace would then only be
useful when it worked on a list of that size.

RPython provide two hints for controlling when to unroll and not: unroll_safe
and dont_look_inside. The first is for false negatives, which specifies that the
loop (in a trace) should always be unrolled; while the latter is for false positives, it
says that the JIT should produce a call to the function and not trace into it. These
two hints are used as decorators on RPython functions — unroll_safe should
only be used when a loop is expected to run the same number of iterations [4].

In pypy.rlib.unroll, RPython provide a special hint that will unroll a loop
(iterable) at translation time: unrolling_iterable [46].

An example of how the @unroll_safe decorator is used in PyHaskell can be
seen in section 7.3.

6.5 Immutable fields

The immutable_fields hint is used to mark class fields that is immutable, so that
reading them can be inlined. The hint is used by setting a special class attribute
_immutable_fields_ to a list with names of the fields that are immutable. Each
name can be followed by one of three optional tags:

1. “?” mark the field quasi-immutable.

2. “[*]” mark a field as an immutable array.

3. “?[*]” for a quasi-immutable field pointing to an immutable array.

Quasi-immutable is used on fields that can change, but very rarely. If the field
change, code that depends on the previous value is invalidated.

Listing 6.7 shows how immutable_fields hint can be used to mark three fields
on a class as immutable. Using immutable_fields is equal to creating getters to
access the fields and decorating them with @elidable.

class Test(object): 1

_immutable_fields_ = ["quasi?", "one", "two[*]"] 2

3

def __init__(self, quasi, one, two): 4

self.quasi = quasi # A quasi-immutable field 5

self.one = one # An immutable field 6

self.two = two # An immutable (virtualizable) list 7

Listing 6.7: RPython hint example: immutable_fields
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6.6 Other hints and commands
In addition to the hints already mentioned, there are a few more hints that are not
used as often, or used in a slightly different way3:

promote_string As promote, except it promotes a string by its value into a
constant.

elidable_promote Same as elidable, but also promotes all function arguments
to constants.

loop_invariant Decorate a function with no argument that return an object that
is always the same in a loop.

look_inside_iff Only trace inside if the predicate provided is satisfied.

The promote and promote_string hints are shortcuts to the hint-command,
which can also be used to mark variables as: access_directly, gives direct access
to a virtualizable without treating it as one; or fresh_virtualizable, a virtual-
izable that was just allocated [46].

Runtime information from RPython’s JIT can be accessed with three com-
mands: isconstant, isvirtual, and we_are_jitted.

3The other RPython hints can all be found in pypy.rlib.jit-module from the PyPy reposi-
tory [46].



CHAPTER 7

PyHaskell optimizations

This chapter describes optimizations of PyHaskell (section 7.2), with the help of
JIT traces produced by the RPython toolchain (section 7.1).

7.1 RPython trace logs
The RPython translation toolchain can produce logs of low-level operations in
traces. These trace logs allow us to find operations that can be removed to opti-
mize PyHaskell. By rewriting PyHaskell or adding RPython hints time-consuming
operations can be removed or replaced. The steps to create a log of operations in
PyHaskell JIT traces for a Haskell source file are:

1. Translate PyHaskell to C with JIT optimization.

2. Set environment variable PYPYLOG=jit-log-opt:jit.log.

3. Run executable produced in step 1 with a Haskell source file.

4. jit.log now contains all JIT trace operations.

PyHaskell JIT trace logs are listed in Appendix B on page 63. These traces
have been simplified slightly to make them easier to read (and to fit on one page)
according to three simple rules:

• At start of lines, plus sign followed by a number are removed.

• The path of PyHaskell objects are removed.

• Instance memory addresses are removed.
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[2e81e7f6ea1a] {jit-log-opt-loop 1

# Loop 0 (<Function> ds1dr4 dsdr3 ds1dr4) : loop with 115 ops 2

[p0, p1] 3

label(p0, p1, descr=TargetToken(1080639504)) 4

debug_merge_point(0, 0, ’(Case (0 dsdr3 ds1dr4) (_ dsdr3 ds1dr4)) ds1dr4 dsdr3 ds1dr4’) 5

guard_nonnull_class(p1, 137970976, descr=<Guard2>) [p1, p0] 6

p3 = getfield_gc_pure(p1, descr=<FieldP Substitution.inst_rhs 8>) 7

guard_value(p3, ConstPtr(ptr4), descr=<Guard3>) [p1, p0, p3] 8

p7 = getarrayitem_gc(p5, 0, descr=<ArrayP 4>) 9

guard_class(p7, 137971028, descr=<Guard4>) [p0, p5, p7] 10

p9 = getfield_gc(p7, descr=<FieldP Thunk.inst_application 8>) 11

guard_nonnull_class(p14, 137972304, descr=<Guard7>) [p0, p5, p12, p14, p7] 12

debug_merge_point(0, 0, ’None’) 13

p30 = getfield_gc(ConstPtr(ptr29), descr=<FieldP CoreMod.inst_qvars 24>) 14

i34 = call(ConstClass(ll_dict_lookup_trampoline__v88___simple_call__function_ll), 15

p30, ConstPtr(ptr32), 360200661, descr=<Calli 4 rri EF=4>) 16

guard_no_exception(descr=<Guard14>) [p27, p20, p18, i34, p30, None, None, None, p0, p12, p7] 17

i40 = instance_ptr_eq(p18, p39) 18

i43 = int_sub(i41, i42) 19

i45 = int_eq(0, i43) 20

guard_false(i45, descr=<Guard17>) [p0, i43, None, None, None, None, p12, p7] 21

p47 = new_with_vtable(137970924) 22

setfield_gc(p47, i43, descr=<FieldS Int.inst_value 8>) 23

setfield_gc(p7, p47, descr=<FieldP Thunk.inst_application 8>) 24

i52 = int_is_true(i51) 25

jump(p61, p73, p30, p38, descr=TargetToken(1080639552)) 26

--end of the loop-- 27

[2e81e81d52ac] jit-log-opt-loop} 28

[309d5ce18a3] {jit-log-opt-bridge 29

# bridge out of Guard 12 with 79 ops 30

[p0, p1, p2, p3, p4, p5] 31

guard_value(p0, ConstPtr(ptr6), descr=<Guard116>) [p0, p1, p5, p2, p4, p3] 32

p57 = new_array(2, descr=<ArrayP 4>) 33

jump(p9, p5, i6, p3, p16, descr=TargetToken(-1223618496)) 34

[309d8f63f93] jit-log-opt-bridge} 35

Listing 7.1: Simplified PyHaskell JIT trace log example
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As an example, the simplified trace of Listing B.1 can be seen in Listing 7.1.
Listing 7.1 contain a selection of operations frequently encountered in PyHaskell

trace logs. The first and last lines, as well as line 28 and 29, are artifacts of the
trace log, signifying the start and stop of tracing and bridges. Start of loops and
bridges are shown with lines starting with “# Loop” and “# bridge” respectively,
as can be seen in line two and 30. The following line is a list of the arguments given
to the trace. Line 15 is a dictionary lookup, which can frequently be removed with
hints. Line 22 is a new instance, and as can be seen on line 23 it is an Int instance.

Operations that start with “guard” are different types of guards that protect
points of divergence in traces, as explained in section 3.5. debug_merge_point
operations are produced by the merge_point hint, which mark where it is safe to
return interpreting back to the VM, as explained in section 6.1.

The remaining operations in are: getting and setting of fields and arrays; integer
and pointer operations; and labels and jumps to those labels.

7.2 PyHaskell improvements from trace logs
This section describe improvements to PyHaskell, with the help of profiling and
JIT trace-logs. The benchmarks used are described in section 8.1 on page 47. How
these benchmarks were executed is explained in section 8.2.

7.2.1 Trace-elidable
I started with the simple addition benchmark in Listing A.1, which produce a JIT
trace-log with few operations (Listing B.2 and Listing B.3). The trace contains
two dictionary lookups, in line 36 and 74, that are obvious targets of improvement.
These lookups stem from the hack used to implement numeric addition type-class,
as can be seen in line 11 of Listing 7.3. Dictionary lookups can be removed with the
trace-elidable technique described in section 6.3. I added an @elidable-decorated
function, get_var, that did the qvars lookup, as can be seen in Listing 7.2. Line
11 of Listing 7.3 was then changed to call the get_var function.

from pypy.rlib.jit import elidable 1

2

@elidable 3

def get_var(module, name): 4

return module.qvars[name] 5

Listing 7.2: Trace-elidable function for looking up in qvars dictionary [11]

Listing 7.4 is the part of the addition trace that perform the first dictionary
lookup (before the trace-elidable changes). Those 10 operations are reduced to just
two operations by the @elidable hint, as shown in Listing 7.5. Listing 7.5 is a
small portion of the full trace log after these changes (Listing B.4 and Listing B.5).
In total these changes reduce the number of operations in the JIT trace from 115
to 99, and reduced the number of guards from 21 to 15.
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from pyhaskell.interpreter import prim 1

from pyhaskell.interpreter.haskell import make_application, Value 2

from pyhaskell.interpreter.module import CoreMod, expose_var 3

from pyhaskell.interpreter.primtype import Int 4

5

mod = CoreMod("base:GHC.Num") 6

mod.qvars["$fNumInt"] = Int(1) 7

8

@expose_var(mod, "+", [Int, Value, Value]) 9

def add(ty, a, b): 10

if ty == mod.qvars["$fNumInt"]: 11

return make_application(prim.add, [a, b]) 12

else: 13

raise NotImplementedError 14

Listing 7.3: PyHaskell numeric addition before elidable get_var [11]

p30 = getfield_gc(ConstPtr(ptr29), descr=<FieldP CoreMod.inst_qvars 24>) 35

i34 = call(ConstClass(ll_dict_lookup_trampoline__v32___simple_call__function_ll), 36

p30, ConstPtr(ptr32), 360200661, descr=<Calli 4 rri EF=4>) 37

guard_no_exception(, descr=<Guard14>) [p27, p20, p18, i34, p30, None, None, None, p0, p12, p7] 38

i36 = int_and(i34, -2147483648) 39

i37 = int_is_true(i36) 40

guard_false(i37, descr=<Guard15>) [p27, p20, p18, i34, p30, None, None, None, p0, p12, p7] 41

p38 = getfield_gc(p30, descr=<FieldP dicttable.entries 12>) 42

p39 = getinteriorfield_gc(p38, i34, descr=<InteriorFieldDescr <FieldP dictentry.value 4>>) 43

i40 = instance_ptr_eq(p18, p39) 44

guard_true(i40, descr=<Guard16>) [p27, p20, None, None, None, p0, p12, p7] 45

Listing 7.4: Addition benchmark: trace excerpt, before elidable

i30 = instance_ptr_eq(p18, ConstPtr(ptr29)) 35

guard_true(i30, descr=<Guard14>) [p27, p20, None, None, None, p0, p12, p7] 36

Listing 7.5: Addition benchmark: trace excerpt, after elidable



7.2. PYHASKELL IMPROVEMENTS FROM TRACE LOGS 43

The result of these changes1 on benchmarks from chapter 8, can be seen in
Table 7.1. PyHaskell’s performance compared to GHC can be evaluated with the
results in Table 8.2.

Table 7.1: JIT results, before and after trace-elidable

Before elidable After elidable

Benchmark Runtime Ops Guards Runtime Ops Guards

Addition 1.423 ± 0.026 115 21 1.390 ± 0.036 99 16
Fibonacci 2.757 ± 0.072 1327 417 2.102 ± 0.050 1119 351
Length 2.373 ± 0.042 159 30 2.317 ± 0.046 143 25

While the trace-elidable changes only gave a small improvement to the addition
benchmark, it had a much larger effect on the naive Fibonacci benchmark. The
operations count was reduced from 1327 to 1119, and the runtime was improved
by 24%. PyHaskell is still far from GHC with all optimizations, but on Fibonacci
it is only 1.4 times slower than GHC -O0.

7.2.2 Unboxed constructors
Some data constructors represent unboxed versions of primitive Haskell types, as
mentioned in section 5.2. PyHaskell represent them with their boxed primitive
version, but these may either be a value, or a function to change a value into
the new constructor. As such, they were implemented as a function that takes a
variable and return the same variable, which clearly could be a noop instead.

I added functionality that will use the literal value directly, if the constructor is
an unboxed primitive type with a literal value. For example, I# 10 is converted to
the integer 10 directly, while I# varA is kept as a function that return the value of
varA. This happens during parsing, and does not affect evaluation except removing
a level of indirection.

The results of these changes2 on benchmarks can be seen in Table 7.2. On
Fibonacci PyHaskell is now 22% slower than GHC-O0, and around three times
slower on the addition benchmark.

Table 7.2: JIT results, before and after unboxed constructors

Before unboxed constructors After unboxed constructors

Benchmark Runtime Ops Guards Runtime Ops Guards

Addition 1.390 ± 0.036 99 16 1.057 ± 0.024 80 14
Fibonacci 2.102 ± 0.050 1119 351 1.835 ± 0.039 1010 334
Length 2.317 ± 0.046 143 25 2.084 ± 0.034 124 23

1Before trace-elidable refers to PyHaskell revision 0152989a42b1 [11], while after trace-elidable
is PyHaskell revision 3841970a6bdd [11].

2Before unboxed constructors refer to PyHaskell revision 3841970a6bb [11], while after unboxed
constructors is PyHaskell revision [11].
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from pypy.rlib import jit 1

2

def get_printable_location(function): 3

if function is None: 4

return "None" 5

return function.tostr() 6

7

jitdriver = jit.JitDriver( 8

greens=["function"], 9

reds=["todo", "expr"], 10

get_printable_location=get_printable_location,) 11

12

def main_loop(expr): 13

function = todo = None 14

while True: 15

jitdriver.jit_merge_point( 16

function=function, todo=todo, expr=expr) 17

if isinstance(expr, Substitution): 18

expr = expr.apply() 19

if isinstance(expr, Value) and todo is None: 20

break 21

22

expr, todo = expr.step(todo) 23

function = None 24

if isinstance(expr, Substitution): 25

function = expr.rhs 26

if expr.recursive: 27

jitdriver.can_enter_jit( 28

function=function, todo=todo, expr=expr) 29

return expr 30

Listing 7.6: PyHaskell haskell.py excerpt, can_enter_jit and merge_point [11]

7.3 PyHaskell’s usage of RPython hints
Listing 7.6 is an excerpt from PyHaskell’s haskell-module, that show PyHaskell’s

main loop. can_enter_jit and merge_point are only used inside the main loop,
and a JitDriver-instance must be created before they are used. The function
variable is marked as green, while expr and todo are red [11]. The role of these
variables are explained in section 5.2.

PyHaskell treat only recursive functions as a possible trace heads, and every
iteration of the main loop is considered a merge point (point where the loop may
end). Lambdachine, on the other hand, treat every function as a possible entry
point [38].

Listing 7.2 is an excerpt from PyHaskell that shows where I used the elidable
hint. It is used to remove dictionary lookups, which is further explained in sec-
tion 7.2.

promote, unroll_safe, and immutable_fields are used in many different
places in PyHaskell, the excerpt in Listing 7.7 show some places where these
hints are used. As most of the constructs in the haskell-module is immutable,
the immutable_fields hint is used extensively. The loop in line 25 inside the
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from pypy.rlib.jit import unroll_safe, promote 1

2

class Substitution(HaskellObject): 3

_immutable_fields_ = ["rhs", "subst", "recursive"] 4

5

def __init__(self, rhs, subst, recursive): 6

self.rhs = rhs 7

self.subst = subst 8

self.recursive = recursive 9

10

def apply(self): 11

promote(self.rhs) 12

return self.rhs.substitute(self.subst) 13

14

class Constructor(Value): 15

_immutable_fields_ = ["symbol"] 16

17

def __init__(self, symbol): 18

assert isinstance(symbol, Symbol) 19

self.symbol = symbol 20

21

@unroll_safe 22

def substitute(self, subst): 23

args = [None] * self.numargs() 24

for i in range(self.numargs()): 25

args[i] = self.getarg(i).substitute(subst) 26

return make_constructor(self.symbol, args) 27

Listing 7.7: PyHaskell haskell.py excerpt showing three RPython hints [11]
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substitute method will iterate once for each argument that a Constructor have,
and since each Constructor has a constant number of arguments, the loop can be
unrolled safely [11].

7.4 Performance improvements from hints
While the RPython hints often work together to improve performance, it is interest-
ing to see the effect each hint has on PyHaskell. The effect of the trace-elidable hint
can be seen in Table 7.1. The JitDriver hints, can_enter_jit and merge_point,
must be present if one wish to include the RPython JIT.

Table 7.3 show the benchmark results from running on PyHaskell3 with spe-
cific hints disabled, as well as PyHaskell with all hints enabled (PyHaskell JIT).
Table 7.4 list operations and guards in JIT traces.

Table 7.3: PyHaskell performance with RPython hints disabled

Benchmark PyHasjell JIT No promote No unroll No immutable fields

Addition 1.037 ± 0.038 1.076 ± 0.017 3.113 ± 0.097 1.509 ± 0.082
Fibonacci 1.822 ± 0.026 7.094 ± 0.151 46.57 ± 1.956 13.00 ± 0.691
Length 2.0314 ± 0.033 2.293 ± 0.162 4.726 ± 0.116 2.277 ± 0.057

Table 7.4: PyHaskell JIT trace operations with hints disabled

Benchmark PyHasjell JIT No promote No unroll No immutable fields
Addition ops 80 168 254 423
Addition guards 14 41 98 128

Fibonacci ops 1010 2610 2581 4681
Fibonacci guards 334 646 923 1466

Length ops 124 256 348 603
Length guards 23 64 140 179

3The different PyHaskell versions in Table 7.3 have all been made from PyHaskell revision
60e16de1181f [11]. Benchmarks were executed as described in section 8.2.
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Benchmarks

This chapter describes benchmarks1 used (section 8.1) used in this report, how
they were executed (section 8.2), and the results they produced (section 8.3). The
source code of these benchmarks can be found in Appendix A on page 61.

8.1 Design
To give the JIT room to warm up, these benchmarks were carefully crafted so that
they would take more than one second to complete. Another requirement were
that the benchmarks contain a recursive function, as JIT tracing is only turned on
with recursive functions.

The issues and limitations of GHC’s external Core prevent us from using the
nofib [24] benchmark suite. Instead I have created a collection of micro-benchmarks,
Appendix A show their source code.

Addition The Addition benchmark (source code in Listing A.1) was designed to
produce a JIT trace-log with relative few operations. Fewer operations make the
log easier to read, and to understand why operations are produced.

Fibonacci The naive implementation of the Fibonacci sequence (Listing A.2) is
regarded as Haskell’s “Hello, world!”. It is co-recursive with simple integer addi-
tion and subtraction. It calculates the value of the 33rd element of the Fibonacci
sequence, which makes it run sufficiently long to allow the JIT to warm up and
take effect.

1Benchmarks, and software to run them, can be found in the thesis-benchmarks repository:
http://bitbucket.org/eventh/thesis-benchmarks
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Length The length benchmark (Listing A.3) creates a list of integers, and then
recursively calculates the length of the list. PyHaskell lists are Cons constructors
holding two items, the head and tail of the list. Length must recursively traverse
the full list to create it, then once more to find its length.

Math Trace-based JIT compilers often perform better than ahead-of-time com-
pilers when it comes to repeated calculations in a loop. The Math benchmark
(Listing A.4) aim to do just that. It has three functions that are very suitable to
inlining, and integer arithmetic that can be constant-folded away.

8.2 Execution
Each benchmark was run 50 times, and we report the mean average runtime with
a 95% confidence interval, as recorded by the time Unix command. The reported
time is in seconds. We also used the chrt command to give the process highest
priority. For example, the naive Fibonacci benchmark was executed in the following
way2:

chrt -f 99 /usr/bin/time -f \
"\ntime: %e\ncontext switches: %c\nwaits: %w" \
./haskell-c fibonacci.hcj

Benchmarks were run on an Intel Atom CPU D525 processor with 1.80 GHz
and 512 KB of cache on a machine with 2 GB RAM running Ubuntu Desktop 12.10
32 bit, with Linux kernel 3.5.0-21-generic.

Our main interest is in the performance of PyHaskell translated to C with
the RPython meta-tracing JIT enabled, compared to the Haskell reference imple-
mentation GHC with all optimizations enabled. It is also interesting to compare
without the JIT, and GHC with optimization passes disabled3. The -O0 flag does
not disable all optimizations, for example unboxing and TNTC are still active. The
benchmarks were executed with the four4 configurations5 listed in Table 8.1.

8.3 Results
The results listed in Table 8.2 are the performance of the latest version of Py-
Haskell6.

2The time command report context switches and wait times so we can re-run them if other
processes influenced our results. The time command is provided by GNU time 1.7, while chrt is
from util-linux 2.20.1.

3GHC optimizations are described in subsection 2.2.2 on page 9
4Lambdachine was not included as it require GHC 7.0.* and only works on x86-64 architecture.

Htrace and GHC with DynamoRIO has not been released. PyHaskell untranslated is too slow to
be of interested.

5PyHaskell was translated with PyPy 2.0 beta 1 (revision 07e08e9c885c) [46], and compiled
to machine code with GCC version 4.7.2. We used GHC version 7.4.2. The GHC LLVM backend
used LLVM version 3.1.

6PyHaskell JIT in Table 8.2 were translated from PyHaskell revision 60e16de1181f [11].
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Table 8.1: Benchmark executable targets

Name GHC flags Note

PyHaskell JIT -fext-core -fasm -O0 Translated to C with the JIT

GHC-O2 -fasm -O2 Native code generator, optimizations enabled
GHC-O0 -fasm -O0 Native code generator, optimizations disabled
GHC-LLVM -fllvm -O0 LLVM backend, optimizations disabled

Table 8.2: Benchmark results

Benchmark GHC-O0 GHC-O2 GHC-LLVM PyHaskell JIT

Addition 0.361 ± 0.008 0.010 ± 0.000 0.375 ± 0.0283 1.039 ± 0.064
Fibonacci 1.504 ± 0.022 0.204 ± 0.004 1.618 ± 0.062 1.830 ± 0.106
Length 0.401 ± 0.009 0.042 ± 0.008 0.408 ± 0.032 2.034 ± 0.034
Math 11.73 ± 1.129 1.095 ± 0.077 12.36 ± 1.742 1.221 ± 0.167

8.4 Pipeline benchmarks
To be able to evaluate PyHaskell’s performance, it is necessary to profile where
the runtime is spent. When benchmarking, PyHaskell is provided with the JSCore
representation directly, therefore it is a question of parsing versus evaluation. It
might also be interesting to see how much time is spent in the different steps of the
pipeline, and compare this to the runghc command. Runghc is a non-interactive
interpreter that compiles and then execute Haskell code (it is interpreted, not just
GHC’s compile plus executing the machine code). Table 8.3 list the timings for
the different benchmarks7, while the runghc command had the following results:
Addition 2.325s; Fibonacci 24.661s; Length 2.824s; Math 144.290s.

Table 8.3: PyHaskell pipeline benchmark results

Benchmark External Core core2js Parsing Evaluation Total

Addition 1.220s 0.068s 0.034s 1.048s 2.336s
Fibonacci 1.202s 0.086s 0.013s 1.876s 3.123s
Length 1.210s 0.073s 0.010s 2.175s 3.332s
Math 1.294s 0.129s 0.029s 1.221s 2.576s

8.5 Built-in functionality or Prelude
The Length benchmark, as seen in Listing A.3 implement the length function in
Haskell, instead of using the Haskell Prelude. Since external Core issues (as men-
tioned in chapter 4) prevents us from reusing GHC’s Prelude implementation, I
added the length function to PyHaskell directly in the VM written in RPython.

7PyHaskell that produce parse-timings was translated with PyHaskell revision
26df8324c54d [11].
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The RPython length function uses a while-loop, while the Haskell length uses re-
cursion.

We can compare the performance of Prelude functions implemented in RPython
against Prelude functions implemented in Haskell with the help of the Length,
Replicate (Listing A.5), and RPy-Length (Listing A.6) benchmarks. Replicate
is same as length, but the function that creates the list is written in RPython,
while RPy-Length uses the RPython length implementation. We have included
the result of using both length and replicate written in RPython (with the name
“RPython”):

main = putStrLn (show (length (replicate 500000 9)))

Table 8.4: PyHaskell Prelude benchmark results

Benchmark Runtime Operations Guards

Length 2.076 ± 0.250 124 23
Replicate 1.035 ± 0.157 45 9
RPy-Length 1.225 ± 0.196 79 14
RPython 0.126 ± 0.022 0 0



CHAPTER 9

Discussion

This chapter discusses the results achieved in chapter 8. As GHC-LLVM and GHC-
O0 have very similar results we will focus on the NCG backend, and not the LLVM
backend.

Addition benchmark PyHaskell is 2.87 times slower than GHC-O0, and over
100 times slower than GHC-O2.

Fibonacci benchmark PyHaskell is 21.7% slower than GHC-O0, and almost
nine times slower than GHC-O2.

Length benchmark PyHaskell is five times slower than GHC-O0, and 48 times
slower than GHC-O2.

Math benchmark On this benchmark PyHaskell actually beat GHC-O0, and is
very close to GHC-O2’s performance. GHC-O0 is 9.6 times slower than Py-
Haskell, which is 11.5% slower than GHC-O2

While I believe the JIT might eventually be able to beat GHC -O2, without
using advanced optimizations in the frontend such as GHC, this is clearly not the
case yet.

In section 7.4 I have presented the effect on PyHaskell from individual types
of hints. Overall, it should be clear that the RPython translation toolchain with
its meta-tracer is very potent. This is further shown with benchmarks results in
Table 8.2.

Table 8.3 shows that a large majority of the runtime is spent in evaluation, and
not parsing. Trace-based JIT compilers are not good at optimizing AST walking,
therefore PyHaskell should be acceptable to further optimizations with the meta-
tracing JIT.
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CHAPTER 10

Conclusion

The RPython translation toolchain from the PyPy project can be used to write
VMs in a high-level programming language, RPython. To reduce the overhead from
the many abstractions provided by high-level languages, the toolchain provides a
meta-tracing JIT compiler. The meta-tracer can be used by any VM written in
RPython, with little or no work needed [10].

The VMs written in RPython cover many programming languages, most of
them object-oriented, but none yet that are purely functional or lazy. Therefore this
report asked the following question: Is the RPython translation toolchain suitable
for purely functional and lazy languages, e.g., the Haskell language?

The Haskell language has achieved great speed with ahead-of-time compilation,
and attempts at trace-based JIT optimizations of Haskell have not yet been able
to beat static compilation. Hence this report also questioned whether Haskell can
benefit from trace-based JIT optimization techniques?

To answer these two questions a prototype Haskell VM called PyHaskell was
created. As PyHaskell is written in RPython, it includes the RPython meta-
tracingJIT. The focus of this report has been to improve, optimize, and benchmark
PyHaskell, with the hope of achieving performance comparable to GHC.

With the use of hints placed in the source code of VMs, the meta-tracer can
enable optimization techniques that should improve runtime performance. Many of
these hints and techniques were undocumented before this report, hence the report
should have practical utility for anyone with interest in writing a VM in RPython.

Unfortunately, issues with GHC’s external Core functionality limits PyHaskell’s
support of the Haskell language and Haskell Prelude. These limitations prevented
evaluation of PyHaskell with the standard Haskell benchmark suite, nofib [24]. In-
stead I have created a small collection of micro-benchmarks, to compare PyHaskell’s
runtime performance with GHC.
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PyHaskell is slower than GHC (with both -O0 and -O2) on thee of the bench-
marks. On the Math benchmark, PyHaskell is actually faster than GHC -O0, and
only 11.5% slower than GHC -O2. On the naive implementation of the Fibonacci
sequence PyHaskell is 21.7% slower than GHC-O0, and almost nine times slower
than GHC-O2.

As PyHaskell’s performance is quite close to GHC’s, the answer to the first
question is yes: the RPython translation toolchain is suitable for purely functional,
lazy languages.

While the meta-tracer greatly speeds up PyHaskell, it does not yet beat GHC.
I cannot therefore answer the second question. More work is required to further
improve PyHaskell, before a conclusion can be reached.

10.1 Future work
Possible extensions of the work described in this report should be further attempts
at optimizing PyHaskell. Some of the other VMs written in RPython use opti-
mization strategies in their object model, where they are able to use unboxed data
structures. For PyHaskell, this could mean that instead of lists that are head-tail,
it could use RPython lists that can be converted to arrays.

As mentioned in section 4.4, I believe the current PyHaskell pipeline should be
scrapped. A better approach might be to use the GHC API with more invariants.
The extcore package is no longer maintained, and it has some unwanted behav-
ior (for example splitting up lambdas), a new pipeline should not depend on it.
Furthermore, I would suggest writing a new parser, as the JSON representation of
external Core is too verbose.

The constructs based on Launchbury’s semantics for lazy languages perform
well, but the mapping from Core to the constructs are far from optimal. For
example, my changes to unboxed constructors described in section 7.2, reduced the
number of constructs and gave decent improvements.



CHAPTER 11

Related work

This chapter draws connections to two related work on optimizing Haskell with
trace-based compilation: One, Peixotto [25] with DynamoRIO and Htrace (sec-
tion 11.2); And two, Schilling [38] with a method based on LuaJIT (section 11.3).
While the LLVM backend for GHC contains a JIT, it is not trace-based (sec-
tion 11.1). An overview over these optimizing attempts and how they relate to
GHC are summarized in section 11.4 on page 59.

11.1 LLVM backend for GHC
Terei and Chakravarty [47] have created a new backend for GHC that uses LLVM,
which is an optimizing compiler framework.

GHC started with translating STG to C, which made GHC portable across
multiple architectures and operating systems. This C backend targets the GNU C
compiler and its language extensions to get access to proper tail calls, first-class
labels and more.

GHC’s NCG was created to solve some of the downsides of the C backend:
Relative long compilation time; Generated assembly code that are inefficient; And
a complex Perl script nicknamed “the evil mangler” used to rewrite assembly code.

According to Terei and Chakravarty, the LLVM backend provides two main
benefits compared to the NCG and C backends. First, offloading of work by
outsourcing native code generating to the externally maintained LLVM project.
Second, better performance by generating more efficient assembly and the LLVM
JIT.

GHC’s Cmm intermediate representation is the input to the LLVM backend,
just as the other two backends. For that reason, the LLVM backend maintains
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application binary interface (ABI) compatibility with the C and NCG backends.
The backend performs three steps:

• Translate Cmm code to unoptimized LLVM code.

• Convert variables into SSA form, as demanded by LLVM. The backend
allocate each mutable Cmm variable on the stack, and then uses mem2reg
from LLVM to do SSA conversion.

• Map STG registers to hardware registers, by creating a new calling convention
for LLVM where arguments of function calls are stored in registers. These
arguments are only in the appropriate hardware registers on entry to any
function, which is enough to satisfy GHC ABI.

Terei and Chakravarty have evaluated the LLVM backend against the C and
NCG backends, in regards to their code size and the performance of the assembly
code they generate. The LLVM backend is the smallest with 3.1 thousand lines of
code (KLoC), the C backend is 5.3 KLoC, and the NCG backend is 20.5 KLoC.

The performance evaluation uses the nofib [24] benchmark suite and some ad-
ditional benchmarks. The three backends had overall little difference on runtime
for the nofib benchmarks. The NCG was 0.1% better than the LLVM, and the C
backend was 2.7% slower than LLVM [47]. Terei and Chakravarty believes that the
Cmm code used as input by all three backends are hard to optimize. The Cmm
code is essentially memory bound as Haskell uses lazy evaluation. They tested
this with other benchmarks with tight loops, where they saw considerable better
runtimes for the LLVM backend.

11.2 DynamoRIO and Htrace
David M. Peixotto [25] has attempted to optimize low-level imperative code gen-
erated by GHC, with trace-based binary optimization techniques. He created a
hand-coded case study that showed trace-based optimizations can be profitable for
Haskell programs. Then he tested two different methods: First, with a dynamic
binary trace-based optimizer; and second, with a static trace-based optimizer.

11.2.1 Nofib benchmark suite
Peixotto’s initial investigations used the nofib [24] benchmark suite. He felt nofib
was “difficult to collect accurate benchmark numbers” [25, p. 2] with, as many of
them ran in less than one second. Peixotto therefore created the Fibon benchmark
suite to more accurately evaluate the effects of compiler optimizations. Fibon
consist of 32 benchmarks from four sources: Hackage1, Shootout2, Repa [20], and
Data Parallel Haskell (DPH) [13].

1Hackage: http://hackage.haskell.org
2The Computer Language Benchmarks Game: http://shootout.alioth.debian.org/

http://hackage.haskell.org
http://shootout.alioth.debian.org/
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11.2.2 DynamoRIO
DynamoRIO allows automatic tracing of programs at runtime, which Peixotto
has used for exploring dynamic trace-based optimizations of Haskell. DynamoRIO
build traces by monitoring application’s stream of instructions, and therefore works
on unmodified program binaries without need for the application’s source code.
Peixotto discovered that DynamoRIO added a 57% overhead to just find traces,
so optimizations of traces must overcome this overhead for this method to be
beneficial.

Peixotto believed the main problem was the heuristics used by DynamoRIO
to build traces are not suitable for Haskell programs. Another issue was that the
traces included arbitrary parts of GHC’s runtime, such as the garbage collector.

11.2.3 Htrace
To avoid the runtime overhead from DynamoRIO, Peixotto created Htrace, which
“finds traces in a separate profiling run and uses them to restructure the program
offline” [25, p. 87]. Htrace consist of three distinct phases: One, finding traces;
Two, restricting low-level code around traces; Three, optimizing the traces.

Htrace is built with GHC and LLVM — traces are optimized with compiler
optimizations provided by LLVM. GHC required some small changes to enable dy-
namic linking of some C functions into LLVM. Htrace disables GHC’s TNTC opti-
mization3 and uses a pure Haskell library for integer arithmetic, integer-simple.
Two new passes were added to LLVM: inserting trace instrumentation and building
traces. The LLVM bitcode interpreter, lli, was changed to add callbacks to the
trace runtime. Htrace performs four main tasks:

• Create LLVM bitcode from program source.

• Create LLVM bitcode from Haskell libraries.

• Determine external libraries used.

• Create Makefile to do the build.

Peixotto compared Htrace against GHC with the LLVM backend. His Htrace
results show an average speed up of 5% on the Fibon benchmarks, and a maximum
speed up of 86% on a single benchmark. Only two benchmarks showed over 5%
performance degradation.

11.3 Lambdachine
Thomas Schilling [38] has implemented a prototype VM with a tracing JIT compiler
called Lambdachine. This VM use GHC as a frontend to compile Haskell code into
Core. Core is then compiled into a custom bytecode format that Lambdachine

3TNTC is described further in subsection 2.2.2 on page 9
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interprets. The VM and the bytecode format adopt ideas and techniques from
LuaJIT 24.

Schilling has identified and formulated three challenges for optimizing lazy eval-
uation using trace-compilation:
Challenge 1 Can we use specialization to remove the overhead of evaluation and

indirect function calls due to type class dictionaries. If the number of possible
shapes per evaluation site is small, then the size of trace trees will remain
small and thus remain efficient. It is, however, likely that there a few functions
that are megamorphic, i.e., exhibit a large amount of different argument
shapes [38, p. 5].

Challenge 2 Sharing information at runtime is important to enable deforestation
with a dynamic compiler. Both static and dynamic approaches are possible
and likely have different trade-offs in terms of accuracy, implementation cost,
and runtime overhead. It is not clear which trade-offs will work best for
dynamic optimization systems [38, p. 7].

Challenge 3 Evaluate different trace selection schemes by their coverage and
code size. Functional programming benchmarks may exhibit different ex-
ecution behavior from standard benchmarks for imperative/object-oriented
languages [38, p. 8].

Lambdachine perform the following standard optimization techniques, where
the forward optimizations are performed immediately, and the rest happen right
before machine code generation:

• Common sub-expression elimination.

• Constant folding, algebraic optimizations and reassociation.

• Redundant load removal.

• Store-to-load forwarding.

• Redundant guard removal.

• Dead code elimination.

• Loop unrolling.

• Allocation removal.
According to Schilling, Lambdachine support: “basic Haskell programs that use

only a small subset of built-in types, Char, Bool, and Int. All user defined types
are supported, but the IO monad or arrays are not supported.” [38, p. 13]. Loop
unrolling are only applied to traces with constant stack usage, and side traces are
not implemented.

Schilling has evaluated Lambdachine on two simple benchmarks with the JIT
enabled or disabled. His results show that Lambdachine are able to remove signif-
icant amount of operations executed, when the JIT is enabled.

4The LuaJIT project: http://luajit.org/

http://luajit.org/
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Table 11.1: Overview over related work at optimizing Haskell

Name Trace-based JIT GHC version Creator

GHC LLVM backend No Yes 7.6+ Terei and Chakravarty [47]
GHC with DynamoRIO Yes Yes 7.4 Peixotto [25]
Htrace Yes No 7.4 Peixotto [25]
Lambdachine Yes Yes 7.0 Schilling [38]
PyHaskell Yes Yes 7.4 Bolz et al. [11]

11.4 Summary
The attempts to optimize GHC described in this chapter are summarized in Ta-
ble 11.1. The LLVM backend for GHC has not achieved any clear performance
advantage [47] over GHC’s NCG. GHC with DynamoRIO was abandoned as trac-
ing created too much overhead, and produced poor traces [25]. Htrace produced
an average of 5% speed up over the LLVM backend [25]. Lambdachine is still in
development, and has not yet published any results comparing it to any other GHC
backends [38].

How these backends interface with GHC can be seen in Figure 11.1. Both Py-
Haskell and Lambdachine works from GHC’s Core — PyHaskell though external
Core and Lambdachine through the GHC API [38, 42]. The three backends in-
cluded with GHC (LLVM, NCG, and C) are described in subsection 2.2.1. The
GHC DynamoRIO backend works from the binary created by either the C or NCG
backend, while Htrace works from the low-level code produced by the LLVM back-
end [22, 25, 47].
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Figure 11.1: All GHC backends and their relationships



APPENDIX A

Benchmark source code

This chapter contain Haskell source code of benchmarks used in this report. The
design of these benchmarks are explained in section 8.1 on page 47, while section 8.2
describe how they were run and how their performance was recorded.

main = putStrLn (show (add 500000)) 1

2

add :: Int -> Int 3

add 0 = 0 4

add n = 1 + add (n - 1) 5

Listing A.1: Addition benchmark: Haskell source code

main = putStrLn (show (fib 33)) 1

2

fib :: Int -> Int 3

fib 0 = 0 4

fib 1 = 1 5

fib n = fib (n - 1) + fib (n - 2) 6

Listing A.2: Fibonacci benchmark: Haskell source code
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main = putStrLn (show (length’ (fromto’ 500000))) 1

2

fromto’ :: Int -> [Int] 3

fromto’ 0 = [] 4

fromto’ i = i : fromto’ (i - 1) 5

6

length’ :: [Int] -> Int 7

length’ [] = 0 8

length’ (x:xs) = 1 + length’ xs 9

Listing A.3: Length benchmark: Haskell source code

main = putStrLn (show (test 20000000)) 1

2

test :: Int -> Int 3

test 1 = 1 4

test x = test ((math1 x) + (math2 x)) 5

6

math1 :: Int -> Int 7

math1 x = math3 ((10 * x) ‘div‘ (5 * 2)) 8

9

math2 :: Int -> Int 10

math2 y = y + 1 - y 11

12

math3 :: Int -> Int 13

math3 z = z - 2 14

Listing A.4: Math benchmark: Haskell source code

main = putStrLn (show (length’ (replicate 500000 9))) 1

2

length’ :: [Int] -> Int 3

length’ [] = 0 4

length’ (x:xs) = 1 + length’ xs 5

Listing A.5: Replicate benchmark: Haskell source code

main = putStrLn (show (length (fromto’ 500000))) 1

2

fromto’ :: Int -> [Int] 3

fromto’ 0 = [] 4

fromto’ i = i : fromto’ (i - 1) 5

Listing A.6: RPy-Length benchmark: Haskell source code



APPENDIX B

RPython trace logs

This section contains RPython JIT trace logs. Listing B.1 is an example of Py-
Haskell trace log that has not been simplified, and the remaining trace logs in this
section have all been simplified as explained in section 7.1 on page 39. Listing B.1
is not a real trace log, but a selection of lines from the raw, original trace logs of
the addition and naive Fibonacci benchmarks.

Listing B.2 and Listing B.3 show the trace log for the addition benchmark
described in section 8.1 on page 47. These traces are created with PyHaskell
revision 0152989a42b1 [11]1.

Listing B.4 and Listing B.5 are trace of the same benchmark, but after dic-
tionary lookups have been removed with @elidable decorator hint, created with
PyHaskell revision 3841970a6bdd [11]1.

1PyHaskell created with RPython toolchain from PyPy 2.0 beta 1 (revision 07e08e9c885c) [46]
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[2e81e7f6ea1a] {jit-log-opt-loop 1

# Loop 0 (<Function object at 0x403122e8> ds1dr4 dsdr3 ds1dr4) : loop with 115 ops 2

[p0, p1] 3

+33: label(p0, p1, descr=TargetToken(1080639504)) 4

debug_merge_point(0, 0, ’(Case (0 dsdr3 ds1dr4) (_ dsdr3 ds1dr4)) ds1dr4 dsdr3 ds1dr4’) 5

+33: guard_nonnull_class(p1, 137970976, descr=<Guard2>) [p1, p0] 6

+54: p3 = getfield_gc_pure(p1, 7

descr=<FieldP pyhaskell.interpreter.haskell.Substitution.inst_rhs 8>) 8

+57: guard_value(p3, ConstPtr(ptr4), descr=<Guard3>) [p1, p0, p3] 9

+72: p7 = getarrayitem_gc(p5, 0, descr=<ArrayP 4>) 10

+75: guard_class(p7, 137971028, descr=<Guard4>) [p0, p5, p7] 11

+88: p9 = getfield_gc(p7, descr=<FieldP pyhaskell.interpreter.haskell.Thunk.inst_application 8>) 12

+128: guard_nonnull_class(p14, 137972304, descr=<Guard7>) [p0, p5, p12, p14, p7] 13

debug_merge_point(0, 0, ’None’) 14

+243: p30 = getfield_gc(ConstPtr(ptr29), 15

descr=<FieldP pyhaskell.interpreter.module.CoreMod.inst_qvars 24>) 16

+249: i34 = call(ConstClass(ll_dict_lookup_trampoline__v88___simple_call__function_ll), 17

p30, ConstPtr(ptr32), 360200661, descr=<Calli 4 rri EF=4>) 18

+281: guard_no_exception(descr=<Guard14>) [p27, p20, p18, i34, p30, None, None, None, p0, p12, p7]19

+318: i40 = instance_ptr_eq(p18, p39) 20

+333: i43 = int_sub(i41, i42) 21

+335: i45 = int_eq(0, i43) 22

guard_false(i45, descr=<Guard17>) [p0, i43, None, None, None, None, p12, p7] 23

p47 = new_with_vtable(137970924) 24

+393: setfield_gc(p47, i43, descr=<FieldS pyhaskell.interpreter.primtype.Int.inst_value 8>) 25

setfield_gc(p7, p47, descr=<FieldP pyhaskell.interpreter.haskell.Thunk.inst_application 8>) 26

+485: i52 = int_is_true(i51) 27

+762: jump(p61, p73, p30, p38, descr=TargetToken(1080639552)) 28

+775: --end of the loop-- 29

[2e81e81d52ac] jit-log-opt-loop} 30

[309d5ce18a3] {jit-log-opt-bridge 31

# bridge out of Guard 12 with 79 ops 32

[p0, p1, p2, p3, p4, p5] 33

+6: guard_value(p0, ConstPtr(ptr6), descr=<Guard116>) [p0, p1, p5, p2, p4, p3] 34

p57 = new_array(2, descr=<ArrayP 4>) 35

+90: jump(p9, p5, i6, p3, p16, descr=TargetToken(-1223618496)) 36

[309d8f63f93] jit-log-opt-bridge} 37

Listing B.1: Example of raw, not simplified PyHaskell JIT trace log
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[df0be96bb30] {jit-log-opt-loop 1

# Loop 0 ((Case (0 dsdr3 ds1dr4) (_ dsdr3 ds1dr4)) ds1dr4 dsdr3 ds1dr4) : loop with 115 ops 2

[p0, p1] 3

label(p0, p1, descr=TargetToken(-1223585776)) 4

debug_merge_point(0, 0, ’(Case (0 dsdr3 ds1dr4) (_ dsdr3 ds1dr4)) ds1dr4 dsdr3 ds1dr4’) 5

guard_nonnull_class(p1, 138375776, descr=<Guard2>) [p1, p0] 6

p3 = getfield_gc_pure(p1, descr=<FieldP Substitution.inst_rhs 8>) 7

guard_value(p3, ConstPtr(ptr4), descr=<Guard3>) [p1, p0, p3] 8

p5 = getfield_gc_pure(p1, descr=<FieldP Substitution.inst_subst 12>) 9

p7 = getarrayitem_gc(p5, 0, descr=<ArrayP 4>) 10

guard_class(p7, 138375840, descr=<Guard4>) [p0, p5, p7] 11

p9 = getfield_gc(p7, descr=<FieldP Thunk.inst_application 8>) 12

guard_nonnull_class(p9, 138377536, descr=<Guard5>) [p0, p5, p7, p9] 13

p12 = getarrayitem_gc(p5, 1, descr=<ArrayP 4>) 14

guard_class(p12, 138375840, descr=<Guard6>) [p0, p5, p12, p7] 15

p14 = getfield_gc(p12, descr=<FieldP Thunk.inst_application 8>) 16

guard_nonnull_class(p14, 138377536, descr=<Guard7>) [p0, p5, p12, p14, p7] 17

debug_merge_point(0, 0, ’None’) 18

debug_merge_point(0, 0, ’None’) 19

p16 = getfield_gc_pure(p9, descr=<FieldP Application.inst_function 8>) 20

guard_value(p16, ConstPtr(ptr17), descr=<Guard8>) [p16, p9, p0, p12, p7] 21

p18 = getfield_gc_pure(p9, descr=<FieldP Application3.inst_arg0 12>) 22

guard_class(p18, 138375712, descr=<Guard9>) [p18, p9, p0, p12, p7] 23

p20 = getfield_gc_pure(p9, descr=<FieldP Application3.inst_arg1 16>) 24

guard_class(p20, 138375712, descr=<Guard10>) [p20, p9, p18, p0, p12, p7] 25

p22 = getfield_gc_pure(p9, descr=<FieldP Application3.inst_arg2 20>) 26

guard_class(p22, 138376096, descr=<Guard11>) [p22, p9, p20, p18, p0, p12, p7] 27

debug_merge_point(0, 0, ’None’) 28

p24 = getfield_gc_pure(p22, descr=<FieldP Application.inst_function 8>) 29

guard_value(p24, ConstPtr(ptr25), descr=<Guard12>) [p24, p22, p9, None, None, p0, p12, p7] 30

p27 = getfield_gc_pure(p22, descr=<FieldP Application1.inst_arg0 12>) 31

guard_class(p27, 138375712, descr=<Guard13>) [p22, p27, p9, None, None, p0, p12, p7] 32

debug_merge_point(0, 0, ’_’) 33

debug_merge_point(0, 0, ’None’) 34

p30 = getfield_gc(ConstPtr(ptr29), descr=<FieldP CoreMod.inst_qvars 24>) 35

i34 = call(ConstClass(ll_dict_lookup_trampoline__v32___simple_call__function_ll), 36

p30, ConstPtr(ptr32), 360200661, descr=<Calli 4 rri EF=4>) 37

guard_no_exception(, descr=<Guard14>) [p27, p20, p18, i34, p30, None, None, None, p0, p12, p7] 38

i36 = int_and(i34, -2147483648) 39

i37 = int_is_true(i36) 40

guard_false(i37, descr=<Guard15>) [p27, p20, p18, i34, p30, None, None, None, p0, p12, p7] 41

p38 = getfield_gc(p30, descr=<FieldP dicttable.entries 12>) 42

p39 = getinteriorfield_gc(p38, i34, descr=<InteriorFieldDescr <FieldP dictentry.value 4>>) 43

i40 = instance_ptr_eq(p18, p39) 44

guard_true(i40, descr=<Guard16>) [p27, p20, None, None, None, p0, p12, p7] 45

debug_merge_point(0, 0, ’None’) 46

i41 = getfield_gc_pure(p20, descr=<FieldS Int.inst_value 8>) 47

i42 = getfield_gc_pure(p27, descr=<FieldS Int.inst_value 8>) 48

i43 = int_sub(i41, i42) 49

debug_merge_point(0, 0, ’None’) 50

debug_merge_point(0, 0, ’None’) 51

debug_merge_point(0, 0, ’None’) 52

i45 = int_eq(0, i43) 53

guard_false(i45, descr=<Guard17>) [p0, i43, None, None, None, None, p12, p7] 54

p47 = new_with_vtable(138375712) 55

setfield_gc(p47, i43, descr=<FieldS Int.inst_value 8>) 56

setfield_gc(p7, p47, descr=<FieldP Thunk.inst_application 8>) 57

p48 = getfield_gc(p12, descr=<FieldP Thunk.inst_application 8>) 58

guard_nonnull_class(p48, 138375712, descr=<Guard18>) [p48, p0, p12, p47, p7] 59

debug_merge_point(0, 0, ’+ 1 (I# (_)) 1 (addr9Y (dsdr3)) - 1 dsdr3 (I# (_)) 1’) 60

debug_merge_point(0, 0, ’None’) 61

Listing B.2: Addition benchmark: trace before elidable, page 1
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debug_merge_point(0, 0, ’_’) 62

debug_merge_point(0, 0, ’None’) 63

debug_merge_point(0, 0, ’None’) 64

debug_merge_point(0, 0, ’(Case (ds1dr4 dsdr3)) dsdr3 dsdr3’) 65

debug_merge_point(0, 0, ’(Case (0 dsdr3 ds1dr4) (_ dsdr3 ds1dr4)) ds1dr4 dsdr3 ds1dr4’) 66

label(p0, p48, p30, p38, descr=TargetToken(-1223585728)) 67

debug_merge_point(0, 0, ’(Case (0 dsdr3 ds1dr4) (_ dsdr3 ds1dr4)) ds1dr4 dsdr3 ds1dr4’) 68

debug_merge_point(0, 0, ’None’) 69

debug_merge_point(0, 0, ’None’) 70

debug_merge_point(0, 0, ’None’) 71

debug_merge_point(0, 0, ’_’) 72

debug_merge_point(0, 0, ’None’) 73

i50 = call(ConstClass(ll_dict_lookup_trampoline__v32___simple_call__function_ll), 74

p30, ConstPtr(ptr32), 360200661, descr=<Calli 4 rri EF=4>) 75

guard_no_exception(, descr=<Guard19>) [p48, i50, p30, p0] 76

i51 = int_and(i50, -2147483648) 77

i52 = int_is_true(i51) 78

guard_false(i52, descr=<Guard20>) [p48, i50, p30, p0] 79

p53 = getinteriorfield_gc(p38, i50, descr=<InteriorFieldDescr <FieldP dictentry.value 4>>) 80

i55 = instance_ptr_eq(ConstPtr(ptr54), p53) 81

guard_true(i55, descr=<Guard21>) [p48, p0] 82

debug_merge_point(0, 0, ’None’) 83

i56 = getfield_gc_pure(p48, descr=<FieldS Int.inst_value 8>) 84

i58 = int_sub(i56, 1) 85

debug_merge_point(0, 0, ’None’) 86

debug_merge_point(0, 0, ’None’) 87

debug_merge_point(0, 0, ’None’) 88

i59 = int_eq(0, i58) 89

guard_false(i59, descr=<Guard22>) [i58, p48, p0] 90

debug_merge_point(0, 0, ’+ 1 (I# (_)) 1 (addr9Y (dsdr3)) - 1 dsdr3 (I# (_)) 1’) 91

debug_merge_point(0, 0, ’None’) 92

debug_merge_point(0, 0, ’_’) 93

debug_merge_point(0, 0, ’None’) 94

debug_merge_point(0, 0, ’None’) 95

debug_merge_point(0, 0, ’(Case (ds1dr4 dsdr3)) dsdr3 dsdr3’) 96

debug_merge_point(0, 0, ’(Case (0 dsdr3 ds1dr4) (_ dsdr3 ds1dr4)) ds1dr4 dsdr3 ds1dr4’) 97

p61 = new_with_vtable(138375892) 98

p63 = new_with_vtable(138377536) 99

p65 = new_with_vtable(138376096) 100

setfield_gc(p63, ConstPtr(ptr66), descr=<FieldP Application.inst_function 8>) 101

p68 = new_with_vtable(138377536) 102

setfield_gc(p65, ConstPtr(ptr69), descr=<FieldP Application.inst_function 8>) 103

p71 = new_with_vtable(138376096) 104

setfield_gc(p68, ConstPtr(ptr17), descr=<FieldP Application.inst_function 8>) 105

setfield_gc(p71, ConstPtr(ptr72), descr=<FieldP Application1.inst_arg0 12>) 106

setfield_gc(p68, p71, descr=<FieldP Application3.inst_arg2 20>) 107

setfield_gc(p68, p48, descr=<FieldP Application3.inst_arg1 16>) 108

setfield_gc(p68, ConstPtr(ptr54), descr=<FieldP Application3.inst_arg0 12>) 109

p73 = new_with_vtable(138375712) 110

setfield_gc(p61, 2, descr=<FieldS CopyStackElement.inst_index 16>) 111

setfield_gc(p61, p0, descr=<FieldP StackElement.inst_next 8>) 112

setfield_gc(p71, ConstPtr(ptr25), descr=<FieldP Application.inst_function 8>) 113

setfield_gc(p65, p68, descr=<FieldP Application1.inst_arg0 12>) 114

setfield_gc(p63, p65, descr=<FieldP Application3.inst_arg2 20>) 115

setfield_gc(p63, ConstPtr(ptr75), descr=<FieldP Application3.inst_arg1 16>) 116

setfield_gc(p63, ConstPtr(ptr54), descr=<FieldP Application3.inst_arg0 12>) 117

setfield_gc(p61, p63, descr=<FieldP CopyStackElement.inst_application 12>) 118

setfield_gc(p73, i58, descr=<FieldS Int.inst_value 8>) 119

jump(p61, p73, p30, p38, descr=TargetToken(-1223585728)) 120

--end of the loop-- 121

[df0beada4b1] jit-log-opt-loop} 122

Listing B.3: Addition benchmark: trace before elidable, page 2
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[e68b7659036] {jit-log-opt-loop 1

# Loop 0 ((Case (0 dsdr3 ds1dr4) (_ dsdr3 ds1dr4)) ds1dr4 dsdr3 ds1dr4) : loop with 99 ops 2

[p0, p1] 3

label(p0, p1, descr=TargetToken(-1223131120)) 4

debug_merge_point(0, 0, ’(Case (0 dsdr3 ds1dr4) (_ dsdr3 ds1dr4)) ds1dr4 dsdr3 ds1dr4’) 5

guard_nonnull_class(p1, 138372064, descr=<Guard2>) [p1, p0] 6

p3 = getfield_gc_pure(p1, descr=<FieldP Substitution.inst_rhs 8>) 7

guard_value(p3, ConstPtr(ptr4), descr=<Guard3>) [p1, p0, p3] 8

p5 = getfield_gc_pure(p1, descr=<FieldP Substitution.inst_subst 12>) 9

p7 = getarrayitem_gc(p5, 0, descr=<ArrayP 4>) 10

guard_class(p7, 138372128, descr=<Guard4>) [p0, p5, p7] 11

p9 = getfield_gc(p7, descr=<FieldP Thunk.inst_application 8>) 12

guard_nonnull_class(p9, 138372576, descr=<Guard5>) [p0, p5, p7, p9] 13

p12 = getarrayitem_gc(p5, 1, descr=<ArrayP 4>) 14

guard_class(p12, 138372128, descr=<Guard6>) [p0, p5, p12, p7] 15

p14 = getfield_gc(p12, descr=<FieldP Thunk.inst_application 8>) 16

guard_nonnull_class(p14, 138372576, descr=<Guard7>) [p0, p5, p12, p14, p7] 17

debug_merge_point(0, 0, ’None’) 18

debug_merge_point(0, 0, ’None’) 19

p16 = getfield_gc_pure(p9, descr=<FieldP Application.inst_function 8>) 20

guard_value(p16, ConstPtr(ptr17), descr=<Guard8>) [p16, p9, p0, p12, p7] 21

p18 = getfield_gc_pure(p9, descr=<FieldP Application3.inst_arg0 12>) 22

guard_class(p18, 138371968, descr=<Guard9>) [p18, p9, p0, p12, p7] 23

p20 = getfield_gc_pure(p9, descr=<FieldP Application3.inst_arg1 16>) 24

guard_class(p20, 138371968, descr=<Guard10>) [p20, p9, p18, p0, p12, p7] 25

p22 = getfield_gc_pure(p9, descr=<FieldP Application3.inst_arg2 20>) 26

guard_class(p22, 138373088, descr=<Guard11>) [p22, p9, p20, p18, p0, p12, p7] 27

debug_merge_point(0, 0, ’None’) 28

p24 = getfield_gc_pure(p22, descr=<FieldP Application.inst_function 8>) 29

guard_value(p24, ConstPtr(ptr25), descr=<Guard12>) [p24, p22, p9, None, None, p0, p12, p7] 30

p27 = getfield_gc_pure(p22, descr=<FieldP Application1.inst_arg0 12>) 31

guard_class(p27, 138371968, descr=<Guard13>) [p22, p27, p9, None, None, p0, p12, p7] 32

debug_merge_point(0, 0, ’_’) 33

debug_merge_point(0, 0, ’None’) 34

i30 = instance_ptr_eq(p18, ConstPtr(ptr29)) 35

guard_true(i30, descr=<Guard14>) [p27, p20, None, None, None, p0, p12, p7] 36

debug_merge_point(0, 0, ’None’) 37

i31 = getfield_gc_pure(p20, descr=<FieldS Int.inst_value 8>) 38

i32 = getfield_gc_pure(p27, descr=<FieldS Int.inst_value 8>) 39

i33 = int_sub(i31, i32) 40

debug_merge_point(0, 0, ’None’) 41

debug_merge_point(0, 0, ’None’) 42

debug_merge_point(0, 0, ’None’) 43

i35 = int_eq(0, i33) 44

guard_false(i35, descr=<Guard15>) [p0, i33, None, None, None, None, p12, p7] 45

p37 = new_with_vtable(138371968) 46

setfield_gc(p37, i33, descr=<FieldS Int.inst_value 8>) 47

setfield_gc(p7, p37, descr=<FieldP Thunk.inst_application 8>) 48

p38 = getfield_gc(p12, descr=<FieldP Thunk.inst_application 8>) 49

guard_nonnull_class(p38, 138371968, descr=<Guard16>) [p38, p0, p12, p37, p7] 50

debug_merge_point(0, 0, ’+ 1 (I# (_)) 1 (addr9Y (dsdr3)) - 1 dsdr3 (I# (_)) 1’) 51

debug_merge_point(0, 0, ’None’) 52

Listing B.4: Addition benchmark: trace after elidable, page 1
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debug_merge_point(0, 0, ’_’) 53

debug_merge_point(0, 0, ’None’) 54

debug_merge_point(0, 0, ’None’) 55

debug_merge_point(0, 0, ’(Case (ds1dr4 dsdr3)) dsdr3 dsdr3’) 56

debug_merge_point(0, 0, ’(Case (0 dsdr3 ds1dr4) (_ dsdr3 ds1dr4)) ds1dr4 dsdr3 ds1dr4’) 57

label(p0, p38, descr=TargetToken(-1223131072)) 58

debug_merge_point(0, 0, ’(Case (0 dsdr3 ds1dr4) (_ dsdr3 ds1dr4)) ds1dr4 dsdr3 ds1dr4’) 59

debug_merge_point(0, 0, ’None’) 60

debug_merge_point(0, 0, ’None’) 61

debug_merge_point(0, 0, ’None’) 62

debug_merge_point(0, 0, ’_’) 63

debug_merge_point(0, 0, ’None’) 64

debug_merge_point(0, 0, ’None’) 65

i40 = getfield_gc_pure(p38, descr=<FieldS Int.inst_value 8>) 66

i42 = int_sub(i40, 1) 67

debug_merge_point(0, 0, ’None’) 68

debug_merge_point(0, 0, ’None’) 69

debug_merge_point(0, 0, ’None’) 70

i43 = int_eq(0, i42) 71

guard_false(i43, descr=<Guard17>) [p38, p0, i42] 72

debug_merge_point(0, 0, ’+ 1 (I# (_)) 1 (addr9Y (dsdr3)) - 1 dsdr3 (I# (_)) 1’) 73

debug_merge_point(0, 0, ’None’) 74

debug_merge_point(0, 0, ’_’) 75

debug_merge_point(0, 0, ’None’) 76

debug_merge_point(0, 0, ’None’) 77

debug_merge_point(0, 0, ’(Case (ds1dr4 dsdr3)) dsdr3 dsdr3’) 78

debug_merge_point(0, 0, ’(Case (0 dsdr3 ds1dr4) (_ dsdr3 ds1dr4)) ds1dr4 dsdr3 ds1dr4’) 79

p45 = new_with_vtable(138372180) 80

p47 = new_with_vtable(138372576) 81

p49 = new_with_vtable(138373088) 82

setfield_gc(p47, ConstPtr(ptr50), descr=<FieldP Application.inst_function 8>) 83

p52 = new_with_vtable(138372576) 84

setfield_gc(p49, ConstPtr(ptr53), descr=<FieldP Application.inst_function 8>) 85

setfield_gc(p47, ConstPtr(ptr54), descr=<FieldP Application3.inst_arg1 16>) 86

setfield_gc(p47, ConstPtr(ptr29), descr=<FieldP Application3.inst_arg0 12>) 87

p56 = new_with_vtable(138373088) 88

setfield_gc(p52, ConstPtr(ptr17), descr=<FieldP Application.inst_function 8>) 89

setfield_gc(p56, ConstPtr(ptr57), descr=<FieldP Application1.inst_arg0 12>) 90

setfield_gc(p52, p56, descr=<FieldP Application3.inst_arg2 20>) 91

p58 = new_with_vtable(138371968) 92

setfield_gc(p45, p0, descr=<FieldP StackElement.inst_next 8>) 93

setfield_gc(p45, 2, descr=<FieldS CopyStackElement.inst_index 16>) 94

setfield_gc(p56, ConstPtr(ptr25), descr=<FieldP Application.inst_function 8>) 95

setfield_gc(p52, p38, descr=<FieldP Application3.inst_arg1 16>) 96

setfield_gc(p52, ConstPtr(ptr29), descr=<FieldP Application3.inst_arg0 12>) 97

setfield_gc(p49, p52, descr=<FieldP Application1.inst_arg0 12>) 98

setfield_gc(p47, p49, descr=<FieldP Application3.inst_arg2 20>) 99

setfield_gc(p45, p47, descr=<FieldP CopyStackElement.inst_application 12>) 100

setfield_gc(p58, i42, descr=<FieldS Int.inst_value 8>) 101

jump(p45, p58, descr=TargetToken(-1223131072)) 102

--end of the loop-- 103

[e68b77b8d02] jit-log-opt-loop} 104

Listing B.5: Addition benchmark: trace after elidable, page 2



APPENDIX C

External Core and JSCore examples

Listing C.1 is the Haskell source code of an example that show how the extcore
package split up lambda-statements, and how core2js’s JSCore output is verbose.
The example is a simple function that produces a list of a certain length where
each element is a certain integer. The external Core output produced by GHC can
be seen in Listing C.2, while Listing C.3 is the JSCore representation (which has
been re-formatted to fit the page).

main = print (length (repeat’ 10 5)) 1

2

repeat’ :: Int -> Int -> [Int] 3

repeat’ 0 _ = [] 4

repeat’ n x = x : repeat’ (n - 1) x 5

Listing C.1: Double lambda example: Haskell source code

69
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1%module main : Main
2%r e c
3{ r e p e a t ’ r9Y : : ghc−prim :GHC. Types . I n t −>
4ghc−prim :GHC. Types . I n t −>
5( ghc−prim :GHC. Types . [ ] ghc−prim :GHC. Types . I n t ) =
6\ ( dsdrE : : ghc−prim :GHC. Types . I n t )
7( ds1drF : : ghc−prim :GHC. Types . I n t ) −>
8%c a s e ( ( ghc−prim :GHC. Types . [ ] ghc−prim :GHC. Types . I n t ) ) dsdrE
9%o f ( wildX6 : : ghc−prim :GHC. Types . I n t )
10{ghc−prim :GHC. Types . I# ( ds2drG : : ghc−prim :GHC. Prim . I n t #) −>
11%c a s e ( ( ghc−prim :GHC. Types . [ ] ghc−prim :GHC. Types . I n t ) ) ds2drG
12%o f ( ds3XrM : : ghc−prim :GHC. Prim . I n t #)
13{%_ −>
14ghc−prim :GHC. Types . : @ ghc−prim :GHC. Types . I n t ds1drF
15( r e p e a t ’ r9Y
16( base :GHC.Num.− @ ghc−prim :GHC. Types . I n t
17base :GHC.Num. $fNumInt wildX6
18( ghc−prim :GHC. Types . I# ( 1 : : ghc−prim :GHC. Prim . I n t #)))
19ds1drF ) ;
20( 0 : : ghc−prim :GHC. Prim . I n t #) −>
21ghc−prim :GHC. Types . [ ] @ ghc−prim :GHC. Types . I n t }}};
22main : Main . main : : ( ghc−prim :GHC. Types . IO
23ghc−prim :GHC. Tuple . ( ) ) =
24base : System . IO . p r i n t @ ghc−prim :GHC. Types . I n t
25base :GHC. Show . $fShowInt
26( base :GHC. L i s t . l e n g t h @ ghc−prim :GHC. Types . I n t
27( r e p e a t ’ r9Y
28( ghc−prim :GHC. Types . I# ( 1 0 : : ghc−prim :GHC. Prim . I n t #))
29( ghc−prim :GHC. Types . I# ( 5 : : ghc−prim :GHC. Prim . I n t # ) ) ) ) ;
30main : : Main . main : : ( ghc−prim :GHC. Types . IO
31ghc−prim :GHC. Tuple . ( ) ) =
32base :GHC. TopHandler . runMainIO @ ghc−prim :GHC. Tuple . ( )
33main : Main . main ;

Listing C.2: Double lambda example: external Core output (Z-decoded)
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1 {"%module " : [ " main : Main " , " " ] , " t d e f " : [ ] ,
2 " v d e f g " : [{"% r e c " : [ { " qvar " : " r e p e a t ’ r9Y " ,
3 " ty " : {" bty " : {" bty " : {" qtycon " : [ " ghc−prim :GHC. Prim " , "( − >)"]} ,
4 " aty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " I n t " ] } } ,
5 " aty " : {" bty " : {" bty " : {" qtycon " : [ " ghc−prim :GHC. Prim " , "( − >)"]} ,
6 " aty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " I n t " ] } } ,
7 " aty " : {" bty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " [ ] " ] } ,
8 " aty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " I n t " ] } } } } ,
9 " exp " : {" lambda " :

10 {" vbind " : {" var " : " dsdrE " , " ty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " I n t " ] } } } ,
11 " exp " : {" lambda " :
12 {" vbind " : {" var " : " ds1drF " , " ty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " I n t " ] } } } ,
13 " exp " : {"% c a s e " : {" bty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " [ ] " ] } ,
14 " aty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " I n t " ] } } ,
15 " exp " : {" qvar " : " dsdrE " } ,
16 "% o f " : {" var " : " wildX6 " , " ty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " I n t " ] } } ,
17 " a l t " : [ { " qdcon " : [ " ghc−prim :GHC. Types " , " I #"] , " t y v a r " : [ ] ,
18 " vbind " : [ { " var " : " ds2drG " , ty " : {" qtycon " : [ " ghc−prim :GHC. Prim " , " I n t # " ] } } ] ,
19 " exp " : {"% c a s e " : {" bty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " [ ] " ] } ,
20 " aty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " I n t " ] } } ,
21 " exp " : {" qvar " : " ds2drG " } ,
22 "% o f " : {" var " : " ds3XrM " , " ty " : {" qtycon " : [ " ghc−prim :GHC. Prim " , " I n t #"]}} ,
23 " a l t " : [
24 {"%_" : {
25 " aexp " : { " aexp " : { " aexp " : {" qdcon " : [ " ghc−prim :GHC. Types " , " : " ] } ,
26 " a r g s " : {" aty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " I n t " ] } } } ,
27 " a r g s " : {" aexp " : {" qvar " : " ds1drF "}}} ,
28 " a r g s " : {" aexp " : {" aexp " : {" aexp " : {" qvar " : " r e p e a t ’ r9Y " } ,
29 " a r g s " : {" aexp " : {" aexp " : {" aexp " : {" aexp " :
30 {" aexp " : {" qvar " : [ " base :GHC.Num" , " −"]} ,
31 " a r g s " : {" aty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " I n t " ] } } } ,
32 " a r g s " : {" aexp " : {" qvar " : [ " base :GHC.Num" , " $fNumInt " ] } } } ,
33 " a r g s " : {" aexp " : {" qvar " : " wildX6 "}}} ,
34 " a r g s " : {" aexp " : {" aexp " :
35 {" qdcon " : [ " ghc−prim :GHC. Types " , " I #"]} ,
36 " a r g s " : {" aexp " : {" l i t " : {" i n t " : 1} ,
37 " ty " : {" qtycon " : [ " ghc−prim :GHC. Prim " , " I n t #"]}}}}}}}} ,
38 " a r g s " : {" aexp " : {" qvar " : " ds1drF "}}}}}} ,
39 {" l i t " : {" l i t " : {" i n t " : 0} , " ty " : {" qtycon " : [ " ghc−prim :GHC. Prim " , " I n t #"]}} ,
40 " exp " : {" aexp " : {" qdcon " : [ " ghc−prim :GHC. Types " , " [ ] " ] } ,
41 " a r g s " : {" aty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " I n t " ] } } } } ] } } ] } } } } ] } ,
42
43 {" qvar " : [ " main : Main " , " main " ] ,
44 " ty " : {" bty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " IO " ] } ,
45 " aty " : {" qtycon " : [ " ghc−prim :GHC. Tuple " , " ( ) " ] } } ,
46 " exp " : {" aexp " : {" aexp " : {" aexp " : {" qvar " : [ " base : System . IO " , " p r i n t " ] } ,
47 " a r g s " : {" aty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " I n t " ] } } } ,
48 " a r g s " : {" aexp " : {" qvar " : [ " base :GHC. Show " , " $fShowInt " ] } } } ,
49 " a r g s " : {" aexp " : {" aexp " : {" aexp " : {" qvar " : [ " base :GHC. L i s t " , " l e n g t h " ] } ,
50 " a r g s " : {" aty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " I n t " ] } } } ,
51 " a r g s " : {" aexp " : {" aexp " : {" aexp " : {" qvar " : " r e p e a t ’ r9Y " } ,
52 " a r g s " : {" aexp " : {" aexp " : {" qdcon " : [ " ghc−prim :GHC. Types " , " I #"]} ,
53 " a r g s " : {" aexp " : {" l i t " : {" i n t " : 10} ,
54 " ty " : {" qtycon " : [ " ghc−prim :GHC. Prim " , " I n t #"]}}}}}} ,
55 " a r g s " : {" aexp " : {" aexp " : {" qdcon " : [ " ghc−prim :GHC. Types " , " I #"]} ,
56 " a r g s " : {" aexp " : {" l i t " : {" i n t " : 5} ,
57 " ty " : {" qtycon " : [ " ghc−prim :GHC. Prim " , " I n t #"]}}}}}}}}}}} ,
58 {" qvar " : [ " main : : Main " , " main " ] ,
59 " ty " : {" bty " : {" qtycon " : [ " ghc−prim :GHC. Types " , " IO " ] } ,
60 " aty " : {" qtycon " : [ " ghc−prim :GHC. Tuple " , " ( ) " ] } } ,
61 " exp " : {" aexp " : {" aexp " : {" qvar " : [ " base :GHC. TopHandler " , " runMainIO " ] } ,
62 " a r g s " : {" aty " : {" qtycon " : [ " ghc−prim :GHC. Tuple " , " ( ) " ] } } } ,
63 " a r g s " : {" aexp " : {" qvar " : [ " main : Main " , " main " ] } } } } ] }

Listing C.3: Double lambda example: core2js’s JSCore output



72 APPENDIX C. EXTERNAL CORE AND JSCORE EXAMPLES



APPENDIX D

Z-encoding

Table D.1 list the encoding rules for Z-encoding1 by GHC when serializing Core
into external Core. Tuples with # are unboxed. A char is encoded as a “z” followed
by the char’s hex code followed by an “U”.

1Z-encoding rules are explained in more detail on Haskell Wiki:
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/SymbolNames
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Table D.1: Z-encoding

Characters Code

Tuples:
() Z0T
(„) Z3T

(# #) Z1H

Constructors:
( ZL
) ZR
[ ZM
] ZN
: ZC
Z ZZ

Variables:
z zz
& za
| zb
ˆ zc
$ zd
= ze
> zg
# zh
. zi
< zl
- zm
! zn
+ zp
’ zq
\ zr
/ zs
* zt
_ zu
% zv

char znnnU



Bibliography

[1] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis.
RPython: a Step Towards Reconciling Dynamically and Statically Typed OO
Languages. In Proceedings of the 2007 symposium on Dynamic languages, DLS
’07, pages 53–64, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-868-8.

[2] Håkan Ardö, Carl Friedrich Bolz, and Maciej Fijałkowski. Loop-Aware Op-
timizations in PyPy’s Tracing JIT. Unpublished draft, http://bitbucket.
org/pypy/extradoc/src/a88377852aa3/talk/iwtc11/licm.pdf [Online;
accessed 26-10-2012], December 2011.

[3] John Aycock. A Brief History of Just-In-Time. ACM Comput. Surv., 35(2):
97–113, June 2003. ISSN 0360-0300.

[4] Carl Friedrich Bolz. Controlling the Tracing of an Interpreter With Hints,
Part 1: Controlling the Extent of Tracing. http://morepypy.blogspot.com/
2011/03/controlling-tracing-of-interpreter-with.html, March 2011.
[Online; accessed 28-12-2012].

[5] Carl Friedrich Bolz and Laurence Tratt. The Impact of Meta-Tracing on VM
Design and Implementation. To appear in Science of Computer Programming,
March 2012.

[6] Carl Friedrich Bolz, Adrian Kuhn, Adrian Lienhard, Nicholas Matsakis, Oscar
Nierstrasz, Lukas Renggli, Armin Rigo, and Toon Verwaest. Back to the Fu-
ture in One Week – Implementing a Smalltalk VM in PyPy. In Self-Sustaining
Systems, volume 5146 of Lecture Notes in Computer Science, pages 123–139.
Springer Berlin / Heidelberg, 2008. ISBN 978-3-540-89274-8.

[7] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, and Armin Rigo.
Tracing the meta-level: PyPy’s tracing JIT compiler. In Proceedings of the

75

http://bitbucket.org/pypy/extradoc/src/a88377852aa3/talk/iwtc11/licm.pdf
http://bitbucket.org/pypy/extradoc/src/a88377852aa3/talk/iwtc11/licm.pdf
http://morepypy.blogspot.com/2011/03/controlling-tracing-of-interpreter-with.html
http://morepypy.blogspot.com/2011/03/controlling-tracing-of-interpreter-with.html


76 BIBLIOGRAPHY

4th workshop on the Implementation, Compilation, Optimization of Object-
Oriented Languages and Programming Systems, ICOOOLPS ’09, pages 18–25,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-541-3.

[8] Carl Friedrich Bolz, Michael Leuschel, and David Schneider. Towards a Jit-
ting VM for Prolog Execution. In Proceedings of the 12th international ACM
SIGPLAN symposium on Principles and practice of declarative programming,
PPDP ’10, pages 99–108, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-
0132-9.

[9] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, Michael Leuschel,
Samuele Pedroni, and Armin Rigo. Runtime feedback in a meta-tracing JIT
for efficient dynamic languages. In Proceedings of the 6th Workshop on Im-
plementation, Compilation, Optimization of Object-Oriented Languages, Pro-
grams and Systems, ICOOOLPS ’11, pages 9:1–9:8, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0894-6.

[10] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, Michael Leuschel,
Samuele Pedroni, and Armin Rigo. Allocation removal by partial evaluation
in a tracing JIT. In Proceedings of the 20th ACM SIGPLAN workshop on
Partial evaluation and program manipulation, PEPM ’11, pages 43–52, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0485-6.

[11] Carl Friedrich Bolz, Sebastian Fischer, Jan Christiansen, Knut Halvor Skrede,
and Even Wiik Thomassen. Haskell-Python bitbucket.org project; source
repository. http://bitbucket.org/cfbolz/haskell-python/, 2012. [On-
line; accessed 30-08-2012].

[12] Camillo Bruni and Toon Verwaest. PyGirl: Generating Whole-System VMs
from High-Level Prototypes Using PyPy. In Objects, Components, Models
and Patterns, volume 33 of Lecture Notes in Business Information Processing,
pages 328–347. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-02571-6.

[13] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones,
Gabriele Keller, and Simon Marlow. Data parallel Haskell: a status report.
In Proceedings of the 2007 workshop on Declarative aspects of multicore pro-
gramming, DAMP ’07, pages 10–18. ACM, 2007. ISBN 978-1-59593-690-5.

[14] Beatrice Düring. Trouble in Paradise: the Open Source project PyPy, EU-
funding and Agile practices. In Proceedings of the conference on AGILE 2006,
AGILE ’06, pages 221–231, Washington, DC, USA, July 2006. IEEE Computer
Society. ISBN 0-7695-2562-8.

[15] Richard Eisenberg. System FC, as implemented in GHC. http://github.
com/ghc/ghc/blob/master/docs/core-spec/core-spec.pdf?raw=true,
December 2012. [Online; accessed 07-12-2012].

[16] Jose P. E. Fernandez. Programming Python, Part I. Linux Journal, 2007:2–,
June 2007. ISSN 1075-3583.

http://bitbucket.org/cfbolz/haskell-python/
http://github.com/ghc/ghc/blob/master/docs/core-spec/core-spec.pdf?raw=true
http://github.com/ghc/ghc/blob/master/docs/core-spec/core-spec.pdf?raw=true


BIBLIOGRAPHY 77

[17] Sven Hager. Implementing the R Language Using RPython. Master’s thesis,
Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany, October 2012.

[18] Andrei Homescu and Alex Şuhan. HappyJIT: a tracing JIT compiler for PHP.
In Proceedings of the 7th symposium on Dynamic languages, DLS ’11, pages
25–36, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0939-4.

[19] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history
of Haskell: being lazy with class. In Proceedings of the third ACM SIGPLAN
conference on History of programming languages, HOPL III, pages 12–1–12–
55, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-766-7.

[20] Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon Pey-
ton Jones, and Ben Lippmeier. Regular, shape-polymorphic, parallel arrays
in Haskell. In Proceedings of the 15th ACM SIGPLAN international confer-
ence on Functional programming, ICFP ’10, pages 261–272. ACM, 2010. ISBN
978-1-60558-794-3.

[21] John Launchbury. A natural semantics for lazy evaluation. In Proceedings of
the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’93, pages 144–154, New York, NY, USA, 1993. ACM. ISBN
0-89791-560-7.

[22] Simon Marlow and Simon Peyton Jones. The Glasgow Haskell Compiler. In
The Architecture of Open Source Applications, volume II, chapter 5, pages
67–88. Independent, May 2012. ISBN 9781105571817.

[23] Simon Marlow et al. Haskell 2010 Language Report. http://www.haskell.
org/onlinereport/haskell2010/, April 2010. [Online; accessed 15-10-2012].

[24] Will Partain. The nofib Benchmark Suite of Haskell Programs. In Proceedings
of the 1992 Glasgow Workshop on Functional Programming, pages 195–202,
London, UK, UK, 1993. Springer-Verlag. ISBN 3-540-19820-2.

[25] David M Peixotto. Low-Level Haskell Code: Measurements and Optimization
Techniques. PhD thesis, Rice University, Houston, Texas, USA, 2012.

[26] Benjamin Peterson. PyPy. In The Architecture of Open Source Applica-
tions, volume II, chapter 19, pages 279–290. Independent, May 2012. ISBN
9781105571817.

[27] Simon Peyton Jones. Call-pattern specialisation for Haskell programs. In Pro-
ceedings of the 12th ACM SIGPLAN international conference on Functional
programming, ICFP ’07, pages 327–337, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-815-2.

[28] Simon Peyton Jones and James Fischer. Haskell Bug Tracker: Ticket 5844
- Panic on generating Core code. http://hackage.haskell.org/trac/ghc/
ticket/5844, 2012. [Online; accessed 11-12-2012].

http://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/onlinereport/haskell2010/
http://hackage.haskell.org/trac/ghc/ticket/5844
http://hackage.haskell.org/trac/ghc/ticket/5844


78 BIBLIOGRAPHY

[29] Simon Peyton Jones and John Launchbury. Unboxed values as first class
citizens in a non-strict functional language. In Proceedings of the 5th ACM
conference on Functional programming languages and computer architecture,
pages 636–666, New York, NY, USA, 1991. Springer-Verlag New York, Inc.
ISBN 0-387-54396-1.

[30] Simon Peyton Jones and Will Partain. Measuring the effectiveness of a simple
strictness analyser. Functional Programming, Glasgow, pages 201–220, 1993.

[31] Simon Peyton Jones and Jon Salkild. The spineless tagless G-machine. In
Proceedings of the fourth international conference on Functional programming
languages and computer architecture, FPCA ’89, pages 184–201, New York,
NY, USA, 1989. ACM. ISBN 0-89791-328-0.

[32] Simon Peyton Jones and Andre Santos. Compilation by transformation in the
Glasgow Haskell Compiler. Functional Programming, Glasgow, pages 184–204,
1994.

[33] Simon Peyton Jones, Will Partain, and André Santos. Let-floating: moving
bindings to give faster programs. In Proceedings of the first ACM SIGPLAN
international conference on Functional programming, ICFP ’96, pages 1–12,
New York, NY, USA, 1996. ACM. ISBN 0-89791-770-7.

[34] Simon Peyton Jones, Simon Marlow, et al. GHC source code, git repository.
http://darcs.haskell.org/ghc.git/, 2012. [Online; accessed 29-12-2012].

[35] Simon Peyton Jones et al. Haskell 98 Language and Libraries: The Revised
Report. Journal of functional programming. Cambridge University Press, 2003.
ISBN 9780521826143. [Online; accessed 12-10-2012]
http://www.haskell.org/onlinereport/.

[36] Armin Rigo and Samuele Pedroni. PyPy’s approach to virtual machine con-
struction. In Companion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and applications, OOPSLA ’06,
pages 944–953, New York, NY, USA, 2006. ACM. ISBN 1-59593-491-X.

[37] Thomas Schilling. Re: Trace-based JIT of Haskell. Email to Even Wiik
Thomassen. September 22, 2012.

[38] Thomas Schilling. Challenges for a Trace-Based Just-In-Time Compiler for
Haskell. In Implementation and Application of Functional Languages, volume
7257 of Lecture Notes in Computer Science, pages 51–68. Springer Berlin Hei-
delberg, 2012. ISBN 978-3-642-34406-0.

[39] David Schneider. Implementation of the Io language in RPython; source repos-
itory. http://bitbucket.org/pypy/lang-io/, 2009–2011. [Online; accessed
15-09-2012].

http://darcs.haskell.org/ghc.git/
http://www.haskell.org/onlinereport/
http://bitbucket.org/pypy/lang-io/


BIBLIOGRAPHY 79

[40] David Schneider and Carl Friedrich Bolz. The Efficient Handling of Guards
in the Design of RPython’s Tracing JIT. In 6th workshop on virtual machines
and intermediate languages, VMIL, 2012.

[41] Anders Sigfridsson, Gabriela Avram, Anne Sheehan, and Daniel Sullivan.
Sprint-driven development: working, learning and the process of enculturation
in the PyPy community. In Open Source Development, Adoption and Innova-
tion, volume 234 of IFIP International Federation for Information Processing,
pages 133–146. Springer Boston, 2007. ISBN 978-0-387-72485-0.

[42] Knut Halvor Skrede. Just-In-Time compilation of Haskell using PyPy and
GHC. http://github.com/khskrede/mehh, December 2011. Project report
at NTNU, Trondheim. [Online; accessed 06-12-2012].

[43] Knut Halvor Skrede. Just-In-Time compilation of Haskell with PyPy and
GHC. Master’s thesis, Norwegian University of Science and Technology,
Trondheim, Norway, June 2012.

[44] Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin
Donnelly. System F with type equality coercions. In Proceedings of the 2007
ACM SIGPLAN international workshop on Types in languages design and
implementation, TLDI ’07, pages 53–66, New York, NY, USA, 2007. ACM.
ISBN 1-59593-393-X. Version from January 2011.

[45] The PyPy team. PyPy Homepage — the PyPy Speed Center. http://speed.
pypy.org/, 2012. [Online; accessed 13-12-2012].

[46] The PyPy team. PyPy bitbucket.org project; source repository. http://
bitbucket.org/pypy/pypy/, 2012. [Online; accessed 16-12-2012].

[47] David A. Terei and Manuel M.T. Chakravarty. An LLVM backend for GHC.
In Proceedings of the third ACM Haskell symposium on Haskell, Haskell ’10,
pages 109–120, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0252-4.

[48] Andrew Tolmach, Tim Chevalier, et al. An External Representation for
the GHC Core Language. http://www.haskell.org/ghc/docs/7.4.1/core.
pdf, February 2012. [Online; accessed 01-10-2012].

[49] Laurence Tratt. Fast Enough VMs in Fast Enough Time. http:
//tratt.net/laurie/tech_articles/articles/fast_enough_vms_in_
fast_enough_time, February 2012. [Online; accessed 12-10-2012].

[50] Dimitrios Vytiniotis, Simon Peyton Jones, and José Pedro Magalhães. Equality
proofs and deferred type errors: a compiler pearl. In Proceedings of the 17th
ACM SIGPLAN international conference on Functional programming, ICFP
’12, pages 341–352. ACM, 2012. ISBN 978-1-4503-1054-3.

[51] Stephanie Weirich, Dimitrios Vytiniotis, Simon Peyton Jones, and Steve
Zdancewic. Generative Type Abstraction and Type-Level Computation. In

http://github.com/khskrede/mehh
http://speed.pypy.org/
http://speed.pypy.org/
http://bitbucket.org/pypy/pypy/
http://bitbucket.org/pypy/pypy/
http://www.haskell.org/ghc/docs/7.4.1/core.pdf
http://www.haskell.org/ghc/docs/7.4.1/core.pdf
http://tratt.net/laurie/tech_articles/articles/fast_enough_vms_in_fast_enough_time
http://tratt.net/laurie/tech_articles/articles/fast_enough_vms_in_fast_enough_time
http://tratt.net/laurie/tech_articles/articles/fast_enough_vms_in_fast_enough_time


80 BIBLIOGRAPHY

Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, POPL ’11, pages 227–240, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0490-0.

[52] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dim-
itrios Vytiniotis, and José Pedro Magalhães. Giving Haskell a promotion. In
Proceedings of the 8th ACM SIGPLAN workshop on Types in language de-
sign and implementation, TLDI ’12, pages 53–66, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1120-5.



List of tables

3.1 Overview over virtual machines implemented with RPython . . . . . 15

5.1 Overview over Haskell features PyHaskell support . . . . . . . . . . . 32

7.1 JIT results, before and after trace-elidable . . . . . . . . . . . . . . . 43
7.2 JIT results, before and after unboxed constructors . . . . . . . . . . 43
7.3 PyHaskell performance with RPython hints disabled . . . . . . . . . 46
7.4 PyHaskell JIT trace operations with hints disabled . . . . . . . . . . 46

8.1 Benchmark executable targets . . . . . . . . . . . . . . . . . . . . . . 49
8.2 Benchmark results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.3 PyHaskell pipeline benchmark results . . . . . . . . . . . . . . . . . 49
8.4 PyHaskell Prelude benchmark results . . . . . . . . . . . . . . . . . . 50

11.1 Overview over related work at optimizing Haskell . . . . . . . . . . . 59

D.1 Z-encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

81



82 LIST OF TABLES



List of listings

5.1 putStrLn example: GHC external Core output . . . . . . . . . . . . 30
5.2 putStrLn example: PyHaskell evaluation log . . . . . . . . . . . . . . 30
5.3 putStrLn example: PyHaskell evaluation after . . . . . . . . . . . . . 30
6.1 Promotion example: RPython code . . . . . . . . . . . . . . . . . . . 34
6.2 Promotion example: unoptimized trace . . . . . . . . . . . . . . . . . 35
6.3 Promotion example: optimized trace . . . . . . . . . . . . . . . . . . 35
6.4 Elidable example: RPython code . . . . . . . . . . . . . . . . . . . . 36
6.5 Elidable example: unoptimized trace . . . . . . . . . . . . . . . . . . 36
6.6 Elidable example: optimized trace . . . . . . . . . . . . . . . . . . . 36
6.7 RPython hint example: immutable_fields . . . . . . . . . . . . . . 37
7.1 Simplified PyHaskell JIT trace log example . . . . . . . . . . . . . . 40
7.2 Trace-elidable function for looking up in qvars dictionary . . . . . . 41
7.3 PyHaskell numeric addition before elidable get_var . . . . . . . . 42
7.4 Addition benchmark: trace excerpt, before elidable . . . . . . . . . . 42
7.5 Addition benchmark: trace excerpt, after elidable . . . . . . . . . . . 42
7.6 PyHaskell haskell.py excerpt, can_enter_jit and merge_point . . . 44
7.7 PyHaskell haskell.py excerpt showing three RPython hints . . . . . . 45
A.1 Addition benchmark: Haskell source code . . . . . . . . . . . . . . . 61
A.2 Fibonacci benchmark: Haskell source code . . . . . . . . . . . . . . . 61
A.3 Length benchmark: Haskell source code . . . . . . . . . . . . . . . . 62
A.4 Math benchmark: Haskell source code . . . . . . . . . . . . . . . . . 62
A.5 Replicate benchmark: Haskell source code . . . . . . . . . . . . . . . 62
A.6 RPy-Length benchmark: Haskell source code . . . . . . . . . . . . . 62
B.1 Example of raw, not simplified PyHaskell JIT trace log . . . . . . . . 64
B.2 Addition benchmark: trace before elidable, page 1 . . . . . . . . . . 65
B.3 Addition benchmark: trace before elidable, page 2 . . . . . . . . . . 66
B.4 Addition benchmark: trace after elidable, page 1 . . . . . . . . . . . 67
B.5 Addition benchmark: trace after elidable, page 2 . . . . . . . . . . . 68
C.1 Double lambda example: Haskell source code . . . . . . . . . . . . . 69

83



84 LIST OF LISTINGS

C.2 Double lambda example: external Core output . . . . . . . . . . . . 70
C.3 Double lambda example: core2js’s JSCore output . . . . . . . . . . 71



List of abbreviations

ABI application binary interface 56

API application programming interface 7, 9, 11, 21, 22, 54, 59

AST abstract syntax tree 7, 29, 51

CLR Common Language Runtime 16, 17

Cmm C minus minus 9, 27, 55, 56

DPH Data Parallel Haskell 56

GADT generalized algebraic data types 12, 20

GCC GNU Compiler Collection 9, 48

GHC Glasgow Haskell Compiler 2, 3, 5–7, 9, 11, 19–23, 25–27, 29, 30, 43, 47–49,
51, 53–57, 59, 69, 73

GHCi GHC’s interactive environment 7

IR intermediate representation 9

JIT just-in-time 1–3, 13–18, 22, 25, 29, 33–35, 37–39, 41, 46–49, 51, 53, 55, 57–59,
63

JSON JavaScript Object Notation 2, 19, 20, 27, 54

JVM Java Virtual Machine 13, 16, 17

KLoC thousand lines of code 56

85



86 List of abbreviations

LINQ Language Integrated Query 5

NCG native code generator 9, 51, 55, 56, 59

SSA static single assignment 16, 34, 56

STG Spineless Tagless G-machine 7, 9, 55, 56

TNTC tables-next-to-code 9, 27, 48, 57

VM virtual machine 1–3, 14–19, 25–27, 33, 34, 41, 49, 53, 54, 57, 58


	1 Introduction
	1.1 Summary of contributions

	2 Haskell and GHC
	2.1 Haskell language
	2.2 The Glasgow Haskell Compiler
	2.3 Core intermediate language

	3 RPython and PyPy
	3.1 Python
	3.2 PyPy project
	3.3 Just-in-time compilation
	3.4 RPython
	3.5 RPython's meta-tracing just-in-time compiler

	4 External Core
	4.1 Current implementation
	4.2 Issues and limitations
	4.3 Possible solutions
	4.4 Discussion

	5 PyHaskell
	5.1 Haskell-Python project
	5.2 The PyHaskell virtual machine
	5.3 PyHaskell pipeline
	5.4 Pipeline issues and previous work
	5.5 Improvements
	5.6 Summary of current status

	6 RPython hints and optimization techniques
	6.1 Can enter JIT and merge point
	6.2 Promotion
	6.3 Trace-elidable
	6.4 Loop unrolling
	6.5 Immutable fields
	6.6 Other hints and commands

	7 PyHaskell optimizations
	7.1 RPython trace logs
	7.2 PyHaskell improvements from trace logs
	7.3 PyHaskell's usage of RPython hints
	7.4 Performance improvements from hints

	8 Benchmarks
	8.1 Design
	8.2 Execution
	8.3 Results
	8.4 Pipeline benchmarks
	8.5 Built-in functionality or Prelude

	9 Discussion
	10 Conclusion
	10.1 Future work

	11 Related work
	11.1 LLVM backend for GHC
	11.2 DynamoRIO and Htrace
	11.3 Lambdachine
	11.4 Summary

	A Benchmark source code
	B RPython trace logs
	C External Core and JSCore examples
	D Z-encoding
	Bibliography
	List of tables
	List of listings
	List of abbreviations

