
Department of Computer and Information Science

TDT4501 — Specialization Project

Implementing Haskell in RPython

Author:
Even Wiik Thomassen

Supervisor:
Dr. Magnus Lie Hetland

June 8, 2012

Abstract

RPython has been used to implement VMs for many different programming
languages, but not for any which are purely functional or lazy. RPython
VMs are written in a high-level language that greatly simplifies develop-
ment, and provide great performance with its meta-tracing JIT. We have
created PyHaskell, a VM for the Haskell language, which on the Fibonacci
benchmark is only 3.75 times slower than GHC. PyHaskell allows us to show
that RPython is suitable for purely functional and lazy programming lan-
guages, and to investigate if a statically compiled language such as Haskell
can benefit from JIT techniques.

CONTENTS

Contents i

List of tables iii

List of listings iv

Acronyms v

1 Introduction 1

2 Concepts and terms 3
2.1 Haskell language . 3
2.2 Glasgow Haskell Compiler . 4
2.3 Core language . 4
2.4 Python language . 5
2.5 PyPy project . 5
2.6 RPython language . 6
2.7 RPython translation toolchain 6
2.8 Meta-tracing just-in-time compiler 7

3 Related work 9
3.1 Haskell-Python (Haskell) . 9
3.2 PyPy (Python) . 11
3.3 Pyrolog (Prolog) . 12
3.4 HappyJIT (PHP) . 13
3.5 Spy (Smalltalk) . 14
3.6 PyGirl (Gameboy) . 15
3.7 Converge (Converge) . 15
3.8 Other virtual machines . 16

i

3.9 Summary . 16

4 Method 19
4.1 Z-decoding . 19
4.2 Repository structure and refactoring 19
4.3 Mapping Core to PyHaskell 20
4.4 Converting PyHaskell from Python to RPython 22
4.5 Benchmarking . 25

5 Results 27
5.1 Haskell features supported . 27
5.2 RPython translation timings 27
5.3 Benchmarks . 29

6 Discussion 30
6.1 Benchmark results . 30
6.2 PyHaskell formal definition 31
6.3 Lessons from related work . 31
6.4 Pipeline problems . 32
6.5 Further work for answering questions 32

7 Conclusion 34

References 36

A Source code 41
A.1 Primitive function decorators 41
A.2 Functions from built-in modules 41
A.3 Haskell tests . 46
A.4 Benchmarks . 46

ii

LIST OF TABLES

3.1 Overview over virtual machines implemented with RPython . 18
3.2 Overview over paradigms implemented with RPython 18

4.1 Overview over Haskell benchmarks used 25

5.1 Overview over Haskell features PyHaskell support 28
5.2 Time used to translate PyHaskell to C 28
5.3 Benchmark results . 29
5.4 Evaluation of benchmark results 29

iii

LIST OF LISTINGS

1 Implementation of primitive function decorator 42
2 Cons implementation that use a primitive decorator 43
3 Cons implementation without meta-programming decorator . 43
4 Implementation of unpackCString. 44
5 Implementation of “base:System.IO.putStrLn” 44
6 Implementation of list concatenation operator ‘++’ 45
7 Haskell test of list concatenation ‘++’ operator 46
8 Haskell test of cons ‘:’ operator 46
9 Haskell test of pattern matching 46
10 Naive Fibonacci sequence benchmark 47
11 Multiply recursive benchmark 47
12 Iterative case benchmark . 47

iv

ACRONYMS

APC Advanced PHP Cache. 13

AST abstract syntax tree. 23, 30

CLR Common Language Runtime. 5–7, 12, 14, 15

FFI foreign function interface. 32

GADT generalized algebraic data types. 4, 9

GHC the Glasgow Haskell Compiler. 4, 5, 9, 11, 19–21, 25, 27, 29–34

GHCi GHC’s interactive environment. 25, 29, 30

JIT just-in-time compilation. 1, 2, 6–8, 11–16, 18, 20, 22, 24–28, 30, 31, 33,
34

JSON JavaScript Object Notation. 11, 19, 21, 25, 30, 31

JVM Java Virtual Machine. 5–7, 12, 14, 15

KLoC thousand lines of code. 15–17

LINQ Language Integrated Query. 3

PHP PHP: Hypertext Preprocessor. 13, 14, 18, 31

STG Spineless Tagless G-machine. 4

VM virtual machine. 1, 2, 5–9, 11–20, 22–25, 27, 29–34, 41

v

CHAPTER 1

INTRODUCTION

Both dynamic programming languages as well as functional languages are
gaining popularity today. On the functional front the Haskell language is
home to language research, while on the dynamic front one very interesting
development is the PyPy project that have created an environment for creat-
ing dynamic virtual machines (VMs). While the PyPy project has proven its
relevance with its significantly faster Python interpreter, the dynamic VM
environment behind the interpreter is less known and proven (this environ-
ment is henceforth called RPython). RPython has been used successfully
to implement a wide range of VMs covering many programming paradigms,
but lazy and purely functional are missing. We plan to correct this situation
by implementing a Haskell VM with RPython.

The objective of this paper is to contribute work for the Haskell-Python
project. The project has two objectives:

• Show that RPython is suitable for purely functional and lazy languages,
e.g. the Haskell language.

• Show that Haskell may benefit from just-in-time compilation (JIT)
techniques. While languages such as Haskell are heavily optimized at
compile-time, more information is available at run-time that a JIT can
exploit.

The scope of the project prevents this paper from answering these two ob-
jectives, and instead the paper serves as a basis for further research. The
goal of the paper is twofold. First, to investigate other RPython VMs to
find relevant lessons for the Haskell-Python VM. Second, to advance the
VM to a state where it can be translated to C to be able to use the RPython
meta-tracing JIT, which required converting the codebase fully to RPython.
The second part of the goal depend on the first part, as most RPython doc-

1

umentation can be found in the papers describing VMs implemented with
RPython. The contributions of this paper are:

• A literature review of VMs implemented with RPython.

• A summary of benefits from implementing VMs with RPython.

• Lessons from other RPython VMs to use in the Haskell-Python project.

• Significant work and progress on the Haskell-Python project, which
include converting the codebase fully to the RPython language.

We start by explaining important concepts and terms (chapter 2, page 3),
such as Core, PyPy, RPython, and JIT. The main contribution of this paper
is the literature review and summary of VMs implemented with RPython
(chapter 3, page 9). This paper is the first to present a literature review on
this topic. We describe the technical work we have done in the context of
the Haskell-Python project (chapter 4, page 19), which include removing Z-
encoded names; support for data constructors; special handling of primitive
type aliases; and finally converting the codebase into RPython. Further-
more we present results from our work (chapter 5, page 27), which include
an overview of supported Haskell language features and results of micro
benchmarks. The Haskell VM is not yet able to handle the full Haskell lan-
guage, mainly because of major problems with the pipeline, which we discuss
(chapter 6, page 30), including possible solutions to these problems. Finally
we conclude the paper and list further work required to complete the project
(chapter 7, page 34).

2

CHAPTER 2

CONCEPTS AND TERMS

This chapter tries to give an explanation and description of important con-
cepts and terms used in this paper.

2.1 Haskell language

Towards the end of 1980s more than a dozen similar (non-strict, purely func-
tional) programming languages had been created. During a meeting at the
conference on Functional Programming Languages and Computer Architec-
ture it was decided that a committee should be formed to design a new
standardized common language for this class of languages [19]. The com-
mittee designed a new language named Haskell, which is a general purpose,
purely functional, declarative, high-level programming language. Haskell is
strongly typed with support for type inference, therefor type annotations
are rarely needed. Other features of the language include lazy evaluation,
pattern matching, list comprehensions, type classes and monads [16, 22].

Haskell was designed to be “suitable for teaching, research, and applica-
tions, including building large systems. (. . .) usable as a basis for further
language research” [19]. As Haskell started to become popular it evolved
quickly, which was problematic for teaching and application that require sta-
bility. The committee therefor named an instance of the language “Haskell
98”, a stable version of the language, which implementers committed to sup-
port indefinitely. Afterward the committee disbanded to encourage language
innovation and experimentation. In 2005 design of Haskell´ was started, to
succeed Haskell 98 and to cover heavily used extensions [19]. Today the
current stable version is Haskell 2010 [15].

Hudak et al. [19] point out that many features in C# were pioneered by
Haskell, such as polymorphic types and Language Integrated Query (LINQ)
which was directly inspired by monad comprehensions. List comprehensions

3

and array comprehensions in JavaScript are both inspired by Haskell’s list
comprehensions [19]. The biggest contributions from Haskell might be type
classes and monads. A study covering the 2005-2006 academic year showed
that Haskell was used in 95 university courses, most of which covered func-
tional and/or declarative programming and programming languages [19].
Haskell’s relevance and importance come from its use in teaching and its
impact in programming language research.

2.2 Glasgow Haskell Compiler

The Glasgow Haskell Compiler (GHC) was started in 1989 at the University
of Glasgow, and is probably the most fully featured Haskell compiler today.
It was designed as a complete implementation of Haskell in Haskell [19].
Today GHC implements the latest version of the Haskell language, known
as Haskell 20101 [15, 22]. GHC can be divided into three distinct parts:

• The compiler itself.

• The boot libraries that the compiler depend on.

• The runtime system. Library of C code that handles running the com-
piled Haskell code, such as garbage collection, threads, and excep-
tions. [22]

The compiler contains a pipeline for converting Haskell source code into
executable machine code. The pipeline starts with the GHC front-end that
performs parsing of source code, resolves identifiers into fully-qualified names,
type checking and desugaring into an intermediate language called Core. The
pipeline then performs a series of optimizations and simplifications on the
Core representation. Finally the GHC back-end translates Core into another
intermediate representation called STG (Spineless Tagless G-machine [25]),
and then performs code generation into either C or native code [22, 33].

2.3 Core language

The Core language, GHC’s intermediate representation, was initially based
on lambda calculus. It was upgraded to a polymorphic lambda calculus,
System Fω, to be able to decorate it with types [19]. Core was further
extended to System FC , to support type equality constraints and safe co-
ercions [32, 33, 36]. System FC provide simple support for kinds, which
are simply the type of a type. Core’s most recent upgrade, System F ↑

C , has
more complex kinds that provide better support for type families and
generalized algebraic data types (GADT) [36, 37].

1Haskell 2010 report [15]: http://www.haskell.org/onlinereport/haskell2010/

4

http://www.haskell.org/onlinereport/haskell2010/

While Haskell is implicitly typed, Core is explicitly typed [36]. Core also
differ from Haskell by being tiny. But while Core is small, it is extremely
expressive [22].

The parts of GHC we use in this project, and how they are used, are
described further in section 3.1 on page 9.

2.4 Python language

Python is a high-level, dynamic programming language that supports sev-
eral programming paradigms, such as imperative, object-oriented and func-
tional [5, 24]. It is highly regarded for its simplicity and ease of use [17].

Python was created by Guido van Rossum in the late 1980s [24]. Now,
over 20 years later, its development is guided by the Python Software Foun-
dation2.

The original Python implementation was written in C, and is known as
CPython3 [24]. Since its creation, several alternative implementations of the
Python language have been created. CPython is considered the official or
standard Python implementation [30], and acts as a reference of the Python
language.

Other well known Python implementations are: Jython4, which is written
in Java and runs on Java Virtual Machine (JVM); IronPython5, which is
written in C# and runs on Common Language Runtime (CLR); PyPy, a
Python interpreter implemented in Python itself [24].

2.5 PyPy project

The PyPy project consist of two major components: a) the RPython transla-
tion toolchain; and b) PyPy, the Python interpreter [24]. The PyPy Python
interpreter is built with the RPython translation toolchain. These two com-
ponents map directly to the two goals of the PyPy project:

• Be an environment for implementing complex dynamic languages that
support multiple platforms [7, 27]; and

• provide a faster Python implementation [5, 14].

Traditionally one must implement one VM for each platform one wish to
support. By implementing VMs in a high level language PyPy can support
several very different platforms with one implementation [27]. High level
languages keep the implementation free of low-level details such as object

2Python Software Foundation: http://www.python.org/psf/
3CPython homepage: http://www.python.org/
4Jython homepage: http://www.jython.org/
5IronPython homepage: http://ironpython.net/

5

http://www.python.org/psf/
http://www.python.org/
http://www.jython.org/
http://ironpython.net/

layout, threading model, and memory management [7]. This achieves the
first goal. The disadvantage of this is speed, and to achieve the second
goal PyPy has developed a meta-tracing JIT that is a part of the RPython
translation toolchain [5, 9, 27].

The idea for PyPy surfaced in late 2002 on a Python mailing-list, and
the project started with a week long meeting in February 2002. The project
received EU-funding of 1.3 million euro, from first of December 2004 until
November 2006. The funding allowed PyPy to arrange 14 sprints during
these two years, and gave the project a rapid progress [14].

2.6 RPython language

PyPy is implemented in a restricted subset of the Python language, called
RPython. Other VM implementations that want to use the RPython envi-
ronment must also be written in RPython. The RPython language is selected
in a way that makes it possible to do type inference on it [9]. The RPython
language is not formally defined, but considered informally as any Python
code that the RPython translation toolchain can handle.

The restrictions imposed by RPython together with type inference makes
it possible to translate RPython programs directly to low-level languages like
C [9]. Major restrictions are:

• Variables need to be type consistent, for example a variable cannot
hold an integer and then later a string [24].

• Types of all variables in the code must be inferable [12].

• Functions cannot be created at runtime [24].

• Bindings in classes and global namespaces are assumed to be con-
stant [27].

• Runtime reflection is not supported [12].

Despite these restrictions, RPython is a high-level language that sup-
ports: garbage collection; exceptions; single inheritance6; classes with virtual
functions; first class functions and class values; runtime isinstance and type
checks; and good built-in data-structures [6, 8, 9, 12].

2.7 RPython translation toolchain

One goal of the RPython translation toolchain is to compile RPython pro-
grams to various environments, such as C, JVM, and CLR [7, 27]. Another
goal is to automatically create JITing VMs through meta-tracing [5].

6RPython support explicitly declared mixins that offer many of the advantages of
multiple inheritance [2, 6].

6

The overall architecture of the toolchain starts at the high-level RPython
source of the VM, and performs stepwise translations steps until it reaches
low level code of the target platform. Each level has a corresponding type
system and uses a generic type interference engine, and each level adds sup-
port for features that were assumed primitive by the previous level [27].

The translator toolchain starts with building flow-graphs from RPython
source code. These flow-graphs consist of linked blocks where each block
has input arguments and a list of operations. Next is the annotation phase,
where type information is assigned to the arguments and result of each op-
eration [24]. The annotation phase basically performs type inference on the
whole program.

The next phase is RTyping, which uses type information to expand high-
level flow-graph operations into low-level operations. After RTyping several
optimizations are performed. Traditional optimizations such as constant
folding, dead code removal and more complex ones such as function inlining
and malloc removal [24].

The final phase is the back-end, which generates source code from flow-
graphs. The C back-end emits C code, but must first add explicit garbage
collection and exception handling [24]. The final step of the back-end com-
piles the generated C code. There is an alternative object-oriented back-end
for generating code that runs on JVM and CLR.

2.8 Meta-tracing just-in-time compiler

The objective of the JIT is to improve the speed of the language, by compiling
frequently used code-paths into assembly at runtime [24]. For a dynamic
language the first goal of the JIT is to remove overhead from the interpreter,
for example bytecode dispatch and interpreter’s data structures. The second
goal is to remove the overhead from boxing primitive types [10].

A popular approach to JIT is a tracing JIT that works by observing
the running program to detect commonly executed concrete paths [9, 10].
Detected paths are called a trace, and contains the history of operations
executed. A trace is first optimized with well known compiler optimizations,
then turned into machine code. As a trace is linear, many optimizers are
easy to write and generating machine code for it is straight forward [3]. As a
trace is a path of the code, any branching along that path is protected with
guards. If a different path is used, a guard will trigger and the interpreter
continues. If a guard fails often, the tracing JIT will start a new trace from
the failed guard [10].

To be able to reuse the tracer on other RPython VMs, RPython con-
tains a meta-tracing JIT that traces the execution of the interpreter instead
of the user program running on top of the interpreter. RPython’s meta-
tracing JIT can almost automatically create a JIT for VMs implemented

7

with RPython [5, 7]. Two hints in the source code of the VM is required by
the meta-tracer: merge_point and can_enter_jit. The latter hint specifies
where in the interpreter a loop starts, and the former hint says where it is
safe to return to the interpreter from the JIT [24]. There are a growing list
of other hints one can provide to help improve the performance of the JIT,
but they are optional.

8

CHAPTER 3

RELATED WORK

This chapter presents VMs implemented with RPython. A summary of these
VMs can be seen in section 3.9 on page 16. The work described in this paper
was done in the context of the Haskell-Python project. The history and
status of this project are described in section 3.1.

3.1 Haskell-Python (Haskell)

Bolz, Fischer, and Christiansen [11] have implemented1 a VM for lambda
calculus with RPython. The project is named Haskell-Python, while the
VM is named PyHaskell. Lambda calculus is a system for expressing com-
putations with variable bindings and substitution. The VM is based on an
operational semantic for evaluating an extended lambda calculus, designed
by Launchbury [21].

Launchbury’s semantic for lazy evaluation does not map directly to Sys-
tem F ↑

C , which the Core language implements. System F ↑
C provides sup-

port for newtype, GADT, associated types, functional dependencies and
type families [32, 36]. Some of these features turn the type system into
an explicitly-typed programming language on its own [37].

We need to figure out which features of System FC we want to support,
how to translate them to the Launchbury semantic if possible, and which
features to ignore. This is described in section 4.3 on page 20. Some of these
features, e.g. type families, are only available through GHC extensions,
which are outside the scope of this project.

Skrede [31] has extended the project by designing and implementing a
pipeline that uses GHC as a front-end for the lambda calculus VM. The
structure of the pipeline can be seen in Figure 3.1. The pipeline starts with

1Their implementation can be found in the clean2 branch of Haskell-Python [11].

9

Figure 3.1: Haskell-Python pipeline by Skrede [31]

10

the GHC front-end that takes care of parsing, type checking and desugaring
Haskell source code. GHC then generates an intermediate representation
of the Core language that is written to a “hcr” file. The core2js Haskell
program then converts the “hcr” file to JSCore, a JavaScript Object Notation
(JSON) representation of Core, with the help of a Haskell package called
extcore2. Finally the JSCore file is parsed and interpreted by PyHaskell [31].

The project is far from complete, especially the pipeline lacks features
necessary for handling normal Haskell programs:

• GHC external core support has not been maintained during new re-
leases of GHC. Many GHC libraries cannot be converted to the external
Core representation.

• Extcore package fails to parse some “hcr” files.

• core2js program fails to generate some JSCore files.

• While PyHaskell supports case expressions, let statements and normal
function applications, it lacks support for the following Haskell fea-
tures: guards, pattern matching, list comprehensions, and more (see
section 5.1 on page 27).

• PyHaskell is mostly written in Python instead of RPython, so it cannot
be translated to C nor include a JIT. It can only run on top of another
Python interpreter (CPython or PyPy).

These problems means that PyHaskell is so far unable to use any Haskell
modules that comes with GHC. Possible solutions to these problems are
presented in section 6.4 on page 32.

3.2 PyPy (Python)

This section refers to the second part of the PyPy project, the Python in-
terpreter written in RPython. It is the most notable of the RPython VMs,
and it is a complete Python version 2.7 compatible interpreter, and real al-
ternative to the reference Python interpreter CPython [3]. One main goal of
PyPy was to provide a faster Python interpreter [5, 14].

The PyPy interpreter consist of three parts: bytecode interpreter, built-
in datatypes, and built-in libraries [5]. PyPy uses almost identical bytecodes
and data structures as the CPython interpreter. The largest difference is an
abstraction called object spaces. Object spaces encapsulates implementation
details of Python objects. One benefit of object spaces is that a single
data type may have multiple implementations, for example the Python long
type can be a word-sized integer when it is small enough. PyPy also gains

2extcore package: http://hackage.haskell.org/package/extcore

11

http://hackage.haskell.org/package/extcore

performance benefits by specializing Python dictionaries when they have
uniform keys [24].

The interpreter is implemented in RPython mostly, on top of the
RPython translation toolchain [24]. The architecture of the toolchain is
described in section 2.7 on page 6. The toolchain allows the interpreter to
run on top of JVM and CLR in addition to generate C code.

The complex abstractions used by the interpreter comes with a perfor-
mance cost. To remedy this cost, RPython contains a meta-tracing JIT
that adds a JIT to the interpreter [5, 24]. PyPy is the largest user of the
meta-tracing JIT, and so most of its improvements are driven by the goal
of making PyPy faster. The meta-tracing JIT is described in more detail in
section 2.8 on page 7.

PyPy has a comprehensive suite of macro benchmarks. Without the JIT,
PyPy performs up to four times slower than CPython. With the JIT, PyPy
is on average five times faster than CPython3 [24].

3.3 Pyrolog (Prolog)

Prolog is a general-purpose, high-level, declarative, logic programming lan-
guage that is based on a variant of first-order predicate calculus. Prolog
has a single data type terms, which can be atoms, numbers, variables and
compound terms (lists and strings) [4].

Bolz, Leuschel, and Schneider [8] have implemented a Prolog VM with
RPython called Pyrolog4. Their aim was to show that declarative languages
(such as Prolog) could benefit from a JIT compiler, and that RPython could
be used to implement other programming languages than just Python [8].

According to Bolz et al. the Pyrolog interpreter consist of “about 5000
lines of RPython code, of which 1000 lines are implementing built-ins and
1700 are tests” [8]. The goal was to create a simple high-level object ori-
ented Prolog implementation. Logic variables and non-variable terms are
represented by classes such as Var, Atom, Number, and Float. Prolog objects
are instances of subclasses of PrologObject base class [8].

The interpreter is based on continuations, either success or failure con-
tinuations. These encapsulates all the state and behavior of the interpreter.
Code which remains to be executed is contained in the success continuation,
while the failure continuation is used if backtracking is required. Interpreta-
tion calls the current success continuation until computations are finished,
or it fails and calls the current failure continuation. Interpretation consumes
and possibly replaces the current continuation [8].

The Pyrolog interpreter can be compiled with a tracing JIT, which re-
quires some hints to perform well. The following hints were added to Pyrolog

3PyPy version 1.8 versus CPython version 2.7.2, see: http://speed.pypy.org/
4Pyrolog: https://bitbucket.org/cfbolz/pyrolog/overview

12

http://speed.pypy.org/
https://bitbucket.org/cfbolz/pyrolog/overview

source code: [8]

• A hint to indicate the interpreter’s main loop.

• A hint to annotate which variables belong to the interpreter.

• A hint to indicate the code that closes a loop.

• A hint to mark classes that are immutable.

Prolog lacks an explicit loop construct, but for the JIT a loop is simply a
situation where the same rule is applied repeatedly [8].

Bolz et al. have evaluated the Pyrolog interpreter with micro bench-
marks as well as well-known slightly larger programs. With the JIT Pyrolog
was faster than all other implementations tested on all micro benchmarks
except one. Without JIT, Pyrolog is significantly slower than other Prolog
implementations. On the larger Prolog programs “the JIT gives a speedup
of up to ten times” [8] on all but one. Memory footprints of each Prolog in-
terpreter was also measured, and Pyrolog used about two to five times more
memory on most benchmarks.

Bolz et al. argues that Prolog can greatly benefit from JIT compilation
techniques, and concludes that the Pyrolog interpreter “is reasonably efficient
and can be very fast in cases where the generated JIT works well” [8].

3.4 HappyJIT (PHP)

PHP: Hypertext Preprocessor (PHP) is a general-purpose imperative, object-
oriented, procedural programming language. PHP has weak, dynamic types
and are used mainly for server-side web-development [18].

Homescu and Şuhan [18] have implemented a PHP VM with JIT called
HappyJIT, which reuses the PHP parser from Zend PHP engine5 and all
the existing compilation code from PyPy. HappyJIT therefor only need to
implement the interpreter loop and data structures for representing a PHP
program in memory. An extension to the Zend PHP engine, Advanced PHP
Cache (APC), dumps Zend bytecodes to disk that HappyJIT reads back
into memory. Zend bytecodes are then converted to a more efficient set of
bytecodes before being interpreted by HappyJIT [18].

HappyJIT represents each basic PHP type (except resource) with a wrap-
per class, for example W_float represents float. These classes encapsulates
values of constants and variables, and are organized in a hierarchy with
W_object as the base class. As strings in PHP are mutable and RPython
strings are not, HappyJIT implements strings as a list of characters. PHP
arrays are also more flexible than RPython lists, so W_array holds a pointer

5Zend PHP: http://www.zend.com/en/

13

http://www.zend.com/en/

to either a linear (list) array implementation or dictionary array implemen-
tation [18].

HappyJIT implements a standard bytecode based interpreter that load
bytecode from an array and handle them with a series of if statements.
The interpreter supports executing several programs serially, with a global
context containing immutable global data and built-in functions. A runtime
context, which are reset after each script, stores all variables in one linear
stack [18].

There are two versions of the interpreter, one without a JIT (Happy) and
one with (HappyJIT). Homescu and Şuhan have evaluated both against Zend
PHP engine and Roadsend PHP compiler with two set of benchmarks, PH-
Pbench6 and some PHP tests from Computer Language Benchmark Game7.
They found that most tests were faster with HappyJIT than Zend and Road-
send, and the non-JIT version was slower. Their implementation had per-
formance problems when it came to strings and recursive functions, but
long-running loops had significant improvements when JIT-compiled [18].

3.5 Spy (Smalltalk)

Smalltalk is an object-oriented programming language that support dynamic
typing and run-time type checking [35].

Bolz et al. [6] have implemented a Smalltalk-80 VM called Spy that is
a re-implementation of a VM named Squeak. The goal of Spy was to port
the Squeak platform to high-level runtimes such as JVM and CLR. These
runtimes are possible back-end targets for RPython — any VM implemented
with RPython could possibly be run on top of these two runtimes [6].

Squeak is written in Slang, a restricted subset of Smalltalk, that is de-
signed to be easily translated into C. This is similar to PyPy Python inter-
preter that is written in a restricted subset of Python. But while Slang maps
directly to C, RPython is much closer to the full Python language [6].

Spy consists of four main parts: bytecode interpreter, set of primitives,
image loader, and an object model. The interpreter contains primitive meth-
ods for low-level operations, instead of special bytecodes for arithmetic and
such. Spy’s object model is a hierarchy of subclasses of the abstract base
class W_Object, that represent a Smalltalk object. There are subclasses for
floats, integers, pointers, bytes, words, and more [6].

Representing Smalltalk classes in RPython was challenging for Spy, that
was solved by shadow objects. Any Smalltalk object can have an associated
shadow object that can hold arbitrary information about the actual object.
Shadow objects works as a general caching mechanism [6].

6The PHP benchmark: http://phpbench.com/
7The Computer Language Benchmark Game: http://shootout.alioth.debian.org/

14

http://phpbench.com/
http://shootout.alioth.debian.org/

Bolz et al. analyzed Spy performance on processed bytecodes per second
and message sends per second. Spy translated to C and Spy running on CLR
were compared with Squeak and other Smalltalk VMs. Squeak was ten times
faster than Spy translated to C, and 100 times faster than Spy on CLR [6].
Spy does not use RPython JIT generator, which might provide the speed
boost needed to compete with Squeak.

Two areas where Spy outperformed Squeak was size of the code base,
and development time of the implementation. Squeak is almost three times
as large, when measured in thousand lines of code (KLoC), and the Spy VM
was implemented in a single week [6].

3.6 PyGirl (Gameboy)

Bruni and Verwaest [12] have implemented an executable VM prototype for
a Nintendo Game Boy, that they named PyGirl. PyGirl is a port of an
existing VM, Mario, that was implemented in Java. Bruni and Verwaest
compared these two VMs to show how a high-level language can minimize
code and reduce complexity, without substantial loss of performance [12].

The Game Boy hardware system consist of six pieces: CPU, Sound,
Video, JoyPad, Ram, and ROM. These pieces communicate through shared
memory. PyGirl provides one class for each hardware piece, and platform-
specific parts are abstracted away with driver interfaces. The overall struc-
ture of PyGirl equals Mario, as it maps directly to the hardware [12].

In addition to Mario, PyGirl was compared against two other Game Boy
VMs: JavaBoy8 and AEPGB

9. Bruni and Verwaest found that by imple-
menting PyGirl with RPython they significantly reduced the code complex-
ity. For example, PyGirl implements CPU related classes in one KLoC, while
the other three VMs require between 2.7 and 4.2 KLoC [12].

On benchmarks PyGirl performed about 40% slower than Mario after
the JVM JIT had warmed up. PyGirl ran at linear speed, as it did not
include RPython JIT. Therefor Bruni and Verwaest concluded that high-level
prototypes, with help of meta-programming, can reduce code complexity
without substantial loss of performance [12].

3.7 Converge (Converge)

Converge is a dynamically typed object-oriented programming language for
exploring research on domain specific languages and compile-time meta-
programming. Converge has an expression evaluation system that can per-
form limited backtracking [5]. Tratt [34] designed the Converge programming

8JavaBoy: http://www.millstone.demon.co.uk/download/javaboy/
9AEPGB seems to have been discontinued.

15

http://www.millstone.demon.co.uk/download/javaboy/

language, which was first implemented twice in C and then reimplemented
with RPython.

The Converge RPython VM is split into three parts: bytecode inter-
preter, built-in datatypes, and built-in libraries. Converge also has a com-
piler, written in Converge, that translates programs into bytecodes. The
compiler can be invoked manually or transparently by the VM [5].

Tratt [34] mentions three areas of improvements from implementing his
VM in RPython instead of C: 1) The C VM consist of 13 KLoC while the
RPython VM is only about 5.5 KLoC, and the C VM is considerably more
complex; 2) Tratt estimated that the second C VM required 18 man months
to create, while the RPython VM took two to three man months; 3) The C
VM was extremely slow, while the RPython VM (without a JIT) was two
to three times faster, and with a JIT was over 20 times faster on the three
benchmarks tested. Tratt points out very little time was spent optimizing
the RPython VM and the speed-ups came almost free with RPython [34].

3.8 Other virtual machines

There are a few more partial or incomplete attempts at using RPython to
implement VMs worth mentioning.

Schneider [29] created a VM for the Io language with RPython. Io is a
small and dynamic object-oriented programming language with a prototype
based object model. Io support runtime reflection and
meta-programming [13].

Zalewski et al. have an incomplete implementation of JavaScript10.
JavaScript is an object-oriented, functional programming language based
on prototypes that support dynamic and weak types. It is widely used for
web programming [26].

Bömmels have created an incomplete implementation of Scheme11.
Scheme is a dynamically typed, functional programming language based
lambda calculus, that was one of the first to support first-class continua-
tions. Scheme is a dialect of the Lisp programming language, and both use
a fully parenthesized prefix notation (s-expressions) for syntax [1].

3.9 Summary

The VMs implemented with RPython are considered high-level language
VMs that only exist virtually, except for PyGirl which is a whole-system
VM that emulates actual hardware [12].

PyPy and Converge VMs are considered complete implementations of
their respective programming languages [24, 34]. PyGirl VM is considered

10RPython JavaScript implementation: http://bitbucket.org/pypy/lang-js/
11RPython Scheme implementation: http://bitbucket.org/pypy/lang-scheme/

16

http://bitbucket.org/pypy/lang-js/
http://bitbucket.org/pypy/lang-scheme/

almost complete as its sound support is incomplete [12]. Spy VM lack sup-
port for a handful of primitives, making it almost complete. Pyrolog VM
is also considered almost complete. The remaining VMs are prototypes or
partial implementations of their respective languages [6, 18].

Table 3.1 provides an overview of the different VMs implemented with
RPython so far12, including when development started and stopped13.

The different VMs set out with different goals in mind, and therefor have
achieved different results. Overall, we can summarize these different results
as three advantages that one can expect to gain when using RPython.

Better performance with just-in-time compiler: PyPy, Pyrolog,
HappyJIT, and Converge VMs all gained performance improvements on some
or all benchmarks against alternative implementations [5, 8, 18, 24, 34].

Reduced code base and complexity from high-level language: Spy,
PyGirl, and Converge VMs are re-implementations with smaller code bases
than their original implementations [6, 12, 34].

Less developer-time used during implementation: Spy was created
in a week, and Converge was implemented in only 2-3 man months [5, 6, 34].

3.9.1 Programming language paradigms

Table 3.2 list major programming language paradigms implemented with
RPython. While a few implement the functional paradigm, Haskell is purely
functional, which means that functions cannot mutate data or have any side
effects. Haskell also support the lazy (non-strict) paradigm, which has yet
to be implemented with RPython14 [22].

12KLoC measures were taken on default branch of respective repositories May 12 2012,
with Mercurial extension hg-cloc (https://bitbucket.org/jinhui/hg-cloc). Only files
identified as Python code were included. KLoC for PyPy was not included as it contains
code for both the interpreter and RPython.

13Stopped is last significant update unless it has been updated recently.
14Io does support lazy evaluation of function parameters, but the RPython Io VM is

incomplete [13, 29].

17

https://bitbucket.org/jinhui/hg-cloc

Table 3.1: Overview over virtual machines implemented with RPython

Development

VM Name Language JIT Started Stopped KLoC Status

Converge Converge Yes 2011 5.8 Complete
HappyJIT PHP Yes 2011 4.1 Partial
io Io No 2009 2011 3.6 Partial
js JavaScript Yes 2006 2011 5.5 Partial
PyGirl Game Boy No 2008 2009 10.7 Almost complete
PyHaskell Haskell No 2011 1.9 Partial
PyPy Python Yes 2004 Complete
Pyrolog Prolog Yes 2006 2012 16.7 Almost complete
Spy Smalltalk No 2007 2011 5.3 Almost complete
Scheme Scheme No 2006 2012 4.0 Partial

Table 3.2: Overview over paradigms implemented with RPython

Paradigm Languages

Declarative Prolog
Functional JavaScript, Python, and Scheme
Imperative Converge, JavaScript, PHP, Python, and Scheme
Logic Prolog
Meta Converge, Io, Python, and Scheme
Object-oriented Converge, Io, JavaScript, PHP, Python, and Smalltalk
Procedural PHP, Python, and Scheme
Prototype Io and JavaScript
Reflective Io, PHP, Python, Scheme, and Smalltalk

18

CHAPTER 4

METHOD

This chapter describes my technical contributions to the PyHaskell VM.

4.1 Z-decoding

The external representation of Core made with GHC uses Z-encoded1

names [33]. Some of these names, such as module identifiers, were decoded
by PyHaskell during parsing. Other names were kept Z-encoded, which made
the internal representation of parsed code very hard to read. For example
(–>) was named ZLzmzgZR in PyHaskell when Z-encoded.

My first change to the project was moving the Z-decoding from the jsc-
parser module into the core2js program, and make sure all parts of the ex-
ternal representation was Z-decoded before converted to JSON. The extcore
package provided the function for Z-decoding strings.

Package, module, and identifier names were joined together into one
string in core2js, and then split back up again when parsed by the jscparser
module. I was free to remove this behavior after I had moved Z-decoding
into core2js. I kept package and module as one single name as we do not
need to deal with packages, everything can be modules. Identifiers are now
an array of two strings: the module name and the reference name.

4.2 Repository structure and refactoring

My second change to PyHaskell was to take advantage of some of the lessons
from other RPython implementations — their repository structure and mod-
ule layout. The main inspiration came from repositories of Pyrolog and
HappyJIT.

1Skrede [31] provides a more detailed description of GHC’s Z-encoding

19

We adopted a flatter structure for Haskell modules implemented in
Python and placed them in their own sub-package of PyHaskell named
builtin. Modules for implementing the interpreter were moved to a sub-
package called interpreter.

Other modules such as main, makegraph, and makehcj were moved into
the root of the PyHaskell package. Implementation of primitive types such
as Char, Int and Float were moved out of built-in modules and into a new
module named primtype.

After these changes the PyHaskell VM consist of four main parts: the in-
terpreter (jscparser, haskell); built-in modules (show, cstring, io, and more);
primitives and primitive types (prim and primtype); and GHC libraries con-
verted to the external Core representation (contained in the ghc_modules
folder). Except for the last part, PyHaskell is divided into the same compo-
nents as PyPy and Converge VMs [5].

4.3 Mapping Core to PyHaskell

The next step was to resolve which features of Core to ignore, and how
to extend PyHaskell to support the remaining features of Haskell. We can
ignore the complexity of System F ↑

C , because we target GHC version 7.4.1
where the external Core representation is System FC .

4.3.1 Kinds

System FC has a much simpler kind system than System F ↑
C , with only a

few types of kinds: lifted kinds ‘*’; type constructors (that are nested with
‘–>’); unlifted kinds ‘#’ (unboxed/primitive values); equality kind ‘:=:’; and
open kind ‘?’ (that represent unspecified kind) [32, 33].

As unlifted kinds simply are unboxed types that are explicitly named
with a magic # symbol (for example Int#) in GHC.Prim we choose to ignore
them and implement these unboxed types boxed. GHC provides (and uses)
unboxed types for improved performance [20]. We believe we can achieve
similar performance by using the JIT to remove much of the overhead in-
curred by boxed types.

Furthermore, as we rely on GHC for type checking, also in the Core
language, we are now free to completely ignore kinds. This allows our VM
to be simpler than Core.

4.3.2 Types

Core contain type information in many places, for example function signa-
tures and type variables [33]. As we rely on GHC for type checking, we can
simply ignore any types in these instances.

20

For explicitly typed literals, which can only be primitive types otherwise
they would be an expression of a data constructor, Skrede [31] have included
the type in the JSON representation. During parsing we use this type when
creating literals, and all other type information and usage is removed.

4.3.3 Constructors

Haskell has three types of user-defined datatypes: algebraic datatypes (data
constructors); renamed (newtype declaration); and type synonyms (type con-
structors). Type constructors are used to create new types from primitive
(or other) types, while data constructors group values together. Data con-
structors are first class values in Haskell, they may be passed to functions or
be elements of other data types [15].

Data constructors were wrongly implemented as Symbol-instances, as
RPython prevented Symbols to be mixed with instances of HaskellObject-
subclasses. They should be what are called constructors in Launchbury’s
semantics, a collection of values with a named symbol, but because they can
also be used as functions during parsing we implemented them as functions
that return a constructor.

Type constructors were implemented as constructors in PyHaskell, but
for reasons mentioned in subsection 4.3.2 we did not need to support them,
and I removed them. Newtype, which is a simpler but strict (not lazy)
version of type constructors [15], should not be supported either.

4.3.4 Type aliases

Some data constructors represent unboxed versions of primitive Haskell types,
such as Char#, Int#, C# and I#. As mentioned earlier, GHC use these ex-
tensively for performance reasons [20], and we can represent them with their
boxed primitive version.

These type aliases were implemented as constructors with a single value,
which are problematic as any function that expect a primitive type must
have special handing of aliases of the primitive type. For example putStrLn
expects a list of Chars, and do not know what to do with a list of Char#s
or C#s. Listing 5 on page 44 shows the source code of our implementation
of putStrLn.

Therefor, to simplify the implementation of built-in modules and prim-
itive operations, we check during parsing if a data constructor is a type
alias for a primitive type and then use the primitive type directly. This
also removes a level of abstraction that could lead to performance problems
compared to unboxed values in GHC [20]. This simplification only affects
PyHaskell during parsing, not evaluation.

21

4.4 Converting PyHaskell from Python to RPython

The original lambda calculus VM implemented by Bolz et al. [11] was im-
plemented mostly in RPython, but the functionality added by Skrede [31]
were written in standard Python. To be able to translate PyHaskell to C,
and to use the RPython meta-tracing JIT, I translated the Python code to
RPython.

As there is a limited amount of documentation of RPython, how to use
it and what is valid RPython, converting Python to RPython is complex
and time-consuming work. Specifically, one must often translate to validate
ones work, and to discover if an operation is RPython or not. The error
messages provided when translation fails are often very cryptic or sometimes
without any useful information. In the latter case, one must use the Python
debugger to try and discover what caused the problem. As we have shown in
section 5.2 on page 27, translating even a small program such as PyHaskell
takes substantial time.

A major restriction of RPython, that was not explicitly mentioned by any
RPython papers, quickly became clear: Only a subset of a) built-in functions,
b) built-in data-structures, and c) modules from the Python standard library
are available as RPython. RPython has its own standard library, pypy.rlib
sub-package, where this subset is implemented in RPython code.

Source code files were parsed by using the open function, which is not
supported with RPython. It was replaced with open_file_as_stream from
pypy.rlib.streamio module.

4.4.1 main.py

In the main module I had to remove sys.exit calls, change
subprocess.call into os.system, change os.remove into os.unlink, and
use os.stat instead of os.path.getmtime and os.path.isfile.

4.4.2 module.py

The module module which handles Haskell modules required few changes,
but some new functionality. The CoreMod class gained methods for adding
data constructors, which should be used by built-in Haskell modules im-
plemented in RPython. These data constructors are described further in
subsection 4.3.3 on page 21, and include aliases for primitive types that are
explained in subsection 4.3.4.

One complex addition to this module was decorators for adding func-
tions implemented in RPython to dictionaries in CoreMod-instances. These
decorators replace the expose_primitive decorator from the haskell mod-
ule. They should create instances of PrimFunction, type-check arguments
given to the function, and finally register the PrimFunction-instance in the

22

correct CoreMod dictionary. As PrimFunction keeps arguments to the orig-
inal function as a list, the decorators should also automatically unpack the
arguments.

These decorators would be straight-forward to implement in Python, but
the restrictions of RPython made it more complex. Decorators are executed
when Python modules are imported (at what we refer to as import-time), and
since the RPython toolchain runs on top of a complete Python interpreter,
RPython support the full Python language at import-time [24]. Therefor
the decorators are partially implemented in full Python, with the inner-most
function implemented in RPython. RPython prevents us from unpacking a
list with the ‘*’ Python operator, so I used eval at import-time to create
several anonymous functions that will convert known sized lists into tuples.

The source code of these decorators can be seen in Listing 1 on page 42,
and the implementation of the cons operator that use one of these decorators
can be seen in Listing 2 on page 43. The functions that run at import-time
is marked with NOT_RPYTHON docstrings. In line seven of the latter listing,
@expose_data_constr decorator is given three arguments: the module it
belongs to; the name of the function; and a list of the types for the func-
tion arguments. The last argument is used for type-checking and unpacking
arguments.

These decorators are a form of meta-programming that is not supported
by low-level languages that are used for implementing VMs, where we would
need to manually check the types of each argument and more. Listing 3 on
page 43 shows an alternative implementation of the cons operator without
these meta-programming techniques.

4.4.3 jscparser.py

The jscparser module required major changes — almost a complete rewrite.
The main problem was traversing of nodes in the abstract syntax tree (AST),
which was implemented with the use of the generic visit and
visit_object methods. The former was used to visit sub-nodes in the tree
and called the latter, which detected what type of node we visited with a long
list of if-elif statements. First, these methods should not have been used
directly, the dispatch method from RPython’s AST traverser was designed
for visiting the correct node. Secondly, RPython require these methods to
have the same signature — to accept the same arguments and return the
same type of results.

My solution was to move handling of specific types of nodes into their
own methods, where I could type-check returned values with assert state-
ments. Dealing with one node type at the time, I could gradually convert
the whole module into RPython while ensuring that all tests still passed.
This transformed visit_object from a single method of over 300 lines of
code to several methods of 50 lines or less which each deal with a specific

23

node type, for example visit_atomic_expr handles the four types of atomic
expressions in Core.

An added benefit of this work was that instead of having to check the
type of each node, even when we knew from a parent node what type a
child must be, we could directly call the right method and avoid unnecessary
checks.

4.4.4 haskell.py

The haskell module, which implements Launchbury’s semantic, was mostly
implemented in RPython already by Bolz et al. [11].

The constr function provided a convenient way to create constructors,
but as it was not RPython I removed it and changed any use of it to
make_constructor.

ForwardReference provided a way to create a reference to something
that did not exist yet, and was necessary for recursive functions to refer to
itself in its rules. Instead of converting it to RPython I removed it, and
allowed Function-instances to be created before the rules were ready. Then
after the rules have been created, I simply update the instance.

4.4.5 targethaskellstandalone.py

The translate module in pypy.translator.goal is the entry point for trans-
lating VMs with RPython. This module require a target, which I named
targethaskellstandalone. Our target was inspired by similar files in several
other VMs implemented with RPython.

The following command, given the translate module and our target, will
produce a Haskell VM written in C code:

pypy translate.py targethaskellstandalone.py

The translate module can be given arguments for specifying the level of
optimizations that should be used during translation. The --opt=jit argu-
ment will produce a VM that contain RPython’s meta-tracing JIT, which is
described in section 2.8 on page 7.

4.4.6 Built-in modules

The built-in modules required two types of changes. First, to use the new
decorators on functions implemented in RPython instead of Haskell, which
is explained in subsection 4.4.2 on page 22. Second, as I introduced special
handling of primitive type aliases such as Char# (see subsection 4.3.4), almost
all functions in built-in modules could be simplified.

For example, the implementation of unpackCString uses the expose_var
decorator, and putStrLn can handle a list of Chars or any primitive alias of

24

Table 4.1: Overview over Haskell benchmarks used

Benchmark GHC compile time Recursive Source code listing

Fibonacci 1.06 s Yes Listing 10
Multiply - s Yes Listing 11
Iterative case 1.69 s No Listing 12

Chars such as C#s. The source code of these two implementations are listed
in section A.2 in the appendix on page 41.

The implementation of the list concatenation operator ‘++’ had to be
completely rewritten as it contained nested functions, was not lazy, and was
implemented recursively. RPython does not support nested functions and
Python is not tail-recursive. Listing 6 on page 45 list the source code of my
implementation, which is iteratively.

4.5 Benchmarking

We need to benchmark PyHaskell before we can answer the research ques-
tions Haskell-Python asks. GHC uses the nofib benchmark suite [23], but as
PyHaskell only support a subset of Haskell we will not be able to run nofib
on our VM. Instead we have implement a few micro-benchmarks that only
require features we support.

To see how RPython and its meta-tracing JIT affect the performance of
our VM we will run the benchmarks on three different version of PyHaskell:
first, PyHaskell not translated to C (running on top of CPython); second,
PyHaskell translated to C without the JIT; third, PyHaskell translated to C
including the RPython JIT.

We will also run the benchmarks on GHC compiled and GHC’s interac-
tive environment (GHCi). As PyHaskell is a back-end for GHC, the results
cannot be compared directly. When benchmarking with PyHaskell we will
use Haskell code converted to external JSON representation, to make it closer
to the compiled code of GHC.

The benchmarks must also run long enough to provide statistically sig-
nificant results when compiled with GHC, and run long enough allow the
RPython meta-tracing JIT to warm up. On the other hand they must be
able to finish with PyHaskell running on top of CPython. These restrictions
and limited Haskell support PyHaskell provides made it quite complicated
to design suitable benchmarks.

Table 4.1 list the benchmarks we have use, including time to compile
them with GHC. Whether they are recursive or not is noted as currently
PyHaskell will only JIT recursive functions. The results of running these
benchmarks are listed in Table 5.3 on page 29.

The naive implementation of the Fibonacci sequence is often regarded as

25

Haskell’s “Hello, world!”. It is also very suitable for our benchmark needs, so
it was the first benchmark we tried.

The multiply benchmark is very similar to the Fibonacci benchmark,
the main difference is that multiply uses integer multiplication instead of
addition.

To see how PyHaskell JIT behaves on code the JIT cannot compile, we
created the iterative case benchmark that iteratively calls a function 200
times. The function uses case expression to match data constructors.

26

CHAPTER 5

RESULTS

This chapter present results from our work on the Haskell-Python project.

5.1 Haskell features supported

We have create a set of tests to get an overview over Haskell features sup-
ported by PyHaskell. Results of running these tests can be seen in Table 5.1.
This is not an exhaustive list of Haskell features. These tests were run on
PyHaskell (running on top of CPython 2.7.3) from the Haskell-Python repos-
itory (branch “even”, revision 89f8127667bb) [11].

As the goal is to be a back-end for GHC and reuse GHC’s Haskell li-
braries, we only aim to implement a small subset of Haskell’s features our-
selves. Problems on the GHC end of the pipeline prevents us from reusing
most GHC libraries, and we would rather fix the GHC problems than imple-
ment temporary fixes to support the missing features. The pipeline problems
are explained in section 3.1 on page 9, while possible solutions are discussed
in section 6.4 on page 32.

5.2 RPython translation timings

Table 5.2 show time used to translate PyHaskell into C. It is included to
show that we are able to translate PyHaskell, which means PyHaskell is fully
implemented with RPython. PyHaskell was translated on the hardware and
software described in section 5.3 on page 29.

The different steps in the RPython translation toolchain are described in
section 2.7 on page 6. The JIT step is only run when JIT optimizations are
turned on (as described in subsection 4.4.5 on page 24), and adds RPython’s
meta-tracing JIT to the generated VM.

27

Table 5.1: Overview over Haskell features PyHaskell support

Feature tested Success Comment

Hello world! Yes
Case expression Yes
Let expression Yes
Data constructor Yes
Partial function application Yes
Recursive function Yes
List concatenation ‘++’ Yes Source code in Listing 7
Cons operator ‘:’ Yes Source code in Listing 8
Function composition operator ‘.’ Yes
Function application operator ‘$’ Yes
Indexing operator ‘ !!’ No Missing “GHC.List” support
Recursive let expression No Missing “GHC.List” support
Guards No Problem with extcore package
Pattern matching No Source code in Listing 9
List comprehension No

Table 5.2: Time used to translate PyHaskell to C

Translation time in seconds

Translation step PyHaskell no-JIT PyHaskell JIT

Annotate 59.0 57.8
RType 98.6 97.5
JIT 565.8
Back-end optimizations 62.9 215.1
Stack check insertion 2.0 15.6
C database 147.5 247.4
Generate C source code 67.7 191.9
Compile C source code 24.9 198.7

Total 462.7 1589.9

28

Table 5.3: Benchmark results

Benchmark time in seconds

Virtual machine or compiler Fibonacci Multiply Iterative case

PyHaskell (on CPython) 5733.02 s 2095.90 s 171.40 s
PyHaskell no-JIT 27.24 s 9.71 s 1.48 s
PyHaskell JIT 2.10 s 2.17 s 1.38 s
GHC 0.56 s 0.24 s 0.005 s
GHCi 9.64 s 3.63 s 0.06 s

Table 5.4: Evaluation of benchmark results

VMs compared Order of speed-up on benchmark

Faster VM Slower VM Fibonacci Multiply Iterative case

PyHaskell no-JIT PyHaskell (on CPython) 210 216 116
PyHaskell JIT PyHaskell (on CPython) 2730 966 124
PyHaskell JIT PyHaskell no-JIT 12.9 4.47 1.07
GHC PyHaskell no-JIT 48.6 40.5 296
GHCi PyHaskell no-JIT 2.83 2.67 24.7
GHC PyHaskell JIT 3.75 9.04 276
PyHaskell JIT GHCi 4.59 1.67 -

5.3 Benchmarks

We ran each version of the benchmarks three times, the average result of
each version is listed in Table 5.3. We have calculated the order of speed
improvements of the faster VMs versus the slower ones, which can be seen
in Table 5.4.

PyHaskell1 was translated with the RPython toolchain included in the
latest stable PyPy release, PyPy version 1.92. “PyHaskell (on CPython)” is
PyHaskell running on top of CPython version 2.7.3. GHC and GHCi uses
“The Glorious Glasgow Haskell Compilation System, version 7.4.1”.

The benchmarks were run on an Intel Atom CPU D525 processor with
1.80 GHz and 512 KB of cache on a machine with 2 GB RAM running
Ubuntu Desktop 12.04 32 bit, with Linux kernel 3.2.0.

1PyHaskell from Haskell-Python [11], branch “even”, revision 89f8127667bb.
2PyPy version 1.9 from: https://bitbucket.org/pypy/pypy

29

https://bitbucket.org/pypy/pypy

CHAPTER 6

DISCUSSION

This chapter discuss the results of our work and possible solutions to the
problems of the current PyHaskell implementation.

6.1 Benchmark results

When we look at the results of the Fibonacci benchmark, the power of the
RPython translation toolchain becomes clear. PyHaskell running on top of
CPython is extremely slow compared to all the other VMs: it is over 200
times slower than PyHaskell translated to C without JIT; and almost 3000
times slower than PyHaskell JIT.

The power of RPython’s meta-tracing JIT is also conclusive as PyHaskell
JIT is over 12 times faster than PyHaskell no-JIT on the Fibonacci bench-
mark. On the iterative case benchmark PyHaskell JIT perform similar to Py-
Haskell no-JIT, which is expected as our JIT only trace recursive functions.
PyHaskell JIT is slightly faster as it is translated with a higher optimization
level than PyHaskell no-JIT.

I suspect the slow performance on the iterative case benchmark compared
to the Fibonacci benchmark (regardless of JIT or not) is caused by our
parser. The JSON encoded external representation of Core is significantly
more verbose than Tolmach et al. [33] Core representation. Additionally, we
have not yet added any RPython hints to the jscparser module that traverse
the AST.

The most interesting comparison is PyHaskell against GHC. On the Fi-
bonacci benchmark PyHaskell JIT is only 3.75 times slower than GHC. And
surprisingly PyHaskell JIT is over four times faster than GHCi, which inter-
pret instead of compile Haskell code.

Beside the initial work on PyHaskell by Bolz et al. [11], no effort has been
taken to improve the performance of our VM. It is therefor very promising

30

to see how close we are to GHC performance on specific benchmarks that
the JIT handles very well.

6.2 PyHaskell formal definition

Tolmach et al. [33] present a formal definition of the external representation
of GHC’s Core. Launchbury [21] present a formal definition of the opera-
tional semantic that PyHaskell’s lambda calculus VM implement. Skrede
[31] present a formal definition of JSCore, which is a JSON representation
of the Core representation defined by Tolmach et al. I will not attempt to
define PyHaskell as it is still under development and with frequent changes.

6.3 Lessons from related work

The literature review on VMs implemented with RPython allows us to re-
use the experience of other in this field of research. Most of the VMs
are bytecode-based, but the Prolog VM stands out from the rest with it
continuations-based implementation. Therefor Pyrolog is probably the VM
closest to PyHaskell, but there are some important differences between Pro-
log and Haskell. While Prolog is a first-order predicate calculus, Haskell
is based on lambda calculus. Where Prolog has a single data type terms,
Haskell has several data types such as complex numbers, functions, arrays,
and more. Prolog also lack several features Haskell has such as higher order
and anonymous functions and lazy evaluation [4, 5, 8, 16, 28].

The first lesson we have used is the structure of the repository, which is
described in section 4.2 on page 19.

When convert PyHaskell from Python to RPython the papers describing
the restrictions of RPython was very important, as there are very limited
documentation on RPython the language and RPython the toolchain. These
restrictions are listed in section 2.6 on page 6. Also the Pyrolog VM was
useful as the pypy.rlib.parsing package was created for it, which we use
in our jscparser module. I had to look at the Pyrolog source code to fully
understand how to use the RPythonVisitor class. The process of converting
PyHaskell into RPython is described in section 4.4 on page 22.

We believe the greatest value of the literature review will come when we
try to optimize PyHaskell to achieve better performance. Bolz and Tratt [5]
explain the optimization techniques used by PyPy and Converge, and con-
crete lessons learned from these techniques. Homescu and Şuhan [18] explain
steps they had to take to make their VM performant for the PHP language.
The need for performance improvements are explained in section 6.5.

Finally we think that Pyrolog and HappyJIT VMs [8, 18] might pro-
vide useful lessons on implementation of built-in modules, which we need

31

as we need to extend PyHaskell’s built-in modules to support more Haskell
features.

6.4 Pipeline problems

Two possible solutions for the shortcomings of the pipeline is to either modify
GHC and the extcore package to fix the known bugs, or to rewrite the pipeline
to use GHC API directly instead of external Core representation. These
solutions are complex tasks without guarantees of success.

Modifying GHC is a more attractive solution, as it will only require
minimal additional changes to our core2js program. But GHC is a huge
project with a large and complex code base, so making substantial changes
to GHC inner workings is a daunting task.

Using the GHC API seems on the surface as a simpler and more straight-
forward task, but handling GHC’s Haskell library will be challenging. It
might require us to load library modules on demand, instead of compiling
them to an intermediate representation as we do today. This could affect
our performance making us unable to compete with GHC.

Skrede [31] has created a work-around by implementing some of the im-
portant Haskell libraries in Python. This work-around is not a real solu-
tion as we cannot re-implemented the whole GHC Haskell module library in
RPython, it would be too time-consuming.

Another problem with the pipeline is interfacing with C code. Both GHC
and RPython have foreign function interfaces (FFIs) for interfacing with C
code. GHC’s FFI uses information that is handled with special macros in
GHC’s source code. To be able to translate GHC’s FFI to RPython’s we
might need to preprocess GHC’s source code to find the necessary infor-
mation. Another option is to manually implement the functionality that
interface with C in RPython using RPython’s FFI.

6.5 Further work for answering questions

To answer the research questions the Haskell-Python project holds, the Py-
Haskell VM should fulfill two goals: one, be able to run the GHC test suite;
two, be able to run the nofib Haskell benchmark suite that GHC uses [23].
The following work are therefor required to complete the Haskell-Python
project:

• Either fix GHC external core support and the extcore package; Or
rewrite core2js/PyHaskell to use the GHC API.

• Implement support for remaining Haskell language features and prim-
itive GHC operations.

32

• Implement support for other basic Haskell types.

Performance is also a key question in both research questions — to be
able to see if RPython is suitable for lazy and pure languages, and to see if
Haskell can benefit from JIT techniques. To achieve speed closer to GHC
we need to better use the advantages of the RPython meta-tracing JIT.

As mentioned in section 2.8 on page 7 the JIT require some subtle hints
in the source code to better reason on optimizations techniques it can use.
Bolz et al. [11] have added hints to the lambda-calculus evaluation part
of PyHaskell (the haskell module), but our parser does not contain any
hints. Bolz and Tratt [5] have described general lessons for improving the
performance of VMs implemented with RPython.

The PyPy project have developed tools to better understand how the
RPython JIT affect VMs, for example the jitviewer1. We need to use such
tools to inspect the code compiled by the JIT to see how it can be further
optimized [24].

1jitviewer: https://bitbucket.org/pypy/jitviewer

33

https://bitbucket.org/pypy/jitviewer

CHAPTER 7

CONCLUSION

The Haskell-Python project has two goals: show that RPython is a suit-
able platform for implementing purely functional and lazy languages; and
investigate if Haskell can benefit from JIT techniques. PyHaskell, a VM
for the Haskell language implemented with RPython was created to answer
these questions. PyHaskell is only a partial implementation of Haskell, so
this paper set out to improve PyHaskell so that it could answer these two
questions.

Problems with the GHC front-end of PyHaskell prevent us from answer-
ing definitely at this time, but my contributions to the project allow us to
preliminary suggest that the answer is affirmative on both questions.

I have achieved the goal of converting the VM to RPython, which allowed
us to translate PyHaskell to C and to take advantage of the RPython meta-
tracing JIT. With the help of the JIT, PyHaskell is only 3.75 times slower
than GHC on one benchmark, the naive Fibonacci sequence. As we have
achieved such promising results without any attempt at optimizing the VM
for the meta-tracing JIT, we think that with further work PyHaskell will be
faster than GHC in some situations.

The other major contribution of this paper is a literature review of
RPython VMs, which was crucial for completing the technical contributions
of this paper. Furthermore, the literature review gives us a solid basis for
further work on optimizing PyHaskell, which is necessary to answer our re-
search questions definitely and to outperform GHC.

Planned future work is twofold: first, to fix the mentioned problems with
the GHC front-end; second, to improve the performance of PyHaskell. We
also plan to extend PyHaskell’s support of the Haskell language, so it can
run the nofib benchmark suite and the GHC test suite.

34

Acknowledgments I wish to thank Carl Friedrich Bolz for his previous
work on the Haskell-Python project, his help with RPython problems, and
finally his valuable feedback on the content of this paper. I also wish to thank
my advisor Magnus Lie Hetland and my brother Gøran Wiik Thomassen for
their feedback on this paper. Finally I wish to thank the PyPy community1,
which helped me whenever I was unable to decode error messages given by
the RPython translation toolchain.

1PyPy Internet Relay Chat, #pypy on irc.freenode.net.

35

REFERENCES

[1] Abelson, Dybvig, Haynes, Rozas, Adams, Friedman, Kohlbecker, Steele,
Bartley, Halstead, Oxley, Sussman, Brooks, Hanson, Pitman, and
Wand. Revised Report on the Algorithmic Language Scheme. SIG-
PLAN Lisp Pointers, IV(3):1–55, July 1991. ISSN 1045-3563.

[2] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Mat-
sakis. RPython: a Step Towards Reconciling Dynamically and Statically
Typed OO Languages. In Proceedings of the 2007 symposium on Dy-
namic languages, DLS ’07, pages 53–64, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-868-8.

[3] Håkan Ardö, Carl Friedrich Bolz, and Maciej Fijałkowski. Loop-
Aware Optimizations in PyPy’s Tracing JIT. Unpublished
draft, https://bitbucket.org/pypy/extradoc/src/a88377852aa3/
talk/iwtc11/licm.pdf [Online; accessed 26-05-2012], December 2011.

[4] John M. Barton. The logic programming language prolog (tutorial pre-
sentation). J. Comput. Small Coll., 16:67–68, March 2001. ISSN 1937-
4771.

[5] Carl Friedrich Bolz and Laurence Tratt. The Impact of Meta-Tracing
on VM Design and Implementation. Submitted to Science of Computer
Programming, March 2012.

[6] Carl Friedrich Bolz, Adrian Kuhn, Adrian Lienhard, Nicholas Matsakis,
Oscar Nierstrasz, Lukas Renggli, Armin Rigo, and Toon Verwaest. Back
to the Future in One Week – Implementing a Smalltalk VM in PyPy.
In Self-Sustaining Systems, volume 5146 of Lecture Notes in Computer
Science, pages 123–139. Springer Berlin / Heidelberg, 2008. ISBN 978-
3-540-89274-8.

36

https://bitbucket.org/pypy/extradoc/src/a88377852aa3/talk/iwtc11/licm.pdf
https://bitbucket.org/pypy/extradoc/src/a88377852aa3/talk/iwtc11/licm.pdf

[7] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, and Armin Rigo.
Tracing the meta-level: PyPy’s tracing JIT compiler. In Proceedings of
the 4th workshop on the Implementation, Compilation, Optimization of
Object-Oriented Languages and Programming Systems, ICOOOLPS ’09,
pages 18–25, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-541-
3.

[8] Carl Friedrich Bolz, Michael Leuschel, and David Schneider. Towards
a Jitting VM for Prolog Execution. In Proceedings of the 12th interna-
tional ACM SIGPLAN symposium on Principles and practice of declara-
tive programming, PPDP ’10, pages 99–108, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0132-9.

[9] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, Michael
Leuschel, Samuele Pedroni, and Armin Rigo. Runtime feedback in a
meta-tracing JIT for efficient dynamic languages. In Proceedings of the
6th Workshop on Implementation, Compilation, Optimization of Object-
Oriented Languages, Programs and Systems, ICOOOLPS ’11, pages 9:1–
9:8, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0894-6.

[10] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijałkowski, Michael
Leuschel, Samuele Pedroni, and Armin Rigo. Allocation removal by
partial evaluation in a tracing JIT. In Proceedings of the 20th ACM
SIGPLAN workshop on Partial evaluation and program manipulation,
PEPM ’11, pages 43–52, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0485-6.

[11] Carl Friedrich Bolz, Sebastian Fischer, and Jan Christiansen. Haskell-
Python bitbucket.org project; public source repository. http://
bitbucket.org/cfbolz/haskell-python/, 2011. [Online; accessed 27-
04-2012].

[12] Camillo Bruni and Toon Verwaest. PyGirl: Generating Whole-System
VMs from High-Level Prototypes Using PyPy. In Objects, Components,
Models and Patterns, volume 33 of Lecture Notes in Business Informa-
tion Processing, pages 328–347. Springer Berlin Heidelberg, 2009. ISBN
978-3-642-02571-6.

[13] Steve Dekorte. Io: a Small Programming Language. In Companion
to the 20th annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, OOPSLA ’05, pages
166–167, New York, NY, USA, 2005. ACM. ISBN 1-59593-193-7.

[14] Beatrice Düring. Trouble in Paradise: the Open Source project PyPy,
EU-funding and Agile practices. In Proceedings of the conference on
AGILE 2006, AGILE ’06, pages 221–231, Washington, DC, USA, July
2006. IEEE Computer Society. ISBN 0-7695-2562-8.

37

http://bitbucket.org/cfbolz/haskell-python/
http://bitbucket.org/cfbolz/haskell-python/

[15] Simon Marlow et al. Haskell 2010 Language Report. http://www.
haskell.org/onlinereport/haskell2010/, April 2010. [Online; ac-
cessed 06-05-2012].

[16] Simon Peyton Jones et al. Haskell 98 Language and Libraries: The Re-
vised Report. Journal of functional programming. Cambridge University
Press, 2003. ISBN 9780521826143. [Online; accessed 07-03-2012]
http://www.haskell.org/onlinereport/.

[17] Jose P. E. Fernandez. Programming Python, Part I. Linux Journal,
2007:2–, June 2007. ISSN 1075-3583.

[18] Andrei Homescu and Alex Şuhan. HappyJIT: a tracing JIT compiler
for PHP. In Proceedings of the 7th symposium on Dynamic languages,
DLS ’11, pages 25–36, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0939-4.

[19] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A
history of Haskell: being lazy with class. In Proceedings of the third ACM
SIGPLAN conference on History of programming languages, HOPL III,
pages 12–1–12–55, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
766-7.

[20] Simon Peyton Jones and John Launchbury. Unboxed values as first class
citizens in a non-strict functional language. In Proceedings of the 5th
ACM conference on Functional programming languages and computer
architecture, pages 636–666, New York, NY, USA, 1991. Springer-Verlag
New York, Inc. ISBN 0-387-54396-1.

[21] John Launchbury. A natural semantics for lazy evaluation. In Proceed-
ings of the 20th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’93, pages 144–154, New York, NY,
USA, 1993. ACM. ISBN 0-89791-560-7.

[22] Simon Marlow and Simon Peyton Jones. The Glasgow Haskell Compiler.
In The Architecture of Open Source Applications, volume II, chapter 5,
pages 67–88. Independent, May 2012. ISBN 9781105571817.

[23] Will Partain. The nofib Benchmark Suite of Haskell Programs. In
Proceedings of the 1992 Glasgow Workshop on Functional Programming,
pages 195–202, London, UK, UK, 1993. Springer-Verlag. ISBN 3-540-
19820-2.

[24] Benjamin Peterson. PyPy. In The Architecture of Open Source Appli-
cations, volume II, chapter 19, pages 279–290. Independent, May 2012.
ISBN 9781105571817.

38

http://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/onlinereport/

[25] Simon Peyton Jones and Jon Salkild. The spineless tagless G-machine.
In Proceedings of the fourth international conference on Functional pro-
gramming languages and computer architecture, FPCA ’89, pages 184–
201, New York, NY, USA, 1989. ACM. ISBN 0-89791-328-0.

[26] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An
Analysis of the Dynamic Behavior of JavaScript Programs. In Proceed-
ings of the 2010 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’10, pages 1–12, New York, NY, USA,
2010. ACM. ISBN 978-1-4503-0019-3.

[27] Armin Rigo and Samuele Pedroni. PyPy’s approach to virtual machine
construction. In Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages, and applications,
OOPSLA ’06, pages 944–953, New York, NY, USA, 2006. ACM. ISBN
1-59593-491-X.

[28] Juan Rodríguez-Hortalá and Jaime Sánchez-Hernández. Functions and
Lazy Evaluation in Prolog. Electronic Notes in Theoretical Computer
Science, 206(0):153–174, 2008. ISSN 1571-0661.

[29] David Schneider. Implementation of the Io language in RPython; public
source repository. http://bitbucket.org/pypy/lang-io/, 2009–2011.
[Online; accessed 12-03-2012].

[30] Anders Sigfridsson, Gabriela Avram, Anne Sheehan, and Daniel Sulli-
van. Sprint-driven development: working, learning and the process of
enculturation in the PyPy community. In Open Source Development,
Adoption and Innovation, volume 234 of IFIP International Federation
for Information Processing, pages 133–146. Springer Boston, 2007. ISBN
978-0-387-72485-0.

[31] Knut Halvor Skrede. Just-In-Time compilation of Haskell using
PyPy and GHC. http://github.com/khskrede/mehh, December 2011.
Project report at NTNU, Trondheim. [Online; accessed 28-04-2012].

[32] Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and
Kevin Donnelly. System F with type equality coercions. In Proceedings
of the 2007 ACM SIGPLAN international workshop on Types in lan-
guages design and implementation, TLDI ’07, pages 53–66, New York,
NY, USA, 2007. ACM. ISBN 1-59593-393-X. Version from January
2011.

[33] Andrew Tolmach, Tim Chevalier, and The GHC Team. An External
Representation for the GHC Core Language. http://www.haskell.
org/ghc/docs/7.4.1/core.pdf, February 2012. [Online; accessed 01-
05-2012].

39

http://bitbucket.org/pypy/lang-io/
http://github.com/khskrede/mehh
http://www.haskell.org/ghc/docs/7.4.1/core.pdf
http://www.haskell.org/ghc/docs/7.4.1/core.pdf

[34] Laurence Tratt. Fast Enough VMs in Fast Enough Time.
http://tratt.net/laurie/tech_articles/articles/fast_enough_
vms_in_fast_enough_time, February 2012. [Online; accessed 03-03-
2012].

[35] David Michael Ungar. The Design and Evaluation of A High Perfor-
mance Smalltalk System. PhD thesis, University of California, Berkeley,
Berkeley, CA, USA, 1986.

[36] Dimitrios Vytiniotis, Simon Peyton Jones, and José Pedro Magalhães.
Equality proofs and deferred type errors — A compiler pearl. (draft sub-
mitted to ICFP 2012) http://research.microsoft.com/en-us/um/
people/simonpj/papers/ext-f/icfp12.pdf [Online; accessed 05-05-
2012], March 2012.

[37] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhães. Giving Haskell a pro-
motion. In Proceedings of the 8th ACM SIGPLAN workshop on Types
in language design and implementation, TLDI ’12, pages 53–66, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1120-5.

40

http://tratt.net/laurie/tech_articles/articles/fast_enough_vms_in_fast_enough_time
http://tratt.net/laurie/tech_articles/articles/fast_enough_vms_in_fast_enough_time
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/icfp12.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/icfp12.pdf

APPENDIX A

SOURCE CODE

This appendix contains source code listings of some implementations I have
contributed to the PyHaskell VM, and some Haskell tests and benchmarks.

A.1 Primitive function decorators

Listing 1 on page 42 shows the source code of the implementation of the
RPython primitive function decorators. Listing 2 on page 43 shows the im-
plementation of the Haskell cons operator, which use a primitive function
decorator on line seven. Listing 3 on page 43 shows an alternative implemen-
tation of the cons operator without using a meta-programming decorator.
These code-listings are described in subsection 4.4.2 on page 22.

A.2 Functions from built-in modules

Listing 4 on page 44 is our implementation of the unpackCString function
that converts a C-like string into a head-tails list of Haskell Chars. Listing 5
on page 44 contains our implementation of putStrLn, which prints a list of
Chars to standard out. Listing 6 on page 45 contains the source code of our
implementation of list concatenation. These listings are explained further in
subsection 4.4.6 on page 24.

41

def expose_var(module, name, arg_types): 1

return _expose(module.qvars, name, arg_types) 2

3

def expose_data_constr(module, name, arg_types): 4

return _expose(module.qdcons, name, arg_types) 5

6

def expose_type_constr(module, name, arg_types): 7

return _expose(module.qtycons, name, arg_types) 8

9

def _expose(storage, name, arg_types): 10

"""NOT_RPYTHON""" 11

def decorator(function): 12

"""NOT_RPYTHON""" 13

arity = len(arg_types) 14

15

def wrapped_f(args): 16

Check that arguments are instances of valid classes 17

assert len(args) == arity 18

for i in range(arity): 19

assert isinstance(args[i], arg_types[i]) 20

21

Unpack the args list and call self.function 22

args_tuple = specialized_unpack_function[arity](args) 23

return function(*args_tuple) 24

25

func = PrimFunction(name, wrapped_f, arity, [True] * arity) 26

storage[name] = func 27

return func 28

return decorator 29

30

def _make_unpack(n): 31

"""NOT_RPYTHON""" 32

if n == 0: 33

return lambda args: tuple() 34

return eval(’lambda args: (%s,)’ % 35

’,’.join([’args[%i]’ % i for i in range(n)])) 36

37

specialized_unpack_function = [_make_unpack(i) for i in range(11)] 38

Listing 1: Implementation of primitive function decorator

42

from pyhaskell.interpreter.module import CoreMod, expose_data_constr 1

from pyhaskell.interpreter.haskell import (AbstractFunction, Symbol, 2

Value, evaluate_hnf, make_application, make_constructor) 3

4

mod = CoreMod("ghc-prim:GHC.Types") 5

6

@expose_data_constr(mod, ":", [Value, Value]) 7

def cons(a, b): 8

"""Cons operator ’:’, for creating lists.""" 9

if isinstance(b, AbstractFunction): 10

b = evaluate_hnf(make_application(b, [])) 11

return make_constructor(Symbol.get_symbol(":"), [a, b]) 12

Listing 2: Cons implementation that use a primitive decorator

from pyhaskell.interpreter.module import CoreMod 1

from pyhaskell.interpreter.haskell import (AbstractFunction, Symbol, Value, 2

PrimFunction, evaluate_hnf, make_application, make_constructor) 3

4

mod = CoreMod("ghc-prim:GHC.Types") 5

6

def cons(args): 7

"""Cons operator ’:’, for creating lists.""" 8

a, b = args 9

assert isinstance(a, Value) 10

assert isinstance(b, Value) 11

12

if isinstance(b, AbstractFunction): 13

b = evaluate_hnf(make_application(b, [])) 14

return make_constructor(Symbol.get_symbol(":"), [a, b]) 15

16

cons = PrimFunction(’:’, cons, 2, [True, True]) 17

18

mod.qdcons[’:’] = cons 19

Listing 3: Cons implementation without meta-programming decorator

43

from pyhaskell.interpreter.module import CoreMod, expose_var 1

from pyhaskell.interpreter.haskell import make_constructor, Symbol 2

from pyhaskell.interpreter.primtype import Char, Addr 3

4

mod = CoreMod("ghc-prim:GHC.CString") 5

6

@expose_var(mod, "unpackCString#", [Addr]) 7

def unpackCString(a): 8

"""Convert an Addr (Python string) into a Haskell list of chars.""" 9

current = make_constructor(Symbol.get_symbol("[]"), []) 10

cons = Symbol.get_symbol(":") 11

str_ = a.tostr() 12

for i in range(len(str_) - 1, -1, -1): 13

current = make_constructor(cons, [Char(str_[i]), current]) 14

return current 15

Listing 4: Implementation of unpackCString.

import sys 1

from pyhaskell.interpreter.module import CoreMod, expose_var 2

from pyhaskell.interpreter.haskell import Value 3

4

mod = CoreMod("base:System.IO") 5

6

@expose_var(mod, "putStrLn", [Value]) 7

def putStrLn(a0): 8

"""Print a list of Chars to stdout.""" 9

t = a0 10

str_ = ’’ 11

while t.numargs() > 0: 12

str_ += t.getarg(0).tostr() 13

t = t.getarg(1) 14

print str_ 15

return a0 16

Listing 5: Implementation of “base:System.IO.putStrLn”

44

from pyhaskell.interpreter.module import CoreMod, expose_var 1

from pyhaskell.interpreter.haskell import Value, make_constructor, Symbol 2

3

mod = CoreMod("base:GHC.Base") 4

5

@expose_var(mod, "++", [Value, Value]) 6

def concatenation(a, b): 7

"""List concatenation, ++ operator.""" 8

stack = [] 9

current = a 10

while current.numargs() > 0: 11

stack.append(current.getarg(0)) 12

current = current.getarg(1) 13

14

cons = Symbol.get_symbol(":") 15

current = b 16

for i in range(len(stack) - 1, -1, -1): 17

current = make_constructor(cons, [stack[i], current]) 18

return current 19

Listing 6: Implementation of list concatenation operator ‘++’

45

A.3 Haskell tests

Listing 7, Listing 8, and Listing 91 contain the source code of some tests we
have implemented. The pattern matching test fails on PyHaskell as we do
not yet support that feature.

main = putStrLn ("Hel" ++ "lo, " ++ "world!") 1

Listing 7: Haskell test of list concatenation ‘++’ operator

main = putStrLn (’H’:’e’:"llo, world!") 1

Listing 8: Haskell test of cons ‘:’ operator

main = putStrLn $ capital "Dracula" 1

2

capital :: String -> String 3

capital "" = "Empty string, whoops!" 4

capital all@(x:xs) = "The first letter of " ++ all ++ " is " ++ [x] 5

Listing 9: Haskell test of pattern matching

A.4 Benchmarks

Listing 10 show the naive Fibonacci sequence2 algorithm implemented in
Haskell. Listing 11 list the source code of a benchmark similar to Fibonacci,
but with multiplication instead of addition. Listing 12 shows part of the
code of the case benchmark, which iteratively calls a function with a case
expression 200 times. Most of the function calls have been removed to allow
the code to fit on one page, but the removed code lines are almost identical
to the surrounding lines.

1Pattern matching test taken from:
http://learnyouahaskell.com/syntax-in-functions#pattern-matching

2Naive Fibonacci implementation taken from:
http://www.haskell.org/haskellwiki/The_Fibonacci_sequence

46

http://learnyouahaskell.com/syntax-in-functions#pattern-matching
http://www.haskell.org/haskellwiki/The_Fibonacci_sequence

main = putStrLn (show (fib 31)) 1

2

fib :: Int -> Int 3

fib 0 = 0 4

fib 1 = 1 5

fib n = fib (n-1) + fib (n-2) 6

Listing 10: Naive Fibonacci sequence benchmark

main = putStrLn (show (mult 25)) 1

2

mult :: Int -> Int 3

mult 1 = 1 4

mult 2 = 1 5

mult 3 = 1 6

mult n = mult (n-1) * mult (n-2) * mult (n-3) 7

Listing 11: Multiply recursive benchmark

data Option = Something Int | Space | Question 1

2

case1 :: Option -> String 3

case1 (Something 1) = "one" 4

case1 (Something n) = show n 5

case1 (Space) = " " 6

case1 (Question) = "?" 7

8

main = putStrLn (9

(case1 (Something 1)) ++ 10

(case1 Space) ++ 11

(case1 (Something 2)) ++ 12

(case1 (Something 3)) ++ 13

-- 197 lines removed 14

(case1 (Something 200)) ++ 15

(case1 Space) ++ 16

(case1 Question)) 17

Listing 12: Iterative case benchmark

47

	Contents
	List of tables
	List of listings
	Acronyms
	Introduction
	Concepts and terms
	Haskell language
	Glasgow Haskell Compiler
	Core language
	Python language
	PyPy project
	RPython language
	RPython translation toolchain
	Meta-tracing just-in-time compiler

	Related work
	Haskell-Python (Haskell)
	PyPy (Python)
	Pyrolog (Prolog)
	HappyJIT (PHP)
	Spy (Smalltalk)
	PyGirl (Gameboy)
	Converge (Converge)
	Other virtual machines
	Summary

	Method
	Z-decoding
	Repository structure and refactoring
	Mapping Core to PyHaskell
	Converting PyHaskell from Python to RPython
	Benchmarking

	Results
	Haskell features supported
	RPython translation timings
	Benchmarks

	Discussion
	Benchmark results
	PyHaskell formal definition
	Lessons from related work
	Pipeline problems
	Further work for answering questions

	Conclusion
	References
	Source code
	Primitive function decorators
	Functions from built-in modules
	Haskell tests
	Benchmarks

