
Automated Generation of Protocol Dissectors for Wireshark

Erik Bergersen
Jaroslav Fibichr
Sondre Johan Mannsverk

Terje Snarby
Even Wiik Thomassen
Lars Solvoll Tønder
Sigurd Wien

Group 9
Fall 2011

TDT4290

Customer Driven Project

Abstract

This paper addresses the problem of creating Lua dissectors for Wireshark,
to analyze inter-process communication (IPC) with C structs. These dissec-
tors are used to display the binary data in a readable format in Wireshark.
Writing a Lua dissector manually is di�cult and time consuming, therefore
a solution for doing this automatically was necessary.

This problem was solved by parsing C structs de�ned in C header-�les,
then processing the abstract-syntax tree, and generating the Lua dissectors
for the structs. Using con�guration �les ensures �exibility in the generation
of dissectors.

The project resulted in CSjark, which is a stand-alone utility that acts as
a supporting tool for Wireshark. Our utility is written in Python, and uses
open source libraries pycparser and PLY to achieve this. For con�guration,
pyYAML was used to make the utility adaptable. The utility automates the
process of generating dissectors for Wireshark from C header-�les.

CSjark reduces the time it takes for developers to write dissectors, which
will make it easier to utilize Wireshark for debugging of IPC tra�c.

PREFACE

This report was written for a project in the course TDT4290 Customer
Driven Project at Norwegian University of Technology and Science (NTNU).
The project was executed on behalf of Thales Norway AS between the 30th
of August and the 24th of November.

The project team consisted of seven students from the department of
computer and information science at NTNU. Our task was to develop a tool
for Wireshark that could automatically dissect C structs. The utility creates
Lua scripts, which act as package dissectors in Wireshark.

The team would like to thank our main supervisor Daniela Soares Cruzes
and her assistant Maria Carolina Passos for their continuous input and guid-
ance throughout the project.

We would also like to thank our customer contacts from Thales, Christian
Tellefsen and Stig Bjørlykke, for invaluable help and feedback during the
development process.

Trondheim, November 24, 2011

Erik Bergersen Sondre Johan Mannsverk

Jaroslav Fibichr Even Wiik Thomassen

Lars Solvoll Tønder Sigurd Wien

Terje Snarby

i

CONTENTS

Preface i

Contents ii

List of Figures vi

List of Tables viii

I Planning & Requirements 1

1 Introduction 2
1.1 Wireshark and Dissectors . 2
1.2 From Struct De�nition to Lua Dissector 4

2 Project Directive 6
2.1 Project Mandate . 6
2.2 The Client . 6
2.3 Involved Parties . 7
2.4 Project Background . 7
2.5 Project Objective . 7
2.6 Duration . 8

3 Planning 9
3.1 Project Plan . 9
3.2 Project Organization . 14
3.3 Quality Assurance . 16
3.4 Risk Management . 22

ii

4 Preliminary Study 26
4.1 Similar Solutions . 26
4.2 Software Development Methodology 27
4.3 Wireshark . 30
4.4 Programming Languages . 30
4.5 Parsers Libraries & Tools . 31
4.6 Con�guration Frameworks . 33
4.7 Unit Testing Frameworks . 34
4.8 User Documentation Tools . 35
4.9 Integrated Development Environment 36
4.10 Evaluation and Conclusion . 37
4.11 IP Rights & License . 40

5 Requirements 42
5.1 List of Requirements . 42
5.2 Requirements Evolution . 43
5.3 Requirement Description . 50
5.4 Use Cases . 50
5.5 User Stories . 51
5.6 Product Backlog . 59

6 Test Plan 62
6.1 Methods for Testing . 62
6.2 Non-Functional Requirements 64
6.3 Templates for Testing . 64
6.4 Test Criteria . 64
6.5 Testing Responsibilities . 65
6.6 Changelog . 66

7 Architectural Description 68
7.1 Architectural Drivers . 68
7.2 Architectural Patterns . 72
7.3 Architectural Views . 73
7.4 Architectural Rationale . 74

II Sprints 77

8 Sprint 1 78
8.1 Sprint Planning . 78
8.2 System Design . 79
8.3 Implementation . 87
8.4 Sprint Testing . 90
8.5 Customer Feedback . 92

iii

8.6 Sprint Evaluation . 92

9 Sprint 2 96
9.1 Pre-sprint . 96
9.2 Sprint Planning . 96
9.3 System Design . 98
9.4 Implementation . 107
9.5 Sprint Testing . 116
9.6 Customer Feedback . 120
9.7 Sprint Evaluation . 120

10 Sprint 3 124
10.1 Sprint Planning . 124
10.2 System Design . 126
10.3 Implementation . 132
10.4 Sprint Testing . 142
10.5 Customer Feedback . 145
10.6 Sprint Evaluation . 146

11 Sprint 4 149
11.1 Sprint Planning . 149
11.2 System Design . 150
11.3 Implementation . 156
11.4 Sprint Testing . 164
11.5 Customer Feedback . 170
11.6 Sprint Evaluation . 171

III Conclusion & Evaluation 173

12 Conclusion 174
12.1 System Overview . 174
12.2 Further Development . 175
12.3 Testing . 178
12.4 Summary . 180

13 Project Evaluation 181
13.1 Team Dynamics . 181
13.2 Risk Handling . 182
13.3 The Scrum Process . 184
13.4 Time Estimation . 185
13.5 Quality Assurance . 185
13.6 Customer Relations . 187
13.7 Summary . 188

iv

Bibliography 190

IV Appendices 192

A Acronyms 193

B Glossary 195

C Test Cases 200
C.1 Sprint 1 Tests . 200
C.2 Sprint 2 Tests . 200
C.3 Sprint 3 Tests . 200
C.4 Sprint 4 Tests . 200

D Architectural Description 223
D.1 Architectural Drivers . 223
D.2 Architectural Patterns . 226
D.3 Architectural Views . 227
D.4 Architectural Rationale . 229
D.5 Changelog . 229

E Initial List of Requirements 232
E.1 Requirements from Customer 232
E.2 Initial Requirements . 233

F User and Developer Manual 236

G Templates 282

v

LIST OF FIGURES

1.1 Wireshark Screenshot . 3

3.1 Gantt Diagram . 14
3.2 Project Organization . 16

5.1 Relationship Between Requirements 51
5.2 Use Case Diagram: Administrator 52
5.3 Use Case Diagram: Developer 52

7.1 Pipe and Filter Pattern . 72
7.2 Layered Architectural Pattern in the Utility 73
7.3 Overall Architecture . 74
7.4 Data Flow During Regular Execution 75
7.5 Deployment View . 75

8.1 Overall Design . 79
8.2 Sprint 1 Class Diagram . 83
8.3 Sprint 1 Module Diagram . 84
8.4 Wireshark: Simple Lua dissector 88
8.5 Command Line Screenshot . 89
8.6 Wireshark: Invalid Values . 90
8.7 Sprint 1 Burndown Chart . 93

9.1 Sprint 2 Class Diagram . 101
9.2 Sprint 2 Module Diagram . 101
9.3 Enumeration in Wireshark . 107
9.4 Structs in Wireshark . 109
9.5 Bit string in Wireshark . 111
9.6 Arrays in Wireshark . 112
9.7 Basic Encoding Rules (BER) Trailer in Wireshark 113

vi

9.8 Usage of Wireshark . 114
9.9 Custom Handling of Data Types 115
9.10 Sprint 2 Burndown Chart . 121

10.1 Sprint 3 Class Diagram . 128
10.2 Sprint 3 Module Diagram . 129
10.3 Platform Handling . 131
10.4 Endianness . 131
10.5 Filter and Search in Wireshark 139
10.6 Union Type Support . 140
10.7 Sprint 3 Burndown Chart . 146

11.1 Sprint 4 Class Diagram . 153
11.2 Sprint 4 Module Diagram . 155
11.3 Sprint 4 Burndown Chart . 171

12.1 Overall Architecture . 175
12.2 Code Coverage Progress from Previous Sprints 179

13.1 Optimal Con�ict Level . 183
13.2 Time Distribution by Task . 186
13.3 Time Distribution by Week 186

D.1 Pipe and Filter Pattern . 226
D.2 Overall Architecture . 227
D.3 Data Flow During Regular Execution 228
D.4 Deployment View . 228
D.5 Layered Architectural Pattern in the Utility 231

vii

LIST OF TABLES

3.1 Work Breakdown Structure 15
3.2 Project Roles . 17
3.3 Customers . 17
3.4 Developers . 17
3.5 Advisors . 17
3.6 Handling Risks . 23
3.6 Handling Risks . 24
3.6 Handling Risks . 25

4.1 Con�guration Summary . 39
4.2 Versions of Tools and Libraries 41
4.3 Licenses . 41

5.1 Functional Requirements . 44
5.2 Optional Requirements . 45
5.3 Non-Functional Requirements 45
5.4 Filter and Search Textual Use Case 53
5.5 View Dissector Textual Use Case 53
5.6 Debugging Textual Use Case 54
5.7 Con�gure Platforms Textual Use Case 55
5.8 Generate Lua Dissector Textual Use Case 56
5.9 Create and Change Con�guration File Textual Use Case . . . 56
5.10 Generate Con�gured Lua Dissectors Textual Use Case 57
5.11 Generate Batch of Lua Dissectors Textual Use Case 58
5.12 User Story Template . 58
5.13 Product Backlog . 60
5.14 Optional Requirements Estimates 61

6.1 Test Case Template . 64
6.2 Test Report Template . 65

viii

6.3 Code Coverage Report Template 65

8.1 Sprint 1 Requirements . 80
8.2 Sprint 1 Timetable . 81
8.3 User Stories - Sprint 1 Part 1 85
8.4 User Stories - Sprint 1 Part 2 86
8.5 Test Case TID01 . 90
8.6 Sprint 2 Test Results . 91

9.1 Sprint 2 Requirements Part 1 98
9.2 Sprint 2 Requirements Part 2 99
9.3 Sprint 2 Timetable . 100
9.4 User Stories - Sprint 2 Part 1 103
9.5 User Stories - Sprint 2 Part 2 104
9.6 User Stories - Sprint 2 Part 3 105
9.7 User Stories - Sprint 2 Part 4 106
9.8 Test Case TID08 . 117
9.9 Sprint 2 Test Results . 118
9.10 Sprint 1 Coverage Report . 119
9.11 Sprint 2 Coverage Report . 119

10.1 Sprint 3 Requirement Work Items 126
10.2 Sprint 3 Timetable . 127
10.3 User Stories - Sprint 3 Part 1 133
10.4 User Stories - Sprint 3 Part 2 134
10.5 User Stories - Sprint 3 Part 3 135
10.6 User Stories - Sprint 3 Part 4 136
10.7 Test Case TID15 . 142
10.8 Sprint 3 Test Results Part 1 143
10.9 Sprint 3 Test Results Part 2 144
10.10Sprint 3 Coverage Report . 145

11.1 Sprint 4 Requirement Work Items 151
11.2 Sprint 4 Timetable . 152
11.3 User Stories - Sprint 4 Part 1 157
11.4 User Stories - Sprint 4 Part 2 158
11.5 User Stories - Sprint 4 Part 3 159
11.6 User Stories - Sprint 4 Part 4 160
11.7 Test Case TID26 . 165
11.8 Sprint 4 Test Results Part 1 166
11.9 Sprint 4 Test Results Part 2 167
11.10Sprint 4 Test Results Part 3 168
11.11Sprint 4 Coverage Report . 169

E.1 Initial Functional Requirements 234

ix

E.2 Initial Non-Functional Requirements 235

x

Part I

Planning & Requirements

1

CHAPTER 1

INTRODUCTION

This chapter is a technical introduction to our project. It gives a concise
explanation of the most important terms used in the report.

The �rst section brie�y explains Wireshark, dissectors and how dissectors
are used in Wireshark. The connection between Wireshark and the Lua
structs protocol is also explained.

The second section describes how the Lua code works and how it is
generated by our utility.

1.1 Wireshark and Dissectors

This section gives a brief introduction to Wireshark and dissectors. The �rst
part describes what Wireshark is and what it can be used for. The second
part explains exactly what a dissector is, and how a dissector can be used
to extend Wireshark.

1.1.1 Wireshark

Wireshark is a program used to analyze network tra�c. A common usage
scenario is when a person wants to troubleshoot network problems or look
at the internal workings of a network protocol. An important feature of
Wireshark is the ability to capture and display a live stream of packets sent
through the network. A user could, for example, see exactly what happens
when he opens up a website. Wireshark will then display all the messages
sent between his computer and the web server. It is also possible to �lter and
search on given packet attributes, which facilitates the debugging process.

In Figure 1.1, you can see a view of Wireshark. This speci�c example
shows a capture �le with four messages, or packets, sent between internal

2

processes, in other words it is a view of messages sent by inter-process com-
munication. Each of the packets contain one C struct. To be able to display
the contents of the C struct, Wireshark must be extended. This can be
accomplished by writing a dissector for the C struct.

Wireshark dissectors can be written in either C or Lua, and in our utility
they are written in Lua. The di�erence between C and Lua dissectors, and
the reason we used Lua is elaborated on in the preliminary study in chapter 4.
Dissectors, in general, are explained more in detail below.

Figure 1.1: Wireshark Screenshot

1.1.2 Dissectors

In short, a dissector is a piece of code run on a blob of data, which can
dissect the data and display it in a readable format in Wireshark, instead of
the binary representation.

Figure 1.1 displays four packets, with packet number 1 highlighted. The
content of the packet is a C struct with three members, type, name and
time, and is displayed inside the box in the �gure. The C code for the
struct is shown in Listing 1.1. The dissector takes the C struct, decodes its

3

binary representation and makes it readable by humans. Without a dissector,
Wireshark would just display the struct and struct members as a binary blob.

All the packets containing C structs belong to the protocol called luas-
tructs. When opening a capture �le in Wireshark , this protocol maps the
id of the messages to the correct dissector, and calls them.

Listing 1.1: Example C Struct

#inc lude <time . h>

#de f i n e STRING_LEN 30

s t r u c t internal_snd {
i n t type ;
char name [STRING_LEN] ;
time_t time ;

} ;

1.2 From Struct De�nition to Lua Dissector

This section explains what happens under the hood of a Lua dissector.

1.2.1 Lua Dissectors

Listing 1.2 shows what the code for the Lua dissector, used to display the
content of packet 1 in Figure 1.1, looks like. The Proto variable de�nes a
new protocol. In this example, a dissector for the internal_snd struct, called
internal_snd, is created. The di�erent �elds of the struct are created as in-
stances of ProtoField, and put into Protocol.�elds. For example, the �name�
variable is a string in C, and as such it is created as a ProtoField.string with
the name �name�.

The protocol dissector function is the function that does the actual dis-
secting. A subtree for the dissector is created, and the description of the
dissector is appended to the information column. All the ProtoFields are
added to the subtree. Here you can see that the type, name and time �elds
are added for the internal_snd dissector. The content of the subtree is what
is actually displayed when a struct is dissected in Wireshark. The bu�er size
allocated to the �elds is the size of the members in C.

In the last line the dissector is added to the dissector table as a subdis-
sector for the luastructs protocol. When running a capture �le, where the
internal_snd struct is being sent to another process, it is possible to see the
exact contents of the struct. An example of this is shown in Figure 1.1.

4

Listing 1.2: Example Lua File

local PROTOCOL = Proto (" interna l_snd " , " s t r u c t interna l_snd ")
local luastructs_dt = DissectorTable . get (" l u a s t r u c t s . message")

local types = {[0]="None" , [1]= "Regular " , [42]= "Secure "}

local f = PROTOCOL . fields
f . type = ProtoField . uint32 (" interna l_snd . type " , " type" , nil , ←↩

types)
f . time = ProtoField . absolute_time (" interna l_snd . time" , " time")
f . name = ProtoField . string (" interna l_snd . name" , "name")

function PROTOCOL . dissector (buffer , pinfo , tree)
local subtree = tree : add (PROTOCOL , buffer ())
pinfo . cols . info : append (" (" . . PROTOCOL . description . . ") ")

subtree : add (f . type , buffer (0 , 4))
subtree : add (f . name , buffer (4 , 30))
subtree : add (f . time , buffer (34 ,4))

end

luastructs_dt : add (1 , PROTOCOL)

5

CHAPTER 2

PROJECT DIRECTIVE

This chapter will brie�y introduce the project, its background and purpose.

2.1 Project Mandate

The purpose of this project was to develop a utility that automatically cre-
ated Lua-dissectors for Wireshark, from C-header �les. This report presents
the planning, implementation and testing of the team's product, and docu-
ments the process from the initial requirement speci�cation to the �nished
product.

The title of the project was �Wireshark - Automated generation of proto-
col dissectors� [10]. It was given to us by the customer and describes exactly
what we were planning to accomplish. The name chosen for the utility was
�CSjark�. Sjark is the Norwegian name for an iconic type of �shing boat,
most commonly used in Northern Norway. The reason why the team picked
this name was because of the way the utility ��shes� for C structs in header
�les. The utility then creates dissectors for these structs, in order for Wire-
shark to display the struct information properly. This reminded the team
of what �shermen do to prepare the �sh for the market. The word Sjark is
also pronounced in a similar way to �shark�, which makes our utility name
a play on words with �Wireshark�, the program our utility was supposed to
extend.

2.2 The Client

The client for this project is Thales Norway AS1. Thales is an international
electronics and systems group, which focuses on defence, aerospace and secu-

1http://www.thales.no/

6

http://www.thales.no/

rity markets worldwide. The Norwegian branch primarily supplies military
communication systems, used by the Norwegian Armed Forces and other
members of North Atlantic Treaty Organization (NATO). Thales Norway
AS consists of 180 highly skilled employees, which o�ers a wide range of
technical competence [5].

2.3 Involved Parties

Three parties are involved in this project: a) the client, b) the project team,
and c) the advisors.

The client, described in the section above, was represented by Christian
Tellefsen and Stig Bjørlykke. See Table 3.3 for their contact information. The
project team consisted of seven computer engineering students from NTNU,
as listed in Table 3.4. For feedback and help during the project period our
team was assigned a main advisor, Daniela Soares Cruzes. Daniela was also
assisted by Maria Carolina Passos, who also helped us during the project.
Their contact information can be found in Table 3.5.

2.4 Project Background

Thales currently uses Wireshark to analyze tra�c data between di�erent
network nodes, for example, Internet Protocol (IP) packets sent between
a client and a server. Thales' programs send C structs internally between
processes, and when Thales debug their programs they want to look at the
contents of these packets. To be able to use Wireshark for examining packets
containing C structs, Wireshark had to be extended with protocol dissectors.
Thales could write these manually, but as they have over 4000 C header �les
with structs, creating dissectors for all of them would take too much time
for this type of debugging to be time e�cient.

To make debugging inter-process communication in Wireshark viable,
the customer wanted us to develop a utility that can generate dissectors
automatically. The generated dissectors from this utility will be used by
Wireshark's developers when they are solving problems in their programs.
Thales therefore expects that our utility can save them valuable time and
e�ort .

2.5 Project Objective

The objective from the customer was to design a utility that would be able
to generate Lua code for dissecting the binary representation of C/C++
structs, allowing Wireshark to display, �lter, and search through this data.
The utility needed to support a �exible con�guration, as this would make it
more useable for debugging with Wireshark. The code and con�guration also

7

had to be well documented, making it easier for Thales to use and extend
the tool as they see �t.

The objective from NTNU's point of view was that the team members
would acquire practical experience in executing all phases of a bigger Infor-
mation Technology (IT)-project and learn how to work together in a team.

Our team's goals for this project were to attain experience in working in
a real development project, and to create a solution that the customer would
be satis�ed with.

2.6 Duration

Calculations done by the course sta� suggested that each student should con-
duct 325 person-hours distributed over 13 weeks for the project. Our team,
consisting of seven students, would therefore have a total of 2275 person-
hours to spend on this project.

� Project start: August 30th

� Project end: November 24th

8

CHAPTER 3

PLANNING

This chapter explains the administrative part of the project. The project
plan is presented in section 3.1. How the project is organized is covered in
section 3.2, the quality assurance is described in section 3.3, and how we are
supposed to handle possible risk can be found in section 3.4.

3.1 Project Plan

The project plan includes the speci�ed plan on which tool we are using in
this project, measurement of project e�ects, limitations and the concrete
project work plan.

3.1.1 Measurement of Project E�ects

Automatic generation of Lua scripts from C header �les would bring con-
siderable resource savings in the customer's usual work process. When the
customer needs to know the contents of inter-process communication mes-
sages that include C structs, the use of our utility will save them time, and
therefore �nancial resources.

The biggest impact on savings will be caused by enabling �ltering of the
messages by speci�c attributes in the C struct in Wireshark. Once this is
made possible, searching for a speci�c struct or member will become easier.

Before creating the utility, C structs were investigated in two ways. The
�rst, manual method, meant counting individual bytes of the binary �le that
includes data in C structs. This was possible only for small-sized messages.
For bigger messages, this method was inapplicable, as a message can consist
of several thousands bytes. The second method consisted of manually writing
a dissector in Lua for the speci�c C header. Also, this method could not be

9

used for more complex C structs, i.e. those using nested structs. At the start
of this project there had been written around 10 Lua scripts manually.

According to the customer, they had approximately 3000 C structs in
their code base at the beginning of the project. To debug all these structs,
3000 dissectors needs to be written. Time spent writing a dissector for a mes-
sage manually depends on the struct's complexity. For simple structs, this
takes around 15 minutes. It took about one hour for the most complicated
dissectors that the customer had developed so far.

If one hour is the average time for creating a dissector for one message, our
utility will be able to save around 3000 hours of work, not considering further
changes to their code base. Due to everyday workload of the customer's
development team, this amount of time could never be used to accomplish
such a task.

None of the methods mentioned above are capable of processing messages
with C structs that are big and complex, making it di�cult to estimate time
savings in these cases.

In some cases, a representative of Thales Norway AS has to physically
move to a customer's site to solve a problem. With the delivered solution,
this can sometimes be avoided, since the customer can use Wireshark with
the dissectors, and then send the capture �les to Thales. This means that
the problem in some cases can be solved in-house. Savings in this case are
not only time-based, as this will also directly cut the transportation costs,
as well as being an environmental bene�t. It is also possible it will increase
the satisfaction for the client.

3.1.2 Limitations

As in all other projects, the project members had to deal with various limi-
tations and constraints given either by the customer or personal limitations
stemming from things such as lack of experience or con�icts with other per-
sonal responsibilities. The limitations as identi�ed at the beginning of the
project are listed below.

Technical Limitations

C preprocessor To ful�ll all the requirements we might need to either
modify an existing preprocessor or write our own, which can be a
highly time consuming process.

Platforms Some of the platforms that are required for the utility are not
available to the project team.

10

Non-technical Limitations

Experience No team members have experience with Lua-scripts, running
a project with a larger team, or have planned a project before.

Time The project team has a limited time of 13 weeks with a project dead-
line that cannot be changed. Also, the team consists of seven members
that have di�erent schedules so �nding a time when everyone is avail-
able for a meeting might be di�cult. These limitations might lead to
considerable delays in the project progress.

Language In this project the team will have to write and speak in English,
which is a second language for all team members. This may lead to
misunderstandings and will negatively a�ect the time it takes to write
the report.

3.1.3 Tool Selection

To support collaboration and project management the team has considered
and selected the listed tools for use in this project.

Git & GitHub

The team selected Git as the version control system,
with git repository hosting provided by GitHub1.

We had experience with Concurrent Versions Sys-
tem (CVS), Subversion (SVN), Git and Mercurial, and although everyone
knew SVN and only two knew Git, we selected Git for this project. The main
reason we didn't choose SVN was because of its lack of hosting capabilities,
and the other reason was that, unlike Git and Mercurial, SVN does not have
any of the advantageous features of a modern version control system like
branches and a distributed repository model.

We evaluated free hosting sites of version control sys-
tems, which could also provide us with other collabora-
tive features that we wanted. GitHub, Bitbucket2 and
SourceForge3 all provided wiki and issue tracker in ad-
dition to free version control system hosting. We elim-
inated SourceForge because their focus is divided be-
tween software users and developers, while the other two sites are fully
focused on developers. The two remaining sites provides almost identical
features, where one focuses on Git and the other on Mercurial.

GitHub with Git version control system was selected because more team
members had experience with Git than Mercurial. Since we use di�erent

1http://github.com/
2http://bitbucket.org/
3http://sourceforge.net/

11

http://github.com/
http://bitbucket.org/
http://sourceforge.net/

platforms, we will also use di�erent git clients, but for Windows most of the
team has selected tortoisegit.

Skype

Skype4 is an application which allows the user to make
video and voice chats over the Internet, including con-
ference calls and chatting. The team used Skype to com-
municate and collaborate when we were not physically present at the same
location at the same time.

Google Docs

Google Docs5 is a free web site o�ering functionality for creat-
ing documents, spreadsheets and presentations. The bene�ts
of using Google Docs are that it is easy to share documents
with other users, and it is possible to collaborate in real-time.
For this project we used Google Docs to collaborate on document drafts, and
to share documents within the team and with the team's advisor.

LATEX

LATEX is a document markup language used to create reports, articles and
books. It was chosen by the team for its high quality typesetting which pro-
duces professional looking documents, and because it is suitable for larger
scienti�c reports [13]. Writing documents in LATEX is very di�erent from
writing them in, for example, Microsoft Word, as most of the visual presen-
tation is handled by the LATEX system and not by the user itself. Because
the writer does not have to spend time thinking about how the document
looks, he can focus entirely on the content. LATEXalso provides automatic
numbering of chapters and sections, automatic generation of table of con-
tents, cross-referencing and bibliography management. Since LATEX�les are
plain text �les they are suitable for versioning with a version control system
like Git. We will use LATEXto write the �nal project report, and we have
created a few templates for test plans and minutes.

Mailing List

For asynchronous communication the team used
an electronic mailing list provided by Institute for
Computer Science and Information Technology (IDI), NTNU.

4http://www.skype.com
5http://docs.google.com/

12

http://www.skype.com
http://docs.google.com/

Google Calendar

Since all team members have Google accounts, we cre-
ated a team calendar in Google Calendar6 to help sched-
ule and keep track of meetings. A single calendar that
all members can include in their own prevents misunder-
standings and duplication of work.

text2pcap

Since the customer could not provide us with capture �les, we had to create
them ourselves. The capture �les are important for testing the generated
Lua-scripts. In this project text2pcap7 was used to generate capture �les
from ASCII8 hex dumps. The text2pcap tool is included with Wireshark.
The input to the tool is an ASCII hex dump as a text-�le, and the output
will be a pcap-�le.

Hex Editor

The team used a hex editor to create input for text2pcap. To make it easier
to write ASCII hex dumps, it was deemed necessary to write them in a hex
editor. HxD9 was the recommended hex editor for this project, as it is free
and has all of the necessary functionality.

Violet

Violet10 is a free and easy to use modeling software for
making Uni�ed Modeling Language (UML)-diagrams. It
is also a cross platform solution, which means that all
team members can use the same application. If we had to use di�erent
UML applications there could be a problem editing the diagrams due to
incompatible �le formats. The architectural and design team used Violet to
create diagrams to illustrate the workings of the utility. As very advanced
diagrams were not needed for this project, Violet seemed like a �tting tool.

3.1.4 Schedule of Results

This project had two deliveries,a pre-delivery and a �nal delivery. The mile-
stones and sprints are listed below.

6http://calendar.google.com/
7http://www.wireshark.org/docs/man-pages/text2pcap.html
8http://www.asciitable.com/
9http://mh-nexus.de/en/hxd/

10http://violet.sourceforge.net/

13

http://calendar.google.com/
http://www.wireshark.org/docs/man-pages/text2pcap.html
http://www.asciitable.com/
http://mh-nexus.de/en/hxd/
http://violet.sourceforge.net/

Milestones

30. August Project start
6. October Pre-delivery of project report
24. November Final delivery of project report
24. November Presentation and project demo

Sprints

Sprint 1 14. September - 27. September
Sprint 2 5. October - 18. October
Sprint 3 19. October - 1. November
Sprint 4 2. November - 15. November

3.1.5 Concrete Project Work Plan

The �rst two weeks of the project was used on planning and pre study.
The project was divided into four sprints that each lasted for two weeks.
The �rst sprint had an estimated length of 200 person-hours, while the last
three sprints had an estimate of 250 person-hours. The last one and a half
weeks were used to �nish the �nal report and prepare for the presentation.
Table 3.1 shows the work breakdown structure, and the project timeline is
in Figure 3.1.

Figure 3.1: Gantt Diagram

3.2 Project Organization

This section describes how the team was organized, which roles the develop-
ers were divided into and the partners of the project.

14

Table 3.1: Work Breakdown Structure

E�ort

Task From date To date Estimated Actual

Misc 30.08.2011 24.11.2011 825 855

Project Management 30.08.2011 24.11.2011 275 454
Lectures 02.09.2011 18.10.2011 100 100
Self Study 30.08.2011 04.10.2011 100 71
Planning 05.09.2011 12.09.2011 150 122
Pre-study 05.09.2011 12.09.2011 100 49
Requirement Speci�cation 05.09.2011 12.09.2011 100 59

Sprint 1 14.09.2011 27.09.2011 200 157

Sprint 1 Planning 14.09.2011 14.09.2011 30 29
Sprint 1 Work 15.09.2011 26.09.2011 150 98
Sprint 1 Review 27.09.2011 27.09.2011 20 30

Sprint 2 05.10.2011 18.10.2011 250 260

Sprint 2 Planning 05.10.2011 05.10.2011 30 36
Sprint 2 Work 06.10.2011 17.10.2011 200 206
Sprint 2 Review 18.10.2011 18.10.2011 20 18

Sprint 3 19.10.2011 01.11.2011 300 296

Sprint 3 Planning 19.10.2011 19.10.2011 30 48
Sprint 3 Work 20.10.2011 31.10.2011 250 234
Sprint 3 Review 01.11.2011 01.11.2011 20 14

Sprint 4 02.11.2011 15.11.2011 300 311

Sprint 4 Planning 02.11.2011 02.11.2011 30 34
Sprint 4 Work 03.11.2011 14.11.2011 250 263
Sprint 4 Review 15.11.2011 15.11.2011 20 14

Report & Presentation 30.08.2011 24.11.2011 400 452

Write Report 20.08.2011 24.11.2011 325 388
Presentation 22.11.2011 24.11.2011 75 64

Total 30.08.2011 24.11.2011 2275 2331

3.2.1 Project Organization

Our project organization had a �at structure, and the organization chart can
be seen in �gure 3.2. The roles listed in the organization chart are described
in table 3.2.

3.2.2 Partners

This subsection lists the partners of this project. The customer of this project
is Thales Norway AS, which is located at Lerkendal Stadium, Strindveien 1,
7030 Trondheim. The customer contacts are listed in Table 3.3. The devel-
opment team consist of seven student from NTNU, and is listed in Table 3.4.

15

Figure 3.2: Project Organization

The team is assigned two advisors from the Department of Computer and
Information Science at NTNU, listed in Table 3.5.

3.3 Quality Assurance

The following section contains internal processes and routines the team used
in the project. This includes procedures for meetings, document templates
and standards and internal reports.

3.3.1 Routines for Ensuring Quality Internally

We decided to organize in pairs when producing items, where the pair reviews
each others work. This would be done in an e�ort to enhance the quality of
the project, as we would be able to �nd more errors, and also get a broader
perspective on style and solutions.

We also assigned quality assurance responsibilities for three articles: doc-
uments, code and tests. The respective team members tried to have a bird's

16

Table 3.2: Project Roles

Role name Main responsibilities

Project manager Responsible for having an overview of the project, delegating
tasks and resolving con�icts.

Advisor contact Responsible for distributing information between the team
and the advisor.

Organizer Responsible for setting up and informing the team about the
meeting schedule.

Document master Responsible for document quality and quantity.
System architect The lead designer of the system.
Lead programmer Makes sure everyone follows the agreed code standards, and

ensures the quality of the code.
Customer contact Responsible for distributing information between the team

and the customer.
Technically responsible Finds suitable technical solutions and makes sure that the

essential tools are operative.
Technology evangelist Brings in ideas about new technologies and tools.
Scrum master Responsible for Scrum meetings.
Lead tester Responsible for test coverage, both unit and end to end, and

to ensure the quality of those tests.
Secretary Takes note from each meetings and stores it in the cloud.

Responsible for preparing minutes for advisor/customer.

Table 3.3: Customers

Name Mobile E-mail

Christian Tellefsen 959 98 765 christian.telefsen@thalesgroup.com
Stig Bjørlykke 982 29 806 stig.bjorlykke@thalesgroup.com

Table 3.4: Developers

Name Mobile E-mail

Terje Snarby 915 27 390 snarby@stud.ntnu.no
Even Wiik Thomassen 991 61 929 evenwiik@stud.ntnu.no
Sondre Johan Mannsverk 948 15 506 sondrejo@stud.ntnu.no
Erik Bergersen 917 48 305 eribe@stud.ntnu.no
Lars Solvoll Tønder 976 00 317 larssot@stud.ntnu.no
Sigrud Wien 472 54 625 sigurdw@stud.ntnu.no
Jaroslav Fibichr 451 26 314 jaroslaf@stud.ntnu.no

Table 3.5: Advisors

Name Mobile E-mail

Daniela Soares Cruzes 942 49 891 dcruzes@idi.ntnu.no
Maria Carolina Mello Passos 483 49 117 mariacm@idi.ntnu.no

17

eye overview in their area to catch further errors.
We agreed to have three weekly meetings to accommodate these routines.

� Monday 12-14

� Wednesday 12-17

� Friday 10-13

3.3.2 Phase Result Approval

To ensure the quality of the sprint deliverables, it was decided that at least
one team member would go through the work of another before it is delivered.

We would also present the results to the customer and advisor. They
would then have the opportunity to point out problems and misunderstand-
ings, and suggest solutions. This was a result of the Scrum methodology:
deliveries and deadlines throughout the project, making the progress very
visible to the customer and advisors. We reckoned that we should be able to
attain success at the end of the project because of the guidance and feedback
received during the process of making the utility and report. If a problem
appears, we will try to correct it and then reiterate the quality assurance.

3.3.3 Procedures for Customer Meetings

All customer meetings were to be scheduled with time, place, agenda spec-
i�ed. All background documents relevant to the meetings should also be
supplied. This was to ensure e�cient and e�ective meetings.

All customer meetings should be summarised in a document (minute).
This document should include:

� Time of meeting

� Place

� Version

� Meeting responsible

� Names of the attendees

� Decisions

� Actions

� Clari�cations

� The above should be in sequence according to time

18

This document was to be written and sent to the customer by 12:00 the
day after the meeting. If the customer did not approve the minutes, the
minutes would again be corrected and sent 12:00 the following day. The
customer contact was responsible for the above tasks.

The customer committed to respond to our interactions within two work-
ing days.

3.3.4 Procedure for Advisor Meeting

The weekly advisor meeting will be at 10:30 every Friday unless otherwise
stated.

Agenda for Meeting

A meeting with the advisor should be scheduled before 14:00 the day before
the meeting, and this schedule should include:

� Time

� Place

� Agenda

� Status report

� Table of reported working hours

� Minutes for the last meeting

� Other relevant documents

Minutes from Meeting

The minutes should be written and sent to the advisor for approval before
12:00 the next work day after the meeting. If the advisor should reject the
minutes, they should be corrected and re-sent 12:00 the day following the
rejection. The minutes should include:

� Time of meeting

� Place

� Version

� Names of the attendees

� Decisions

� Actions

19

� Clari�cations

� A rough timeline of the above

3.3.5 Document Templates and Standards

The team has speci�ed procedures for templates and �le organization.

Templates the Team Has Created

All templates were stored under docs/ on GitHub. The team had templates
for:

� Meeting agenda

� Status report

� Meeting minutes

Standard for Organizing Files

We use GitHub and Google Docs to store the �les included in this project.
The location of a �le is dependent on what type the �le is.

� All source code is to be saved in the GitHub repository under CSjark/.
This ensures that all the team members have the current version of the
code. The structure for this folder:

CSjark/

csjark/ -- today's source/, for source code

test/ -- for unit tests

etc/ -- for configuration files

header/ -- header files used to test the program

bin/ -- file for executing our program

docs/ -- for CSjark-specific documentation

utils/ -- for cpp.exe and fake header files

� All textual documents that are completed will be put in the docs/
folder.

20

� All LaTeX documents are stored in the GitHub repository under re-
port/. The structure for this folder:

report/

planning/ -- Planning & Requirements section

img/ -- Images for this section

sprints/ -- Sprint sections

img/ -- Images for this section

evaluation/ -- Evaluation section

appendices/ -- Appendices section

� Examples of header-�les and Lua-scripts, packet capture-�les and in-
formation from customer is stored under Wireshark/.

� All documents or python code should compile before it is pushed to
the repository

File Name Standard

The �le name should consist of the name of the document (meeting minutes,
agenda, phasedoc, e.g.) and the date, if applicable.

Coding Style Standard

The programming language used to implement the utility speci�ed by the
customer requirements was Python. The coding style the team agreed upon
was the Python Standard Styling Guide as de�ned by PEP811. In addition
it was decided that the design should attempt to be pythonic, as detailed by
PEP2012.

3.3.6 Version Control Procedures

The team decided that every relevant digital item should be pushed to our
repository at GitHub, and be checked out by other participants. Those who
worked on a given item were supposed to commit and push their changes
often, so that others could be as up to date as possible. All digital items
were to be labeled with a version number, starting at version one. If an item
went under review and was deemed insu�cient by the customer, the version
number was to also be incremented by one for each revision of the document

Relevant digital items includes source code, documents, picture �les, bi-
nary blobs, etc.

NB: Google docs was not to be used for version control, so every docu-
ment written there was also to be pushed to git hub.

11Style Guide for Python Code: http://www.python.org/dev/peps/pep-0008/
12The Zen of Python http://www.python.org/dev/peps/pep-0020/

21

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0020/

3.3.7 Internal Reports

Some of the internal activities in the team should be documented. This
includes:

� Activities, what is done, and what remains

� Minutes for internal meetings

� Milestones, complete/incomplete

� E�ort registration shall be done daily by each team member.

� Sprint backlog should be updated daily by each team member.

These documents should follow the templates speci�ed in Templates and
Standards (A4) if applicable.

3.4 Risk Management

The following section lists the possible risk scenarios that could occur in the
project, and how they were to be handled. Table 3.6 shows how to handle
the possible risks in the team. Each risk has a consequence and a probability:
High (H), Medium (M) or Low (L). Strategy and actions describes what we
were supposed to do to reduce the consequences of the risk, or prevent the
risk from happening altogether. Deadline states when we needed to handle
the risk.

R1. Choosing an incompatible technical solution The team decides
to use a technical solution that is not suited for the given problem,
or decides on an implementation that is too time consuming.

R2. Too much focus on report We spend too much time working on the
report and neglect the implementation.

R3. Too much focus on implementation We spend too much time work-
ing on the implementation and neglect writing all the needed documen-
tation for the report.

R4. Illness/Absence Members of the team become ill or are otherwise
unavailable.

R5. Key member is absent A member that has an important responsi-
bility becomes ill.

R6. Con�icts within team Internal con�icts which hinders the team's
ability to work together.

22

R7. Lack of technical competence The team lack the needed technical
ability to solve the given problem.

R8. Miscommunication within team Team members don't know what
to do, or misunderstands the task given to them.

R9. Miscommunication with customer The team misunderstands the
requirements given by the customer.

R10. Lack of experience with Scrum The team does not have any ex-
perience in doing Scrum projects.

R11. Requirements added or modi�ed late in the project The cus-
tomer asks us to implement a new, and possibly time consuming re-
quirement, or modi�es a requirement in such a way that it needs to be
reimplemented, late in the project.

Table 3.6: Handling Risks

Risk ID R1

Risk factor Choosing an incompatible technical solution

Consequences H: The project will not be completed on time, or at all.

Probability M

Strategy & actions Do a good pre-study, consult the customer's technical expert.

Deadline During the �rst sprint.

Responsible Even and Erik

Risk ID R2

Risk factor Too much focus on report

Consequences M: The product will not be of a satisfying quality.

Probability M

Strategy & actions Plan enough hours to use on the customer product.

Deadline Continuous

Responsible Sondre

Risk ID R3

Risk factor Too much focus on implementation

Consequences H: The documentation will not be good enough, leads to a bad
grade.

Probability M

Strategy & actions Plan enough hours to use on the report. Write documentation in
parallel with implementation when it is possible. Write good re-
quirements that limit the scope of the project.

Deadline Continuous

Responsible All

Risk ID R4

23

Table 3.6: Handling Risks

Risk factor Illness/Absence

Consequences L/M/H: Consequences depend on how many members are absent,
and how often they are absent. Absence may hinder the progress
of the project in di�erent ways.

Probability M

Strategy & actions Make sure several people are pro�cient in the technical parts of the
project. Have backups for the most important roles.

Deadline Continuous

Responsible Terje

Risk ID R5

Risk factor Key member is absent

Consequences H Absence of a key member may greatly hinder the team's process
during the period of the absence.

Probability L

Strategy & actions The team should be updated on the work of key members, so that
a team member they can step in for the key member on important
tasks.

Deadline Continuous

Responsible All

Risk ID R6

Risk factor Con�icts within team

Consequences M: May lead to bad morale, which could a�ect the work of the team.
Could also be a waste of time.

Probability M

Strategy & actions Not all con�icts are bad. If the con�ict is simply a disagreement
over technical issues, or the planning of the project, it could bene�t
the team. All such con�icts should lead to a constructive discussion
that the entire team should take part in. Other types of con�icts,
that can not positively in�uence the project should be avoided if
possible. The team should agree on speci�c ground rules.

Deadline Continuous

Responsible Terje

Risk ID R7

Risk factor Lack of technical competence

Consequences H: The team is unable to solve the problem

Probability H

Strategy & actions Make sure the team is pro�cient in the programming languages and
tools that are to be used. Decide on technical solutions that the
team is already familiar with. Do a good pre-study of the parts
the team is unfamiliar with. Consult with the customer's technical
expert.

Deadline Continuous

Responsible All

24

Table 3.6: Handling Risks

Risk ID R8

Risk factor Miscommunication within team

Consequences M: Team members waste time doing nothing, or doing something
that is irrelevant.

Probability M

Strategy & actions Make sure that everyone knows what to do at all times. Ask ques-
tions if you are unsure about your speci�c task.

Deadline Continuous

Responsible Terje

Risk ID R9

Risk factor Miscommunication with customer

Consequences H: The team waste time on functionality the customer did not want.
The delivered product does not do what the customer asked for.

Probability M

Strategy & actions Make sure we and the customer have a common understanding of
the requirements. Have frequent meetings with the customer, with
a weekly demo of new features.

Deadline Continuous

Responsible Sigurd

Risk ID R10

Risk factor Lack of experience with Scrum

Consequences M: The team does not provide the correct documents for the report,
which could lead to a bad grade.

Probability M

Strategy & actions Learn how to properly do Scrum. Have Scrum meetings as often as
possible. Get feedback on documents from advisor.

Deadline Continuous

Responsible Jaroslav

Risk ID R11

Risk factor Important requirements added or modi�ed by customer late in the
project

Consequences M: The team may spend time on implementation when we instead
should be �nishing up the report, or prepare for the presentation.

Probability H

Strategy & actions Have a good dialog with the customer, and be prepared to say no
to new requirements if we do not have the time to complete them.

Deadline Continuous

Responsible Jaroslav

25

CHAPTER 4

PRELIMINARY STUDY

This chapter presents the preliminary study for this project. In section 4.1 we
have examined existing solutions, and in section 4.2 we provide a description
of two popular software development methodologies.

Wireshark, which our utility should create dissectors for, are described
in section 4.3. Section 4.4 contains the di�erent programming languages we
might use, while section 4.5 describes possible solutions for parsing C header
�les. Section 4.6 outlines possible con�guration libraries, and section 4.7
discusses possible unit testing frameworks. In section 4.8 we describe tools
for creating user documentation and section 4.9 describes three integrated
development environments.

Section 4.10 provides the justi�cations for the choices we have made, and
in subsection 4.10.6 we describe the framework our utility will require. At
the end of the chapter, in section 4.11, we describe the license of our utility.

4.1 Similar Solutions

We started by searching for existing solutions in the problem space. This
search turned up idl2wrs1. The other solution was suggested by our cus-
tomer, Asn2wrs2. Both of these solutions are bundled with Wireshark.

4.1.1 idl2wrs

A tool for generating Wireshark dissectors from Interface Description Lan-
guage (IDL) �les. The tool is written in Python, and generates dissectors in
C from IDL speci�cations. IDL is used as an interface to enable communica-
tion between software of di�erent languages, in a language-neutral way. It is

1http://wiki.wireshark.org/idl2wrs
2http://wiki.wireshark.org/Asn2wrs

26

http://wiki.wireshark.org/idl2wrs
http://wiki.wireshark.org/Asn2wrs

used for example in Sun RPC and Common Object Request Broker Archi-
tecture (CORBA). Since idl2wrs takes input in a di�erent language than our
utility will, and creates dissectors in a di�erent language than our utility, we
can not reuse any of its code. Instead we will look at its architecture and
data structures, especially how it generates dissectors.

4.1.2 Asn2wrs

Is a tool for generating Wireshark dissectors from Abstract Syntax Notation
One (ASN.1) protocols. Asn2wrs requires four input �les: an ASN.1 protocol
description, a con�guration �le and two template �les. Advantages of using
Asn2wrs are faster development because of easier recompilation, and plugins
that are easy to distribute. The disadvantage is that code and make�les are
more complex [2].

Our customer cannot use this solution as it would require them to rewrite
their C structs to ASN.1 descriptions, which would take a very long time.
But the team can use the asn2wrs code as an example of how to create
dissectors for Wireshark.

4.2 Software Development Methodology

In this section we describe two popular software development methodologies,
while subsection 4.10.1 discusses which one we decided to use, and why.

4.2.1 Waterfall

Waterfall [6] is a software development methodology based on sequential
phases. It consist of the following phases: requirement speci�cation, design,
implementation, integration, testing, deployment, and maintenance. In its
pure form, these phases are non-overlapping and one way only, which means
that each phase must be fully completed before the next can begin. Following
the phases are listed in sequentially order.

Requirement speci�cation Receiving requirements from a customer and
then formalising these into concrete functional and non-functional require-
ments. These will again be further broken down into smaller work items that
are easy to quantify in terms of time of use and importance. These metrics
may help distinguish which features are to be prioritised.

Design The design is about planning how to implement the features from
the requirement speci�cation. The goal is to make a precise software archi-
tecture for the project that dictates most of the implementation phase. This
may include (but not limited to) making class diagrams, data �ow diagrams,
state machines, user interface mock-ups, etc.

27

Implementation Implementing and coding the design made in the design
phase on a component level.

Integration Integrating the di�erent components that results from the
implementation phase.

Testing Thoroughly test the result of the implementation and integration.
The goal is to �nd and �x bugs introduced in these phases.

Deployment Delivering the resulting software to the customer. This may
include installing the software on their systems. This is also the phase where
the customer either accepts or rejects the resulting software.

Maintenance Large software projects are almost impossible to make com-
pletely bug free, and therefore a certain amount of maintenance may be re-
quired. The obvious tasks are to either �x or provide viable workarounds
for problems that appear during normal use. Maintenance may also include
developing new features that the customer �nds the need for.

4.2.2 Scrum

Scrum [16] is an agile development methodology based on the philosophy that
it is impossible to completely and accurately plan everything in a software
project before you begin. It is therefore more or less based on iterations of the
waterfall phases described in subsection 4.2.1, but instead of having these
phases being strictly sequential, they are run in a more 'as needed' basis.
Each iteration in Scrum is called a sprint and typically lasts between two
and four weeks. This time period is �xed for each project, so the sprint will
always end on time. To make this possible, features that are not completed
on time is deferred to a later sprint. Each sprint should result in a runnable
product that potentially could deliver some value to the customer, even if
this requires some redundant work.

Main Scrum Roles

Scrum Master has the responsibility of maintaining the process and for re-
moving obstacles for other team members. In short, the Scrum master
tries to keep the other team members focused on their tasks.

Product Owner represents and speaks for the customer. Not necessar-
ily a part of the customer's organization, but must have the stated
authorities.

28

Team members are responsible for creating and delivering the product.
Should consist of a self organizing team of �ve to nine persons with a
cross functional skill set.

Scrum Artifacts

Product backlog contains a high level description of all the desired fea-
tures for the project. These should be prioritised based on their busi-
ness value and evolve along with the project.

Sprint backlog contains what the team is committed to complete over the
next sprint. These commitments are features broken down into work
items. These items should not be larger than 16 hours of work, and
they should be described so that everyone in the team could contribute
to implementing them.

Burn down chart A daily updated chart consisting of what work remains
in the sprint. Its purpose is both to show what work to do next and
to give a visual representation of the work progress.

A sprint begins with the sprint planning meeting, which consists of two
stages. In the �rst, the team and the product owner prioritizes the product
backlog. In the second, the team discusses what features they can commit to,
based on priority, and break these down into work items, which are added
to the sprint backlog. This should include giving each item an estimated
completion time.

The sprint itself consists of producing what is required for completing
work items, updating the burn down chart, and daily Scrum meetings. In
these daily meetings each team member provides a short update of what they
did the day before, what they plan to do today and what problems might be
in their way. These problems should not be discussed in this meeting, but
rather dealt with separately after the meeting, which is the Scrum master's
responsibility.

At the end of the sprint cycle, the team should hold a Scrum review
meeting. In this meeting the team should discuss what was completed and
what was not, and demonstrate the completed features for the customer.

After the review meeting, a separate retrospect meeting should be held
with all the team members, where all members share their re�ections of how
the sprint went and on how we could improve for the next sprint. This is
important for improving the process.

29

4.3 Wireshark

Wireshark3 is a free, open source network protocol
analyzer. It lets you capture and browse tra�c run-
ning through a computer network. Wireshark is cur-
rently being developed by the Wireshark team, a
group of networking experts spanning the globe [7]. Because of its rich
set of features and ease of use, Wireshark is the de facto standard in many
di�erent industries and the educational community. Wireshark is able to
dissect and display data from a plethora of di�erent protocols. One of its
strengths lies in the ease of which developers can add their own dissectors,
post-dissector and taps.

Dissectors can be written in either C or Lua. Most dissectors are written
in C for increased speed. Lua-scripts are mostly used as prototypes or to
process non time crucial data as they don't need compilation to be used.
Our customer uses Wireshark not only to browse through and �lter regu-
lar networking tra�c, but also for monitoring inter-process communication
where it is important to have a tool that can easily be extended to dissect
and display structures and data types unique to the organization.

Our utility should read C header �les and create Wireshark dissectors
written in Lua for structs found in the header �les.

4.4 Programming Languages

The dissectors we have to generate are written in Lua, and we have looked at
both Java and Python programming language for our utility. In this section
we describe these di�erent languages. In subsection 4.10.2 we describe which
language we selected and why.

4.4.1 Lua

Lua4 is a multi-paradigm, dynamically typed programming
language that is designed to be lightweight, so it can easily
be embedded into applications. Lua has only a few basic
data structures: boolean, numbers, strings and table. Still
Lua implements advanced features such as �rst-class func-
tions, garbage collection, closures, coroutines and dynamic
module loading. Lua was created in 1993 at the Ponti�cal Catholic Univer-
sity of Rio de Janeiro, in Brazil [8].

The output of our utility will be Wireshark dissectors written in Lua.
While Wireshark supports dissectors written in both C and Lua, Lua is

3http://www.wireshark.org/
4http://www.lua.org/

30

http://www.wireshark.org/
http://www.lua.org/

preferred because they can be added without recompiling Wireshark. This is
important since some of Thales customers do not allow recompiled versions
of Wireshark. Lua dissectors interface with Wireshark through a simple
Application Programming Interface (API).

4.4.2 Java

Java5 is an object-oriented, structured, imperative, statically typed
programming language. It was originally developed by Sun Mi-
crosystems, which is now a subsidiary of Oracle Corporation. Java
was released in 1995, and it derived much of its syntax from C
and C++, but with fewer low-level facilities. Java's strength are portabil-
ity, automatic memory management, security, good documentation and an
extensive standard library [3]. Java has several tools and libraries of vary-
ing quality for creating parsers, for example ANother Tool for Language
Recognition (ANTLR) and Java Compiler Compiler (JavaCC). A detailed
description of ANTLR can be found in subsection 4.5.1.

4.4.3 Python

Python6 is a general-purpose, multi-paradigm, object-
oriented, imperative, dynamically typed programming lan-
guage. It was created by Guido van Rossum, and is today de-
veloped by Python Software Foundation and the Python com-
munity. Python's strength include automatic memory man-
agement, large and comprehensive standard library, portability, powerful but
very clear, concise and simple syntax [1]. There exists several pure Python
libraries for creating lexers and parsers, like Python Lex-Yacc (PLY), pyc-
parser and cppheaderparser. These are described further in section 4.5.

4.5 Parsers Libraries & Tools

This section contains various tools and libraries we have looked at for solv-
ing the challenge of parsing C header �les. They range from language-
independent tools like GNU Compiler Collection (GCC) and Clang to Python-
only libraries like PLY and pycparser. The justi�cation for the libraries we
selected can be found in subsection 4.10.3.

5http://java.com/
6http://www.python.org/

31

http://java.com/
http://www.python.org/

4.5.1 ANTLR

ANTLR7, ANother Tool for Language Recognition, is a
compiler toolkit for creating lexers and parsers from gram-
mar �les. It can create these compilers for several di�erent
target languages, including Java and Python. There exists
ANTLR grammar �les for the challenges we are facing: parsing C, C pre-
processor step and parsing ASN.1. These grammars con�gure ANTLR to
create Java lexers and parsers that reads and validates inputted source code
�les.

4.5.2 PLY

PLY8 is a Python alternative to the popular lexer and parser compilers
lex and yacc. It also comes with a 95% completed C preprocessor in case
we are required to modify the preprocessor for our utility. Other special
purpose parsers like pycparser and cppheaderparser depends on PLY. These
are described later in this section.

4.5.3 pycparser

There are two Python libraries for parsing C with the same name, but dif-
ferent capitalization, pycparser9 and PyCParser10. While they both aim to
solve almost the same problem, the �rst one appears to have better documen-
tation, is a more mature project and support more of the C99 speci�cation.
pycparser requires PLY to work.

4.5.4 cppheaderparser

Cppheaderparser11 is a parser for C++ header �les written in Python. It is
an alternative for pycparser in case we need to parse C++ �les instead of
simple C header �les. It also depends on PLY.

4.5.5 GCC

GNU Compiler Collection12 (GCC) is a compiler system, which
has front ends that parse C and C++ code, and is written in
C and C++. It can be used in our utility as an external tool
that does the parsing and then outputs an intermediate language
representation, which we can parse/search to �nd the C struct de�nitions.

7http://www.antlr.org/
8http://www.dabeaz.com/ply/
9http://code.google.com/p/pycparser/

10https://github.com/albertz/PyCParser
11http://sourceforge.net/projects/cppheaderparser/
12http://gcc.gnu.org/

32

http://www.antlr.org/
http://www.dabeaz.com/ply/
http://code.google.com/p/pycparser/
https://github.com/albertz/PyCParser
http://sourceforge.net/projects/cppheaderparser/
http://gcc.gnu.org/

Its drawbacks are a lack of �exibility if we need to change its behaviour, and
we will still need to write a custom parser or use something like GCC-XML
and an Extensible Markup Language (XML) parser.

4.5.6 Clang

Clang13 is a compiler front end for C, C++, Objective-
C and Objective-C++, written in C++. Clang di�er from
GCC as it behaves as a library rather than an external tool,
but for Java we will have to use it like GCC because there
are no Java-Clang bindings. It supports outputting the abstract syntax tree
as XML, which our utility then will need to parse. Clang provides bindings
for Python so it can be used as a library, but its main drawback is, like GCC,
a lack of �exibility. Clang is a part of the LLVM toolkit.

4.6 Con�guration Frameworks

This section looks at di�erent con�guration frameworks for Python. Which
we selected and why is explained in subsection 4.10.4.

Our utility needs a �exible con�guration, as some of the information we
shall display does not exist in the �les we parse. For example there are no
clear relationship between enumerated values in messages and their names.
These must be provided through a con�guration.

4.6.1 YAML Ain't Markup Language

YAML Ain't Markup Language (YAML)14 (YAML
Ain't Markup Language) is a data serialization format.
It is designed to be easy to read and write for humans. YAML syntax
was designed to be easily mapped to data types common to most high-level
languages. While most programming languages can use YAML for data
serialization, YAML excels in working with those languages that are fun-
damentally built around the three basic primitives. These include the new
wave of agile languages such as Perl, Python, PHP, Ruby, and Javascript.

PyYAML15 is a YAML parser for the Python programming language,
and it is available for both the 2.x and 3.x branch of Python. It is licensed
under the Massachusetts Institute of Technology (MIT) license.

13http://clang.llvm.org/
14http://yaml.org/
15http://pyyaml.org/

33

http://clang.llvm.org/
http://yaml.org/
http://pyyaml.org/

4.6.2 con�gparser

con�gparser16 is a Python module used for managing user-editable con�g-
uration �les. The �les are organized into sections, and each section can
contain name-value pairs for con�guration data. Value interpolation using
Python formatting strings is also supported, to build values that depend on
one another.

con�gparser module is a part of Python standard library, and therefore
does not require installation or con�guration to use.

4.6.3 Con�gObj

Con�gObj17 is a simple but powerful con�g �le reader and writer (originally
based on Con�gParser). Its main feature is that it is very easy to use, with a
straightforward programmer's interface and a simple syntax for con�g �les.
Among others, it has these additional features:

� Nested sections (subsections), to any level

� List values

� Multiple line values

� String interpolation (substitution)

� Integrated with a powerful validation system

Currently, Con�gObj module only exists for Python up to version 2.7. It is
under the Berkeley Software Distribution (BSD) license.

4.7 Unit Testing Frameworks

There are many di�erent unit testing frameworks for Python. We have
evaluated three of them to see which best suits our utility, which we describe
in this section. In subsection 4.10.5, we describe which one we selected and
why.

4.7.1 py.test

py.test18 is a mature, full-featured testing tool. It runs on Python 2.4-3.2,
PyPy and Jython-2.5.1 interpreters on both Windows and Posix platforms.
It is well documented and popular in the Python community. The best
known project that uses it is PyPy, which has over 16,000 unit tests. py.test

16http://docs.python.org/py3k/library/configparser.html
17http://www.voidspace.org.uk/python/configobj.html
18http://pytest.org/latest/

34

http://docs.python.org/py3k/library/configparser.html
http://www.voidspace.org.uk/python/configobj.html
http://pytest.org/latest/

discovers tests automatically by searching for modules, classes, functions
and methods that starts with �test_�. It uses the assert statement to test
variables and values. These implicit behaviours make tests easier and faster
to write, but harder to learn and understand.

4.7.2 nose

nose19 testing framework extends Python's unittest library to make test-
ing easier. It provides an alternative test discovery and running process
for unittest, which is intended to mimic the behavior of py.test as much
as reasonably possible without resorting to too much magic. nose support
easy-to-write plugins, and it comes bundled with the most popular ones. It
supports both Python 2.x and 3.x branches.

4.7.3 Attest

Attest20 is a test automation framework for Python,
emphasising modern idioms and conventions. It sup-
ports test collecting using Python decorators, introspection of the assert
statement, treating tests as Python modules rather than scripts. Attest is a
rather young framework, with limited features and documentation. Attest
is a sub-level project of the Pocoo project.

4.7.4 coverage.py

coverage.py21 is a tool for measuring code coverage of Python programs. It
is typically used to measure the e�ectiveness of unit tests, by showing which
parts of the code are exercised by tests. coverage.py support Python 2.3
to 3.2. It can output results in plain text, HyperText Markup Language
(HTML) and XML.

4.8 User Documentation Tools

Some of the non-functional requirements for our utility is user documenta-
tion. In this section we describe a tool for writing such documentation, and
a free hosting site for our user documentation.

19http://readthedocs.org/docs/nose/en/latest/
20http://packages.python.org/Attest/
21http://nedbatchelder.com/code/coverage/

35

http://readthedocs.org/docs/nose/en/latest/
http://packages.python.org/Attest/
http://nedbatchelder.com/code/coverage/

4.8.1 Sphinx

Sphinx22 is a Python tool for writing documentation, that
makes it easy to create intelligent and beautiful documen-
tation. It is used for the standard Python documentation, and it is popu-
lar in the Python community. Sphinx uses reStructuredText as its markup
language, which is a easy-to-read, what-you-see-is-what-you-get plain text
markup syntax and parser system. Our use case for sphinx is writing docu-
mentation for our utility, how to use it and con�gure it. Sphinx can generate
output in several di�erent formats, including HTML and latex/pdf.

4.8.2 Read the Docs

Read the Docs23 is a free hosting of documentation for the open
source community. It supports Sphinx docs written with reStruc-
turedText, and it can automatically pull from Git, Subversion,
Bazaar, and Mercurial repositories. We can con�gure it so it automati-
cally pulls and compiles our user documentation from our GitHub repository
whenever we push any changes.

4.9 Integrated Development Environment

4.9.1 PyCharm

PyCharm24 is a cross platform, proprietary Inte-
grated Development Environment (IDE) for Python.
It has good support for text editing, syntax highlighting, auto indentation,
code navigation, code completion and automatic error checking. There is
also a decent debugger and unit test support that can help �nding errors
and it has integrated version control support, including git, which makes it
easy to synchronize with a remote repository. The most used functions are
also paired with keyboard shortcuts.

The downside with PyCharm is that it requires a relative expensive li-
cense. It is, however, possible to apply for classroom licenses that are free of
charge. The latter is a requirement to make this IDE a viable option.

4.9.2 PyScripter

PyScripter25 is a Windows only, open source IDE for
Python. It has support for basic text editing functions
relevant to programming, like syntax highlighting, auto

22http://sphinx.pocoo.org/
23http://readthedocs.org/docs/read-the-docs/
24http://www.jetbrains.com/pycharm/
25http://code.google.com/p/pyscripter/

36

http://sphinx.pocoo.org/
http://readthedocs.org/docs/read-the-docs/
http://www.jetbrains.com/pycharm/
http://code.google.com/p/pyscripter/

indentation, code completion, debugger and �le management. It also has
some support for navigating the code, for example by o�ering to �nd the
next point in the code that references a certain variable or function. The
mentioned function mostly has keyboard shortcuts.

It does not have support for automatic error checking in the program, so
it will not alert the user of spelling and syntax errors. It also lacks integra-
tion with any version control systems like git or svn. The code completion
and code navigation is a little lacking. It will, for example, not suggest im-
porting �les if you reference a class from another module, and it cannot give
a complete list of usages of a function.

4.9.3 Vi IMproved (VIM)

VIM26 is cross-platform, open source text editor originally cre-
ated for the Amiga. It is not regarded as an IDE, but it provides
all the regular features of text editors, including syntax highlight-
ing, auto-completion, auto-indentation, searching, multiple undo
and redo. It can be con�gured to support almost everything modern IDE's
support, and its extensive customizability is considered parts of its strength.
But it is also parts of its weakness, it is very di�cult for new VIM users
to learn how to use it e�ectively. Therefore we do not suggest any team
member that is not already experienced with VIM to use it.

4.9.4 Summary

PyCharm is by far the best IDE evaluated in terms of functionality, and it
is the one that mirrors Eclipse the most, which is an advantage, since most
team members are best acquainted with Eclipse. It will be the recommended
IDE for this project, given that we can acquire classroom licenses.

On the other hand, there is no real reason to dictate the use of IDE, since
what determines the productivity of a team member is more how well you
know the speci�c tool you are using. It will therefore be up to each team
member to choose what IDE/text editor they want to use.

4.10 Evaluation and Conclusion

In this section we provide a justi�cation for the choices we have made in
regards to process, programming language, and libraries we will use. Then
in subsection 4.10.6 we give a brief description of the framework we will
construct for our utility.

26http://www.vim.org/

37

http://www.vim.org/

4.10.1 Development Process Choice

We have chosen Scrum for our development strategy. We do not have a lot
of experience with software development either individually or as a team,
so we have little personal knowledge of how much we are able to produce,
and the task may present challenges that we are not prepared for when the
project starts. For these reasons we believe that we need to take an agile
approach to this project. This way, we may both learn as we go, and adjust
later iterations by the result of the previous. We may also have something
to deliver even if we do not have time to implement all the desired features.

The Scrum methodology �ts these goals perfectly, and is therefore a
natural choice. The risk factor here is that all team members are mostly
unfamiliar with Scrum, while we have at least a little knowledge of waterfall.
We do, however, think that the time and risk of learning will not outweigh
the bene�t it will give us over waterfall.

4.10.2 Programming Language Choice

We originally selected Java as our programming language because it would
run on all the platforms required, it o�ered automatic memory management
so it would be easier to debug, and it was the only language everyone on the
team had experience with.

We looked at ANTLR for generating a C lexer and parser in Java, which
looked very promising. It also provided grammar �les for creating a C prepro-
cessor in Java. Closer evaluation revealed that the C preprocessor grammar
was written in 2006, and had stopped working in 2008 as newer versions of
ANTLR was not backwards compatible. Also the generated C parser only
validated C code, it did not create an abstract syntax tree that we could
traverse. This meant that using Java and ANTLR would require us to mod-
ify these grammars to suit our needs, and ANTLR's lack of documentation
became a signi�cant risk for our project.

These issues and feedback from our customer made us evaluate Python
for developing our utility. We found several libraries for parsing C �les, and
even one for parsing C++ header �les. These are described in section 4.5.

We decided to use Python for this project because the parsing libraries for
Python came in working condition with decent documentation, and because
we were able to create a small working prototype in Python in just a few
hours. We estimate that it would take at least a week to achieve the same
result in Java.

A challenge with our decision is the fact that not all team members have
su�cient experience with Python. Most team members must therefore do
some self study before we start the �rst sprint.

38

4.10.3 Parsers Libraries & Tools Choice

We outlined three di�erent approaches for parsing C header �les. The �rst
approach is to write a custom parser ourself, the second is to use a C parsing
library, and the third is to use a toolkit parser like GCC and Clang.

We felt that writing our own C parser with C preprocessor would possibly
take up a lot, if not all, of the available project time. The third option would
add a large dependency that our customer want to avoid if possible. GCC
and Clang can be challenging to install and use on Windows.

Therefore using a C parser library would be the best solution, and as
mentioned above, Java with ANTLR proved challenging. So we evaluated
Python parser libraries.

We decided to use pycparser. We favored pycparser over PyCParser and
cppheaderparser because it has better documentation, it seemed to be a more
mature project, and it supports the most of the C99 speci�cation. pycparser
depends on PLY, so our utility will also depend on it.

For C preprocessor we have selected to use a tool for Windows that comes
with pycparser, on Mac we will use the one that comes with XCode, and on
other platforms we will either use GCC or tools that comes with the platform.
If we need to modify a C preprocessor, we might use PLY's incomplete C
preprocessor.

4.10.4 Con�guration Framework Choice

We have listed a summary of some of the advantages and drawbacks of the
di�erent con�guration frameworks we looked at in Table 4.1.

Table 4.1: Con�guration Summary

YAML con�gparser Con�gObj

Advantages +Simplicity
+Flexibility

+Easy to use +Easy to use
+Flexibility
+Nesting
+Type
validation

Drawbacks -External library
-No type
validation

-Lacks nesting
-Lacks lists
-No type
validation

-External library
-Lacks lists

Latest version 3.10 3.2 4.7.2
Python branch 2.7 and 3.3 2.7 and 3.3 2.7
License MIT PSF L BSD-new

We decided to use YAML for handling con�guration �les, as it covered
most of our requirements. Because we decided to use the latest version of
Python, version 3.2.2, the range of possible con�guration frameworks was

39

reduced. Therefore, although Con�gObj are very suitable for our task, it
was eliminated as it is only available up to version 2.7. This left us with
two main possibilities: YAML and con�gparser. con�gparser turned out
to be insu�cient for us, mainly because it lacked lists. Lists are needed
for description of hierarchical structures of the C headers. YAML has only
two minor disadvantages we should be aware of. Firstly, there is no type
validation mechanism, so we will have to create our validation manually,
and secondly, it is an external library. We �nd this drawback minor for
now, but it can turn out to be a problem in the future. Except for these
issues, YAML, more speci�cally pyYAML, seems to have a good potential
for creating �exible con�guration support for our utility.

4.10.5 Unit Testing Framework Choice

The three frameworks we looked at are very similar, being modern Python
testing frameworks. They di�er in maturity and what is often called magic
in the Python community.

py.test is the most mature but also the most magic, it uses a lot of
introspection to discover tests and it has no API. nose is heavily in�uenced
by py.test, but it tries to be more explicit, and provides an API. Attest is
the youngest testing framework, and like nose, has less magic and focuses
on providing a very pythonic API. Being the youngest also means it has the
least documentation, functionality and plugins. Therefore Attest might be
the easiest testing framework to learn. Therefor we decided to use Attest for
unit testing of our utility.

4.10.6 Our Framework

Our utility will need to take C header �les as input, search through them
to �nd struct de�nitions, and create Lua scripts that dissects the structs in
Wireshark.

To �nd the structs we will use pycparser to parse the input �les, create an
abstract syntax tree, and to �nd the struct de�nitions. We will use pyYAML
to read con�guration from �le, which together with the struct de�nitions will
be placed in some suitable data structures for generating dissectors.

The versions of the di�erent tools and libraries we are using can be found
in Table 4.2.

4.11 IP Rights & License

The customer have explained that they do not intend to distribute our utility,
and that we are free to license it as open source if we want to, under whichever
license we feel is most suited. They suggested GNU27 General Public License

27http://www.gnu.org/

40

http://www.gnu.org/

Table 4.2: Versions of Tools and Libraries

Library/Tool Version Why

Python CPython 3.2.2 Latest stable standard Python implementation
pycparser 2.06-dev Development version, for _Bool support
pyYAML 3.10 Latest stable version
PLY 3.4 Latest stable version
Attest 0.6-dev Development version, for Python 3.2 support
Sphinx 1.1 Latest stable version
WireShark 1.7.0-SVN Latest nightly build, for Lua support

(GPL) as Wireshark is released under it.
When we decided which license to use, we had to consider the licenses of

the libraries and tools we depend upon. This is summarized by Table 4.3.
Table 4.3: Licenses

Wireshark GNU GPL v3
PLY BSD-new
pycparser BSD-new
pyYAML MIT

Our utility GNU GPL v3

Some of the requirements for our utility might require us to modify the C
preprocessor in PLY and the pycparser library, which made us consider the
new 2-clause BSD license the most suited for us. Since it also gives us the
option to later move to a more restrictive license, like GPL, we selected it.

During sprint 3 we discovered that Lua dissectors which interfaces with
the Wireshark API must be under GPL license. We therefor decided during
Sprint 4 to change the license of our utility, as well as the license on any
generated Lua dissectors, to GPL version 3.

41

CHAPTER 5

REQUIREMENTS

This chapter describes a utility that creates Wireshark dissectors from C
header �les. The dissectors must interpret binary representations of C structs.
In section 5.1 we give a high level overview of the utility and lists all the
functional and non-functional requirements, while section 5.4 provides use
cases for the utility, and section 5.6 contains the complete product backlog.

5.1 List of Requirements

We are to create a utility that allows Wireshark to interpret the binary
representations of C-language structs. While C structs seldom are exchanged
across networks, they are sometimes used in inter-process communication.
The purpose of the utility described here is to provide Wireshark with the
capability of automatically dissecting the binary representation of a C struct,
as long as its de�nition is known.

The expected work �ow for the utility is to read one or more C header
�les, which contain struct de�nitions, and output Wireshark dissectors, im-
plemented in Lua scripts. A con�guration �le or source code annotations in
the header �les may be used when additional con�guration is required.

Table 5.1 and Table 5.2 lists the functional requirements, while Table 5.3
lists non-functional requirements. Each requirement have a priority (Pri)
and a complexity (Cmp): H, M or L. This is explained in subsection 5.1.1
and subsection 5.1.2.

5.1.1 Prioritization

The team has, in cooperation with the customer, prioritized the requirements
in four categories: a) High, b) Medium, c) Low or d) Optional.

High Core functionality of the utility that must be implemented.

42

Medium Requirements that will improve the value of the utility.

Low Requirements that will not add much value to the utility.

Optional Requirement that may be implemented depending on available
time.

5.1.2 Complexity

The team has estimated the complexity for each requirement. We use the
following categories: a) High, b) Medium or c) Low.

High Functionality that seems di�cult and non-trivial to create.

Medium Functionality that seems time consuming but straight forward.

Low Requirements that are trivial to implement.

5.1.3 Final Requirements

The functional requirements are listed in Table 5.1, optional requirements in
Table 5.2, and non-function requirements are listed in Table 5.3.

5.2 Requirements Evolution

The customer provided an initial requirements speci�cation for the utility at
the start of the project, which can be seen in Appendix E.

We made some initial changes to the format, created some non-functional
requirements and added priority and complexity to each requirement. This
resulted in the initial requirements listed in Table E.1 and Table E.2.

Based on feedback provided by the customer during the sprints, we added
several new requirements or rewrote already existing requirements, which
are described in this section. The �nal requirements are described in sub-
section 5.1.3.

5.2.1 Sprint 1

The following new requirements were added during this sprint based on feed-
back from customer.

FR2-D The dissector shall be able to recognize invalid values for a struct
member.

FR4-D Con�guration must support specifying the ID of dissectors.

FR4-E Con�guration must support custom Lua �les for speci�c protocols.

43

Table 5.1: Functional Requirements

ID Description Pri. Cmp.

FR1 The utility must be able to read basic C language struct de�nitions from C
header �les

H

FR1-A The utility must support the following basic data types: int, �oat, char and
boolean

H L

FR1-B The utility must support members of type enum H L
FR1-C The utility must support members of type struct H M
FR1-D The utility must support members of type union M M
FR1-E The utility must support members of type array H M
FR1-F The utility should detect structs with the same name, and report it as an error M L

FR2 The utility must be able to generate Lua dissectors for Wireshark for the binary
representation of C struct

H

FR2-A The dissector shall be able to display simple structs H L
FR2-B The dissector shall be able to support structs within structs M M
FR2-C The dissector must support Wireshark's built-in �lter and search on attributes H L
FR2-D The dissector shall be able to recognize invalid values for a struct member L L
FR2-E The dissector shall be able to guess dissector from packets size L L

FR3 The utility must support C preprocessor directives and macros H
FR3-A The utility shall support #include H L
FR3-B The utility shall support #de�ne and #if H L
FR3-C The utility shall support _WIN32, _WIN64, __sparc__, __sparc and sun M H

FR4 The utility must support user con�guration M
FR4-A Con�guration must support valid ranges for struct members L L
FR4-B Con�guration must support custom Lua �les for speci�c protocols H H
FR4-C Con�guration must support custom handling of speci�c data types L M
FR4-D Con�guration must support specifying the ID of dissectors H L
FR4-E Con�guration must support various trailers (other registered protocol) L H
FR4-F Con�guration must support integer members which represent enumerated

named value
M L

FR4-G Con�guration must support members which are bit string M L
FR4-H The utility shall support automatic generation of placeholder con�guration L L
FR4-I Con�guration must support specifying the size of a struct members M L

FR5 The dissectors must be able to handle binary input which size and endian de-
pends on originating platform

M

FR5-A Flags must be speci�ed in con�guration for each platform M M
FR5-B Generate dissectors with correct alignment depending on platform M M
FR5-C Generate dissectors which support both little and big endian platforms H M
FR5-D Generate dissectors which support di�erent sizes depending on platforms M H

FR6 The utility shall support parameters from command line H
FR6-A Command line shall support parameter for C header �le H L
FR6-B Command line shall support parameter for con�guration �le H L
FR6-C Command line shall support batch processing of C header and con�guration

�les
L M

FR6-E Command line shall support #de�ne and �Include directives M L
FR6-F The utility shall only generate dissectors from structs with valid id and theirs'

dependencies
L M

44

Table 5.2: Optional Requirements

FR2-F Dissectors shall display a warning if a struct member contains uninitialized memory L M

FR6-D When running batch mode, dissectors that already are generated, shall not be regen-
erated, if the source are not modi�ed since last run

L H

FR7 The utility shall be able to fetch con�guration directly from source code L
FR7-A The utility shall �nd struct descriptions from Doxygen comments L H
FR7-B The utility shall �nd con�guration of #de�ne enums from header �les L H

Table 5.3: Non-Functional Requirements

ID Description Pri. Cmp.

NR1 The utility shall be able to run on latest Windows and Solaris operating system M L

NR2 The dissector shall be able to run on Windows x86, Windows x86-64, Solaris x86,
Solaris x86-64 and Solaris SPARC

M M

NR3 The utility shall only have a command line user interface. H L

NR4 The utility must have su�cient documentation to allow a person, with no prior
knowledge of the system or Wireshark, to be able to use it to generate Lua dis-
sectors after �ve hours of reading

M M

NR5 The utility must have su�cient documentation to allow a person, with prior knowl-
edge of Wireshark, to be able to use it to generate Lua dissectors after one hour
of reading

M M

NR6 The utility must have su�cient documentation to allow a person, already pro�cient
with the system, to be able to extend its functionality after four hours of reading

M M

NR7 The utility code should follow standard python coding convention as speci�ed by
PEP8 and try to follow python style guidelines de�ned by PEP20

H L

NR8 All Python modules, classes, functions and methods in the utility should have
docstrings which explains their code

L L

45

FR6-C Generate dissectors which support both little and big endian plat-
forms.

FR6-D Generate dissectors which support di�erent sizes depending on plat-
forms.

5.2.2 Sprint 2

Based on feedback from the customer we added four new requirements in
sprint 2, in addition to other small requirements changes.

Requirement FR4-B was split into two new requirements, FR4-F and
FR4-G. Requirement FR6-B was completely rewritten, and the following
requirements changed id during sprint 2.

� FR4-E -> FR4-B

� FR5 -> FR4-E

� FR6 -> FR5

� FR7 -> FR6

The following new requirements were added in sprint 2.

FR1-F The utility should detect structs with the same name, and report it
as an error.

FR4-F Con�guration must support integer members which represent enu-
merated named value.

FR4-G Con�guration must support members which are bit string.

FR5-B Generate dissectors with correct alignment depending on platform.

The customer also provided the following requirement descriptions and feed-
back.

FR1-E: Support member of type array Arrays should be displayed as
a sub-level. Multidimensional arrays should have one sub-level per dimen-
sion. Dissectors should also display the type of the array and show indexes
for sublevels.

FR2-B: Struct within structs Inner structs should be displayed as a
sub-level of the outer struct. When an external dissector is called, it should
be called with a name and not an id, in order to not assign an id to structs
that are never used as a base.

46

FR4-E: Headers/trailers The customer speci�ed this mean that a given
struct is a header, and that it can have various trailers. A con�guration �le
should specify the kind of trailer, and what variable inside the struct which
specify how many trailer items to expect.

FR5-C: Endian handling The header part of the packet, which include
the platform �ag, will always be in big endian (network order).

FR6-C: Batch mode The customer clari�ed this to mean that the utility
should be able to run completely unattended given a set of command line
arguments. For example it should not ask the users any questions under this
mode. This is to be able to run it as a cron job at night.

Data Alignment The customer said that we could have some problems
with alignment with the current o�sets, because the di�erent platforms may
pad the data members of a struct to match an integer number of words on
that platform.

5.2.3 Sprint 3

Customer feedback during sprint 3 resulted in one new non-functional re-
quirement.

NR5 The utility must have su�cient documentation to allow a person, with
prior knowledge of Wireshark, to be able to use it to generate Lua
dissectors after one hour of reading.

Non-functional requirements NR5 to NR7 had their id increased by one.
The customer also provided the following requirement descriptions and feed-
back.

FR5: Support multiple platforms We should not generate separate
dissector �les for the di�erent platforms. It is much better if we have one
protocol with di�erent functions for the di�erent platforms, as this would
not lead to such a performance hit in Wireshark.

FR2-F: Uninitialized memory It would be nice if our utility was able
to detect uninitialized memory for debugging purposes. Di�erent compilers
use default patterns ins members that are uninitialized. If our utility could
detect these patterns, we could display the data in Wireshark with a warning
that lets the user know that the data might have been uninitialized.

FR4-D: Dissector id's The customer informed us that a struct could
belong to several dissector id's. We should implement this by specifying a
list of id's instead of just a single one.

47

Include dependencies The customer described a scenario where a struct
was included in another struct, which is resident in a di�erent header �le
that the �rst struct has not included. In the scenario both �les are included
in a third header �le. This creates a dependency that we must take into
consideration and implement in the utility.

5.2.4 Sprint 4

As it became clear in sprint 3 that we would complete all the given require-
ments before the end of sprint 4, we requested new features which we would
consider to implement. The following new requirements were suggest by the
customer.

FR2-E The dissector shall be able to guess dissector from packets size.

FR2-F The dissector shall display an warning if a struct member contains
uninitialized memory.

FR4-H The utility shall support automatic generation of con�guration �les.

FR4-I Con�guration must support specifying the size of a struct members.

FR6-E Command line shall support #de�ne and �Include directives.

FR6-F The utility shall only generate dissectors from structs with valid id
and theirs' dependencies.

FR7 The utility shall be able to fetch con�guration directly from source
code.

FR7-A The utility shall support generation of struct member description
from Doxygen comments.

FR7-B The utility shall support reading con�guration for #de�ne enums
from the header �les.

The customer also provided the following requirement descriptions and feed-
back.

FR4-B: Custom Lua �les The customer wanted a way to be able to
fetch the bu�er o�set value to be able to both use it to pick speci�c parts of
the message and modify it.

FR3: Support for the #pragma directive The customer uses the
#pragma directive to identify the version of the �le. This will not a�ect
the dissectors generated in any way. #pragma will, however, crash CSjark
if they are not removed.

48

FR4-H: Auto-generation of con�guration �les The customer asked
if we could make the utility auto-generate template con�guration for each
struct it can generate a dissector for. This would make it easier for the user
to con�gure structs, as the user only needs to �ll in an id number in most of
the cases.

FR6-F: Only generate useful dissectors The customer wants a mode
where the utility only generates dissectors for structs with an corresponding
con�guration �le containing an id, and for structs and unions that are inside
these structs.

FR6-E: Support speci�c C preprocessor directives The customer
wants the utility to be able to take certain C preprocessor directive arguments
from command line. For example �Include or �De�ne.

FR7-A: Find struct description from Doxygen comments Make our
utility be able to read comments corresponding to the struct and use these
for the description �eld in dissectors. This feature would make generating
dissectors require less manual con�guration.

FR7-B: Read int-enum con�guration from header �les Some of the
integer members may really be intended to be used as an enum, with the
numerical values corresponding to strings. Some of the headers contains
#de�ne directives that speci�es these string and integer pairs. The cus-
tomer would like the utility to be able to �nd these and encode it in the
con�guration �le. The bene�t is that the customer then does not have to
con�gure this manually.

FR2-E: Guess the dissector from packet size The customer wants
Wireshark to be able to guess what dissectors to use from the size of the
packet. It could compare this size to the size dissectors expects. If multiple
dissectors �t, it could try to display the message with all suitable dissec-
tors. This makes the customer able to use some dissectors without manually
con�guring the message ID for the struct it represents.

FR6-E: A way to ignore headers in a speci�ed folder The customer
wants a way to specify what folder to ignore in batch mode. This is to avoid
complex headers that are irrelevant to the customer's goal (does not include
structs), but which our utility fails to parse.

49

5.3 Requirement Description

This section gives a short description of the requirements, to give the reader
of the paper a better understanding of the requirements. The description for
each group of requirement are described below:

FR1 To be able to parse the header-�les, the utility need to have support
for di�erent C data types and de�nitions. This requirement list the
di�erent members that the utility shall support.

FR2 The requirement specify what the utility shall create dissector for, and
what they shall support to be able to be display the packet correctly
in Wireshark.

FR3 To be able to parse the header-�les, the utility will need to support
some C preprocessor directives and macros. This requirement covers
what the utility need to support.

FR4 To make the utility �exible, there is a need to support con�guration
of how the utility should handle di�erent data types, custom code and
con�guration how to display members in Wireshark. This requirement
specify what the utility should support con�guration of.

FR5 To be able to support di�erent platforms, the utility will need func-
tionality that can be di�erent between the platforms. The requirement
lists what the utility must support, to handle di�erent platforms.

FR6 These requirement tells what kind of command-line parameters the
utility should support.

FR7 The requirement in this category, is for automatic genereation from
the header-�les. With automatic generation there will be faster the
con�gure the system.

The relationship between the requirements can be seen in Figure 5.1.

5.4 Use Cases

This sections contains use case diagrams for our two actors, and detailed
textual use cases for these diagrams.

5.4.1 Actors

An actor speci�es a role played by an external person or entity that interact
with our utility. We have three types of actors to consider. First is the
primary actor that uses the utility to generate dissectors from C header-
�les. A secondary actor is a user who con�gures the utility to change the

50

Figure 5.1: Relationship Between Requirements

output of it. Finally, we have an o�stage actor, which does not use our utility
himself, but uses the outputted dissectors in Wireshark.

We have de�ned two use case actors for our utility. The customer has
speci�ed that the o�stage actor, called developer, is the most important
actor.

Developer User of the generated Wireshark dissectors, o�stage actor

Administrator User and con�gurer of utility, primary and secondary actor

5.4.2 Use Case Diagrams

Figure 5.2 shows the use case diagram for the administrator, and Figure 5.3
is the use case diagram for the developer.

5.4.3 Textual Use Cases

Each of the use cases is described textually below, to give a better under-
standing of the use cases diagrams. The textual use cases can be seen in
Table 5.4-5.11.

5.5 User Stories

To make it easier to implement the requirements, user stories were written.
The user stories describes how the requirements should be implemented. The
user stories that was written can be found in the sprint design for each of
the sprints. Table 5.12 shows a template of a user story.

51

Figure 5.2: Use Case Diagram: Administrator

Figure 5.3: Use Case Diagram: Developer

52

Table 5.4: Filter and Search Textual Use Case

Element Description

Use case name Filter and search on attributes
Goal The developer wants the correct set of results based on the search

phrase
Summary The developer would like to �lter and search on attributes in the

packets displayed in Wireshark
Preconditions Wireshark needs to be running with dissectors.
Postconditions Wireshark displays the results.

Flow of Events
1. The developer selects the search �eld in Wireshark's GUI.
2. The user types in a search phrase.
3. Wireshark will present the search results that match the query.

Exceptions None

Table 5.5: View Dissector Textual Use Case

Element Description

Use case name View the dissectors in Wireshark
Goal View structs correctly dissected in Wireshark
Summary The developer would like to dissect a structs and have the members

and values displayed in Wireshark by using the dissectors in Wire-
shark's plugin folder.

Preconditions
1. The developer have Wireshark running with dissectors.
2. The dissector for a struct will dissect it correctly, according to the
initial internal structure of the struct.

Postconditions Wireshark displays the struct with the correct structure and values.

Flow of Events
1. The developer selects a struct message in Wireshark.
2. Wireshark calls the correct dissector and dissects the selected
message.
3. Wireshark displays the members and values of the selected mes-
sage.

Exceptions 1. The correct dissector for a struct might not exist in Wireshark's
plugin folder, making it impossible to dissect the message.

53

Table 5.6: Debugging Textual Use Case

Element Description

Use case name Debugging
Goal The developer wants to debug inter-process communication.
Summary The developer wants to debug inter-process communication by using

Wireshark extended by dissectors.

Preconditions
1. The developer have Wireshark running with dissectors.
2. Wireshark have access to the packets sent between the processes
that the developer wants to debug.

Postconditions Wireshark displays the communication dissected.

Flow of Events
1. The developer selects the inter-process communication to debug.
2. Wireshark calls the correct dissector and dissects the selected
messages.
3. The developer is able to debug the process communication by
looking at the dissected messages.

Exceptions
1. The correct dissectors might not exist in Wireshark's plugin folder,
making it impossible to dissect the messages.
2. The inter-process communication might not only consist of structs,
but also data structures that Wireshark are unable to display.

54

Table 5.7: Con�gure Platforms Textual Use Case

Element Description

Use case name Con�gure platforms
Goal Successfully con�gure the supported platforms.
Summary The administrator wants to be able to con�gure the platforms that

the utility supports. This includes adding, removing and editing
supported platforms.

Preconditions The administrator must have access to the utility's platform module
(the source code).

Postconditions The changes must be saved to the platform module.

Flow of Events
1. The administrator locates the platform module in the utility.
2. The administrator makes changes to the module to achieve the
wanted support.
3. The administrator saves the changes and exits.

Exceptions The changes made to the platform module were not of correct syntax.
Leaving the utility defected.

55

Table 5.8: Generate Lua Dissector Textual Use Case

Element Description

Use case name Generate Lua-dissector
Goal Successfully generate a Lua-dissector.
Summary The administrator wants to generate a Lua-dissector based on a

header �le.

Preconditions
1. The administrator has the utility and its dependent libraries in-
stalled.
2. The administrator has a header �le, which a Lua-dissector shall
be made from.

Postconditions The utility outputs the generated Lua-dissector to a default- or given
output location.

Flow of Events
1. The administrator feeds the utility with the header- and con�gu-
ration �le
2. The utility generates a Lua-dissector based on the input.
3. The utility outputs the Lua-dissector to a default- or given output
location.

Exceptions
1. The header �le might not be of correct syntax.
2. The utility's dependencies might not be covered, resulting in a
crash of the utility.

Table 5.9: Create and Change Con�guration File Textual Use Case

Element Description

Use case name Create and change con�guration �le
Goal Successfully create and/or change a con�guration �le.
Summary The administrator wants to create and/or change a con�guration �le.
Preconditions Create or �nd an existing con�guration �le
Postconditions Save the �le.

Flow of Events The administrator changes the located �le to get the wanted con�g-
uration.

Exceptions The created or changed con�guration �le might not be of correct
syntax.

56

Table 5.10: Generate Con�gured Lua Dissectors Textual Use Case

Element Description

Use case name Generate con�gured Lua-dissectors.
Goal Successfully generate a con�gured Lua-dissector.
Summary The administrator wants to generate a Lua-dissector from a header

�le with an associated con�guration �le.

Preconditions
1. The administrator has the utility and its dependent libraries in-
stalled.
2. The administrator has the header and con�guration pair, which
the Lua-dissector shall be made from.

Postconditions The utility outputs the generated Lua-dissector to a default- or given
output location.

Flow of Events
1. The Administrator feeds the utility with the header- and
con�guration-�le
2. The utility generates a Lua-dissector based on the input.
3. The utility outputs the Lua-dissector to a default- or given output
location.

Exceptions
1. The header and/or con�guration �le might not be of correct syn-
tax.
2. The utility's dependencies might not be covered, resulting in a
crash of the utility.

57

Table 5.11: Generate Batch of Lua Dissectors Textual Use Case

Element Description

Use case name Generate batch of Lua-dissectors.
Goal Successfully create multiple Lua-dissectors.
Summary The administrator wants to process multiple header- and

con�guration-�le pairs in one run of the utility.
Preconditions The administrator knows the locations of all the �les to parse.
Postconditions The utility outputs the generated Lua-dissectors to a default- or given

output location.

Flow of Events
1. The administrator feeds the utility with the header- and
con�guration-�les.
2. The utility generates Lua-dissectors for all the input headers.
3. The utility outputs the Lua-dissectors to a default- or given output
location.

Exceptions
1. A header or con�guration �le might not be of correct syntax,
which will make the utility skip that actual �le and proceed with the
rest of the �les in the batch.
2. The utility's dependencies might not be covered, resulting in a
crash of the utility.

Table 5.12: User Story Template

Header Value

ID ID for the user stories, written like USxx.
Requirements The requirement that the user story describes.
What Description of what the user want to achieve.
How Description of how the requirement should be implemented.
Result What the result is after the implementation.

58

5.6 Product Backlog

The complete product backlog can be seen in Table 5.13. The listed actual
work hours does not re�ect the total hours used on each requirement. Any
�xes, improvements or refactoring done in a later sprint is not included.
Testing and user documentation is also not considered.

Optional requirements which we did not implement are listed in Ta-
ble 5.14. These optional requirements are described in section 12.2.

59

Table 5.13: Product Backlog

Hours

Req. Description Sprint Est. Act.

FR1 Read basic C struct de�nitions 52 51

FR1-A Support data types: int, �oat, char and boolean SP1 24 21
FR1-B Support members of type enum SP2 6 5
FR1-C Support members of type struct SP2 7 3.5
FR1-D Support members of type union SP3 5 6
FR1-E Support members of type array SP2 7 12
FR1-F Detect structs with same name SP2 3 3.5

FR2 Generate Wireshark dissectors in Lua 69 59.5

FR2-A Display simple structs SP1 28 25
FR2-B Support display of structs within structs SP2 11 15
FR2-C Support Wireshark �lter and search on attributes SP3 3 1.5
FR2-D Recognize invalid values for a struct member SP1 22 15
FR2-E Guess dissectors from packet size SP4 5 3

FR3 Support C preprocessor directives and macros 24 7.5

FR3-A Support #include SP1 8 2
FR3-B Support #de�ne and #if SP1 11 3
FR3-C Support _WIN32, _WIN64, __sparc etc SP3 5 2.5

FR4 Support user con�guration 91 71

FR4-A Support valid ranges for struct members SP1 30 15
FR4-B Support custom Lua �les for speci�c protocols SP3 10 7.5
FR4-C Support custom handling of speci�c data types SP2 6 5
FR4-D Support specifying the ID of dissectors SP2 7 9
FR4-E Support various trailers (other registered protocols) SP2 18 15
FR4-F Support enumerated named values SP2 5 6.5
FR4-G Support bit strings SP2 10 11.5
FR4-H Automatic generation of placeholder con�guration SP4 1 0.5
FR4-I Support specifying the size of unknown struct members SP4 4 1

FR5 Handle input which size and endian depends on platform 40 23.5

FR5-A Flags speci�ed for each platform SP3 8 11
FR5-B Dissectors support memory alignment SP3 12 6.5
FR5-C Dissectors support both little and big endian SP3 6 4
FR5-D Dissectors support di�erent sizes from �ags SP3 14 2

FR6 Support parameters from command line 51 24

FR6-A Support parameter for C header �le SP1 9 9
FR6-B Support parameter for con�guration �le SP1 28 8
FR6-C Support batch processing of C header and con�guration SP2 7 4.5
FR6-E Support C #de�nes and �Include from CLI SP4 1 1
FR6-F Only generate dissectors for structs with valid ID SP4 4 1.5

Total 327 236.5

60

Table 5.14: Optional Requirements Estimates

Req. Description Est. Hours

FR2-F Display if struct member contains uninitialized memory 8
FR6-D Do not regenerate dissectors across multiple runs 2
FR7-A Find struct descriptions from Doxygen comments 20
FR7-B Find con�guration of #de�ne enums from header �les 20

Total 50

61

CHAPTER 6

TEST PLAN

This chapter presents the test plan for our solution. The test plan is based
on the standards set by the IEEE829-1998 standard for software testing [14],
but with a few changes to better �t with our project. The purpose of this
plan is to have a structured way of performing tests, as well as providing
the developers with a list of speci�c component-behaviors. The tests will
be based on functional as well as non-functional requirements, deterring
architectural drift and enforcing our design plans for the system.

6.1 Methods for Testing

Regarding software testing, we have two di�erent types of tests available,
namely Black box and white box tests. This section is dedicated to the
discussion of these two testing methodologies.

6.1.1 White Box Testing

White box testing is a method of software testing where you test internal
structures or modules of an application, as opposed to its functions. White
box testing requires the tester to have an internal perspective of the system,
as well as su�cient programming skills. As the utility was required to be
able to function with a variety of di�erent input, as well as being used as
a debugging tool itself, we chose to have every developer on the team write
unit tests for their own code, and then have someone else on the team do
the testing of their code in order to ensure correctness. Also, in order to
get a proper overview over what and how many parts of the system that
are covered by unit tests, the team decided to use a tool for measuring code
coverage.

62

Attest

As a tool for creating white box unit tests, the team decided to use the
Attest testing framework for python code. To create unit tests using Attest,
you start o� by importing Tests, assert_hook and optionally contexts from
attest. You then create a variable and initialize it to an instance of Tests,
which is the variable that will contain list functions that each constitutes
one test that is to be run. To feed your test instance with functions for
testing you then have to mark these functions with a decorator and feed it
the .tests function of the Tests instance. After creating a unit test in this
fashion you can run all of your unit tests through Attest from the command
line by typing �python -m attest�. This runs all of your unit tests through
Attest and returns a message telling the user how many assertions failed,
as well as what input made them fail. For more information read the user
documentation of Attest.

Coverage

As a tool for calculating code coverage the team decided to use Coverage,
which is a tool for measuring code coverage in python projects. In order
to run Coverage from the command line with the tests for this utility, you
would have to �rst navigate to the folder where you installed CSjark, before
typing �Coverage run -m attest�. This generates a �le that will be used to
Coverage for generating a html table displaying the coverage. In order to
create this html table you would then have to type �coverage html�, which
generates a folder named htmlcov. This htmlcov folder again contains a �le
named index.html that contains a html table describing which parts of the
system underwent testing and their code coverage.

6.1.2 Black Box Testing

Black box testing is a method of software testing where you test the func-
tionality of a system, as opposed to its internal structures. Black box testing
does in general not require the tester to have any intimate knowledge about
the system or any of the programming logic that went into making it. Black
box test cases are built around the speci�cations and requirements of a sys-
tem, for example its functional, and in some cases, non-functional require-
ments. The team decided to use black box testing for both the functional
and non-functional requirements of the utility, as the customer had already
expressed thoughts on extending and understanding the non-functional parts
of the utility themselves.

63

6.2 Non-Functional Requirements

As evaluating the non-functional requirements of a system through its source
code is very di�cult, it was decided that we should create test cases for them
the same way we created black box test cases. Some of these tests would
also require the team to have more manpower or resources than what can
be expected by a group of students. It was therefore also decided that we
would ask the customer for help regarding the testing of some of the non-
functional requirements. These test cases would then be designed according
to the wishes of the customer and what resources they were able to supply
us with.

6.3 Templates for Testing

Table 6.1 , Table 6.2 and Table 6.3 are templates we will be using for testing
purposes.

In order to standardize the testing process, the team decided on making
templates for both the test cases themselves and for reporting their results.
The ones responsible for testing were given the task of not only creating and
running the test cases themselves, but also adhering to the standards set in
this document.

Table 6.1 shows the template for each test case. All of the test cases
written for the utility will be in this format, and executed according to this
document.

Table 6.2 shows the template for reporting the result of each test case.
Table 6.3 shows the template for reporting code coverage.

Table 6.1: Test Case Template

Header Description

Description Description of requirement
Tester Team member responsible for the test
Prerequisites Conditions that needs to be ful�lled before starting the test
Feature Feature to test
Execution Steps to be executed in the test
Expected result The expected output of the test

6.4 Test Criteria

An item will be considered to have passed a test if the actual result from the
test matches the expected result from the test. An item will be considered to
have failed the test if the output varies from the expected result. If there are

64

Table 6.2: Test Report Template

Header Description

Test ID ID for the given test
Description Description of requirement
Tester Team member responsible for the test
Date The date the testing took place
Result The success or failure of the test, and a comment on the result if needed

Table 6.3: Code Coverage Report Template

Module Statements Missing Excluded Coverage

module 1 Statements ran Statements not ran Excluded statements Percent code coverage
...
module n Statements ran Statements not ran Excluded statements Percent code coverage

Total Statements ran Statements not ran Excluded statements Percent code coverage

any speci�cs as to why the test passed/failed, which needs to be discussed,
they will be listed as a comment to the result

6.5 Testing Responsibilities

Each team member is responsible for writing their own unit tests, while the
test leader is responsible for the quality of the test plan and the tests. The
tests will mainly not be executed by the same developers who wrote the code
that is to undergo testing, but by others in the testing team with as little
ownership of the code as possible.

6.5.1 Testing Routines

In each sprint we decided that the unit tests would be run continuously
throughout the sprints in order to make sure that no new functionality broke
any of the earlier code. As the test cases depended somewhat on having
completed most of the functionalities for a sprint, as well as requiring a lot
of manually generated testing data, it was decided that they would be run
towards the end of the sprint. The test results would then be presented a
few days before the sprint evaluation, giving the developers some time to �x
any bugs discovered by the test cases.

65

6.6 Changelog

6.6.1 Sprint 1

During sprint 1, it became apparent that the customer would not be able
to supply the team with any real tra�c data to use for testing. The testing
team therefore decided to use a hex-editor to generate their own data packets
with the C-structs that would be used for testing the utility. This is done by
manually writing the hex values for the individual bytes in a pcap packet,
where the �rst byte indicates the version number, the second byte indicates
the �ag value of the packet and where the third and fourth byte indicates
the message ID. The rest of the bytes in the packet then contain the member
values of whatever struct was associated with the packet's message ID.

During the sprint, it also became apparent that Wireshark would be able
to provide the developers and testers with feedback on syntax and user errors
on both the dissectors created by the utility, as well as the tra�c used for
testing. This is done by Wireshark crashing and/or providing the team with
error messages related to the code in which the dissector is faulty. There
will also be displayed a warning or error message with the generated tra�c-
data if there are any faults with them. The team was therefore able to use
Wireshark in assisting them in creating correct code early on before writing
unit tests.

6.6.2 Sprint 2

As of sprint 2, it was decided that the team should use an automated tool
for calculating code coverage. Code coverage is a measure describing the
actual amount of, and which code that undergoes unit testing. As code
coverage inspects code directly, it is considered a form of white box testing.
In this project it will be used to ensure that an as big part as possible of the
system actually undergoes testing, and that the unit tests associated with
the di�erent modules of the utility actually tests what they are supposed to.
It was also added as a goal to have at least 80% code coverage at the end
of the project, where the testers and developers would aim to increase the
amount of code coverage from each previous sprint.

6.6.3 Sprint 3

During sprint 3, it was suggested that the team should make a C program
that returns hex dumps. The hex dumps are used for producing tra�c to
test the utility with. It was therefore decided that the team would create
such a program to generate data for the bigger and more complex C-header
�les. These header �les could have a dozen of struct-members of various
types. As it would be tedious to have to manually write down the hex values

66

of each struct member, creating this small program would reduce the time
for generating test tra�c.

67

CHAPTER 7

ARCHITECTURAL DESCRIPTION

This chapter introduces the �nal architectural documents for the project.
The initial architecture with its change log can be found in the appendix D.

The team followed the de�nition of software architecture de�ned by Len
Bass, Paul Clements and Rick Kazman: �The software architecture of a
program or computing system is the structure of structures of the system,
which comprise software elements, the externally visible properties of those
elements, and the relationships between them.� [9, p.3]

The purpose of this document is to describe our architecture in a struc-
tured way so that it can be used, not only by the team, but also as an aid
for other stakeholders who are trying to understand the system.

7.1 Architectural Drivers

This section is dedicated to the discussion of the architectural drivers that
were discovered during the project. The team chose Modi�ability and Testa-
bility as quality attributes, but it later on became apparent that some care
should also be taken considering Performance.

The reason for choosing Modi�ability was that the development team
would be unable to update or maintain the utility after completing this
project. The code would also be distributed under a GPL that allows other
developers to continue working on the utility and use it for their own ap-
plications in the future. It was therefore important that the code would be
easy to understand, well documented and easy to modify. Not only will this
promote the further development of the utility, but it would also make it
easier for the customer to use and modify for their own purposes.

Testability would also be an important quality attribute as the utility
was to be used by the customer for debugging purposes. It was therefore be
very important that the utility it self contained as few bugs as possible so

68

that the customer could be sure that the output given by the utility would
be able to help them in analyzing and debugging. The developers of this
project were also unable to test any given dissectors in a real environment,
which made it even more necessary for the developers to do extensive testing
of the utility's functionality. This was to ensure that the �nal product works
properly even without the developers having had taken a good look on the
data the utility will have to process after going public.

Performance became somewhat of an issue for the utility during the
project as it became apparent that the customer would have to run the
utility on several thousand header �les at once. It would therefore be im-
portant for the utility to be able to run through all of the customer's header
�les in a reasonable amount of time, which in this case would be that the
utility should be able to run through several thousand header �les over one
night of being run in batch mode.

7.1.1 Testability Tactics

The goal of using testability tactics was making it easier to test the system
after �nishing any given sprint, as well as generally raising the quality of the
tests and the amount of coverage the tests give the system.

Specialize Access Routes/Interfaces

Using a specialized testing interface makes it possible to specify values for a
component independently from its normal execution. This will in turn make
it possible to test parts of an un�nished module as well as making it easier
to get a clear overview over what data is �owing through individual parts of
the system. This is important for this project as the utility must be able to
run in a di�erent environment than what the developers have access to. The
testers must therefore be able to create input for each individual component
of the system in order to ensure that it will work correctly with all kinds of
input.

We incorporated the use of this tactic by using the Attest testing frame-
work when creating unit tests. By using attest we were able to create in-
stances of and test parts and modules of the system independently with the
exact input we wanted without having to run the entire utility.

Code Coverage

By using a framework to see which parts and how much of the code is actually
being run during the unit tests, it becomes easier to improve the quality of
the unit tests. It could also be used as a checklist to see if the ones creating
the unit tests have implemented some functionality that is currently not
being tested.

69

We incorporated the use of this tactic by using the Coverage tool for
python. By using Coverage we were able to measure the code coverage of
the unit tests by having Coverage create a HTML table that showed which
parts and percentage of the system actually underwent testing.

7.1.2 Modi�ability Tactics

The goal of using modi�ability tactics were to make it easer to extend and
modify the software during development as well as after completing the prod-
uct.

Anticipate Expected Changes

By trying to anticipate expected changes it is possible to make it easier for
modules to be extended with new functionality later. It also makes it easier
for the developers to anticipate the di�erent ranges of input the modules are
able to process. This was important for this project as it was being developed
incrementally, with new functionality and code added every sprint.

This was handled in this project by �rst identifying all of the functionality
that the utility would need in order to be considered a �nished product. Then
we had some discussions about what should be included in each following
sprint, where it was also discussed in minor detail how the work items were
to be implemented. This made it easier for the developers to �gure out
which changes might have to be done further down the line so that they
could prepare their code beforehand.

Generalizing Modules

Generalizing the modules of a system makes it possible to reuse older modules
when doing modi�cations to the system. The more general a module, the
more likely it is that a needed change to the system can be implemented by
just adjusting the input to the system, rather than having to modify existing
or creating new modules.

This was implemented mostly by using inheritance where we reused a lot
of the functionality in a class when making new classes that needed similar
functionality.

Restrict Communication Paths

By restricting the number of modules that are able to collect data from a
speci�c module, the less dependent the entire system becomes of that speci�c
module. This makes it easier to swap out existing modules with new ones
without having to make many widespread changes to the entire system. This
is important for this project as the source code could change drastically after

70

discovering new requirements in later sprints. By having a loose coupling we
will minimize the amount of code that has to be rewritten after every sprint.

We followed this tactic by using code inspection. If we discovered during
a sprint that the coupling between the modules were becoming too tight, it
was decided to refactor some of the code early on in order to save time by
not having to do any major refactoring later on.

Using Con�guration Files

By using con�guration �les, it is possible to change the behaviour of the
system without having to do any changes to its code. It is very important
that this system uses con�guration �les as this was a requirement from the
customer, as well as making it a lot more �exible for the end user.

In order to implement this in the project it was decided that we would
use the YAML format for writing and parsing con�guration �les. These
con�guration �les would then make it possible for the users of the utility to
make several alterations to how data should be displayed in Wireshark as
well as having their own custom LUA code that would get run inside of the
generated dissectors.

7.1.3 Business Requirements

The following business requirements encompass the most important needs of
the customer.

� The utility must be delivered on time as it is not possible for the
developers to continue the development after the deadline

� The utility should be able to create dissectors for the C-structs in
header �les used by Thales

� The utility should be able to create dissectors that run on all of the
platforms used by Thales and their customers

� Developers at Thales should be able to use Wireshark with the gener-
ated dissectors to display the values in C-structs passed through the
system.

7.1.4 Design Goals

To help guide the design and the implementation we tried to follow these
goals and guidelines:

� Smart data structures and dumb code works better than the other way
around [15]!

71

� Clear and clean separation of the front-end and the back-end so in the
future other parsers can be used to generate dissectors.

� Try to be pythonic, follow PEP8 1 and PEP202.

� Now is better than never. Don't be afraid to write stupid or ugly code,
we can always �x it later.

� The �rst version is never perfect, so don't wait until its perfect before
you commit. Commit often!

7.2 Architectural Patterns

This section presents the di�erent architectural patterns used in the utility

7.2.1 Pipe and Filter

The pipe and �lter architectural pattern consists of a stream of data that
in turn is processed sequentially by several �lters. This is done in such a
fashion that the output of one �lter becomes the input of the other. It is
a very �exible, yet robust way of processing data, with support for adding
more �lters if needed for future applications and processes. As the utility will
only work on one piece of data that gradually changes, and is then converted
into Lua-code at the end, this seemed like a good and structured way of
processing data early on, while still being able to add new functionality
further down the line.

Figure 7.1: Pipe and Filter Pattern

1Style Guide for Python Code: http://www.python.org/dev/peps/pep-0008/
2The Zen of Python http://www.python.org/dev/peps/pep-0020/

72

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0020/

7.2.2 Layered Architectural Pattern

The layered architectural pattern is a pattern that involves grouping several
di�erent classes that all share the same dependencies. This grouping of
classes is called a layer, and the layers are structured so that the classes
inside each layer only depend on the classes of their own layer level, or
inside an underlaying one. Structuring the code in this way helps delegating
responsibilities to di�erent parts of the system in a logical way, making the
code easier to understand and easier to navigate through.

Figure D.5 shows how the layered architectural pattern is used in the
utility

Figure 7.2: Layered Architectural Pattern in the Utility

7.3 Architectural Views

This section describes three di�erent views the team used for this project:
A logical view, process view and a deployment view.

73

7.3.1 Logical View

This view shown in Figure D.2. Command line takes the arguments for
header �le and con�guration �le as a string. The arguments are parsed in the
command line parser. Header �le is sent to �C preprocessor & C parser�, the
C header �le is loaded and parsed by the C parser, which generates a parsing
tree. Command line also call Con�guration, which load the con�guration �le.
The con�guration will parse the con�guration �le and create con�guration
rules. The Lua script generator will generate a Lua script from the parsing
tree and the con�g rules.

Figure 7.3: Overall Architecture

7.3.2 Process View

Figure D.3 shows the process view for our utility. Csjark takes header and
con�g �les as input and then uses the con�g and cparser to parse the �les.
CSjark then uses the cparser to �nd the structs in the header �le and then
creates dissectors for them. These dissectors are then written to a �le and
CSjark then reports to the user by sending a message to the command line.

7.3.3 Deployment View

Figure D.4 shows the deployment diagram for this project. CSjark takes
header-�les and con�g-�les as input, and generates Lua dissectors. All these
dissectors are added as plugins to Wireshark, extending the functionality.
Wireshark will capture the data packet when Process A send data to Process
B, the Lua dissectors is used to display these data packets correctly.

7.4 Architectural Rationale

The team decided to use the pipe and �lter pattern as the architects felt that
it was one of the only architectural patterns that would bene�t the utility,

74

Figure 7.4: Data Flow During Regular Execution

without having to make it needlessly complex. The utility was supposed to
take header �les as input and then process the data from them several times,
until the end result was a list of structs and members that could be used
to make dissectors for Wireshark. This seemed like an excellent application
to use the pipe and �lter pattern with, as it would then be easy to add
new �lters to the header �le for future increments of the development cycle
without having to rewrite what had already been implemented in previous
sprints.

The team also decided to use the layered architectural pattern as the
code of the utility would have to stay logical and well structured through the
entire project if we wanted the future development of the utility to go more

Figure 7.5: Deployment View

75

smoothly. By dividing the entire utility into several modules and designate
layers between them, it became easier to decide which functionality would
go where in the code, which could save the di�erent developers some grief.
It would also make the code easier to inspect by whomever that wishes to
understand the code, and more speci�cally how the utility works.

For the views, the team decided to use a logical view, process view and
deployment view. These views were chosen because the architects of the
utility felt that these views alone could represent the system su�ciently,
without creating too much overhead for the readers of the document. The
logical view supplies the reader with a more in depth view of what the
system is comprised of, which is useful for developers who need to �gure out
the workings of the system. The process view also seemed important for
the developers and the testers of the utility, as it provides the reader with a
more proper overview of the data �ow in the system. This makes it easier
and more clear to see which modules are run when, and to see which external
calls dictate the modules' behaviour. Lastly, a deployment view was chosen
to make it more clear for the reader of the document what the utility really
produces as output and what other external applications it has to cooperate
with.

76

Part II

Sprints

77

CHAPTER 8

SPRINT 1

In this chapter the �rst sprint is detailed. In section 8.1, the planning of
the �rst sprint is explained, the design of sprint 1 is covered in section 8.2.
In section 8.3, the features implemented in this sprint is described, and
section 8.4 consists of the results from the tests. The feedback the team
has got from the customer during the sprint is listed in section 8.5, and the
evaluation of the �rst sprint is covered in section 8.6.

8.1 Sprint Planning

The �rst sprint was started with a sprint planning meeting September 14th.
The team is planning to implement basic and fundamental parts of the util-
ity. The most basic functionality was chosen from the product backlog, in
order to end up with a utility that can generate simple Lua dissectors by
the end of the sprint. This is important so we can see that we understood
the project, and that the chosen preprocessor and parser is suitable for the
utility.

8.1.1 Duration

Sprint 1 started September 14th, and lasted until September 27th. To avoid
misunderstandings between our developers and the customer, we will have
weekly meetings to show what we have accomplished and discuss further
development.

8.1.2 Sprint Goal

The overall goal of the �rst sprint is to create a preliminary design and
implement the core of the application. It will be possible to run it to generate

78

Lua dissectors, which can be used by Wireshark users. The �rst version will
contain only the basic dissector generating features, for example, parsing C
structs with basic data types as members. Also, some of the preprocessing
capabilities will be implemented, such as handling #include directives. Basic
support for con�guration will be added.

8.1.3 Back Log

In the �rst sprint we will implement eight requirements. These are listed in
Table 8.1. The time table for the sprint can be seen in Table 8.2.

8.2 System Design

This section introduces the the preliminary overall design, and the system
design after the �rst sprint. In section 8.3, we describe how our implemen-
tation works and is to be used.

8.2.1 Preliminary Design

The following is a description of the preliminary design we had for our util-
ity. We split our program into several parts, described in the following
paragraphs. Their relationship is shown in Figure 8.1.

Figure 8.1: Overall Design

Command line interface The command line interface is where the user
inputs which header �les and con�guration �les he wants the utility to use.
This module needs to ask the con�guration to parse con�g �les, and then ask

79

Table 8.1: Sprint 1 Requirements

Hours

User story Req. and Description Est. Act.

US07 FR6-A: Command line shall support parameter for C
header �le

9 9

Implementation 2 5
Design 1 1
Testing 2 2
Documentation 4 1

US01 FR1-A: Support basic data types: int, �oat, char, boolean 24 21

Implementation 8 13
Design 4 4
Testing 8 4
Documentation 4 0

US02 FR2-A: The dissector shall be able to display simple structs 28 25

Implementation 8 17
Design 4 1
Testing 8 6
Documentation 8 1

US04 FR3-A: The utility shall support #include 8 2

Implementation 2 0
Design 2 1
Testing 2 1
Documentation 2 0

US05 FR3-B: Recognize invalid values for a struct member 11 8

Implementation 11 8

US08 FR6-B: Command line shall support paramter for con�gu-
ration �le

28 8

Implementation 8 4
Design 8 2
Testing 8 2
Documentation 4 0

US06 FR4-A: Support valid ranges for struct members 30 15

Implementation 8 8
Design 6 3
Testing 8 3
Documentation 8 1

US03 FR2-D: Recognize invalid values for a struct member 22 15

Implementation 6 9
Design 4 4
Testing 8 2
Documentation 4 0

Total: 108 95

the parser to parse C �les. It should �nally ask the Lua script generator to
create Wireshark dissectors for the given header �les. The Command Line

80

Table 8.2: Sprint 1 Timetable

Hours

Description Est. Act.

Design 30 10

Implementation 44 65

Testing 50 20

Documentation 36 3

Total: 160 98

Interface (CLI) should be able to accept some additional arguments like ver-
bose, debug, nocpp and output options. The argument verbose should print
out detailed information, debug should print out debugging information, and
nocpp should disable the C preprocessor. If the CLI is provided with invalid
arguments, it should print a message explaining the correct usage. If the
program ran as expected it should output a message informing the user of
the success.

Con�guration The con�guration should parse the con�guration �les given
to the command line interface, and from this information modify the data
structures generated by the parser.

Parser The most important part of the utility is the parser, it should be
able to parse C �les and look for struct de�nitions. The struct de�nitions
will be put into a data structure that the Lua script generator will use
when creating the dissectors. The parser should use pycparser and PLY
libraries for parsing of C �les. It should accept C header �les and create an
abstract syntax tree, which is traversed to �nd struct de�nitions and their
members. The struct de�nitions and members are then �lled into a suitable
data structure.

Data structures The data structures should store the information the
Lua script generator needs to generate Wireshark dissectors. It should have
support for protocols and �elds in Wireshark. The data structures should
be easily modi�able by the con�guration.

Lua script generator This is the part of the system that generates the
actual Lua dissectors. It should use the information in the data structures,
from the parser and con�guration, to create Lua code that can dissect the
header �les speci�ed by the user.

81

8.2.2 System Overview

Figure 8.2 illustrates the current class diagram for our utility after the end
of the �rst sprint. The relationship between the modules can be seen in
Figure 8.3. The csjark module contains the main method of the utility
and is responsible for running the program. It is in this module we have
implemented the functionality for the command line interface.

The utility will typically start o� by using cparser to parse the C header
�le given to the utility as a command line argument. cparser will then use
the con�g module to ensure that the parsing is done correctly after the
con�guration, and then generate protocols and �elds to be used in the csjark
module. The csjark module then generates a Wireshark dissector in Lua code
by going through the protocols and �elds generated earlier by the cparser
module.

In this sprint we added con�guration support for ranges, this was done
by adding a RangeRule class to the con�g module. This class speci�es how
range rules should be written in the con�guration. In the dissector module
we created a RangeField class that interprets the rules and recognizes any
invalid values when generating the dissectors. The RangeField class inherits
from the Field class.

Csjark

The utility'smain() function is a part of the csjark module. The function will
start parsing of CLI arguments, start parsing of the con�guration �les, and
start generating dissectors by calling createDissectors(). When all structs
have been generated, it will print the results to the user on the command-
line interface.

The Cli class will hold all the parameters, and take the parameters from
the command-line interface, it will parse the arguments and return lists for
header and con�g.

Cparser

The Cparser module is used to parse the header �les, and has three methods
and a class. The preprocessing is done in parse_�le(), parse() is used to
parse the �le with pycparser library. To �nd a struct in the abstract syntax
tree, the function �nd_structs() is used.

StructVisitor is a class that goes through the abstract syntax tree, which
the pycparser library generates. The class will handle all the declaration,
and return a struct with the members.

82

Figure 8.2: Sprint 1 Class Diagram

Dissector

This module has three classes that generates the Lua dissector.

� Protocol: This class generates the Lua dissector from a C struct. It
will use Field class for each of the struct members.

� Field: Field is a class that generates code for each of the struct mem-
bers. Field will be used to generate code for basic data types, and will
be a superclass for other data types and for �elds that are con�gured.

� RangeField: Is a subclass of Field. It is modi�ed in order to generate
a �eld that will give a warning for an invalid value in Wireshark.

83

Figure 8.3: Sprint 1 Module Diagram

Con�g

This module consist of three classes, and a method to parse all the con�gu-
ration �les.

� StructCon�g: This is a class used to store con�guration for the C
structs, and the con�gured members of the structs.

� RangeRule: This class is for range rules, stores information of minimum
and maximum values, and the struct member.

� Con�gError: This class will raise an exception, if pyYAML is unable
to parse the con�g �le due to a error message.

8.2.3 User Stories

This section lists the user stories for the �rst sprint. They are displayed
in Table 8.3 and Table 8.4. As we are developing a very technical utility,
we have written user stories with an implementation level of abstraction.
These user stories represent how we intend to add the functionality of each
requirement to the utility. Each user story also contains information on how
the modules of CSjark should interact with each other.

84

Table 8.3: User Stories - Sprint 1 Part 1

Header Value

ID US01
Requirements FR1-A: The utility should support the following basic data types: int, �oat, char and

boolean.
What The administrator wants the utility to support structs with members of basic data types

in input �les. These are the basic data types in C that we support: int, �oat, char and
boolean.

How The C parser library, pycparser, provides this support for us. The input is fed to the
cparser module, which extracts the de�nitions from an abstract syntax tree generated
by the parser.

Result The utility supports input with C structs with int, �oat, char and boolean members.

ID US02
Requirements FR2-A: The utility shall be able to display simple structs.
What The developer wants Wireshark to display simple structs.
How The dissector module shall generate Lua dissectors for Protocols created by the cparser

module. The Lua dissectors shall use Wireshark's API to display structs with basic
members.

Result Simple C structs can be dissected in Wireshark by our auto generated Lua dissectors.

ID US03
Requirements FR2-D: Recognize invalid values for a struct member.
What The developer wants Wireshark to give a warning if a struct contains invalid values.
How The dissectors module will generate �elds that will display warning in Wireshark when

the value is outside the con�gured range. Wireshark will change the background color
to yellow for �elds with an invalid value, and give an error message.

Result The developer can see when a value is out of range.

ID US04
Requirements FR3-A: The utility should support #include.
What The administrator wants the utility to support the #include-statement inside a header

�le.
How The cparser module feeds the input into an external tool, the C preprocessor, which

supports #include-statements. It returns a C code �le with all the included code from
the external �les.

Result The utility supports #include.

ID US05
Requirements FR3-B: The utility should support #de�ne and #if.
What The administrator wants the utility to support #de�ne- and #if-statement inside a

header �le.
How The cparser module feeds the input into an external tool, the C preprocessor, which

supports #de�ne- and #if-statements. It returns a copy of the �le with the statements
removed, and their actions performed.

Result The utility supports #de�ne and #if functionality.

85

Table 8.4: User Stories - Sprint 1 Part 2

Header Value

ID US06
Requirements FR4-A: Con�guration must support valid ranges for struct members.
What The administrator wants to be able to specify valid ranges for struct members in a

con�guration �le.
How The con�g module should read con�g �les provided to the command line interface, and

�nd any rules regarding valid ranges. The rules are used by the cparser when it translates
struct de�nitions to Protocol and Field instances found in the dissector module.

Result The administrator can specify valid ranges of struct members in the con�guration.

ID US07
Requirements FR6-A: Command line shall support parameter for C-header �le.
What The administrator wants the utility to generate a dissector from a C-header �le that he

speci�es.
How The command line user interface will accept a number of arguments from the admin-

istrator. The argument that includes the path to an existing C header �le is sent to
the parser module. The parsing of arguments is done with the help of argparse library,
which supports optional and positional arguments etc.

Result The command line interface supports C-headers as input.

ID US08
Requirements FR6-B: Command line shall support parameter for con�guration �le.
What The administrator wants to provide the utility with one ore more con�guration �les.
How The command line interface should accept arguments that speci�es the path of existing

con�guration �les, and feed these to the con�g module. The con�g module should read
the �les and store them in con�guration data structures. These data structures will be
available to cparser to help when translating structs to Protocol and Fields from the
dissector module.

Result The administrator can input con�guration �les in the command line.

86

8.3 Implementation

In this sprint we have created a very naive implementation of the utility. It
supports the most basic types of C structs. In addition, the utility supports
some very basic con�guration. The main reason for the naive implementa-
tion, was to �nd out that the libraries that the team had chosen was suitable
for the utility, and that we had understood the task.

To get a better understanding of how the di�erent requirements were
implemented, look at the user stories for sprint 1 in subsection 8.2.3.

8.3.1 CLI Support for Header File

The tool uses a command line interface. The user inputs a C header �le to
the command line, and the program outputs a Wireshark dissector written
in Lua. Below you can see a Figure 8.5 that illustrates how the program is
run.

8.3.2 Support Basic C Data Types

In this �rst sprint the focus was to generate dissectors from structs with
basic data types. These data types included integers, �oats, char, boolean
and arrays of chars. All di�erent types of integers and �oats were also
implemented in the utility, most of the functionality was included in the
pycparser library, and sizes for the di�erent data types was speci�ed in the
utility.

8.3.3 Display Simple Structs

The dissectors that our utility generates is used to display the packets that
are captured by Wireshark. Figure 8.4 shows an example of a packet capture.
The example include a struct that is used to test di�erent basic data types,
for example, signed char, char, short, int, long int, �oat and double.

8.3.4 Support #include

The preprocessor in C is the �rst step of compilation. One of the most used
preprocessor directives is #include, which include the content of a �le in the
compilation. Since the utility reads structs from header-�les, it is possible
that struct member may have been de�ned in other header-�les, therefore
#include is a important part of the utility. The preprocessor in this utility
will replace the #include-line with the content of the included �le.

8.3.5 Support #de�ne and #if

These two preprocessor directives are important for our utility. #de�ne is
used to de�ne a preprocessor macro that replaces a token with a sequence of

87

Figure 8.4: Wireshark: Simple Lua dissector

characters. This can for example be used to de�ne length of arrays, de�ne
values for enumeration or de�ne a platform. #if and #ifdef are conditional
directives that the utility will use to check if macros are de�ned. This will
be used when the utility is generating dissectors for di�erent platforms. The
functionality for these preprocessor directives and the other preprocessor
directives for C, was implemented by the library we use, which is cpp.exe for
Windows and GCC for Mac and Linux.

8.3.6 CLI Support for Con�guration File

To be able to parse the con�guration �le, it is necessary to specify the
con�guration-�le in the CLI. An example of this is shown in Figure 8.5,
where a header-�le and a con�g-�le is input to the utility. The option �-v�

88

is speci�ed, which will display the abstract syntax tree when the utility has
generated the dissector.

Figure 8.5: Command Line Screenshot

8.3.7 Con�guration of Valid Ranges

We decided to use YAML as our con�guration format. In this sprint we have
added support for range speci�cation. A user can specify the ranges of the
members of a struct, from a minimum to a maximum. Listing 8.1 shows an
con�guration in YAML for the header-�le in Listing 8.2. The con�guration
specifes that the struct member age must have a value between 0 and 100.

Listing 8.1: Con�guration of valid ranges

Structs :
− name : age_test

ranges :
− member : age

min : 0
max : 100

Listing 8.2: Header-�le for age_test

#de f i n e STRING_LEN 10

s t r u c t age_test {
char name [STRING_LEN] ;
i n t age ;

} ;

8.3.8 Dissector Shall Recognize Invalid Values

In Figure 8.6, you can see how Wireshark displays a member that has an
invalid range. When a invalid value exist, the dissector will warn the user
with a message and description, this make it easier for debugging.

89

Figure 8.6: Wireshark: Invalid Values

8.4 Sprint Testing

This section introduces the tests performed during the sprint and their re-
sults.

8.4.1 Test Results

During the sprint the team executed a total of seven test cases. An example
of a test case run this sprint can be seen in Table 8.5 while the rest of the
test cases can be found in Appendix C. These are the results for the tests
the team ran for sprint 1 as according to Table 6.2 discussed in the test plan.
The test results of the tests can be seen in Table 8.6.

Table 8.5: Test Case TID01

Header Description

Description Supporting parameters for C-header �le
Tester Lars Solvoll Tønder
Prerequisites The utility must have been installed on the system and there needs to exist a header

�le associated with this test
Feature Test that we are able to feed the solution with a C-header �le and have it get dissected

Execution
1. Feed the utility with the name of the C-header �le associated with this test through
the command line
2. Read the output given by the program

Expected result 2. The user should be presented with some text expressing the success of creating a
dissector

90

Table 8.6: Sprint 2 Test Results

Header Description

Test ID TID01
Description Supporting parameters for C-header �le
Tester Lars Solvoll Tønder
Date 27.09.2011
Result Failure. The Lua-�le got created successfully but the user was not in-

formed of the result

Test ID TID02
Description Supporting basic data types
Tester Lars Solvoll Tønder
Date 27.09.2011
Result Failure. The program supports the use of int, �oat, char and boolean,

but did not inform the user of the result

Test ID TID03
Description Displaying simple structs
Tester Lars Solvoll Tønder
Date 27.09.2011
Result Success

Test ID TID04
Description Supporting C-header �les with the #include directive
Tester Lars Solvoll Tønder
Date 27.09.2011
Result Failure. The program supports header �les with the #include directive,

but did not inform the user of the result

Test ID TID05
Description Supporting #de�ne and #if
Tester Lars Solvoll Tønder
Date 27.09.2011
Result Failure. The program supports header �les with the #de�ne and #if

directives, but did not inform the user of the result

Test ID TID06
Description Supporting con�guration �les
Tester Lars Solvoll Tønder
Date 27.09.2011
Result Failure. The program supports the use of con�guration �les but does

not inform the user of any results

Test ID TID07
Description Recognizing invalid values
Tester Lars Solvoll Tønder
Date 27.09.2011
Result Success

91

8.4.2 Test Evaluation

Most of our tests failed because the developers had forgotten to implement
usability features presenting the user with any textual information. With all
core functionality in place, it only took three lines of code to �x this issue.

8.5 Customer Feedback

This section covers the feedback we got from the customer before and af-
ter the �rst sprint. Changes to the requirements are described in subsec-
tion 5.2.4.

8.5.1 Pre-sprint

The customer had no objections to the content of the �rst sprint, but was
not completely satis�ed with the feature descriptions. They thought that
we should write more implementation details for each requirement, and that
each requirement should be properly broken down. They felt that imple-
mentation and design should be two separate tasks if design is necessary.
Corollary to this, our work items were too big. They also suggested a proper
�nish condition for each work item.

8.5.2 Post-sprint

We presented the result from the sprint 1 for the customer and they were
very happy with the result. They had some ideas for how we could make our
con�guration �les more compact, but said that it was not really important.
Their other comments were mostly on what they wanted us to do for sprint
2 and how those features might be implemented.

8.6 Sprint Evaluation

This section contains the team evaluation of the �rst sprint.

8.6.1 Review

The �rst sprint is over and the team has implemented a working utility for
simple structs. During the sprint planning we decided which requirements
from the product backlog that we were to ful�ll during the �rst sprint. The
product backlog contains a prioritized list of requirements. We decided to
include the requirements that had the highest prioritization. These require-
ments were basic, but essential and therefore highly prioritized.

The lack of prior knowledge to Scrum made planning and execution of the
sprint complicated for the team. We did not agree within the team of how

92

to do it, and wasted some time on discussions. In the end, we understood
that we wrote a too high level description of the requirements, and had to
redo previous work. This was time consuming, stealing person-hours from
other parts of the sprint.

Each requirement is divided in four parts: design, implementation, test-
ing and documentation. We currently have most of these parts covered,
except documentation for all �les and unit test for the dissector �le. This
work is postponed till the second sprint.

The �rst sprint resulted in a solid core for our project. The customer
was happy with the �rst demo they got, the utility even run on Mac. We
feel that we have a good start and are con�dent that we will be able to give
the customer the product that they want in the end.

The burndown chart, Figure 8.7, shows the progress during the �rst
sprint. The team made an e�ort in making a correct estimation. This is
re�ected in the chart, as the estimated and actual hours are following each
other closely. In the end, actual hours stopped at 11 hours, which means we
have some uncompleted tasks. These are put back in the product backlog,
and will probably be part of the next sprint.

Figure 8.7: Sprint 1 Burndown Chart

93

8.6.2 Positive Experiences

� Good customer communication and relation from the beginning

� Implementation went smoothly

� Most of the requirements for this sprint were completed

� all design, implementation and testing were completed

� documentation had to be put back in the product backlog

� Errors and bugs were detected and corrected swiftly and with relative
ease

� The team functioned well, with su�cient discussions and con�icts

8.6.3 Negative Experiences

� Hard for the team member to �give� 25 person-hours each week

� to understand that it is needed

� to free up so many hours, and still have time to do other subjects

� Hard to �nd time for meeting/work where all team member was able
to meet

� One member of the team was sick for a week

� We did not document the process and work during the �rst sprint well
enough, which was a burden at the end of the sprint

� We did perhaps not understand Scrum properly, which resulted in extra
work

8.6.4 Planned Actions

Below the planned actions for the following sprints are listed.

Better Sprint Planning

In order to avoid having to redo much of the work because of incorrect/poorly
sprint planning, we have decided to do this properly next time. We have
learned what we need to have in place and how to document it from this
sprint.

94

Design Early in the Sprint

The design should be in place early in the sprint. This is related to better
sprint planning, the planning should be so detailed/good that additional
design is not necessary. This is important for understanding and being able
to estimate hours and divide work.

Documenting in Parallel while Implementing

We su�ered from the problem, code �rst then document. This is not a good
practice in team divided work. We will try to do the documentation as we
code. The documents for the project report also experienced a standstill
while the team worked on implementation. Writing parts of sprint docu-
mentation while having the sprint is a much better way to work, then most
of the documentation is already done before the sprint evaluation.

Split Coding and Report Writing Between Team Members

Not all the team members have to do coding. It is important to maintain a
steady progress making the project report, while doing the implementation.
Responsibilities for coding and report will be assigned next sprint.

8.6.5 Barriers

Some of the team member have experienced some technical di�culties with
their Git client, and others had problems setting up PyCharm. Problems
rose as we realized that it would be hard setting up the programs on di�erent
platforms.

We had problems with C parser library, pycparser, which did not support
_Bool type, speci�ed in the C99 standard. A patch for this was written
by Even, and was later included in the pycparser library. There was also
problems with the testing framework, attest, this framework did not have
support for Windows command line prompt, a patch was written and was
later added to their library.

Some team members had con�icting deadlines for deliveries in di�erent
courses.

95

CHAPTER 9

SPRINT 2

This chapter describes the results and process of sprint 2. In section 9.1, the
planned changes from the �rst sprint is explained, the planning of this sprint
is covered in section 9.2, and the design of the �rst sprint is explained in
section 9.3. To give a better understanding of the requirements, section 9.4
explains the features implemented in this sprint. The results from the tests
ran is described in section 9.5. The feedback from the customer is covered
in section 9.6. In section 9.7, the results from the sprint retrospective is
covered.

9.1 Pre-sprint

Sprint 1 gave the desired result, but the team was not satis�ed with the way
the Scrum process was conducted, especially the sprint planning. In sprint
1 retrospect we decided to conform more to, in our mind, proper Scrum. We
will apply experience and advice from the �rst sprint, to get a better process.

In this planning meeting we will try to create more descriptive work items
for the sprint backlog. This will ease the process of design, implementation,
testing and documentation of the utility, and we do not have to redo any
parts that will end up in the report in order to assist the reader. We focus
on good user stories to ensure that the elements are of a low enough level.

9.2 Sprint Planning

The �rst sprint resulted in a solid core for the utility. During the next sprint
iteration, the core will be extended with more advanced functionality. After
this sprint, the utility will have most of the functionalities it need to work in
a real environment, and will probably be able to aid Thales in some of their

96

operations.
Since it is di�cult to understand the complexity of all the requirements

in the sprint backlog, the team ended in up with an uncertain person-hours
estimate for some work objects. After the sprint is �nished, we will see if
we understood the complexity, and assigned enough hours to implement it.
The more complex, but not so critical functionalities will be part of sprint 3
and 4.

9.2.1 Duration

According to the work breakdown structure, Table 3.1, the planning meeting
of the second sprint should have been conducted the 5th of October. After
a request from the customer to see our planning for the second sprint at the
weekly customer meeting, which was scheduled to be before our planning
meeting the same day, we decided to advance the planning to the 4th of
October. This is to maintain the good relationship with the customer and
submit to their preference.

The sprint started with the planning meeting the 4th of October and our
work started the following day. The sprint duration is 14 days, and will end
the 18th of October with a review meeting.

9.2.2 Sprint Goal

In the second sprint we will build on the core created in the �rst sprint.
During the sprint, we will extend the functionality with more comprehensive
and advanced features. Most of the requirements we intend to ful�ll in this
sprint had to be done subsequent to the �rst sprint, because the structure
and design of the core had to be in place �rst. The requirements that we
selected for this sprint are a natural advancement on the road to making the
utility that the customer wants.

One of the most crucial functions to work in a real environment, is the
support for nested header-�les. The handling of the #include-statement
gives the utility this feature. The goal of the sprint is to implement the
#include and mainly to have support for enums, bit strings, endianness and
batch mode.

9.2.3 Back Log

The second sprint we will implement thirteen requirements. These are listed
in Table 9.1 and Table 9.2.

97

Table 9.1: Sprint 2 Requirements Part 1

Hours

Req. Description Est. Act.

1 FR1-B Support members of type enums 6 5
Implementation 3 2
Testing - unit 1 1
Testing - end to end 2 2

2 FR1-C Support members of type structs 7 3.5
Implementation 6 3
Testing - unit 1 0.5

3 FR1-F Detect structs with same name 3 3.5
Implementation 2 2.5
Testing - unit 1 1

4 FR2-B Support display of structs within structs 11 15
Implementation 5 6
Testing - unit 2 2
Testing - end to end 4 7

5 FR4-F Support enumerated named values 5 6.5
Design 1 0.5
Implementation 1 0.5
Testing - unit 1 2.5
Testing - end to end 1 1.5
User documentation 1 1.5

6 FR4-G Support for bit strings 10 11.5
Design 2 2
Implementation 3 6
Testing - unit 2 1
Testing - end to end 2 1
User documentation 1 1.5

7 FR1-E Support members of type array 7 12
Implementation 3 7
Testing - unit 1 1
Testing - end to end 3 4

9.3 System Design

For sprint 2 the team decided to re-factor some of the code in order to
make it easier to read and to split the functionalities of the utility in such
a way that it reduces coupling within the system. Some new functionality
was also added on the parser side in order to get the utility to recognize
the datatypes mentioned in the sprint 2 backlog. This new functionality
is represented by the addition of new classes in the dissector and con�g
modules. These classes include the BitField, ArrayField, EnumField and

98

Table 9.2: Sprint 2 Requirements Part 2

Hours

Req. Description Est. Act.

8 FR4-E Structs with various trailers 18 15
Design 3 2
Implementation 6 6
Testing - unit 2 1.5
Testing - end to end 5 3.5
User documentation 2 2

9 FR4-B Support for custom Lua con�guration 14 7
Design 2 1
Implementation 5 5
Testing - unit 1 0
Testing - end to end 4 1
User documentation 2 0

10 FR4-D Dissector ID 4 3
Implementation 1 1
Testing - unit 1 1
User documentation 2 1

11 FR5-C Endian handling 11 0.5
Implementation 5 0.5
Testing - unit 2 0
Testing - end to end 6 0

12 FR6-C Batch processing; folder support in the CLI 7 4.5
Implementation 4 2
Testing - unit 2 1.5
User documentation 1 1

13 FR4-C Support custom handling of speci�c data types 5 3
Implementation 2 1.5
Testing - unit 1 0.5
Testing - end to end 1 1
User documentation 1 0

14 Non-requirement programming tasks 26 25.5
Refactoring 3 7
Bug �xing 2
Manual end-to-end tests 8 4
Automatic end-to-end tests 4 3
Misc unit tests 4 3
Misc user documentation 7 6.5

Total: 134 115.5

ProtocolField classes, which contain the functionality required to handle
bitstrings, arrays, enums and structs within structs respectively. The classes

99

Table 9.3: Sprint 2 Timetable

Hours

Description Est. Act.

Sprint planning 30 35.5

Sprint 2 requirements 134 115.5

Design 8 5.5
Implementation 44 43
Testing 46 35
User Documentation 10 6.5
Other 26 25.5

Sprint review 20 17.5

Report documentation 58 69

Sprint 1 document 14 5
Sprint 2 document 44 54
Report document 10

Lectures 25 27.5

Meetings 55 48

Advisor meetings 28 26
Customer meetings 6 8
Stand-up meetings 21 14

Project Management 20 40

Total: 342 353

added to the con�g module include the Trailer, Bitstring, Custom and Enum
classes, which handles the con�guration needs for structs with trailers, bit
strings, custom handling of data types and enums respectively. Other than
that, there were no other changes or additions made to the design during
sprint 2.

9.3.1 System Overview

Figure 9.1 shows the class diagram the team made for sprint 2. The main
di�erences from sprint 1 are the additions of new classes, extending the
functionality of the utility so it can handle more complex header �les than it
could before. The developers also generalized some of the modules and used
inheritance to support the re-use of code. Figure 9.2 shows the dependencies
between the modules, the only di�erence here, is that csjark do not use
dissector, after some refactoring of the code.

The addition to the class diagram have been mainly to support more
data types for C in the cparser and support for more con�guration options
in con�g module, and generation of the �elds in dissector module.

100

Figure 9.1: Sprint 2 Class Diagram

Figure 9.2: Sprint 2 Module Diagram

101

Csjark

The main di�erences in this module was changes in the Cli class, which now
has functionality to �nd all �les in a folder given as an argument when run-
ning CSjark, with the �les_in_folder(). This method used for the support
of batch mode generation.

Cparser

In the cparser module, a class named ParserError was added, its main pur-
pose is to raise an exception when our utility does not support a C data
type. StructVisitor has been extended to support more data types, for ex-
ample structs, arrays and enums.

Con�g

For all the con�guration added in this sprint, there has been added a class
for each con�guration. For this there has been added a superclass, named
BaseRule. This class have all the functionality that the con�guration rules
share.

BaseRule has �ve subclasses, Custom, Enum, Range, Bitstring and Trailer.
These subclasses have the con�guration that are speci�c for these con�gu-
ration types.

The last class added in this module is ConformanceFile, which hold the
con�guration written for custom Lua code.

Dissector

Four subclasses of Field was added in the dissector module. These classes are
EnumField, ArrayField, BitField and ProtocolField, and they will generate
di�erent types of �elds for the Lua dissector, which will display members
di�erently in Wireshark.

Field and Protocol classes has been extended to support the new �elds,
and support for modifying con�guration of the functionality in Wireshark.

9.3.2 User Stories

This section lists the user stories for the second sprint. They are displayed
in Table 9.4, Table 9.5, Table 9.6 and Table 9.7. These user stories represent
how we intend to add the functionality of the requirements for the second
sprint, and explain how the modules in the utility should interact with each
other in the di�erent scenarios.

102

Table 9.4: User Stories - Sprint 2 Part 1

Header Value

ID US09
Requirement FR1-B: The utility must support members of type enum
What The administrator wants the utility to support structs with members of type enum.
How When the cparser module detects an enum member in a struct, the cparser should search

in an enum dictionary and the enum member will be mapped to the correct value found
in the dictionary. A �eld representing the enum will be added to the prototype object
corresponding to the enclosing struct.

Result The utility supports members of type enum.

ID US10
Requirement FR1-C: The utility must support members of type struct
What The administrator wants the utility to support structs with members of type struct.
How When the cparser module detects a struct in the AST that has a struct member, the

cparser searches for its de�nition in the dictionary of previously detected structs. When
it �nds it, it looks up the identi�cation number and the size of the inner struct and creates
a struct_�eld object inside the prototype object corresponding to the outer struct.

Result The utility supports members of type structs.

ID US11
Requirement FR1-F: The utility should detect structs with the same name, and report it as an error
What The administrator wants the utility to report an error if it discovers structs with the same

name to avoid unforeseen name collisions.
How When the cparser module traverses the AST to look for structs, it will detect if there are

structs with the same name by searching in a database of all structs it has found so far.
If a collision is detected the utility will crash with an error message.

Result The utility will detect duplicated name of structs.

ID US12
Requirement FR2-B: The dissector shall be able to support structs within structs
What The utility should be able to create a Lua dissector that correctly displays structs within

structs in Wireshark.
How For each struct de�nition encountered in cparser, a prototype object is created. This

object will include an identi�er number used to locate the Lua dissector for that struct.
When a struct member is located inside an outer struct. The dissector module encodes
the identi�cation number and the size for the inner struct into the Lua dissector for the
outer struct. The identi�cation number is used to access the dissector for the inner struct
when the outer struct dissector is used. The outer struct dissector uses the size of the
inner struct to know how much of the network package to forward to the inner struct
dissector. The size and identi�cation number of the inner struct will be available in the
struct �eld corresponding to the inner struct inside the protocol object corresponding to
the outer struct.

Result The dissector module supports nested structs

ID US13
Requirement FR4-F: Con�guration must support integer members which represent an enumerated

named value
What The administrator wants to specify integer members, represented by an enumerated

named value, in a con�guration �le.
How The con�g module should read con�g �les provided to the command line interface, and

�nd any rules regarding enumerated integer values. The rules are used by the cparser
when it translates struct de�nitions to Protocol, and makes the cparser create EnumFields
instead of normal Fields for the speci�ed members.

Result Enum members can be speci�ed in the con�guration.

103

Table 9.5: User Stories - Sprint 2 Part 2

Header Value

ID US14
User doc FR4-F: User documentation for writing con�guration for integer members which repre-

sent an enumerated named value.
What The administrator should be able to educate himself of how to give CSjark the necessary

information to get integer values mapped to names in the generated dissector.
How The administrator opens the user documentation and �nds the section about con�gu-

ration. From here he locates the sub section about enumerated names integer values.
This section gives a good description of how to write such con�guration, and the user is
able to implement his desired con�guration after reading through once and looking at
provided examples.

Result The administrator is now able to use the enumerated named value functionality.

ID US15
Requirements FR4-G: Con�guration must support members which are bit strings
What The administrator wants to specify members that represent bit strings in the con�gura-

tion.
How The con�g module should read con�g �les provided to the command line interface, and

�nd any rules regarding bit strings. The rules are used by the cparser when it translates
struct de�nitions to Protocol and BitField instances found in the dissector module.

Result The administrator can specify bit string members in the con�guration.

ID US16
User doc FR4-G: User documentation for writing con�guration for integer members which are bit

strings.
What The administrator should be able to educate himself of how to give CSjark the necessary

information to get integer values mapped to bit string in the generated dissector.
How The administrator opens the user documentation and �nds the section about con�gu-

ration. Then he locates the section about bit string values. This section gives a good
description of how to write such con�guration, and the administrator is able to imple-
ment his desired con�guration after reading through once and looking at the examples.

Result The administrator is now able to con�gure CSjark to generate dissector that recognises
and formats bit strings correctly.

ID US17
Requirements FR1-E: The utility must support members of type array
What The administrator wants the utility to support structs with members of type array.
How When the cparser module �nds an array declaration, it recursively traverses the tree

until till it encounters the bottom of the declaration to discover the size of the array.
The parser module creates an instance of an array �eld with the size and type of the
array. From the array �eld the dissector module generates a dissector which has a sub
tree for each level of the array.

Result The utility support array members in structs.

ID US18
Requirements FR4-E: Con�guration must support various trailers (other registered protocols)
What The administrator wants to specify trailers to a C header �le in the con�guration.
How The con�g module should read con�g �les provided to the command line interface, and

�nd any rules regarding trailers. A member in a struct will say how many packets of
other protocols that follows the header. In the con�g-�le it is speci�ed which member
contains this number, and what type of protocol the packet(s) belong to. When the
dissector module generates a struct containing a trailer, the correct dissector for the
trailer packet(s) will be called for the rest of the bu�er.

Result The utility can handle trailer packets following the header, speci�ed in the con�guration.

104

Table 9.6: User Stories - Sprint 2 Part 3

Header Value

ID US19
User doc FR4-E: User documentation for how to specify trailers (other registered protocols)
What The administrator should be able to �nd out how to specify trailers to a header struct

by reading the user documentation.
How The administrator opens the user documentation and �nds the section about con�gu-

ration. From here he locates the sub section about trailers. This section gives a good
description of how to write such con�guration for di�erent types of trailers and provides
su�cient examples, to make it clear to the administrator how to write the con�guration
he needs after reading the section.

Result The administrator is now able to utilise the trailer feature of CSjark.

ID US20
Requirements FR4-B: Con�guration must support custom Lua �les for speci�c protocols
What The administrator wants to specify custom Lua �les in the con�guration, which are to

be used in complex cases where our utility is unable to generate a dissector for the C
header.

How The con�g module should read con�g �les provided to the command line interface, and
�nd any rules regarding the use of custom Lua �les. When such a rule is found, the
dissector module will use the Lua code found in the �le(s) in addition to its own generated
Lua code. This is done by reading the custom Lua �le(s) and writing the content to the
relevant parts of the dissector.

Result The administrator can specify the use of custom Lua �le in the con�guration.

ID US21
Requirements FR4-C: Con�guration must support custom handling of speci�c types.
What The administrator will be able to specify that a certain type should be handled in a

speci�c way speci�ed in a con�guration �le. This con�guration must be a Wireshark
supported Lua �eld. The con�guration could both be a global default value for that
type, or speci�c for a struct member.

How The con�g module should read con�g �les provided to the command line interface,
and �nd any rules regarding the use of custom handling of types. It will modify the
�eld added to the prototype �eld representing the enclosing struct with the behaviour
speci�ed in the con�guration.

Result The administrator is able to con�gure custom behaviour for speci�c types.

ID US22
User doc FR4-C: User documentation for con�guring custom handling of speci�c types.
What The administrator should be able to �nd out how to specify custom handling for a

speci�c type by reading the user documentation.
How The administrator opens the user documentation and �nds the section about con�gu-

ration. From here he locates the sub section about custom type handling. This section
gives a good description of how to write such con�guration. There should also be some
examples to clarify the description. After reading the section, the administrator has a
good idea of how to do the desired custom handling.

Result The administrator is able to use custom handling of speci�c types.

ID US23
Requirements FR4-D: Con�guration must support specifying the ID of dissectors
What The administrator wants to specify the ID of a dissector in a con�guration �le.
How When the cparser �nds a struct in the abstract syntax tree it looks for a con�guration

�le for the struct. If a con�g-�le is found, the ID of the dissector is mapped to the ID
given in the con�g-�le when generating the dissector.

Result The administrator can specify the ID of dissectors in the con�guration.

105

Table 9.7: User Stories - Sprint 2 Part 4

Header Value

ID US24
Requirements FR5-C: Generate dissectors which support both little and big endian platforms
What The administrator wants the utility to produce dissectors that can be used on both little

and big endian platforms.
How The administrator will specify the platform he is using in a con�guration �le by adding

a message �ag and endian pair. When the dissector for a struct is being generated,
the dissector module in CSjark will encode a �ag to endian dictionary inside the Lua
dissector �le. This dictionary will be used to look up the endian for a message given its
�ag. If no endian is found in the dictionary, it will use a default value.

Result The dissectors are now able to support messages from platforms with di�erent endian.

ID US25
Requirements FR6-C: Command line shall support batch processing of C header and con�guration �les
What The administrator wants to set up the program to run automatically, in order for the

program to create dissectors from the C header and con�guration �le(s) that are speci-
�ed.

How When the administrator feeds the command line with an input argument, header or
con�guration, the utility shall check if the input is a single �le or a directory (folder).
If it is a �le, parse it. If it is a folder, retrieve all �les in that folder and add them to a
list, this list will be sent to the parser and all the �les will be parsed one after another.
A directory within a directory should be detected, and traversed recursively. With this
approach we can start in a root folder and include all �les, independent of the depth.
The batch mode shall only include �les with the extension .h (a header �le) or .yml
(con�g �le), which are the �les that are going to be parsed as input.

Result The administrator can feed the utility with folders to make dissectors of all the headers
found, also called batch mode.

106

9.4 Implementation

In the previous sprint we focused on creating a naive implementation of the
utility. In this sprint the focus was on implementing data types for the
C programming language and making it possible to con�gure more options
for how the dissector should function. This section will cover the require-
ments implemented, what the header and con�g �les looks like, and what
the �output� looks like.

To get a better understanding of how the di�erent requirements were
implemented, look at the user stories for sprint 2 in subsection 9.3.2.

9.4.1 Support Members of Type Enum

Enum is a type declaration in C that speci�es enumeration constants. Enum
is supported because it is a basic data type in the C language. Listing 9.1
shows an example of an enum in a C-header �le. The Wireshark dissector
will display the named value, making it easier to read, an example is shown
in Figure 9.3. The red rectangle shows the enumerated named value.

Figure 9.3: Enumeration in Wireshark

107

Listing 9.1: Enum support

enum Months { JAN = 1 , FEB , MAR , APR , MAY , JUN , JUL , AUG ,
SEP , OCT , NOV , DEC = 20 } ;

s t r u c t cenum_test {
i n t id ;
enum Months mnd ;

} ;

9.4.2 Support Members of Type Struct

Structs are an important part of the C language, a struct declaration consists
of a group of di�erent �elds, these �elds can have any type, also struct. This
was therefore an important requirement to implement. An example is shown
in Listing 9.2.

Listing 9.2: Struct support

#de f i n e NAME_LENGTH 10

s t r u c t postcode {
i n t code ;
char town [NAME_LENGTH] ;

} ;

s t r u c t struct_member {
i n t uid ;
s t r u c t postcode pcode ;

} ;

9.4.3 Detect Structs with Same Name

Two structs can have the same name, and therefore we needed a way of
detecting it. If the parser �nds two structs with the same name, an exception
is raised, and the generation of the dissector is terminated.

9.4.4 Support Display of Structs within Structs

The utility is able to display structs within a struct in Wireshark, the member
will be visible, and the struct will be in a subtree that can be expanded.
Figure 9.4 is a screen shot of this dissector in Wireshark.

9.4.5 Support Enumerated Named Values

In C there are two ways to do enumerations, the �rst option was explained in
subsection 9.4.1, the other way is to use #de�ne which is shown in Listing 9.3.
The advantage of using #de�ne is that the values can be generated. Since

108

Figure 9.4: Structs in Wireshark

this cannot be understood by the parser, it cannot be generated directly from
the header �le, so it have to be supported by con�guration. Listing 9.4. The
enum will be displayed in the same way as in subsection 9.4.1.

Listing 9.3: Enumerated named values

#de f i n e STRING_LEN 5

#de f i n e MONDAY 1
#de f i n e TUESDAY 2
#de f i n e WEDNESDAY 3
#de f i n e THURSDAY 4
#de f i n e FRIDAY 5
#de f i n e SATURDAY 6
#de f i n e SUNDAY 7

s t r u c t enum_test {
i n t id ;
char name [STRING_LEN] ;
i n t weekday ;

} ;

109

Listing 9.4: Enumerated named values con�g

Structs :
− name : enum_test

id : 10
enums :
− member : weekday

values : {1 : MONDAY , 2 : TUESDAY , 3 : WEDNESDAY ,
4 : THURSDAY , 5 : FRIDAY , 6 : SATURDAY , 7 : SUNDAY}

9.4.6 Support for Bit Strings

All bits in a basic data type can represent di�erent values. An integer is rep-
resented by four bytes(32 bits), each of these bits can for example represent
32 �true/false' values. Our utility support con�guration of these bits. Bits
can be in groups, so they can represent more than two values. Listing 9.5
shows how bit strings can be con�gured. Figure 9.5 shows an example of how
bit strings are displayed in Wireshark. Each group of bits is masked, so it is
easier to see the values. The values are also named, if they are con�gured.

Listing 9.5: Bitstring con�guration

Structs :
− name : bitstrings

id : 13
bitstrings :
− member : flags

32 : In use

31 : [Endian , Big , Little]
29−30: [Platform , Win , Linux , Mac , Solaris]
28 : [Test]

9.4.7 Support Members of Type Array

CSjark supports header-�les with arrays, and is able to display them in
Wireshark with the Lua-dissector. CSjark supports arrays of all data types
implemented so far. The Wireshark dissector can display multidimensional
arrays, and will create a new subtree for each dimension. A representation
of arrays in Wireshark is displayed in Figure 9.6.

9.4.8 Struct with Various Trailers

The utility is able to support all kinds of trailers that Wireshark have built-
in dissectors for. Trailers are data that follows a struct, this can be any
kind of data, but only trailers that have built-in support in Wireshark can
be displayed. To be able to use the Wireshark dissectors, they have to be
con�gured. In the example below, the Wireshark dissector for ASN.1 BER

110

Figure 9.5: Bit string in Wireshark

is used. In Listing 9.6, we specify �asn1_count� as a member in the struct,
this is used to tell the number of ASN.1 �elds. The con�g in Listing 9.7
speci�es �elds with a size of six bytes, the number of �elds are speci�ed by
the data sent with the struct. At the end there is a �eld with a size of �ve
bytes. An example of ASN.1 in Wireshark, can be seen in Figure 9.7.

Listing 9.6: Enumerated named values

s t r u c t trailer_test {
f l o a t tmp [5] ;
i n t asn1_count ;

} ;

111

Figure 9.6: Arrays in Wireshark

Listing 9.7: Enumerated named values con�g

Structs :
− name : trailer_test

id : 66
trailers :
− name : ber

count : asn1_count

size : 6
− name : ber

count : 1
size : 5

9.4.9 Custom Lua Con�guration

CSjark can support custom Lua con�guration, by including Lua-scripts from
a �le speci�ed in the con�guration �le. The reason for supporting custom Lua
con�guration is to add support for protocols that are not built-in dissectors
in Wireshark, and are not structs, or that display the members in a struct
in a di�erent way than our utility does. The only way to support this, is to
write Lua code for it. To be able to insert the Lua code in correct places in

112

Figure 9.7: BER Trailer in Wireshark

the Lua �les, the utility use a conformance �le, which make it possible to
specify where in the dissector the code should be inserted. This feature was
not completely �nished in this sprint, and will be �nished in sprint 3.

9.4.10 Dissector ID

All luastructs-packets that Wireshark captures have a header. One of the
�elds in the header is the message id. This id is used to load the correct
dissector when a packet is captured. Each dissector should have a unique id,
to avoid possible con�icts. This functionality is implemented and the mes-
sage id must be speci�ed in the con�guration �le, Listing 9.8 is an example
of how this is done.

113

Listing 9.8: Dissector ID con�g

Structs :
− name : structname

id : 10

9.4.11 Endian Handling

Endian handling is postponed to the next sprint, because it is a platform
speci�c problem, and should be implemented together with platform support.

9.4.12 Folder Support in the CLI

Folder support in the CLI has been implemented, so it is possible to gen-
erate Lua-scripts for all structs stored in a given folder. At the moment,
all dissectors will be regenerated. Functionality to only generate modi�ed
or new header-�les will be added in the next sprint. Figure 9.8 is an ex-
ample usage of CSjark where the command �rst shows the usage of CSjark,
and the second command generates dissectors from the folder �header/� and
con�gurations from �etc/�.

Figure 9.8: Usage of Wireshark

9.4.13 Support Custom Handling of Speci�ed Data Types

The utility supports custom handling of speci�c data types, this includes
functionality to support time_t and nstime_t. All basic data types and
struct members can be con�gured to be handled in a special way. Listing 9.9
shows an example of a struct with four members, two of them are time �elds,

114

and the last two is a BOOL and an integer to be handled in a custom way.
This struct is con�gured in Listing 9.10, in the con�g the two time �elds are
con�gured to be respectively absolute time and relative time, and the BOOL
type to have a size of four bytes. The struct member �all' is con�gured with
an enumerated value, and will be visible as a hex-value. Figure 9.9 is a screen
shot of the struct in Wireshark.

Figure 9.9: Custom Handling of Data Types

Listing 9.9: Struct for custom handling

#inc lude " time . h"

typede f s igned i n t BOOL ;

s t r u c t custom_lua {
time_t abs ;
time_t rel ;
BOOL bol ;
i n t all ;

} ;

115

Listing 9.10: Con�g for custom handling

Structs :
− name : custom_lua

id : 74
customs :
− type : time_t

field : relative_time

− member : abs

field : absolute_time

− type : BOOL

field : bool

size : 4
− member : all

base : base . HEX
values : {0 : Monday , 1 : Tuesday}

9.4.14 Typedef Support

CSjark is supporting the keyword typedef, which is a facility to create new
data types names. Listing 9.11 shows examples of typedef's that CSjark
supports.

Listing 9.11: Typedef example

typede f i n t BOOL ;

typede f enum traffic_light_t { red , yellow , green }
traffic_light_t ;

typede f s t r u c t name_t {
char first_name [2 0] ;
char last_name [2 0] ;

} name_t ;

9.5 Sprint Testing

This section introduces the tests performed during the sprint and their re-
sults. For sprint 2 it was also decided that the larger unit tests should also
be documented and added to the test documents.

9.5.1 Test Results

During the sprint, the team executed a total of seven test cases. An example
of a test case can be seen in Table 9.8 while the rest of the test cases can be
found in Appendix C. The results are listed in Table 9.9.

116

Table 9.8: Test Case TID08

Header Description

Description Supporting members of type enum
Tester Lars Solvoll Tønder
Prerequisites The utility must have been installed on the system and there needs to exist a header

�le associated with this test
Feature Test that the utility is able to support C-header �les with enums

Execution

1. Feed the utility with the name of a C-header �le which includes a struct using
enums and its con�guration �le
2. Read the output
3. Move the resulting dissector into the plugins folder in the personal con�guration
folder of Wireshark
4. Open the pcap-�le for this test with Wireshark
5. Look at the di�erent packets and struct members that are displayed in Wireshark

Expected result
2. The program should provide the user with some text expressing the success of the
Lua-�le generation

5 The di�erent packets should be displayed as having structs with enums, showing
the value of the enum by its name and value

9.5.2 Test Coverage

This section introduces the amount of code covered by our unit tests and
how it relates to the test coverage from the previous sprints.

Sprint 1

As the team had not started measuring code coverage in sprint 1, the testing
team had to revert the project to an earlier version and retroactively check
the code coverage from the �rst sprint. The following list contains the unit
tests used in the sprint, and the coverage is shown in Table 9.10

� requirements.py

� test_cparser.py

� test_csjark.py

� test_con�g.py

Sprint 2

The following list contains the unit tests used in the second sprint, and the
code coverage can be seen in Table 9.11. We also ran a comparison from
the previous sprint and created a chart that we would use to monitor the
progress of the code coverage. Tere was not a tremendous amount of progress

117

Table 9.9: Sprint 2 Test Results

Header Description

Test ID TID08
Explanation Supporting members of type enum
Tester Lars Solvoll Tønder
Date 15.10.2011
Result Success

Test ID TID09
Explanation Supporting members of type array
Tester Lars Solvoll Tønder
Date 15.10.2011
Result Success

Test ID TID10
Explanation Supporting the display of structs within structs
Tester Erik Bergersen
Date 17.10.2011
Result Success

Test ID TID11
Explanation Supporting enumerated name values
Tester Lars Solvoll Tønder
Date 17.10.2011
Result Success

Test ID TID12
Explanation Supporting bit strings
Tester Lars Solvoll Tønder
Date 17.10.2011
Result Success

Test ID TID13
Explanation Supporting structs with various trailers
Tester Erik Bergersen
Date 18.10.2011
Result Success

Test ID TID14
Explanation Unit test covering all of the functionality implemented in sprint 2
Tester Lars Solvoll Tønder
Date 18.10.2011
Result Success

118

Table 9.10: Sprint 1 Coverage Report

Module Statements Missing Excluded Coverage

con�g 298 125 0 87%
cparser 215 50 0 74%
csjark 113 57 0 59%
dissector 460 79 0 38%
Total 1086 311 0 64%

from the previous sprint regarding code coverage. This is mostly due to the
amount of new features that were added this sprint and the fact that using
code coverage got implemented very late in the sprint, giving the developers
and testers little time to use the metrics to improve the tests.

� black_box.py

� requirements.py

� test_con�g.py

� test_csjark.py

� test_dissector.py

� test_cparser.py

Table 9.11: Sprint 2 Coverage Report

Module Statements Missing Excluded Coverage

con�g 298 125 0 58%
cparser 215 50 0 77%
csjark 113 57 0 50%
dissector 460 79 0 83%
Total 1086 311 0 67%

9.5.3 Test Evaluation

For the second sprint the developers focused a lot more on testing during
implementation. The team also decided that the testers should check how
much of the code was covered in the unit tests. This made the team focus
more on making proper unit tests that tests as much functionality as possible.
This had a very positive e�ect on the tests that were run at the end of the
sprint, where not a single test failed, except for one which ended up exposing
a bug in Wireshark

119

9.6 Customer Feedback

In sprint 2 we were able to demonstrate many of the requirements for the
customer, and as a result we got feedback on some changes and re�nements.
The customer also added some new features they would like to have. These
changes and additions are described in subsection 5.2.2.

The customer was satis�ed with the progress of the utility and was so
far pleased with the functionality. They were also pleased that the team was
�exible regarding feature re�nement and additions.

9.7 Sprint Evaluation

This section contains the team evaluation of the second sprint.

9.7.1 Review

The �rst sprint evaluation resulted in some planned actions for the forthcom-
ing sprints. Looking back at these at now, we quickly realized that we fell
into the same pitfalls again: lack of documentation, bad work distribution
and reverse engineering of vital parts. The documentation was improved
to some degree, but we did not manage to continuously provide it for the
advisors. This way we lost valuable feedback. These matters will be basis
for planned actions for forthcoming sprints.

The sprint started out very good. We had a four-hour long planning
meeting, and ended up with a good backlog and a common understanding
of the technical aspects of the sprint. Even though the meeting was signif-
icantly better this time, we failed in doing the design early. User stories
was postponed till the middle of the sprint and they were written by team
members that had a limited understanding of the code. This is something
we de�nitely have to change in the next sprints, if we want to do Scrum
properly.

The rest of the sprint went as expected. Implementation went smoothly
and the customer is satis�ed with our progress.

In our sprint backlog, which we made at the sprint planning meeting, we
listed a responsible for each task. In retrospect this did not work out very
well. The problem we encountered was that the most experienced program-
mer was assigned almost all the programming tasks, leaving documentation
tasks for the rest of the team. This could have worked out well, if the doc-
umentation and implementation were independent of each other. We know
that the implementation and documentation are highly dependent, and the
fact that it is not easy to write documentation for code you have not written
yourself made it even worse. So all team members had to ask the imple-
menter how he did it and how it works, which was not very e�cient. This
actually resulted in two bad experiences:

120

� Work distribution was uneven. Those with responsibilities were ex-
pected to do their task, but we did not think that a task might have
been poorly estimated. Some tasks that seemed simple ended up being
hard and consumed a lot of person hours.

� Not all items in the sprint backlog were completed. Because of the
uneven work distribution, we realised too late that some of the backlog
items would take considerably more time to complete. The person
responsible for a task might have had a lot of other tasks that he
needed to complete before starting on the current task, and thereby he
could not get help from the other team members to complete it.

All in all we feel that we are still learning to do Scrum properly and if we take
the new planned actions in true consideration, we most likely will perform
considerable better at the next iteration.

The burndown chart, Figure 9.10, shows the progress during the second
sprint. The estimation seem bad, but since we postponed one of the work
items it does not re�ect the true actual hours left. The postponed item was
estimated 13 hours. Then the sprint end up being 27-13=14 actual hours
left. We feel that the estimations, if we exclude the postponed work item,
were good and accurate.

Figure 9.10: Sprint 2 Burndown Chart

9.7.2 Positive Experiences

� A signi�cantly better sprint planning meeting

� All the team members have raised their e�ort, working more hours

� Accurate time estimates for most of the work items

� Successful presentation of the utility to the customer

121

� Implementation of features are as intended

� Good feedback from the customer

� Thriving team atmosphere

9.7.3 Negative Experiences

� The planning meeting was too short, which resulted in a shortcoming
in the documentation.

� Documentation was postponed till the end again

� Lack of feedback to the advisor

� Poor work balance

� Could not complete all the tasks in the backlog

9.7.4 Planned Actions

We intend to complete these planned actions for the next sprint. To achieve
better performance, it is crucial that the importance of these actions are not
neglected.

Do the design in the planning

Last evaluation meeting we agreed to do the design early in the sprint. Since
that did not work for us, we have decided to do the design in the planning
meeting. Then it will not be possible to postpone it and the rest of the
work will be more e�cient. We will use as many hours as it takes to have a
planning meeting where we end up with a good plan, proper documentation
and detailed user stories.

Not assign responsibilities

We will not assign responsibilities for all the tasks at the sprint planning
meeting, we rather pick one task each. This way no team members can
assign themselves too many tasks, and in the end realize that they are not
able to complete them. All team members will be able to see what is done
and what is not, and can assign an unassigned task to themselves. We hope
that this will make us capable of completing the whole sprint backlog within
the given time.

122

List dependencies and prioritize the work items

As some tasks are dependent on others, we must plan in such a way that
no team member must wait for others to do a task. It is crucial that we
prioritize each task, in order to pick and complete the most important tasks
�rst. We do not want to end up with uncompleted work items that have a
high priority when the sprint is over. These changes are applied to the sprint
backlog.

Provide more and better documentation to the advisors

We will strive to give our advisors more documentation to look at. We need
their feedback and help in order to �nish this project in a suitable manner.

9.7.5 Barriers

The work distribution As mentioned in the review, the team had an un-
even work distribution. Some team members were eager to start implement-
ing and took all the implementation tasks, leaving mostly documentation
tasks for the rest of the team. The documentation tasks are closely con-
nected to the implementation, so this resulted in problems. Documentation
were postponed till the end. The planned actions section describes how we
are planning to avoid that this happens again.

Wireshark We identi�ed several bugs in Wireshark, which ended up crash-
ing it when we tried to run our utility. Most of them were �xed by Stig Bjør-
lykke, as he works as a core developer for Wireshark. Un�xed bugs either
will be �xed or dropped because they are not really relevant to us. Time can
be lost while we wait for a patch.

Complexity consideration As always, design and estimation of future
implementation is hard. At the planning meeting, we evaluated each work
item and estimated the complexity of it. In hindsight, we saw that our
complexity consideration for some of the work items was wrong, making it
hard to complete all the items in the sprint backlog.

123

CHAPTER 10

SPRINT 3

This chapter explains what the team has done in the third sprint of the
project. In section 10.1 the planning of this sprint is covered, the design is
described in section 10.2, together with the user stories. The implemented
requirements are explained in section 10.3, description of the test done can
be found in section 10.4. Through the sprint the team has got feedback from
the customer, this feedback can be found in section 10.5. The results from
the evaluation of the sprint is explained in section 10.6.

10.1 Sprint Planning

For the third sprint we intend to implement the remaining requirements in
the product backlog. We feel that the �rst and second sprint have resulted
in a satisfying utility, but it is still missing important functionality.

After two sprint iterations, we are still trying to improve our approach to
Scrum. Each sprint results in new ideas and better ways to do the process,
and in this sprint we want everything to be correct and in the right order.

There will be two major changes this sprint:

� We will have a complete planning meeting. The meeting should result
in a good planning document, user stories for all the requirements,
complete set of work items in the sprint backlog and a early under-
standing of the design. This approach will be di�erent from earlier
sprints, where user stories were written in parallel with implementa-
tion. The user story should be in place before the implementation,
and the implementation should be based on the user story. This will
make documenting the process easier, and will in turn give the advi-
sors more documentation of what we are doing. Then we can receive

124

valuable feedback from them.

� In the sprint backlog we will have work items for every task that needs
to be done throughout the sprint, including writing minutes, doing
documentation, implementation and so on. Assignment of responsi-
bilities for items in the backlog should not be done at the planning
meeting, we rather only give responsibility for one item for each team
member at a time. The rest of the items will be unassigned. At each
stand-up meeting we pick a task, which we must complete before the
next meeting. This will ensure e�ciency and the work done by others
are easier to check and revise. It will give us a better work balance, as
no team member can gap over too many tasks and leave none for the
others.

We think that these changes will improve our work e�ciency, and make
sprint 3 the best one so far.

10.1.1 Duration

The sprint started with the planning meeting the 19th of October and our
work started the following day. The sprint duration is 14 days, and will end
the 1st of November with a review meeting.

10.1.2 Sprint Goal

For the third sprint the team will update CSjark to version 0.3, which will
extend the utility so that it contains the complete functionality requested by
the customer at this phase of the project. In this sprint we will pick all of
the current requirements from the product backlog, as all of the underlying
functionality needed for them are already in place from the previous sprints.
This means that we will also aim to create a draft of the �nal design of the
system during the sprint.

The most important function that is going to be implemented in this
sprint is being able to display packets from di�erent originating platforms
properly. This will be implemented by having every packet contain a �ag
specifying their originating platform, and by having our dissectors use this
�ag value to in�uence how it handles the data in the packet.

10.1.3 Back Log

The work items concerning features for this sprint are listed in Table 10.1.
These are covered by user stories and are about a fourth of the work in this
sprint. See the timetable for the other work items.
Timetable for this sprint: Table 10.2.

125

Table 10.1: Sprint 3 Requirement Work Items

Hours

User story Req. and Description Est. Act.

Impl. 56 48

US29 FR5-A: Flags speci�ed for each platform 5 11
US30 FR5-C: Dissector support both little and big endian 5 4
US31 FR5-D: Dissector support di�erent sizes from �ags 12 2
US32 FR3-C: Support WIN32, WIN64,SPARC etc 5 2.5
US20 FR4-B: Con�guration supports custom Lua �les 6 3.5
US28 FR2-C: Support Wireshark �lter and search on at-

tributes
3 1.5

US39 FR5-B: Dissectors support memory alignment 4 6.5
US26 FR1-D: Support members of type union 5 6
US27 FR2-A add: Display a wildcard type for valid C

types that Wireshark has no support for
3 1.5

US34 FR4-D mod: Support specifying the ID of dissectors
(name and function)

3 3

US37 FR6-D: Don't regenerate dissectors 1 1.5
US38 FR2: Handle Lua reserved de�nition names 2 3

Testing 19 18.5

FR4-B: Custom Lua con�guration 2 3
FR5-C: Dissectors support both little and big endian 1 1
FR5-D: Dissectors support di�erent sizes from �ags 2 2
FR3-C: Support WIN32, WIN64, SPARC etc 4 2.5
FR5-B: Dissectors support memory alignement 8 8
FR1-D: Support members of type union 1 1
FR2: Handle Lua reserved de�nition names 1 1

Doc. 11 12

FR4-B: Custom Lua con�guration 2 3.5
US33 FR4-C: Support custom handling of speci�c data

types
2 1.5

US35 FR5: User documentation for what platform that
the utility support

3 0

US36 FR5: Create developer manual from Python doc-
strings (autodoc plugin)

4 7

Fixes 16 27

Total: 102 105.5

10.2 System Design

The system design de�nes the new modules and architecture that has to be
in place to satisfy the speci�ed requirements that we have included in the
sprint 3 backlog. Most of the design are already done in earlier sprints; in
this sprint we extend that and add some new elements.

126

Table 10.2: Sprint 3 Timetable

Hours

Description Est. Act.

Sprint planning 30 47.5

Sprint 3 requirements 102 105.5

Implementation 56 48
Testing 19 18.5
User Documentation 11 12
Fixes 16 27

Sprint review 20 18

Sprint documentation 75 63

Sprint 1 document 10 5.5
Sprint 2 document 14 13
Sprint 3 document 51 44.5

Report work 42 52

User stories to LaTeX 3 4
Architecture update 8 6.5
Glossaries and acronyms 16 20
Requirement review 15 -
Layout and correction 15 6.5

Lectures 21 14

Presentation outline 2 2

Meetings 57 45

Advisor meetings 28 21
Customer meetings 8 5
Stand-up meetings 21 19
Project management 20 14

Total: 367 361

10.2.1 System Overview

Now that the utility has both basic and advanced features, it is time to
specialize and make support for environmental variables that can be found in
Thales' source code. This basically include various platform speci�c support,
endian handling and minor technicalities. The latter one is vital for the
customer in order for the utility to be e�cient and adequate.

The new design resulted in both major and minor changes to the class
diagram, see Figure 10.1. Figure 10.2 shows the interaction between the
modules, the main di�erences here is that platform is added, and that the
con�g, cparser and dissector modules uses this module to generate correct
dissectors for each platform.

127

Figure 10.1: Sprint 3 Class Diagram

128

Figure 10.2: Sprint 3 Module Diagram

Major changes

� New module called Platform, to hold platform speci�c information.
Earlier, some information about the platform was stored in the con�g
module, but the platform speci�cations have become so extensive that
it is best to separate it in its own module. See the section regarding
platform speci�c support for more info.

� Moved the CLI class from csjark to con�g, and renamed it to Op-
tions. This class holds the attributes passed from the command line
interface. This will make the code more loosely coupled, because the
con�guration attributes are stored in the correct module.

� A delegator class was added to dissector module. This class will be
responsible for delegating dissecting to protocols. It will be a top-
level dissector that delegates the task of dissecting speci�c messages to
dissectors generated by protocol instances. It will be responsible for
�nding the correct dissector for a message based on the origin of it.

� UnionProtocol class was added to the dissector module. This class
willl be responsible for holding the union and its members. The utility
will be able to handle unions.

� In the con�g module the class StructCon�g was removed and replaced
by Options and Con�g. As mentioned, Options holds the attributes
submitted from the command line or attributes loaded by one or more
con�g-�les. Con�g holds the con�guration for a speci�c protocol.

Minor changes

� Con�g methods reduced to one.

� In the ConformanceFile, tokens and methods have been added.

129

� Trailers have a name variable.

� In the ProtocolField in the dissector module, the protocol is stored
with a name instead of an id. This has been pointed out by Thales as
the correct way to do it.

� Methods have been added to di�erent classes to support the major
changes. This is a change, more than an addition of new elements.

Platform Speci�c Support

We know that the various platforms behave di�erently, and this must be sup-
ported by our utility. The customer has mentioned at least three platforms
that we have to support. As we emphasize extensibility and modi�ability, it
must also be expected that new platforms will be added or removed to the
supported platforms in the future. Thereby we will try to make the set-up
for support easily understandable.

We have decided that the platform de�nition will be a subpart of a �ag-
�eld in the structs header. To ensure modi�ability we will assign a 16 bit �eld
for this, giving the developers possibility to have 65536 unique platforms.
We will make the platform �ag point to the platform module, which has the
following information about the actual platform:

� Endianness

� Length of �elds

� Memory alignment

� Macros

� Types

All of these �elds must be combined to enable the utility to generate a
dissector that will dissect the struct correctly.

Dictionary Lookup

Deciding how to implement handling of di�erent platforms ended in a design
draft seen in Figure 10.3. The dissector module will make a dictionary
lookup in the table of supported platforms. This table contains all platforms
that the utility can make dissectors for, and their information of how the
dissector shall be encoded to achieve correct handling of endianness, length
of �elds and memory alignment. We will start out by hard coding this into
the source code, but in the end we want to have this feed to the utility
through a con�guration-�le, which will be stored in the platform module.
This is the way the customer has envisioned it.

130

Figure 10.3: Platform Handling

Endianness

An important feature is the support for di�erent endian handling. Endian-
ness de�nes how the bytes are ordered. Big and little endian tells which bit
that is the most signi�cant, and thereby the value that the bits represent.
Figure 10.4 [4] show the di�erence between big and little endian. Wireshark

Figure 10.4: Endianness

has built-in support for reading big and little endian, and the dissector will
tell which it should use. When the dissector module builds the abstract syn-
tax tree, it must call the platform module to see what endian it shall use. In
the class diagram the dissector module imports the platform module, from
there it gets the information it needs regarding the endianness.

131

Batch Processing

The batch processing was implemented in the second sprint, but we have to
modi�ed it to ensure e�ciency and reliability. When the utility encounter
a header that it can not parse, it should skip that and move on to the next
header in the queue. This will make the utility able to process almost all
the headers in one batch, and ensure reliability. This is also according to the
customer's speci�cation.

The redesign of the con�g module will ensure better e�ciency when the
batch process is executed. It will also be easier to trace the connection
between con�guration and options.

10.2.2 User Stories

This section lists the user stories for the third sprint. They are displayed
in Table 10.3, Table 10.4 and Table 10.5. These user stories represent how
we intend to add the functionality of each requirement of the third sprint.
How the di�erent modules in CSjark should interact with each other is also
detailed. Some of the user stories explains how the user documentation
should be written, while one of them explains the modi�cation of FR4-D, a
requirement we implemented in sprint 2.

10.3 Implementation

The main focus in this sprint was to add support for di�erent platforms.
Several things are dependent on platform; endianness, the memory align-
ment and sizes of data types. It is also possible that structs can be de�ned
di�erently for each platform. The utility will generate di�erent dissectors
for each platform. A dissector will detect the platform and use the correct
platform dissector.

Support for the union data type, �nishing implementation of custom Lua
�les and modi�cation of functionality implemented in the previous sprint was
also done in this sprint.

10.3.1 Specify Flags for Each Platform

It is necessary to specify �ags for each platform to make it possible to cor-
rectly detect and display packages that Wireshark captures. In Wireshark
the �ags are used to tell which platform the packet is sent from, so that the
right dissector is used to display the packets in Wireshark. In the utility the
�ag points to what kind of endianness is used, how memory is aligned and
the di�erent sizes that is used for data types on the platform. These data
are used to generate a dissector for the speci�c platform. The luastructs
protocol will read the platform �ag, an �nd the dissector for the platform.

132

Table 10.3: User Stories - Sprint 3 Part 1

Header Value

ID US26
Requirement FR1-D: The utility must support members of type union
What The administrator wants to generate dissectors that contain structs with unions as mem-

bers.
How When the administrator feeds the utility with a header containing a union, the cparser

module should parse the union and its members to �nd the total size of the union, which
equals the size of the largest member, and then create an instance of UnionField from
the dissector module representing the union and its member

Result The utility support union members in structs.

ID US27
Requirement FR2-AAddition: Display a wildcard type for valid C types that Wireshark has no support

for.
What The administrator should be able to give the tool a struct with a valid C-type even if

Wireshark does not have a way to display that type in a natural way. The dissector
should the just display the name of the type, the name of the member and the hex value
from the packet.

How The parser module will recognise if a type it encounters are supported in Wireshark or
not. If it is not supported, it will add a wildcard �eld to the prototype object representing
the enclosing struct.

Result The administrator will be able to both run the utility and get some information from the
dissector even if the type used is not supported by Wireshark.

ID US28
Requirement FR2-C: Filter and search on attributes (important to have descriptive abbreviations)
What The developer wants to �nd speci�c attributes in Wireshark. The amount of data cap-

tured can be big. After the packets have been dissected, they are presented in Wireshark.
The developer will have a hard time �nding attributes by manual seeking. The built-in
search and �lter functionality needs to be supported to accommodate the developer.

How The functionality is already in Wireshark. To utilize it, an abbreviation �eld must be
provided to Wireshark. This abbreviation �eld will be in the dissector module and is
included in the dissector generated by the utility. When Wireshark runs the dissector, all
abbreviations are collected, which will make it possible to �lter and search on attributes.

Result The developer will be able to search and �lter by attributes.

ID US29
Requirement FR5-A: Flags must be speci�ed in con�guration for each platform
What The administrator wants to generate dissectors that are di�erent depending on platform.
How To be able to create dissectors that are di�erent depending on the originating platform,

the administrator needs to specify in the con�guration which platforms he wants to sup-
port. The con�g module should accept such con�guration and store it so other modules
can use it.

Result The administrator can specify what platform he is using by setting a �ag in the con�gu-
ration.

133

Table 10.4: User Stories - Sprint 3 Part 2

Header Value

ID US30
Requirement FR5-C: Generate dissectors that support both little and big endian platforms
What The administrator wants dissectors that handle both big and little endian encoding.
How The dissector module will need to create di�erent Lua code for big and little endian, when

adding nodes to the Wireshark tree and when calling other dissectors. The dissector
module shall have functionality that generates Lua code depending on endianness, and
the di�erent Field classes must use this function when adding nodes to the Wireshark
tree.

Result Dissectors can be created with platform speci�c endian.

ID US31
Requirement FR5-D: Generate dissectors that support di�erent sizes depending on platforms
What The administrator wants to generate dissectors for struct where members size depend on

the originating platform.
How When the administrator feeds the utility a header �le and a con�g �le with a set of

platform he wants dissectors for, the con�g module will create new header �les with
C preprocessor directives for each platform. These �les should de�ne platform-speci�c
macros that emulates parsing on the speci�c platform. The dissector module then create
di�erent dissectors for each message on each platform, and a mapping is added inside the
master Lua �le that maps message id and platform to the correct dissector.

Result Dissectors can be created with platform speci�c sizes of members.

ID US32
Requirement FR3-C: Support for con�guring a platform with a platform speci�c macro like WIN32,

_WIN64, __sparc to be able to support di�erent struct de�nitions for di�erent plat-
forms.

What The administrator wants to be able to con�gure the utility to make dissectors that support
structs that is de�ned di�erently on di�erent platforms via platform speci�c macros like
WIN32, _WIN64, __sparc.

How The administrator specify the macro associated with a platform together with the plat-
form de�nition con�guration. The utility then make an auxiliary header �le for each
platform con�guration with the speci�ed macro de�nition. These headers are forwarded
to the parser module, which uses them to generate one dissector for each platform for
each struct. All dissectors dissecting the same structs are stored in the same �le, but are
added to a platform speci�c dissector table.

Result The generated Lua �les corresponding to structs includes one dissector for each platform
de�ned in the con�guration �le.

ID US33
User doc FR4-C: User documentation for con�guration custom handling of speci�c types.
What The administrator should be able to �nd out how to specify custom handling for a speci�c

type by reading the user documentation.
How The administrator opens the user documentation and �nds the section about con�gura-

tion. From here he locates the sub section about custom type handling. This section
gives a good description of how to write such con�guration and what kind of con�guration
that could be done. There should also be some examples to clarify the description. After
reading the section, the user has a good idea of how to do the desired custom handling.

Result The administrator is able to use custom handling of speci�c types.

134

Table 10.5: User Stories - Sprint 3 Part 3

Header Value

ID US34
Requirement FR4-D modi�ed: Con�guration must support specifying the ID of dissectors
What The administrator wants to specify the ID of a dissector in a con�guration �le. The

dissectors should not be given any ID if it has not been speci�cally con�gured.
How When the cparser �nds a struct in the abstract syntax tree it looks for a con�guration

�le for the struct. If a con�g-�le is found, the ID of the prototype �eld representing the
dissector will be mapped to the ID given in the con�g-�le. If it is not found, the ID will
be sat to NONE.

Result The administrator can specify the ID of dissectors in the con�guration.

ID US35
User doc FR5 User documentation for how to add or remove support for a platform in the dissectors

generated from the utilities.
What The administrator should be able to �nd out how to add or remove support for a platform

in the dissectors by reading the user documentation.
How The administrator opens the user documentation and �nds the section about con�gura-

tion. From here he locates the sub section about platform support. This section gives a
good description of how to add or remove support for a platform in the con�guration, in
order for the administrator to understand how to do this after reading the section.

Result The administrator is able to con�gure the utility to add or remove platform support from
the generated dissectors.

ID US36
User doc FR5 User documentation for what platform that the utility support.
What The administrator should be able to �nd out what platforms he can add support for in

the custom dissector �les.
How The administrator opens the user documentation and �nds the section about con�gura-

tion. From here he locates the sub section about platform support. This section gives a
list of currently supported platforms by the utility. It should also have some information
of where to �nd the documentation that describes how to add support for more platforms.

Result The administrator is able to look up what platforms he can get the dissectors to support.

ID US37
Requirement FR6-D The utility should not regenerate dissectors within a single run.
What The administrator should be able to specify folder that includes both a standalone header

�le with a struct de�nitions and another header �le that includes the �rst header. The
utility will only generate the dissector once for the struct inside the �rst header.

How For each struct encountered, the utility will check the table of generated dissectors to see
if there is an existing dissector generated for the struct name. It will only generate a new
dissector if the table of dissectors is empty for that name.

Result The utility will run faster as a result of not needing to regenerate dissectors.

ID US38
Requirement Handle Lua reserved de�nition names
What The C structs could contain members with names that are reserved by Lua. The dissector

module needs to avoid creating Lua variables with such names.
How The dissector module has a method called create_lua_var. This method will ensure

that variable names are valid, by comparing the variable names to a list of Lua reserved
keywords, and if there is a match we need to add an underscore in front of the variable
name.

Result The utility can handle C header �les that contain Lua reserved de�nition names.

135

Table 10.6: User Stories - Sprint 3 Part 4

Header Value

ID US39
Requirement FR5-B: Generate dissectors with correct alignment depending on platform
What The administrator wants to generate dissectors that are di�erent depending on platform.
How The dissector module will use the con�gured �ags from the con�g module to modify the

generated Lua dissectors, to have the right memory structure alignment and endianness.
The dissector module shall have a function that calculates the o�set for each �eld to align
it, and functions that create �elds for speci�c endianness.

Result Dissectors can be created with platform speci�c memory structure alignment

10.3.2 Support Little and Big Endian

Di�erent platforms can order bytes in either little(left-to-right) or big(right-
to-left) endian. The Windows platform uses little endian, and SPARC uses
big endian. Since the utility has to support both platforms, it was necessary
to support handling of endianness. The Lua API in Wireshark has function-
ality to display data in both little and big endian. Therefore the utility has
to read the speci�ed �ag for the platform, and generate a Lua dissector that
displays the data correctly for the given platform.

10.3.3 Support Di�erent Sizes from Flags

On di�erent platforms, there can be di�erent sizes on the data types. For
example on Windows a long double is 8 bytes, and on SPARC it is 16 bytes.
It is possible to specify sizes for data types for each platform. All these
speci�cations is written in Python code, and are easy to modify for the user
of the system.

10.3.4 Support Platform Speci�c Macros

All C compilers have prede�ned macros for di�erent operating systems and
processors. These macros are much used in code that need to be portabel for
di�erent platforms. When using these macros it is possible to create di�erent
struct members for each operating system, as shown in Listing 10.1, which
will use di�erent data types on each operating system. All platform speci�c
macros are speci�ed for each platform, so the dissector is generated correctly
for each of the platforms. Currently all the platform speci�cations is done
in Python code.

136

Listing 10.1: Macros in C

#i f _WIN32
f l o a t num ;

#e l i f __sparc
long double num ;

#e l s e
double num ;

10.3.5 Support Custom Lua Files

Implementation of this feature started in sprint 2, and support for using
conformance �le to add Lua code to correct places in the Lua dissector
was �nished in this sprint. With the conformance �le it is possible to add
code before and after an member in both the de�nition and function part
of the dissector. It also possible to replace the code for a member in both
of these sections. In the example below there is written custom Lua for a
struct(temperature) with on integer member (Celsius). In the conformance
�le in Listing 10.2 there added three lines of comments as a custom Lua
code, which are going to be added to the Lua dissector. In Listing 10.3 it
is possible to see the custom Lua code that was added to the Lua dissector.
The �rst comment is added after the member de�nition. The two other
comments are added above and below the member in the function part of
the Lua dissector.

Listing 10.2: Custom Lua conformance �le

#.DEF_FOOTER c e l s i u s
−− This is below ' c e l s i u s '

#.END

#.FUNC_HEADER c e l s i u s
−− This is above ' c e l s i u s ' inside the dissector function .

#.END

#.FUNC_FOOTER c e l s i u s
−− This is below ' c e l s i u s ' inside dissector function

#.END

137

Listing 10.3: Custom Lua dissector code

−− Dissector f o r win32 . temperature : temperature (Win32)
local proto_temperature = Proto ("win32 . temperature " , "←↩

temperature (Win32) ")

−− ProtoField defintions f o r : temperature

local f = proto_temperature . fields
f . celsius = ProtoField . int32 (" temperature . c e l s i u s " , " c e l s i u s ")
−− This is below ' c e l s i u s '

−− Dissector function f o r : temperature

function proto_temperature . dissector (buffer , pinfo , tree)
local subtree = tree : add_le (proto_temperature , buffer ())
i f pinfo . private . caller_def_name then

subtree : set_text (pinfo . private . caller_def_name . . " : " ←↩
. . proto_temperature . description)

pinfo . private . caller_def_name = nil

e l s e
pinfo . cols . info : append (" (" . . proto_temperature .←↩

description . . ") ")
end

−− This is above ' c e l s i u s ' inside the dissector function .
subtree : add_le (f . celsius , buffer (0 , 4))
−− This is below ' c e l s i u s ' inside dissector function

end

delegator_register_proto (proto_temperature , "Win32" , "←↩
temperature " , 7004)

10.3.6 Support Wireshark Filter and Search

Wireshark has a built-in display �lter, where it is possible to use packet
�ltering. Each �eld in our generated dissectors has a abbreviation name
that is connected to a struct. For each member of a struct, it is possible to
�lter on a value. An example is shown in Figure 10.5, this shows a �ltering
for packets where Trondheim is equal to the member place in the struct
postcode.

10.3.7 Support Di�erent Memory Alignment

Since the dissectors generated by the utility are going to be used for inter-
process communication, it is important to handle memory structure align-
ment, because the packet that Wireshark capture is only a copy of the mem-
ory. Memory alignment is how the data are stored in the memory. Each
member of a structure has a alignment. With the correct handling of mem-
ory alignment it is possible to display the structs correctly in Wireshark.

138

Figure 10.5: Filter and Search in Wireshark

139

10.3.8 Support Union Type

The union type is a member that can contain di�erent data types with
di�erent sizes. The union will allocate memory for the largest type de�ned
in the union. Listing 10.4 shows an example of a header-�le with a union
type. The compiler is responsible for keeping track of size and alignment
requirements [11, p.147] . Since it is not possible to �nd out which data
type that is used in Wireshark, the utility has to generate a dissector that
displays the values for each data type. Figure 10.6 displays the dissector
generated from the struct in Listing 10.4. This shows the union with three
members, all of them are listed with their values. In this case the �oat value
is the correct one.

Figure 10.6: Union Type Support

140

Listing 10.4: Union type

union union_test {
i n t int_member ;
f l o a t float_member ;
unsigned long long long_long_member ;

} ;

s t r u c t union_within_struct {
i n t a ;
union union_test union_member ;
f l o a t b ;

} ;

10.3.9 Display Types Wireshark Do Not Support

The utility is able to generate dissectors for C data types that Wireshark does
not support. When such a data type occur, Wireshark will only display the
packet data. An example of a data type that Wireshark does not support
is long double on the SPARC platform, which is a 128-bit foat. For this
Wireshark will display the 16 bytes in hexadecimal.

10.3.10 Support Specifying ID of Dissectors

Specifying dissector ID has been modi�ed from sprint 2. The dissector will
still use the ID given in the con�guration for a struct. If the struct is not
given an ID in the con�guration, then the ID for the struct will be set to
NONE. This is done to ensure that structs have an unique ID for their
dissector. Struct-in-struct members do not need an ID since they are called
from the struct by the dissector name.

10.3.11 Do Not Regenerate Dissectors

To increase the performance on generation of dissectors, dissectors that al-
ready are generated in batch mode, will only be generated once in a batch
mode execution. This feature will be improved in the next sprint, so it only
generates dissectors in batch mode that are modi�ed or new since the last
batch run.

10.3.12 Handle Lua Reserved Keywords

Lua has a list of reserved keywords, and some of these keywords are allowed
in the C language. The utility is able to support this under generation of
Lua code, when an identi�er is a lua keyword, an underscore(_) is added,
so the identi�er starts with �_�.

141

10.3.13 Support for Complex Arrays

Support for typedef was implemented in the previous sprint. In this sprint
it has been improved to also support type de�nitions of complex arrays.
Support for type de�nition of array is implemented, an example of such type
de�nition in C is shown in Listing 10.5. Also support for arrays of enums,
arrays, structs and pointers has been added.

Listing 10.5: Typedef of arrays

typede f unsigned char BENQ ;
typede f BENQ BENQTWO [2] ;
typede f BENQTWO BENQFOUR [2] ;

typede f i n t * INTPOINTER [3] ;

10.4 Sprint Testing

During sprint 3, the team executed a total of 11 test cases, but no additional
testing features were added during the sprint.

10.4.1 Test Results

The test cases executed in this sprint can be found in Appendix C. An
example of such a test case can be seen in Table 10.7. The results from the
tests are listed in Table 10.8 and Table 10.9.

Table 10.7: Test Case TID15

Header Description

Description Support batch mode of C header and con�guration �les
Tester Lars Solvoll Tønder
Prerequisites The utility has have been installed on the system, there also needs to exist a header

and con�guration �le for this test
Feature Test that the utility is able to generate dissectors for all header-�les in a folder, with

con�guration

Execution
1. Feed the utility the name of the two folders with header-�les and con�guration-�les.
2. Read output from the utility

Expected result 2. The utility should provide the user with the amount of header �les processed and
the number of dissectors created. It should also provide the user with error messages
for the header and con�guration �les it was unable to run

142

Table 10.8: Sprint 3 Test Results Part 1

Header Description

Test ID TID15
Description Supporting batch mode of C header and con�guration �les
Tester Lars Solvoll Tønder
Date 28.10.2011
Result Success

Test ID TID16
Description Supporting custom Lua con�guration
Tester Lars Solvoll Tønder
Date 30.10.2011
Result success

Test ID TID17
Description Supporting unions
Tester Lars Solvoll Tønder
Date 30.10.2011
Result success

Test ID TID18
Description Supporting �lter and search in Wireshark
Tester Lars Solvoll Tønder
Date 30.10.2011
Result success

Test ID TID19
Description Supporting WIN32, _WIN64, _SPARC
Tester Lars Solvoll tønder
Date 30.10.2011
Result Success

Test ID TID20
Description Supporting the use of �ags specifying platforms to display member values

correctly
Tester Lars Solvoll Tønder
Date 30.10.2011
Result Failure. Most values were displayed correctly, but there were cases where

the members and their values were di�erent. Most notably in packet 2
and 3 in the win64 and win32 pcap-�les

Test ID TID21
Description Supporting platforms with di�erent endian
Tester Erik Bergersen
Date 31.10.2011
Result Success

Test ID TID22
Description Supporting alignments
Tester Lars Solvoll Tønder
Date 30.10.2011
Result Failure. All of the platforms that were used for testing were the same

143

Table 10.9: Sprint 3 Test Results Part 2

Header Description

Test ID TID23
Description Handling Lua keywords
Tester Lars Solvoll Tønder
Date 30.10.2011
Result Success

Test ID TID24
Description Unit test encompassing all of the functionality implemented thus far in

the utility
Tester Lars Solvoll Tønder
Date 01.11.2011
Result Success

Test ID TID25
Description Unit test covering all of the functionality imposed by the customer
Tester Lars Solvoll Tønder
Date 01.11.2011
Result Failure. Failed because one or more of the following tests failed: a.type

should be equal to int32, b.type should be equal to string, c.type should
be equal to �oat

Test Coverage

As can be seen in both Table 10.10, the team �nally managed to hit the goal
of having a code coverage of at least 80% in this sprint. This was achieved
mostly by improving the black_box.py, which is a test of all the major parts
of the utility. The following list shows the unit tests ran in sprint 3:

� black_box.py

� requirements.py

� test_con�g.py

� test_cparser.py

� test_csjark.py

� test_dissector.py

10.4.2 Test Evaluation

In this sprint we saw a massive improvement in code coverage, due to �nally
being able to use the coverage tool to monitor our unit tests. Many bugs were
also discovered during this sprint, and while most of them were �xed, some of
the bug �xing had to be pushed to next sprint due to time constraints. Some

144

Table 10.10: Sprint 3 Coverage Report

Module Statements Missing Excluded Coverage

con�g 309 25 0 98%
cparser 230 32 0 86%
csjark 113 51 0 55%
dissector 497 72 0 86%
Total 1149 180 0 81.25%

test cases also failed due to poor communication between the ones responsible
for creating the test cases and the ones responsible for generating the test
data. It was therefore decided that we should not split up these two types
of tasks, but rather have the same person design a test case and create the
required data for it as well.

10.5 Customer Feedback

This section covers the feedback we have got from the customer during the
sprint. New requirements and descriptions of existing requirements are listed
in subsection 5.2.3.

10.5.1 Pre-sprint

The customer was satis�ed with the functionality we implemented in sprint
2. They feel that we are �exible and adapt well to their needs. Some of the
features from sprint 2 were postponed to sprint 3 because we needed addi-
tional feedback from the customer. These include endianness and completing
the handling of custom Lua �les.

The customer wanted our utility to be as automatic as possible, and
with as little con�guration as possible. Additional requirements for sprint 4
should address optimization and testing of the utility.

10.5.2 Post-sprint

The customer stressed the importance of being able to run our utility on
the header �les they have provided. Once our utility is able to successfully
parse all their �les, they can begin testing the utility on their own data. We
should expect more feedback on necessary �xes and improvements after the
customer has tested the utility on their own source code tree.

In general the customer was satis�ed with the progress we have made.
Most of the requirements were implemented or close to complete.

145

10.6 Sprint Evaluation

After the sprint was �nished, the team had an evaluation of the sprint. The
results of this meeting is covered below.

10.6.1 Review

After some trying, failing and learning we feel that we understand the Scrum
process and were able to do it more correctly. We did the planned actions
from the prior sprints and achieved a considerable increase in work e�ciency,
work completion and had a well distributed workload.

After not assigning responsibilities at the planning meeting, the team
members felt that it was easier to �nd a task that suited them, which in-
creased the e�ciency of task completion. We also listed all the work that
needed to be done during the sprint, including meeting, minutes, sprint doc-
umentation and so on. This gave us a much better overview of the work.

Looking at the planned actions, we feel that we have managed to do all of
them and we are very satis�ed with that. The bad experiences mentioned in
this sprint are only nitpicking compared to the ones in earlier sprints. We see
this as a natural evolution, as we learn to do the Scrum steps correctly and
e�ciently, the team as a whole works better. But the raised e�ort from each
team member is also indispensable and the improvement we have gained is
a result of dedication towards the project.

The burndown chart for the sprint can be seen in Figure 10.7. The
estimated and actual hours �t almost �awlessly. This is something we have
been good at in all the sprints, but in this sprint it was perfected. Even
though we estimated too many hours of work for this sprint, all the team
members gave their best e�ort and we almost completed the whole backlog.

Figure 10.7: Sprint 3 Burndown Chart

146

10.6.2 Positive Experiences

� Even better planning.

� Positive and constructive customer feedback.

� The team functions well together.

� Planned actions completed.

� Easier to pick work items in the backlog after not assigning them at
the planning meeting.

� Backlog contained all work that had to be done in the sprint. Imple-
mentation, documentation, testing and project management.

� Team members worked more hours.

10.6.3 Negative Experiences

� The documentation can still be better.

� We are not able to �nish all tasks in the backlog without working more
hours than anticipated.

� During the sprint, we had to add work items to the backlog. This is
not correct according to Scrum procedure, but was necessary because
of our lack of knowledge of the domain. This is explained in the barriers
section.

10.6.4 Planned Actions

As mentioned in the review section; we accomplished all the planned actions.
The new planned actions are more speci�c, because this is the last sprint in
this project.

Project management We have underestimated the hours needed for project
management in the prior sprints. We will remember this at the fourth sprint
planning meeting and will try to give it a better estimation.

Completion of backlog Last sprint means no postponing of work items.
We must do a good hour estimation and leave some bu�er hours for unfore-
seen tasks.

Sprint focus The next sprint we would like to focus on testing and bug
�xing. This is a natural shift, as the project goes into the completion phase.

147

10.6.5 Barriers

This sprint the barriers are all concerned with e�ciency; bugs, roles and
planning.

Technical problems Unforeseen and undiscovered bugs arise in Wire-
shark while we are developing the utility. We report these to the customer,
and they patch Wireshark's source code. Our problem is that we have to
wait until the customer has made the �x before we can continue.

Product owner In Scrum, a product owner should be assigned. In our
case this is a team member. In a perfect world the product owner would be
the customer. The product owner is responsible for prioritizing the product
backlog and deciding which work items that should be included in the sprint
backlog. We normally use six hours for the sprint planning meeting, and
understand that this would be very costly if we were to occupy the customer
for this time.

This results in wrong estimates of complexity and we have to add new
work items to the backlog during the sprint, as we discover elements that we
have overlooked.

Planning meeting It is hard to �nd a six hour slot where all of the team
members can meet. If we do not do the design and proper planning at the
planning meeting, we end up with a poor plan. As we get more familiar with
Scrum, the planning will probably be more e�cient and the hours needed
will be less.

148

CHAPTER 11

SPRINT 4

This chapter describes the work done in sprint 4. The chapter is divided into
sprint planning in section 11.1, design made in the sprint in section 11.2, the
implementation in section 11.3, the result of the sprint testing in section 11.4,
feedback from the customer in section 11.5 and evaluation of the sprint in
section 11.6.

11.1 Sprint Planning

The fourth sprint will be the last iteration of this project. The sprint work
hours will be split between implementing new features, improving existing
features and making sure the utility work properly on Thales' source code.

Before the sprint the customer tried our utility on close to 200 C header
�les, but was only able to generate four dissectors. For the utility to be of
value to Thales we must improve this.

Feedback from the customer before sprint 4 revealed that certain require-
ments were not ful�lled, and needed to be improved. These were added as
work items to this sprint backlog in Table 11.1. In addition, we received new
requirements that the customer would like us to implement.

As this is the last sprint, and with the new requirements from the cus-
tomer it is clear we will not be able to complete them all. We made some of
the new requirements optional as we only allowed 350 work hours of tasks
in the sprint backlog. We are trying to improve the process by only adding
tasks which we can complete during the sprint. We are prepared to work
more for any new tasks and unforeseen bugs we must �x.

We have agreed to write suggestions on how to implement any optional
tasks not completed during the sprint.

149

11.1.1 Duration

The sprint started with the planning meeting the 2nd of November and our
work started the following day. The sprint duration is 14 days, and will end
on the 15th of November with a review meeting.

11.1.2 Sprint Goal

The goal of this sprint will be to focus on �xing and implementing functions
that the customer will need to use the utility on their source code. The
most important thing to focus on in the beginning of the sprint will be to
implement support for #pragma directives and support for including header-
�les that are not included by the preprocessor. This is important, as it will
make it possible for the customer to fully test the utility.

Since the deadline of the project is 24th November, there will also be
a focus on preparing a presentation and improving the report for the �nal
delivery. The team are also going to hold a presentation for the customer's
developers on the 17th of November, and it is important to also focus on this
presentation.

11.1.3 Back Log

This section contains the sprint backlog in Table 11.1 and the timetable for
the sprint in Table 11.2.

11.2 System Design

At the start of the fourth sprint our utility was only able to successfully
parse a few of the header �les in the customer's code base. We had to
add functionality to support corner cases of features we already had, and to
remove C code which pycparser does not accept, like #pragma directives.

This sprint the design will not be as comprehensive as in prior sprints,
for two reasons:

� This was the last sprint, if we were to implement many new features we
also had to use time for testing and writing documentation for them,
which we did not have.

� The existing features had to be extensively tested and documented
before the project was over, leaving less time for other work. Testing
and bug �xing was essential this sprint.

After three sprints, the design was to a large degree set. To make the indi-
vidual modules less complex, we re-factored some code and introduced some
new modules, which is described below.

150

Table 11.1: Sprint 4 Requirement Work Items

User Hours

story Req. and Description Est. Act.

Impl. 47 24

US56 FR2-E: Guess dissector from packet size 5 3
US40 FR3-A mod: Support #include of system headers 8 3
US41 FR3 mod: Ignore #pragma directives 2 1
US42 FR3-A mod: Find include dependencies which are not

explicitly set
16 11

US47 FR4-B mod: Custom Lua �les support inside a .cnf �le 4 1
US49 FR4-D mod: Multiple message ID's for one dissector 2 1
US53 FR4-H:Automatic generation of placeholder con�gura-

tion
1 0.5

US51 FR4-I: Support specifying the size of unknown struct
members

4 1

US43 FR6-E: Support C #de�nes and �Include from CLI 1 1
US54 FR6-F: Only generate dissectors for structs with valid

ID
4 1.5

Fixes 35 43.5

TheFIX: Be able to process customer's �les 12 17
FR2-A: Improve generated Lua output 10 20
FR1-E: Array bug in text 2 1.5
FR1-E: Pointer support (array) 1 0.5
FR1-E: Enum in arrays 1 1
FR6-C: Batch mode (recursive search for subfolders) 8 2
FR6-C: Support command line arguments for Cpp 1 0.5
Exclude certain folders and �les in batch mode 1 1

Testing 16 7.5

Fixing existing tests 3 3.5
Add more tests for csjark module 3 1
Add more tests for cparser module 3 0.5
Add more tests for the con�g module 2 0.5
Add more tests for the dissector module 2 0.5
Add more tests for platform module 1 0
Add sprint 4 end-to-end tasks 2 1.5

Doc. 15 17.5

US44 Update command line interface document 1 1
US48 Update user documentation for custom Lua 1 1.5
US50 Update user documentation for message ID 1 1
US52 User documentation for struct size con�guration 1 1
US55 User documentation for generating only struct with

valid ID or dependencies
1 1

US36 Which platforms that the utility supports 2 1
US58 How to de�ne new platforms to support 1 3.5
US37 Create developer manual from python docstrings 2 2

Updates and polishing 5 5.5

Total: 113 92.5

151

Table 11.2: Sprint 4 Timetable

Hours

Description Est. Act.

Sprint planning 30 27

Sprint 4 requirements 113 92.5

Implementation 47 24
Fixes 35 43.5
Testing 16 7.5
User Documentation 15 17.5

Sprint review 20 20

Sprint documentation 46 52.5

Sprint 3 document 4 4
Sprint 4 document 42 48.5

Report work 38 49

Update tables with actual hours 2 2
Abstract - improve 2 3
Importing user documentation to report 3 11
Introduction section 6 10
Report read-through from a technical perspective 6 6
Report read-through from a non-technical perspective 6 7
Glossary re�nement 3 3
Acronym re�nement 1 1
Write about optional requirements 4 2
References 3 2
Requirement agreement 2 2

Thales presentation 28 28

Meetings 63 48.5

Advisor meetings 28 20
Customer meetings 14 10
Stand-up meetings 21 18.5

Project management 17 27

Total: 351 344.5

152

11.2.1 System overview

The addition of new requirements from the customer resulted in changes in
the utility's system overview. The need for more custom handling resulted in
a re-factoring of the code. This is visible in the class diagram in Figure 11.1,
which was extended from the third sprint. Two new modules was added, cpp
and �eld. Major changes to the class diagram are described below. How the
modules interact is described in subsection 11.2.2.

Figure 11.1: Sprint 4 Class Diagram

153

ccp module

The need for preprocessing C �les before they are parsed have become so
comprehensive, that we decided to create a dedicated module for it. All
the existing cpp concerned code was relocated from the cparser module, and
joined with the new implementation. The requirements listed inTable 11.1,
made it necessary to have more functionality regarding the preprocessor step.
Especially we need to remove parts of the output of the C preprocessor before
forwarding it to the pycparser library.

�eld module

Field speci�c classes were moved from the dissector module to its own mod-
ule, �eld. For the same reason as the ccp module; the amount of code con-
cerning �elds became so large, that an own module was appropriate. There
was some refactoring in the �eld module. An interface, BaseField, was added
and has Field as a subclass. The class Field is the most important class in
this module, and generate code for most of �elds used by dissector. Subtree
is a class that generates �elds for the dissector, that will need a subtree in
Wireshark, this class has three subclasses, BitField, ArrayField and Proto-
colField.

cparser module

Some changes was done in this module due to the refactoring, functionality
for C preprocessing was moved, and some new methods was added.

con�g module

The class FileCon�g was added, to hold the con�guration for speci�c header-
�les. Some methods was also added for automatic generation of header-�les.

dissector module

There was several changes, all the Field classes was added to it's own module.
The Dissector-class was added, which holds �elds representing one struct for
a speci�c platform. Protocol is now a collection of Dissectors, one for each
platform. UnionProtocol was renamed to UnionDissector.

11.2.2 Module Diagram

Figure 11.2 shows the dependencies between the modules. The main module
for the utility is csjark, which have the main-method. This module uses
con�g to parse and hold all the con�guration, starts preprocessing in cpp
module, and then uses cparser to parse the header �les which returns all

154

the generated protocols. At the end the dissector module generates Lua
dissectors, which the csjark module writes to �les.

The cpp module uses the con�g module to read options given for the c
preprocessing.

The con�g module uses the two modules �eld and dissector to create
con�gured dissector �elds and the delegator class. The platform module is
read, to get de prede�ned platform con�gurations.

When the cparser have parsed a header �le it traverses the abstract
syntax tree to create Protocol instances which represents Structs and Unions.
To do this the cparser module depends on four modules: con�g, platform,
dissector and �eld.

The dissector module uses the �eld module to generate �elds for all the
struct members. It also uses the platform module to a list of all platforms
to support.

The �eld module depends on the platform module to test if �eld endian
is big or little.

Figure 11.2: Sprint 4 Module Diagram

11.2.3 User Stories

This section lists the user stories for the fourth sprint, these are displayed
in Table 11.3, Table 11.4, Table 11.5 and Table 11.6. These user stories

155

represent how we intend to add the functionality of each requirement of the
fourth sprint, and contains information on how the modules of CSjark should
interact with each other. Some of the user stories explains how the user doc-
umentation should be written, while one of them explains the modi�cation
of the #include requirement we implemented in sprint 1.

11.3 Implementation

The implementation in this sprint has mainly been bug �xing, and adding
features that the customer needs to be able to run the utility on their code.
This section covers the added functionality and the most important �xes in
this sprint.

11.3.1 Include Unsupported System-headers

CSjark must be able to support both Windows and Solaris operating system.
To be able to generate dissectors from header-�les, it was necessary to add
system speci�c header-�les for Windows and Solaris. This is done by adding
the system-headers to the �fake_libc_include�. �fake_libc_include� is a
fake library for standard header-�les, that only contains default typedefs
and default de�nes. Most of the header-�les in the fake library are empty,
so the preprocessor can �nd the �les that are included.

11.3.2 Ignore #pragma Directives

Pragma directive is a preprocessor directive that is used to give options to
the compiler. This can for example be used to ignore warnings or give the
compiler version-information of the code. Since the pycparser library do
not support pragma directives, these lines in the C-code is removed after
the preprocessing. Removing these lines will not a�ect the utility, since the
utility never compiles the code.

11.3.3 Include Dependencies

Include dependencies was the biggest issue in this sprint. The customer
include all their header-�les in the code �le, and they only are going to
generate Lua dissectors from header-�les. The reason they only will generate
from header-�les is that some of the code is C++, and the size of the entire
source code is about 1GB, which would take very long time to parse for an
utility like CSjark.

This problem is very di�cult to solve, since the include directive is needed
to be able to parse header-�les that depend on other header-�les. To be able
to solve this problem, the utility have to �nd the includes that the header-
�le depends on, and include them in the correct order, because the included

156

Table 11.3: User Stories - Sprint 4 Part 1

Header Value

ID US40
Requirement FR3-A modi�cation: #include system includes
What The utility needs to support system dependent header-�les even if these are not available

on the platform that the utility is used on.
How The administrator is able to specify a fake system header �le with the de�nes they need to

make their structs work correctly. This fake header is then used to represent the system
header in the �le so it is parsed correctly by pycparser.

Result The administrator is now able to make the utility generate system dependent dissectors
for headers with system dependent includes.

ID US41
Requirement FR3 modi�cation: Ignoring #pragma directives
What The utility needs to be able to support header �les with the #pragma directive without

necessarily having to support the functionality of the directive
How Before feeding the header �les to the parser, the utility needs to be able to run a pass

through all of the headers that are to be parsed and remove all of the #pragma directives
encountered in those header �les.

Result The user will be able to create dissectors for header �les with the #pragma directive
instead of having the utility be forced to skip them.

ID US42
Requirement FR3-A modi�cation: Find include dependencies which are not explicitly set
What It should be possible to generate dissector from header-�les, that have de�nitions in

header-�les that are not included with a preprocessor directive in the header-�le.
How The cparser module has to be able to detect when an exception is raised in the pycparser

library, if an exception is raised, cparser has to search through the header-�les to �nd
the declaration that the pycparser library failed on, and include this header �le. The
cparser module will have to do this procedure until the dissector is correctly parsed in
the pycparser library.

Result The utility shall be able to generate dissectors for these header-�les

ID US43
Requirement FR6-E: Support C #de�nes and �Include from CLI
What The administrator wants to pass C #de�ne directives from the command-line to the

preprocessor.
How When CSjark is executed, it takes the arguments given in the command-line interface

and store them in the con�g module. The #de�ne directives must be added to the
preprocessor arguments before the header-�le is parsed in the pycparser library.

Result The utility supports C #de�ne directives passed from the CLI.

ID US44
User doc FR6-E: Support C #de�nes and �Include from CLI
What The user wants to understand how the utility will handle C #de�nes and what #de�nes

that are possible to pass to the CLI.
How The user �nds the correct section in the user documentation, describing the command-line

interface and how C #de�nes are handled.
Result The user understands how to use C #de�nes with the utility.

157

Table 11.4: User Stories - Sprint 4 Part 2

Header Value

ID US45
Requirement FR7-A: Find struct descriptions from Doxygen comments
What The utility will read Doxygen comments for a struct and use that to specify the description

�eld for the proto object in the dissector.
How The utility will search the header �les for Doxygen comments before giving the �le to

the preprocessor. It will note what struct the comment corresponds to and add it to the
con�g module. The dissector module will look up in the con�g module for each struct
and use the description �eld there if it has been found.

Result The dissectors now requires less manual con�guration because it is able to use some of
the text from the header �les.

ID US46
Requirement FR7-B: Find con�guration of #de�ne enums from header �les
What The utility will read #de�ne statements that de�ne the allowed values and the names

corresponding to those values for integers that are to be treated like enums, so that the
user will not have to con�gure them manually.

How The utility will search the header �les for de�ne statements that corresponds to a member
that is con�gured to be handled as an enum. The statements needs to follow some
con�gurable format. These statements are then used to auto generate a con�guration
�le for the int member used to make an enum �eld for the int member when parsing the
header �le.

Result The utility now requires less manual con�gurations to make dissectors interpret certain
integers as enums.

ID US47
Requirement FR4-B modi�cation: Fetch o�set in custom Lua con�guration
What The administrator should be able to add con�guration in the conformance �le, so it is

possible to add custom Lua code with correct o�set values.
How The conformance �le must support a variable for o�set, and a way to use this. The con�g

module have to read this variable, so it can be used in the dissector module to generate
a �eld in the dissector that uses the correct o�set.

Result The Lua dissector is generated with correct o�set for the custom Lua code.

ID US48
User doc FR4-B modi�cation: Fetch o�set in custom Lua con�guration
What The administrator shall learn how to use o�set values in custom Lua con�guration.
How The administrator reads the section in the user documentation, about how to use custom

Lua in the utility.
Result The user will understand how to add o�set values in the conformance �le.

ID US49
Requirement FR4-D modi�cation: Support multiple message ID's for one struct
What The administrator should be able to con�gure more than one message ID per struct.

Therefore it is possible to use the dissector with several di�erent messages (speci�ed by
di�erent ID's).

How The con�guration �le must support de�nition of multiple ID's. These ID's then have to
be used for registering multiple protocols for one dissector.

Result The Lua dissector can be used with multiple messages with di�erent ID's.

158

Table 11.5: User Stories - Sprint 4 Part 3

Header Value

ID US50
User doc FR4-D modi�cation: Support multiple message ID's for one struct
What The administrator should be able to �nd out how to specify multiple message ID's for a

speci�c struct. This include the proper position and syntax of the message ID's speci�-
cation. Also, he should be aware of the consequences of that de�nition.

How The administrator reads the con�guration section in the user documentation, about how
to specify multiple message ID's for a speci�c struct.

Result The administrator is able to specify and use multiple message ID's for a speci�c struct.

ID US51
Requirement FR4-I: Support specifying the size of unknown struct members
What The administrator should be able specify in the con�guration, how big (in bytes) the

struct member is without having the member itself de�ned. Note: This is also a
workaround for structs that are not parse-able.

How The con�guration should contain an optional attribute for each struct member which
speci�es the size of the member. If this member is a nested struct, and this struct is not
de�ned, the size has to be speci�ed. Otherwise the user should be informed about that.

Result The Lua dissector can be used with C header that includes unspeci�ed struct mem-
ber. This member was only de�ned by its size, so it could be displayed as raw data in
Wireshark.

ID US52
User doc FR4-I: Support specifying the size of unknown struct members
What The administrator should be able to �nd out how to specify in the con�guration, how

big (in bytes) the struct member is without having the member itself de�ned.
How The administrator reads the con�guration section in the user documentation, about how

to specify the size of the struct members.
Result The user is able to specify the size of unknown struct member.

ID US53
Requirement FR4-H:Automatic generation of placeholder con�guration
What The utility will generate template con�guration �les if it encounters structs with no

corresponding con�guration �le. This is to make it easier to make such a con�guration
�le.

How The cparser module checks if an encountered struct has a corresponding con�guration in
the con�g module. If not, the utility writes a template �le for this struct.

Result The user will now be able to use the auto generated template �le to write the con�guration
for a struct instead of having to start from scratch.

ID US54
Requirement FR6-F: Only generate dissectors for structs with valid ID
What The utility should only generate dissectors for structs that have a con�guration �le with

a valid ID and their dependencies.
How When the utility discovers a struct de�nition inside a header �le it should check if there

exists a con�guration �le for that struct and if it has a valid ID. If not then the utility
should skip that struct and continue with the header �le. If a struct with a valid con�g-
uration �le and ID has a member that is not de�ned in the current header �le, then the
utility will check the includes in the current header for the missing structs and create a
dissector for them as well.

Result The utility will not generate dissectors for structs which have not been speci�ed in the
con�guration. This gives the users of the system the ability to specify which structs they
want to look at as well as shortening the time the utility needs to run.

159

Table 11.6: User Stories - Sprint 4 Part 4

Header Value

ID US55
User doc FR6-F: Only generate dissectors for structs with valid ID
What The administrator should be able to specify in the con�guration which structs should

have dissectors created for them.
How The administrator reads the con�guration section in the utility's user documentation that

speci�es how to specify which structs should have a dissector generated for them.
Result The user will be able to specify which structs the utility will generate dissectors for.

ID US56
Requirement FR2-E: Guess dissector from packet size
What The utility should be able to generate a Lua �le that runs with Wireshark and guesses

the dissector that is to be used for a packet, if it has a message ID that does not match
any pre-existing dissector.

How The luastructs.lua �le that is generated by the utility should contain a dictionary of
all dissectors, sorted by the size of the structs that they are associated with. When a
packet with an unrecognized message ID is discovered by Wireshark, the code in the
luastructs. Lua �le should try to match the unidenti�ed packet with a dissector that has
been generated with the same size as the unidenti�ed packet. The matching dissectors
should then be run with the unidenti�ed packet.

Result Instead of only displaying the raw hex data from the unidienti�ed packet, Wireshark
should display the packet as containing all of the possible structs and member values the
packet might really be containing, as dictated by the matching dissectors. This packet
should also be displayed with a warning.

ID US57
Requirement FR2-F: Display if struct member contains uninitialized memory
What The dissectors generated by the utility should be able to identify struct members that

might possibly have uninitialized memory set as their values. These members and their
values should be displayed with a warning in Wireshark to indicate that the values might
have been uninitialized.

How If the C-code that uses header �les isn't using memset to set the initial values of di�erent
variables a parser might decide to �ll uninitialized variables with some kind of patterned
garbage data. This pattern might be possible to detect by the dissectors generated by
the utility by adding a check to the dissector code which compares the member values
with di�erent known garbage-patterns generated by di�erent parsers.

Result The utility will now be able to generate dissectors which will make Wireshark display
struct members and their values with a warning if they are suspected as being �lled with
uninitialized memory.

ID US58
User doc How to de�ne new platforms
What The Administrator should be able to de�ne new platforms to support.
How The user should look in the user documentation, and read the section about de�ning new

platforms.
Result After the administrator has de�ned the new platform, the utility should be able to gen-

erate dissectors for the new platform.

160

header-�les can be dependent on each other. Another problem is that the
parser library we use will raise an exception, this mean that the utility will
have to solve the problem from the error message that is given from the
parser.

The way CSjark solves this problem is to parse all the header-�les. After
one attempt of parsing all header-�les, the utility will decode the error mes-
sages from pycparser library. From these error messages, the utility will try
to �nd the missing includes, by going through the abstract syntax tree from
the header-�les that was parsed successfully in the �rst attempt. CSjark will
try this procedure several times before it gives up.

This solution is not optimal, but was implemented due to limited time
in this last sprint. A possible way to solve the dependencies if CSjark fails,
is to add the missing includes to the header-�les. We also added support for
manually con�gure which includes a �le need.

11.3.4 Improve Generated Lua Output

To improve the performance of the Lua dissectors in Wireshark, it was neces-
sary to change how the di�erent platforms were handled in the Lua dissector.
Until this sprint the utility generated one dissector table for each platform.
We changed the output to only create one dissector table for all the dissec-
tors, and each dissector have di�erent functions for each of the platforms.
To change this, the dissector module in CSjark was modi�ed to generate the
dissectors correctly. By �xing this issue, it was also possible to use the auto
complete feature in the expression �eld for �lter and search.

11.3.5 Support Sub Folders in Batch Mode

A bug was discovered and �xed in batch processing on non-Windows plat-
forms.

11.3.6 Fixed Proto Fields for Arrays

After adding support for complex arrays in sprint 3, some bugs occurred in
the proto �elds for arrays. The names for these proto �elds were �xed, so it
is possible to �lter and search for values in arrays.

11.3.7 CLI Support for Include Folders

Support for specifying include folders was implemented in this sprint. This
is given as an argument to the CLI with -I or �Includes followed by the
folders to include. The folders included will be added as an argument to the
preprocessor, so the preprocessor can search for �les in these folders, when
a �le is given in an include directive(#include).

161

11.3.8 CLI Support for C Macro De�nitions

The utility supports C Macro de�nitions as arguments from the CLI. A
macro de�nition is also known as #de�ne. This feature was added since
it should be possible to add macro de�nitions to the preprocessor, instead
of modifying several header-�les. During a run of the utility with macro
de�nitions speci�ed, the de�nitions will be given for all the parsed header-
�les.

11.3.9 Support Multiple Dissector ID

The dissector ID for dissectors was modi�ed in this sprint, so that a struct
can have multiple dissectors. This was done since a struct can have multiple
message ID's, in the system that the customer uses. After this �x it is
possible to add a list of message ID's to the con�guration �le of the struct,
and the Lua-dissector will add all message ID's to the dissector table.

11.3.10 Con�guration of Size for Unknown Structs

Header-�les that the utility parses, may have nested structs that are not
de�ned in any other header �le. To make it possible to generate a dissector
for this case, the size of the struct needs to be speci�ed in a con�guration
�le. When the sizes are speci�ed it will be possible to generate a struct that
can display the de�ned members of the struct correctly in the utility, for the
parts that are not de�ned only the hex value will be displayed.

This feature is added as a possible way to solve include dependencies
that our utility is not able to solve. The user of the utility will get an error
message when the utility is not able to �nd the include dependencies, and the
user may add the size of struct to be able to generate a dissector for struct.
An example of con�guration of size for a struct, is shown in Listing 11.1

Listing 11.1: Con�guration of struct size

Structs :
− name : cpp_test

id : [1 0 , 12 , 14]
size : 24

11.3.11 Support O�set and Value in Custom Lua Files

After feedback from the customer, we added some more features to the han-
dling of custom Lua �les. This feature was that it should be possible to add
new proto �elds to the dissector Wireshark, with correct o�set value and cor-
rect Lua variable. To be able to do this, it was necessary to add variables for
o�set and value in the conformance �le. Use of the Lua variable and o�set

162

value is only possible in the functionality part of the Lua dissector. List-
ing 11.2 is an example of how value and o�set can be used, and Listing 11.3
shows the result in the Lua dissector.

Listing 11.2: Custom Lua: o�set and value

#.FUNC_FOOTER po in t e r
−− Offset : {OFFSET}
−− Field value stored in lua variable : {VALUE}

#.END

Listing 11.3: Custom Lua: Lua code for value and o�set

local field_value_var = subtree : add (f . pointer , buffer (56 , 4))
−− Offset : 56
−− Field value stored in lua variable : field_value_var

11.3.12 Support Array of Pointers

A pointer is a variable that contains the memory address for a variable. Sup-
port for arrays of pointers was added so the array can be correctly displayed
in Wireshark, with correct sizes for di�erent platforms.

11.3.13 Auto Generate Con�guration Files

The auto generation of con�guration �le is a simple feature that could save
the user of the utility some time, since the essential part of the con�gura-
tion �le is generated automatically. The utility will only create a new �le,
containing the names of the struct and lines to specify the ID for the dis-
sector. To generate the con�guration �le, the utility must be run with -p or
�placeholders as an option.

11.3.14 Only Generate Dissectors for Structs with Valid ID

Since sprint 2 the utility has been generating dissectors for all header-�les
found in a folder, when running in batch mode. We have added a strict mode
where the utility only generates dissectors for structs that have a con�gura-
tion �le with an ID, and for structs that those structs depends on. This may
speed up the generation of dissectors, since it only generates dissectors that
Wireshark can use.

11.3.15 Guess Dissector From Packet Size

When Wireshark captures a packet with an unknown dissector ID, it should
try to guess which packet that is used, from a list of all generated dissectors.

163

The luastructs protocol will guess the correct dissector from the size of the
packet. All possible dissectors will be displayed in Wireshark with a warning.
The reason this was implemented is that a packet can have several message
IDs, and it should be possible to dissect a packet, even if an ID was not set.

11.3.16 CLI Support to Exclude Files or Folders

In this sprint it was added functionality to exclude �les or folder from parsing.
This is done by adding -x or �exclude, followed by the �les or folders to the
command-line interface when executing the utility. This makes it possible to
generate dissectors, without doing changes to the folder containing all header
�les.

11.3.17 Con�guration of Options

A feature to add some of the command-line arguments to the con�guration
�les was implemented in this sprint. This was added because it is easier
to write the options in a con�guration �le, instead of typing the commands
each time a user execute the utility. Listing 11.4 shows an example of how
Options can be added to the con�guration �le.

Listing 11.4: Con�guration of Options

Options :
use_cpp : True

excludes : [examples , test]
include_dirs : []
includes : []
defines : [CONFIG_DEFINED=3, REMOVE=1]
undefines : [REMOVE]
arguments : [−D ARR=2]
files :
− name : a . h

includes : [b . h]

11.4 Sprint Testing

During sprint 4, the team executed 22 new test cases as well as re-running
all of the test cases from the previous sprints. This was done in an e�ort to
ensure that all of the functionality from the earlier sprints were still intact
before ending the �nal sprint. Table 11.7 shows one test case run this sprint.
Table 11.8, Table 11.9 and Table 11.10 shows new tests run this sprint. For
more information about the test cases see Appendix C in the appendix.

164

Table 11.7: Test Case TID26

Header Description

Description Including system-headers
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system and there has to exist a pcap �le which

is associated with this test
Feature Checking that the utility is able to support headers that use system headers

Execution

1. Feed the utility with the name of a C-header �le that includes system-headers and
its con�guration �le
2. Read the output
3. Copy the resulting dissectors into the plugins folder of the personal con�guration
in Wireshark
4. Run Wireshark with the pcap �le associated with this test
5. Look at the resulting structs and members are displayed in Wireshark

Expected result
2. The user should be presented with some text expressing the success of generating
dissectors
5. The structs and struct members de�ned in the system headers should be displayed
as having a value and not just hex data

11.4.1 Test Evaluation

This sprint was very test intensive as it had been decided that the team would
run regression tests with all of the test cases from the previous sprints. It
was therefore heartening to see that all but two test cases failed, and that
all of the functionality from the previous sprints were still intact. The bugs
that caused the one use case to fail was also not deemed severe enough that
it would warrant a �x. This was due to the fact that they both included
processing invalid input and the complexity of having to �x the bugs. The
customer had also expressed that not having CSjark function properly would
be the least of their problems if they had header �les with invalid C-code.

165

Table 11.8: Sprint 4 Test Results Part 1

Header Description

Test ID TID26
Description Including system-headers
Tester Lars Solvoll Tønder
Date 16.11.2011
Result Success

Test ID TID27
Description Ignoring #pragma directives
Tester Lars Solvoll Tønder
Date 14.11.2011
Result Success

Test ID TID28
Description Improve generated Lua output by removing platform pre�x
Tester Lars Solvoll Tønder
Date 16.11.2011
Result Success

Test ID TID29
Description Recursive searching of sub-folders
Tester Lars Solvoll Tønder
Date 14.11.2011
Result Success

Test ID TID30
Description Finding include dependencies which are not explicitly set
Tester Lars Solvoll Tønder
Date 16.11.2011
Result Success

Test ID TID31
Description Pointer support
Tester Lars Solvoll Tønder
Date 14.11.2011
Result Success

Test ID TID32
Description Enums in arrays
Tester Lars Solvoll Tønder
Date 16.11.2011
Result Success

Test ID TID33
Description Supporting #de�ne as a command line argument
Tester Lars Solvoll Tønder
Date 14.11.2011
Result Success

Test ID TID34
Description Multiple message ID's for one dissector
Tester Lars Solvoll Tønder
Date 14.11.2011
Result Success

166

Table 11.9: Sprint 4 Test Results Part 2

Header Description

Test ID TID35
Description Allowing con�guration for unknown structs
Tester Lars Solvoll Tønder
Date 16.11.2011
Result Success

Test ID TID36
Description Auto generating con�guration �les for structs that has no con�g �le of

their own
Tester Even Wiik Thomassen
Date 09.11.2011
Result Success

Test ID TID37
Description Only generating dissectors for structs with a valid ID
Tester Lars Solvoll Tønder
Date 16.11.2011
Result Success

Test ID TID38
Description Guessing dissectors from packet size
Tester Lars Solvoll Tønder
Date 16.11.2011
Result Success

Test ID TID39
Description Invalid header
Tester Lars Solvoll Tønder
Date 14.11.2011
Result Failure. Syntax errors are caught by the utility, but declaring variables

with the same name several times in the same struct is not caught

Test ID TID40
Description Invalid header during batch mode
Tester Lars Solvoll Tønder
Date 14.11.2011
Result Success

Test ID TID41
Description Ambiguous struct IDs
Tester Lars Solvoll Tønder
Date 14.11.2011
Result Failure. The user is not even presented with a warning if there are several

structs with the same ID

Test ID TID42
Description Ambiguous platform IDs
Tester Lars Solvoll Tønder
Date 14.11.2011
Result Success

167

Table 11.10: Sprint 4 Test Results Part 3

Header Description

Test ID TID43
Description Running the utility on Windows
Tester Lars Solvoll Tønder
Date 14.11.2011
Result Success

Test ID TID44
Description Running the utility on Solaris
Tester Even Wiik Thomassen
Date 14.11.2011
Result Success

Test ID TID45
Description Running the dissectors on Solaris
Tester Even Wiik Thomassen
Date 14.11.2011
Result Success

Test ID TID46
Description Running the dissectors on Windows
Tester Lars Solvoll Tønder
Date 14.11.2011
Result Success

168

Test Coverage

As can be seen in Table 11.11, the team managed to have a healthy increase
in code coverage for sprint 4. This was done in spite of having to add a lot
of new functionality to the utility during the sprint, as the team focused on
improving the already existing unit tests as well as creating new ones. The
following list shows the unit tests modules ran in sprint 4:

� black_box.py

� requirements.py

� test_con�g.py

� test_cparser.py

� test_csjark.py

� test_dissector.py

� test_platform.py

Table 11.11: Sprint 4 Coverage Report

Module Statements Missing Excluded Coverage

con�g 370 19 0 95%
cparser 230 32 0 92%
cpp 63 7 0 89%
csjark 239 85 0 64%
dissector 289 27 0 91%
Field 271 6 0 98%
Platform 73 5 0 98%
Total 1535 174 0 88.9%

11.4.2 Testing On-site at Customer

The customer tested our utility on their own source code before the start of
the sprint, but encountered several bugs. They were only able to generate
four dissectors from 200 C header �les. As the utility worked on the example
codes provided by the customer, we were unable to improve the situation
without access to their code.

The customer requested that two team members should spend a day at
their o�ce, to �x bugs found when running the utility on their code. We
had to �ll out security clearance forms and non-disclosure agreements before
we were allowed access to the code.

Some of the bugs we encountered were trivial to �x, but challenging
to understand. For example header �les with C++ includes, or �indent�

169

directives without #pragma. We also spent some time �xing bugs that were
caused by Python behaviour, which was di�erent on Solaris. At the end of
the day, we were able to parse about 40 of 200 �les, but tries on the complete
source tree failed with �too many open �les� error. We agreed to provide one
team member for one more day of on-site testing.

In the second day of testing, we �xed several bugs and set up some con�g-
uration for includes, de�nes and excludes. This resulted in our utility parsing
160 of 200 header �les, generating over 500 dissectors. These �les were the
include folder in the customers source tree, and contained the majority of
structs the customer wanted dissectors for. One of these �les contained the
infamous xcon struct, which the customer was very pleased we were able to
generate a dissector for.

Attempts at parsing the whole source tree in one run, failed after parsing
of 1400 out of 4000 header �les, with a �out of memory� error. The virtual
machine we tested on only allowed 512 MB memory for each process, which
our utility reached.

Overall the customer was very pleased with our willingness to test the
utility on-site, and with the results on their include folder. We agreed to
investigate if it was possible to reduce the memory consumption, while the
customer agreed to test our utility on a machine with more memory. Further
improvements to the utility are described in subsection 12.2.2.

11.5 Customer Feedback

This sprint we got mostly feedback on implementations, and on new features
the customer would like us to add. They also gave some thoughts on how to
organize the sprint and how to test some of the non functional requirements.
New requirements and descriptions of existing requirements are listed in
subsection 5.2.4. Post-sprint feedback can be found in chapter 12.

The customer wanted the fourth and �nal sprint to be split into two one
week sprints. This would provide the customer with a stable version of the
utility after the �rst week for testing their �les. Considering the overhead of
an additional sprint, both in planning, evaluation and documentation, the
team and the customer instead agreed to provide a stable release mid-sprint.

Some of the header �les that the customer wants to generate dissectors
for depends on header �les not directly included (the dependency might be
included above an include to this header �le inside a source �le). These
dependencies must be found so that the �le may be parsed correctly.

We also got feedback on how to complete the non-functional require-
ments. Testing on SPARC platform would not be necessary, the customer
felt code inspection would be su�cient. For NR5 the customer would provide
a suitable person to test the ful�llment of the requirement. For NR4 and
NR6 we did not have resources to perform these tests, and so the customer

170

agreed it would not be necessary.

11.6 Sprint Evaluation

The fourth sprint ended 15th of November with an evaluation meeting. This
section gives a summary of our �ndings.

11.6.1 Review

As this was the last sprint, the pressure for completing the remaining work
was high. Even though we agreed to focus on the documentation, we wanted
to satisfy the customer as much as we could. Finishing the implementation
and making the utility work on their source code would be important, in
addition to completing the report work.

All the team members raised their e�ort this sprint, both in hours and
e�ciency. All the tasks in the backlog were completed by the end of the
sprint. See the burndown chart in Figure 11.3.

Figure 11.3: Sprint 4 Burndown Chart

The �nal testing and patching of the utility had to be done at the cus-
tomer's site. Two of the team members was assigned to this task. To be
allowed to see Thales source code, the team members had to sign a non-
disclosure agreement and be under surveillance of the customer. As the
customer had a demanding project on their own, they could not spare many
hours for the testing.

It took long time to get the security clearance needed, so the testing was
blocked until the last week of the sprint. The lack of testing time on the
real code, could have ended in a un�nished utility. The lead programmer
managed to �x all bugs and make the utility able to parse the source code
in the end.

Some of the tasks had to be postponed, until the testing and bug �xing
were completed, because of dependencies.

171

11.6.2 Positive Experiences

� We all completed a great amount of work.

� Finished all the items in the sprint backlog.

� Each team member assigned themselves work items from the backlog,
and took responsibility for completing them.

� Customer was pleased with our work.

11.6.3 Negative Experiences

� Internal meetings were ine�cient.

� Stumbled into blocked tasks because of dependencies.

� Too few attendants at the stand-up meetings.

11.6.4 Barriers

External factors The customer asked if we could do a presentation of
the utility for the developers at Thales, when it was �nished. This would be
bene�cial for the �nal presentation and the customer would be pleased, so we
accepted. To make the presentation and rehearse for it, two team members
had to be excluded from the sprint work for several hours. External factors
like this are not always possible to foresee, and it a�ected the project.

Thales security It was necessary to have access to Thales source code for
the last test- and bug �xing-phase. As a result of the strict rules at Thales,
we had to wait with critical implementation and �xing until the middle of
the sprint. We managed to have the utility work on their code in the end.

172

Part III

Conclusion & Evaluation

173

CHAPTER 12

CONCLUSION

This chapter describes the �nal state of the product. It also contains sugges-
tions on how to improve the utility, as well as a short discussion on testing,
and how it a�ected our utility.

12.1 System Overview

Figure 12.1 shows an overview of the �nal version of the product. Our utility
consist of seven Python modules:

� csjark

� cpp

� cparser

� �eld

� dissector

� platform

The csjark module takes as input C header �les and con�g �les. Con�g
�les are forwarded to the con�g module, which reads them to �nd rules and
options. The csjark module outputs Lua dissector �les.

Csjark then forwards header �les to the cpp module, which calls an ex-
ternal program, a C preprocessor. The output of the C preprocessor is given
to the cparser module, which forwards it to the pycparser library. An ab-
stract syntax tree is returned by pycparser, which is traversed by the cparser
module when it searches for struct de�nitions.

174

Figure 12.1: Overall Architecture

The cparser module creates a Protocol instance from the dissector mod-
ule for each struct it �nds. The Protocol instance is populated with Field
instances or subclass instances for each struct member.

After all headers have been parsed, the csjark module takes the list of all
protocols created by the cparser module, and writes to �le the output of the
generate() function. In the end, it writes the output of the generate function
on a Delegator instance.

The platform module contains platform-speci�c details, which are used
by the cparser when it creates new �elds.

12.1.1 System summary

Originally, we had some design goals for the product. We wished to have
some logical groupings of functionality into a front-end and back-end. We
believe that we have achieved this goal. Everything speci�c for generating
Lua dissectors are contained to the �eld and dissector modules, which con-
tains no C speci�c code. These consist of smart data structures which are
created by the front-end, the cpp and cparser module.

12.2 Further Development

This section describes possible improvements to our utility. In subsection 12.2.1
we describe how one might implement the remaining optional requirements,
while subsection 12.2.2 list other improvements.

12.2.1 Optional Requirements

During the third sprint, as we had completed most of the requirements given
to us, it became clear we would not have su�cient requirements for a fourth

175

sprint. We requested more possible features from the customer, who provided
us with a list of new functional requirements and their prioritization.

In the fourth sprint planning meeting, we estimated the work hours
needed to complete each of the new requirements, including implementa-
tion, testing and documentation. Based on the customers prioritization and
our estimates, we classi�ed four of them as optional, as we did not deem it
possible to ful�ll them in the fourth sprint.

The customer asked us to provide a description of how the unful�lled
requirements could be implemented, which is listed below.

1. Don't regenerate dissectors across multiple runs

2. Use Doxygen comments for "Description"

3. Read int-enum con�g from header �les

4. Display if struct member contains uninitialized memory

The following paragraphs describe how they can be implemented.

Don't regenerate dissectors across multiple runs To be able to decide
if we have already generated dissectors in earlier runs, we need to store some
state on disk.

We need to store the last modi�ed timestamp, which the operating system
reports, at the time we last read them. This needs to be done for each single
input �le, both header- and con�g �les. Since command line arguments
will a�ect the output, they must also be stored. The main challenge with
this task is the fact that handling #include directives are performed by the
external C preprocessor program, so we will not know which �les need to be
considered when evaluating, if �les have been modi�ed since last run.

One could look at #line directives outputted by the C preprocessor before
we start parsing �les, but the bene�t of not regenerating dissectors would be
diminished.

We estimate this task would require implementing our own C preproces-
sor or using a library instead of an external tool, to be able to extract the
needed �le dependencies. Our utility depends on PLY, which have a 95%
�nished implementation of a C preprocessor, which might prove valuable for
this task.

When we are able to know which �les depend on each other, and the last
time they were modi�ed, the task is simply to �nd a suitable data structure
to store on disk between runs.

Use Doxygen comments for "Description" Comments are removed
by the C preprocessor, which means we must parse them before it is run.
As the preprocessor evaluates which �les to open, we would be required to

176

implement our own or use a library, or try to evaluate applicable �les in all
include folders.

The task, if such support was available, would simply be to search for
doxygen comments, and when one is found parse it to extract the correct
information.

Read int-enum con�g from header �les Integers, which should act as
enums inWireshark, are de�ned by some speci�c C preprocessor macro de�ne
directives in the customer's current header �les. This task is to automatically
extract such information, to require less manual con�guration of our utility.

Like the two previous task, this will require us to parse C preprocessor
directives before they are removed by the C preprocessor, which means we
must implement our own C preprocessor or use a library.

To avoid having to parse both C preprocessor directives and C code
at the same time, we could design a syntax for describing which struct
member(s) the macro de�ne directives refer to. For example #de�ne BE-
GIN_CSJARK_ENUM_FOR_NAME could be placed right before the cur-
rent enum macro directives start, which would tell us that they refer to struct
member NAME.

This task becomes trivial to implement if we had a custom C preprocessor
we could modify.

Display if struct member contains uninitialized memory Uninitial-
ized memory will look di�erent depending on the compiler, so therefore we
need to add support for specifying how it will look for each Platform instance
in platform module. Since we can only evaluate the actual memory on the
Wireshark end of things, most of the functionality must be written in Lua
code.

These two conditions suggest that the dissector module should, inside
the Delegator class, generate a suitable Lua function in luastructs.lua which
accepts a bu�er value for a �eld and the �eld node. This function should, if
the bu�er value match uninitialized memory, set an appropriate warning on
the �eld node.

This new function must be called for every �eld de�ned in every dissector
we generate, inside the appropriate dissector functions.

In addition to implementation, the task involves researching how unini-
tialized memory looks on di�erent platforms we support, and creating pcap
�les for testing the functionality.

12.2.2 Additional Improvements

In subsection 11.4.2 we described testing of our utility on customer's code
base. We discovered several corner cases which we did not support, and
we also found problems with memory consumption when number of input

177

�les was over 1000. These problems could be solved by further development,
which we describe in following paragraphs.

Reduce memory consumption We did some basic pro�ling, both of
memory and CPU usage, to evaluate what could be improved. Almost all
CPU usage was de�ned to the preprocessor and the pycparser library, which
means we could not �nd any possible improvements in out utility.

Memory pro�ling on 1000 header �les revealed that almost all memory
was used by Python dictionaries and lists. Our utility builds up a list of
Protocol instances which represent all structs we parse, before we write any
to disk. This grows as more �les are parsed. A simple, but e�ective, solution
would be to write Protocols to disk as after we have parsed a single �le. We
would still need to store a few attributes for each Protocol, such as name,
id, size. We believe this would reduce memory consumption su�ciently.

It is also possible that we leak some memory each time we fail to parse
a �le, which could be investigated and �xed afterwards.

Additional C parsing support We successfully parsed 160 of 200 header
�les in customer's include folder, the remaining �les failed mostly from corner
cases our utility did not support, for example typedef's we had not consid-
ered. We believe it would be relatively easy to add further support for them
when they are discovered.

Less manual con�guration Several of the optional requirements are fo-
cused on requiring less manual con�guration. If we perform the C prepro-
cessing ourself instead of delegating it to an external program, we would be
able to read con�guration from comments and #de�ne's inside the header
�les.

12.3 Testing

At the beginning of the project all of the team members agreed that we were
going to focus on doing extensive and proper testing of our utility. In this
section we will discuss whether or not we were able to reach the goals we sat
at the beginning and during the project.

12.3.1 Methods

At the beginning of the project we only used black box test cases and unit
tests. We quickly found that even though we were able to uncover several
bugs using these methods, it was hard to calculate what and how many parts
of the system were actually undergoing testing. This again made it di�cult
to �gure out the real quality of our tests and if our testing e�orts were used

178

to their true potential. When we then decided to use a tool for calculating
code coverage, we noticed that there were large parts of the system that were
still untested, even though the functionality of the system had been tested
in our black box test cases. We therefore made a goal of trying to have a test
coverage of at least 80% in order to catch as many bugs as possible. This
proved to be a hard task at �rst, but as can be seen in Figure 12.2, once we
got used to using a tool to calculate the coverage of our unit tests, we were
able to improve the quality of our tests so that they covered more parts of
the system.

Figure 12.2: Code Coverage Progress from Previous Sprints

12.3.2 Testing Conclusion

After �nishing the project we had uncovered several serious and many more
non-critical bugs in our utility. We also discovered several bugs in the Lua-
implementation of Wireshark that we needed to have our customer to �x.
This proved to be very important as this severely reduced the amounts of bug
�xes that had to be implemented, after being allowed to send our developers
to work with the utility at the customer-site. We were therefore able to create
a working product within the small time-frame we had left after testing the
utility at the customer-site. We therefore conclude that it had indeed been
necessary to focus on creating extensive tests for the utility and that the
methods we had chosen for testing were su�cient to get a working end-
product.

179

12.4 Summary

The team was given the task of creating an utility for automatic generation
of dissectors for C structs in Wireshark. The dissectors were supposed to be
created for structs contained in the customer's C header �les so that they
could be used to decode their inter-process communication.

After �nishing the product, the customer reviewed the utility and they
were satis�ed with what we had delivered. We managed to complete all
of the initial functional- and non-functional requirements. In addition we
also completed all the non-optional functional requirements added by the
customer before the last sprint.

The team �rmly believes that the customer will be able to use the utility
for its intended purpose, without having to do much additional work. This
makes it feasible for them to use Wireshark for debugging inter-process com-
munication. We therefore feel that we have delivered a solution to the task
that the customer presented in the beginning of the project.

180

CHAPTER 13

PROJECT EVALUATION

This chapter gives an evaluation of the project. The main focus is on the
team's work process, and on the issues that we encountered during this
process.

13.1 Team Dynamics

The team dynamics and development of the team are described in this sec-
tion.

13.1.1 Goals and Team Building

The project started out with randomly assigned student groups of six to
seven people. This was done intentionally to learn the students to work in
a realistic setting. Our group consisted of six Norwegian students and one
Czech student.

As one of the team members was a foreign student, all the internal team
communication had to be done in English. In addition, our advisors did
not speak Norwegian, so the entire project was done in English. This was
not a problem, because all the team members both spoke and wrote English
�uently.

At the �rst meeting we decided to state our personal goals for the project.
This resulted in the following list:

� Improve programming skills.

� Learn to develop software e�ciently.

� Learn to work in a realistic environment.

� Ful�ll the needs of the customer.

181

These goals match the course's goals, with some extensions. All these goals
were common for the team members, which resulted in good cooperation
from the start and an agreement of what we wanted to achieve in the project.
The decision to characterize ourselves as a team came early in the project,
which is de�ned to be a collection of people working interdependently and
is committed to achieve one common goal.

None of the team members had any relations with each other when the
project started. During the project we learned how to work together in a
professional and e�cient manner. Getting there was a demanding task and
is described more thoroughly in the section regarding team evolution.

13.1.2 Team Evolution

During the �rst weeks of the project the team was in a good, but also un-
certain stage. The team members did not know the boundaries of the others
and tried to not end up in an argument. This resulted in a series of matters;
responsibility for tasks were not taken and no one dared to ask why tasks
was not done.

The problem was discovered and dealt with at an early stage of the
project. We quickly realized that changes had to be made to ensure high
work e�ciency and e�ort. We started out by listing all tasks in an internal
work sheet. Then everyone could see the tasks that had to be done before
the end of the sprint, but there was an additional problem: we listed a
person responsible for each task at the sprint planning meeting. This changed
between sprint 2 and 3. We started to restrict the number of tasks that a
person could be responsible for, from that moment, one person could only
have one task a time. This increased the e�ciency of the work �ow for the
rest of the project.

The work related problems ended in many discussions and arguments,
which raised the con�ict level within the team. Con�icts can to some degree
raise the productivity, as illustrated in Figure 13.1 [12]. The team was aware
of this, so we kept the con�icts to a moderate level.

Even though we had some di�culties in the start, this did not negatively
in�uence the �nal product or report. The lack of hours used on task comple-
tion, early in the project, was improved in the later sprints, and the hours
we used for discussions contributed to a better team dynamic and problem
solving for the rest of the project.

13.2 Risk Handling

Some of the risks predicted in the planning phase occured to a certain degree
during the project. This section will discuss those risks and how they were
handled.

182

Figure 13.1: Optimal Con�ict Level

R4. Illness/Absence In general, not many team members were absent
for longer periods. One team member was away in northern Norway for a
week on vacation, and another was sick for a week and a half. This caused
some delay on a few tasks, as the absentees had to get up to date on the
state of the project, but it did not majorly hinder the progress of the team.
The consequence of this risk was also diminished by the fact that it occured
early in the project, and that the team members who were absent did not
work on critical tasks at the time.

R6. Con�icts within team In the start of the project, the team members
were divided on which tools to use, and on which programming language to
use. Because of this, the team had to spend some time discussing back and
forth. After some constructive discussions the team was able to come to a
mutual decision.

Also, some team members felt that it was not realistic that the course
should demand 25 hours from each member. As the project progressed, it
quickly became apparent that this number of hours were needed to complete
the project in a satisfying manner. This led to an overall increase in work
e�ort in the team.

R8. Miscommunication within team During sprint 3, the ones respon-
sible for creating test data and the ones writing the test cases did not clearly
communicate with each other. This led to having to make small changes in
some of the test cases to be able to use the test data.

The test responsible wrote test cases for functionality that the program-
ming team had not thought about. For example, checking that you are not
allowed two platforms with the same platform ID. When the problem was
detected, all essential functionality was added.

183

R10. Lack of experience with Scrum As the team had no previous
experience with Scrum, the project got o� to a slow start. After evaluating
the �rst sprint, it quickly became apparent that the process was far from
perfect. The second sprint was an improvement of the �rst, and the planning
meeting was longer and more detailed, but in our opinion it was still not good
enough. We felt that we did not adhere to proper Scrum, and that we did not
properly explain the di�erent tasks in the backlog. In the last two sprints, we
felt that we had achieved a better understanding, and this really showed in
the process. A more detailed discussion can be found in the Scrum section.

R11. Requirements added or modi�ed late in the project At the
customer meeting on the �rst day of sprint 4, the customer suggested several
new requirements that they would like is to implement. Some requirements
were also modi�ed, as we had not implemented them exactly the way they
wanted us to.

As we had to focus on tweaking some functionalities to work on their
code, and also had to spend time on writing the report, we had to tell
the customer that we would probably not be able to �nish all the new re-
quirements. This is because implementing a requirement would also require
testing, user documentation and additional report work, which is something
we could not a�ord to allot time for.

13.3 The Scrum Process

During the preliminary study, we decided to use an agile development method,
to be able to adopt to changes in requirement during the project. Because
of this, we chose to use Scrum. None of the team member had any previous
experience with Scrum. In the beginning of the course, we had a lecture
where we learned the basics of it.

When the �rst sprint planning was �nished, we understood that we did
not follow Scrum properly. The meeting was very short, and we did not do
any design during the sprint planning. The work items from the sprint were
wrongly estimated, and was not divided propely into tasks. For each sprint
we improved, and in the last two sprints we felt that we understood Scrum,
which led to a better process.

Some of team members feel that we followed Scrum too strictly, instead
of doing what was best for the project. In the end of the project, we needed
to use time on �xing the utility so it would run on the customer's code. And
since we could not change our sprint plan, we ended up with a very high
workload.

During the project we learned the advantages of using Scrum. The
biggest advantage was that we could get weekly feedback on the work we
had done from the customer, and then improve the features to what the

184

customer wanted.

13.4 Time Estimation

In total, 2275 hours were estimated to use on this project. Our e�ort was
even better than the estimate, and we used in total 2331 hours. The main
reason was that we wanted the utility work for the customer and we also
had to spend a signi�cant amount of time on the report in the end of the
project.

The work breakdown structures in Table 3.1, shows the estimated and
actual hours for each task. The estimates are quite good on most of the
tasks. For project management we have used 454 hours, and 275 hours were
estimated. The reason that we used so many hours on project management
is that we had a weekly meeting with both customer and advisor. In addition
to this, we had internal meetings in the team, and all daily Scrum meetings
were registered as Project Management. In the start of the project some of
the e�ort was registered, so the amount of time spent on project management
is actually lower.

In each of the sprints we estimated time for the work items. The esti-
mation was based such that every team member should be able to �nish the
task on the estimated time. So in total the work items were overestimated,
because some team members had more experience, and could �nish the task
much faster.

The time distribution by task is shown in Figure 13.2. Nearly 20% of
the time was used on the project management. The planning, preliminary
studies and requirement speci�caiton was approximately 10% of the work
load each. The actual amount is actually higher, because of some wrong
registration of e�ort in the start of the project. The total time that was used
for the sprints was over 40%., which is a good amount for the development
of CSjark.

In the start of the project there was low activity, but e�ort per week
increased during the project. E�ort registered per week can be seen in Fig-
ure 13.3. To achieve the 2275 hours in total for the project, 175 hours per
week was needed. The e�ort in week 12 was high because we needed to �nish
the last sprint and a signi�cant work on the report was done.

13.5 Quality Assurance

At the start of the project we made several plans for ensuring quality of the
project. This section discusses which of those plans did not work out and
what we ended up doing instead.

Initially, we planned that we would have peer review of all of the code
written for the utility. This plan was something that we were unable to follow

185

Figure 13.2: Time Distribution by Task

Figure 13.3: Time Distribution by Week

186

up on, mostly due to the poor planning meetings in sprint one and two where
the time needed for pair review was not taken into consideration. This made
it di�cult to organize who was going to do the peer reviews and how we
were supposed to �nd the time to do them. In the end, the lead programmer
ended up reviewing most of the code written by the other developers, but
the group consensus was that the quality of the code was good enough that
it would have been irresponsible to spend more time on peer reviews.

During every sprint, the team was supposed to provide the advisor with
up to date information regarding the report and the progress with the utility.
This was not followed up on as the team members did not want to submit
un�nished work to the advisor. This proved to be a problem towards the
end of the project, forcing the team to start submitting more of the report
work to the advisor. As this was not done earlier in the project, the team
instead had to organize for several of the members to go through the early
stages of the report and raise the quality of the documents internally.

It was planned that the team member responsible for the document was
supposed to keep a bird's eye view of the report and go through the di�erent
entries before the end of each sprint. This proved to be too much work
for just one person. We therefore also made sure that several other team
members would support the one responsible with reviewing the report work.

13.6 Customer Relations

Our relationship with the customer was good throughout the entire project.
We were assigned two customer representatives. As they were developers
themselves, they both had a technical background. This made it easier to
communicate with the customer. They knew exactly what they wanted, and
were more than happy to give feedback and tips on the implementation of
the di�erent requirements. When we �rst received the initial requirements,
we did not fully understand them. After some meetings and dicussions, both
internally and with the customer, the team was able to provide the customer
with a clear requirement speci�cation that they accepted.

One of the customer contacts was a member of Wireshark's core develop-
ment team. When we discovered bugs in Wireshark, he could �x them and
apply a patch. He also had insight into how Lua dissectors were built, and
how they interacted with Wireshark. This was a major asset to the team.
When we encountered problems during implementation, the customer was
able to give us invaluable feedback on how to proceed. This is something
that a less technical customer would not have been able to give us.

Each week we had a meeting with the customer where we demonstrated
the requirements we had implemented since last meeting. The customer then
gave us feedback on the functionalities, and told us what we had to change
or improve. This way, any misunderstandings were detected and dealt with

187

in a swift manner.
The customer contacts also had access to our repository, thus they could

test the utility themselves. This meant that they could get a �rst hand-
experience of the utility, and could more easily detect bugs and other issues.

A problem we had was that, due to security issues, Thales could not allow
us to test our utility on their source code. This meant that we had to do
some guessing during the implementation, and getting the utility to work on
their code was a di�cult process. Luckily, Thales gave us the opportunity to
send two of our members to them for a few days, as documented in the test
section of sprint 4. That gave us an opportunity to �x most of the bugs that
we encountered, and in the end the customer said that they were happy with
our utility. They approved all the requirements we had listed, although a few
of the optional requirements were not implemented due to time constraints.
Overall the customer felt that we were �exible, and adhered to most of their
needs.

The week before the end of the project, the team had a presentation at
Thales for our advisor, the customer contacts, and some other employees of
Thales. The employees that were there are probable users of the dissectors
that our utility creates. Due to this, the presentation was focused on the
demonstration of the utility, where we showed how the structs were dissected
in Wireshark.

The customer also got one of their co-workers to read CSjark's user man-
ual. The user manual was a little too unclear in some parts, so we used that
feedback to improve it, and increase its quality.

The team felt that we were lucky with the customer that we were as-
signed. The fact that they knew exactly what they wanted, had a technical
background and showed great enthusiasm for the project, made the project
more manageable. This also increased the motivation for the team. We
felt that they were interested in what we were developing, which ensured a
good meeting atmosphere and a good working relationship. Throughout the
entire project, they gave us essential feedback on the implementation and
requirements, and they were not afraid to tell us if we did something that
they disagreed with. The fact that we had two customer contacts, instead
of one, increased the amount of feedback we received, and also meant that
there was always one person available for us to contact. All in all, we could
not be more satis�ed with our customer.

13.7 Summary

We are overall very satis�ed with what we have achieved in this project.
Seven people with di�erent personalities and skill sets were randomly as-
signed to a group. We received a task that we initially did not quite under-
stand the scope o�. But through hard work, and help and feedback from the

188

advisors and the customer, we managed to create a utility that we are proud
of. In the beginning, the process did not go as smoothly as we wanted it to,
as we struggled to fully grasp and utilize Scrum. After a few sprints, we felt
that we understood more, and this led to an increase in both work e�ort and
cooperation. People took more responsibility, and we started to feel like a
team with a common goal. During the road to the delivered solution we went
through a challenging process that has given us invaluable work experience.

189

BIBLIOGRAPHY

[1] About Python. http://www.python.org/about/. [Online; accessed 09.
November 2011].

[2] Asn2wrs. http://wiki.wireshark.org/Asn2wrsl. [Online; accessed
15. November 2011].

[3] Java. http://www.java.com. [Online; accessed 09. November 2011].

[4] Java New Input/Output. http://www2.sys-con.com/itsg/

virtualcd/Java/archives/0902/krishnan/index.html. [Online;
accessed 12. November 2011].

[5] Thales Norway AS. http://thales.no/pub/sites/index.php?

siteID=4&m=1. [Online; accessed 09. November 2011].

[6] Waterfall 2006. http://www.waterfall2006.com/. [Online; accessed
21. November 2011].

[7] Wireshark - About. http://www.wireshark.org/about.html. [Online;
accessed 09. November 2011].

[8] Lua: About. http://www.lua.org/about.html, 2011. [Online; ac-
cessed 09. November 2011].

[9] Lee Bass, Paul Clements, and Rick Kazman. Software Architecture in

Practice, Second Edition. Addison-Wesley Professional, April 2003.

[10] NTNU IDI. Compendium: Introduction to course TDT4290 Customer
Driven Project, Autumn 2011. Technical Report ISSN: 1503-416X, De-
partment of Computer and Information Science, NTNU, August 2011.

[11] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan-

guage. Prentice Hall, April 1988.

190

http://www.python.org/about/
http://wiki.wireshark.org/Asn2wrsl
http://www.java.com
http://www2.sys-con.com/itsg/virtualcd/Java/archives/0902/krishnan/index.html
http://www2.sys-con.com/itsg/virtualcd/Java/archives/0902/krishnan/index.html
http://thales.no/pub/sites/index.php?siteID=4&m=1
http://thales.no/pub/sites/index.php?siteID=4&m=1
http://www.waterfall2006.com/
http://www.wireshark.org/about.html
http://www.lua.org/about.html

[12] Michael Sars Noru. Project Management. http://www.idi.ntnu.

no/emner/tdt4290/2011/slides/20110906projectmanagement/

BearingPoint-ForelesningKPRO(NTNU)3.pdf, 2011. [Online; accessed
22. November 2011].

[13] Tobias Oetiker, Hubert Partl, Irene Hyna, and Elisabeth Schlegl. The
Not So Short Introduction to LaTeX, 4.13 edition, 10 September 2003.

[14] Software Engineering Technical Committee of the IEEE Computer Soci-
ety. IEEE Standard for Software Test Documentation, ieee std 829-1998
edition, 16. September 1998.

[15] Eric Raymond. The Cathedral and the Bazaar. Knowledge, Technology
& Policy, 12:23�49, 1999.

[16] Linda Rising and Norman S. Jano�. The Scrum Software Development
Process for Small Teams. Software, IEEE, 17:25�32, 2000.

191

http://www.idi.ntnu.no/emner/tdt4290/2011/slides/20110906 project management/BearingPoint - Forelesning KPRO (NTNU) 3.pdf
http://www.idi.ntnu.no/emner/tdt4290/2011/slides/20110906 project management/BearingPoint - Forelesning KPRO (NTNU) 3.pdf
http://www.idi.ntnu.no/emner/tdt4290/2011/slides/20110906 project management/BearingPoint - Forelesning KPRO (NTNU) 3.pdf

Part IV

Appendices

192

APPENDIX A

ACRONYMS

ANTLR ANother Tool for Language Recognition. 31, 32, 38, 39
API Application Programming Interface. 31, 40, 135
ASN.1 Abstract Syntax Notation One. 27, 32, 109, 110

BER Basic Encoding Rules. 109, 112
BSD Berkeley Software Distribution. 34, 39, 41

CLI Command Line Interface. 79, 80, 86, 87, 98, 113, 128, 156, 160, 161,
163
CORBA Common Object Request Broker Architecture. 27
CVS Concurrent Versions System. 11

GCC GNU Compiler Collection. 31�33, 39, 87
GPL General Public License. 40, 41

H High. 22�25, 42, 44, 45
HTML HyperText Markup Language. 35, 36

IDE Integrated Development Environment. 36, 37
IDI Institute for Computer Science and Information Technology. 12
IDL Interface Description Language. 26
IP Internet Protocol. 7
IPC inter-process communication. 1
IT Information Technology. 8

JavaCC Java Compiler Compiler. 31

L Low. 22, 24, 42, 44, 45

M Medium. 22�25, 42, 44, 45

193

MIT Massachusetts Institute of Technology. 33, 39, 41

NATO North Atlantic Treaty Organization. 7
NTNU Norwegian University of Technology and Science. i, 7, 8, 12, 15, 16

PLY Python Lex-Yacc. 31, 32, 39, 41, 80

SPARC Scalable Processor Architecture. 45, 125, 135, 140, 142
SVN Subversion. 11

UML Uni�ed Modeling Language. 13

VIM Vi IMproved. 37

XML Extensible Markup Language. 33, 35

YAML YAML Ain't Markup Language. 33, 39, 40, 88

194

APPENDIX B

GLOSSARY

#de�ne A C directive that can be used to de�ne a constant or create a
macro. 44, 60, 84, 86, 90, 107, 156, 157, 161, 194, 208
#if A C directive that executes a statement if a given expression holds true.
44, 60, 84, 86, 87, 90, 194
#ifdef A C directive that checks if a given token has been de�ned. 87, 201
#include A C directive that includes other header �les to the current �le.
44, 60, 78, 79, 84, 86, 90, 96, 150, 155, 156, 160, 194

Abstract Syntax Notation One A data representation format. 27
abstract syntax tree A tree represention of a compiled program. 33, 38,
40, 80, 84, 104, 134
argparse A Python module for writing a command line interfaces. 85
array A data type that can hold a collection of elements. 44, 46, 60, 86, 87,
97, 103, 109, 111, 117, 141, 150, 160, 196, 198, 208

batch mode Automatic execution of a series of programs. 45, 96, 105,
140�142, 150, 162, 166, 199, 211
batch processing See batch mode. 131, 211
binary Two base arithmetic using the digits 0 and 1. 3, 7, 9, 42, 44
bit string An array that stores individual bits. 44, 96�98, 103, 109, 117,
197, 198
boolean A data type that represents logical truth, it can have the values
True or False. 44, 60, 79, 84, 86, 90, 193
branch A feature of a version control system that enables modi�cations of
�les in parallel, by duplicating the originating code. 11, 33, 35, 39

C A programming language. i, 1, 3, 4, 6, 7, 9, 10, 26, 27, 30�33, 38�42, 44,
50, 60, 65, 66, 73, 78�87, 89, 90, 94, 103�107, 116, 125, 132�135, 140�142,
155, 156, 158, 159, 161, 193�201, 203�210, 212, 213, 217, 219

195

C++ A programming language. 7, 31�33, 38, 155
C99 A modern extension of C. 32, 39, 94
char A data type in C that contains a character or a small integer. 44, 60,
79, 84, 86, 90, 193
clang A compiler front-end for di�erent C programming languages. 31, 33,
39
Common Object Request Broker Architecture A standard for en-
abling pieces of software written in di�erent languages to work together as
a single application. 27
cron A program in Unix that enables the user to schedule the execution of
command-line programs.. 47

data serialization The process of converting a data structure to a storable
format. 33
dissector Code that decodes packet data and makes it readable by humans.
i, 1�4, 6, 7, 9, 10, 26, 27, 30, 31, 40, 42, 44�48, 50, 51, 60, 66, 68, 71, 73, 74,
77�81, 84�88, 92, 97, 98, 102�107, 109, 111�113, 116, 118, 124, 125, 128�137,
139�141, 148, 150, 155�162, 166, 167, 193�213, 215, 217�221
distributed repository model A distributed approach to a version control
system. 11
double A data type in C that contains a double precision �oating point
number. 86

Eclipse An application aiding computer programmers in software develop-
ment. 37
endian See endianness. 44, 47, 60, 98, 105, 113, 125, 126, 130, 133, 135,
142, 203
endianness Refers to the ordering of bytes in a word. A big-endian machine
stores the most signi�cant byte �rst, and a little-endian the least signi�cant..
96, 129�131, 133, 135, 144, 203
enum See enumerated named value. 44, 60, 96�98, 102, 106�108, 116, 117,
141, 150, 157, 195, 197, 208
enumerated named value A value of a enumerated type in C. 60, 97, 106
Extensible Markup Language A markup language. 33

�oat A data type in C that contains a �oating point number. 44, 60, 79,
84, 86, 90, 139, 143, 193

GCC-XML Acronym. 33
GNU Compiler Collection A compiler front-end that supports many dif-
ferent programming languages. 31

header A �le that contains C declarations and macros that can be shared
by several source �les. 1, 6, 9, 21, 26, 30�32, 38�40, 42, 44, 46�48, 60, 66,

196

72�74, 78�81, 84�90, 96, 99, 103�106, 108, 109, 112, 113, 116, 129, 131�134,
139, 141, 142, 144, 149, 150, 155�162, 166, 193�213, 217, 219�221
hex dump A hexadecimal view of computer data. 13, 66
hexadecimal A number system where sixteen is the base. 140

int See integer. 44, 60, 79, 84, 86, 90, 157, 193
integer A data type in C that contains an integer. 47, 86, 109, 114, 136,
157
inter-process communication The exchange of data that happens be-
tween processes. 1, 9, 30, 42, 179

Java A programming language. 30�33, 38, 39
Javascript A scripting language. 33

lexer A lexer is a program that converts a sequence of characters into a
sequence of tokens. 31, 32, 38
library A collection of pre-written code for aiding programmers in the de-
velopment process. 1, 31�35, 37�41, 80, 84�87, 94, 155, 156
Linux An operating system. 87
Lua A programming language, often used for making scripts. i, 2�4, 6, 7,
9�11, 13, 21, 30, 31, 40�42, 44, 45, 47, 60, 71, 73, 77, 80, 81, 84, 86, 90, 98,
102, 104, 105, 109, 111�113, 116, 125, 131, 133�136, 140, 142�144, 150, 155,
157�162, 195, 199, 204, 206, 218�220

Mac A brand of personal computers. 87
make�le A �le that helps the make utility in the creation of executables
from source code. 27
markup language A language for specifying the processing, de�nition and
presentation of text. 12
member A representation in C that contains data or behaviour of a struct.
3, 4, 9, 44, 47, 60, 66, 73, 78�80, 84�86, 88, 97, 102�104, 107, 110, 113, 114,
116, 117, 125, 128, 132�137, 139, 140, 142, 157�159, 161, 195�205, 207�209,
211, 213, 221

nested struct A struct within another struct. 10

Objective-C A programming language. 33
Objective-C++ A programming language. 33

packet Small block of data transmitted over a network. 2�4, 7, 21, 47, 65,
66, 86, 103, 112, 116, 124, 131, 132, 137, 140, 142, 150, 159, 166, 195�198,
201�203, 207�209, 211, 213
parser A program that receives input, checks it for correct syntax and builds
a data structure representing the input. 31�33, 36, 38, 39, 73, 77, 80, 84, 85,
94, 97, 103, 105, 107, 108, 132, 133, 156, 159, 219
pcap-�le See capture �le. 13, 116, 142, 195�205, 207�209, 211, 213

197

Perl A programming language. 33
PHP A scripting language. 33
post-dissector A dissector that is run after every other dissector has been
run. 30
preprocessor A program that prepares code �les for compilation. 10, 32,
38, 39, 41, 44, 60, 73, 77, 80, 84, 86, 87, 133, 149, 155�157, 160, 161, 219
process A program running on a computer. 2, 4
protocol A system of rules for exchanging messages between machines. 2,
4, 6, 7, 27, 30, 44, 47, 102�104, 128, 129, 157
pycparser A C parser written in Python. 1, 31, 32, 39�41, 80, 86, 94, 149,
153, 156
Python A programming language. 1, 21, 26, 30�36, 38�41, 125, 135
Python Lex-Yacc A Python library for creating lexers and parsers. 31

repository A central storage area where data is kept and maintained. 11,
20, 21
Ruby A programming language. 33

script A list of commands that are executed by a certain program, usually
as an extension of the original functionality. i, 9�11, 13, 21, 73, 111, 113,
219
Scrum A software development methodology. 17, 18, 23, 25, 28, 29, 38, 91,
93, 95, 123, 145�147
Solaris An operating system by Sun Microsystems. 45, 167, 213
string A string in C is a character string stored as an array containing the
characters. 4, 143
struct Short for structure, it is a type that groups several members into a
single object. i, 2�4, 6, 7, 9, 10, 27, 30, 32, 40, 42, 44, 46�48, 60, 65, 66,
73, 78�80, 84�86, 88, 90, 97, 98, 102�105, 107�111, 113, 114, 116, 117, 129,
131�137, 139�141, 150, 156�159, 161, 162, 166, 193, 195�202, 204�213, 217,
219, 221
Sun RPC The Unix equivalent of Remote Procedure Call. 27

trailers de�ne this. 46, 60, 98, 109, 117, 198

union A struct where all the members share the same memory, ensuring
that only one member is valid at the same time. 44, 60, 125, 128, 131, 132,
139, 142, 200
utility A small program that supports larger applications by doing certain
tasks. i, 1�3, 6, 7, 26, 27, 30, 32�45, 47, 48, 50, 51, 62�68, 70�73, 75, 77�
79, 81, 83�88, 91, 92, 95�97, 99, 102�107, 109, 113, 116, 119, 120, 122�126,
128, 129, 131�135, 137, 139�141, 143, 144, 147�150, 155�162, 167, 193�213,
215�219, 221, 222

version control system A system that ensures consistency of �les when
several people are collaborating on them. 11, 12

198

wildcard A character that can be used as a substitute for any other char-
acter. 125, 132
Windows An operating system by Microsoft. 87, 135, 167, 212, 213
Wireshark Program used to analyze packet data sent between network
nodes. i, 1�4, 6, 7, 9, 13, 21, 26, 27, 30, 31, 41, 42, 44, 45, 47, 51, 60, 66,
70, 73, 74, 77, 79�81, 84, 86, 88, 89, 102, 104, 106�114, 116, 118, 122, 125,
130�133, 135, 137, 139, 140, 142, 147, 158�162, 193, 195�209, 211, 213, 217,
220, 221

x86 The instruction set architecture used by Intel processors. 45
x86-64 An extension of the x86 instruction set that is compatible with 64-bit
processors. 45

199

APPENDIX C

TEST CASES

This section introduces the test cases we ran during the di�erent sprints of
the project. All of the test cases follow the template mentioned in the test
plan on Table 6.1.

C.1 Sprint 1 Tests

In this sprint we ran the test cases shown in Table C.1-C.7. The test cases
made for this sprint covers most of the extremely simple functionality needed
in order to have a working utility.

C.2 Sprint 2 Tests

In this sprint we ran the test cases shown in Table C.8-C.14. These are tests
to see that the basic functionalities of the utility are in place.

C.3 Sprint 3 Tests

In this sprint we ran the test cases shown in Table C.15-C.23. These are
tests to see that the utility is working properly even with the most advanced
features.

C.4 Sprint 4 Tests

In this sprint we ran the test cases shown in Table C.26-C.48. These are tests
to see that the utility has been �xed in accordance to the extra requirements
made by the customer in sprint 3 as well as the �nal touches that were needed

200

in order to get the utility to work in a real environment. This section also
includes the test cases made for the non-functional requirements.

Table C.1: Test case TID01

Header Description

Description Supporting parameters for C-header �le
Tester Lars Solvoll Tønder
Prerequisites The utility must have been installed on the system and there needs to exist a header

�le associated with this test
Feature Test that we are able to feed the solution with a C-header �le and have it get dissected

Execution
1. Feed the utility with the name of the C-header �le associated with this test through
the command line
2. Read the output given by the program

Expected result 2. The user should be presented with some text expressing the success of creating a
dissector

Table C.2: Test case TID02

Header Description

Description Supporting basic data types
Tester Lars Solvoll Tønder
Prerequisites The utility must have been installed on the system and there needs to exist a header

�le associated with this test
Feature Test that our utility will be able to make a dissectors for C-header �les including the

following basic data types: int, �oat, char and boolean

Execution
1. Feed the utility with the name of a C-header �le associated with this test which
includes the aforementioned basic data types
2. Read the output given by the program

Expected result 2. The program should provide the user with some text expressing the success of
creating a dissector

201

Table C.3: Test case TID03

Header Description

Description Displaying simple structs
Tester Lars Solvoll Tønder
Prerequisites The utility has already made a dissector for the struct inside the simple.h header �le

and wireshark must have been con�gured to use this dissector
Feature Test that our utility is able to generate dissectors that displays simple structs

Execution
1. Open Wireshark
2. Load the pcap �le which contains the captured tra�c with a simple structs
3. Read the output

Expected result
1. Wireshark should start without presenting the user with any warnings or errors
about the dissector used in this test
3. Wireshark should display the data inside the structs sent in the capture data as
proper values instead of just binary or hex-data

Table C.4: Test case TID04

Header Description

Description Supporting #include
Tester Lars Solvoll Tønder
Prerequisites The utility has to have been installed on the system and there needs to exist a header

�le associated with this test
Feature Test that our utility supports C-header �les with the #include directive

Execution
1. Write the name of the C-header �le associated with this test which contains an
#include directive
2. Read the output

Expected result 2. The program should provide the user with some text expressing the success of
generating a dissector

Table C.5: Test case TID05

Header Description

Description Supporting #de�ne and #if
Tester Lars Solvoll Tønder
Prerequisites The utility has to have been installed on the system and there needs to be a header

�le associated with this test
Feature Test that our utility supports C-header �les with #de�ne and #if directives

Execution
1. Write the name of the C-header �le associated with this test which contains a
#de�ne and #if directive
2. Read the output

Expected result 2. The program should provide the user with some text expressing the success of
creating a dissector

202

Table C.6: Test case TID06

Header Description

Description Supporting con�guration �les
Tester Lars Solvoll Tønder
Prerequisites The utility has to have been installed on the system and there needs to exist a header

�le with a struct that has a con�guration �le tied to it
Feature Test that our utility supports reading data from a con�guration �le

Execution
1. Feed the utility with the name of the header �le associated with this test and its
con�g �le
2. Read the output

Expected result 2. The program should provide the user with some text expressing the success of
creating a dissector

Table C.7: Test case TID07

Header Description

Description Recognizing invalid values
Tester Lars Solvoll Tønder
Prerequisites The utility has to have been installed on the system and there needs to exist a header

�le with a struct that has a con�guration �le tied to it. Wireshark must also have
been installed on the system and be con�gured to being able to run dissectors written
in Lua. and there needs to exist a pcap �le associated with this test

Feature Test that our utility recognizes invalid values for struct members speci�ed in the con�g
�le.

Execution

1. Feed the utility with the name of a header and a con�g-�le, where the con�g �le
sets restrictions on the members of the header �le.
2. Copy the resulting dissector to the personal plugins folder of Wireshark.
3. Run Wireshark with the pcap �le associated with this test
4. Inspect the di�erent packets displayed in Wireshark

Expected result 3. Wireshark should display the struct members with invalid values marked as invalid

203

Table C.8: Test case TID08

Header Description

Description Supporting members of type enum
Tester Lars Solvoll Tønder
Prerequisites The utility must have been installed on the system and there needs to exist a header,

con�g and pcap �le associated with this test
Feature Test that the utility is able to support C-header �les with enums

Execution

1. Feed the utility with the name the C-header �le associated with this test, which
includes a struct using enums and its con�guration �le
2. Read the output
3. Move the resulting dissector into the plugins folder in the personal con�guration
folder of Wireshark
4. Open the pcap-�le for this test with Wireshark
5. Look at the di�erent packets and struct members that are displayed in Wireshark

Expected result
2. The program should provide the user with some text expressing the success of the
Lua-�le generation

5 The di�erent packets should be displayed as having structs with enums, showing
the value of the enum by its name and value

Table C.9: Test case TID09

Header Description

Description Supporting members of type array
Tester Lars Solvoll Tønder
Prerequisites The utility must have been installed on the system and there needs to exist a header,

con�g and pcap �le associated with this test
Feature Test that the utility iis able to support C-header �les with arrays

Execution

1. Feed the utility with the name of the C-header �le associated with this test, which
includes a struct using arrays
2. Read the output
3. Move the resulting dissector into the plugins folder in the personal con�guration
folder of Wireshark
4. Open the pcap-�le for this test with Wireshark
5. Look at the di�erent packets and struct members that are displayed in Wireshark

Expected result

2. The program should provide the user with some text expressing the success of
generating a dissector for the struct in the header �le
5 The di�erent packets should be displayed as having structs with arrays, showing the
values of the cells in the array. Multidimensional arrays should also be displayed as
being arrays with subtrees of other arrays. This should be indicated by the multidi-
mensional arrays having a clickable �+� box to the left which when pressed shows the
values of the cells of the inner arrays

204

Table C.10: Test case TID10

Header Description

Description Supporting the display of structs within structs
Tester Erik Bergersen
Prerequisites The utility must have been installed on the system and there needs to exist a header,

con�g and pcap �le associated with this test
Feature Test that the utility is able to support C-header �les with structs that have other

struct members and display it properly in Wireshark

Execution

1. Feed the utility with the name of the C-header �le associated with this test, which
includes a struct with another struct member
2. Read the output
3. Move the resulting dissector into the plugins folder in the personal con�guration
folder of Wireshark
4. Open the pcap-�le for this test with Wireshark
5. Look at the di�erent struct members that are displayed in Wireshark

Expected result
2. The program should provide the user with some text expressing the success of
generating a dissector for the struct in the header �le
5. The struct members within structs should be displayed as subtrees, indicated by
having a clickable �+� box to the left which when clicked, displays the contents of the
given struct

Table C.11: Test case TID11

Header Description

Description Supporting enumerated named values
Tester Erik Bergersen
Prerequisites The utility must have been installed on the system and there needs to exist a header,

con�g and pcap �le associated with this test
Feature Test that the utility iis able to support C-header �les which uses integers as enums

without declaring them as enums

Execution

1. Feed the utility with the name of the C-header �le associated with this test, which
includes enumerated named values
2. Read the output
3. Move the resulting dissector into the plugins folder in the personal con�guration
folder of Wireshark
4. Open the pcap-�le for this test with Wireshark
5. Look at the di�erent struct members that are displayed in Wireshark

Expected result
2. The program should provide the user with some text expressing the success of
generating a dissector for each of the structs inside the header �le

5. The di�erent packets should be displayed as containing enumerated named values
expressed by their name and not value

205

Table C.12: Test case TID12

Header Description

Description Supporting bit strings
Tester Erik Bergersen
Prerequisites The utility must have been installed on the system and there needs to exist a header,

con�g and pcap �le associated with this test
Feature Test that the utility iis able to support C-header �les with bit strings

Execution

1. Feed the utility with the name of the C-header �le associated with this test, with
a struct using bit strings
2. Read the output
3. Move the resulting dissector into the plugins folder in the personal con�guration
folder of Wireshark
4. Open the pcap-�le for this test with Wireshark
5. Look at the di�erent struct members that are displayed in Wireshark

Expected result
2. The program should provide the user with some text expressing the success of
generating a dissector for each of the structs inside the header �le
5. The packets should be displayed as containing bit strings. Bit strings should be
displayed as subtrees indicated by a clickable �+� box to the left which shows the
values of the di�erent bits in the bit string when pressed

Table C.13: Test case TID13

Header Description

Description Supporting structs with various trailers
Tester Erik Bergersen
Prerequisites The utility must have been installed on the system and there needs to exist a header,

con�g and pcap �le associated with this test
Feature Test that the utility is able to support C-header �les with trailers

Execution

1. Feed the utility with the name of a C-header �le with a struct that has a trailer
2. Read the output
3. Move the resulting dissector into the plugins folder in the personal con�guration
folder of Wireshark
4. Open the pcap-�le for this test with Wireshark
5. Look at the di�erent struct members that are displayed in Wireshark

Expected result
2. The program should provide the user with some text expressing the success of
generating a dissector for each of the structs inside the header �le
5. The packets should be display the data inside the struct, and the data from the
trailer should be displayed below

206

Table C.14: Test case TID14

Header Description

Description Sprint 2 functionality test
Tester Lars Solvoll Tønder
Prerequisites The utility has to have been installed on the system as well as the attest testing

framework
Feature Checking that the utility is able to create a valid dissector from header �les with all of

the data types that were to be supported for sprint 2, including: trailers, bit strings,
enumerated named values, structs within structs and arrays

Execution
1. Navigate to the folder where CSjark is installed through the terminal or command
line
2. type �python -m attest� into the terminal or command line and then press enter
3. Read the output

Expected result 3. The user should be presented with some text expressing the failure of 0 assertions

Table C.15: Test case TID15

Header Description

Description Support batch mode of C header and con�guration �les
Tester Lars Solvoll Tønder
Prerequisites The utility has have been installed on the system, there also needs to exist a header

and con�guration �le for this test
Feature Test that the utility is able to generate dissectors for all header-�les in a folder, with

con�guration

Execution
1. Feed the utility the name of the two folders with header-�les and con�guration-�les.
2. Read output from the utility

Expected result 2. The utility should provide the user with the amount of header �les processed and
the number of dissectors created. It should also provide the user with error messages
for the header and con�guration �les it was unable to run

207

Table C.16: Test case TID16

Header Description

Description Supporting custom Lua con�guration
Tester Sondre Mannsverk
Prerequisites The utility must have been installed on the system and there needs to exist a header,

con�g and pcap �le associated with this test
Feature Test that the utility is able to support custom Lua �les by con�guration

Execution

1. Look at the custom Lua �le(s) and understand what they do
2. Feed the utility with a C header-�le, that needs to have speci�c parts of it dissected
by custom Lua �le(s), and a con�guration �le that speci�es what Lua �le(s) should
be used.
3. Read the output
4. Move the resulting dissector into the plugins folder in the personal con�guration
folder of Wireshark
5. Open the pcap-�le for this test with Wireshark
6. Look at the di�erent struct members that are displayed in Wireshark

Expected result
3. The program should provide the user with some text expressing the success of the
Lua �le generation
6. Assert that the custom Lua �le(s) have a�ected the display of the struct members
in the expected way.

Table C.17: Test case TID17

Header Description

Description Supporting unions
Tester Lars Solvoll Tønder
Prerequisites The utility must have been installed on the system and there needs to exist a header,

con�g and pcap �le associated with this test
Feature Test that the utility is able to support C-header �les with unions

Execution
1. Feed the utility with the name of the header �le associated with this test which
contains a unions and its con�guration �le
2. Read output from the utility
3. Move the resulting dissector into the plugins folder in the personal con�guration
folder of Wireshark
4. Open the pcap-�le for this test with Wireshark
5. Look at the di�erent struct members that are displayed in Wireshark

Expected result 2. The utility should provide the user some text expressing the success of generating
a dissector for each of the structs inside the header �le
5. The unions should be displayed as subtrees with the names of all the union members
and their values, even the ones that haven't been explicitly set

208

Table C.18: Test case TID18

Header Description

Description Support �lter and search in Wireshark
Tester Erik Bergersen
Prerequisites Wireshark has to be up and running with the trailer_test.lua
Feature The dissector must support Wireshark's built-in �lter and search on attributes

Execution
1. Open the pcap-�le, which contains trailer_test packets.
2. Type the following in the �lter-textbox: �luatructs.message == 66� and click apply
3. Look on the packet view.

Expected result 3. Only trailer_test packets will be visible in the packet view.

Table C.19: Test case TID19

Header Description

Description Support WIN32, _WIN64, _sparc etc
Tester Lars Solvoll Tønder
Prerequisites The utility must have been installed on the system and there needs to exist a header,

con�g and pcap �le associated with this test
Feature Test that the utility is able to support C-header �les with platform de�nition prepro-

cessor macros (e.g. _WIN32, _WIN64, _sparc, etc.)

Execution

1. Feed the utility with C-header �les with platform de�nition preprocessor macros
(e.g. _WIN32, _WIN64, _sparc, etc.).
2. Read output from the utility
3. Move the resulting dissector into the plugins folder in the personal con�guration
folder of Wireshark
4. Open the pcap-�le for this test with Wireshark
5. Look at the di�erent struct members that are displayed in Wireshark

Expected result
2. The program should provide the user with some text expressing the success of
generating a dissector for each of the structs inside the header �le.
5. The di�erent structs should be displayed as having the right struct members ac-
cording to the C-header de�nitions. For example, the member de�ned surrounded
by #ifdef _WIN32 ... #endif directives should be displayed correctly in WIN32
struct.

209

Table C.20: Test case TID20

Header Description

Description Supporting the use of �ags specifying platforms to display member values correctly
Tester Lars Solvoll Tønder
Prerequisites A dissector for dissecting a header according to it's con�guration, as well as a pcap-�le

for that header needs to be in place
Feature Test that the utility is able to create dissectors that support the use of di�erent �ags.

These �ags should specify the originating platform of the packet and be used to display
the member values properly.

Execution
1. Open a pcap-�le which includes packets with di�erent �ags but the same structs and
member values just with di�erent sizes according to the originating platform speci�ed
in the �ags
2. Look at how the di�erent packets are displayed in Wireshark

Expected result 2. The di�erent packages should have the exact same member values just with di�erent
�ag-values

210

Table C.21: Test case TID21

Header Description

Description Supporting platforms with di�erent endian
Tester Erik Bergersen
Prerequisites There have to exist a header-�le, con�g-�le and pcap-�le to do the test.
Feature Generate dissectors which support both little and big endian platforms

Execution

1. Feed the utility with the name of the C-header �le associated with this test
2. Read the output
3. Move the resulting dissector into the plugins folder in the personal con�guration
folder of Wireshark
4. Open the pcap-�le for this test with Wireshark
5. Look at the di�erent members in Wireshark that have data types that can be
a�ected by endianness.

Expected result
2. The program should provide the user with some text expressing the success of
generating a dissector for each of the structs inside the header �le
5. The packets sent from platforms with di�erent endian, should display the same
values.

Table C.22: Test case TID22

Header Description

Description Supporting alignments
Tester Erik Bergersen
Prerequisites There have to exist a header-�le, con�g-�le and pcap-�le to do the test.
Feature Generate dissectors on platforms with di�erent alignment

Execution

1. Feed the utility with the name of the C-header �le associated with this test
2. Read the output
3. Move the resulting dissector into the plugins folder in the personal con�guration
folder of Wireshark
4. Open the pcap-�le for this test with Wireshark
5. Look at the di�erent packets from platforms that uses di�erent alignments.

Expected result
2. The program should provide the user with some text expressing the success of
generating a dissector for each of the structs inside the header �le
5. The packets sent from platforms that uses di�erent alignments, should display equal
values.

211

Table C.23: Test case TID23

Header Description

Description Handling Lua keywords
Tester Erik Bergersen
Prerequisites There have to exist a header-�le, con�g-�le and pcap-�le to do the test.
Feature The utility should support struct members, that have equal names as keywords in Lua

Execution

1. Feed the utility with the name of the C-header �le associated with this test which
contains a struct
2. Read the output
3. Move the resulting dissector into the plugins folder in the personal con�guration
folder of Wireshark
4. Open the pcap-�le for this test with Wireshark
5. Check that the dissector work as it should.

Expected result
2. The program should provide the user with some text expressing the success of
generating a dissector for each of the structs inside the header �le
5. Wireshark should not display an error message for invalid Lua code.

Table C.24: Test case TID24

Header Description

Description Sprint 3 functionality test
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system as well as the attest testing framework.The

�le black_box.py must also be present in the test folder of CSjark
Feature Checking that the utility is able to create a valid dissector from header �les with all

of the data types that were to be supported for sprint 3

Execution
1. Navigate to the test folder inside the folder where CSjark is installed through the
terminal or command line
2. type �python -m attest� into the terminal or command line and then press enter
3. Read the output

Expected result 3. The user should be presented with some text expressing the failure of 0 assertions

Table C.25: Test case TID25

Header Description

Description Sprint 2 functionality test
Tester Lars Solvoll Tønder
Prerequisites The utility has to have been installed on the system as well as the attest testing

framework. The �le requirements.py must also be present in the test folder of CSjark
Feature Checking that the utility is able to support all of the features required by the customer

Execution
1. Navigate to the folder where CSjark is installed through the terminal or command
line
2. type �python -m attest� into the terminal or command line and then press enter
3. Read the output

Expected result 3. The user should be presented with some text expressing the failure of 0 assertions

212

Table C.26: Test case TID26

Header Description

Description Including system-headers
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system and there has to exist a pcap-�le which

is associated with this test
Feature Checking that the utility is able to support headers which use system headers

Execution

1. Feed the utility with the name of a C-header �le that includes a system-headers
and its con�guration �le
2. Read the output
3. Copy the resulting dissectors into the plugins folder of the personal con�guration
in Wireshark
4. Run Wireshark with the pcap-�le associated with this test
5. Look at the resulting structs and members are displayed in Wireshark

Expected result
2. The user should be presented with some text expressing the success of generating
dissectors
5. The structs and struct members de�ned in the system headers should be displayed
as having a value and not just hex data

Table C.27: Test case TID27

Header Description

Description Ignoring #pragma directives
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system and there needs to exist a pcap-�le which

is associated with this test
Feature Making sure that the utility is able to parse header �les with the #pragma directive

by just ignoring that directive

Execution
1. Feed the utility with the name of a C-header �le that contains a #pragma directive
and it's con�guration �le
2. Read the output

Expected result 2. The user should be presented with some text expressing the success of generating
dissectors

213

Table C.28: Test case TID28

Header Description

Description Improve generated Lua output by removing platform pre�x
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system
Feature Making sure the utility only generates one dissector for the struct instead of several,

but still keeping all of the functionality

Execution

1. Feed the utility with any C-header �le and it's con�guration
2. Read the output
3. Copy the resulting dissectors into the plugins folder of the personal con�guration
in Wireshark
4. Run Wireshark
5. Open the dissector tables menu entry from the Internals menu
6. Click the luastructs tree entry
7. Inspect its contents

Expected result
2. The user should be presented with some text expressing the success of generating
dissectors
7. There should only be one tree entry for each dissector, not one for each platform
as well

Table C.29: Test case TID29

Header Description

Description Recursive searching of subfolders
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system and there needs to exist a folder with

folders that all have header �les in them
Feature Checking that it is possible for the utility to be fed a folder with header �les that has

subfolders which are in turn inspected

Execution
1. Feed the utility with the name of a folder of header �les which again has subfolders
with other header �les
2. Read the output
3. Inspect the generated Lua �les

Expected result
2. The user should be presented with some text expressing the success of generating
dissectors for every header �le in the subfolders
3. There should be 1 �le for each struct contained in the di�erent header �les located
in the header folder and its subfolders

214

Table C.30: Test case TID30

Header Description

Description Finding include dependencies which are not explicitly set
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system
Feature Check that the utility is able to identify include dependencies which are not explicitly

set and use that information to parse �les over again correctly

Execution

1. Feed the utility with a C-header �le that has include dependencies which are not
explicitly set, and it's con�gration �le
2. Read the output
3. Copy the resulting dissectors into the plugins folder of the personal con�guration
in Wireshark
4. Run Wireshark with the pcap-�le associated with this test
5. Inspect the di�erent packets, their structs and member values

Expected result
2. The user should be presented with some text expressing the success of generating
dissectors
5. All structs and member values should be displayed as having proper values and not
just hex data

Table C.31: Test case TID31

Header Description

Description Pointer support
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system
Feature Checking that the utility is able to support the use of pointers in header �les

Execution

1. Feed the utility with a C-header �le that has pointers, and it's con�guration �le
2. Read the output
3. Copy the resulting dissectors into the plugins folder of the personal con�guration
in Wireshark
4. Run Wireshark with the pcap-�le associated with this test
5. Inspect the di�erent packets, their structs and member values

Expected result
2. The user should be presented with some text expressing the success of generating
dissectors
5. All structs and member values should be displayed as having proper values and not
just hex data

215

Table C.32: Test case TID32

Header Description

Description Enums in arrays
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system
Feature Checking that the utility is able to support the use of enums inside of arrays

Execution
1. Feed the utility with a C-header �le that has an array of enums, and it's con�gu-
ration �le
2. Read the output

Expected result 2. The user should be presented with some text expressing the success of generating
dissectors

Table C.33: Test case TID33

Header Description

Description Supporting #de�ne as a command line argument
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system
Feature Checking that it is possible to feed the utility with a #de�ne argument and have it

force pre-processor to add a corresponding argument to the header �les it is processing

Execution

1. Feed the utility with a C-header �le, it's con�guration �le and a #de�ne directive
2. Read the output
3. Copy the resulting dissectors into the plugins folder of the personal con�guration
in Wireshark
4. Run Wireshark with the pcap-�le associated with this test
5. Inspect the di�erent packets, their structs and member values

Expected result
2. The user should be presented with some text expressing the success of generating
dissectors
5. All structs and their member values should be displayed as having proper values
and not just hex data

Table C.34: Test case TID34

Header Description

Description Multiple message ID's for one dissector
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system
Feature Checking that the utility supports having more than one message ID per dissector

Execution
1. Feed the utility with a C-header �le and it's con�guration �le which includes more
than one message ID
2. Read the output

Expected result 2. The user should be presented with some text expressing the success of generating
dissectors

216

Table C.35: Test case TID35

Header Description

Description Allowing con�guration for unknown structs
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system
Feature Checking that the utility supports being able to con�gure the size of unknown structs

Execution

1. Feed the utility with a C-header �le that has unparseable members and it's con�g-
uration �le which includes the size of the struct itself
2. Read the output
3. Copy the resulting dissectors into the plugins folder of the personal con�guration
in Wireshark
4. Open Wireshark with the pcap-�le associated with this test
5. Inspect the di�erent packets, their structs and member values

Expected result 2. The user should be presented with some text expressing the success of generating
dissectors
5. All of the members of each packets should have proper values except for the
unparseable members which should only be displayed as containing hex data

217

Table C.36: Test case TID36

Header Description

Description Auto generating con�guration �les for structs that has no con�g �le of their own
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system
Feature Checking that the utility is able to create template con�guration �les for all structs

that does not currently have a con�guration

Execution
1. Feed the utility with a C-header �le which has several structs without any con�g-
uration �les
2. Open the con�guration folder where CSjark is installed
3. Inspect the con�guration �les

Expected result 3. There should now be one con�guration �le present for each struct in the C-header
�le that has an empty template for �lling in values for con�guration

Table C.37: Test case TID37

Header Description

Description Only generating dissectors for structs with a valid ID
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system
Feature Making sure that the utility only creates dissectors for �les that have a valid ID

speci�ed in its con�guration

Execution
1. Feed the utility with a C-header �le and it's con�guration �le that has no valid ID
2. Read the output

Expected result 2. The user should be presented with a message saying that no dissectors were created
and why

218

Table C.38: Test case TID38

Header Description

Description Guessing dissectors from packet size
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system and Wireshark has to have been loaded

with a dissector for a struct of the same size as the one associated with this test
Feature Making sure the utility is able to guess which dissector to use based on packet size if

there are no dissectors speci�ed for the packet

Execution
1.Start Wireshark with the pcap-�le associated with this test
2. Inspect the di�erent packets, their structs and member values

Expected result 2. All of the packets should contain a struct with di�erent members and values instead
of just raw hex data

Table C.39: Test case TID39

Header Description

Description Invalid header
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system
Feature Making sure the utility crashes if it receives an invalid header

Execution
1. Feed the utility with an invalid header �le
2. Read the output

Expected result 2. The utility should crash and give an error message explaining why it crashed

Table C.40: Test case TID40

Header Description

Description Invalid header during batch mode
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system
Feature Making sure the utility skips headers it is unable to parse during batch processing

Execution
1. Feed the utility with a folder containing several invalid header �les
2. Read the output

Expected result 2. The utility should skip the �les it is unable to parse and present the user with a
message saying why it skipped the �les it was unable to parse

219

Table C.41: Test case TID41

Header Description

Description Ambiguous struct IDs
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system
Feature Making sure the utility crashes if there are several structs that all have been con�gured

to using the same ID

Execution
1. Feed the utility with a pair of headers and con�guration �les that both have the
same struct ID
2. Read the output

Expected result 2. The utility should present the user with an error message saying that there exists
2 structs which have been con�gured to using the same ID

Table C.42: Test case TID42

Header Description

Description Ambiguous platform IDs
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on the system
Feature Making sure the utility crashes if there are several platforms that all share the same

ID

Execution
1.Add another platform platform.py which has the same platform ID as one of the
previous ones
2. Feed the utility with any header �le and its con�g
3. Read the output

Expected result 3. The utility should present the user with an error message saying that there exists
two platforms with the same name

Table C.43: Test case TID43

Header Description

Description Running the utility on Windows
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on a Windows system
Feature Making sure the utility runs on the latest version of Windows as per 24.11.2011

Execution
1. Feed the utility with any C-header �le and its con�g
2. Read the output

Expected result 2. The utility should present the user with some text expressing the success of creating
a dissector for each of the structs inside the header �le

220

Table C.44: Test case TID44

Header Description

Description Running the utility on Solaris
Tester Lars Solvoll Tønder
Prerequisites The utility has to be installed on a Solaris system
Feature Making sure the utility runs on the latest version of Solaris as per 24.11.2011

Execution
1. Feed the utility with any C-header �le and its con�g
2. Read the output

Expected result 2. The utility should present the user with some text expressing the success of creating
a dissector for each of the structs inside the header �le

Table C.45: Test case TID45

Header Description

Description Running the dissectors on Solaris
Tester Lars Solvoll Tønder
Prerequisites Wireshark has to have been installed with the dissectors associated with this test
Feature Making sure the dissectors runs on the latest version of Solaris as per 24.11.2011

Execution
1. Run Wireshark with the pcap-�le associated with this test
2. Inspect the di�erent packets, their structs and member values

Expected result 2. The packets should be displayed as containing structs with members that all have
proper values and not just hex data

Table C.46: Test case TID46

Header Description

Description Running the dissectors on Windows
Tester Lars Solvoll Tønder
Prerequisites Wireshark has to have been installed with the dissectors associated with this test
Feature Making sure the dissectors runs on the latest version of Solaris as per 24.11.2011

Execution
1. Run Wireshark with the pcap-�le associated with this test
2. Inspect the di�erent packets, their structs and member values

Expected result 2. The packets should be displayed as containing structs with members that all have
proper values and not just hex data

221

Table C.47: Test case TID47

Header Description

Description Quality of user documentation
Tester Lars Solvoll Tønder
Prerequisites The user documentation has to have been written

Execution
1. Read the user documentation for one hour
2. Try using the utility to generate a dissector for a header �le

Expected result 2. The user should be able to generate a dissector con�gured to display the values
from a given c-struct properly

Table C.48: Test case TID48

Header Description

Description Docstrings in code
Tester Lars Solvoll Tønder
Prerequisites None

Execution 1. Read through all of the class and method de�nitions in the code

Expected result 1. All classes and methods should have a docstring explaining what they do and how
they are used

222

APPENDIXD

ARCHITECTURAL DESCRIPTION

This chapter introduces the architectural documents pertaining to our solu-
tion. The team followed the de�nition of software architecture de�ned by
Len Bass, Paul Clements and Rick Kazman: �The software architecture of
a program or computing system is the structure of structures of the system,
which comprise software elements, the externally visible properties of those
elements, and the relationships between them.� [9, p.3]

The purpose of this document is to describe our architecture in a struc-
tured way so it can be used, not only by the team, but also as an aid for
other stakeholders who are trying to understand the system.

D.1 Architectural Drivers

This section is dedicated to the discussion of the architectural drivers. The
team has chosen Modi�ability and Testability as the quality attributes for
this utility.

The reason for using Modi�ability is that the development team is not
going to be the ones updating or maintaining the utility after completing
the project. It is therefore important that the code is easy to understand,
well documented and easy to modify. This makes it easier for our customer
to later modify or extend the utility.

Testability is important since the utility will be used for debugging by the
customer. Since it is not possible for the team to test the dissectors in a real
environment, it is very important that we do extensive testing of the utility's
functionality. This is to ensure that the �nal product works correctly with
both expected and unexpected input.

223

D.1.1 Testability Tactics

The goal of using testability tactics is making it easier to test the system
after �nishing an increment of the software development.

Specialize Access Routes/Interfaces

Using a specialized testing interface makes it possible to specify values for a
component independently from its normal execution. This will in turn make
it possible to test parts of an un�nished module as well as making it easier
to get a clear overview over what data is �owing through individual parts of
the system. This is important for this project as the utility must be able to
run in a di�erent environment than what the developers have access to. The
testers must therefore be able to create input for each individual component
of the system in order to ensure that it will work correctly with all kinds of
input.

D.1.2 Modi�ability Tactics

The goal of using modi�ability tactics is to make it easier to extend and
modify the software during the development and after the completion of a
working product.

Anticipate Expected Changes

By trying to anticipate expected changes, it is possible to make it easier for
modules to be extended with new functionality later. It also makes it easier
for the developers to anticipate the di�erent ranges of input the modules are
able to process. This is important for this project as it is being developed
incrementally, with new functionality and code added every sprint.

Limit Possible Options

By limiting the range of possible modi�cations to the system it becomes
easier to generalize the structure of di�erent modules. This will in turn
make it easier to constrict the wide ranging e�ect of new modi�cations to
the system, giving the developers a clearer view over what a given change
will actually do to the system. This is important for this project as the
developers have a limited time window to implement the utility, making it
important to be able to limit the scope of the utility while still being able to
add the functionality required by the customer.

Generalizing Modules

Generalizing the modules of a system makes it possible to reuse older modules
when doing modi�cations to the system. The more general a module, the

224

more likely it is that a needed change to the system can be implemented by
just adjusting the input to the system, rather than having to modify existing
or creating new modules.

Restrict Communication Paths

By restricting the number of modules that are able to collect data from a
speci�c module, the less dependent the entire system becomes of that speci�c
module. This makes it easier to swap out existing modules with new ones
without having to make many widespread changes to the entire system. This
is important for this project as the source code could change drastically after
discovering new requirements in later sprints. By having a loose coupling we
will minimize the amount of code that has to be rewritten after every sprint.

Using Con�guration Files

By using con�guration �les, it is possible to change the behaviour of the
system without having to do any changes to its code. It is very important
that this system uses con�guration �les as this was a requirement from the
customer, as well as making it more �exible for the end user.

D.1.3 Business Requirements

The following business requirements encompass the most important needs of
the customer.

� The utility must be delivered on time as it is not possible for the
developers to continue the development after the deadline

� The utility should be able to create dissectors for the C-structs in
header �les used by Thales

� The utility should be able to create dissectors that run on all of the
platforms used by Thales and their customers

� Developers at Thales should be able to use Wireshark with the gener-
ated dissectors to display the values in C-structs passed through the
system.

D.1.4 Design Goals

To help guide the design and the implementation we tried to follow these
goals and guidelines:

� Smart data structures and dumb code works better than the other way
around [15]!

225

� Clear and clean separation of the front-end and the back-end so in the
future other parsers can be used to generate dissectors.

� Try to be pythonic, follow PEP8 1 and PEP202.

� Now is better than never. Don't be afraid to write stupid or ugly code,
we can always �x it later.

� The �rst version is never perfect, so don't wait until its perfect before
you commit. Commit often!

D.2 Architectural Patterns

This section presents the di�erent architectural patterns used in the utility

D.2.1 Pipe and Filter

The pipe and �lter architectural pattern consists of a stream of data that
in turn is processed sequentially by several �lters. This is done in such a
fashion that the output of one �lter becomes the input of the other. It is
a very �exible, yet robust way of processing data, with support for adding
more �lters if needed for future applications and processes. As the utility will
only work on one piece of data that gradually changes, and is then converted
into Lua-code at the end, this seemed like a good and structured way of
processing data early on, while still being able to add new functionality
further down the line.

Figure D.1: Pipe and Filter Pattern

1Style Guide for Python Code: http://www.python.org/dev/peps/pep-0008/
2The Zen of Python http://www.python.org/dev/peps/pep-0020/

226

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0020/

D.3 Architectural Views

This section describes three di�erent views: Logical view, process view and
deployment view.

D.3.1 Logical View

Figure D.2 shows the logical view of the system. The command line takes the
arguments for header �le and con�guration �le as a string. The arguments
are parsed in the command line parser. Header �le is sent to �C preprocessor
& C parser�, the C header �le is loaded and parsed by the C parser, which
generates a parsing tree. The command line also calls Con�guration, which
load the con�guration �le. The con�guration will parse the con�guration �le
and create con�guration rules. The Lua script generator will generate a Lua
script from the parsing tree and the con�g rules.

Figure D.2: Overall Architecture

D.3.2 Process View

Figure D.3 shows the process view for our utility. CSjark takes header and
con�g �les as input and then uses the con�g and cparser to parse the �les.
CSjark then uses the cparser to �nd the structs in the header �le and then
creates dissectors for them. These dissectors are then written to a �le and
CSjark then reports to the user by sending a message to the command line.

227

Figure D.3: Data Flow During Regular Execution

D.3.3 Deployment View

Figure D.4 shows the deployment diagram for this project. CSjark takes
header-�les and con�g-�les as input, and generates Lua dissectors. All these
dissectors are added as plugins to Wireshark, extending the functionality.
Wireshark will capture the data packet when Process A send data to Process
B, the Lua dissectors is used to display these data packets correctly.

Figure D.4: Deployment View

228

D.4 Architectural Rationale

The team decided to use the pipe and �lter pattern as the architects felt that
it was the only architectural pattern that would bene�t the utility without
having to make it needlessly complex. The utility was supposed to take
header �les as input and then process the data from them several times,
until the end result was a list of structs and members that could be used to
make dissectors for Wireshark. This seemed like an excellent application of
the pipe and �lter pattern, as it would then be easy to add new �lters to the
header �le for future increments of the development cycle, without having
to rewrite what had already been implemented in previous sprints.

For the views the team decided to use a logical view, process view and
deployment view. These views were chosen because the architects of the
utility felt that these views alone could represent the system su�ciently
without creating too much overhead for the readers of the document. The
logical view supplies the reader with a more in depth view of what the
system is comprised of, which is useful for developers who need to �gure out
the workings of the system. The process view also seemed important for the
developers and the testers of the utility, as it provides the reader with a more
proper overview of the data �ow in the system. This makes it much easier
to see which modules are run when, and to see which external calls dictate
the modules' behaviour. Lastly, a deployment view was chosen to make it
more clear for the reader of the document what the utility really produces
as output and what other external applications it has to cooperate with.

D.5 Changelog

An architectural document should be thought of as a living document and
treated as such. We will therefore introduce the changes done to the archi-
tecture during each sprint in the following subsections.

D.5.1 Sprint 1

As we in sprint one was mostly concerned with getting the basic functionality
in place, there were no changes done to the architecture.

D.5.2 Sprint 2

During the second sprint it became apparent that we needed to structure our
code in a better and more organized way. If not, it would become very hard
to add new functionality to the utility in a straight forward and logical way.
We therefore decided to introduce the layered architectural pattern (D.5.3),
as it is often used to resolve issues just as the ones we faced in sprint 2. We

229

also decided to add metrics for code coverage as a tactic for testability, in
order to improve our unit tests.

Code Coverage

By using a framework to see which parts and how much of the code is actually
being run during the unit tests, it becomes easier to improve the quality of
the unit tests. It could also be used as a checklist to see if the ones creating
the unit tests have implemented some functionality that is currently not
being tested.

D.5.3 Layered Architectural Pattern

The layered architectural pattern involves grouping several di�erent classes
that all share the same dependencies. This grouping of classes is called a
layer, and the layers are structured so that the classes inside each layer only
depend on the classes of their own layer level, or inside an underlaying one.
Structuring the code in this way helps delegating responsibilities to di�erent
parts of the system in a logical way, making the code easier to understand
and easier to navigate through.

Figure D.5 shows how the layered architectural pattern is used in the
utility.

D.5.4 Sprint 3

There were no additions or subtractions done to the architecture of the utility
during sprint 3.

D.5.5 Sprint 4

There were no additions or subtractions done to the architecture of the utility
during sprint 4.

230

Figure D.5: Layered Architectural Pattern in the Utility

231

APPENDIX E

INITIAL LIST OF REQUIREMENTS

The customer provided an initial requirements speci�cation for the utility at
the start of the project, which can be seen in section E.1.

We made some initial changes to the format, created some non-functional
requirements and added priority and complexity to each requirement. This
resulted in the initial function requirements listed in Table E.1 and initial
non-functional requirements listed in Table E.2. These changes were ap-
proved by the customer before the start of the �rst sprint.

E.1 Requirements from Customer

The customer provided the following list of requirements, for the utility we
should create, at the start of the project.

F01 The utility shall be able to read basic C language struct de�nitions,
and generate a Wireshark dissector for the binary representation of
the structs.

F02 The utility shall support structs with any of the basic data types (e.g.
int, boolean, �oat, char) and structs.

F03 The utility shall be able to follow #include <...> statements. This
allows parsing structs that depend on structs or de�nes from other
header �les.

F04 Each struct may be connected to one or more references (integer value).
For instance, a member parameter 'type' can have names for a set of
values.

232

F05 The dissector shall be able to recognize invalid values for a struct mem-
ber. Allowed ranges should be speci�ed by con�guration. An example
is an integer that indictates a percentage between 0 and 100.

F06 A struct may have a header and/or trailer (other registered protocol).
This must be con�gurable.

F07 The dissector shall be able to display each struct member. Structs
within structs shall also be dissected and displayed.

F08 It shall be possible to con�gure special handling of speci�c data types.
E.g. a 'time_t' may be interpreted to contain a unixtime value, and
be displayed as a date.

F09 An integer member may indicate that a variable number of other structs
(array of structs) are following the current struct.

F10 Integers may be an enumerated named value or a bit string.

F11 The dissectors produced shall be able to handle binary input from at
least Windows 32bit and 64bit, Solaris 64bit and Sparc. Example:
BOOL is 1 byte on Solaris and 4 bytes on Win32. Endian and align-
ment also di�ers between the architectures.

E.2 Initial Requirements

Initial function requirements are listed in Table E.1 and initial non-functional
requirements are listed in Table E.2.

233

Table E.1: Initial Functional Requirements

ID Description Pri. Cmp.

FR1 The utility must be able to read basic C language struct de�nitions from C
header �les.

H

FR1-A The utility must support the following basic data types: int, �oat, char and
boolean.

H L

FR1-B The utility must support members of type enums. H L
FR1-C The utility must support members of type structs. H M
FR1-D The utility must support members of type unions. M M
FR1-E The utility must support member of type array. H M

FR2 The utility must be able to generate lua-script for Wireshark dissectors for the
binary representation of C struct.

H

FR2-A The dissector shall be able to display simple structs. H L
FR2-B The dissector shall be able to support structs within structs. M M
FR2-C The dissector must support Wireshark's built-in �lter and search on attributes. H L

FR3 The utility must support C preprocessor directives and macros. H
FR3-A The utility shall support #include. H L
FR3-B The utility shall support #de�ne and #if. H L
FR3-C The utility shall support , _WIN32, _WIN64, __sparc__, __sparc and sun. M H

FR4 The utility must support user con�guration. M
FR4-A The dissector shall be able to recognize invalid values for a struct member.

Allowed ranges should be speci�ed by con�guration.
L L

FR4-B Con�guration must support integer members which represent enumerated
named value or a bit string.

M L

FR4-C Con�guration must support custom handling of speci�c data types. E.g. a
'time_t' may be interpreted to contain a unixtime value, and be displayed as a
date.

L M

FR5 A struct may have a header and/or trailer (other registered protocol). The
con�guration must support the use of integer members to indicate the number
of other structs that will follow in the trailer

L H

FR6 The dissectors must be able to handle binary input which size and endian de-
pends on originating platform.

M

FR6-A Flags must be speci�ed for each platform. M M
FR6-B Flags within message headers should signal the platform. M H

FR7 The utility shall support parameters from command line. H
FR7-A Command line shall support parameters for C header �le. H L
FR7-B Command line shall support for con�guration �le. H L
FR7-C Command line shall support batch mode of C header and con�guration �le. L M
FR7-D When running batch mode, dissectors that already are generated, shall not be

regenerated, if the source are not modi�ed since last run.
L M

234

Table E.2: Initial Non-Functional Requirements

ID Description Pri. Cmp.

NR1 The utility shall be able to run on latest Windows and Solaris operating system. M L

NR2 The dissector shall be able to run on Windows x86, Windows x86-64, Solaris x86,
Solaris x86-64 and Solaris SPARC.

M M

NR3 The utilities user interface shall be command line. H L

NR4 The con�guration shall have su�cient documentation to allow a person with no
previous knowledge of the system to be able to use it to generate LUA-scripts
after �ve hours of reading.

M M

NR5 The con�guration should have su�cient documentation to allow a person, already
pro�cient with the system, to understand the code well enough to be able to extend
it's functionality after four hours of reading.

M M

NR6 The utility code should follow standard python coding convention as speci�ed by
PEP8, and try to follow python style guidelines de�ned by PEP20.

H L

NR7 The utilities code should be documented by python docstrings which should ex-
plain the use of the code. Python modules, classes, functions and methods should
have docstrings.

M L

235

APPENDIX F

USER AND DEVELOPER MANUAL

236

CSjark Documentation
Release 0.4.2

Erik Bergersen Jaroslav Fibichr
Sondre Johan Mannsverk Terje Snarby

Even Wiik Thomassen Lars Solvoll Tønder
Sigurd Wien

November 21, 2011

CONTENTS

1 User Documentation 3
1.1 Introduction . 3
1.2 Features . 6
1.3 Installing CSjark . 6
1.4 Using CSjark . 7
1.5 Using the generated Lua files in Wireshark . 10
1.6 Configuration . 11

2 Developer Documentation 25
2.1 Development rules . 25
2.2 Design Overview . 25
2.3 Testing . 27
2.4 Source code overview . 28
2.5 Changing documentation . 38

3 Other Information 41
3.1 Copyright . 41
3.2 License . 41
3.3 About these documents . 41

i

ii

CSjark Documentation, Release 0.4.2

CSjark is a tool for generating Lua dissectors from C struct definitions to use with Wireshark. Wireshark is a leading
tool for capturing and analysing network traffic. CSjark provides a way to display the contents of the C struct data
coming from an IPC packet in human-readable form in Wireshark.

You can find more about CSjark functionality in the Introduction section.

CONTENTS 1

CSjark Documentation, Release 0.4.2

2 CONTENTS

CHAPTER

ONE

USER DOCUMENTATION

1.1 Introduction

This part is a technical introduction to CSjark. It gives a concise explanation of the most important terms used in the
documentation. The first section briefly explains Wireshark, dissectors and how dissectors are used in Wireshark. The
connection between Wireshark and the Lua structs protocol is also explained. The second section describes how the
Lua code works and how it is generated by our utility.

1.1.1 Wireshark and dissectors

This section gives a brief introduction to Wireshark and dissectors. The rst part describes what Wireshark is and what
it can be used for. The second part explains exactly what a dissector is, and how a dissector can be used to extend
Wireshark.

Wireshark

Wireshark is a program used to analyze network traffic. A common usage scenario is when a person wants to trou-
bleshoot network problems or look at the internal workings of a network protocol. An important feature of Wireshark
is the ability to capture and display a live stream of packets sent through the network. A user could, for example,
see exactly what happens when he opens up a website. Wireshark will then display all the messages sent between his
computer and the web server. It is also possible to filter and search on given packet attributes, which facilitates the
debugging process.

In Figure 1, you can see a view of Wireshark. This specific example shows a capture file with four messages, or packets,
sent between internal 2 processes, in other words it is a view of messages sent by inter-process communication. Each
of the packets contain one C struct. To be able to display the contents of the C struct, Wireshark has to be extended.
This can be accomplished by writing a dissector for the C struct.

Dissector

In short, a dissector is a piece of code, run on a blob of data, which can dissect the data and display it in a readable
format in Wireshark, instead of the binary representation. The Figure 1 displays four packets, with packet number 1
highlighted. The content of the packet is a C struct with two members, name and time, and it is displayed inside the
green box. The C code for the struct is shown below.

/*
* Sample header file for testing Lua C structs script

* Copyright 2011 , Stig Bjorlykke <stig@bjorlykke.org>

*/

3

CSjark Documentation, Release 0.4.2

Figure 1.1: Figure 1: Wireshark

4 Chapter 1. User Documentation

CSjark Documentation, Release 0.4.2

#include <time.h>

#define STRING_LEN 30

struct internal_snd {
int type;
char name [STRING_LEN];
time_t time;

};

The dissector takes the C struct, decodes its binary representation and makes it readable by humans. Without a
dissector, Wireshark would just display the struct and struct members as a binary blob.

All the packets containing C structs belong to the protocol called luastructs. When opening a capture file in
Wireshark, this protocol maps the id of the messages to the correct dissector, and calls them.

1.1.2 From struct definition to Lua dissector

This section explains what happens under the hood of a Lua dissector.

Lua dissectors

The code below shows what the code for the Lua dissector, displayed in packet 1 in Figure 1, looks like. The Proto
variable defines a new protocol. In this example, a dissector for the internal_snd struct, called internal_snd, is created.
The different fields of the struct are created as instances of ProtoField, and put in Protocol.fields. For
example, the name variable is a string in C, and as such it is created as a ProtoField.string with the name name.

The protocol dissector method is the method that does the actual dissecting. A subtree for the dissector is created, and
the description of the dissector is appended to the information column. All the ProtoFields are added to the subtree.
Here you can see that the type, name and time fields are added to the subtree for the internal_snd dissector.
The buffer size allocated to the fields is the size of the members in C.

--
-- A sample dissector for testing Lua C structs scripts
-- Copyright 2011, Stig Bjorlykke <stig@bjorlykke.org>
--

local PROTOCOL = Proto ("internal_snd", "struct internal_snd")
local luastructs_dt = DissectorTable.get ("luastructs.message")

local types = { [0] = "None", [1] = "Regular", [42] = "Secure" }

local f = PROTOCOL.fields
f.type = ProtoField.uint32 ("internal_snd.type", "type", nil, types)
f.time = ProtoField.absolute_time ("internal_snd.time", "time")
f.name = ProtoField.string ("internal_snd.name", "name")

function PROTOCOL.dissector (buffer, pinfo, tree)
local subtree = tree:add (PROTOCOL, buffer())
pinfo.cols.info:append (" (" .. PROTOCOL.description .. ")")

subtree:add (f.type, buffer(0,4))
subtree:add (f.name, buffer(4,30))
subtree:add (f.time, buffer(34,4))

end

1.1. Introduction 5

CSjark Documentation, Release 0.4.2

luastructs_dt:add (1, PROTOCOL)

Note: Lua dissectors are usually files with extension .lua.

For further information on the Lua integration in Wireshark, please visit: Lua Support in Wireshark.

More information programming in Lua in general can be found in Lua reference manual.

1.2 Features

This is a list of CSjark features:

• C header files

• Batch mode

• Searching and filtering in Wireshark

• ...

1.2.1 Currently supported platforms

• Windows 32-bit

• Windows 64-bit

• Solaris 32-bit

• Solaris 64-bit

• Solaris SPARC 64-bit

• MacOS

• Linux 32 bit

(additional platforms can be added by configuration)

1.3 Installing CSjark

1.3.1 Dependencies

CSjark is written in Python 3.2, and therefore needs Python 3.2 (or later) to run. Latest implementation of Python can
be downloaded from Python website. For installing please follow the instruction found there.

There are 4 third party dependencies to get CSjark working:

1. PLY (Python Lex-Yacc) PLY is an implementation of lex and yacc parsing tools for Python. It is required by
pycparser. Instructions and further information can be found on the page linked above.

Required version 3.4
Download location http://www.dabeaz.com/ply/

6 Chapter 1. User Documentation

CSjark Documentation, Release 0.4.2

2. pycpaser Pycparser is a C parser (and AST generator) implemented in Python. Due to the continuous develop-
ment, CSjark requires the latest development version (not the release version).

Required version latest development version from pycparser repository
Download location pycparser repository: http://code.google.com/p/pycparser/source/checkout

3. C preprocessor CSjark requires a C-preprocessor. The way how to get one depends on operating system used
by the user:

Windows Bundled with CSjark.
OS X, Linux, Solaris Needs to be installed separately. For example, as a part of GCC

4. pyYAML

pyYAML is a YAML parser and emitter for the Python programming language. YAML is a standard
used to specify configurations to CSjark. The website includes both a way to download the software
and also instructions of how to install it.

Required version 3.10
Download location http://pyyaml.org/wiki/PyYAML

1.3.2 Wireshark

Wireshark is an open source protocol analyzer which can use the Lua dissectors generated by CSjark. To get the proper
integration of Lua dissectors, the latest development version of Wireshark is required.

Required
version

1.7 dev (build 39446 or newer)

Download
location

http://www.wireshark.org/download/automated/, on the page, browse for the required
platform version

1.3.3 CSjark

CSjark can be obtained at git CSjark repository: https://github.com/eventh/kpro9/. CSjark itself requires no installa-
tion. After the steps described in the dependencies section is completed. It can be ran by opening a terminal, navigating
to the directory containing cshark.py and invoking as described in section Using CSjark.

1.4 Using CSjark

CSjark can be invoked by running the csjark.py script. The arguments must be specified according to:

csjark.py [-h] [-v] [-d] [-s] [-f [header [header ...]]]
[-c [config [config ...]]] [-x [path [path ...]]]
[-o [output]] [-p] [-n] [-C [path]] [-i [header [header ...]]]
[-I [directory [directory ...]]]
[-D [name=definition [name=definition ...]]]
[-U [name [name ...]]] [-A [argument [argument ...]]]
[header] [config]

Example usage:

python csjark.py -v -o dissectors headerfile.h configfile.yml

Batch mode

1.4. Using CSjark 7

CSjark Documentation, Release 0.4.2

One of the most important features of CSjark is processing multiple C header files in one run. That can be easily
achieved by specifying a directory instead of a single file as command line argument (see above):

python csjark.py headers configs

In batch mode, CSjark only generates dissectors for structs that have a configuration file with an ID (see section
Dissector message ID for information how to specify dissector message ID), and for structs that depend on other
structs. This speeds up the generation of dissectors, since it only generates dissectors that Wireshark can use.

Required arguments

header a C header file to parse or directory which includes header files

config a configuration file to parse or directory which includes configuration files

Both header and config can be:

• file - CSjark processes only the specified file

• directory - CSjark recursively searches the directory and processes all the appropriate files found

Optional argument list

-h, --help Show a help message and exit.
-v , --verbose Print detailed information.
-d, --debug Print debugging information.
-s, --strict Only generate dissectors for known structs.
-f, --file Additional locations of header files.
-c, --config Additional locations of configuration files.
-x, --exclude File or folders to exclude from parsing.
-o, --output Location for storing generated dissectors.
-p, --placeholders Automatically generates config files with placeholders.
-n, --nocpp Disables the C pre-processor.
-C, --Cpppath Specifies the path to C preprocessor.
-i, --include Process file as Cpp #include “file” directive
-I, --Includes Additional directories to be searched for Cpp includes.
-D, --Define Predefine name as a Cpp macro
-U , --Undefine Cancel any previous Cpp definition of name
-A, --Additional Any additional C preprocessor arguments

Optional argument details

-h, -help
Show a help message and exit.

-v, -verbose
Print detailed information.

-d, -debug
Print debugging information.

-s, -strict
Only generate dissectors for known structs. As known structs we consider only structs for which exists valid
configuration file with ID defined. Also, CSjark generates dissectors for structs that depend on known structs.

-f [path [path ...]], -file [path [path ...]]
Specifies that CSjark looks for struct definitions in the path. There can be more than one path specified, separated
by whitespace. As path there can be file and directory. In case of a directory, CSjark searches for header files
recursively to maximum possible depth.

All header files found are added to the files specified by the required header argument.

8 Chapter 1. User Documentation

CSjark Documentation, Release 0.4.2

Example:

csjark.py -f hdr/file1.h dir1 file2.h

-c [path [path ...]], -config [path [path ...]]
Specifies that CSjark looks for configuration definition files in the path. There can be more than one path
specified, separated by whitespace. As path there can be file and directory. In case of a directory, CSjark
searches for configuration files recursively to maximum possible depth.

All configuration files found are added to the files specified by the required config argument.

Example:

csjark.py -c etc/conf1.yml dir1 conf2.yml

-x [path [path ...]], -exclude [path [path ...]]
File or folders to exclude from parsing.

When using the option, CSjark will not search for header files in the path. There can be more than one path
specified, separated by whitespace. As path there can be file and directory. In case of a directory, CSjark will
skip header files also in its subdirectories.

-o [path], -output [path]
Sets location for storing generated dissectors.

If path is a directory, CSjark saves the output dissectors into this directory, otherwise CSjark saves the output
dissectors into one specified file named path. If file with this name already exists, it is rewritten without warning.

Default: CSjark root directory (when the csjark.py file is located)

-p, -placeholders
Automatically generates configuration files with placeholders for structs without configuration.

More in section Configuration file format and structure.

-n, -nocpp
Disables the C pre-processor.

-C [path], -Cpppath [path]
Specifies the path to the external C preprocessor.

Default:

• Windows, the path is ../utils/cpp.exe (uses cpp bundled with CSjark).

-i [header [header ...]], -include [header [header ...]]
Process header as if #include “header” appeared as the first line of the input header files

-I [directory [directory ...]], -Includes [directory [directory ...]]
Additional directories to be searched for Cpp includes.

Add the directory directory to the list of directories to be searched for header files. These directories are added
as an argument to the preprocessor. The preprocessor can search there for those files, which are given in an
#include directive of the C header input.

-D [name=definition [name=definition ...]], -Define [name=definition [
name=definition ...]]

Predefine name as a Cpp macro, with definition definition.

-U [name [name ...]], -Undefine [name [name ...]]
Cancel any previous Cpp definition of name, either built in or provided with a -D option.

-A [argument [argument ...]], -Additional [argument [argument ...]]
Any additional C preprocessor arguments.

1.4. Using CSjark 9

CSjark Documentation, Release 0.4.2

Adds any other arguments (additional to -D, -U and -I) to the preprocessor.

1.5 Using the generated Lua files in Wireshark

These are the steps needed to use a Lua dissector generated by CSjark with Wireshark.

1. Get the latest version of Wireshark as described in the installation section Wireshark.

2. Locate the Personal configuration and the Personal Plugins directories. To do this, start Wireshark and click on
Help in the menubar and then on About Wireshark. This should bring up the About Wireshark dialog.
From there, navigate to the Folders tab. Locate folders Personal configuration and Personal
Plugins and note their paths (see below).

• on Linux/Unix system it may be ~/.wireshark/ and ~/.wireshark/plugins/

• on Windows it may be C:\Users*YourUserName*\AppData\Roaming\Wireshark\
and C:\Users*YourUserName*\AppData\Roaming\Wireshark\plugins\

If the folders does not exist, create them.

3. Copy CSjark generated file luastructs.lua into the Personal configuration folder located in step
2.

Note: Location of CSjark generated files is given by -o command line argument. More in section Using CSjark.

4. Copy CSjark generated Lua dissector files into the Personal Plugins folder located in step 2.

5. Open the file init.lua located in the Personal configuration folder which you found in step 2.
Insert the following code:

dofile("luastructs.lua")

This ensures that the luastructs.lua is loaded before all other Lua scripts. luastructs.lua is
a protocol that maps the id of the messages to the correct dissector, and calls them.

6. Restart Wireshark. To check that the scripts are loaded, navigate to Help -> About -> Plugins. The scripts
should now appear in the list as “lua script”.

10 Chapter 1. User Documentation

CSjark Documentation, Release 0.4.2

To add further dissectors, only step 4, 5 and 6 needs to be repeated.

For further information on the Lua integration in Wireshark, please visit: Lua Support in Wireshark.

1.6 Configuration

Because there exists distinct requirements for flexibility of generating dissectors, CSjark supports configuration for
various parts of the program. First, general parameters for utility running can be set up. This can be for example set-
tings of variable sizes for different platforms or other parameters that could determine generating dissectors regardless
actual C header file. Second, each individual C struct can be treated in different way. For example, value of specific
struct member can be checked for being within specified limits.

Contents

• Configuration
– Configuration file format and structure
– Struct Configuration

* Value ranges
* Value explanations

· Enums
· Bitstrings

* Dissector message ID
* External Lua dissectors

· Support for Offset and Value in Lua Files
* Trailers
* Custom handling of data types
* Unknown structs handling

– Options Configuration
– Platform specific configuration

1.6.1 Configuration file format and structure

Note: Besides the configuration described below, one part of the configuration is held directly in the code. It
represents the platform specific setup (file platform.py) - see Platform specific configuration.

1.6. Configuration 11

CSjark Documentation, Release 0.4.2

Format

The configuration files are written in YAML which is a data serialization format designed to be easy to read and write.
The configuration must be put in a .yml file and specified when running CSjark as a command line argument (more
about CLI in section Using CSjark).

Basic YAML syntax is shown on following example:

comments can start anywhere with number sign (#) and continues until the end of the
line

key1: value1 # associative array of two key-value pairs
key2: value2 # pairs are separated by colon (:) and space () on a

separate line

{key3: value3, key4: value4} # inline format of specifying associative arrays
pairs are separated by comma (,) and enclosed into
curly braces ({})

- item1 # list of two items
- item2 # each item starts with hyphen (-) and space () on a

separate line

[item3, item4] # inline format of the list
items are separated by comma (,) and enclosed into
square brackets ([])

Data structure hierarchy in YAML is maintained by outline indentation (whitespace is used, tab not allowed). All the
basic elements can be combined to create a hierarchy:

Options:
use_cpp: True
generate_placeholders: True

Structs:
- name: struct1
id: [10, 12, 14]

- name: struct2
id: [11, 13, 15]

Strings are ordinarily unquoted, but may be enclosed in double-quotes (”), or single-quotes (‘). The specific number
of spaces in the indentation is unimportant as long as parallel elements have the same left justification and the hier-
archically nested elements are indented further. This sample defines an associative array with 2 top level keys: one
of the keys, “Structs”, contains a 2 element array (or “list”), each element of which is itself an associative array with
differing keys.

Detailed specification of YAML syntax can be found at YAML website.

Structure

CSjark configuration files might consist of two main parts:

• The first part is used for specifying all the configuration corresponding CSjark processing in general. More
about CSjark options in Options Configuration.

• The second part contains configuration for individual C struct definitions. That is described in section Struct
Configuration.

The configuration file may have following structure:

12 Chapter 1. User Documentation

CSjark Documentation, Release 0.4.2

Options:
there will be all your CSjark processing configuration
use_cpp: True
...

Structs:
there will be a sequence of Struct definition configurations
- name: struct1
id: [10, 12, 14]
another struct1 config

- name: struct2
id: [11, 13, 15]
another struct2 config

Automatic generation of configuration files

Automatic generation of configuration file is a simple feature, that could save the user of the utility some time, since
the essential part of the configuration file is generated automatically. The utility will only create a new file containing
the name of the struct and line to specify the ID for the dissector. To generate the configuration file, the utility must be
run with -p or --placeholders as an option (see Using CSjark for more about CSjark CLI).

1.6.2 Struct Configuration

Each individual C struct processed by CSjark can be treated in different way. All the configuration settings must be
done in the Structs section of the configuration file. Every Struct definition is one item of the sequence and may
contain these attributes:

Attribute name Description
name C struct name (required field)
id Dissector message id - more in Dissector message ID
description Struct name displayed in Wireshark
size Size of the struct in memory - more in Unknown structs handling
cnf Conformance file name - more in External Lua dissectors
ranges Value ranges limitations - more in Value ranges
enums Enumeration definitions - more in Enums
bitstrings Bitstrings definitions - more in Bitstrings
trailers Trailers definitions - more in Trailers
customs Definitions for custom struct member handling - more in Custom handling of data types

General notes

• Definition of Structs part of configuration is not mandatory. However, the user must be aware that if a struct
configuration is not defined (namely the id attribute), it can be dissected only as a part of other struct (as its
struct member). Otherwise there will be no dissectors registered for the struct.

• If there exists a configuration for a struct member and also configuration for the type of this member, the
behaviour is not defined. It is up to the user to ensure the definitions are exclusive for each struct member. For
example, in the Value ranges section example, if the percent is defined as float, the configuration would be
ambiguous and there would be no guarantee that percent value is between 0 to 100 or -10 to 10.

• If a struct contains another struct as its member, none of the configuration valid for the outer struct is applied on
the nested struct. The same goes for unions. In order to configure the nested struct, the user must define separate
struct configuration for it. In this example, the configuration valid for the members of person struct is not valid
for members of address struct

struct address {
int housenum;

1.6. Configuration 13

CSjark Documentation, Release 0.4.2

string street;
};

struct person {
string name;
address adr;
int age;

};

Value ranges

Some variables may have a domain that is smaller than its given type. You could for example use an integer to describe
percentage, which is a number between 0 and 100. It is possible to specify this to CSjark, so that the resulting dissector
will tell Wireshark if the values are in the specified range or not. Value ranges are defined by the following syntax:

Structs:
- name: "Name of the struct"
id: 989
ranges:

- member | type: "Name of struct member / type"
min: "Lowest allowed value"
max: "Highest allowed value"

When the definition specified as a type, the value range is applied to all the members of that type within the struct.

The value ranges configuration is valid only for data types that are meaningful for this purpose (e.g. integers, float,
enums). Definitions for other data types are not taken into account.

Example:

Structs:
- name: example_struct
id: 90
ranges:

- member: percent
min: 0
max: 100

- type: float
min: -10.0
max: 10.0

Value explanations

Some variables may actually represent other values than its type. For example, for an enum it could be preferable to
get the textual name of the value displayed, instead of the integer value that represent it. Such example can be an enum
type or a bitstring.

Enums

Values of integer variables can be assigned to string values similarly to enumerated values in most programming
languages. Thus, instead of integer value, a corresponding value defined in configuration file as a enumeration can be
displayed.

14 Chapter 1. User Documentation

CSjark Documentation, Release 0.4.2

The enumeration definition can be of two types. The first one, mapping specified integer by its struct member name,
so it gains string value dependent on the actual integer value. And the second, where assigned string values correspond
to every struct member of the type defined in the configuration.

The enum definition, as an attribute of the Structs item of the configuration file, always starts by enums keyword.
It is followed by list of members/types for which we want to define enumerated integer values for. Each list item
consists of 2 mandatory and 1 optional values

- member | type: member name | type name
values: [value1, value2, ...] | { key1: value1, key2: value2, ...}
strict: True | False

where

• member name/type name contains string value of integer variable name for which we want to define enu-
merated values

• [value1, value2, ...] is comma-separated list of enumerated values (implicitly numbered, starting
from 0)

• { key1: value1, key2: value2, ...} is comma-separated list of key-value pairs, where key is
integer value and value is it’s assigned string value

• strict is boolean value, which disables warning, if integer does not contain a value specified in the enum list
(default True)

Example of enums in struct definition contains: - member named weekday and values defined as a list of key-value
pairs. - definition of enumerated values for int type. Values are given by simple list, therefore numbering is implicit
(starting from 0, i.e. Blue = 2). Warning in case of invalid integer value will be displayed.

Structs:
- name: enum_example1
id: 10
description: Enum config example
enums:
- member: weekday
values: {1: MONDAY, 2: TUESDAY, 3: WEDNESDAY, 4: THURSDAY, 5: FRIDAY,

6: SATURDAY, 7: SUNDAY}
- type: int
values: [Black, Red, Blue, Green, Yellow, White]
strict: True # Disable warning if not a valid value

Bitstrings

It is possible to configure bitstrings in the utility. This makes it possible to view common data types like integer, short,
float, etc. used as a bitstring in the wireshark dissector.

There is two ways to configure bitstrings, the first one is to specify a struct member and define the bit representation.
The second option is to specify bits for all struct members of a given type.

These rules specifies the config:

• The bits are specified as 0...n, where 0 is the most significant bit

• A bit group can be one or more bits.

• Bit groups have a name

• It is possible to name all possible values in a bit group.

1.6. Configuration 15

CSjark Documentation, Release 0.4.2

Below, there is an example of a configuration for the member named flags and all the members of short type
belonging to the struct example.

• member flags: This example has four bits specified, the first bit group is named “In use” and represent bit 0.
The second group represent bit 1 and is named “Endian”, and the values are named: 0 = “Big”, 1 = “Little”. The
last group is “Platform” and represent bit 2-3 and have 4 named values.

• type short: Each of the 3 bits represents one colour channel and it can be either “True” or “False”.

Structs:
- name: example
id: 1000
description: An example
bitstrings:
- member: flags
0: In use
1: [Endian, Big, Little]
2-3: [Platform, Win, Linux, Mac, Solaris]

- type: short
0: Red
1: Green
2: Blue

Dissector message ID

Every packet with C struct captured by Wireshark contains a header. One of the fields in the header, the id field,
specifies which dissector should be loaded to dissect the actual struct. The value of this field can be specified in the
configuration file.

This is an example of the specification

Structs:
- name: structname
id: 10

More different messages can be dissected by one specific dissector. Therefore, the struct configuration can contain a
whole list of dissector message ID’s, that can process the struct.

Structs:
- name: structname
id: [12, 43, 3498]

Note: The id must be an integer between 0 and 65535.

External Lua dissectors

In some cases, CSjark will not be able to deliver the desired result from its own analysis, and the configuration options
above may be too constraining. In this case, it is possible to write the lua dissector by hand, either for a given member
or for an entire struct.

Note: To be able to understand and write external Lua dissectors, the user should be familiar with basics of Lua
programming and Lua integration into Wireshark. More information how to write Lua code can be found in Lua
reference manual. For further information on the Lua integration in Wireshark, please visit Lua Support in Wireshark.

16 Chapter 1. User Documentation

CSjark Documentation, Release 0.4.2

A custom Lua code for desired struct must be defined in an external conformance file with extension .cnf. The
conformance file name and relative path then must be defined in the configuration file for the struct for which is the
custom code applied for. The attribute name for the custom Lua definition file and path is cnf, as shown below:

CSjark configuration file

Structs:
- name: custom_lua
cnf: etc/custom_lua.cnf
id: 1
description: example of external custom Lua file definition

Writing the conformance file implies respecting following rules:

• Each section starts with #.<SECTION> for example #.COMMENT.

• Unknown sections are ignored.

The conformance file implementation allows user to place the custom Lua code on various places within the Lua
dissector code already generated by CSjark. There is a list of possible places:

DEF_HEADER
id

Lua code added before a Field definition.

DEF_BODY id Lua code to replace a Field definition. Within the definition, the original body
can be referenced as %(DEFAULT_BODY)s or {DEFAULT_BODY}

DEF_FOOTER
id

Lua code added after a Field definition

DEF_EXTRA Lua code added after the last definition
FUNC_HEADER
id

Lua code added before a Field function code

FUNC_BODY
id

Lua code to replace a Field function code

FUNC_FOOTER
id

Lua code added after a Field function code

FUNC_EXTRA Lua code added at end of dissector function
COMMENT A multiline comment section
END End of a section
END_OF_CNF End of the conformance file

Where id denotes C struct member name . The END token is only optional, it does not have to be placed at the end of
each section. However, all code after END token which is not part of another section defined above is discarded.

Example of such conformance file follows:

#.COMMENT
This is a .cnf file comment section

#.END

#.DEF_HEADER super
-- This code will be added above the ’super’ field definition
#.END

#.COMMENT
DEF_BODY replaces code inside the dissector function.
Use %(DEFAULT_BODY)s or {DEFAULT_BODY} to use generated code.

#.DEF_BODY hyper
-- This is above ’hyper’ definition
%(DEFAULT_BODY)s
-- This is below ’hyper’

1.6. Configuration 17

CSjark Documentation, Release 0.4.2

#.END

#.DEF_FOOTER name
-- This is below ’name’ definition
#.END

-- This text would be discarded.

#.DEF_EXTRA
-- This was all the Field definitions
#.END

#.FUNC_HEADER precise
-- This is above ’precise’ inside the dissector function.

#.END

#.COMMENT
FUNC_BODY replaces code inside the dissector function.
Use %(DEFAULT_BODY)s or {DEFAULT_BODY} to use generated code.

#.FUNC_BODY name
--[[This comments out the ’name’ code
{DEFAULT_BODY}
]]--

#.END

#.FUNC_FOOTER super
-- This is below ’super’ inside dissector function

#.END

#.FUNC_EXTRA
-- This is the last line of the dissector function

#.END_OF_CNF

This conformance file when run with this C header code:

struct custom_lua {
short normal;
int super;
long long hyper;

char name;
double precise;

};

...will produce this Lua dissector:

-- Dissector for win32.custom_lua: custom_lua (Win32)
local proto_custom_lua = Proto("win32.custom_lua", "custom_lua (Win32)")

-- ProtoField definitions for: custom_lua
local f = proto_custom_lua.fields
f.normal = ProtoField.int16("custom_lua.normal", "normal")
-- This code will be added above the ’super’ field definition
f.super = ProtoField.int32("custom_lua.super", "super")
-- This is above ’hyper’ definition
f.hyper = ProtoField.int64("custom_lua.hyper", "hyper")

18 Chapter 1. User Documentation

CSjark Documentation, Release 0.4.2

-- This is below ’hyper’
f.name = ProtoField.string("custom_lua.name", "name")
-- This is below ’name’ definition
f.precise = ProtoField.double("custom_lua.precise", "precise")
-- This was all the field definitions

-- Dissector function for: custom_lua
function proto_custom_lua.dissector(buffer, pinfo, tree)

local subtree = tree:add_le(proto_custom_lua, buffer())
if pinfo.private.caller_def_name then

subtree:set_text(pinfo.private.caller_def_name .. ": " .. proto_custom_lua.description)
pinfo.private.caller_def_name = nil

else
pinfo.cols.info:append(" (" .. proto_custom_lua.description .. ")")

end

subtree:add_le(f.normal, buffer(0, 2))
subtree:add_le(f.super, buffer(4, 4))
-- This is below ’super’ inside dissector function
subtree:add_le(f.hyper, buffer(8, 8))
--[[This comments out the ’name’ code

subtree:add_le(f.name, buffer(16, 1))
]]--
-- This is above ’precise’ inside the dissector function.
subtree:add_le(f.precise, buffer(24, 8))
-- This is the last line of the dissector function

end

delegator_register_proto(proto_custom_lua, "Win32", "custom_lua", 1)

Support for Offset and Value in Lua Files

Via External Lua dissectors CSjark also provides a way to reference the proto fields of the dissector, with correct offset
value and correct Lua variable.

To access the fields value and offset, {OFFSET} and {VALUE} strings may be put into the conformance file as shown
below:

#.FUNC_FOOTER pointer
-- Offset: {OFFSET}
-- Field value stored in lua variable: {VALUE}

#.END

Adding the offset and variable value is only possible in the parts that change the code of Lua functions, i.e.
FUNC_HEADER, FUNC_BODY and FUNC_FOOTER.

Above listed example leads to following Lua code:

local field_value_var = subtree:add(f.pointer, buffer(56,4))
-- Offset: 56
-- Field value stored in lua variable: field_value_var

Note: The value of the referenced variable can be used after it is defined.

1.6. Configuration 19

CSjark Documentation, Release 0.4.2

Trailers

CSjark only creates dissectors from C structs defined as its input. To be able to use built-in dissectors in Wireshark, it
is necessary to configure it. Wireshark has more than 1000 built-in dissectors. Several trailers can be configured for a
packet.

The following parameters are allowed in trailers:

name Protocol name for the built-in dissector
count The number of trailers
member Struct member, that contain the amount of trailers
size Size of the buffer to feed to the protocol

There are two ways to configure the trailers - specify the total number of trailers or give a variable in the struct,
which contains the amount of trailers. Both ways to configure trailers are shown below. In case the variable
trailer_count equals 2, the definitions has the same effect.

trailers:
- name: proto1
member: trailer_count
size: 32

trailers:
- name: proto1
count: 2
size: 32

Example: The example below shows an example with BER 1, which has 4 trailers with a size of 6 bytes.

trailers:
- name: ber
- count: 4
- size: 6

Custom handling of data types

The utility supports custom handling of specified data types. Some variables in input C header may actually represent
other values than its own type. This CSjark feature allows user to map types defined in C header to Wireshark field
types. Also, it provides a method to change how the input field is displayed in Wireshark. The custom handling must
be done through a configuration file.

For example, this functionality can cause Wireshark to display time_t data type as absolute_time. The dis-
played type is given by generated Lua dissector and functions of ProtoField class.

List of available output types follows:

Integer types uint8, uint16, uint24, uint32, uint64, int8, int16, int24, int32, int64, framenum

Other types float, double, string, stringz, bytes, bool, ipv4, ipv6, ether, oid, guid, absolute_time, relative_time

For Integer types, there are some specific attributes that can be defined (see below). More about each individual
type can be found in Wireshark reference.

The section name in configuration file for custom data type handling is called customs. This section can contain
following attributes:

• Required attributes

1 Basic Encoding Rules

20 Chapter 1. User Documentation

CSjark Documentation, Release 0.4.2

Attribute name Value
member | type Name of member or type for which is the configuration applied
field Displayed type (see above)

• Optional attributes - all types

Attribute name Value
abbr Filter name of the field (the string that is used in filters)
name Actual name of the field
desc The description of the field (displayed on Wireshark statusbar)

• Optional attributes - Integer types only:

Attribute
name

Value

base Displayed representation - can be one of base.DEC, base.HEX or
base.OCT

values List of key:value pairs representing the Integer value - e.g. {0:
Monday, 1: Tuesday}

mask Integer mask of this field

Example of such a configuration file follows:

Structs:
- name: custom_type_handling
id: 1
customs:
- type: time_t
field: absolute_time

- member: day
field: uint32
abbr: day.name
name: Weekday name
base: base.DEC
values: { 0: Monday, 1: Tuesday, 2: Wednesday, 3: Thursday, 4: Friday}
mask: nil
desc: This day you will work a lot!!

and applies for example for this C header file:

#include <time.h>

struct custom_type_handling {
time_t abs;
int day;

};

Both struct members are redefined. First will be displayed as absolute_type according to its type (time_t),
second one is changed because of the struct member name (day).

Unknown structs handling

The header files that the utility parses, may have nested struct that is not defined in any other header file. To make it
possible to generate a dissector for this case, the user must be able to specify the size of the struct in a configuration
file. When the sizes are specified it will be possible to generate a struct that can display the defined members of the
struct correctly in the utility, for the parts that are not defined only the hex value will be displayed. This feature is
added as a possible way to solve include dependencies that our utility is not able to solve. The user of the utility will
get an error message when the utility is not able to find include dependencies, and the user may add the size of struct
to be able to generate a dissector for the struct.

1.6. Configuration 21

CSjark Documentation, Release 0.4.2

The size of unknown struct may be defined directly in the struct configuration as size attribute, similar to the example
below:

Structs:
- name: unknown struct
id: 111
size: 78

Note: Size must be defined as a positive integer (or 0).

1.6.3 Options Configuration

CSjark processing behaviour can be set up in various ways. Besides letting the user to specify how the CSjark should
work by the command line arguments (see section Using CSjark), it is also possible to define the options as a part of
the configuration file(s).

Configuration file field CLI
equivalent

Value Description

verbose -v True/False Print detailed information
debug -d True/False Print debugging information
strict -s True/False Only generate dissectors for known structs
output_dir -o None or path Definition of output destination
output_file -o None or file name Writes the output to the specified file
generate_placeholders-p True/False Generate placeholder config file for

unknown structs
use_cpp -n True/False Enables/disables the C pre-processor
cpp_path -C None or file name Specifies which preprocessor to use
excludes -x List of excluded paths File or folders to exclude from parsing
platforms List of platform names Set of platforms to support in dissectors
include_dirs -I List of directories Directories to be searched for Cpp

includes
includes -i List of includes Process file as Cpp #include “file”

directive
defines -D List of defines Predefine name as a Cpp macro
undefines -U List of undefines Cancel any previous Cpp definition of

name
arguments -A List of additional

arguments
Any additional C preprocessor arguments

The last 5 options can be also specified separately for each individual input C header file. This can be achieved by
adding sequence files with mandatory attribute name.

Below you can see an example of such Options section:

Options:
verbose: True
debug: False
strict: False
output_dir: ../out
output_file: output.log
generate_placeholders: False
use_cpp: True
cpp_path: ../utils/cpp.exe
excludes: [examples, test]
platforms: [default, Win32, Win64, Solaris-sparc, Linux-x86]

22 Chapter 1. User Documentation

CSjark Documentation, Release 0.4.2

include_dirs: [../more_includes]
includes: [foo.h, bar.h]
defines: [CONFIG_DEFINED=3, REMOVE=1]
undefines: [REMOVE]
arguments: [-D ARR=2]
files:
- name: a.h
includes: [b.h, c.h]
define: [MY_DEFINE]

Note: If you give CSjark multiple configuration files with the same values defined, it takes:

• for attributes with single value: a value from last processed config file is valid

• for attributes with list values: lists are merged

1.6.4 Platform specific configuration

To ensure that CSjark is usable as much as possible, platform specific

Entire platform setup is done via Python code, specifically platform.py. This file contains following sections:

1. Platform class definition including it’s methods

2. Default mapping of C type and their Wireshark field type

3. Default C type size in bytes

4. Default alignment size in bytes

5. Custom C type sizes for every platform which differ from default

6. Custom alignment sizes for every platform which differ from default

7. Platform-specific C preprocessor macros

8. Platform registration method and calling for each platform

When defining new platform, following steps should be done. Referenced sections apply to platform.py sections
listed above. All the new dictionary variables should have proper syntax of Python dictionary:

Field sizes Define custom C type sizes in section 5. Create new dictionary with name in capital letters. Only those
different from default (section 3) must be defined.

NEW_PLATFORM_C_SIZE_MAP = {
’unsigned long’: 8,
’unsigned long int’: 8,
’long double’: 16

}

Memory alignment Define custom memory alignment sizes in section 6. Create new dictionary with name in capital
letters. Only those different from default (section 4) must be defined.

NEW_PLATFORM_C_ALIGNMENT_MAP = {
’unsigned long’: 8,
’unsigned long int’: 8,
’long double’: 16

}

1.6. Configuration 23

CSjark Documentation, Release 0.4.2

Macros Define dictionary of platform specific macros in section 7. These macros then can be used within C header
files to define platform specific struct members etc. E.g.:

#if _WIN32
float num;

#elif __sparc
long double num;

#else
double num;

Example of such macros:

NEW_PLATFORM_MACROS = {
’__new_platform__’: 1, ’__new_platform’: 1

}

Register platform In last section (8), the new platform must be registered. Basically, it means calling the constructor
of Platform class. That has following parameters:

Platform(name, flag, endian, macros=None, sizes=None, alignment=None)

where

name name of the platform
flag unique integer value representing this platform
endian either Platform.big or Platform.little
macros C preprocessor platform-specific macros like _WIN32
sizes dictionary which maps C types to their size in bytes

Registering of the platform then might look as follows:

New platform
Platform(’New-platform’, 8, Platform.little,

macros=NEW_PLATFORM_MACROS,
sizes=NEW_PLATFORM_C_SIZE_MAP,
alignment=NEW_PLATFORM_C_ALIGNMENT_MAP)

24 Chapter 1. User Documentation

CHAPTER

TWO

DEVELOPER DOCUMENTATION

2.1 Development rules

This document describes coding requirements and conventions for working with the CSjark code base. Please read it
carefully and ask back any questions you might have.

2.1.1 Coding Style Standard

The programming language used to implement the utility is Python. All the code should as much as possible follow
the coding style described in the Style Guide for Python Code (PEP8). In addition we decided that the design should
attempt to be pythonic, as detailed by PEP20.

2.1.2 Code base

The entire CSjark project is hosted on GitHub. In order to get the source code, you can:

• clone the Git repository: https://github.com/eventh/kpro9

• download most recent tar archive

• download most recent zip archive

Note: When commiting to the repository, always write good log messages. It will help people that will read the diffs
in the future.

2.1.3 Issue tracking

For issue tracking, we use bug tracking capabilities of GitHub. You can register bugs, discuss issues or see what’s
going on for the next milestone, both from an email and from a web interface.

https://github.com/eventh/kpro9/issues

2.2 Design Overview

This part describes the design of the CSjark to help all the future developers to understand what is under the hood.

25

CSjark Documentation, Release 0.4.2

2.2.1 Textual description

CSjark starts with the csjark module. It takes as input command line arguments, including file and folder names for
C header files and configuration files. It replaces folder names with the file names of the files inside the folders, and
checks that all the files exists, then it gives the names of the configuration files to the config module.

The config module parses configuration files and stores them in suitable config data structures in memory. It takes as
input file names, and it opens those files to read their content.

Csjark module then gives file names of C header files to the cpp module. The cpp module gives the file names and
some other arguments to an external program, the C preprocessor (cpp.exe on Windows). This external program opens
the header files, and when it encounters #include directives it searches for the right file and opens it as well. The output
of this external program is just a long string of C code, which cpp module returns to the csjark module.

The csjark module then gives the C code string to cparser module, which forwards the string to pycparser. Pycparser
parse the C code to generate an abstract syntax tree, which it returns to cparser which returns it to csjark.

Csjark module then tells cparser to find all struct definitions in the abstract syntax tree, which it does by traversing the
tree. Each time it finds a struct, it asks dissector module to create a protocol for it. Afterwards cparser holds a list of
all the created protocols.

Csjark then gets the list of protocols from cparser, and for each one asks dissector module to generate lua code for
Wireshark dissectors. It writes these dissectors to files, and finishes with a status message informing the user how it
all went.

The new field module is simply to move class Fields and its sub-classes into their own module to make dissector
module smaller and less complex.

Summary

csjark module writes Lua files, config module opens and reads YAML files, cpp module starts an external program
which reads C header files. The structure as well as the associations among the classes are shown on following module
and class diagrams.

2.2.2 Module diagram

Figure 2.1: CSjark: module diagram

26 Chapter 2. Developer Documentation

CSjark Documentation, Release 0.4.2

2.2.3 Class diagram

Figure 2.2: CSjark: class diagram

2.3 Testing

There are several types of tests done for verification of CSjark functionality:

2.3.1 White box testing

This type of white box testing basically means verification of functionality of specific section of the code, usually at
the function level. As a tool for creating white box unit tests, the team decided to use the Attest testing framework for
python code.

2.3. Testing 27

CSjark Documentation, Release 0.4.2

2.3.2 Black box testing

In general black box testing does not require the tester to have any intimate knowledge about the system or any of the
programming logic that went into making it. Black box test cases are built around the specifications and requirements
of a system, for example its functional, and in some cases, non-functional requirements.

For CSjark, black box testing means feeding the utility with input C header file, corresponding configuration file and
generating the output (Lua dissector). Then, the generated output is compared to expected output.

Another way how to do the black box testing to use the generated dissectors in Wireshark. For this purpose, we also
need a pcap file containing the IPC packets that corresponds to the input C header files. You can read more about
whole process in the User Manual section Introduction. A short guide how to create pcap file for the C struct can be
found in the project wiki.

With the generated Lua dissectors, it should possible to display the contents of the C struct within the IPC packets.
Also, according to the utility requirements, it should be possible to filter and search by any variable name or its value.
This way of testing is based on manual checking of the individual variable values. The process involves several manual
steps and therefore cannot be automated.

2.3.3 Regression testing

The test must be written in a way that it should be possible to run them repeatedly after the first run. That can ensure
that all the implemented functionality is still working well after changes in the code.

2.3.4 Creating tests

To create tests using Attest, you start by importing Tests, assert_hook and optionally contexts from attest
library. You then create a variable and initialize it to an instance of Tests, which is the variable that will contain list
functions that each constitutes one test that is to be run. To feed your test instance with functions for testing you then
have to mark these functions with a decorator and feed it the .tests function of the Tests instance. After creating a
unit test in this fashion you can run all of your unit tests through Attest from the command line by typing:

python -m attest

This runs all of your unit tests through Attest and returns a message telling the user how many assertions failed, as
well as what input made them fail. For more information read the user documentation of Attest.

2.3.5 Testing code

All the test code, the testing configuration files and the testing input files are located in folder

CSjark/csjark/test

It contains modules for unit/module testing of each of the CSjark modules as well as modules for bundled white/black
box testing.

2.4 Source code overview

Program modules

csjark CSjark is a tool for generating Lua dissectors from C struct
Continued on next page

28 Chapter 2. Developer Documentation

CSjark Documentation, Release 0.4.2

Table 2.1 – continued from previous page
config A module for configuration of our utility.
cpp Module for performing the C preprocessor step on C header files.
cparser A module for parsing C files to find struct definitions.
field A module for classes which represents values in a packet.
dissector A module for generating Lua dissectors for Wireshark.
platform A module which holds platform specific configuration.

Testing modules

Modules for testing are located in

CSjark/csjark/test

2.4.1 csjark

CSjark is a tool for generating Lua dissectors from C struct definitions to use with Wireshark.

csjark.parse_args(args=None)
Parse arguments given in sys.argv.

‘args’ is a list of strings to parse instead of sys.argv.

csjark.parse_headers(headers)
Parse ‘headers’ to create a Wireshark protocol dissector.

csjark.create_dissector(filename, platform, folders=None, includes=None)
Parse ‘filename’ to create a Wireshark protocol dissector.

‘filename’ is the C header/code file to parse. ‘platform’ is the platform we should simulate. ‘folders’ is a set of
all folders to -Include. ‘includes’ is a set of filenames to #include. Returns the error if parsing failed, None if
succeeded.

csjark._write_dissector(name, proto)
Write a single dissector to file.

csjark.write_dissectors_to_file(all_protocols)
Write lua dissectors to file(s).

csjark.write_delegator_to_file()
Write the lua file which delegates dissecting to dissectors.

csjark.write_placeholders_to_file(protocols)
Write a placeholder file for ‘protocols’ with no configuration.

csjark.main()
Run the CSjark program.

2.4.2 config

A module for configuration of our utility.

Should parse config files and create data structures which the parser can use when translating C struct definitions to
Wireshark protocols and fields.

Config class holds configuration for specific struct by name. FileConfig holds C preprocessor options for specific files
by path. Options holds global utility configuration, include dictinaries for the Config and Fileconfig instances.

2.4. Source code overview 29

CSjark Documentation, Release 0.4.2

Additionally there is the BaseRule class and its subclasses which holds specific rules specified by configuration for
members in structs.

exception config.ConfigError
Exception raised by invalid configuration.

class config.Config(name)
Holds configuration for a specific protocol.

add_member_rule(member, rule)
Add a new rule for a specific member.

‘member’ is the member of a struct to match ‘rule’ is the new rule to add

add_type_rule(type, rule)
Add a new rule for all members of a specific type.

‘type’ is the C type to match members against ‘rule’ is the new rule to add

get_rules(member, type)
Return all rules which match ‘member’ or ‘type’.

create_field(proto, name, ctype, size, alignment, endian)
Create a field depending on rules.

class config.BaseRule(conf, obj)
A base class for rules referring to protocol fields.

class config.Range(conf, obj)
Rule for specifying a valid range for a member or type.

class config.Enum(conf, obj)
Rule for emulating enum with int-like types.

class config.Bitstring(conf, obj)
Rule for representing ints which are bit strings.

class config.Trailer(conf, obj)
Rule for specifying one or more trailer protocol(s).

class config.Custom(conf, obj)
Rule for specifying a custom field handling.

create(proto, name, ctype, size, alignment, endian)
Create a new Field based on this rule.

class config.ConformanceFile(conf, file, config_file=’‘)
A class for parsing a conformance file.

A conformance file specifies custom lua code for fields. It can give custom code for the definition, and inside
the dissector function. For these two cases, it supports header, body, footer and extra sections which places code
above, instead of, below, or at the end of the section.

Each section starts with #.<SECTION> for example #.COMMENT. Unknown sections are ignore, to be com-
patible with Asn2wrs .cnf files.

t_def_hdr = ‘DEF_HEADER’

t_def_body = ‘DEF_BODY’

t_def_ftr = ‘DEF_FOOTER’

t_def_extra = ‘DEF_EXTRA’

t_func_hdr = ‘FUNC_HEADER’

30 Chapter 2. Developer Documentation

CSjark Documentation, Release 0.4.2

t_func_body = ‘FUNC_BODY’

t_func_ftr = ‘FUNC_FOOTER’

t_func_extra = ‘FUNC_EXTRA’

t_comment = ‘COMMENT’

t_end = ‘END’

t_end_cnf = ‘END_OF_CNF’

def_tokens = [’DEF_HEADER’, ‘DEF_BODY’, ‘DEF_FOOTER’]

func_tokens = [’FUNC_HEADER’, ‘FUNC_BODY’, ‘FUNC_FOOTER’]

store_tokens = def_tokens + func_tokens + [‘DEF_EXTRA’, ‘FUNC_EXTRA’]

valid_tokens = store_tokens + [‘COMMENT’, ‘END’, ‘END_OF_CNF’]

_get_token(line)
Find the token and the field it refers to.

parse()
Parse the conformance file’s sections and content.

match(name, code, definition=False, field=None)
Modify fields code if a cnf file demands it.

class config.FileConfig(name)
Holds options for specific files.

members = (‘include_dirs’, ‘includes’, ‘defines’, ‘undefines’, ‘arguments’)

update(obj)
Update variables with config from a yml file.

inherit(parent)
Update variables with config from another FileConfig instance.

classmethod add_include(filename, include)
Add a new ‘include’ to ‘filename’ config.

If the ‘filename’ has no FileConfig, creates one.

class config.Options
Holds options for the whole utility.

These options are set by either command line interface or one or more configuration yaml files.

verbose = False

debug = False

strict = False

output_dir = None

output_file = None

generate_placeholders = False

use_cpp = True

cpp_path = None

excludes = []

platforms = set()

2.4. Source code overview 31

CSjark Documentation, Release 0.4.2

delegator = None

configs = {}

files = {}

default = <config.FileConfig object at 0x02225210>

classmethod match_file(filename)
Find file config object for ‘filename’.

classmethod update(obj)
Update the options from a config yaml file.

classmethod prepare_for_parsing()
Prepare options before parsing starts..

classmethod handle_protocol_config(obj, filename=’‘)
Handle rules and configuration for a protocol.

config.generate_placeholders(protocols)
Generate placeholder config for unknown structs.

config.parse_file(filename, only_text=None)
Parse a configuration file.

2.4.3 cpp

Module for performing the C preprocessor step on C header files.

The parse_file() function calls the external C preprocessor program, while post_cpp() function removes output from
the preprocessor which pycparser does not support.

cpp._get_cpp()
Find the path and args to the C preprocessor.

cpp.parse_file(filename, platform=None, folders=None, includes=None)
Run a C header or code file through C preprocessor program.

‘filename’ is the file to feed CPP. ‘platform’ is the platform to simulate. ‘folders’ is directories to -Include.
‘includes’ is a set of filename to #include.

cpp.post_cpp(lines)
Perform a post preprocessing step, removing unsupported C code.

2.4.4 cparser

A module for parsing C files to find struct definitions.

The parse() function asks pycparser to parse a piece of C code, and returns an Abstract Syntax Tree (AST). The
find_structs() function walks the AST to find any struct defininition.

The StructVisitor class is used to traverse an AST generated by pycparser, and looks for structs, enums, unions and
type definitions. When it finds a struct or a union it creates a Dissector instance from the dissector module, which can
generate Lua dissectors for respective C code sections.

This module requires PLY 3.4 and pycparser 2.07.

exception cparser.ParseError
Exception raised by invalid input to the parser.

32 Chapter 2. Developer Documentation

CSjark Documentation, Release 0.4.2

cparser.parse(text, filename=’‘, parser=<pycparser.c_parser.CParser object at 0x02352710>)
Parse C code and return an AST.

cparser.find_structs(ast, platform=None)
Walks the AST nodes to find structs.

class cparser.StructVisitor(platform)
A class which visit struct nodes in the AST.

The Visitor traverse the Tree, and when it finds Struct, Enum, Union, Typedef or TypeDecl nodes it calls the
respective methods in this class.

It will populate all_protocols class member with Dissector-instances representing all the relevant C data struc-
tures it found.

The alll_know_types class member is used to discover which C file should be included if we fail parsing because
of unknown types.

all_protocols = {}

all_known_types = {}

_last_visitor = None

_last_diss = None

_last_proto = None

visit_Struct(node)
Visit a Struct node in the AST.

visit_Union(node)
Visit a Union node in the AST.

_visit_nodes(node, union=False)
Visit a node in the tree.

visit_Enum(node)
Visit a Enum node in the AST.

visit_Typedef(node)
Visit Typedef declarations nodes in the AST.

visit_TypeDecl(node)
Keep track of Type Declaration nodes.

handle_type_decl(node, proto)
Find member details in a type declaration.

handle_array_decl(node, depth=None)
Find the depth, size and type of the array.

‘node’ is a pycparser.c_ast.ArrayDecl instance ‘depth’ is a list of elements already traversed It returns a
list with count of elements in in each level, and a Field instance.

handle_protocol(proto, name, proto_name)
Add an protocol field or union field to the protocol.

handle_array(proto, depth, field, name=None)
Add an ArrayField to the protocol.

handle_pointer(node, proto)
Find member details in a pointer declaration.

2.4. Source code overview 33

CSjark Documentation, Release 0.4.2

handle_enum(proto, name, enum)
Add an EnumField to the protocol.

handle_field(proto, name, ctype, size=None, alignment=None)
Add a field representing the struct member to the protocol.

_find_protocol(node)
Check if the protocol already exists.

_create_protocol(node, union=False)
Create a new protocol for ‘node’.

_create_field(name, ctype, size=None, alignment=None)
Create a new field representing the given ‘ctype’.

_create_enum(name, enum)
Create a new enum field.

_create_protocol_field(name, proto_name)
Create a new protocol field.

_get_type(node)
Get the C type from a node.

_get_array_size(node)
Calculate the size of the array.

_register_type(node, name=None)
Register the type ‘name’ in the known types mapping.

2.4.5 field

A module for classes which represents values in a packet.

Field class and its subclasses represent a value or a list of values in packets to be dissected by Wireshark. They
represent Wireshark’s ProtoField instances.

field.create_lua_var(var, length=None)
Return a valid lua variable name.

field.create_lua_valuestring(dict_, wrap=True)
Convert a python dictionary to lua table.

class field.BaseField(size, alignment, endian)
Interface for Fields and list of Fields.

add_var
Get the endian specific function for adding a item to a tree.

push_modifiers()
Push prefixes and postfixes down to child fields.

get_definition()
Get the ProtoField definition for this field.

get_code(offset, store=None, tree=’subtree’)
Get the code for dissecting this field.

class field.Field(name, type, size, alignment, endian)
Represents Wireshark’s ProtoFields which stores a specific value.

prefixes = [’var_prefix’, ‘abbr_prefix’, ‘name_prefix’]

34 Chapter 2. Developer Documentation

CSjark Documentation, Release 0.4.2

postfixes = [’name_postfix’, ‘var_postfix’, ‘abbr_postfix’]

infixes = [’_name’, ‘_var’, ‘_abbr’]

members = [’type’, ‘size’, ‘alignment’, ‘endian’, ‘base’, ‘values’, ‘mask’, ‘desc’, ‘offset’,

‘range_validation’, ‘list_validation’] + prefixes + postfixes + infixes

name
Get the name of the field.

abbr
Get the fields abbr.

variable
Get the variable to store the field in.

func_type
Get the lua function to read values from buffers.

get_definition()
Get the ProtoField definition for this field.

get_code(offset, store=None, tree=’subtree’)
Get the code for dissecting this field.

‘offset’ is the buffer offset the value is stored at ‘store’ is the lua variable to store the tree node in ‘tree’ is
the tree we are adding the node to

_store_value(var=None, offset=None)
Create code which stores the field value in ‘var’.

If ‘offset’ is not provided, must be run after get_code().

set_range_validation(min_value=None, max_value=None)
Set validation that field value is between a given range.

_create_range_validation()
Create code which validates the field value inside the range.

set_list_validation(values, strict=True)
Set validating that field value is a member of ‘values’.

_create_list_validation()
Create code which validates fields value in valuestring.

class field.Subtree(tree, *args, **vargs)
A Subtree is a Field with a list of fields as children.

push_modifiers(push_children=True)
Push prefixes and postfixes down to child fields.

get_definition()
Get the ProtoField definition for this field.

get_code(offset, store=None, tree=None)
Get the code for dissecting this field.

‘offset’ is the buffer offset the value is stored at ‘store’ is the lua variable to store the tree node in ‘tree’ is
the tree we are adding the node to

class field.ArrayField(children, tree=’arrtree’, parent=’subtree’)
ArrayField is a Subtree with visible indices.

2.4. Source code overview 35

CSjark Documentation, Release 0.4.2

push_modifiers()
Push prefixes and postfixes down to child fields.

get_code(offset, store=None, tree=None)
Get the code for dissecting this field.

‘offset’ is the buffer offset the value is stored at ‘store’ is the lua variable to store the tree node in ‘tree’ is
the tree we are adding the node to

classmethod create(depth, field, name=’array’)
Recursively create a tree of arrays of ‘depth’.

class field.BitField(bits, name, type, size, alignment, endian)
BitField is a Subtree with field for each relevant bit.

class field.ProtocolField(name, proto)
A ProtocolField is a field for a protocol.

This class allows part of a packet to be dissected by another protocol, used for structs and unions which is a
member of another.

Fake
alias of FakeProto

get_definition()
Get the ProtoField definition for this field.

get_code(offset, store=None, tree=’subtree’)
Get the code for dissecting this field.

‘offset’ is the buffer offset the value is stored at ‘store’ is the lua variable to store the tree node in ‘tree’ is
the tree we are adding the node to

2.4.6 dissector

A module for generating Lua dissectors for Wireshark.

The Disssector class is a container of platform-specific Wirehsark fields instances and subclasses. The Protocol class
is a collection of dissector-instances for each platform it should support. The Delegator class is a subclass of both
these classes, and generates ‘luastructs.lua’ which decides which Wireshark dissector to call from each message id.

class dissector.Dissector(name, platform, conf=None)
A Dissector is a collection of fields and code.

It’s used to generate Wireshark dissectors written in Lua, for dissecting a packet into a set of fields with values.

alignment
Find the alignment size of the fields in the protocol.

size
Find the size of the fields in the protocol.

add_field(field)
Add a field to the dissectors list of field.

push_modifiers()
Push prefixes and postfixes down to child fields.

get_definition()
Get the ProtoField definition for this field.

get_code(offset, store=None, tree=’subtree’)
Get the code for dissecting this field.

36 Chapter 2. Developer Documentation

CSjark Documentation, Release 0.4.2

get_padding(field, offset)
Get padding for correct alignment.

_trailers(rules, offset)
Add code for handling of trailers to the protocol.

class dissector.UnionDissector(*args, **vargs)
A Dissector where each field does not increase the offset.

size
Find the size of the fields in the protocol.

class dissector.Protocol(name, id=None, description=None)
A Protocol is a collection of platform specific dissectors.

It’s used to generate Wireshark dissectors written in Lua, for dissecting a packet into a set of fields with values.

REGISTER_FUNC = ‘delegator_register_proto’

protocols = {}

get_dissector(platform)
Get a dissector for a given ‘platform’.

classmethod create_dissector(name, platform=None, conf=None, union=False)
Create a new dissector and protocol if needed.

generate()
Returns all the code for dissecting this protocol.

_legal_header()
Add the legal header with license info.

_header_defintion()
Add the code for the header of the protocol.

_fields_definition()
Add code for defining the ProtoField’s in the protocol.

_dissector_func()
Add the code for the dissector function for the protocol.

_register_dissector()
Add code for registering the dissector in the dissector table.

class dissector.Delegator(platforms)
A class for delegating dissecting to protocols.

Creates the top-level lua dissector which delegates the task of dissecting specific messages to dissectors gener-
ated by Protocol instances.

This top-level dissector contains code for finding the platform the message originates from, and finds which
specific dissector handles that platform and message.

generate()
Returns all the code for dissecting this protocol.

_header_defintion()
Add the code for the header of the protocol.

_register_function()
Add code for register protocol function.

_dissector_func()
Add the code for the dissector function for the protocol.

2.4. Source code overview 37

CSjark Documentation, Release 0.4.2

2.4.7 platform

A module which holds platform specific configuration.

It holds the Platform class which holds specific configuration for one platform, and a list of all supported platforms.

It is used when creating dissectors for messages which can originate from various platforms.

class platform.Platform(name, flag, endian, macros=None, sizes=None, alignment=None,
types=None)

Represents specific attributes of a platform.

Platform here refers to a combination of Operating System, Hardware platform and Compiler. An instance of
this class is an abstraction of all of these. It inceases the number of platforms if one wish to support many, but
the utility only need to handle one at a time.

big = ‘big’

little = ‘little’

mappings = {}

flags = {}

map_type(ctype)
Find the Wireshark type for a ctype.

size_of(ctype)
Find the size of a C type in bytes.

alignment(ctype)
Find the alignment size of a C type in bytes.

platform.merge(a, *dicts)
Merge several dictinaries into a new one.

2.5 Changing documentation

2.5.1 Documentation files in your local checkout

Most of the CSjark’s documentation is kept in CSjark/docs. You can simply edit or add ‘.rst’ files which contain
ReST-markuped files. Here is a ReST quickstart but you can also just look at the existing documentation and see how
things work.

2.5.2 Automatically test documentation changes

We automatically check referential integrity and ReST-conformance. In order to run the tests you need sphinx installed.
Then go to the local checkout of the documentation directory and run the Makefile:

cd CSjark/docs
make html

If you see no failures chances are high that your modifications at least don’t produce ReST-errors or wrong local
references. Now you will have .html files in the _build documentation directory which you can point your browser to!

Additionally, if you also want to check for remote references inside the documentation issue:

make linkcheck

38 Chapter 2. Developer Documentation

CSjark Documentation, Release 0.4.2

which will check that remote URLs are reachable.

2.5.3 Automatic builds on Read The Docs

The CSjark project documentation is hosted at ReadTheDocs. Each commit to the repository triggers a new build of
the documentation, therefore it always remains up to date.

Note: Due to lack of support of the latest version of Python language specification (v3) by ReadTheDocs, the online
developer manual does not contain source code overview section.

2.5. Changing documentation 39

CSjark Documentation, Release 0.4.2

40 Chapter 2. Developer Documentation

CHAPTER

THREE

OTHER INFORMATION

3.1 Copyright

Copyright (c) 2011, Erik Bergersen, Jaroslav Fibichr, Sondre Johan Mannsverk, Terje Snarby, Even Wiik Thomassen,
Lars Solvoll Tonder, Sigurd Wien. All rights reserved.

3.2 License

CSjark is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

CSjark is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along with CSjark. If not, see
http://www.gnu.org/licenses/.

3.3 About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

These documents are hosted at ReadTheDocs <http://www.readthedocs.org/>. You can find it at
http://csjark.readthedocs.org/.

41

APPENDIX G

TEMPLATES

282

Page 1 of 1

Meeting agenda

TDT4290 – Customer Driven Project
Group 9

Place: Thales
Time: 9:00 - 11:00
Date: 9.11.2011

Meeting responsible: Sigurd Wien, 47254625

Agenda:

1. Presentation and demo 9:00-10:00

2. Status on “the fix”.

3. Requirement completion agreement.

4. Customers agenda.

Attending (from group 9):

Sigurd

Jaroslav

Sondre

Erik

Lars
Even

Terje

Meeting minutes
TDT4290 – Customer Driven Project
Group 9

Room: 236, IT-Syd
Time: 10.30-12.00
Date: 14.10.2011

Attendants group:
● Erik Bergersen, 91748305
● Jaroslav Fibichr, 45126314
● Sondre Johan Mannsverk, 94815506
● Terje Snarby, 91527390
● Even Wiik Thomassen, 99161929
● Lars Solvoll Tønder, 97600317
● Sigurd Wien, 47254625

Not present: None.

Attendants staff:
● Daniela Soares Cruzes, 94249891
● Maria Carolina Mello Passos

Agenda:
1. Approval of agenda
2. Approval of minutes of meeting from last advisor meeting
3. Comments to the minutes from last customer meeting or other meetings
4. Approval of status report
5. Review/approval of attached phase documents

● a. User stories

● b. Daniela’s thoughts about our predelivered report

● c. Sprint 2

6. Other issues

Minutes:

● Carol says they want to focus on problems we may have.
○ User stories

■They are user stories with an implementation view
■Our program is a utility, not a common, commercial product
■The user is a system analyst
■Even asks if what we have made is actual user stories, right now they are

more like how we implemented it. He also says they are more for us than
the user.

■Carol thinks we are on the right track with the user stories
■Daniella says they are called user stories because they are stories that tell

how the system will be used.
■We can write that we have used an implementation level of abstraction
■She has talked with Andreas, and he also thinks our way of writing the user

stories is okay.
■We can make them even more detailed though
■We don’t need to have just one user story per requirement, we can have

multiple

○ Sprint planning document

■We need to explain more how we are doing the planning

■Carol talks about how they usually wrote planning documents

● They had 2 plans: One is the selection of tasks, what tasks should

be implemented in the upcoming sprint. This could be influenced

by customer priority, what the team think is important to

implement in the sprint, the size of the task, and the number of

hours the group can spend total.

● The second plan is how the team is actually planning to do it.

….

Next meeting:

Date: 21.10.2011
Time: 10.30
Room: 236, IT-Syd

Referent: Sondre Johan Mannsverk

Page 1 of 2

Status report

TDT4290 – Customer Driven Project

Group 9

Week: 12

Summary:
Since last advisor meeting the group has been focusing on:

1. Sprint 4

a. Completing the backlog; finishing last implementation in the project, patching

old implementation to make it work as intended, testing that everything

works and write good user documentation.

2. Presentation

a. We used quite some time to prepare for the Thales presentation. Sigurd and

Terje had the task of creating the presentation and performing it.

3. Report

a. We have made our own backlog for the things that we have to

change/improve in the backlog. Some of the team members have been

working on this in parallel with the sprint work period. The sprint backlog

show that we have completed 335 hours of work, but the actual work hours

are much greater.

Work done in this period:
Documents:

● Sprint 4

● Introduction section

● Report (many changes)

Meetings:

15.11.2011: Sprint 4 evaluation meeting

Page 2 of 2

Other activities:

Internal work meetings

Problems:

None.

Planning of work for next period:

Meetings:

● Rehearsal meeting with advisors, date: TBA

● Work meetings most of the days next week to complete all the work that remains.

Activities:

Presentation 24.11.2011

Other:

The end is near!

	Preface
	Contents
	List of Figures
	List of Tables
	I Planning & Requirements
	Introduction
	Wireshark and Dissectors
	From struct Definition to lua dissector

	Project Directive
	Project Mandate
	The Client
	Involved Parties
	Project Background
	Project Objective
	Duration

	Planning
	Project Plan
	Project Organization
	Quality Assurance
	Risk Management

	Preliminary Study
	Similar Solutions
	Software Development Methodology
	wireshark
	Programming Languages
	Parsers Libraries & Tools
	Configuration Frameworks
	Unit Testing Frameworks
	User Documentation Tools
	Integrated Development Environment
	Evaluation and Conclusion
	IP Rights & License

	Requirements
	List of Requirements
	Requirements Evolution
	Requirement Description
	Use Cases
	User Stories
	Product Backlog

	Test Plan
	Methods for Testing
	Non-Functional Requirements
	Templates for Testing
	Test Criteria
	Testing Responsibilities
	Changelog

	Architectural Description
	Architectural Drivers
	Architectural Patterns
	Architectural Views
	Architectural Rationale

	II Sprints
	Sprint 1
	Sprint Planning
	System Design
	Implementation
	Sprint Testing
	Customer Feedback
	Sprint Evaluation

	Sprint 2
	Pre-sprint
	Sprint Planning
	System Design
	Implementation
	Sprint Testing
	Customer Feedback
	Sprint Evaluation

	Sprint 3
	Sprint Planning
	System Design
	Implementation
	Sprint Testing
	Customer Feedback
	Sprint Evaluation

	Sprint 4
	Sprint Planning
	System Design
	Implementation
	Sprint Testing
	Customer Feedback
	Sprint Evaluation

	III Conclusion & Evaluation
	Conclusion
	System Overview
	Further Development
	Testing
	Summary

	Project Evaluation
	Team Dynamics
	Risk Handling
	The Scrum Process
	Time Estimation
	Quality Assurance
	Customer Relations
	Summary

	Bibliography

	IV Appendices
	Acronyms
	Glossary
	Test Cases
	Sprint 1 Tests
	Sprint 2 Tests
	Sprint 3 Tests
	Sprint 4 Tests

	Architectural Description
	Architectural Drivers
	Architectural Patterns
	Architectural Views
	Architectural Rationale
	Changelog

	Initial List of Requirements
	Requirements from Customer
	Initial Requirements

	User and Developer Manual
	Templates

