
Distributed Version Control with Mercurial

Martin Geisler
〈mg@aragost.com〉

ClearCase in the 21st Century, Zurich
February 3rd, 2012

aragost Trifork

About the Speaker
Martin Geisler:
I core Mercurial developer:

I reviews patches from the community
I helps users in our IRC channel

I works at aragost Trifork, Zurich:
I offers professional Mercurial support
I customization, migration, training
I advice on best practices

2 / 33

aragost Trifork

Outline

Introduction
Mercurial
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Frontends

Comparison with Git

Wrapping Up

3 / 33

aragost Trifork

Outline

Introduction
Mercurial
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Frontends

Comparison with Git

Wrapping Up

4 / 33

aragost Trifork

Outline

Introduction
Mercurial
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Frontends

Comparison with Git

Wrapping Up

5 / 33

aragost Trifork

What is Mercurial?
Main features:
I fast, distributed revision control system

I robust support for branching and merging
I free and open source
I commercial support available: aragost Trifork and others

I installers for Windows, Mac OS X, Linux, . . .
I TortoiseHg is a cross-platform graphical frontend
I MacHg and SourceTree are fast native Mac OS X frontends
I plugins for MS Visual Studio, Eclipse, . . .

I very user-friendly
I extensive built-in help for all commands
I command set resembles CVS and SVN
I destructive commands delegated to extensions

6 / 33

aragost Trifork

What is Mercurial?
Main features:
I fast, distributed revision control system

I robust support for branching and merging
I free and open source
I commercial support available: aragost Trifork and others

I installers for Windows, Mac OS X, Linux, . . .
I TortoiseHg is a cross-platform graphical frontend
I MacHg and SourceTree are fast native Mac OS X frontends
I plugins for MS Visual Studio, Eclipse, . . .

I very user-friendly
I extensive built-in help for all commands
I command set resembles CVS and SVN
I destructive commands delegated to extensions

6 / 33

aragost Trifork

What is Mercurial?
Main features:
I fast, distributed revision control system

I robust support for branching and merging
I free and open source
I commercial support available: aragost Trifork and others

I installers for Windows, Mac OS X, Linux, . . .
I TortoiseHg is a cross-platform graphical frontend
I MacHg and SourceTree are fast native Mac OS X frontends
I plugins for MS Visual Studio, Eclipse, . . .

I very user-friendly
I extensive built-in help for all commands
I command set resembles CVS and SVN
I destructive commands delegated to extensions

6 / 33

aragost Trifork

Who is Using it?
Mercurial is used by:
I Oracle for Java, OpenSolaris, NetBeans, OpenOffice, . . .
I Mozilla for Firefox, Thunderbird, . . .
I Google
I many more. . .

7 / 33

aragost Trifork

Outline

Introduction
Mercurial
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Frontends

Comparison with Git

Wrapping Up

8 / 33

aragost Trifork

Centralized Revision Control
Single repository, multiple working copies:

Repository

hello.c
Makefile
Alice

goodbye.c
Makefile

Bob

9 / 33

aragost Trifork

Centralized Revision Control
Single repository, multiple working copies:

Repository

hello.c
Makefile
Alice

goodbye.c
Makefile

Bob

Drawbacks:
I network latency
I single point of failure
I contrained workflow

9 / 33

aragost Trifork

Distributed Revision Control
Mercurial duplicates the history on many servers:

Alice Bob

hello.c
Makefile

goodbye.c
Makefile

10 / 33

aragost Trifork

Distributed Revision Control
Mercurial duplicates the history on many servers:

Alice Bob

hello.c
Makefile

goodbye.c
Makefile

Advantages:
I no network latency
I distributed, off-line operations
I no imposed workflow

Drawback(?):
I must synchronize repositories

10 / 33

aragost Trifork

Why Distributed?
Distributed revision control gives you:
I offline commits
I rich set of fast local operations
I great flexibility

Derived effects:
I fine-grained commits
I searchable history
I branching and merging become a natural task

(not something to be feared)
I enables better workflows

11 / 33

aragost Trifork

Why Distributed?
Distributed revision control gives you:
I offline commits
I rich set of fast local operations
I great flexibility

Derived effects:
I fine-grained commits
I searchable history
I branching and merging become a natural task

(not something to be feared)
I enables better workflows

11 / 33

aragost Trifork

Outline

Introduction
Mercurial
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Frontends

Comparison with Git

Wrapping Up

12 / 33

aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

I
Bob

Changesets:
I atomic repository-wide snapshot
I very similar to a baseline in ClearCase UCM

Merging:
I find common ancestor of A2 and B1: I
I do three-way merge between I, A2, and B1
I merge often ⇒ common ancestor is close to tip

13 / 33

aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

A1

commit
I

Bob

Changesets:
I atomic repository-wide snapshot
I very similar to a baseline in ClearCase UCM

Merging:
I find common ancestor of A2 and B1: I
I do three-way merge between I, A2, and B1
I merge often ⇒ common ancestor is close to tip

13 / 33

aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

A1 A2

commit
I

Bob

Changesets:
I atomic repository-wide snapshot
I very similar to a baseline in ClearCase UCM

Merging:
I find common ancestor of A2 and B1: I
I do three-way merge between I, A2, and B1
I merge often ⇒ common ancestor is close to tip

13 / 33

aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

A1 A2 I
Bob

B1

commit

Changesets:
I atomic repository-wide snapshot
I very similar to a baseline in ClearCase UCM

Merging:
I find common ancestor of A2 and B1: I
I do three-way merge between I, A2, and B1
I merge often ⇒ common ancestor is close to tip

13 / 33

aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

B1

A1 A2 I
Bob

B1pull

Changesets:
I atomic repository-wide snapshot
I very similar to a baseline in ClearCase UCM

Merging:
I find common ancestor of A2 and B1: I
I do three-way merge between I, A2, and B1
I merge often ⇒ common ancestor is close to tip

13 / 33

aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

B1

A1 A2 A3 I
Bob

B1

merge

Changesets:
I atomic repository-wide snapshot
I very similar to a baseline in ClearCase UCM

Merging:
I find common ancestor of A2 and B1: I
I do three-way merge between I, A2, and B1
I merge often ⇒ common ancestor is close to tip

13 / 33

aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

B1

A1 A2 A3 I
Bob

B1

Changesets:
I atomic repository-wide snapshot
I very similar to a baseline in ClearCase UCM

Merging:
I find common ancestor of A2 and B1: I
I do three-way merge between I, A2, and B1
I merge often ⇒ common ancestor is close to tip

13 / 33

aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

B1

A1 A2 A3 I
Bob

B1

Changesets:
I atomic repository-wide snapshot
I very similar to a baseline in ClearCase UCM

Merging:
I find common ancestor of A2 and B1: I
I do three-way merge between I, A2, and B1
I merge often ⇒ common ancestor is close to tip

13 / 33

aragost Trifork

Key Mercurial Commands

Alice

hello.c
Makefile

commit

update

Local commands:
I hg commit: save a snapshot into the current repository
I hg update: checkout revision into working directory
I hg merge: join different lines of history

Network commands:
I hg pull: retrieve changesets from another repository
I hg push: send your changesets to another repository

14 / 33

aragost Trifork

Key Mercurial Commands

Alice

hello.c
Makefile

commit

update

push

pull

Local commands:
I hg commit: save a snapshot into the current repository
I hg update: checkout revision into working directory
I hg merge: join different lines of history

Network commands:
I hg pull: retrieve changesets from another repository
I hg push: send your changesets to another repository

14 / 33

aragost Trifork

Outline

Introduction
Mercurial
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Frontends

Comparison with Git

Wrapping Up

15 / 33

aragost Trifork

Outline

Introduction
Mercurial
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Frontends

Comparison with Git

Wrapping Up

16 / 33

aragost Trifork

Workflow in a Team
Mercurial scales from a single team. . . :

Alice

Bob

Dev Test Prod

17 / 33

aragost Trifork

Workflow in a Team
Mercurial scales from a single team. . . :

Alice

Bob

Dev Test Prod

unstable stable

17 / 33

aragost Trifork

Workflow Between Company Divisions
. . . to enterprise-wide development. . . :

Poland

Switzerland

India

18 / 33

aragost Trifork

Workflow Between Two Computers
. . . to working with yourself:

Alice’s
Desktop

Alice’s
Laptop

bitbucket.org

19 / 33

aragost Trifork

Outline

Introduction
Mercurial
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Frontends

Comparison with Git

Wrapping Up

20 / 33

aragost Trifork

Release Branches

default:

Named branches:
I heavy-weight branches, integral part of each changeset
I allow tracking and auditing of old history

21 / 33

aragost Trifork

Release Branches

default:

1.0

Named branches:
I heavy-weight branches, integral part of each changeset
I allow tracking and auditing of old history

21 / 33

aragost Trifork

Release Branches

default:

1.0

Named branches:
I heavy-weight branches, integral part of each changeset
I allow tracking and auditing of old history

21 / 33

aragost Trifork

Release Branches

default:

1.0

1.0.x:

Named branches:
I heavy-weight branches, integral part of each changeset
I allow tracking and auditing of old history

21 / 33

aragost Trifork

Release Branches

default:

1.0

1.0.x:

1.0.1

Named branches:
I heavy-weight branches, integral part of each changeset
I allow tracking and auditing of old history

21 / 33

aragost Trifork

Release Branches

default:

1.0

1.0.x:

1.0.1

Named branches:
I heavy-weight branches, integral part of each changeset
I allow tracking and auditing of old history

21 / 33

aragost Trifork

Release Branches

default:

1.0

1.0.x:

1.0.1

Named branches:
I heavy-weight branches, integral part of each changeset
I allow tracking and auditing of old history

21 / 33

aragost Trifork

Release Branches

default:

1.0

1.0.x:

1.0.1 1.0.2

Named branches:
I heavy-weight branches, integral part of each changeset
I allow tracking and auditing of old history

21 / 33

aragost Trifork

Release Branches

default:

1.0

1.0.x:

1.0.1 1.0.2

Named branches:
I heavy-weight branches, integral part of each changeset
I allow tracking and auditing of old history

21 / 33

aragost Trifork

Release Branches

default:

1.0

1.0.x:

1.0.1 1.0.2

Named branches:
I heavy-weight branches, integral part of each changeset
I allow tracking and auditing of old history

21 / 33

aragost Trifork

Outline

Introduction
Mercurial
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Frontends

Comparison with Git

Wrapping Up

22 / 33

aragost Trifork

Third-Party Tools
Mercurial is mature and has wide-spread tool support:
I Graphical frontends: TortoiseHg, MacHg, SourceTree, . . .
I IDEs: Eclipse, NetBeans, IntelliJ, Visual Studio, . . .
I Project Support: Trac, JIRA, Maven, Hudson, . . .

23 / 33

aragost Trifork

Mercurial for Windows: TortoiseHg
Context menu in Windows Explorer:

Overlay icons:

24 / 33

aragost Trifork

Mercurial for Windows: TortoiseHg
Browsing history:

24 / 33

aragost Trifork

Mercurial for Windows: TortoiseHg
Interactive commit tool:

24 / 33

aragost Trifork

Mercurial for Windows: TortoiseHg
Update with shelve option:

24 / 33

aragost Trifork

Mercurial for Windows: TortoiseHg
Detecting renames based on file similarity:

24 / 33

aragost Trifork

Mercurial for Mac OS X: MacHg
Cloning a repository:

25 / 33

aragost Trifork

Mercurial for Mac OS X: MacHg
Updating to a revision:

25 / 33

aragost Trifork

Mercurial for Mac OS X: MacHg
Collapsing changesets:

25 / 33

aragost Trifork

Mercurial for Mac OS X: MacHg
Removing changesets from a repository:

25 / 33

aragost Trifork

Outline

Introduction
Mercurial
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Frontends

Comparison with Git

Wrapping Up

26 / 33

aragost Trifork

Git
Git was created by Linus Torvalds for Linux Kernel development:
I focus on speed
I builds on the same concepts as Mercurial:

I fully distributed with push/pull between clones
I commits are organized in a changeset graph

Git is extremely flexible, but flexibility comes at a price:
I git log has 150 different flags, log help text is 1496 lines
I default command set includes destructive commands
I steep learning curve — must learn about the “staging area”

Git is still somewhat Linux-centric:
I started as a tool for Linux Kernel hackers, made by Linux

Kernel hackers
I Git has since then been ported to Windows
I Windows performance is still reported to be sub-par

27 / 33

aragost Trifork

Git
Git was created by Linus Torvalds for Linux Kernel development:
I focus on speed
I builds on the same concepts as Mercurial:

I fully distributed with push/pull between clones
I commits are organized in a changeset graph

Git is extremely flexible, but flexibility comes at a price:
I git log has 150 different flags, log help text is 1496 lines
I default command set includes destructive commands
I steep learning curve — must learn about the “staging area”

Git is still somewhat Linux-centric:
I started as a tool for Linux Kernel hackers, made by Linux

Kernel hackers
I Git has since then been ported to Windows
I Windows performance is still reported to be sub-par

27 / 33

aragost Trifork

Git
Git was created by Linus Torvalds for Linux Kernel development:
I focus on speed
I builds on the same concepts as Mercurial:

I fully distributed with push/pull between clones
I commits are organized in a changeset graph

Git is extremely flexible, but flexibility comes at a price:
I git log has 150 different flags, log help text is 1496 lines
I default command set includes destructive commands
I steep learning curve — must learn about the “staging area”

Git is still somewhat Linux-centric:
I started as a tool for Linux Kernel hackers, made by Linux

Kernel hackers
I Git has since then been ported to Windows
I Windows performance is still reported to be sub-par

27 / 33

aragost Trifork

Branches in Git
Similar to using bookmarks in Mercurial:
I branch pointer advances on commit:

origin/master

master

I pull and merge of changesets from others:

28 / 33

aragost Trifork

Branches in Git
Similar to using bookmarks in Mercurial:
I branch pointer advances on commit:

origin/master

master

I pull and merge of changesets from others:

28 / 33

aragost Trifork

Branches in Git
Similar to using bookmarks in Mercurial:
I branch pointer advances on commit:

origin/master

master

I pull and merge of changesets from others:

28 / 33

aragost Trifork

Branches in Git
Similar to using bookmarks in Mercurial:
I branch pointer advances on commit:

origin/master

master

I pull and merge of changesets from others:
origin/master

master

28 / 33

aragost Trifork

Branches in Git
Similar to using bookmarks in Mercurial:
I branch pointer advances on commit:

origin/master

master

I pull and merge of changesets from others:

origin/master

master

28 / 33

aragost Trifork

Branches in Git
Similar to using bookmarks in Mercurial:
I branch pointer advances on commit:

origin/master

master

I pull and merge of changesets from others:

origin/master

master

28 / 33

aragost Trifork

Deleting a Git Branch
Git can garbage collect changesets:
I repository with experimental branch:

experiments

master

I delete branch with git branch -D experiments
I faint commits may disappear on next git gc
I delete on server with git push origin :experiments

29 / 33

aragost Trifork

Deleting a Git Branch
Git can garbage collect changesets:
I repository with experimental branch:

master

I delete branch with git branch -D experiments
I faint commits may disappear on next git gc

I delete on server with git push origin :experiments

29 / 33

aragost Trifork

Deleting a Git Branch
Git can garbage collect changesets:
I repository with experimental branch:

master

I delete branch with git branch -D experiments
I faint commits may disappear on next git gc
I delete on server with git push origin :experiments

29 / 33

aragost Trifork

Outline

Introduction
Mercurial
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Frontends

Comparison with Git

Wrapping Up

30 / 33

aragost Trifork

Mercurial in a Nutshell
Mercurial changes the way you develop:
I simple yet strong model for both branching and merging
I power tool instead of necessary evil
I light-weight and snappy

31 / 33

aragost Trifork

More Information
I Mercurial homepage:

http://mercurial.selenic.com/
I Mercurial: The Definitive Guide:

http://hgbook.red-bean.com/
I Getting Started:

http://mercurial.aragost.com/kick-start/
http://mercurial.ch/
http://hginit.com/

I Some free Mercurial hosting sites:
http://bitbucket.org/
http://code.google.com/
http://sourceforge.net/
http://www.codeplex.com/

32 / 33

http://mercurial.selenic.com/
http://hgbook.red-bean.com/
http://mercurial.aragost.com/kick-start/
http://mercurial.ch/
http://hginit.com/
http://bitbucket.org/
http://code.google.com/
http://sourceforge.net/
http://www.codeplex.com/

aragost Trifork

Mercurial Contributors
From http://ohloh.net/p/mercurial/map:

33 / 33

http://ohloh.net/p/mercurial/map

aragost Trifork

Mercurial Contributors
From http://ohloh.net/p/mercurial/map:

Thank you!Thank you!

33 / 33

http://ohloh.net/p/mercurial/map

aragost Trifork

Outline

Performance Study: OpenOffice

Subversion and Branches

The Underlying Model

Using History

Changing History

Talking to Other Systems

34 / 33

aragost Trifork

OpenOffice
Fairly large repository:
I 70,000 files, 2,0 GB of data
I 270,000 changesets, 2,3 GB of history

Mercurial is fast on a repository of this size:
$ time hg status
0.45s user 0.15s system 99% cpu 0.605 total
$ time hg tip
0.28s user 0.03s system 99% cpu 0.309 total
$ time hg log -r DEV300_m50
0.30s user 0.04s system 99% cpu 0.334 total
$ time hg diff
0.74s user 0.16s system 88% cpu 1.006 total
$ time hg commit -m ’Small change’
1.77s user 0.25s system 98% cpu 2.053 total

35 / 33

aragost Trifork

Outline

Performance Study: OpenOffice

Subversion and Branches

The Underlying Model

Using History

Changing History

Talking to Other Systems

36 / 33

aragost Trifork

Branches in SVN
Subversion knows nothing about branches!
I but SVN has a cheap copy mechanism
I used for tags and branches

37 / 33

aragost Trifork

Branches in SVN
Subversion knows nothing about branches!
I but SVN has a cheap copy mechanism
I used for tags and branches

trunk/
hello.c
Makefile

branches/
tags/

r10

37 / 33

aragost Trifork

Branches in SVN
Subversion knows nothing about branches!
I but SVN has a cheap copy mechanism
I used for tags and branches

trunk/
hello.c
Makefile

branches/
tags/

r10
trunk/
hello.c
Makefile

branches/
goodbye/
hello.c
Makefile

tags/

r11

37 / 33

aragost Trifork

Branches in SVN
Subversion knows nothing about branches!
I but SVN has a cheap copy mechanism
I used for tags and branches

trunk/
hello.c
Makefile

branches/
tags/

r10
trunk/
hello.c
Makefile

branches/
goodbye/
hello.c
Makefile

tags/

r11
trunk/
hello.c
Makefile

branches/
goodbye/
hello.c
goodbye.c
Makefile

tags/

r12

37 / 33

aragost Trifork

Merging Branches in SVN
The support is incomplete and fragile:
I renamed files are not merged correctly
I old clients will not update the merge info

From the SVN Book:

The bottom line is that Subversion’s merge-tracking feature has an
extremely complex internal implementation, and the svn:mergeinfo
property is the only window the user has into the machinery. Because
the feature is relatively new, a numbers of edge cases and possible
unexpected behaviors may pop up. —Version Control with Subversion

(Mercurial has robust built-in support for merging branches.)

38 / 33

aragost Trifork

Merging Branches in SVN
The support is incomplete and fragile:
I renamed files are not merged correctly
I old clients will not update the merge info

From the SVN Book:

The bottom line is that Subversion’s merge-tracking feature has an
extremely complex internal implementation, and the svn:mergeinfo
property is the only window the user has into the machinery. Because
the feature is relatively new, a numbers of edge cases and possible
unexpected behaviors may pop up. —Version Control with Subversion

(Mercurial has robust built-in support for merging branches.)

38 / 33

aragost Trifork

Outline

Performance Study: OpenOffice

Subversion and Branches

The Underlying Model

Using History

Changing History

Talking to Other Systems

39 / 33

aragost Trifork

The Underlying Model
A Mercurial changeset conceptually consist of:
I 0–2 parent changeset IDs:

I root changeset has no parents
I normal changesets have one parent
I merge changesets have two parents

I date, username, commit message
I difference from first parent changeset
I changeset ID is computed as SHA-1 hash of the above
I makes it impossible to inject malicious code on server

40 / 33

aragost Trifork

Immutable History
SHA-1 hashes as changeset IDs have some consequences:
I a changeset ID is a hash of the entire history
I changing history changes subsequent changesets
I history is immutable, you can only make new history:

A B C D E

41 / 33

aragost Trifork

Immutable History
SHA-1 hashes as changeset IDs have some consequences:
I a changeset ID is a hash of the entire history
I changing history changes subsequent changesets
I history is immutable, you can only make new history:

A B

C ′ D′ E ′

C D E

41 / 33

aragost Trifork

Immutable History
SHA-1 hashes as changeset IDs have some consequences:
I a changeset ID is a hash of the entire history
I changing history changes subsequent changesets
I history is immutable, you can only make new history:

A B

C ′ D′ E ′

C D E

41 / 33

aragost Trifork

Outline

Performance Study: OpenOffice

Subversion and Branches

The Underlying Model

Using History

Changing History

Talking to Other Systems

42 / 33

aragost Trifork

Browsing the History of a File
The hg annotate command is invaluable:
I you see when each line was introduced
I you can quickly jump back to earlier versions

History of Mercurial’s README file:
3942: Basic install:
445:

3942: $ make # see install targets
3942: $ make install # do a system-wide install
3942: $ hg debuginstall # sanity-check setup
3942: $ hg # see help

0:
...

Better interface in hg serve

43 / 33

aragost Trifork

Searching File Content
Ever wondered when a function was introduced?
I hg grep can help you!

Example: When was hg forget introduced?
$ hg grep --all ’def forget’ commands.py
commands.py:8902:+:def forget(ui, repo, *pats, **opts):
commands.py:3522:-:def forget(ui, repo, *pats, **opts):
commands.py:814:-:def forget(ui, repo, file1, *files):
commands.py:814:+:def forget(ui, repo, *pats, **opts):
...

44 / 33

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

bad

45 / 33

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

test bad

45 / 33

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good bad

45 / 33

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good test bad

45 / 33

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good good bad

45 / 33

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good

test

good bad

45 / 33

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good

bad

good bad

45 / 33

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good

test bad

good bad

45 / 33

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good

bug! bad

good bad

45 / 33

aragost Trifork

Outline

Performance Study: OpenOffice

Subversion and Branches

The Underlying Model

Using History

Changing History

Talking to Other Systems

46 / 33

aragost Trifork

Moving Changesets Around
Tired of all those merges? Use the rebase extension!
I Revision graph:

A B C

I Merge:
A B C

X Y Z

D E M

I Rebase:
A B C

X Y Z D′ E ′

D E

I Beware: public changes should never be rebased.

47 / 33

aragost Trifork

Moving Changesets Around
Tired of all those merges? Use the rebase extension!
I Revision graph:

A B C D E

I Merge:
A B C

X Y Z

D E M

I Rebase:
A B C

X Y Z D′ E ′

D E

I Beware: public changes should never be rebased.

47 / 33

aragost Trifork

Moving Changesets Around
Tired of all those merges? Use the rebase extension!
I Revision graph:

A B C

X Y Z

D E

I Merge:
A B C

X Y Z

D E M

I Rebase:
A B C

X Y Z D′ E ′

D E

I Beware: public changes should never be rebased.

47 / 33

aragost Trifork

Moving Changesets Around
Tired of all those merges? Use the rebase extension!
I Revision graph:

A B C

X Y Z

D E

I Merge:
A B C

X Y Z

D E M

I Rebase:
A B C

X Y Z D′ E ′

D E

I Beware: public changes should never be rebased.

47 / 33

aragost Trifork

Moving Changesets Around
Tired of all those merges? Use the rebase extension!
I Revision graph:

A B C

X Y Z

D E

I Merge:
A B C

X Y Z

D E M

I Rebase:
A B C

X Y Z D′ E ′

D E

I Beware: public changes should never be rebased.

47 / 33

aragost Trifork

Moving Changesets Around
Tired of all those merges? Use the rebase extension!
I Revision graph:

A B C

X Y Z

D E

I Merge:
A B C

X Y Z

D E M

I Rebase:
A B C

X Y Z D′ E ′

D E

I Beware: public changes should never be rebased.
47 / 33

aragost Trifork

Maintaining Patch Series
The mq extension makes it easy to maintain a patch series:

...
Works nicely for local modification for upstream sources.

48 / 33

aragost Trifork

Maintaining Patch Series
The mq extension makes it easy to maintain a patch series:

...

code

Works nicely for local modification for upstream sources.

48 / 33

aragost Trifork

Maintaining Patch Series
The mq extension makes it easy to maintain a patch series:

...

code

test

Works nicely for local modification for upstream sources.

48 / 33

aragost Trifork

Maintaining Patch Series
The mq extension makes it easy to maintain a patch series:

...

code

test

doc

Works nicely for local modification for upstream sources.

48 / 33

aragost Trifork

Maintaining Patch Series
The mq extension makes it easy to maintain a patch series:

...

code

test

doc

qpush qpop

Works nicely for local modification for upstream sources.

48 / 33

aragost Trifork

Editing History
Inspired by git rebase -i, histedit lets you
I reorder changesets:

A B C A C ′ B′

I fold changesets:
A B C A BC

I drop changesets:
A B C A C ′

I edit changesets:
A B C A X B′ C ′

49 / 33

aragost Trifork

Editing History
Inspired by git rebase -i, histedit lets you
I reorder changesets:

A B C A C ′ B′

I fold changesets:
A B C A BC

I drop changesets:
A B C A C ′

I edit changesets:
A B C A X B′ C ′

49 / 33

aragost Trifork

Editing History
Inspired by git rebase -i, histedit lets you
I reorder changesets:

A B C A C ′ B′

I fold changesets:
A B C A BC

I drop changesets:
A B C A C ′

I edit changesets:
A B C A X B′ C ′

49 / 33

aragost Trifork

Editing History
Inspired by git rebase -i, histedit lets you
I reorder changesets:

A B C A C ′ B′

I fold changesets:
A B C A BC

I drop changesets:
A B C A C ′

I edit changesets:
A B C A X B′ C ′

49 / 33

aragost Trifork

Outline

Performance Study: OpenOffice

Subversion and Branches

The Underlying Model

Using History

Changing History

Talking to Other Systems

50 / 33

aragost Trifork

Migrating History
The convert extension can import history:
I CVS, SVN, Git, Bazaar, Darcs, . . .
I incremental conversion
I many options for fiddling with branches, authors, . . .

Interestingly, convert can import from Mercurial:
I --filemap lets you exclude and rename files
I --branchmap lets you rename branches

51 / 33

aragost Trifork

Migrating History
The convert extension can import history:
I CVS, SVN, Git, Bazaar, Darcs, . . .
I incremental conversion
I many options for fiddling with branches, authors, . . .

Interestingly, convert can import from Mercurial:
I --filemap lets you exclude and rename files
I --branchmap lets you rename branches

51 / 33

aragost Trifork

Interfacing with Subversion
The hgsubversion extension let’s you:
I use hg clone on a SVN URL
I use hg pull to convert new SVN revisions
I use hg push to commit changesets to SVN server

Goal: make hg a better Subversion client than svn!

52 / 33

aragost Trifork

Interfacing with Git
Need to work on a Git repository? Try hg-git!
I Mercurial extension: you get the nice hg command line
I round-tripping: changeset hashes are preserved

Git

Hg Hg

53 / 33

	Introduction
	Mercurial
	Centralized vs Distributed
	Key Mercurial Concepts

	Using Mercurial
	Workflows
	Branches

	Frontends
	Comparison with Git
	Wrapping Up
	Appendix
	Performance Study: OpenOffice
	Subversion and Branches
	The Underlying Model
	Using History
	Changing History
	Talking to Other Systems

