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About the Speaker
Martin Geisler:
I core Mercurial developer:

I reviews patches from the community
I helps users in our IRC channel

I works at aragost Trifork, Zurich:
I offers professional Mercurial support
I customization, migration, training
I advice on best practices
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What is Mercurial?
Main features:
I fast, distributed revision control system

I robust support for branching and merging
I free and open source
I commercial support available: aragost Trifork and others

I installers for Windows, Mac OS X, Linux, . . .
I TortoiseHg is a cross-platform graphical frontend
I MacHg and SourceTree are fast native Mac OS X frontends
I plugins for MS Visual Studio, Eclipse, . . .

I very user-friendly
I extensive built-in help for all commands
I command set resembles CVS and SVN
I destructive commands delegated to extensions
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Who is Using it?
Mercurial is used by:
I Oracle for Java, OpenSolaris, NetBeans, OpenOffice, . . .
I Mozilla for Firefox, Thunderbird, . . .
I Google
I many more. . .
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Centralized Revision Control
Single repository, multiple working copies:

Repository

hello.c
Makefile
Alice

goodbye.c
Makefile

Bob
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Centralized Revision Control
Single repository, multiple working copies:

Repository

hello.c
Makefile
Alice

goodbye.c
Makefile

Bob

Drawbacks:
I network latency
I single point of failure
I contrained workflow
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Distributed Revision Control
Mercurial duplicates the history on many servers:

Alice Bob

hello.c
Makefile

goodbye.c
Makefile

Advantages:
I no network latency
I distributed, off-line operations
I no imposed workflow

Drawback(?):
I must synchronize repositories
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Why Distributed?
Distributed revision control gives you:
I offline commits
I rich set of fast local operations
I great flexibility

Derived effects:
I fine-grained commits
I searchable history
I branching and merging become a natural task

(not something to be feared)
I enables better workflows
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Moving Changesets Around
Pull and merge:

I
Alice

I
Bob

Changesets:
I atomic repository-wide snapshot
I very similar to a baseline in ClearCase UCM

Merging:
I find common ancestor of A2 and B1: I
I do three-way merge between I, A2, and B1
I merge often ⇒ common ancestor is close to tip
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Key Mercurial Commands

Alice

hello.c
Makefile

commit

update

Local commands:
I hg commit: save a snapshot into the current repository
I hg update: checkout revision into working directory
I hg merge: join different lines of history

Network commands:
I hg pull: retrieve changesets from another repository
I hg push: send your changesets to another repository
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Workflow in a Team
Mercurial scales from a single team. . . :

Alice

Bob

Dev Test Prod
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Workflow Between Company Divisions
. . . to enterprise-wide development. . . :

Poland

Switzerland

India
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Workflow Between Two Computers
. . . to working with yourself:

Alice’s
Desktop

Alice’s
Laptop

bitbucket.org
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Release Branches

default:

Named branches:
I heavy-weight branches, integral part of each changeset
I allow tracking and auditing of old history
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Third-Party Tools
Mercurial is mature and has wide-spread tool support:
I Graphical frontends: TortoiseHg, MacHg, SourceTree, . . .
I IDEs: Eclipse, NetBeans, IntelliJ, Visual Studio, . . .
I Project Support: Trac, JIRA, Maven, Hudson, . . .
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Mercurial for Windows: TortoiseHg
Context menu in Windows Explorer:

Overlay icons:
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Mercurial for Windows: TortoiseHg
Browsing history:
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Mercurial for Windows: TortoiseHg
Interactive commit tool:
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Mercurial for Windows: TortoiseHg
Update with shelve option:
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Mercurial for Windows: TortoiseHg
Detecting renames based on file similarity:
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Mercurial for Mac OS X: MacHg
Cloning a repository:
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Mercurial for Mac OS X: MacHg
Updating to a revision:
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Mercurial for Mac OS X: MacHg
Collapsing changesets:
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Mercurial for Mac OS X: MacHg
Removing changesets from a repository:
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Git
Git was created by Linus Torvalds for Linux Kernel development:
I focus on speed
I builds on the same concepts as Mercurial:

I fully distributed with push/pull between clones
I commits are organized in a changeset graph

Git is extremely flexible, but flexibility comes at a price:
I git log has 150 different flags, log help text is 1496 lines
I default command set includes destructive commands
I steep learning curve — must learn about the “staging area”

Git is still somewhat Linux-centric:
I started as a tool for Linux Kernel hackers, made by Linux

Kernel hackers
I Git has since then been ported to Windows
I Windows performance is still reported to be sub-par
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Branches in Git
Similar to using bookmarks in Mercurial:
I branch pointer advances on commit:

origin/master

master

I pull and merge of changesets from others:
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Deleting a Git Branch
Git can garbage collect changesets:
I repository with experimental branch:

experiments

master

I delete branch with git branch -D experiments
I faint commits may disappear on next git gc
I delete on server with git push origin :experiments
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Mercurial in a Nutshell
Mercurial changes the way you develop:
I simple yet strong model for both branching and merging
I power tool instead of necessary evil
I light-weight and snappy

31 / 33
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More Information
I Mercurial homepage:

http://mercurial.selenic.com/
I Mercurial: The Definitive Guide:

http://hgbook.red-bean.com/
I Getting Started:

http://mercurial.aragost.com/kick-start/
http://mercurial.ch/
http://hginit.com/

I Some free Mercurial hosting sites:
http://bitbucket.org/
http://code.google.com/
http://sourceforge.net/
http://www.codeplex.com/
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Mercurial Contributors
From http://ohloh.net/p/mercurial/map:
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Mercurial Contributors
From http://ohloh.net/p/mercurial/map:

Thank you!Thank you!
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OpenOffice
Fairly large repository:
I 70,000 files, 2,0 GB of data
I 270,000 changesets, 2,3 GB of history

Mercurial is fast on a repository of this size:
$ time hg status
0.45s user 0.15s system 99% cpu 0.605 total
$ time hg tip
0.28s user 0.03s system 99% cpu 0.309 total
$ time hg log -r DEV300_m50
0.30s user 0.04s system 99% cpu 0.334 total
$ time hg diff
0.74s user 0.16s system 88% cpu 1.006 total
$ time hg commit -m ’Small change’
1.77s user 0.25s system 98% cpu 2.053 total
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Branches in SVN
Subversion knows nothing about branches!
I but SVN has a cheap copy mechanism
I used for tags and branches
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Merging Branches in SVN
The support is incomplete and fragile:
I renamed files are not merged correctly
I old clients will not update the merge info

From the SVN Book:

The bottom line is that Subversion’s merge-tracking feature has an
extremely complex internal implementation, and the svn:mergeinfo
property is the only window the user has into the machinery. Because
the feature is relatively new, a numbers of edge cases and possible
unexpected behaviors may pop up. —Version Control with Subversion

(Mercurial has robust built-in support for merging branches.)
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The Underlying Model
A Mercurial changeset conceptually consist of:
I 0–2 parent changeset IDs:

I root changeset has no parents
I normal changesets have one parent
I merge changesets have two parents

I date, username, commit message
I difference from first parent changeset
I changeset ID is computed as SHA-1 hash of the above
I makes it impossible to inject malicious code on server
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Immutable History
SHA-1 hashes as changeset IDs have some consequences:
I a changeset ID is a hash of the entire history
I changing history changes subsequent changesets
I history is immutable, you can only make new history:

A B C D E
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Browsing the History of a File
The hg annotate command is invaluable:
I you see when each line was introduced
I you can quickly jump back to earlier versions

History of Mercurial’s README file:
3942: Basic install:
445:

3942: $ make # see install targets
3942: $ make install # do a system-wide install
3942: $ hg debuginstall # sanity-check setup
3942: $ hg # see help

0:
# ...

Better interface in hg serve
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Searching File Content
Ever wondered when a function was introduced?
I hg grep can help you!

Example: When was hg forget introduced?
$ hg grep --all ’def forget’ commands.py
commands.py:8902:+:def forget(ui, repo, *pats, **opts):
commands.py:3522:-:def forget(ui, repo, *pats, **opts):
commands.py:814:-:def forget(ui, repo, file1, *files):
commands.py:814:+:def forget(ui, repo, *pats, **opts):
# ...

44 / 33
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Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

bad
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Moving Changesets Around
Tired of all those merges? Use the rebase extension!
I Revision graph:

A B C

I Merge:
A B C

X Y Z

D E M

I Rebase:
A B C

X Y Z D′ E ′

D E

I Beware: public changes should never be rebased.
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Maintaining Patch Series
The mq extension makes it easy to maintain a patch series:

...
Works nicely for local modification for upstream sources.
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The mq extension makes it easy to maintain a patch series:
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code
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Editing History
Inspired by git rebase -i, histedit lets you
I reorder changesets:

A B C  A C ′ B′

I fold changesets:
A B C  A BC

I drop changesets:
A B C  A C ′

I edit changesets:
A B C  A X B′ C ′
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Migrating History
The convert extension can import history:
I CVS, SVN, Git, Bazaar, Darcs, . . .
I incremental conversion
I many options for fiddling with branches, authors, . . .

Interestingly, convert can import from Mercurial:
I --filemap lets you exclude and rename files
I --branchmap lets you rename branches
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Interfacing with Subversion
The hgsubversion extension let’s you:
I use hg clone on a SVN URL
I use hg pull to convert new SVN revisions
I use hg push to commit changesets to SVN server

Goal: make hg a better Subversion client than svn!
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Interfacing with Git
Need to work on a Git repository? Try hg-git!
I Mercurial extension: you get the nice hg command line
I round-tripping: changeset hashes are preserved

Git

Hg Hg

53 / 33


	Introduction
	Mercurial
	Centralized vs Distributed
	Key Mercurial Concepts

	Using Mercurial
	Workflows
	Branches

	Frontends
	Comparison with Git
	Wrapping Up
	Appendix
	Performance Study: OpenOffice
	Subversion and Branches
	The Underlying Model
	Using History
	Changing History
	Talking to Other Systems


