Vendor Branches in Mercurial:
Elegant Management of Third-Party Code

Martin Geisler
(mg@aragost . com)

Mercurial Geek Night Il
November 24th, 2010

About the Speaker

Martin Geisler:
» core Mercurial developer:
> reviews patches from the community
> helps users in our IRC channel
» PhD in Computer Science from Aarhus University, DK

» exchange student at ETH Zurich in 2005
» visited IBM Zurich Research Lab in 2008

» now working at aragost Trifork, Zurich

» offers professional Mercurial support
» customization, migration, training
» advice on best practices

aragost Trifork

N)

33

Outline

Introduction

Using Mercurial
Workflows
Branches

Vendor Branches
Vendor Branches in Mercurial
Handling Renamed Files

Wrapping Up

aragost Trifork

33

Outline

Introduction

aragost Trifork

/33

What is Mercurial?

Main features:
» fast, distributed revision control system
» robust support for branching and merging

> very flexible and extensible

aragost Trifork

Who is Using it?

Mercurial is used by:

» Oracle for Java, OpenSolaris, NetBeans, OpenOffice, ...

» Mozilla for Firefox, Thunderbird, ...
» Google > -

& OpenOfficeorg
> many more. .. DOVECOT

OpenJDK @ python’
“Z NetBeans

%

00
(]
5o

opensoLaris

aragost Trifork

Centralized Revision Control

Single repository, multiple working copies:

Repository

hello.c goodbye.c
Makefile Makefile

Alice Bob

aragost Trifork 7/33

Centralized Revision Control

Single repository, multiple working copies:

Repository

-n__Nsal ==

Drawbacks:
» network latency

» single point of failure

» contrained workflow

|
ITETTO T gOUUUyT T

Makefile Makefile
Alice Bob

aragost Trifork

33

Distributed Revision Control

Mercurial duplicates the history on many servers:

~

hello.c
Makefile

~N

J

|\
Alice

aragost Trifork

~

&

goodbye.c
Makefile

J

Bob

8/33

Distributed Revision Control

Mercurial duplicates the history on many servers:

-

hel

aragost Trifork

| |

,

Advantages:
» no network latency

» distributed, off-line operations

» no imposed workflow
Drawback(?):

» must synchronize repositories

~N

33

Moving Changesets Around
Pull and merge:

Alice

aragost Trifork

Bob

33

Moving Changesets Around
Pull and merge:

Alice

LA

aragost Trifork

Bob

33

Moving Changesets Around
Pull and merge:

Alice Bob

LA 4

aragost Trifork

33

Moving Changesets Around
Pull and merge:

Alice

LA

aragost Trifork

Bob

/33

Moving Changesets Around
Pull and merge:

Alice

pull

aragost Trifork

Bob

/33

Moving Changesets Around
Pull and merge:

Alice merge

G

aragost Trifork

Bob

/33

Moving Changesets Around
Pull and merge:

Alice Bob
Ay A, |1 A B
B, —/

Merging:
» find common ancestor of Ay and Bi: /
» compute differences between [and B;

» apply them to A, taking renames into account

aragost Trifork

33

Key Mercurial Commands

commit
hello.c _—
Makefile |*———
update
Alice

Local commands:
» hg commit: save a snapshot into the current repository
» hg update: checkout revision into working directory

» hg merge: join different lines of history

aragost Trifork

10/33

Key Mercurial Commands

commit push
hello.c _—
Makefile |*———

update pull

Alice

Local commands:

» hg commit: save a snapshot into the current repository
» hg update: checkout revision into working directory
» hg merge: join different lines of history
Network commands:
» hg pull: retrieve changesets from another repository

» hg push: send your changesets to another repository

aragost Trifork

10/33

Outline

Using Mercurial
Workflows
Branches

aragost Trifork

11/33

Outline

Introduction

Using Mercurial
Workflows

Vendor Branches

Wrapping Up

aragost Trifork

12/33

Workflow in a Team

Mercurial scales from a single team. . .:

\lic

aragost Trifork 13/33

Workflow Between Company Divisions

... to enterprise-wide development. . .:
[
O 7 O
\Ij/
lj\ /Switzerland /lj
o} 1{}o

/ Poland India \

2 2

aragost Trifork 14/33

Workflow Between Two Computers

... to working with yourself:

bitbucket.org

Alice's Alice's

Desktop Laptop

aragost Trifork

15/33

Outline

Introduction

Using Mercurial

Branches

Vendor Branches

Wrapping Up

aragost Trifork 16 /33

Release Branches

i

aragost Trifork 17/33

Release Branches

aragost Trifork 17/33

Release Branches

L)
1
L]
L)
L

=
o

aragost Trifork 17/33

Release Branches

D(SDD

1.0

aragost Trifork 17/33

Release Branches

1.0.1

=
o

aragost Trifork 17/33

Release Branches

1.0.1

=
o

aragost Trifork 17/33

Release Branches

1.0.1

L)

aragost Trifork

17/33

Release Branches

1.0.1 1.0.2
(D i\i
» O

=
o

aragost Trifork 17/33

Release Branches

e

[
o
—
=
o
N

Al
[]/

L)
L)

aragost Trifork 17/33

Outline

Vendor Branches
Vendor Branches in Mercurial
Handling Renamed Files

aragost Trifork

18/33

Bundling Third-Party Code

Storing third-party code in your repository is common:

> easy setup, developers need just one checkout

application/
-- src/
-- doc/
-- 1lib/
-- libfoo/
-- libbar/

» everybody has the same library versions

» uniform across platforms
» stable target for your application

» bugs can be fixed right away
» no need to wait for a new upstream release

aragost Trifork

19/33

The Library Maintenance Problem

The situation:
» your application bundles 1ibfoo version 1.0
» you discover and fix a bug in 1ibfoo

later, 1ibfoo version 2.0 is released

v

» what now?

aragost Trifork 20/33

The Library Maintenance Problem

The situation:
» your application bundles 1ibfoo version 1.0
» you discover and fix a bug in 1ibfoo

later, 1ibfoo version 2.0 is released

v

» what now?
The problem:
» there might be many files in 1ibfoo
» you might have changed several of them

» your changes were spread over many commits

aragost Trifork 20/33

The Library Maintenance Problem

The situation:
» your application bundles 1ibfoo version 1.0
» you discover and fix a bug in 1ibfoo
» later, 1ibfoo version 2.0 is released
» what now?
The problem:
» there might be many files in 1ibfoo
» you might have changed several of them
» your changes were spread over many commits

» you might have changed 1ibfoo when you imported it

aragost Trifork 20/33

The Library Maintenance Problem

The situation:
» your application bundles 1ibfoo version 1.0
» you discover and fix a bug in 1ibfoo

later, 1ibfoo version 2.0 is released

v

» what now?
The problem:
» there might be many files in 1ibfoo
» you might have changed several of them
» your changes were spread over many commits
» you might have changed 1ibfoo when you imported it

» files were renamed in 1ibfoo 2.0!

aragost Trifork 20/33

Handling Library Upgrades
The goal:

> make the same fixes to 1ibfoo 2.0 as you did to 1.0

Vendor branches help you here:
> gives you clear distinction between

» changes made by the vendor
» your own changes

aragost Trifork

21/33

Outline

Introduction

Using Mercurial

Vendor Branches
Vendor Branches in Mercurial

Wrapping Up

aragost Trifork 22/33

Vendor Branches in Mercurial

High-level view of vendor branches:

default: | —{ |

aragost Trifork 23 /33

Vendor Branches in Mercurial

High-level view of vendor branches:

libfoo:
default: —

aragost Trifork

23/33

Vendor Branches in Mercurial

High-level view of vendor branches:

libfoo:
default: — ﬁ

aragost Trifork

23/33

Vendor Branches in Mercurial

High-level view of vendor branches:

libfoo:
default: — ﬁ —

aragost Trifork 23 /33

Vendor Branches in Mercurial

High-level view of vendor branches:

libfoo:
default: — ﬁ —

aragost Trifork 23 /33

Vendor Branches in Mercurial

High-level view of vendor branches:

libfoo: =< L
default:

aragost Trifork 23 /33

Vendor Branches in Mercurial

High-level view of vendor branches:

libfoo: =< D}
default:

aragost Trifork 23 /33

Vendor Branches in Mercurial

High-level view of vendor branches:

libfoo: =< %
default: B

aragost Trifork 23 /33

Vendor Branches in Mercurial

High-level view of vendor branches:

libfoo: - [
default: D

This workflow lets you:

> clearly distinguish between upstream code and your code

» directly modify libraries in your codebase

aragost Trifork

23 /33

Vendor Branches in Mercurial

High-level view of vendor branches:

libfoo: - [
default: D

This workflow lets you:

> clearly distinguish between upstream code and your code
» directly modify libraries in your codebase

» Mercurial knows exactly what to merge

aragost Trifork

23 /33

What Happens in a Merge?

Or: Why does distributed revision control work?

aragost Trifork 24 /33

What Happens in a Merge?

Or: Why does distributed revision control work?

aragost Trifork

24 /33

What Happens in a Merge?

Or: Why does distributed revision control work?

I

local head

aragost Trifork

24 /33

What Happens in a Merge?

Or: Why does distributed revision control work?

remote head

|
o—
Bﬁ/DD

.
I

local head

aragost Trifork 24 /33

What Happens in a Merge?

Or: Why does distributed revision control work?

remote head

|
)

e S5

common local head
ancestor

aragost Trifork

24/33

What Happens in a Merge?

Or: Why does distributed revision control work?

remote head

!

.V

common local head
ancestor

aragost Trifork

24/33

What Happens in a Merge?

Or: Why does distributed revision control work?

remote head

!

Ar
A4S
D [] []
[[[
common local head
ancestor

aragost Trifork

24/33

What Happens in a Merge?

Or: Why does distributed revision control work?

remote head

!

AV
N
D [] []
% e AL+ A
common local head
ancestor

aragost Trifork 24 /33

Merging Vendor Branches

Upgrading from 1ibfoo version 1.0 to version 2.0:

libfoo: - --
[]
()

default: - B N

aragost Trifork 25 /33

Merging Vendor Branches

Upgrading from 1ibfoo version 1.0 to version 2.0:

libfoo: - --

L)

default: --- B -

» hg update libfoo

aragost Trifork

25/33

Merging Vendor Branches

Upgrading from 1ibfoo version 1.0 to version 2.0:

libfoo: - --

default: -] B] L

» hg update libfoo

» unpack and import 1ibfoo version 2.0

aragost Trifork 25 /33

Merging Vendor Branches

Upgrading from 1ibfoo version 1.0 to version 2.0:

libfoo:

default:

0 [kl

2.0
Ll
» hg update libfoo

» unpack and import 1ibfoo version 2.0

» hg commit -m ’Import of libfoo 2.0’

aragost Trifork 25 /33

Merging Vendor Branches

Upgrading from 1ibfoo version 1.0 to version 2.0:

libfoo: - -- @,\ 2.0
o

default:

» hg update libfoo

v

unpack and import 1ibfoo version 2.0

» hg commit -m ’Import of libfoo 2.0’

v

hg update default

aragost Trifork 25 /33

Merging Vendor Branches

Upgrading from 1ibfoo version 1.0 to version 2.0:

common
ancestor remote head
| |
libfoo: -~ @/\ @
default: --- - B B
T
» hg update libfoo local head

v

unpack and import 1ibfoo version 2.0

» hg commit -m ’Import of libfoo 2.0’

v

hg update default

aragost Trifork

25/33

Merging Vendor Branches

Upgrading from 1ibfoo version 1.0 to version 2.0:

common
ancestor remote head
i R i
libfoo: -~ @/\ @
default: --- - B B
T
» hg update libfoo local head

v

unpack and import 1ibfoo version 2.0

» hg commit -m ’Import of libfoo 2.0’

v

hg update default
» hg merge libfoo

aragost Trifork

25/33

Merging Vendor Branches

Upgrading from libfoo version 1.0 to version 2.0:

common
ancestor remote head
i R i
libfoo: - -- ﬂ,\ 2.0
default: --- B - B B r]
T
» hg update libfoo local head

» unpack and import 1ibfoo version 2.0

» hg commit -m ’Import of libfoo 2.0’

» hg update default

» hg merge libfoo

» hg commit -m ’Merged with libfoo 2.0’

aragost Trifork

25/33

Outline

Introduction

Using Mercurial

Vendor Branches

Handling Renamed Files

Wrapping Up

aragost Trifork

26 /33

Importing a Code Drop

Mercurial can help you:

$ rm -r 1ib/libfoo

$ unzip libfoo-2.0.zip -d lib/libfoo
$ hg status

M 1lib/libfoo/modified.txt

! 1ib/libfoo/deleted.txt

? 1lib/libfoo/new.txt

aragost Trifork 27 /33

Importing a Code Drop

Mercurial can help you:

$ rm -r 1ib/libfoo

$ unzip libfoo-2.0.zip -d lib/libfoo
$ hg status

M 1lib/libfoo/modified.txt

! 1ib/libfoo/deleted.txt

? 1lib/libfoo/new.txt

Question: has deleted.txt been renamed to new.txt?

$ hg addremove --similarity 90

removing deleted.txt

adding new.txt

recording removal of deleted.txt as rename to new.txt (94} similar)

aragost Trifork 27 /33

Finding Renamed Files

Tracking renames is important:
» you fix a bug in X. java in version 1.0
» version 2.0 now uses Y. java instead of Y. java
» Mercurial does the right thing with rename tracking

Y.java

public class Y {

rename static int
X.java theAnswer = 41; \ Y.java

¥
public class X { public class Y {
static int static int
theAnswer = 41; X.‘java. theAnswer = 42;
} }

public class X {

\\\\\\\% static int _’/////f
theAnswer = 42;

bugfix

aragost Trifork 28 /33

Outline

Wrapping Up

aragost Trifork 29/33

Conclusion

Mercurial can help manage vendor branches:

» simple workflow

> relies on every-day merge techniques

aragost Trifork

30/33

More Information

» Mercurial homepage:
http://mercurial.selenic.com/

» Mercurial: The Definitive Guide:
http://hgbook.red-bean.com/

» Getting Started:
http://mercurial.aragost.com/kick-start/
http://mercurial.ch/
http://hginit.com/

» Some free Mercurial hosting sites:
http://bitbucket.org/
http://code.google.com/
http://sourceforge.net/
http://www.codeplex.com/

aragost Trifork 31/33

http://mercurial.selenic.com/
http://hgbook.red-bean.com/
http://mercurial.aragost.com/kick-start/
http://mercurial.ch/
http://hginit.com/
http://bitbucket.org/
http://code.google.com/
http://sourceforge.net/
http://www.codeplex.com/

Contact

Please get in touch if you have more questions or have considered
using Mercurial in your organization:

» Email: mg@aragost.com

» IRC: mg in #mercurial on irc.freenode.net

aragost Trifork 32 /33

mg@aragost.com
mg
#mercurial
irc.freenode.net

Mercurial Contributors

From http://ohloh.net/p/mercurial/map:

‘Showing 50 of 325 contributors.

aragost Trifork 33/33

http://ohloh.net/p/mercurial/map

Mercurial Contributors

From http://ohloh.net/p/mercurial/map:

‘Showing 50 of 325 contributors.

aragost Trifork 33/33

http://ohloh.net/p/mercurial/map

	Introduction
	Using Mercurial
	Workflows
	Branches

	Vendor Branches
	Vendor Branches in Mercurial
	Handling Renamed Files

	Wrapping Up

