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About the Speaker

Martin Geisler:
» core Mercurial developer:
> reviews patches from the community
> helps users in our IRC channel
» PhD in Computer Science from Aarhus University, DK

» exchange student at ETH Zurich in 2005
» visited IBM Zurich Research Lab in 2008

» now working at aragost Trifork, Zurich

» offers professional Mercurial support
» customization, migration, training
» advice on best practices
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What is Mercurial?

Main features:
» fast, distributed revision control system
» robust support for branching and merging

> very flexible and extensible
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Who is Using it?

Mercurial is used by:

» Oracle for Java, OpenSolaris, NetBeans, OpenOffice, ...

» Mozilla for Firefox, Thunderbird, ...
» Google > -

& OpenOfficeorg
> many more. .. DOVECOT

OpenJDK @ python’
“Z NetBeans
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Centralized Revision Control

Single repository, multiple working copies:

Repository

hello.c goodbye.c
Makefile Makefile

Alice Bob
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Centralized Revision Control

Single repository, multiple working copies:

Repository

-n__Nsal ==

Drawbacks:
» network latency

» single point of failure

» contrained workflow
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Makefile Makefile
Alice Bob
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Distributed Revision Control

Mercurial duplicates the history on many servers:

~

hello.c
Makefile
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Distributed Revision Control

Mercurial duplicates the history on many servers:

-

hel
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Advantages:
» no network latency

» distributed, off-line operations

» no imposed workflow
Drawback(?):

» must synchronize repositories
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Moving Changesets Around
Pull and merge:

Alice
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Moving Changesets Around
Pull and merge:

Alice merge
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Moving Changesets Around
Pull and merge:

Alice Bob
Ay A, |1 A B
B, —/

Merging:
» find common ancestor of Ay and Bi: /
» compute differences between [ and B;

» apply them to A, taking renames into account
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Key Mercurial Commands

commit
hello.c _—
Makefile |*———
update
Alice

Local commands:
» hg commit: save a snapshot into the current repository
» hg update: checkout revision into working directory

» hg merge: join different lines of history

aragost Trifork
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Key Mercurial Commands

commit push
hello.c _—
Makefile |*———

update pull

Alice

Local commands:

» hg commit: save a snapshot into the current repository
» hg update: checkout revision into working directory
» hg merge: join different lines of history
Network commands:
» hg pull: retrieve changesets from another repository

» hg push: send your changesets to another repository
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Workflow in a Team

Mercurial scales from a single team. . .:

\lic
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Workflow Between Company Divisions

... to enterprise-wide development. . .:
[
O 7 O
\Ij/
lj\ /Switzerland /lj
o} 1{}o

/ Poland India \

2 2
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Workflow Between Two Computers

... to working with yourself:

bitbucket.org

Alice's Alice's

Desktop Laptop
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Release Branches
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Release Branches
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1.0.1

L)

aragost Trifork

17/33



Release Branches
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Release Branches
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Bundling Third-Party Code

Storing third-party code in your repository is common:

> easy setup, developers need just one checkout

application/
-- src/
-- doc/
-- 1lib/
-- libfoo/
-- libbar/

» everybody has the same library versions

» uniform across platforms
» stable target for your application

» bugs can be fixed right away
» no need to wait for a new upstream release

aragost Trifork
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The Library Maintenance Problem

The situation:
» your application bundles 1ibfoo version 1.0
» you discover and fix a bug in 1ibfoo

later, 1ibfoo version 2.0 is released

v

» what now?
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The Library Maintenance Problem

The situation:
» your application bundles 1ibfoo version 1.0
» you discover and fix a bug in 1ibfoo

later, 1ibfoo version 2.0 is released

v

» what now?
The problem:
» there might be many files in 1ibfoo
» you might have changed several of them
» your changes were spread over many commits
» you might have changed 1ibfoo when you imported it

» files were renamed in 1ibfoo 2.0!
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Handling Library Upgrades
The goal:

> make the same fixes to 1ibfoo 2.0 as you did to 1.0

Vendor branches help you here:
> gives you clear distinction between

» changes made by the vendor
» your own changes

aragost Trifork
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Vendor Branches in Mercurial

High-level view of vendor branches:

default: | —{ |
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Vendor Branches in Mercurial
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Vendor Branches in Mercurial

High-level view of vendor branches:

libfoo: - [
default: D

This workflow lets you:

> clearly distinguish between upstream code and your code

» directly modify libraries in your codebase
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Vendor Branches in Mercurial

High-level view of vendor branches:

libfoo: - [
default: D

This workflow lets you:

> clearly distinguish between upstream code and your code
» directly modify libraries in your codebase

» Mercurial knows exactly what to merge
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What Happens in a Merge?

Or: Why does distributed revision control work?
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Or: Why does distributed revision control work?
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What Happens in a Merge?

Or: Why does distributed revision control work?

remote head

|
o—
Bﬁ/DD

.
I

local head

aragost Trifork 24 /33



What Happens in a Merge?

Or: Why does distributed revision control work?
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What Happens in a Merge?

Or: Why does distributed revision control work?

remote head
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What Happens in a Merge?

Or: Why does distributed revision control work?

remote head
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Merging Vendor Branches

Upgrading from 1ibfoo version 1.0 to version 2.0:

libfoo: - --
[ ]
()

default: - B N
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Merging Vendor Branches

Upgrading from 1ibfoo version 1.0 to version 2.0:

libfoo: - --

L)

default: --- B -

» hg update libfoo
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Merging Vendor Branches

Upgrading from 1ibfoo version 1.0 to version 2.0:

libfoo: - --

default: - ] B ] L

» hg update libfoo

» unpack and import 1ibfoo version 2.0
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Merging Vendor Branches

Upgrading from 1ibfoo version 1.0 to version 2.0:

libfoo:

default:

0 [kl

2.0
Ll
» hg update libfoo

» unpack and import 1ibfoo version 2.0

» hg commit -m ’Import of libfoo 2.0’
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Merging Vendor Branches

Upgrading from 1ibfoo version 1.0 to version 2.0:

libfoo: - -- @,\ 2.0
o

default:

» hg update libfoo

v

unpack and import 1ibfoo version 2.0

» hg commit -m ’Import of libfoo 2.0’

v

hg update default
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Merging Vendor Branches

Upgrading from 1ibfoo version 1.0 to version 2.0:

common
ancestor remote head
| |
libfoo: -~ @/\ @
default: --- - B B
T
» hg update libfoo local head

v

unpack and import 1ibfoo version 2.0

» hg commit -m ’Import of libfoo 2.0’

v

hg update default
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Merging Vendor Branches

Upgrading from 1ibfoo version 1.0 to version 2.0:

common
ancestor remote head
i R i
libfoo: -~ @/\ @
default: --- - B B
T
» hg update libfoo local head

v

unpack and import 1ibfoo version 2.0

» hg commit -m ’Import of libfoo 2.0’

v

hg update default
» hg merge libfoo
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Merging Vendor Branches

Upgrading from libfoo version 1.0 to version 2.0:

common
ancestor remote head
i R i
libfoo: - -- ﬂ,\ 2.0
default: --- B - B B r ]
T
» hg update libfoo local head

» unpack and import 1ibfoo version 2.0

» hg commit -m ’Import of libfoo 2.0’

» hg update default

» hg merge libfoo

» hg commit -m ’Merged with libfoo 2.0’

aragost Trifork
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Importing a Code Drop

Mercurial can help you:

$ rm -r 1ib/libfoo

$ unzip libfoo-2.0.zip -d lib/libfoo
$ hg status

M 1lib/libfoo/modified.txt

! 1ib/libfoo/deleted.txt

? 1lib/libfoo/new.txt
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Importing a Code Drop

Mercurial can help you:

$ rm -r 1ib/libfoo

$ unzip libfoo-2.0.zip -d lib/libfoo
$ hg status

M 1lib/libfoo/modified.txt

! 1ib/libfoo/deleted.txt

? 1lib/libfoo/new.txt

Question: has deleted.txt been renamed to new.txt?

$ hg addremove --similarity 90

removing deleted.txt

adding new.txt

recording removal of deleted.txt as rename to new.txt (94} similar)
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Finding Renamed Files

Tracking renames is important:
» you fix a bug in X. java in version 1.0
» version 2.0 now uses Y. java instead of Y. java
» Mercurial does the right thing with rename tracking

Y.java

public class Y {

rename static int
X.java theAnswer = 41; \ Y.java

¥
public class X { public class Y {
static int static int
theAnswer = 41; X.‘java. theAnswer = 42;
} }

public class X {

\\\\\\\% static int _’/////f
theAnswer = 42;

bugfix
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Conclusion

Mercurial can help manage vendor branches:

» simple workflow

> relies on every-day merge techniques

aragost Trifork
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More Information

» Mercurial homepage:
http://mercurial.selenic.com/

» Mercurial: The Definitive Guide:
http://hgbook.red-bean.com/

» Getting Started:
http://mercurial.aragost.com/kick-start/
http://mercurial.ch/
http://hginit.com/

» Some free Mercurial hosting sites:
http://bitbucket.org/
http://code.google.com/
http://sourceforge.net/
http://www.codeplex.com/
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Contact

Please get in touch if you have more questions or have considered
using Mercurial in your organization:

» Email: mg@aragost.com

» IRC: mg in #mercurial on irc.freenode.net
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mg@aragost.com
mg
#mercurial
irc.freenode.net

Mercurial Contributors

From http://ohloh.net/p/mercurial/map:

‘Showing 50 of 325 contributors.
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