
Vendor Branches in Mercurial:
Elegant Management of Third-Party Code

Martin Geisler
〈mg@aragost.com〉

Mercurial Geek Night II
November 24th, 2010



aragost Trifork

About the Speaker
Martin Geisler:

I core Mercurial developer:
I reviews patches from the community
I helps users in our IRC channel

I PhD in Computer Science from Aarhus University, DK
I exchange student at ETH Zurich in 2005
I visited IBM Zurich Research Lab in 2008

I now working at aragost Trifork, Zurich
I offers professional Mercurial support
I customization, migration, training
I advice on best practices

2 / 33



aragost Trifork

Outline

Introduction

Using Mercurial
Workflows
Branches

Vendor Branches
Vendor Branches in Mercurial
Handling Renamed Files

Wrapping Up

3 / 33



aragost Trifork

Outline

Introduction

Using Mercurial
Workflows
Branches

Vendor Branches
Vendor Branches in Mercurial
Handling Renamed Files

Wrapping Up

4 / 33



aragost Trifork

What is Mercurial?
Main features:

I fast, distributed revision control system
I robust support for branching and merging
I very flexible and extensible

5 / 33



aragost Trifork

Who is Using it?
Mercurial is used by:

I Oracle for Java, OpenSolaris, NetBeans, OpenOffice, . . .
I Mozilla for Firefox, Thunderbird, . . .
I Google
I many more. . .

6 / 33



aragost Trifork

Centralized Revision Control
Single repository, multiple working copies:

Repository

hello.c
Makefile
Alice

goodbye.c
Makefile

Bob

7 / 33



aragost Trifork

Centralized Revision Control
Single repository, multiple working copies:

Repository

hello.c
Makefile
Alice

goodbye.c
Makefile

Bob

Drawbacks:
I network latency
I single point of failure
I contrained workflow

7 / 33



aragost Trifork

Distributed Revision Control
Mercurial duplicates the history on many servers:

Alice Bob

hello.c
Makefile

goodbye.c
Makefile

8 / 33



aragost Trifork

Distributed Revision Control
Mercurial duplicates the history on many servers:

Alice Bob

hello.c
Makefile

goodbye.c
Makefile

Advantages:
I no network latency
I distributed, off-line operations
I no imposed workflow

Drawback(?):
I must synchronize repositories

8 / 33



aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

I
Bob

Merging:
I find common ancestor of A2 and B1: I
I compute differences between I and B1
I apply them to A2, taking renames into account

9 / 33



aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

A1 I
Bob

Merging:
I find common ancestor of A2 and B1: I
I compute differences between I and B1
I apply them to A2, taking renames into account

9 / 33



aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

A1 A2 I
Bob

Merging:
I find common ancestor of A2 and B1: I
I compute differences between I and B1
I apply them to A2, taking renames into account

9 / 33



aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

A1 A2 I
Bob

B1

Merging:
I find common ancestor of A2 and B1: I
I compute differences between I and B1
I apply them to A2, taking renames into account

9 / 33



aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

B1

A1 A2 I
Bob

B1pull

Merging:
I find common ancestor of A2 and B1: I
I compute differences between I and B1
I apply them to A2, taking renames into account

9 / 33



aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

B1

A1 A2 A3 I
Bob

B1

merge

Merging:
I find common ancestor of A2 and B1: I
I compute differences between I and B1
I apply them to A2, taking renames into account

9 / 33



aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

B1

A1 A2 A3 I
Bob

B1

Merging:
I find common ancestor of A2 and B1: I
I compute differences between I and B1
I apply them to A2, taking renames into account

9 / 33



aragost Trifork

Key Mercurial Commands

Alice

hello.c
Makefile

commit

update

Local commands:
I hg commit: save a snapshot into the current repository
I hg update: checkout revision into working directory
I hg merge: join different lines of history

Network commands:
I hg pull: retrieve changesets from another repository
I hg push: send your changesets to another repository

10 / 33



aragost Trifork

Key Mercurial Commands

Alice

hello.c
Makefile

commit

update

push

pull

Local commands:
I hg commit: save a snapshot into the current repository
I hg update: checkout revision into working directory
I hg merge: join different lines of history

Network commands:
I hg pull: retrieve changesets from another repository
I hg push: send your changesets to another repository

10 / 33



aragost Trifork

Outline

Introduction

Using Mercurial
Workflows
Branches

Vendor Branches
Vendor Branches in Mercurial
Handling Renamed Files

Wrapping Up

11 / 33



aragost Trifork

Outline

Introduction

Using Mercurial
Workflows
Branches

Vendor Branches
Vendor Branches in Mercurial
Handling Renamed Files

Wrapping Up

12 / 33



aragost Trifork

Workflow in a Team
Mercurial scales from a single team. . . :

Alice

Bob

Carla Test Prod

13 / 33



aragost Trifork

Workflow Between Company Divisions
. . . to enterprise-wide development. . . :

Poland

Switzerland

India

14 / 33



aragost Trifork

Workflow Between Two Computers
. . . to working with yourself:

Alice’s
Desktop

Alice’s
Laptop

bitbucket.org

15 / 33



aragost Trifork

Outline

Introduction

Using Mercurial
Workflows
Branches

Vendor Branches
Vendor Branches in Mercurial
Handling Renamed Files

Wrapping Up

16 / 33



aragost Trifork

Release Branches

17 / 33



aragost Trifork

Release Branches

1.0

17 / 33



aragost Trifork

Release Branches

1.0

17 / 33



aragost Trifork

Release Branches

1.0

17 / 33



aragost Trifork

Release Branches

1.0

1.0.1

17 / 33



aragost Trifork

Release Branches

1.0

1.0.1

17 / 33



aragost Trifork

Release Branches

1.0

1.0.1

17 / 33



aragost Trifork

Release Branches

1.0

1.0.1 1.0.2

17 / 33



aragost Trifork

Release Branches

1.0

1.0.1 1.0.2

17 / 33



aragost Trifork

Outline

Introduction

Using Mercurial
Workflows
Branches

Vendor Branches
Vendor Branches in Mercurial
Handling Renamed Files

Wrapping Up

18 / 33



aragost Trifork

Bundling Third-Party Code
Storing third-party code in your repository is common:

I easy setup, developers need just one checkout
application/
-- src/
-- doc/
-- lib/

-- libfoo/
-- ...

-- libbar/
-- ...

I everybody has the same library versions
I uniform across platforms
I stable target for your application

I bugs can be fixed right away
I no need to wait for a new upstream release

19 / 33



aragost Trifork

The Library Maintenance Problem
The situation:

I your application bundles libfoo version 1.0
I you discover and fix a bug in libfoo
I later, libfoo version 2.0 is released
I what now?

The problem:
I there might be many files in libfoo
I you might have changed several of them
I your changes were spread over many commits
I you might have changed libfoo when you imported it
I files were renamed in libfoo 2.0!

20 / 33



aragost Trifork

The Library Maintenance Problem
The situation:

I your application bundles libfoo version 1.0
I you discover and fix a bug in libfoo
I later, libfoo version 2.0 is released
I what now?

The problem:
I there might be many files in libfoo
I you might have changed several of them
I your changes were spread over many commits

I you might have changed libfoo when you imported it
I files were renamed in libfoo 2.0!

20 / 33



aragost Trifork

The Library Maintenance Problem
The situation:

I your application bundles libfoo version 1.0
I you discover and fix a bug in libfoo
I later, libfoo version 2.0 is released
I what now?

The problem:
I there might be many files in libfoo
I you might have changed several of them
I your changes were spread over many commits
I you might have changed libfoo when you imported it

I files were renamed in libfoo 2.0!

20 / 33



aragost Trifork

The Library Maintenance Problem
The situation:

I your application bundles libfoo version 1.0
I you discover and fix a bug in libfoo
I later, libfoo version 2.0 is released
I what now?

The problem:
I there might be many files in libfoo
I you might have changed several of them
I your changes were spread over many commits
I you might have changed libfoo when you imported it
I files were renamed in libfoo 2.0!

20 / 33



aragost Trifork

Handling Library Upgrades
The goal:

I make the same fixes to libfoo 2.0 as you did to 1.0
Vendor branches help you here:

I gives you clear distinction between
I changes made by the vendor
I your own changes

21 / 33



aragost Trifork

Outline

Introduction

Using Mercurial
Workflows
Branches

Vendor Branches
Vendor Branches in Mercurial
Handling Renamed Files

Wrapping Up

22 / 33



aragost Trifork

Vendor Branches in Mercurial
High-level view of vendor branches:

default:

This workflow lets you:
I clearly distinguish between upstream code and your code
I directly modify libraries in your codebase

I Mercurial knows exactly what to merge

23 / 33



aragost Trifork

Vendor Branches in Mercurial
High-level view of vendor branches:

default:

libfoo:

This workflow lets you:
I clearly distinguish between upstream code and your code
I directly modify libraries in your codebase

I Mercurial knows exactly what to merge

23 / 33



aragost Trifork

Vendor Branches in Mercurial
High-level view of vendor branches:

default:

libfoo:

This workflow lets you:
I clearly distinguish between upstream code and your code
I directly modify libraries in your codebase

I Mercurial knows exactly what to merge

23 / 33



aragost Trifork

Vendor Branches in Mercurial
High-level view of vendor branches:

default:

libfoo:

This workflow lets you:
I clearly distinguish between upstream code and your code
I directly modify libraries in your codebase

I Mercurial knows exactly what to merge

23 / 33



aragost Trifork

Vendor Branches in Mercurial
High-level view of vendor branches:

default:

libfoo:

This workflow lets you:
I clearly distinguish between upstream code and your code
I directly modify libraries in your codebase

I Mercurial knows exactly what to merge

23 / 33



aragost Trifork

Vendor Branches in Mercurial
High-level view of vendor branches:

default:

libfoo:

This workflow lets you:
I clearly distinguish between upstream code and your code
I directly modify libraries in your codebase

I Mercurial knows exactly what to merge

23 / 33



aragost Trifork

Vendor Branches in Mercurial
High-level view of vendor branches:

default:

libfoo:

This workflow lets you:
I clearly distinguish between upstream code and your code
I directly modify libraries in your codebase

I Mercurial knows exactly what to merge

23 / 33



aragost Trifork

Vendor Branches in Mercurial
High-level view of vendor branches:

default:

libfoo:

This workflow lets you:
I clearly distinguish between upstream code and your code
I directly modify libraries in your codebase

I Mercurial knows exactly what to merge

23 / 33



aragost Trifork

Vendor Branches in Mercurial
High-level view of vendor branches:

default:

libfoo:

This workflow lets you:
I clearly distinguish between upstream code and your code
I directly modify libraries in your codebase

I Mercurial knows exactly what to merge

23 / 33



aragost Trifork

Vendor Branches in Mercurial
High-level view of vendor branches:

default:

libfoo:

This workflow lets you:
I clearly distinguish between upstream code and your code
I directly modify libraries in your codebase
I Mercurial knows exactly what to merge

23 / 33



aragost Trifork

What Happens in a Merge?
Or: Why does distributed revision control work?

24 / 33



aragost Trifork

What Happens in a Merge?
Or: Why does distributed revision control work?

24 / 33



aragost Trifork

What Happens in a Merge?
Or: Why does distributed revision control work?

local head

24 / 33



aragost Trifork

What Happens in a Merge?
Or: Why does distributed revision control work?

local head

remote head

24 / 33



aragost Trifork

What Happens in a Merge?
Or: Why does distributed revision control work?

local head

remote head

common
ancestor

24 / 33



aragost Trifork

What Happens in a Merge?
Or: Why does distributed revision control work?

local head

remote head

common
ancestor

24 / 33



aragost Trifork

What Happens in a Merge?
Or: Why does distributed revision control work?

local head

remote head

common
ancestor

∆1

∆2

24 / 33



aragost Trifork

What Happens in a Merge?
Or: Why does distributed revision control work?

local head

remote head

common
ancestor

∆1

∆2

∆1 + ∆2

24 / 33



aragost Trifork

Merging Vendor Branches
Upgrading from libfoo version 1.0 to version 2.0:

default:

libfoo:

. . .

. . . 1.0

I hg update libfoo
I unpack and import libfoo version 2.0
I hg commit -m ’Import of libfoo 2.0’
I hg update default
I hg merge libfoo
I hg commit -m ’Merged with libfoo 2.0’

25 / 33



aragost Trifork

Merging Vendor Branches
Upgrading from libfoo version 1.0 to version 2.0:

default:

libfoo:

. . .

. . . 1.0

I hg update libfoo

I unpack and import libfoo version 2.0
I hg commit -m ’Import of libfoo 2.0’
I hg update default
I hg merge libfoo
I hg commit -m ’Merged with libfoo 2.0’

25 / 33



aragost Trifork

Merging Vendor Branches
Upgrading from libfoo version 1.0 to version 2.0:

default:

libfoo:

. . .

. . . 1.0

I hg update libfoo
I unpack and import libfoo version 2.0

I hg commit -m ’Import of libfoo 2.0’
I hg update default
I hg merge libfoo
I hg commit -m ’Merged with libfoo 2.0’

25 / 33



aragost Trifork

Merging Vendor Branches
Upgrading from libfoo version 1.0 to version 2.0:

default:

libfoo:

. . .

. . . 1.0 2.0

I hg update libfoo
I unpack and import libfoo version 2.0
I hg commit -m ’Import of libfoo 2.0’

I hg update default
I hg merge libfoo
I hg commit -m ’Merged with libfoo 2.0’

25 / 33



aragost Trifork

Merging Vendor Branches
Upgrading from libfoo version 1.0 to version 2.0:

default:

libfoo:

. . .

. . . 1.0 2.0

I hg update libfoo
I unpack and import libfoo version 2.0
I hg commit -m ’Import of libfoo 2.0’
I hg update default

I hg merge libfoo
I hg commit -m ’Merged with libfoo 2.0’

25 / 33



aragost Trifork

Merging Vendor Branches
Upgrading from libfoo version 1.0 to version 2.0:

default:

libfoo:

. . .

. . . 1.0 2.0

local head

remote head
common
ancestor

I hg update libfoo
I unpack and import libfoo version 2.0
I hg commit -m ’Import of libfoo 2.0’
I hg update default

I hg merge libfoo
I hg commit -m ’Merged with libfoo 2.0’

25 / 33



aragost Trifork

Merging Vendor Branches
Upgrading from libfoo version 1.0 to version 2.0:

default:

libfoo:

. . .

. . . 1.0 2.0

local head

remote head
common
ancestor

∆

I hg update libfoo
I unpack and import libfoo version 2.0
I hg commit -m ’Import of libfoo 2.0’
I hg update default
I hg merge libfoo

I hg commit -m ’Merged with libfoo 2.0’

25 / 33



aragost Trifork

Merging Vendor Branches
Upgrading from libfoo version 1.0 to version 2.0:

default:

libfoo:

. . .

. . . 1.0 2.0

local head

remote head
common
ancestor

∆

∆

I hg update libfoo
I unpack and import libfoo version 2.0
I hg commit -m ’Import of libfoo 2.0’
I hg update default
I hg merge libfoo
I hg commit -m ’Merged with libfoo 2.0’

25 / 33



aragost Trifork

Outline

Introduction

Using Mercurial
Workflows
Branches

Vendor Branches
Vendor Branches in Mercurial
Handling Renamed Files

Wrapping Up

26 / 33



aragost Trifork

Importing a Code Drop
Mercurial can help you:
$ rm -r lib/libfoo
$ unzip libfoo-2.0.zip -d lib/libfoo
$ hg status
M lib/libfoo/modified.txt
! lib/libfoo/deleted.txt
? lib/libfoo/new.txt

Question: has deleted.txt been renamed to new.txt?
$ hg addremove --similarity 90
removing deleted.txt
adding new.txt
recording removal of deleted.txt as rename to new.txt (94% similar)

27 / 33



aragost Trifork

Importing a Code Drop
Mercurial can help you:
$ rm -r lib/libfoo
$ unzip libfoo-2.0.zip -d lib/libfoo
$ hg status
M lib/libfoo/modified.txt
! lib/libfoo/deleted.txt
? lib/libfoo/new.txt

Question: has deleted.txt been renamed to new.txt?
$ hg addremove --similarity 90
removing deleted.txt
adding new.txt
recording removal of deleted.txt as rename to new.txt (94% similar)

27 / 33



aragost Trifork

Finding Renamed Files
Tracking renames is important:

I you fix a bug in X.java in version 1.0
I version 2.0 now uses Y.java instead of Y.java
I Mercurial does the right thing with rename tracking

public class X {
static int

theAnswer = 41;
}

X.java

public class Y {
static int

theAnswer = 41;
}

Y.java

public class X {
static int

theAnswer = 42;
}

X.java

public class Y {
static int

theAnswer = 42;
}

Y.java
rename

bugfix

28 / 33



aragost Trifork

Outline

Introduction

Using Mercurial
Workflows
Branches

Vendor Branches
Vendor Branches in Mercurial
Handling Renamed Files

Wrapping Up

29 / 33



aragost Trifork

Conclusion
Mercurial can help manage vendor branches:

I simple workflow
I relies on every-day merge techniques

30 / 33



aragost Trifork

More Information
I Mercurial homepage:

http://mercurial.selenic.com/
I Mercurial: The Definitive Guide:

http://hgbook.red-bean.com/
I Getting Started:

http://mercurial.aragost.com/kick-start/
http://mercurial.ch/
http://hginit.com/

I Some free Mercurial hosting sites:
http://bitbucket.org/
http://code.google.com/
http://sourceforge.net/
http://www.codeplex.com/

31 / 33

http://mercurial.selenic.com/
http://hgbook.red-bean.com/
http://mercurial.aragost.com/kick-start/
http://mercurial.ch/
http://hginit.com/
http://bitbucket.org/
http://code.google.com/
http://sourceforge.net/
http://www.codeplex.com/


aragost Trifork

Contact
Please get in touch if you have more questions or have considered
using Mercurial in your organization:

I Email: mg@aragost.com
I IRC: mg in #mercurial on irc.freenode.net

32 / 33

mg@aragost.com
mg
#mercurial
irc.freenode.net


aragost Trifork

Mercurial Contributors
From http://ohloh.net/p/mercurial/map:

33 / 33

http://ohloh.net/p/mercurial/map


aragost Trifork

Mercurial Contributors
From http://ohloh.net/p/mercurial/map:

Thank you!Thank you!

33 / 33

http://ohloh.net/p/mercurial/map

	Introduction
	Using Mercurial
	Workflows
	Branches

	Vendor Branches
	Vendor Branches in Mercurial
	Handling Renamed Files

	Wrapping Up

