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FEATURES IN VERSION CONTROL SYSTEMS

Universal features:
» let you save changes
» browser the history
Common features:
» collaboration
» branches
> tags
Not so common features:
» speed!
» much more, as you will see. ..

45



THE REPOSITORY

The database that holds your history:
» series of project-wide snapshots
» called changesets or revisions in Mercurial
» changesets encapsulate a delta between two snapshots
» each changeset has a parent changeset

Repository



THE WORKING DIRECTORY
Holds your files:

Alice Bob
hello.c hello.c
Makefile goodbye.c

Makefile

» you edit files in the working directory
» reflects a changeset (the parent changeset)
» also called a working copy



BRANCHES

A key concept:
» parallel lines of development
» used to track releases
» used to isolate disruptive changes



BRANCHES

A key concept:
» parallel lines of development
» used to track releases
» used to isolate disruptive changes

-

time

~



BRANCHES

A key concept:
» parallel lines of development
» used to track releases
» used to isolate disruptive changes

-

1.0

time

7/45



BRANCHES

A key concept:
» parallel lines of development
» used to track releases
» used to isolate disruptive changes

s —-

1.0

time

7/45



BRANCHES

A key concept:
» parallel lines of development
» used to track releases
» used to isolate disruptive changes

1.0.1

s —

1.0

time

7/45



BRANCHES

A key concept:
» parallel lines of development
» used to track releases
» used to isolate disruptive changes

1.0.1 1.0.2

s —

1.0

time

7/45



MERGING

The opposite of branching:
» combines two branches
» used to merge back bugfixes
» used to integrate feature branches
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CENTRALIZED REVISION CONTROL

Subversion use a single server:

Repository
g
trunk/ branches/ trunk/
hello.c bob/ hello.c
Makefile hello.c Makefile
Alice Makefile Carla

Bob
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DISTRIBUTED REVISION CONTROL
Mercurial duplicates the history on many servers:

Alice

Bob arla
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Mercurial duplicates the history on many servers:
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— N
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REVISION CONTROL SYSTEM (RCS)

Version control from the 1980s:
» store changes (date, commit message)
» browse history

11/45



REVISION CONTROL SYSTEM (RCS)
Version control from the 1980s:
» store changes (date, commit message)
» browse history

hello.c:

Makefile:

11/45



REVISION CONTROL SYSTEM (RCS)
Version control from the 1980s:
» store changes (date, commit message)
» browse history

hello.c: [ —

Makefile:

11/45



REVISION CONTROL SYSTEM (RCS)
Version control from the 1980s:
» store changes (date, commit message)
» browse history

hello.c; [ —{

Makefile:

11/45



REVISION CONTROL SYSTEM (RCS)
Version control from the 1980s:
» store changes (date, commit message)
» browse history

hello.c; [ —{

Makefile: [ —

11/45



REVISION CONTROL SYSTEM (RCS)

Version control from the 1980s:
» store changes (date, commit message)
» browse history

hello.c; [ —{ —{ —

Makefile: [ —

11/45



REVISION CONTROL SYSTEM (RCS)

Version control from the 1980s:
» store changes (date, commit message)
» browse history

hello.c; [ —{ —{ —

Makefile: [ —{

11/45



CONCURRENT VERSIONS SYSTEM (CVS)

Version control in the 1990s:
» collaboration over the network
» several working copies
» one central repository
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» several working copies
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CONCURRENT VERSIONS SYSTEM (CVS)

Version control in the 1990s:
» collaboration over the network
» several working copies
» one central repository

CVS Server
Alice
he”oc hello.c: (= update
_—
Makefile Makefile: (>

Bob

hello.c
Makefile



SO, EVERYTHING IS GOOD?

CVS has many limitations:
» no atomic commits
» no rename information
» branches? | hope you have a CVS guru at hand. ..

13 /45



SUBVERSION (SVN)

Version control from this millennia — “CVS done right’:

» atomic commits

» tracks renames

» supports some operations without network access
» clean and simple design compared to CVS



MERGING IN SUBVERSION

SVN is a centralized system:

Repository
g
hello.c L hello.c
Makefile Makefile
Alice / J \ Eve
hello.c hello.c
Makefile hello.c Makefile
Bob Makefile Dan
Carla

» merging takes place in client
» merging takes place on server(!)



SVN MERGE IN CLIENT

When you do svn update, you merge:
» this can of course result in conflicts
» you must resolve the merge before you go on
» might be difficult to handle everything at once



SVN MERGE IN CLIENT

When you do svn update, you merge:

» this can of course result in conflicts

» you must resolve the merge before you go on

» might be difficult to handle everything at once
What if you want to abandon a merge?

» you can revert files with conflicts to their old state

» but other files may have been updated

» beware of mixed revisions. ..



MIXED REVISIONS?!

SVN lets you work with an inconsistent working copy:
» Alice and Bob have revision 1
» Alice changes hello.c — revision 2
» Bob changes Makefile — revision 3



MIXED REVISIONS?!

SVN lets you work with an inconsistent working copy:
» Alice and Bob have revision 1
» Alice changes hello.c — revision 2
» Bob changes MakefiTle — revision 3
They both have mixed revisions in their working copies:

hello.c (r2) hello.c (r1)
Makefile (r1) Makefile (r3)
Alice Bob

Difficult for Carla to reproduce either working copy.



SERVER-SIDE MERGES

Mixed revisions are a result of allowing server-side merges
» can we forbid server-side merges?
» not really — it would ruin branches in SVN

18 /45



BRANCHES IN SVN

Subversion knows nothing about branches!
» but SVN has a cheap copy mechanism
» used for tags and branches

19/45



BRANCHES IN SVN

Subversion knows nothing about branches!
» but SVN has a cheap copy mechanism
» used for tags and branches
rio

trunk/
hello.c
Makefile

branches/

tags/

19/45



BRANCHES IN SVN

Subversion knows nothing about branches!
» but SVN has a cheap copy mechanism
» used for tags and branches

rio ril
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branches/ branches/
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Makefile
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BRANCHES IN SVN

Subversion knows nothing about branches!

» but SVN has a cheap copy mechanism

» used for tags and branches

rio ril
trunk/ __, trunk/
hello.c hello.c
Makefile Makefile
branches/ branches/
tags/ goodbye/
hello.c
Makefile
tags/

ri2

trunk/
hello.c
Makefile
branches/
goodbye/
hello.c
goodbye.c
Makefile
tags/

—



MERGING BRANCHES IN SVN

Branches are only interesting if you can merge them:
» before SVN 1.5: no built-in support for merging(!)
» SVN 1.5 and later: tracks info needed for merging
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MERGING BRANCHES IN SVN

Branches are only interesting if you can merge them:
» before SVN 1.5: no built-in support for merging(!)
» SVN 1.5 and later: tracks info needed for merging

The bottom line is that Subversion’s merge-tracking feature
has an extremely complex internal implementation, and the
svh:mergeinfo property is the only window the user has
into the machinery. Because the feature is relatively new, a
numbers of edge cases and possible unexpected behaviors
may pop up. —Version Control with Subversion

(Mercurial has robust built-in support for merging branches.)
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USING MERCURIAL
The Underlying Model
Workflows
Using History
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Live Demo!



THE UNDERLYING MODEL

A Mercurial changeset conceptually consist of:
» 0-2 parent changeset IDs:

» root changeset has no parents
» normal commits have one parent
» merge changesets have two parents

» date, username, commit message
» difference from first parent
» changeset ID is computed as SHA-1 hash of the above



IMMUTABLE HISTORY

SHA-1 hashes as changeset IDs have some consequences:

» a changeset ID is a hash of the entire history
» changing history changes subsequent changesets

» history is immutable, you can only make new history:

A— B— C—D—E
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SHA-1 hashes as changeset IDs have some consequences:

» a changeset ID is a hash of the entire history
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CENTRAL WORKFLOW

Everybody has write access to a central repository:

Repository

403

Alice Eve

AN
o, D

Bob Dan
Carla
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PULL WORKFLOW

People have read-only access (e.g., hg serve):
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PULL WORKFLOW
People have read-only access (e.g., hg serve):
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PULL WORKFLOW

People have read-only access (e.g., hg serve):

Alice Bob
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Ny
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PULL WORKFLOW

People have read-only access (e.g., hg serve):

Alice Bob
[0} —1—2—3 =y
Ny

Carla

Lo—l—2—{3)—{4]
RN

1—2—3



EXPLORING HISTORY

Everything is local and fast:
» hg log can search in commit messages and usernames
» hg grep searches in file content
» hg bisect makes a binary search on the revision graph

N
~



REVISION GRAPH BISECTION

You've found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

bad

l

%@%@m@&& |
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REVISION GRAPH BISECTION

You've found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good test bad

! |

— HDﬁ%DHDHDHDHEHDHDHDH
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REVISION GRAPH BISECTION

You've found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good good bad

! ! |

- Pl el Pl Ll el

\

bug! bad
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MERCURIAL IS EXTENSIBLE

You can add new functionality to Mercurial:
» ships with 30 extensions
» wiki lists 57 extensions
» extensions can change basically everything
» helps to keep the core small and focused

30/45



MOVING CHANGESETS AROUND

Tired of all those merges? Use the rebase extension!
» Revision graph:

A8 —C
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MOVING CHANGESETS AROUND

Tired of all those merges? Use the rebase extension!
» Revision graph:

a-e-e{aa
M& &

u%ﬂ%ﬂ/
2 2!

> Rebase

Xz e
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MOVING CHANGESETS AROUND

Tired of all those merges? Use the rebase extension!
» Revision graph:
A— B —C—D— E

N

X— Y —Z

» Merge:
A— B— C— D— E

AN 7

X— Y —Z

M

» Rebase:
A— B — C

N

X—Y—Z—D—F

» Beware: public changes should never be rebased.



MAINTAINING PATCH SERIES

The mq extension makes it easy to maintain a patch series:

I

Works nicely for local modification for upstream sources.
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MAINTAINING PATCH SERIES

The mq extension makes it easy to maintain a patch series:

doc

|

gpush test gpop

code

|
I

Works nicely for local modification for upstream sources.



EDITING HISTORY

Inspired by git rebase -1, histedit lets you
» reorder changesets:

-
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EDITING HISTORY

Inspired by git rebase -1, histedit lets you

¢~
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EDITING HISTORY

Inspired by git rebase -1, histedit lets you
» reorder changesets: N

A—Bc] - [AFCiE

» fold changesets: I
ai8c] ~ (aed
» drop changesets: -
lasHd ~ [aHal
» edit changesets:

a-eie - la-xeie



MIGRATING HISTORY

The convert extension can import history:
» CVS, SVN, Git, Bazaar, Darcs, ...
» incremental conversion

» many options for fiddling with branches, authors, ...
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MIGRATING HISTORY

The convert extension can import history:

» CVS, SVN, Git, Bazaar, Darcs, ...

» incremental conversion

» many options for fiddling with branches, authors, ...
Interestingly, convert can import from Mercurial:

» —-filemap lets you exclude and rename files

» —-branchmap lets you rename branches



INTERFACING WITH SUBVERSION

The hgsubversion extension let’s you:
» use hg clone on a SVN URLs
» use hg pull to convert new SVN revisions
» use hg push to commit changesets to SVN server
The extension is being used, but please note:
» it is not yet feature complete
» requires standard trunk/, branches/ and tags/ layout

SUBVERSION
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INTERFACING WITH GIT

Need to work on a Git repository? Try hg-git!
» Mercurial extension: you get the nice hg command line
» round-tripping: changeset hashes are preserved

I



THIRD-PARTY TOOLS

Tools with Mercurial support:
» Shell integration: TortoiseHg (Windows, Mac, Linux)

» IDEs: Eclipse, NetBeans, Intelli), Visual Studio, Emacs. ..
» Project Support: Trac, JIRA, Maven, Hudson, BuildBot. ..

» Ant tasks



TORTOISEHG SCREENSHOTS

# tortoisehg-stable commit a : . — E@E
=) < ] | X 4k &) ‘
Refresh Commit  Undo Revert Add Move Remove
branch: default| Recent Commit Messages. -
commit message|
4 | diff --git a/ReleaseNotes.txt b/ReleaseNotes.tx
total: 2 hunks (6 changed lines); selected: 1 hunks (2 changed lines)
1 5 ee

st4 ms 4 path
ReleaseNotes. txt

@

M

-Ti
+Ti

he old Python shell extension has been removed in favor of a pure C++ shell
extension which directly reads the Mercurial dirstate for overlays, and
This should fix much of the

C++ Shell Extension =
he Python shell extension has been removed in favor of a pure C++ shell

produces hard-coded context menus.

n

17,7 +17,7 ee

ee
extension which directly reads the Mercurial dirstate for overlays, and
produces hard-coded context menus. This should fix much of the
-interoperability problems reported in issue #67, and it fixes the

-owerlay performance problems we have suffered since wersion ©.1.
+interoperability problems reported in issue #67, and it fixes the overlay
1 1.

1 selected, 1 total

+performance problens we have suffered since version 8
we have introduced a taskbar application

To support fast overlay icons

(thgtaskbar.exe, programmed in Python) that externalizes the refreshing

:unknown [ T ignored

R: removed
eleted  [[]

modified

C: clean

: added
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TORTOISEHG SCREENSHOTS

[ tortoisehg-stable shelve

e

‘ T
- S -

Refresh ‘ Shelve Unihave‘

444-@9‘

Revert Add Move  Remove

st4 ms 4 path
E n Relea:

diff --git a/Rel txt b/Rel
total: 2 hunks (6 changed lines); selected: 2 hunk5 (6 changed

= C++ Shell Extension =—

-The Python shell extension has been removed in favor of a pure
+The old Python shell extension has been removed in favor of a |
extension which directly reads the Mercurial dirstate for over
produces hard-coded context menus. This should fix much of thi

n

@@ - +1

extension whlch dlre:ﬂy reads the Mercurial dirstate for over
produces hard-coded context menus. This should fix much of th
-interoperability problems reported in issue #67, and it fixes

-overlay performance problems we have suffered since wversion 0.
+interoperability problems reported in issue #67, and it fixes

+performance problems we have suffered since version 0.1.

To suppert fast overlay icons, we have introduced a taskbar ap| _

(+hatsckhar ava nranresmmad in Buthan) that aviarnslizee tha r

< i ] 3

M: modified
A: added

R: removed

% unknown [ L ignored 1 selected, 1 total
Ldeleted [ C clean
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TORTOISEHG SCREENSHOTS

[‘@ DataMining -tﬂrtu{sahg-stable—“ — — :- _— =N
New Search Stop
hgtk@3023
Graph Rev Summary User -
hgtk: fix early forking problems by not using fork
i 2897 hgtk: introduce --nofork global option Steve Borho
2890 hgtk: fix indexing errars in nofork hack Steve Borho
i 2846 hgtk: improve argument detection before forking Steve Borho
: 2832 hgtk: enable forking behavior for GUI commands SteveBorho -
4 n | 3
| |Line Rev Source -
" |s 1725 # Copyright (C) 2088-9 Steve Borho <steve@borho.org> E|
e 1725 # Copyright (C) 2088 TK Soh <teekaysoh@gmail.coms
Wl 7 1725 #
| |e 1725
NE] 2340 import os
M |18 2348 import sys
1 2348
a9 340 3F haeadde o “Frnzantl. =2
< 3 f
Dene
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GIT

The version control system by Linus Torvalds:

- =

Tee it

v

distributed, fast, scalable

v

used by Linux Kernel, Perl, and many others

v

written in C, shell scripts(!) and a little Perl

v

models history the same way as Mercurial

40/45



GIT DIFFERENCES

Git is different in a number of ways:

>

>

>

+o¢ git
quite verbose compared to Mercurial
core Mercurial never rewrites history, Git has it built-in
changes are added to an “index” before commit:

% git add .
% git commit -m ’Initial import.’
[master (root-commit) ba4lf97] Initial import.
2 files changed, 7 insertions(+), O deletions(-)
create mode 100644 Makefile
create mode 100644 hello.c
% echo ’/+ The End =/’ >> hello.c
% git add hello.c
% git commit -m ’Added comment.’
[master 2489734] Added comment.
1 files changed, 1 insertions(+), 0 deletions(-)
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DARCS

_ _ @ darcs
Repository consist of unordered changesets:
+first
+second
first first -first
-bottom -second +top
+bot +bottom second
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DARCS

Repository consist of unordered changesets:

+first

+second

first
-bottom
+bot

first
-second
+bottom

second

-first
+top

@ darcs

top
bot



DARCS

_ _ @ darcs
Repository consist of unordered changesets:
+first
+second
first first -first
-bottom — -second +top
+bot +bottom second

Why isn’t everybody using Darcs?
» determining if a change commutes with another is slow
» merges could take hours or days with older versions

42 /45



UNSOLVED PROBLEMS

DVCSs generally have problems with
» large binary files
» retrieving only a sub-tree (narrow clones)
» retrieving only recent history (shallow clones)
Some more Mercurial specific problems are:
> it is fairly easy to create conflicts in .hgtags files
» filename encodings across different filesystems



MERCURIAL IN A NUTSHELL

Mercurial changes the way you develop:
» simple yet strong model for both branching and merging
» power tool instead of necessary evil
» light-weight and snhappy

44 /45



MORE INFORMATION

» Mercurial homepage:
http://mercurial.selenic.com/

» Mercurial: The Definitive Guide:
http://hgbook.red-bean.com/

» Some free Mercurial hosting sites:
http://www.bitbucket.org/
http://code.google.com/
http://sourceforge.net/
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MORE INFORMATION
» Mercurial homepage:
http://mercurial.selenic.com/

» Mercurial: The Definitive Guide:
http://hgbook.red-bean.com/

» Some free Mercurial hosting sites:
http://www.bitbucket.org/
http://code.google.com/
http://sourceforge.net/

Thank youl!
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