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Features in Version Control Systems

Universal features:

ñ let you save changes

ñ browser the history

Common features:

ñ collaboration

ñ branches

ñ tags

Not so common features:

ñ speed!

ñ much more, as you will see. . .
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The Repository

The database that holds your history:

ñ series of project-wide snapshots

ñ called changesets or revisions in Mercurial

ñ changesets encapsulate a delta between two snapshots

ñ each changeset has a parent changeset

Repository
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The Working Directory

Holds your files:

hello.c
Makefile

Alice

hello.c
goodbye.c
Makefile

Bob

ñ you edit files in the working directory

ñ reflects a changeset (the parent changeset)

ñ also called a working copy
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Branches

A key concept:

ñ parallel lines of development

ñ used to track releases

ñ used to isolate disruptive changes
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Merging

The opposite of branching:

ñ combines two branches

ñ used to merge back bugfixes

ñ used to integrate feature branches

time
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Centralized Revision Control

Subversion use a single server:

Repository

trunk/
hello.c
Makefile

Alice

branches/
bob/

hello.c
Makefile

Bob

trunk/
hello.c
Makefile

Carla
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Distributed Revision Control

Mercurial duplicates the history on many servers:

Alice

Bob Carla
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Revision Control System (RCS)

Version control from the 1980s:

ñ store changes (date, commit message)

ñ browse history
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Concurrent Versions System (CVS)

Version control in the 1990s:

ñ collaboration over the network

ñ several working copies

ñ one central repository

hello.c
Makefile

Alice

CVS Server

hello.c
Makefile

Bob

hello.c:

Makefile:
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Version control in the 1990s:
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ñ several working copies
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hello.c
Makefile

Alice

CVS Server

hello.c
Makefile

Bob

hello.c:

Makefile:
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So, everything is good?

CVS has many limitations:

ñ no atomic commits

ñ no rename information

ñ branches? I hope you have a CVS guru at hand. . .
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Subversion (SVN)

Version control from this millennia — “CVS done right”:

ñ atomic commits

ñ tracks renames

ñ supports some operations without network access

ñ clean and simple design compared to CVS
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Merging in Subversion

SVN is a centralized system:

Repository

hello.c
Makefile

Alice

hello.c
Makefile

Bob

hello.c
Makefile

Carla

hello.c
Makefile

Dan

hello.c
Makefile

Eve

ñ merging takes place in client

ñ merging takes place on server(!)
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SVN Merge in Client

When you do svn update, you merge:

ñ this can of course result in conflicts

ñ you must resolve the merge before you go on

ñ might be difficult to handle everything at once

What if you want to abandon a merge?

ñ you can revert files with conflicts to their old state

ñ but other files may have been updated

ñ beware of mixed revisions. . .
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Mixed Revisions?!

SVN lets you work with an inconsistent working copy:

ñ Alice and Bob have revision 1

ñ Alice changes hello.c → revision 2

ñ Bob changes Makefile → revision 3

They both have mixed revisions in their working copies:

hello.c (r2)
Makefile (r1)

Alice

hello.c (r1)
Makefile (r3)

Bob

Difficult for Carla to reproduce either working copy.
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Server-Side Merges

Mixed revisions are a result of allowing server-side merges

ñ can we forbid server-side merges?

ñ not really — it would ruin branches in SVN
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Branches in SVN

Subversion knows nothing about branches!

ñ but SVN has a cheap copy mechanism

ñ used for tags and branches
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Merging Branches in SVN

Branches are only interesting if you can merge them:

ñ before SVN 1.5: no built-in support for merging(!)

ñ SVN 1.5 and later: tracks info needed for merging

The bottom line is that Subversion’s merge-tracking feature
has an extremely complex internal implementation, and the
svn:mergeinfo property is the only window the user has
into the machinery. Because the feature is relatively new, a
numbers of edge cases and possible unexpected behaviors
may pop up. —Version Control with Subversion

(Mercurial has robust built-in support for merging branches.)
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Live Demo!

22 / 45



The Underlying Model

A Mercurial changeset conceptually consist of:
ñ 0–2 parent changeset IDs:

ñ root changeset has no parents
ñ normal commits have one parent
ñ merge changesets have two parents

ñ date, username, commit message

ñ difference from first parent

ñ changeset ID is computed as SHA-1 hash of the above

23 / 45



Immutable History

SHA-1 hashes as changeset IDs have some consequences:

ñ a changeset ID is a hash of the entire history

ñ changing history changes subsequent changesets

ñ history is immutable, you can only make new history:

A B C D E
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Central Workflow

Everybody has write access to a central repository:

Repository

Alice

Bob

Carla

Dan

Eve
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Pull Workflow

People have read-only access (e.g., hg serve):

0

Alice
0

Bob

0

Carla
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Pull Workflow

People have read-only access (e.g., hg serve):

0

Alice

1

1 2 3 0

Bob
1

0

Carla

1

1 2 3

1 2 3 4
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Exploring History

Everything is local and fast:

ñ hg log can search in commit messages and usernames

ñ hg grep searches in file content

ñ hg bisect makes a binary search on the revision graph
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Revision Graph Bisection

You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

bad
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Revision Graph Bisection

You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good

bug! bad

good bad
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Mercurial is Extensible

You can add new functionality to Mercurial:

ñ ships with 30 extensions

ñ wiki lists 57 extensions

ñ extensions can change basically everything

ñ helps to keep the core small and focused
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Moving Changesets Around

Tired of all those merges? Use the rebase extension!

ñ Revision graph:

A B C

ñ Merge:

A B C

X Y Z

D E M

ñ Rebase:
A B C

X Y Z D′ E ′

D E

ñ Beware: public changes should never be rebased.
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Maintaining Patch Series

The mq extension makes it easy to maintain a patch series:

...

Works nicely for local modification for upstream sources.
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Maintaining Patch Series

The mq extension makes it easy to maintain a patch series:

...

code

test

doc

qpush qpop

Works nicely for local modification for upstream sources.
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Editing History

Inspired by git rebase -i, histedit lets you

ñ reorder changesets:

A B C � A C′ B′

ñ fold changesets:

A B C � A BC

ñ drop changesets:

A B C � A C′

ñ edit changesets:

A B C � A X B′ C′
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Migrating History

The convert extension can import history:

ñ CVS, SVN, Git, Bazaar, Darcs, . . .

ñ incremental conversion

ñ many options for fiddling with branches, authors, . . .

Interestingly, convert can import from Mercurial:

ñ --filemap lets you exclude and rename files

ñ --branchmap lets you rename branches
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Interfacing with Subversion

The hgsubversion extension let’s you:

ñ use hg clone on a SVN URLs

ñ use hg pull to convert new SVN revisions

ñ use hg push to commit changesets to SVN server

The extension is being used, but please note:

ñ it is not yet feature complete

ñ requires standard trunk/, branches/ and tags/ layout
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Interfacing with Git

Need to work on a Git repository? Try hg-git!

ñ Mercurial extension: you get the nice hg command line

ñ round-tripping: changeset hashes are preserved

Git

Hg Hg Git
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Third-Party Tools

Tools with Mercurial support:

ñ Shell integration: TortoiseHg (Windows, Mac, Linux)

ñ IDEs: Eclipse, NetBeans, IntelliJ, Visual Studio, Emacs. . .

ñ Project Support: Trac, JIRA, Maven, Hudson, BuildBot. . .

ñ Ant tasks

37 / 45



TortoiseHg Screenshots
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TortoiseHg Screenshots
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Git

The version control system by Linus Torvalds:

ñ distributed, fast, scalable

ñ used by Linux Kernel, Perl, and many others

ñ written in C, shell scripts(!) and a little Perl

ñ models history the same way as Mercurial
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Git Differences

Git is different in a number of ways:

ñ quite verbose compared to Mercurial

ñ core Mercurial never rewrites history, Git has it built-in

ñ changes are added to an “index” before commit:

% git add .
% git commit -m ’Initial import.’
[master (root-commit) ba41f97] Initial import.
2 files changed, 7 insertions(+), 0 deletions(-)
create mode 100644 Makefile
create mode 100644 hello.c
% echo ’/* The End */’ >> hello.c
% git add hello.c
% git commit -m ’Added comment.’
[master 2489734] Added comment.
1 files changed, 1 insertions(+), 0 deletions(-)

41 / 45



Darcs

Repository consist of unordered changesets:

+first
+second

first
-second
+bottom

-first
+top
second

first
-bottom
+bot

Why isn’t everybody using Darcs?

ñ determining if a change commutes with another is slow

ñ merges could take hours or days with older versions
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Unsolved Problems

DVCSs generally have problems with

ñ large binary files

ñ retrieving only a sub-tree (narrow clones)

ñ retrieving only recent history (shallow clones)

Some more Mercurial specific problems are:

ñ it is fairly easy to create conflicts in .hgtags files

ñ filename encodings across different filesystems
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Mercurial in a Nutshell

Mercurial changes the way you develop:

ñ simple yet strong model for both branching and merging

ñ power tool instead of necessary evil

ñ light-weight and snappy
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More Information
ñ Mercurial homepage:
http://mercurial.selenic.com/

ñ Mercurial: The Definitive Guide:
http://hgbook.red-bean.com/

ñ Some free Mercurial hosting sites:
http://www.bitbucket.org/
http://code.google.com/
http://sourceforge.net/
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Thank you!
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