FAST, FLEXIBLE AND FUN:
REVISION CONTROL WITH MERCURIAL

Martin Geisler
(mg@lazybytes.net)

JAOO Geek Night in Aarhus
August 25, 2009

OUTLINE

INTRODUCTION
Basic Concepts
Historic Context
Subversion in Detail

USING MERCURIAL
The Underlying Model
Workflows
Using History

COOL EXTENSIONS
Changing History
Talking to Other Systems
Third-Party Tools

WRAPPING UP
Alternatives
Unsolved Problems
Conclusion

OUTLINE

INTRODUCTION
Basic Concepts
Historic Context
Subversion in Detail

FEATURES IN VERSION CONTROL SYSTEMS

Universal features:
» let you save changes
» browser the history

FEATURES IN VERSION CONTROL SYSTEMS

Universal features:
» let you save changes
» browser the history
Common features:
» collaboration
» branches
» tags

FEATURES IN VERSION CONTROL SYSTEMS

Universal features:
» let you save changes
» browser the history
Common features:
» collaboration
» branches
> tags
Not so common features:
» speed!
» much more, as you will see. ..

45

THE REPOSITORY

The database that holds your history:
» series of project-wide snapshots
» called changesets or revisions in Mercurial
» changesets encapsulate a delta between two snapshots
» each changeset has a parent changeset

Repository

THE WORKING DIRECTORY
Holds your files:

Alice Bob
hello.c hello.c
Makefile goodbye.c

Makefile

» you edit files in the working directory
» reflects a changeset (the parent changeset)
» also called a working copy

BRANCHES

A key concept:
» parallel lines of development
» used to track releases
» used to isolate disruptive changes

BRANCHES

A key concept:
» parallel lines of development
» used to track releases
» used to isolate disruptive changes

-

time

~

BRANCHES

A key concept:
» parallel lines of development
» used to track releases
» used to isolate disruptive changes

-

1.0

time

7/45

BRANCHES

A key concept:
» parallel lines of development
» used to track releases
» used to isolate disruptive changes

s —-

1.0

time

7/45

BRANCHES

A key concept:
» parallel lines of development
» used to track releases
» used to isolate disruptive changes

1.0.1

s —

1.0

time

7/45

BRANCHES

A key concept:
» parallel lines of development
» used to track releases
» used to isolate disruptive changes

1.0.1 1.0.2

s —

1.0

time

7/45

MERGING

The opposite of branching:
» combines two branches
» used to merge back bugfixes
» used to integrate feature branches

1.0.1 1.0.2

s —

1.0

time

8/45

MERGING

The opposite of branching:
» combines two branches
» used to merge back bugfixes
» used to integrate feature branches

1.0.1 1.0.2

S

1.0

time

8/45

MERGING

The opposite of branching:
» combines two branches
» used to merge back bugfixes
» used to integrate feature branches

1.0.1 1.0.2

e

1.0

time

8/45

CENTRALIZED REVISION CONTROL

Subversion use a single server:

Repository
g
trunk/ branches/ trunk/
hello.c bob/ hello.c
Makefile hello.c Makefile
Alice Makefile Carla

Bob

9/45

DISTRIBUTED REVISION CONTROL
Mercurial duplicates the history on many servers:

Alice

Bob arla

10/45

DISTRIBUTED REVISION CONTROL

Mercurial duplicates the history on many servers:

Bob arla

10/45

DISTRIBUTED REVISION CONTROL

Mercurial duplicates the history on many servers:

10/45

DISTRIBUTED REVISION CONTROL

Mercurial duplicates the history on many servers:

erve

— N

Bob arla

10/45

REVISION CONTROL SYSTEM (RCS)

Version control from the 1980s:
» store changes (date, commit message)
» browse history

11/45

REVISION CONTROL SYSTEM (RCS)
Version control from the 1980s:
» store changes (date, commit message)
» browse history

hello.c:

Makefile:

11/45

REVISION CONTROL SYSTEM (RCS)
Version control from the 1980s:
» store changes (date, commit message)
» browse history

hello.c: [—

Makefile:

11/45

REVISION CONTROL SYSTEM (RCS)
Version control from the 1980s:
» store changes (date, commit message)
» browse history

hello.c; [—{

Makefile:

11/45

REVISION CONTROL SYSTEM (RCS)
Version control from the 1980s:
» store changes (date, commit message)
» browse history

hello.c; [—{

Makefile: [—

11/45

REVISION CONTROL SYSTEM (RCS)

Version control from the 1980s:
» store changes (date, commit message)
» browse history

hello.c; [—{ —{ —

Makefile: [—

11/45

REVISION CONTROL SYSTEM (RCS)

Version control from the 1980s:
» store changes (date, commit message)
» browse history

hello.c; [—{ —{ —

Makefile: [—{

11/45

CONCURRENT VERSIONS SYSTEM (CVS)

Version control in the 1990s:
» collaboration over the network
» several working copies
» one central repository

12/45

CONCURRENT VERSIONS SYSTEM (CVS)

Version control in the 1990s:
» collaboration over the network
» several working copies
» one central repository

CVS Server

Alice Bob

he||OC hello.c: [—> he||OC
Makefile Makefile: Makefile

CONCURRENT VERSIONS SYSTEM (CVS)

Version control in the 1990s:
» collaboration over the network
» several working copies
» one central repository

CVS Server

Alice Bob

hello.c commit ello.c: 0= hello.c
. 4) 4 .
Makefile Makefile: (— Makefile

CONCURRENT VERSIONS SYSTEM (CVS)

Version control in the 1990s:
» collaboration over the network
» several working copies
» one central repository

CVS Server
Alice
he”oc hello.c: (= update
_—
Makefile Makefile: (>

Bob

hello.c
Makefile

SO, EVERYTHING IS GOOD?

CVS has many limitations:
» no atomic commits
» no rename information
» branches? | hope you have a CVS guru at hand. ..

13 /45

SUBVERSION (SVN)

Version control from this millennia — “CVS done right’:

» atomic commits

» tracks renames

» supports some operations without network access
» clean and simple design compared to CVS

MERGING IN SUBVERSION

SVN is a centralized system:

Repository
g
hello.c L hello.c
Makefile Makefile
Alice / J \ Eve
hello.c hello.c
Makefile hello.c Makefile
Bob Makefile Dan
Carla

» merging takes place in client
» merging takes place on server(!)

SVN MERGE IN CLIENT

When you do svn update, you merge:
» this can of course result in conflicts
» you must resolve the merge before you go on
» might be difficult to handle everything at once

SVN MERGE IN CLIENT

When you do svn update, you merge:

» this can of course result in conflicts

» you must resolve the merge before you go on

» might be difficult to handle everything at once
What if you want to abandon a merge?

» you can revert files with conflicts to their old state

» but other files may have been updated

» beware of mixed revisions. ..

MIXED REVISIONS?!

SVN lets you work with an inconsistent working copy:
» Alice and Bob have revision 1
» Alice changes hello.c — revision 2
» Bob changes Makefile — revision 3

MIXED REVISIONS?!

SVN lets you work with an inconsistent working copy:
» Alice and Bob have revision 1
» Alice changes hello.c — revision 2
» Bob changes MakefiTle — revision 3
They both have mixed revisions in their working copies:

hello.c (r2) hello.c (r1)
Makefile (r1) Makefile (r3)
Alice Bob

Difficult for Carla to reproduce either working copy.

SERVER-SIDE MERGES

Mixed revisions are a result of allowing server-side merges
» can we forbid server-side merges?
» not really — it would ruin branches in SVN

18 /45

BRANCHES IN SVN

Subversion knows nothing about branches!
» but SVN has a cheap copy mechanism
» used for tags and branches

19/45

BRANCHES IN SVN

Subversion knows nothing about branches!
» but SVN has a cheap copy mechanism
» used for tags and branches
rio

trunk/
hello.c
Makefile

branches/

tags/

19/45

BRANCHES IN SVN

Subversion knows nothing about branches!
» but SVN has a cheap copy mechanism
» used for tags and branches

rio ril
trunk/ __, trunk/
hello.c hello.c
Makefile Makefile
branches/ branches/
tags/ goodbye/
hello.c
Makefile

tags/

19/45

BRANCHES IN SVN

Subversion knows nothing about branches!

» but SVN has a cheap copy mechanism

» used for tags and branches

rio ril
trunk/ __, trunk/
hello.c hello.c
Makefile Makefile
branches/ branches/
tags/ goodbye/
hello.c
Makefile
tags/

ri2

trunk/
hello.c
Makefile
branches/
goodbye/
hello.c
goodbye.c
Makefile
tags/

—

MERGING BRANCHES IN SVN

Branches are only interesting if you can merge them:
» before SVN 1.5: no built-in support for merging(!)
» SVN 1.5 and later: tracks info needed for merging

20/45

MERGING BRANCHES IN SVN

Branches are only interesting if you can merge them:
» before SVN 1.5: no built-in support for merging(!)
» SVN 1.5 and later: tracks info needed for merging

The bottom line is that Subversion’s merge-tracking feature
has an extremely complex internal implementation, and the
svh:mergeinfo property is the only window the user has
into the machinery. Because the feature is relatively new, a
numbers of edge cases and possible unexpected behaviors
may pop up. —Version Control with Subversion

(Mercurial has robust built-in support for merging branches.)

20/45

OUTLINE

USING MERCURIAL
The Underlying Model
Workflows
Using History

45

Live Demo!

THE UNDERLYING MODEL

A Mercurial changeset conceptually consist of:
» 0-2 parent changeset IDs:

» root changeset has no parents
» normal commits have one parent
» merge changesets have two parents

» date, username, commit message
» difference from first parent
» changeset ID is computed as SHA-1 hash of the above

IMMUTABLE HISTORY

SHA-1 hashes as changeset IDs have some consequences:

» a changeset ID is a hash of the entire history
» changing history changes subsequent changesets

» history is immutable, you can only make new history:

A— B— C—D—E

24 /45

IMMUTABLE HISTORY

SHA-1 hashes as changeset IDs have some consequences:

» a changeset ID is a hash of the entire history
» changing history changes subsequent changesets

» history is immutable, you can only make new history:

A— B— C—D—E

)

C/%DIHE!

24 /45

IMMUTABLE HISTORY

SHA-1 hashes as changeset IDs have some consequences:

» a changeset ID is a hash of the entire history
» changing history changes subsequent changesets

» history is immutable, you can only make new history:

24 /45

CENTRAL WORKFLOW

Everybody has write access to a central repository:

Repository

403

Alice Eve

AN
o, D

Bob Dan
Carla

25/45

PULL WORKFLOW

People have read-only access (e.g., hg serve):

Alice Bob
0 0

Carla

PULL WORKFLOW

People have read-only access (e.g., hg serve):

Alice Bob
0 — 1 0

Carla

PULL WORKFLOW

People have read-only access (e.g., hg serve):

Alice Bob
00— 1 —2 0

Carla

PULL WORKFLOW

People have read-only access (e.g., hg serve):

Alice Bob

0—1—2 0—1

Carla

PULL WORKFLOW

People have read-only access (e.g., hg serve):

Alice Bob

0—1—2 0—1

_} pull
1

Carla

PULL WORKFLOW

People have read-only access (e.g., hg serve):

Alice Bob

0—1—2—3 0—1

N

Carla

PULL WORKFLOW

People have read-only access (e.g., hg serve):

Alice Bob

0—1—2—3 0—1

PULL WORKFLOW

People have read-only access (e.g., hg serve):

Alice Bob

0—1—2—3 0—1

N

Carla

012

PULL WORKFLOW
People have read-only access (e.g., hg serve):

Alice Bob
[0} —1—2—3 =y
Ny

pull

Carla

o2l
AK;\ﬁ

PULL WORKFLOW
People have read-only access (e.g., hg serve):

Alice Bob
[0} —1—2—3 =y
Ny

Carla
e P11
K

1

PULL WORKFLOW

People have read-only access (e.g., hg serve):

Alice Bob
[0} —1—2—3 =y
Ny

Vﬂ]
Carla

Lo 23]
RN

1—2—3

PULL WORKFLOW

People have read-only access (e.g., hg serve):

Alice Bob
[0} —1—2—3 =y
Ny

Carla

Lo—l—2—{3)—{4]
RN

1—2—3

EXPLORING HISTORY

Everything is local and fast:
» hg log can search in commit messages and usernames
» hg grep searches in file content
» hg bisect makes a binary search on the revision graph

N
~

REVISION GRAPH BISECTION

You've found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

bad

l

%@%@m@&& |

REVISION GRAPH BISECTION

You've found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

test bad

l

%@%@m@&& |

REVISION GRAPH BISECTION

You've found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good bad

l

— HDﬁ%DHDHDHDHEHDHDHDH

REVISION GRAPH BISECTION

You've found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good test bad

! |

— HDﬁ%DHDHDHDHEHDHDHDH

REVISION GRAPH BISECTION

You've found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good good bad

! ! |

S BB S S S o

Sg-g-a—

REVISION GRAPH BISECTION

You've found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good good bad

! ! |

S BB S S S o

Sg-g-a—
|

test

REVISION GRAPH BISECTION

You've found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good good bad

! ! |

- Pl el Pl Ll el

Sg-ga—

bad

45

REVISION GRAPH BISECTION

You've found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good good bad

! ! |

- Pl el Pl Ll el

Sg-ga—
!

test bad

45

REVISION GRAPH BISECTION

You've found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good good bad

! ! |

- Pl el Pl Ll el

\

bug! bad

45

OUTLINE

COOL EXTENSIONS
Changing History
Talking to Other Systems
Third-Party Tools

29/45

MERCURIAL IS EXTENSIBLE

You can add new functionality to Mercurial:
» ships with 30 extensions
» wiki lists 57 extensions
» extensions can change basically everything
» helps to keep the core small and focused

30/45

MOVING CHANGESETS AROUND

Tired of all those merges? Use the rebase extension!
» Revision graph:

A8 —C

31/45

MOVING CHANGESETS AROUND

Tired of all those merges? Use the rebase extension!
» Revision graph:

A8 C D E

31/45

MOVING CHANGESETS AROUND

Tired of all those merges? Use the rebase extension!
» Revision graph:

A8 a—a&
&

31/45

MOVING CHANGESETS AROUND

Tired of all those merges? Use the rebase extension!
» Revision graph:

&8k {0l

D
E—w—a

31/45

MOVING CHANGESETS AROUND

Tired of all those merges? Use the rebase extension!
» Revision graph:

a-e-e{aa
M& &

u%ﬂ%ﬂ/
2 2!

> Rebase

Xz e

31/45

MOVING CHANGESETS AROUND

Tired of all those merges? Use the rebase extension!
» Revision graph:
A— B —C—D— E

N

X— Y —Z

» Merge:
A— B— C— D— E

AN 7

X— Y —Z

M

» Rebase:
A— B — C

N

X—Y—Z—D—F

» Beware: public changes should never be rebased.

MAINTAINING PATCH SERIES

The mq extension makes it easy to maintain a patch series:

I

Works nicely for local modification for upstream sources.

MAINTAINING PATCH SERIES

The mq extension makes it easy to maintain a patch series:

code

|
I

Works nicely for local modification for upstream sources.

MAINTAINING PATCH SERIES

The mq extension makes it easy to maintain a patch series:

test

I

code

|
I

Works nicely for local modification for upstream sources.

MAINTAINING PATCH SERIES

The mq extension makes it easy to maintain a patch series:

doc

|

test

I

code

|
I

Works nicely for local modification for upstream sources.

MAINTAINING PATCH SERIES

The mq extension makes it easy to maintain a patch series:

doc

|

gpush test gpop

code

|
I

Works nicely for local modification for upstream sources.

EDITING HISTORY

Inspired by git rebase -1, histedit lets you
» reorder changesets:

-

33/45

EDITING HISTORY

Inspired by git rebase -1, histedit lets you
» reorder changesets:

AEHe ~ lAeEl
» fold changesets:

A—ac - [aad

EDITING HISTORY

Inspired by git rebase -1, histedit lets you

¢~
» fold changesets: I
s ~ [asg
» drop changesets:

Aeie -l

» reorder changesets:

A—Bc ~ (A

B/

EDITING HISTORY

Inspired by git rebase -1, histedit lets you
» reorder changesets: N

A—Bc] - [AFCiE

» fold changesets: I
ai8c] ~ (aed
» drop changesets: -
lasHd ~ [aHal
» edit changesets:

a-eie - la-xeie

MIGRATING HISTORY

The convert extension can import history:
» CVS, SVN, Git, Bazaar, Darcs, ...
» incremental conversion

» many options for fiddling with branches, authors, ...

45

MIGRATING HISTORY

The convert extension can import history:

» CVS, SVN, Git, Bazaar, Darcs, ...

» incremental conversion

» many options for fiddling with branches, authors, ...
Interestingly, convert can import from Mercurial:

» —-filemap lets you exclude and rename files

» —-branchmap lets you rename branches

INTERFACING WITH SUBVERSION

The hgsubversion extension let’s you:
» use hg clone on a SVN URLs
» use hg pull to convert new SVN revisions
» use hg push to commit changesets to SVN server
The extension is being used, but please note:
» it is not yet feature complete
» requires standard trunk/, branches/ and tags/ layout

SUBVERSION

35/45

INTERFACING WITH GIT

Need to work on a Git repository? Try hg-git!
» Mercurial extension: you get the nice hg command line
» round-tripping: changeset hashes are preserved

I

THIRD-PARTY TOOLS

Tools with Mercurial support:
» Shell integration: TortoiseHg (Windows, Mac, Linux)

» IDEs: Eclipse, NetBeans, Intelli), Visual Studio, Emacs. ..
» Project Support: Trac, JIRA, Maven, Hudson, BuildBot. ..

» Ant tasks

TORTOISEHG SCREENSHOTS

tortoisehg-stable commit a : . — E@E
=) <] | X 4k &) ‘
Refresh Commit Undo Revert Add Move Remove
branch: default| Recent Commit Messages. -
commit message|
4 | diff --git a/ReleaseNotes.txt b/ReleaseNotes.tx
total: 2 hunks (6 changed lines); selected: 1 hunks (2 changed lines)
1 5 ee

st4 ms 4 path
ReleaseNotes. txt

@

M

-Ti
+Ti

he old Python shell extension has been removed in favor of a pure C++ shell
extension which directly reads the Mercurial dirstate for overlays, and
This should fix much of the

C++ Shell Extension =
he Python shell extension has been removed in favor of a pure C++ shell

produces hard-coded context menus.

n

17,7 +17,7 ee

ee
extension which directly reads the Mercurial dirstate for overlays, and
produces hard-coded context menus. This should fix much of the
-interoperability problems reported in issue #67, and it fixes the

-owerlay performance problems we have suffered since wersion ©.1.
+interoperability problems reported in issue #67, and it fixes the overlay
1 1.

1 selected, 1 total

+performance problens we have suffered since version 8
we have introduced a taskbar application

To support fast overlay icons

(thgtaskbar.exe, programmed in Python) that externalizes the refreshing

:unknown [T ignored

R: removed
eleted [[]

modified

C: clean

: added

38/45

TORTOISEHG SCREENSHOTS

[tortoisehg-stable shelve

e

‘ T
- S -

Refresh ‘ Shelve Unihave‘

444-@9‘

Revert Add Move Remove

st4 ms 4 path
E n Relea:

diff --git a/Rel txt b/Rel
total: 2 hunks (6 changed lines); selected: 2 hunk5 (6 changed

= C++ Shell Extension =—

-The Python shell extension has been removed in favor of a pure
+The old Python shell extension has been removed in favor of a |
extension which directly reads the Mercurial dirstate for over
produces hard-coded context menus. This should fix much of thi

n

@@ - +1

extension whlch dlre:ﬂy reads the Mercurial dirstate for over
produces hard-coded context menus. This should fix much of th
-interoperability problems reported in issue #67, and it fixes

-overlay performance problems we have suffered since wversion 0.
+interoperability problems reported in issue #67, and it fixes

+performance problems we have suffered since version 0.1.

To suppert fast overlay icons, we have introduced a taskbar ap| _

(+hatsckhar ava nranresmmad in Buthan) that aviarnslizee tha r

< i] 3

M: modified
A: added

R: removed

% unknown [L ignored 1 selected, 1 total
Ldeleted [C clean

38/45

TORTOISEHG SCREENSHOTS

[‘@ DataMining -tﬂrtu{sahg-stable—“ — — :- _— =N
New Search Stop
hgtk@3023
Graph Rev Summary User -
hgtk: fix early forking problems by not using fork
i 2897 hgtk: introduce --nofork global option Steve Borho
2890 hgtk: fix indexing errars in nofork hack Steve Borho
i 2846 hgtk: improve argument detection before forking Steve Borho
: 2832 hgtk: enable forking behavior for GUI commands SteveBorho -
4 n | 3
| |Line Rev Source -
" |s 1725 # Copyright (C) 2088-9 Steve Borho <steve@borho.org> E|
e 1725 # Copyright (C) 2088 TK Soh <teekaysoh@gmail.coms
Wl 7 1725 #
| |e 1725
NE] 2340 import os
M |18 2348 import sys
1 2348
a9 340 3F haeadde o “Frnzantl. =2
< 3 f
Dene

38/45

OUTLINE

WRAPPING UP
Alternatives
Unsolved Problems
Conclusion

39/45

GIT

The version control system by Linus Torvalds:

- =

Tee it

v

distributed, fast, scalable

v

used by Linux Kernel, Perl, and many others

v

written in C, shell scripts(!) and a little Perl

v

models history the same way as Mercurial

40/45

GIT DIFFERENCES

Git is different in a number of ways:

>

>

>

+o¢ git
quite verbose compared to Mercurial
core Mercurial never rewrites history, Git has it built-in
changes are added to an “index” before commit:

% git add .
% git commit -m ’Initial import.’
[master (root-commit) ba4lf97] Initial import.
2 files changed, 7 insertions(+), O deletions(-)
create mode 100644 Makefile
create mode 100644 hello.c
% echo ’/+ The End =/’ >> hello.c
% git add hello.c
% git commit -m ’Added comment.’
[master 2489734] Added comment.
1 files changed, 1 insertions(+), 0 deletions(-)

41/45

DARCS

_ _ @ darcs
Repository consist of unordered changesets:
+first
+second
first first -first
-bottom -second +top
+bot +bottom second

42/45

DARCS

Repository consist of unordered changesets:

+first

+second

first first

-bottom -second
+bot +bottom

@ darcs
first
second
-first
+top
second

DARCS

_ _ @ darcs
Repository consist of unordered changesets:
+first
+second First
bottom
first ‘ first -first
-bottom -second +top
+bot ‘ +bottom second

DARCS

Repository consist of unordered changesets:

+first

+second

first first

-bottom -second
+bot +bottom

-first
+top

second

@ darcs

first
bot

DARCS

_ _ @ darcs
Repository consist of unordered changesets:
+first
+second top
second

first first -first
-bottom -second +top
+bot +bottom second

DARCS

Repository consist of unordered changesets:

+first

+second

first ‘ first

-bottom -second
+bot ‘ +bottom

-first
+top

second

Q;darcs

top
bottom

DARCS

Repository consist of unordered changesets:

+first

+second

first
-bottom
+bot

first
-second
+bottom

second

-first
+top

@ darcs

top
bot

DARCS

_ _ @ darcs
Repository consist of unordered changesets:
+first
+second
first first -first
-bottom — -second +top
+bot +bottom second

Why isn’t everybody using Darcs?
» determining if a change commutes with another is slow
» merges could take hours or days with older versions

42 /45

UNSOLVED PROBLEMS

DVCSs generally have problems with
» large binary files
» retrieving only a sub-tree (narrow clones)
» retrieving only recent history (shallow clones)
Some more Mercurial specific problems are:
> it is fairly easy to create conflicts in .hgtags files
» filename encodings across different filesystems

MERCURIAL IN A NUTSHELL

Mercurial changes the way you develop:
» simple yet strong model for both branching and merging
» power tool instead of necessary evil
» light-weight and snhappy

44 /45

MORE INFORMATION

» Mercurial homepage:
http://mercurial.selenic.com/

» Mercurial: The Definitive Guide:
http://hgbook.red-bean.com/

» Some free Mercurial hosting sites:
http://www.bitbucket.org/
http://code.google.com/
http://sourceforge.net/

45/45

http://mercurial.selenic.com/
http://hgbook.red-bean.com/
http://www.bitbucket.org/
http://code.google.com/
http://sourceforge.net/

MORE INFORMATION
» Mercurial homepage:
http://mercurial.selenic.com/

» Mercurial: The Definitive Guide:
http://hgbook.red-bean.com/

» Some free Mercurial hosting sites:
http://www.bitbucket.org/
http://code.google.com/
http://sourceforge.net/

Thank youl!

45/45

http://mercurial.selenic.com/
http://hgbook.red-bean.com/
http://www.bitbucket.org/
http://code.google.com/
http://sourceforge.net/

	Introduction
	Basic Concepts
	Historic Context
	Subversion in Detail

	Using Mercurial
	The Underlying Model
	Workflows
	Using History

	Cool Extensions
	Changing History
	Talking to Other Systems
	Third-Party Tools

	Wrapping Up
	Alternatives
	Unsolved Problems
	Conclusion

