
Fast, Flexible and Fun:
Revision Control with Mercurial

Martin Geisler
〈mg@lazybytes.net〉

JAOO Geek Night in Aarhus
August 25, 2009



Outline
Introduction

Basic Concepts
Historic Context
Subversion in Detail

Using Mercurial
The Underlying Model
Workflows
Using History

Cool Extensions
Changing History
Talking to Other Systems
Third-Party Tools

Wrapping Up
Alternatives
Unsolved Problems
Conclusion

2 / 45



Outline
Introduction

Basic Concepts
Historic Context
Subversion in Detail

Using Mercurial
The Underlying Model
Workflows
Using History

Cool Extensions
Changing History
Talking to Other Systems
Third-Party Tools

Wrapping Up
Alternatives
Unsolved Problems
Conclusion

3 / 45



Features in Version Control Systems

Universal features:

ñ let you save changes

ñ browser the history

Common features:

ñ collaboration

ñ branches

ñ tags

Not so common features:

ñ speed!

ñ much more, as you will see. . .

4 / 45



Features in Version Control Systems

Universal features:

ñ let you save changes

ñ browser the history

Common features:

ñ collaboration

ñ branches

ñ tags

Not so common features:

ñ speed!

ñ much more, as you will see. . .

4 / 45



Features in Version Control Systems

Universal features:

ñ let you save changes

ñ browser the history

Common features:

ñ collaboration

ñ branches

ñ tags

Not so common features:

ñ speed!

ñ much more, as you will see. . .

4 / 45



The Repository

The database that holds your history:

ñ series of project-wide snapshots

ñ called changesets or revisions in Mercurial

ñ changesets encapsulate a delta between two snapshots

ñ each changeset has a parent changeset

Repository

5 / 45



The Working Directory

Holds your files:

hello.c
Makefile

Alice

hello.c
goodbye.c
Makefile

Bob

ñ you edit files in the working directory

ñ reflects a changeset (the parent changeset)

ñ also called a working copy

6 / 45



Branches

A key concept:

ñ parallel lines of development

ñ used to track releases

ñ used to isolate disruptive changes

7 / 45



Branches

A key concept:

ñ parallel lines of development

ñ used to track releases

ñ used to isolate disruptive changes

time

7 / 45



Branches

A key concept:

ñ parallel lines of development

ñ used to track releases

ñ used to isolate disruptive changes

time

1.0

7 / 45



Branches

A key concept:

ñ parallel lines of development

ñ used to track releases

ñ used to isolate disruptive changes

time

1.0

7 / 45



Branches

A key concept:

ñ parallel lines of development

ñ used to track releases

ñ used to isolate disruptive changes

time

1.0

1.0.1

7 / 45



Branches

A key concept:

ñ parallel lines of development

ñ used to track releases

ñ used to isolate disruptive changes

time

1.0

1.0.1 1.0.2

7 / 45



Merging

The opposite of branching:

ñ combines two branches

ñ used to merge back bugfixes

ñ used to integrate feature branches

time

1.0

1.0.1 1.0.2

8 / 45



Merging

The opposite of branching:

ñ combines two branches

ñ used to merge back bugfixes

ñ used to integrate feature branches

time

1.0

1.0.1 1.0.2

8 / 45



Merging

The opposite of branching:

ñ combines two branches

ñ used to merge back bugfixes

ñ used to integrate feature branches

time

1.0

1.0.1 1.0.2

8 / 45



Centralized Revision Control

Subversion use a single server:

Repository

trunk/
hello.c
Makefile

Alice

branches/
bob/

hello.c
Makefile

Bob

trunk/
hello.c
Makefile

Carla

9 / 45



Distributed Revision Control

Mercurial duplicates the history on many servers:

Alice

Bob Carla

10 / 45



Distributed Revision Control

Mercurial duplicates the history on many servers:

Alice

Bob Carla

Alice’s
Laptop

10 / 45



Distributed Revision Control

Mercurial duplicates the history on many servers:

Alice

Bob Carla

Alice’s
Laptop

Server

10 / 45



Distributed Revision Control

Mercurial duplicates the history on many servers:

Alice

Bob Carla

Alice’s
Laptop

Server

10 / 45



Revision Control System (RCS)

Version control from the 1980s:

ñ store changes (date, commit message)

ñ browse history

11 / 45



Revision Control System (RCS)

Version control from the 1980s:

ñ store changes (date, commit message)

ñ browse history

hello.c:

Makefile:

11 / 45



Revision Control System (RCS)

Version control from the 1980s:

ñ store changes (date, commit message)

ñ browse history

hello.c:

Makefile:

11 / 45



Revision Control System (RCS)

Version control from the 1980s:

ñ store changes (date, commit message)

ñ browse history

hello.c:

Makefile:

11 / 45



Revision Control System (RCS)

Version control from the 1980s:

ñ store changes (date, commit message)

ñ browse history

hello.c:

Makefile:

11 / 45



Revision Control System (RCS)

Version control from the 1980s:

ñ store changes (date, commit message)

ñ browse history

hello.c:

Makefile:

11 / 45



Revision Control System (RCS)

Version control from the 1980s:

ñ store changes (date, commit message)

ñ browse history

hello.c:

Makefile:

11 / 45



Concurrent Versions System (CVS)

Version control in the 1990s:

ñ collaboration over the network

ñ several working copies

ñ one central repository

hello.c
Makefile

Alice

CVS Server

hello.c
Makefile

Bob

hello.c:

Makefile:

12 / 45



Concurrent Versions System (CVS)

Version control in the 1990s:

ñ collaboration over the network

ñ several working copies

ñ one central repository

hello.c
Makefile

Alice

CVS Server

hello.c
Makefile

Bob

hello.c:

Makefile:

12 / 45



Concurrent Versions System (CVS)

Version control in the 1990s:

ñ collaboration over the network

ñ several working copies

ñ one central repository

hello.c
Makefile

Alice

CVS Server

hello.c
Makefile

Bob

hello.c:

Makefile:

commit

12 / 45



Concurrent Versions System (CVS)

Version control in the 1990s:

ñ collaboration over the network

ñ several working copies

ñ one central repository

hello.c
Makefile

Alice

CVS Server

hello.c
Makefile

Bob

hello.c:

Makefile:

update

12 / 45



So, everything is good?

CVS has many limitations:

ñ no atomic commits

ñ no rename information

ñ branches? I hope you have a CVS guru at hand. . .

13 / 45



Subversion (SVN)

Version control from this millennia — “CVS done right”:

ñ atomic commits

ñ tracks renames

ñ supports some operations without network access

ñ clean and simple design compared to CVS

14 / 45



Merging in Subversion

SVN is a centralized system:

Repository

hello.c
Makefile

Alice

hello.c
Makefile

Bob

hello.c
Makefile

Carla

hello.c
Makefile

Dan

hello.c
Makefile

Eve

ñ merging takes place in client

ñ merging takes place on server(!)

15 / 45



SVN Merge in Client

When you do svn update, you merge:

ñ this can of course result in conflicts

ñ you must resolve the merge before you go on

ñ might be difficult to handle everything at once

What if you want to abandon a merge?

ñ you can revert files with conflicts to their old state

ñ but other files may have been updated

ñ beware of mixed revisions. . .

16 / 45



SVN Merge in Client

When you do svn update, you merge:

ñ this can of course result in conflicts

ñ you must resolve the merge before you go on

ñ might be difficult to handle everything at once

What if you want to abandon a merge?

ñ you can revert files with conflicts to their old state

ñ but other files may have been updated

ñ beware of mixed revisions. . .

16 / 45



Mixed Revisions?!

SVN lets you work with an inconsistent working copy:

ñ Alice and Bob have revision 1

ñ Alice changes hello.c → revision 2

ñ Bob changes Makefile → revision 3

They both have mixed revisions in their working copies:

hello.c (r2)
Makefile (r1)

Alice

hello.c (r1)
Makefile (r3)

Bob

Difficult for Carla to reproduce either working copy.

17 / 45



Mixed Revisions?!

SVN lets you work with an inconsistent working copy:

ñ Alice and Bob have revision 1

ñ Alice changes hello.c → revision 2

ñ Bob changes Makefile → revision 3

They both have mixed revisions in their working copies:

hello.c (r2)
Makefile (r1)

Alice

hello.c (r1)
Makefile (r3)

Bob

Difficult for Carla to reproduce either working copy.

17 / 45



Server-Side Merges

Mixed revisions are a result of allowing server-side merges

ñ can we forbid server-side merges?

ñ not really — it would ruin branches in SVN

18 / 45



Branches in SVN

Subversion knows nothing about branches!

ñ but SVN has a cheap copy mechanism

ñ used for tags and branches

19 / 45



Branches in SVN

Subversion knows nothing about branches!

ñ but SVN has a cheap copy mechanism

ñ used for tags and branches

trunk/
hello.c
Makefile

branches/
tags/

r10

19 / 45



Branches in SVN

Subversion knows nothing about branches!

ñ but SVN has a cheap copy mechanism

ñ used for tags and branches

trunk/
hello.c
Makefile

branches/
tags/

r10

trunk/
hello.c
Makefile

branches/
goodbye/

hello.c
Makefile

tags/

r11

19 / 45



Branches in SVN

Subversion knows nothing about branches!

ñ but SVN has a cheap copy mechanism

ñ used for tags and branches

trunk/
hello.c
Makefile

branches/
tags/

r10

trunk/
hello.c
Makefile

branches/
goodbye/

hello.c
Makefile

tags/

r11

trunk/
hello.c
Makefile

branches/
goodbye/

hello.c
goodbye.c
Makefile

tags/

r12

19 / 45



Merging Branches in SVN

Branches are only interesting if you can merge them:

ñ before SVN 1.5: no built-in support for merging(!)

ñ SVN 1.5 and later: tracks info needed for merging

The bottom line is that Subversion’s merge-tracking feature
has an extremely complex internal implementation, and the
svn:mergeinfo property is the only window the user has
into the machinery. Because the feature is relatively new, a
numbers of edge cases and possible unexpected behaviors
may pop up. —Version Control with Subversion

(Mercurial has robust built-in support for merging branches.)

20 / 45



Merging Branches in SVN

Branches are only interesting if you can merge them:

ñ before SVN 1.5: no built-in support for merging(!)

ñ SVN 1.5 and later: tracks info needed for merging

The bottom line is that Subversion’s merge-tracking feature
has an extremely complex internal implementation, and the
svn:mergeinfo property is the only window the user has
into the machinery. Because the feature is relatively new, a
numbers of edge cases and possible unexpected behaviors
may pop up. —Version Control with Subversion

(Mercurial has robust built-in support for merging branches.)

20 / 45



Outline
Introduction

Basic Concepts
Historic Context
Subversion in Detail

Using Mercurial
The Underlying Model
Workflows
Using History

Cool Extensions
Changing History
Talking to Other Systems
Third-Party Tools

Wrapping Up
Alternatives
Unsolved Problems
Conclusion

21 / 45



Live Demo!

22 / 45



The Underlying Model

A Mercurial changeset conceptually consist of:
ñ 0–2 parent changeset IDs:

ñ root changeset has no parents
ñ normal commits have one parent
ñ merge changesets have two parents

ñ date, username, commit message

ñ difference from first parent

ñ changeset ID is computed as SHA-1 hash of the above

23 / 45



Immutable History

SHA-1 hashes as changeset IDs have some consequences:

ñ a changeset ID is a hash of the entire history

ñ changing history changes subsequent changesets

ñ history is immutable, you can only make new history:

A B C D E

24 / 45



Immutable History

SHA-1 hashes as changeset IDs have some consequences:

ñ a changeset ID is a hash of the entire history

ñ changing history changes subsequent changesets

ñ history is immutable, you can only make new history:

A B

C′ D′ E ′

C D E

24 / 45



Immutable History

SHA-1 hashes as changeset IDs have some consequences:

ñ a changeset ID is a hash of the entire history

ñ changing history changes subsequent changesets

ñ history is immutable, you can only make new history:

A B

C′ D′ E ′

C D E

24 / 45



Central Workflow

Everybody has write access to a central repository:

Repository

Alice

Bob

Carla

Dan

Eve

25 / 45



Pull Workflow

People have read-only access (e.g., hg serve):

0

Alice
0

Bob

0

Carla

26 / 45



Pull Workflow

People have read-only access (e.g., hg serve):

0

Alice
1 0

Bob

0

Carla

26 / 45



Pull Workflow

People have read-only access (e.g., hg serve):

0

Alice
1 2 0

Bob

0

Carla

26 / 45



Pull Workflow

People have read-only access (e.g., hg serve):

0

Alice
1 2 0

Bob
1

0

Carla

26 / 45



Pull Workflow

People have read-only access (e.g., hg serve):

0

Alice

1

1 2 0

Bob
1

0

Carla

pull

26 / 45



Pull Workflow

People have read-only access (e.g., hg serve):

0

Alice

1

1 2 3 0

Bob
1

0

Carla

26 / 45



Pull Workflow

People have read-only access (e.g., hg serve):

0

Alice

1

1 2 3 0

Bob
1

0

Carla
1

26 / 45



Pull Workflow

People have read-only access (e.g., hg serve):

0

Alice

1

1 2 3 0

Bob
1

0

Carla
1 2

26 / 45



Pull Workflow

People have read-only access (e.g., hg serve):

0

Alice

1

1 2 3 0

Bob
1

0

Carla

1

1 2

pull

26 / 45



Pull Workflow

People have read-only access (e.g., hg serve):

0

Alice

1

1 2 3 0

Bob
1

0

Carla

1

1 2 3

26 / 45



Pull Workflow

People have read-only access (e.g., hg serve):

0

Alice

1

1 2 3 0

Bob
1

0

Carla

1

1 2 3

1 2 3

pull

26 / 45



Pull Workflow

People have read-only access (e.g., hg serve):

0

Alice

1

1 2 3 0

Bob
1

0

Carla

1

1 2 3

1 2 3 4

26 / 45



Exploring History

Everything is local and fast:

ñ hg log can search in commit messages and usernames

ñ hg grep searches in file content

ñ hg bisect makes a binary search on the revision graph

27 / 45



Revision Graph Bisection

You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

bad

28 / 45



Revision Graph Bisection

You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

test bad

28 / 45



Revision Graph Bisection

You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good bad

28 / 45



Revision Graph Bisection

You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good test bad

28 / 45



Revision Graph Bisection

You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good good bad

28 / 45



Revision Graph Bisection

You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good

test

good bad

28 / 45



Revision Graph Bisection

You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good

bad

good bad

28 / 45



Revision Graph Bisection

You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good

test bad

good bad

28 / 45



Revision Graph Bisection

You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good

bug! bad

good bad

28 / 45



Outline
Introduction

Basic Concepts
Historic Context
Subversion in Detail

Using Mercurial
The Underlying Model
Workflows
Using History

Cool Extensions
Changing History
Talking to Other Systems
Third-Party Tools

Wrapping Up
Alternatives
Unsolved Problems
Conclusion

29 / 45



Mercurial is Extensible

You can add new functionality to Mercurial:

ñ ships with 30 extensions

ñ wiki lists 57 extensions

ñ extensions can change basically everything

ñ helps to keep the core small and focused

30 / 45



Moving Changesets Around

Tired of all those merges? Use the rebase extension!

ñ Revision graph:

A B C

ñ Merge:

A B C

X Y Z

D E M

ñ Rebase:
A B C

X Y Z D′ E ′

D E

ñ Beware: public changes should never be rebased.

31 / 45



Moving Changesets Around

Tired of all those merges? Use the rebase extension!

ñ Revision graph:

A B C D E

ñ Merge:

A B C

X Y Z

D E M

ñ Rebase:
A B C

X Y Z D′ E ′

D E

ñ Beware: public changes should never be rebased.

31 / 45



Moving Changesets Around

Tired of all those merges? Use the rebase extension!

ñ Revision graph:

A B C

X Y Z

D E

ñ Merge:

A B C

X Y Z

D E M

ñ Rebase:
A B C

X Y Z D′ E ′

D E

ñ Beware: public changes should never be rebased.

31 / 45



Moving Changesets Around

Tired of all those merges? Use the rebase extension!

ñ Revision graph:

A B C

X Y Z

D E

ñ Merge:

A B C

X Y Z

D E M

ñ Rebase:
A B C

X Y Z D′ E ′

D E

ñ Beware: public changes should never be rebased.

31 / 45



Moving Changesets Around

Tired of all those merges? Use the rebase extension!

ñ Revision graph:

A B C

X Y Z

D E

ñ Merge:

A B C

X Y Z

D E M

ñ Rebase:
A B C

X Y Z D′ E ′

D E

ñ Beware: public changes should never be rebased.

31 / 45



Moving Changesets Around

Tired of all those merges? Use the rebase extension!

ñ Revision graph:

A B C

X Y Z

D E

ñ Merge:

A B C

X Y Z

D E M

ñ Rebase:
A B C

X Y Z D′ E ′

D E

ñ Beware: public changes should never be rebased.

31 / 45



Maintaining Patch Series

The mq extension makes it easy to maintain a patch series:

...

Works nicely for local modification for upstream sources.

32 / 45



Maintaining Patch Series

The mq extension makes it easy to maintain a patch series:

...

code

Works nicely for local modification for upstream sources.

32 / 45



Maintaining Patch Series

The mq extension makes it easy to maintain a patch series:

...

code

test

Works nicely for local modification for upstream sources.

32 / 45



Maintaining Patch Series

The mq extension makes it easy to maintain a patch series:

...

code

test

doc

Works nicely for local modification for upstream sources.

32 / 45



Maintaining Patch Series

The mq extension makes it easy to maintain a patch series:

...

code

test

doc

qpush qpop

Works nicely for local modification for upstream sources.

32 / 45



Editing History

Inspired by git rebase -i, histedit lets you

ñ reorder changesets:

A B C � A C′ B′

ñ fold changesets:

A B C � A BC

ñ drop changesets:

A B C � A C′

ñ edit changesets:

A B C � A X B′ C′

33 / 45



Editing History

Inspired by git rebase -i, histedit lets you

ñ reorder changesets:

A B C � A C′ B′

ñ fold changesets:

A B C � A BC

ñ drop changesets:

A B C � A C′

ñ edit changesets:

A B C � A X B′ C′

33 / 45



Editing History

Inspired by git rebase -i, histedit lets you

ñ reorder changesets:

A B C � A C′ B′

ñ fold changesets:

A B C � A BC

ñ drop changesets:

A B C � A C′

ñ edit changesets:

A B C � A X B′ C′

33 / 45



Editing History

Inspired by git rebase -i, histedit lets you

ñ reorder changesets:

A B C � A C′ B′

ñ fold changesets:

A B C � A BC

ñ drop changesets:

A B C � A C′

ñ edit changesets:

A B C � A X B′ C′

33 / 45



Migrating History

The convert extension can import history:

ñ CVS, SVN, Git, Bazaar, Darcs, . . .

ñ incremental conversion

ñ many options for fiddling with branches, authors, . . .

Interestingly, convert can import from Mercurial:

ñ --filemap lets you exclude and rename files

ñ --branchmap lets you rename branches

34 / 45



Migrating History

The convert extension can import history:

ñ CVS, SVN, Git, Bazaar, Darcs, . . .

ñ incremental conversion

ñ many options for fiddling with branches, authors, . . .

Interestingly, convert can import from Mercurial:

ñ --filemap lets you exclude and rename files

ñ --branchmap lets you rename branches

34 / 45



Interfacing with Subversion

The hgsubversion extension let’s you:

ñ use hg clone on a SVN URLs

ñ use hg pull to convert new SVN revisions

ñ use hg push to commit changesets to SVN server

The extension is being used, but please note:

ñ it is not yet feature complete

ñ requires standard trunk/, branches/ and tags/ layout

35 / 45



Interfacing with Git

Need to work on a Git repository? Try hg-git!

ñ Mercurial extension: you get the nice hg command line

ñ round-tripping: changeset hashes are preserved

Git

Hg Hg Git

36 / 45



Third-Party Tools

Tools with Mercurial support:

ñ Shell integration: TortoiseHg (Windows, Mac, Linux)

ñ IDEs: Eclipse, NetBeans, IntelliJ, Visual Studio, Emacs. . .

ñ Project Support: Trac, JIRA, Maven, Hudson, BuildBot. . .

ñ Ant tasks

37 / 45



TortoiseHg Screenshots

38 / 45



TortoiseHg Screenshots

38 / 45



TortoiseHg Screenshots

38 / 45



Outline
Introduction

Basic Concepts
Historic Context
Subversion in Detail

Using Mercurial
The Underlying Model
Workflows
Using History

Cool Extensions
Changing History
Talking to Other Systems
Third-Party Tools

Wrapping Up
Alternatives
Unsolved Problems
Conclusion

39 / 45



Git

The version control system by Linus Torvalds:

ñ distributed, fast, scalable

ñ used by Linux Kernel, Perl, and many others

ñ written in C, shell scripts(!) and a little Perl

ñ models history the same way as Mercurial

40 / 45



Git Differences

Git is different in a number of ways:

ñ quite verbose compared to Mercurial

ñ core Mercurial never rewrites history, Git has it built-in

ñ changes are added to an “index” before commit:

% git add .
% git commit -m ’Initial import.’
[master (root-commit) ba41f97] Initial import.
2 files changed, 7 insertions(+), 0 deletions(-)
create mode 100644 Makefile
create mode 100644 hello.c
% echo ’/* The End */’ >> hello.c
% git add hello.c
% git commit -m ’Added comment.’
[master 2489734] Added comment.
1 files changed, 1 insertions(+), 0 deletions(-)

41 / 45



Darcs

Repository consist of unordered changesets:

+first
+second

first
-second
+bottom

-first
+top
second

first
-bottom
+bot

Why isn’t everybody using Darcs?

ñ determining if a change commutes with another is slow

ñ merges could take hours or days with older versions

42 / 45



Darcs

Repository consist of unordered changesets:

+first
+second

first
-second
+bottom

-first
+top
second

first
-bottom
+bot

first
second

Why isn’t everybody using Darcs?

ñ determining if a change commutes with another is slow

ñ merges could take hours or days with older versions

42 / 45



Darcs

Repository consist of unordered changesets:

+first
+second

first
-second
+bottom

-first
+top
second

first
-bottom
+bot

first
bottom

Why isn’t everybody using Darcs?

ñ determining if a change commutes with another is slow

ñ merges could take hours or days with older versions

42 / 45



Darcs

Repository consist of unordered changesets:

+first
+second

first
-second
+bottom

-first
+top
second

first
-bottom
+bot

first
bot

Why isn’t everybody using Darcs?

ñ determining if a change commutes with another is slow

ñ merges could take hours or days with older versions

42 / 45



Darcs

Repository consist of unordered changesets:

+first
+second

first
-second
+bottom

-first
+top
second

first
-bottom
+bot

top
second

Why isn’t everybody using Darcs?

ñ determining if a change commutes with another is slow

ñ merges could take hours or days with older versions

42 / 45



Darcs

Repository consist of unordered changesets:

+first
+second

first
-second
+bottom

-first
+top
second

first
-bottom
+bot

top
bottom

Why isn’t everybody using Darcs?

ñ determining if a change commutes with another is slow

ñ merges could take hours or days with older versions

42 / 45



Darcs

Repository consist of unordered changesets:

+first
+second

first
-second
+bottom

-first
+top
second

first
-bottom
+bot

top
bot

Why isn’t everybody using Darcs?

ñ determining if a change commutes with another is slow

ñ merges could take hours or days with older versions

42 / 45



Darcs

Repository consist of unordered changesets:

+first
+second

first
-second
+bottom

-first
+top
second

first
-bottom
+bot

Why isn’t everybody using Darcs?

ñ determining if a change commutes with another is slow

ñ merges could take hours or days with older versions

42 / 45



Unsolved Problems

DVCSs generally have problems with

ñ large binary files

ñ retrieving only a sub-tree (narrow clones)

ñ retrieving only recent history (shallow clones)

Some more Mercurial specific problems are:

ñ it is fairly easy to create conflicts in .hgtags files

ñ filename encodings across different filesystems

43 / 45



Mercurial in a Nutshell

Mercurial changes the way you develop:

ñ simple yet strong model for both branching and merging

ñ power tool instead of necessary evil

ñ light-weight and snappy

44 / 45



More Information
ñ Mercurial homepage:
http://mercurial.selenic.com/

ñ Mercurial: The Definitive Guide:
http://hgbook.red-bean.com/

ñ Some free Mercurial hosting sites:
http://www.bitbucket.org/
http://code.google.com/
http://sourceforge.net/

45 / 45

http://mercurial.selenic.com/
http://hgbook.red-bean.com/
http://www.bitbucket.org/
http://code.google.com/
http://sourceforge.net/


More Information
ñ Mercurial homepage:
http://mercurial.selenic.com/

ñ Mercurial: The Definitive Guide:
http://hgbook.red-bean.com/

ñ Some free Mercurial hosting sites:
http://www.bitbucket.org/
http://code.google.com/
http://sourceforge.net/

Thank you!

45 / 45

http://mercurial.selenic.com/
http://hgbook.red-bean.com/
http://www.bitbucket.org/
http://code.google.com/
http://sourceforge.net/

	Introduction
	Basic Concepts
	Historic Context
	Subversion in Detail

	Using Mercurial
	The Underlying Model
	Workflows
	Using History

	Cool Extensions
	Changing History
	Talking to Other Systems
	Third-Party Tools

	Wrapping Up
	Alternatives
	Unsolved Problems
	Conclusion


