
Mercurial Geek Night II

Using Mercurial in

software product management

Gonzalo Casas

gc@isonet.ch

About the speaker

� Gonzalo Casas

� Software Engineer at isonet since 2007

� Maintains the Mercurial repositories

� Manages the development process on top of it

� BS in Computer Science from University Siglo 21, Córdoba, Argentina

Outline

� Introduction
� Background

� Terminology

� Before Mercurial
� In the beginning…

� The migration

� Current approach
� Mercurial deployment

� Development process

� Wrapping up

INTRODUCTION

Mercurial Geek Night II

Outline

� Introduction
� Background

� Terminology

� Before Mercurial
� In the beginning…

� The migration

� Current approach
� Mercurial deployment

� Development process

� Wrapping up

Background

� isonet ag is a software house founded in 1994

� Scrum for development process

� Three development teams

� Two in Zürich, Switzerland

� One in Leipzig, Germany

� Two software products

� TicketXPert.NET

� WorkflowXPert.NET

Background

� Our products are deployed to over 50

customers

� Releases must have long-term support

� At least 2 years per release

� New features are required constantly based on

short-term customer project

� Usually less than 3/6-months projects

� Hot-fixes are required for builds of the product

Outline

� Introduction
� Background

� Terminology

� Before Mercurial
� In the beginning…

� The migration

� Current approach
� Mercurial deployment

� Development process

� Wrapping up

Terminology

� Software product management

� “…managing software that is built and

implemented as a product, taking into account life-

cycle considerations and generally with a wide

audience.” [Wikipedia]

Terminology

� Build

� A compiled and packaged version of the software.

� The following are examples of our builds:

� 3.6.0.0; 3.6.1.0; 3.7.9.0; etc.

� Release

� Comprises a series of builds of the same code line.

� The following are examples of our releases:

� 3.4.x; 3.6.x; 3.7.x; etc.

BEFORE MERCURIAL

Mercurial Geek Night II

Outline

� Introduction
� Background

� Terminology

� Before Mercurial
� In the beginning…

� The migration

� Current approach
� Mercurial deployment

� Development process

� Wrapping up

In the beginning…

� …there was nothing (i.e. Source Safe).

� Three years ago, we migrated to Subversion.

� Things went well…until we branched.

� Merging effort greatly increased as we started

building complex new features using feature

branches.

In the beginning…

� Subversion doesn’t store enough information

to make merging simple.

� We waited for merge tracking support in

Subversion 1.5, but it only made things worse.

� Tracking information stored in properties caused

merging conflict on meta-data.

� By the end of 2009, we spent 1 full month

merging a feature branch…

� …so we decided to change.

Outline

� Introduction
� Background

� Terminology

� Before Mercurial
� In the beginning…

� The migration

� Current approach
� Mercurial deployment

� Development process

� Wrapping up

The migration

� Migration task force

� The requirements:

� Simple merging in complex branched scenario.

� Support for offsite teams.

� Good Windows support/client.

� Lightweight maintenance.

� Alternatives:

� Mercurial, GIT, Bazaar, Perforce, TFS, AccuRev, etc.

The migration

� Mercurial won the evaluation:

� Community and enterprise support were crucial in

selecting it.

� The only real contender was GIT, but Mercurial was

selected mainly due to Windows support.

� Most others didn’t offer all the required features,

or the cost was too high.

The migration

� Migration from Subversion:

� Using hg convert

� Full history migrated

� Almost out-of-the-box process:

� Only addition was including SVN rev numbers in the

commit message.

� Migrated client from TortoiseSVN to TortoiseHG

� Developer re-education:

� Internal trainings and cheat sheets

CURRENT APPROACH

Mercurial Geek Night II

Outline

� Introduction
� Background

� Terminology

� Before Mercurial
� In the beginning…

� The migration

� Current approach
� Mercurial deployment

� Development process

� Wrapping up

Mercurial Deployment

� Mercurial servers:

� Zürich: One central Mercurial server

� Leipzig: Clones of main repos, sync’d daily

� Repositories are our main branching unit

� Basic repositories:

� DEV (‘trunk’ in SVN terminology)

� Releases repositories

� Build repositories

Mercurial Deployment

Mercurial Deployment

� Work environment:

� TortoiseHG on clients.

� Perforce Merge as 3-way merge tool (free)

� No IDE integration required.

� Extensions in use: MQ, Rebase, Transplant.

� Push rights on server:

� Restricted to Scrum Masters and QA managers.

Mercurial Deployment

� Some statistics:

� DEV has around 85000 changesets

� Each repository is about 1.4GB

� Around 47000 files in the full solution

� Between 5 to 10 big features developed in parallel

at any time

Outline

� Introduction
� Background

� Terminology

� Before Mercurial
� In the beginning…

� The migration

� Current approach
� Mercurial deployment

� Development process

� Wrapping up

Development process

� Where we develop new code?

� If it is a small coding task: we use patches.

� If it is normal/big: we create feature repository or

bug-fix repositories.

� For huge features, we use the concept of EPIC story

repository.

Development process

Development process

� Two types of releases:

� Normal releases:

� Only receive bug-fixes.

� EVEN version numbers, e.g. 3.4.x.

� Preview releases:

� Cloned from normal releases.

� Receive bug-fixes and new features.

� ODD version numbers, e.g. 3.7.x.

� Only one preview release alive at any given time.

Development process

� Full overview of repositories:

� DEV

� Releases repositories

� Normal repositories, e.g. 3.4.x, 3.6.x

� Preview repositories, e.g. 3.7.x

� Build repositories

� E.g. 3.4.0.x, 3.4.1.x, 3.6.1.x, 3.7.4.x, etc.

� Feature repositories

� Bug-fix repositories

Development process

Development process

� Hot-fixing:

� Using hg transplant to cherry-pick specific changes

from releases into build repositories

� Versioning is increased on build repository

Putting it all together

DEV

Clone MergePull Pull

Story #1

Story #x

Clone Pull Pull Merge

Clone Merge

Story #y

3.5.x
Clone

3.4.x

Clone

Merge
3.5.0.x

Clone

3.5.1.x

Clone

3.4.0.x

Clone

3.4.1.x

Clone

3. 4. 2. x

Clone

Merge

Merge

Story #z

Clone Merge

Bug fixes

Merge

DEV repository

Release repository

Feature/bug-fix repository

Preview release repository

Build repository

transplant

WRAPPING UP

Mercurial Geek Night II

More information

� isonet homepage:

� http://www.isonet.ch

� Mercurial tutorial by Joel Spolsky:

� http://hginit.com

� Mercurial kick-start by aragost Trifork:

� http://mercurial.aragost.com/kick-start

Contact

� Please get in touch if you have more questions:

� Email: gc@isonet.ch

� twitter.com/gnz

Q&A

Thank you!

