
Fast, Flexible and Fun:
Revision Control with Mercurial

Martin Geisler
〈mg@aragost.com〉

Mercurial Geek Night
January 13th, 2011

aragost Trifork

About the Speaker
Martin Geisler:

I core Mercurial developer:
I reviews patches from the community
I helps users in our IRC channel

I PhD in Computer Science from Aarhus University, DK
I exchange student at ETH Zurich in 2005
I visited IBM Zurich Research Lab in 2008

I now working at aragost Trifork, Zurich
I offers professional Mercurial support
I customization, migration, training
I advice on best practices

2 / 32

aragost Trifork

Outline

Mercurial Introduction
Overview
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Extensions and Frontends

Wrapping Up

3 / 32

aragost Trifork

Outline

Mercurial Introduction
Overview
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Extensions and Frontends

Wrapping Up

4 / 32

aragost Trifork

Outline

Mercurial Introduction
Overview
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Extensions and Frontends

Wrapping Up

5 / 32

aragost Trifork

What is Mercurial?
Main features:

I fast, distributed revision control system
I robust support for branching and merging
I very flexible and extensible

6 / 32

aragost Trifork

Who is Using it?
Mercurial is used by:

I Oracle for Java, OpenSolaris, NetBeans, OpenOffice, . . .
I Mozilla for Firefox, Thunderbird, . . .
I Google
I many more. . .

7 / 32

aragost Trifork

Outline

Mercurial Introduction
Overview
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Extensions and Frontends

Wrapping Up

8 / 32

aragost Trifork

Centralized Revision Control
Single repository, multiple working copies:

Repository

hello.c
Makefile
Alice

goodbye.c
Makefile

Bob

9 / 32

aragost Trifork

Centralized Revision Control
Single repository, multiple working copies:

Repository

hello.c
Makefile
Alice

goodbye.c
Makefile

Bob

Drawbacks:
I network latency
I single point of failure
I contrained workflow

9 / 32

aragost Trifork

Distributed Revision Control
Mercurial duplicates the history on many servers:

Alice Bob

hello.c
Makefile

goodbye.c
Makefile

10 / 32

aragost Trifork

Distributed Revision Control
Mercurial duplicates the history on many servers:

Alice Bob

hello.c
Makefile

goodbye.c
Makefile

Advantages:
I no network latency
I distributed, off-line operations
I no imposed workflow

Drawback(?):
I must synchronize repositories

10 / 32

aragost Trifork

Outline

Mercurial Introduction
Overview
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Extensions and Frontends

Wrapping Up

11 / 32

aragost Trifork

Key Mercurial Commands

Alice

hello.c
Makefile

commit

update

Local commands:
I hg commit: save a snapshot into the current repository
I hg update: checkout revision into working directory
I hg merge: join different lines of history

Network commands:
I hg pull: retrieve changesets from another repository
I hg push: send your changesets to another repository

12 / 32

aragost Trifork

Key Mercurial Commands

Alice

hello.c
Makefile

commit

update

push

pull

Local commands:
I hg commit: save a snapshot into the current repository
I hg update: checkout revision into working directory
I hg merge: join different lines of history

Network commands:
I hg pull: retrieve changesets from another repository
I hg push: send your changesets to another repository

12 / 32

aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

I
Bob

Merging:
I find common ancestor of A2 and B1: I
I compute differences between I and B1
I apply them to A2, taking renames into account

13 / 32

aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

A1 I
Bob

Merging:
I find common ancestor of A2 and B1: I
I compute differences between I and B1
I apply them to A2, taking renames into account

13 / 32

aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

A1 A2 I
Bob

Merging:
I find common ancestor of A2 and B1: I
I compute differences between I and B1
I apply them to A2, taking renames into account

13 / 32

aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

A1 A2 I
Bob

B1

Merging:
I find common ancestor of A2 and B1: I
I compute differences between I and B1
I apply them to A2, taking renames into account

13 / 32

aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

B1

A1 A2 I
Bob

B1pull

Merging:
I find common ancestor of A2 and B1: I
I compute differences between I and B1
I apply them to A2, taking renames into account

13 / 32

aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

B1

A1 A2 A3 I
Bob

B1

merge

Merging:
I find common ancestor of A2 and B1: I
I compute differences between I and B1
I apply them to A2, taking renames into account

13 / 32

aragost Trifork

Moving Changesets Around
Pull and merge:

I
Alice

B1

A1 A2 A3 I
Bob

B1

Merging:
I find common ancestor of A2 and B1: I
I compute differences between I and B1
I apply them to A2, taking renames into account

13 / 32

aragost Trifork

Outline

Mercurial Introduction
Overview
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Extensions and Frontends

Wrapping Up

14 / 32

aragost Trifork

Outline

Mercurial Introduction
Overview
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Extensions and Frontends

Wrapping Up

15 / 32

aragost Trifork

Workflow in a Team
Mercurial scales from a single team. . . :

Alice

Bob

Carla Test Prod

16 / 32

aragost Trifork

Workflow Between Company Divisions
. . . to enterprise-wide development. . . :

Poland

Switzerland

India

17 / 32

aragost Trifork

Workflow Between Two Computers
. . . to working with yourself:

Alice’s
Desktop

Alice’s
Laptop

bitbucket.org

18 / 32

aragost Trifork

Outline

Mercurial Introduction
Overview
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Extensions and Frontends

Wrapping Up

19 / 32

aragost Trifork

Release Branches

20 / 32

aragost Trifork

Release Branches

1.0

20 / 32

aragost Trifork

Release Branches

1.0

20 / 32

aragost Trifork

Release Branches

1.0

20 / 32

aragost Trifork

Release Branches

1.0

1.0.1

20 / 32

aragost Trifork

Release Branches

1.0

1.0.1

20 / 32

aragost Trifork

Release Branches

1.0

1.0.1

20 / 32

aragost Trifork

Release Branches

1.0

1.0.1 1.0.2

20 / 32

aragost Trifork

Release Branches

1.0

1.0.1 1.0.2

20 / 32

aragost Trifork

Outline

Mercurial Introduction
Overview
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Extensions and Frontends

Wrapping Up

21 / 32

aragost Trifork

Mercurial is Extensible
You can add new functionality to Mercurial:

I ships with 30+ extensions
I wiki lists 75+ extensions
I extensions can change basically everything
I helps to keep the core small and focused

22 / 32

aragost Trifork

Moving Changesets Around
Tired of all those merges? Use the rebase extension!

I Revision graph:
A B C

I Merge:
A B C

X Y Z

D E M

I Rebase:
A B C

X Y Z D′ E ′

D E

I Beware: public changes should never be rebased.

23 / 32

aragost Trifork

Moving Changesets Around
Tired of all those merges? Use the rebase extension!

I Revision graph:
A B C D E

I Merge:
A B C

X Y Z

D E M

I Rebase:
A B C

X Y Z D′ E ′

D E

I Beware: public changes should never be rebased.

23 / 32

aragost Trifork

Moving Changesets Around
Tired of all those merges? Use the rebase extension!

I Revision graph:
A B C

X Y Z

D E

I Merge:
A B C

X Y Z

D E M

I Rebase:
A B C

X Y Z D′ E ′

D E

I Beware: public changes should never be rebased.

23 / 32

aragost Trifork

Moving Changesets Around
Tired of all those merges? Use the rebase extension!

I Revision graph:
A B C

X Y Z

D E

I Merge:
A B C

X Y Z

D E M

I Rebase:
A B C

X Y Z D′ E ′

D E

I Beware: public changes should never be rebased.

23 / 32

aragost Trifork

Moving Changesets Around
Tired of all those merges? Use the rebase extension!

I Revision graph:
A B C

X Y Z

D E

I Merge:
A B C

X Y Z

D E M

I Rebase:
A B C

X Y Z D′ E ′

D E

I Beware: public changes should never be rebased.

23 / 32

aragost Trifork

Moving Changesets Around
Tired of all those merges? Use the rebase extension!

I Revision graph:
A B C

X Y Z

D E

I Merge:
A B C

X Y Z

D E M

I Rebase:
A B C

X Y Z D′ E ′

D E

I Beware: public changes should never be rebased.
23 / 32

aragost Trifork

Interfacing with Subversion
The hgsubversion extension let’s you:

I use hg clone on a SVN URL
I use hg pull to convert new SVN revisions
I use hg push to commit changesets to SVN server

Goal: make hg a better Subversion client than svn!

24 / 32

aragost Trifork

Third-Party Tools
Tools with Mercurial support:

I Graphical frontends: TortoiseHg, MacHg, . . .
I IDEs: Eclipse, NetBeans, IntelliJ, Visual Studio, . . .
I Project Support: Trac, JIRA, Maven, Hudson, . . .

25 / 32

aragost Trifork

TortoiseHg
Excellent graphical frontend for Mercurial:

I works on Windows, Mac, Linux
I complete Mercurial installation for Windows
I Windows Explorer integration (right-click menu)

I support for popular extensions:
I mq for managing patches
I hgsubversion for interfacing with SVN

26 / 32

aragost Trifork

MacHg
Fast, native Mercurial frontend for Mac OS X:

27 / 32

aragost Trifork

Outline

Mercurial Introduction
Overview
Centralized vs Distributed
Key Mercurial Concepts

Using Mercurial
Workflows
Branches

Extensions and Frontends

Wrapping Up

28 / 32

aragost Trifork

Mercurial in a Nutshell
Mercurial changes the way you develop:

I simple yet strong model for both branching and merging
I power tool instead of necessary evil
I light-weight and snappy

29 / 32

aragost Trifork

More Information
I Mercurial homepage:

http://mercurial.selenic.com/
I Mercurial: The Definitive Guide:

http://hgbook.red-bean.com/
I Getting Started:

http://mercurial.aragost.com/kick-start/
http://mercurial.ch/
http://hginit.com/

I Some free Mercurial hosting sites:
http://bitbucket.org/
http://code.google.com/
http://sourceforge.net/
http://www.codeplex.com/

30 / 32

http://mercurial.selenic.com/
http://hgbook.red-bean.com/
http://mercurial.aragost.com/kick-start/
http://mercurial.ch/
http://hginit.com/
http://bitbucket.org/
http://code.google.com/
http://sourceforge.net/
http://www.codeplex.com/

aragost Trifork

Contact
Please get in touch if you have more questions or have considered
using Mercurial in your organization:

I Email: mg@aragost.com
I IRC: mg in #mercurial on irc.freenode.net

31 / 32

mg@aragost.com
mg
#mercurial
irc.freenode.net

aragost Trifork

Mercurial Contributors
From http://ohloh.net/p/mercurial/map:

32 / 32

http://ohloh.net/p/mercurial/map

aragost Trifork

Mercurial Contributors
From http://ohloh.net/p/mercurial/map:

Thank you!Thank you!

32 / 32

http://ohloh.net/p/mercurial/map

aragost Trifork

Outline

Performance Study: OpenOffice

Subversion and Branches

The Underlying Model

Using History

33 / 32

aragost Trifork

OpenOffice
Fairly large repository:

I 70,000 files, 2,0 GB of data
I 270,000 changesets, 2,3 GB of history

Mercurial is still fast on a repository of this size:
$ time hg status
0.45s user 0.15s system 99% cpu 0.605 total
$ time hg tip
0.28s user 0.03s system 99% cpu 0.309 total
$ time hg log -r DEV300_m50
0.30s user 0.04s system 99% cpu 0.334 total
$ time hg diff
0.74s user 0.16s system 88% cpu 1.006 total
$ time hg commit -m ’Small change’
1.77s user 0.25s system 98% cpu 2.053 total

34 / 32

aragost Trifork

Outline

Performance Study: OpenOffice

Subversion and Branches

The Underlying Model

Using History

35 / 32

aragost Trifork

Branches in SVN
Subversion knows nothing about branches!

I but SVN has a cheap copy mechanism
I used for tags and branches

36 / 32

aragost Trifork

Branches in SVN
Subversion knows nothing about branches!

I but SVN has a cheap copy mechanism
I used for tags and branches

trunk/
hello.c
Makefile

branches/
tags/

r10

36 / 32

aragost Trifork

Branches in SVN
Subversion knows nothing about branches!

I but SVN has a cheap copy mechanism
I used for tags and branches

trunk/
hello.c
Makefile

branches/
tags/

r10
trunk/
hello.c
Makefile

branches/
goodbye/
hello.c
Makefile

tags/

r11

36 / 32

aragost Trifork

Branches in SVN
Subversion knows nothing about branches!

I but SVN has a cheap copy mechanism
I used for tags and branches

trunk/
hello.c
Makefile

branches/
tags/

r10
trunk/
hello.c
Makefile

branches/
goodbye/
hello.c
Makefile

tags/

r11
trunk/
hello.c
Makefile

branches/
goodbye/
hello.c
goodbye.c
Makefile

tags/

r12

36 / 32

aragost Trifork

Merging Branches in SVN
The support is incomplete and fragile:

I renamed files are not merged correctly
I old clients will not update the merge info

From the SVN Book:

The bottom line is that Subversion’s merge-tracking feature has an
extremely complex internal implementation, and the svn:mergeinfo
property is the only window the user has into the machinery. Because
the feature is relatively new, a numbers of edge cases and possible
unexpected behaviors may pop up. —Version Control with Subversion

(Mercurial has robust built-in support for merging branches.)

37 / 32

aragost Trifork

Merging Branches in SVN
The support is incomplete and fragile:

I renamed files are not merged correctly
I old clients will not update the merge info

From the SVN Book:

The bottom line is that Subversion’s merge-tracking feature has an
extremely complex internal implementation, and the svn:mergeinfo
property is the only window the user has into the machinery. Because
the feature is relatively new, a numbers of edge cases and possible
unexpected behaviors may pop up. —Version Control with Subversion

(Mercurial has robust built-in support for merging branches.)

37 / 32

aragost Trifork

Outline

Performance Study: OpenOffice

Subversion and Branches

The Underlying Model

Using History

38 / 32

aragost Trifork

The Underlying Model
A Mercurial changeset conceptually consist of:

I 0–2 parent changeset IDs:
I root changeset has no parents
I normal changesets have one parent
I merge changesets have two parents

I date, username, commit message
I difference from first parent changeset
I changeset ID is computed as SHA-1 hash of the above
I makes it impossible to inject malicious code on server

39 / 32

aragost Trifork

Immutable History
SHA-1 hashes as changeset IDs have some consequences:

I a changeset ID is a hash of the entire history
I changing history changes subsequent changesets
I history is immutable, you can only make new history:

A B C D E

40 / 32

aragost Trifork

Immutable History
SHA-1 hashes as changeset IDs have some consequences:

I a changeset ID is a hash of the entire history
I changing history changes subsequent changesets
I history is immutable, you can only make new history:

A B

C ′ D′ E ′

C D E

40 / 32

aragost Trifork

Immutable History
SHA-1 hashes as changeset IDs have some consequences:

I a changeset ID is a hash of the entire history
I changing history changes subsequent changesets
I history is immutable, you can only make new history:

A B

C ′ D′ E ′

C D E

40 / 32

aragost Trifork

Outline

Performance Study: OpenOffice

Subversion and Branches

The Underlying Model

Using History

41 / 32

aragost Trifork

Browsing the History of a File
The hg annotate command is invaluable:

I you see when each line was introduced
I you can quickly jump back to earlier versions

History of Mercurial’s README file:
3942: Basic install:
445:

3942: $ make # see install targets
3942: $ make install # do a system-wide install
3942: $ hg debuginstall # sanity-check setup
3942: $ hg # see help

0:
...

Better interface in hg serve

42 / 32

aragost Trifork

Searching File Content
Ever wondered when a function was introduced?

I hg grep can help you!
Example: When was hg forget introduced?
$ hg grep --all ’def forget’ commands.py
commands.py:8902:+:def forget(ui, repo, *pats, **opts):
commands.py:3522:-:def forget(ui, repo, *pats, **opts):
commands.py:814:-:def forget(ui, repo, file1, *files):
commands.py:814:+:def forget(ui, repo, *pats, **opts):
...

43 / 32

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

bad

44 / 32

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

test bad

44 / 32

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good bad

44 / 32

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good test bad

44 / 32

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good good bad

44 / 32

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good

test

good bad

44 / 32

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good

bad

good bad

44 / 32

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good

test bad

good bad

44 / 32

aragost Trifork

Revision Graph Bisection
You’ve found a bug! When was it first introduced?
Use hg bisect to mark good and bad revisions:

good

bug! bad

good bad

44 / 32

	Mercurial Introduction
	Overview
	Centralized vs Distributed
	Key Mercurial Concepts

	Using Mercurial
	Workflows
	Branches

	Extensions and Frontends
	Wrapping Up
	Appendix
	Performance Study: OpenOffice
	Subversion and Branches
	The Underlying Model
	Using History

