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ABSTRACT
This paper presents the results of using the Kestrel work-
load management system to test operating a Virtual Orga-
nization Cluster (VOC) across multiple sites. A Many-Task
Computing (MTC) framework based on the Extensible Mes-
saging and Presence Protocol (XMPP), Kestrel presents a
special purpose scheduler that can offer better VOC scal-
ability under certain workload assumptions, namely CPU
bound processes and bag-of-tasks jobs.

Experimental results have shown that Kestrel is capable
of operating a VOC of at least 1600 worker nodes with all
nodes visible to the scheduler at once. When using multiple
sites located in both North America and Europe, the laten-
cies introduced to the round trip time of messages were on
the order of 0.3 seconds. To offset the overhead of XMPP
processing, a task execution time of 2 seconds is sufficient
for a pool of 900 workers on a single site to operate at near
100% use. Requiring tasks that take on the order of 30 sec-
onds to a minute to execute would compensate for increased
latency during job dispatch across multiple sites.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms
Design, Experimentation
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1. INTRODUCTION
When scaling a Virtual Organization Cluster (VOC) [1,

2, 3] from a single site to multiple sites across a Wide Area
Network (WAN), several challenges arise, including Network
Address Translation (NAT) traversal and increased latency.
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The VOC workload management system Kestrel has been
designed to address these issues and to allow for easier scal-
ing of VOCs. Thus, to show Kestrel’s ability to scale a
VOC across sites, two criteria must be met. The first is
that Kestrel must be able to acknowledge and manage a
large number of worker nodes across NAT boundaries, and
the second is that the latencies involved in cross-site commu-
nication should not excessively impede job dispatch rates.

Based on the Extensible Messaging and Presence Protocol
(XMPP) [4, 5], Kestrel uses a pull based model to initiate
communications with an XMPP server using long lived TCP
connections. While messages sent and received by Kestrel
agents are pushed using the established TCP connections,
the benefits of the initial pull request remain. Under this
model, NAT traversal is not an issue since all requests orig-
inate behind the boundary. With the simplification in net-
working provided by XMPP, a special purpose scheduler can
be created that does not have to implement NAT traver-
sal on its own. By forming the equivalent architecture of
an overlay network using XMPP, without having to use an
actual overlay networking layer, Kestrel allows for scaling
across physical sites a VOC that is expected to receive cer-
tain kinds of workloads, in particular, computationally in-
tensive, bag-of-tasks jobs.

In high throughput computing, the focus is on long run-
ning tasks which overshadow the time spent during dispatch
[6, 7]. However, for many-task computing where many short
lived tasks are typically scheduled [8], the dispatch time can
introduce significant overhead. For Kestrel to scale across
sites, it should not be affected by latency during job dis-
patch, given tasks that take on the order of 30 seconds to a
minute in duration to execute.

In the remainder of this paper, related work is discussed
in Section 2. The VOC Model is described in Section 3.
Section 4 discusses the Kestrel XMPP based workload man-
agement system. The procedures and results of the exper-
iments are presented in Section 5. Some initial conclusions
are presented Section 7.

2. RELATED WORK
The Condor High Throughput Computing (HTC) system

is designed to both scavenge idle CPU cycles from machines
and to use those cycles to execute computationally inten-
sive jobs [6, 7], and is used globally to manage both grids
and clusters. The architecture for Condor calls for direct
connections between worker and job submission nodes in or-
der to transfer job data and output. While sufficient when
all machines are present in the same subnet behind a NAT



Figure 1: Virtual Organization Clusters can span
multiple grid sites when an overlay mechanism is
used

boundary, using Condor with machines on opposite sides of
a NAT can introduce complications.

One method to allow Condor to work across NAT is IPOP,
or Internet Protocol over Peer-to-Peer. IPOP implements a
full networking stack on top of a P2P network that does
not require any centralized control or routing configuration
[9]. The result is a virtual network that can span across
NAT boundaries. IPOP provides network transports that
behave as Edge objects, enabling TCP, UDP, and TLS/SSL.
In addition, its distributed tunneling system can compensate
for some routing difficulties such as an un-traversable NAT
or a firewall, without destroying the network topology.

As a method to parallelize the computation of optimized
meander line radio frequency identification (RFID) anten-
nas, an XMPP based scheduler was developed by Weis and
Lewis [10]. The resource pool for the scheduler was a static
list of available, physical machines. The managing XMPP
client contacted each machine in the list that did not al-
ready have an XMPP client running, and start a new XMPP
worker. While it uses XMPP for ad-hoc grid computing in
a similar fashion to Kestrel, the system is not intended as a
general purpose job distribution framework.

3. VIRTUAL ORGANIZATION CLUSTERS
Virtual Organization Clusters (VOCs) [1, 2, 3] enable the

creation of virtual cluster environments that are compati-
ble across sites, transparent to end users, implementable in
a phased and non-disruptive manner, optionally customiz-
able by Virtual Organizations, and designed according to
an architectural specification. Since VOCs are constructed
from virtual machines (VMs), and multiple VM instances
can be spawned from a single image, VOC environments
are nominally homogeneous (and therefore software com-
patible) across grid sites. Once operational, VOCs remain
completely transparent to the end user, since the virtual en-
vironments are autonomically managed without explicit re-
source reservation requests. VOCs also remain transparent
to Virtual Organizations and other entities that choose not
to deploy them, allowing VOC implementations to be added

to existing production grids without disrupting the opera-
tional infrastructure. Different technologies can be utilized
to implement VOCs, since a VOC is simply an implementa-
tion of a system that conforms to the specifications presented
in the VOC Model.

Jobs can be submitted directly to a VOC through one of
several mechanisms. Dedicated grid interconnection middle-
ware (such as Globus [11]) can be employed to permit the
VOC to join the grid as a site dedicated to a single VO. Al-
ternatively, VOs can provide direct submission mechanisms
to permit members to submit workloads to the cluster with-
out requiring the use of grid middleware. Regardless of the
approach utilized to receive user jobs, VOCs autonomically
provision themselves to adapt to changing user workload de-
mands by means of pilot jobs that obtain physical resources
from other grid sites. These pilot jobs start virtual machines,
which are dynamically configured, or “contextualized” [12],
at boot time. Once operational, the virtual worker nodes
connect to a dedicated VO server and join the virtual clus-
ter, enabling execution of user jobs according to policies set
by the VO.

The mechanism by which VOCs are adapted to span mul-
tiple grid sites over a Wide Area Network varies by imple-
mentation. As illustrated in figure 1, the worker nodes of a
VOC may be joined into a virtual private cluster by means
of an overlay network such as IPOP [9], Violin [13], or ViNe
[14]. Once joined together, a general purpose scheduling
system such as Condor [6] may be used to distribute jobs
to worker nodes. Alternatively, if the jobs to be executed
by the virtual cluster do not require simultaneous interpro-
cess communication (such as bag-of-tasks applications [15]),
a scheduling system capable of direct operation over a Wide
Area Network, such as Kestrel as described in Section 4,
could be employed without the use of an overlay network.

4. KESTREL
Kestrel is a Many-Task Computing system based on the

Extensible Messaging and Presence Protocol (XMPP) [4, 5]
and is built using Python [16] and SleekXMPP [17]. It has
been developed at Clemson University in order to explore
methods of creating a fault-tolerant, scalable, and cross-
platform job scheduling system [18]. The main problems
addressed by Kestrel are intermittently connected machines
and traversing of NAT boundaries.

Kestrel’s architecture is composed of four types of re-
sources: manager, workers, users, and XMPP servers. With
the exception of the XMPP server, each resource is an XMPP
agent program that can use an opaque Jabber ID (JID) [4]
to join the system. These JIDs are similar in appearance to
email addresses and are of the form username@server/resource

where the resource component identifies each connection
when an agent has multiple sessions open with the server.
While Kestrel agents can use any JID, experience has shown
that each worker in particular should have a unique bare JID
(a JID without the resource identifier) to reduce the number
of presence notices issued. Early experiments with Kestrel
used a single bare JID for a thousand worker agents; how-
ever, because each agent sharing a bare JID knew of all other
agents using the same bare JID, when every worker changed
its status to indicate it was executing a task, the result was
a million presence notifications which crippled the XMPP
server.

User agents are client applications capable of submitting



job requests and querying the status of previous jobs. These
agents can be highly transient, only connecting to submit a
job and to check its status. Since there are no direct connec-
tions between a user agent and a worker agent executing a
task, there is no requirement that a user remain constantly
tethered to the pool. Since the protocol Kestrel uses for
messages between agents is based on JavaScript Object No-
tation (JSON) [19], a user could manually submit commands
to Kestrel using a stock instant messaging client such as Pid-
gin [20], Adium [21], or Google Talk [22].

Manager agents serve as the analogue to the collector and
negotiator daemons in a Condor pool. As such, they serve as
the centers of communication in a Kestrel pool, either receiv-
ing or sending all messages. These agents must normally be
implemented as an external component to an XMPP server
instead of as a normal XMPP client due to the large number
of entries (one for each worker and user agent) that must be
included in its roster [23]. For small pools with less than a
thousand workers, a normal client would suffice.

Worker agents are started as services preinstalled on VOC
nodes. Once connected to the server, each worker agent
notifies the manager that it is available and sends a copy
of its profile. The worker profile is a list of tags specifying
both the abilities of the VM and the job data stored in the
VM, which allows the manager to perform matchmaking if
needed. By switching its status to “busy,” the worker alerts
the manager that tasks should not be scheduled for that
agent. Likewise, setting its status to “available” causes the
manager to dispatch a task to the agent if at least one is
available. In the event that the VM is terminated, or the
worker agent disconnects for any reason, then the XMPP
server will issue an “unavailable” presence on its behalf to
the manager which can immediately restart any task that
worker had been executing.

5. EXPERIMENTAL RESULTS
Several experiments were performed to test the scalabil-

ity and usability of VOCs. The first, detailed in Section
5.1, compared the size of pools that could be generated
from an overlay network. The second experiment measured
the latency involved in running a VOC across multiple sites
over a WAN. The final experiment measured throughput
and dispatch rates using the Kestrel system to manage a
VOC. While there were several XMPP server implementa-
tions available, including ejabberd [24], Openfire [25], and
Tigase [26], an Openfire installation was used for all Kestrel
related experiments to take advantage of its web based in-
terface (shown in Figure 6).

5.1 Pool Sizes
To establish the need for a special-purpose WAN sched-

uler, it was necessary to test the scalability of disk subsys-
tems and general-purpose overlay networks by starting large
number of VMs, as described in Section 5.1.1. To com-
pare the behavior of a general-purpose overlay network to
a purpose-built WAN scheduler, an overlay combination of
IPOP and Condor (section 5.1.2) was tested against Kestrel
(section 5.1.3) in an environment with pervasive NAT bound-
aries. If the number of VMs (and thus IPOP nodes) that
could be instantiated on a TOP100 cluster did not exceed
the limits of the general-purpose overlay network, then a
special-purpose scheduler is unnecessary.

Figure 2: Aggregate Disk Throughput when starting
1000 VMs

5.1.1 VM Image Considerations
The simultaneous booting of thousands of VMs has the

potential to place considerable strain on the test cluster’s
disk subsystem. This risk was mitigated by the use of the
snapshot mode in QEMU/KVM. In snapshot mode, QEMU/-
KVM did not write to the disk image from which the VM
was instantiated. Instead, each instance of QEMU/KVM
created a local copy-on-write file which overlaid the image
of the original disk. Thus, many VMs could be instantiated
from a single disk image. Furthermore, QEMU/KVM would
only read blocks from this image as they were requested by
the guest OS, greatly reducing the total amount of data that
had to be transferred. The combination of these two factors
allows the disk to be placed on a shared network store.

Results of a test that measured the aggregate disk through-
put needed to boot 1000 VMs have been presented in Fig-
ure 2. A trace of the two 4Gb Fibre Channel ports con-
nected to the Clemson University Palmetto Cluster’s disk
array was obtained from the storage management system.
Packets were automatically load-balanced between the two
ports, reaching a peak total transfer rate of approximately
154MB/s. This rate was well below the maximum capac-
ity of the disk array. Thus it can be concluded that starting
1000 VMs with QEMU/KVM’s snapshot mode did not place
an onerous load on a cluster’s disk subsystem.

5.1.2 IPOP/Condor Experiment
The scalability test for IPOP/Condor was conducted by

starting a set of VMs using QEMU/KVM. Each VM utilized
QEMU’s user-mode networking stack for connectivity. This
stack implemented a subset of the TCP/IP protocol and was
used to provide network access to the VM without the need
for administrative privileges on the host. Since the VM’s
network interface was not directly bridged to the the phys-
ical interface, the user-mode networking stack was required
to implement NAT. With this setup, each VM was in a sepa-
rate private network, maximizing the number of NAT traver-
sals IPOP was required to provide. Furthermore, the Clem-
son Palmetto Cluster was located behind a NAT edge router
to the Internet. Since the IPOP bootstraps were used for
testing purposes, initial connections must be made through



Figure 3: IPOP/Condor pool of 1600 nodes in one
batch

Figure 4: IPOP/Condor pool of 1600 nodes in 200
batches

two layers of NAT, further stressing the overlay network.
Two separate test scenarios differed in temporal charac-

teristics. In the first test, a large number of IPOP nodes en-
tered the overlay simultaneously. In the second test, nodes
entered the overlay in a more incremental fashion. The total
number of nodes was the same in both cases.

In order to measure the number of nodes which entered
the overlay, an observation node was employed. This node
monitored the status of the Condor pool. A worker node was
considered to have entered the overlay whenever it appeared
in the Condor pool.

As illustrated in Figure 3, the catastrophic failure of the
overlay when 1600 nodes attempted to enter within a short
interval. Figure 4 shows the results of 200 batches of 8 nodes
each entering the overlay. The overlay remained active, but
approximately 300 of the requested nodes never entered the
overlay. Additionally the maximum number of nodes in the
overlay at any one time was approximately 500.

These tests represented a worst-case scenario for IPOP
because of the rapid arrival of many nodes behind two layers
of NAT. In this situation, the overlay became unbalanced,
collapsing entirely.

5.1.3 Kestrel Experiment
As a special-purpose scheduler based on XMPP, Kestrel

Figure 5: Kestrel Pool of 1600 Agents

Figure 6: Openfire Showing Available Agents

did not have to implement a full, general-purpose network-
ing stack like IPOP. Instead, Kestrel performed the specific
function of task scheduling and distribution. However, ap-
plications distributed using Kestrel would not have access
to a full network stack except for the one provided by the
VM. To test how well Kestrel performed, 1600 VMs were in-
stantiated on the Palmetto cluster using 200 physical nodes
with 8 VMs per node. As a measure to reduce strain on the
XMPP server, each worker waited for a random interval of
up to 30 seconds before joining the pool. Since XMPP uses
a pull-based model, the double NAT layer does not pose any
issues.

Of the 1600 VMs submitted, 1598 Kestrel worker agents
started properly and connected to the XMPP server. From
the server’s web interface all 1598 workers could be seen
online at once.

A difficulty was initially encountered that prevented the
Kestrel pool from growing beyond approximately 900 agents.
The solution was to increase the number of open files allowed
per process in /etc/security/limits.conf where the de-
fault value is 1024 files per process. In order to test the
scalability of Kestrel, by allowing 16384 files per process
and starting ten worker agents per VM, further experiments
have shown that the XMPP server can accept at least 15,000
connections at once. However, Kestrel job dispatching has
not yet been tested on a pool of that size.

5.2 Latency



Figure 7: Ping Response Times

To determine the latency introduced by XMPP, a multi-
site pool was started using Kestrel. The sites included Clem-
son University’s Palmetto cluster, Amazon EC2, and CERN.
The procedure for the experiment was to have a single node
send a “ping” message to all the worker agents in the pool;
to make processing easier, each “ping” message includes the
time at which it was sent. These workers in turn replied
to the sender with a “pong” message that included the sent
time in the “ping” message. The current time was compared
to the time stored in the “pong” message, and the round
trip time (RTT) was calculated. Prior to running the ex-
periment, the hypothesis was that it should be clear from a
RTT graph that multiple sites were used in the pool since
the data points should form clusters. A concern, however,
was that the differences between Clemson’s Palmetto cluster
and Amazon’s EC2 would not be distinct enough and would
overlap.

The results of the experiment (illustrated in Figure 7)
showed that a worker pool formed using XMPP can op-
erate across multiple sites. The virtual machines at CERN
responded in approximately 0.3 seconds whereas the the vir-
tual machines on Palmetto and EC2 responded in roughly
0.1 seconds. The response times for Palmetto and EC2 over-
lapped considerably. The RTT times as measured through
Kestrel were considerably longer than equivalent measure-
ments through the system ping command, owing to the sig-
nificant CPU overhead required to parse XML messages re-
ceived via XMPP.

5.3 Kestrel Task Throughput and Dispatch Rates
In order to test the dispatch rate for Kestrel, four exper-

iments were performed. Each experiment scheduled 50,000
sleep commands to about 900 worker agents. The first ex-
periment used “sleep 0” to test Kestrel’s performance under
the most demanding workload of constantly scheduling. The
second experiment used sleep with a half second delay, and
the third used a two second delay. However, since a con-
stant time for every task is not always accurate, a fourth
trial used random length delays where each worker would
sleep between 0 and 10 seconds.

For each run, the number of agents in three states (online,
available, and busy) were tracked. The desired result would
show the number of available workers mirror the number
of online workers until the job was submitted. After the

Figure 8: Trial #1 executing “sleep 0”

Figure 9: Trial #2, executing “sleep .5”

submission, the number of available workers would go to
zero and the number of executing agents would rise to the
number of online agents, representing a 100% usage of the
pool. Such an arrangement would then last until all the
tasks have been executed.

The results of the first experiment, shown in Figure 8,
were disappointing in that only a small percentage of the
pool was used at any given time. Since the scheduling strat-
egy for Kestrel was to dispatch on demand when either a
worker is available or a job was submitted, the scheduler
could not keep up with the demand. Before the first round
of tasks could be submitted to all available workers, the first
workers given tasks finished and requested more tasks. The
total time for completing the job was 357.38 seconds, giving
a throughput rate of almost 140 tasks per second.

The second experiment showed a large improvement over
the first in Figure 9. The half second delay of “sleep .5”
helped reduce the strain on the scheduler, allowing for a
larger pool usage. However, roughly only 700 of the 900
workers were able to receive their first task during the half
second delay. The result was severe thrashing immediately
after the job was submitted as the first batch of tasks were



Figure 10: Trial #3, executing “sleep 2”

Figure 11: Trial #4, executing “sleep random(0,10)”

completed before the last group was fully dispatched. The
system stabilized at close to a 66% usage for the remainder
of the job. The total time for the job was 108.61 seconds,
giving a task throughput rate of 460 tasks per second. The
reduction in scheduler load compared to the first experiment
allowed for the increased throughput despite the increased
time per task.

The third trial in Figure 10 followed the expected, ideal
pattern. The two second delay was sufficient to dispatch the
first round of tasks to the 875 available workers. After the
initial round, the scheduler was able to meet the demand
for tasks, creating small, periodic blips of available workers,
but otherwise remaining at close to 100% usage of the pool.
Further experiments were later effected using task times of
5 and 10 seconds, and the results were similar. The time for
completing the job was 300.56 seconds, giving a through-
put rate of 166 tasks per second. The reduced throughput
was due to the longer time per task. The time it took to
distribute the 875 initial tasks was .51 seconds, giving a dis-
patch rate of 1715 tasks per second.

The fourth trial (Figure 11) used a random task length
between 0 and 10 seconds. The pool usage remained near

100% for most of the life of the job, but gradually declined
at the end as the remaining, long tasks complete and were
not replaced. The scheduler was able to distribute 61 tasks
in 0.04 seconds before a worker returned for another task,
yielding a dispatch rate close to 1500 tasks per second.
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7. CONCLUSIONS AND FUTURE WORK
As demonstrated through testing, it is possible to con-

struct a VOC with over 1,500 VMs on a single physical clus-
ter using a single VM image without straining the network
by using QEMU/KVM in snapshot mode. However, for the
case where many different VM images are needed, or one
VM image per worker is required, pre-staging VMs could
still be more efficient.

Establishing a VOC over a WAN is possible using XMPP.
While a 0.3 second latency would cause network I/O in-
tensive programs, such as those based on MPI, to perform
poorly, computationally bound applications such as those
assumed by the VOC Model should not be affected after the
initial dispatch. Due to the possible overlap in RTTs be-
tween multiple physical sites, as demonstrated by the results
from Palmetto and Amazon EC2, it is not always possible to
determine the number of physical sites in a VOC based on
RTT data. However, future work on scaling Kestrel could
use RTT data to pick new manager nodes to better dis-
tribute load and improve dispatch rates.

Finally, Kestrel is able to manage a VOC effectively and
distribute tasks with a dispatch rate of more than 1000 tasks
per second. Due to the current scheduling algorithm, tasks
that are too short will result in reduced performance from
increased load on the manager. The minimum desired time
was at most 2 seconds for a pool of 900 workers. Given
the latency results found in Section 5.2, using tasks that are
at least 30 seconds in duration should be sufficient to mask
any dispatch delays caused by latency between sites. Future
work on Kestrel will investigate the minimum desired time
for task execution for pool sizes into the tens of thousands.
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