
EVALUATING AUTOMATIC SUPPORT FOR WRITING BY EXAMPLE 
Katie Kuksenok and Hao Lu 

As students, we often wonder how we can write better. What if we had a system, which could provide 
direct, actionable cues that would help us produce writing that resembles our best work, as opposed to 
our worst? Or writing text that is more typical of a certain venue or genre? There are few tools to support 
writing tasks beyond enforcing grammar and spelling rules, and none to support writing to mimic some 
specific, conceptually-defined class of documents. We explore the feasibility of automatically learning 
differences between categories in a large conceptual space using low-level linguistic features of texts. 

INTRODUCTION 
We tested the feasibility of classification methods for 
supporting writing by example, where the author 
seeks to mimic aspects of other texts, defined by 
some conceptual categorization. Writing by example 
support does not have a specific goal, promising 
instead a nebulous demonstration of “how a writing 
draft compares to m example classes” (Fig. 1). In 
testing the feasibility of writing by example support, 
we have focused on two interpretations of that goal, 
each requiring different classification mechanisms. 

We interpret the goal first as, “which of the m example classes is D most like?” This lends itself to multiclass classification. 
We also interpret it as, “how similar is D to each of the m example classes?” This can be more directly addressed using 
binary classification identifying a given pair of documents as “same class/different class.” At the user interface level, either 
classifier can serve as “litmus test” for determining whether a similarity condition has been met, or as a source of 
continuous feedback for evaluating whether successive drafts are achieving such a condition.  

We experimentally tested the feasibility of each of the two interpretations of such a system. The goal of experiments was 
to explore whether low-level features could be used to find meaningful differences between different, conceptually-defined 
classes of documents. In the following pages, we will describe related work, present experimental findings, and conclude 
with a discussion and example application interfaces that might leverage our classification approaches. 

BACKGROUND 
Although we are not aware of work specifically aimed at building or testing systems for supporting writing by example, 
this approach has the potential lead to a highly useful application supporting a yet-unsupported writing task. There are 
many ways that NLP techniques can help support better writing. Checking spelling and grammar, and similar “rigid-
language tools” that work by detecting violations of rules do not cover the range of needs users have in composing written 
material. For example, the AwkChecker tool helps non-native speakers of a language test how “awkward” a phrase is 
relative to n-grams gathered from a large corpus, which includes Wikipedia [7].  
The analysis of written text can make use of a range of complex feature extraction methods and algorithms. Exposing 
those algorithms enables gaining the user’s trust by building understanding of the system. This strategy has become 
increasingly relevant in other domains, such as context-aware sensing, where the primary functionality of a tool requires 
that the user trust the output of apparently mysterious learning algorithms [4]. Prior work in literary analysis has noted 
the potential utility of providing visual feedback of analysis results as a means to communicate ways of improvement, not 
only as means of gaining a deeper understanding of a literary text [3]. In the case of a writing support tool, the specifics of 
the NLP techniques involved can either enhance or detract from the resulting system’s usefulness; therefore the choices 
we have support not only comparison but also actionable suggestions as part of system output.  

multiple-class 
classification 

m classes of 
“example” 
documents 

“written text” 
document D 

How does D 
compare to 
the example 

sets?  

Figure 1: General formulation of writing by example support 



TWO DATASETS: GUTENBERG AND ACM 
We used two datasets, one of literary works scraped from Project Gutenberg1 and another of abstracts from the ACM 
Digital Library2. After initial baseline results, we loaded all the data, segmented3, into a MySQL database. The ACM dataset 
contained example documents illustrating Computer Science publication abstracts for 296 venues, and the Gutenberg 
dataset contained example documents for about 3,500 authors. The Gutenberg dataset was roughly 100 times the size of 
the ACM dataset, with 12 times the number of distinct classes, which were venues and authors, respectively (Table 1). Dataset # docs # sentences / document class # classes # documents / class ACM 117,823 min=1 max=170 avg≈6 venue 296 min=4 max=4918 avg≈400 Gutenberg 12,912,372 min=2 max=1362 avg≈148 author 3654 min=1 max=1444 avg≈24 

Table 1: Details about the size of each dataset 

Since the abundance of documents per 
class helps with interpreting subsequent 
results, Figure 2 provides some deeper 
information about how big classes are in 
the two datasets. For example, it shows 
that there are roughly 40 ACM venues 
that have less than 25 documents 
associated with them, but there are 200 
Gutenberg authors who have exactly 1 
document associated with them. 
Unsurprizingly, many conferences are 
rather large, while most authors are not 
especially prolific. 

TWO CLASSIFICATION APPROACHES 
We experimented with two classification approaches: multiclass and binary classification. Experimental setup and results 
are presented for each in the following two sections. 

MULTICLASS 
Text classification is a classic problem and has been well discussed in the NLP textbooks. A commonly used example is to 
classify online news-group articles to groups. Naïve Bayes has been an effective approach for this class of problems. We 
revisit text classification in our project in a much larger scale in terms of the number of classes: we want to classify papers 
(abstracts) to their venues. 

The challenge is that we have 296 venues in our ACM dataset. A random guess will only result 0.3% accuracy on average. 
In contrast, in a 20 news groups setting, a random guess will result 5% accuracy on average. As baseline system, we use 
Naïve Bayes with bag-of-words features. We did a 10-cross validation in rainbow [5]. The average accuracy is around 29% 
(we got 25% initially because we included empty papers). Considering that we have 296 classes, accuracy 29% is actually 
not bad. 

                                                                 
1 http://www.gutenberg.org 
2 http://portal.acm.org 
3 ACM data used NLTK (http://www.nltk.org/) for segmentation, and the Gutenberg data used JTextPro [8] 

  

Figure 2: Document abundance across classes in both datasets. Each bar indicates the 
number of classes (venue for ACM, author for Gutenberg) that have the specified 
number of documents. Bin sizes were chosen by hand are not consistent. 

0

30

60

90
# 

ve
nu

es
 

ACM 

0

500

1000

1500

# 
au

th
or

s 

Gutenberg 

#documents 



In order to try different ideas, we ran an experiment system in Java using MALLET [6], a statistical natural language 
processing toolkit. To reduce memory requirement and overfitting, we first tried altering the feature selection technique. 
Instead of using all the words as features, we kept the top 10,000 words according to their information gain. The best 
number of words was determined experimentally. This gave us a big boost in performance. The result was an average of 
38% accuracy over 10 runs. Figure # shows the visualization of the confusion matrices from the two runs with and without 
feature selection on a separate test data. When there is no feature selection, the classification is dominated by a few 
classes probably due to overfitting (Figure 3a). With feature selection, such domination has disappeared (Figure 3b). 

We noticed that the venues in similar areas can be hard to be distinguished from each other. For example, UIST and CHI 
are two top venues in HCI. Many papers can be published in either one of them. The fact that some venues are closer to 
each other than the other ones leads to the clusters of the venues. 

There are two ways that the clusters of venues can potentially help. First, it could help the classification task through a 
two-stage classification. In the first stage, papers are classified into clusters using a classifier trained on the original 
training data with labels changed from venues to clusters. In the second stage, papers are classified into venues using 
classifiers individually trained on each cluster. This process is shown the Figure 4. The hope is that we can be more specific 
when training the classifiers for each cluster so that we can distinguish the subtlety between venues within a cluster. 

Secondly, the clusters of venues could help us better 
evaluate our classifiers. The errors made by the classifier 
could be irrelevant when the error is within a cluster, for 
example, a paper is classified as UIST instead of CHI. Thus 
it is more interesting and valuable to know how many 
errors that a classifier makes between clusters. 

It is possible to manually label these clusters, given that 
there are only 296 venues. However, it is non-trivial to 
get enough researchers to cover all venues. Also for the 
limited time of the class project, we compute the clusters 
automatically. The computation is based on heuristics 
based on the author data. The basic idea is that when an 
author publishes multiple papers in both venues, it is 
likely that the two venues are related. When there are 
many such authors, such guess gets more evidence and 

 
(a)                                         (b) 

Figure 3: Confusion matrices: (a) with no feature selection (b) with feature selection 

predicted predicted 

label label 

 
Venue classifier 

for cluster 

Cluster 
classifier 

Venue classifier 
for cluster 2 

Venue classifier 
for cluster n 

Figure 4: two-stage classification 



becomes more likely. The actual algorithm is as follows. We first 
compute all the authors that have published no less than N papers in 
at least two different venues respectively. We then bind two venues 
together if they share more than M such authors. Next, we compute 
the closure of these connections and get the clusters of the graph. 

We tried several (N, M) pairs. We found that there aren’t a lot of big 
clusters. Reducing N and M will reduce the number of clusters but tend 
to group everything together. In our experiments, the pair (4, 20) gives 
some reasonable clusters, but it also results 275 clusters with 240 of 
them containing only one venue. Some of the clusters are listed in 
table 2. They are not complete but reasonable. We also tried clustering 
using K-Means with authors as features, but failed to get a good result. 

We use this clustering information in our two stage classification system. Unfortunately, there is no obvious improvement 
in the 10-cross validation. We also change the feature selection process to a two-stage setting. Each cluster has its own 
feature selection step. But still, we did not see obvious improvement. It is possible that the clusters that we compute are 
still too many. A better clustering scheme would help. 

On the other hand, we tried use the clusters instead of the venues as labels. We did feature selection before the learning 
process. The average accuracy over 10 run is 48.7%. This is promising, considering that we have 275 clusters. When 
looking at the data, we noticed that venues like Mobile-HCI, Ubicomp, GROUP, NordiCHI are all have their own clusters. 
This shows that there is still a lot of space for improving the clusters. 

PAIRWISE BINARY CLASSIFICATION 
Another approach tested was binary classification of pairs of documents as either “same” or “different,” where sameness 
is determined by membership to a class of example documents. A perfect binary classifier would make for an effective 
multiclass classifier, as well, and we hope that an imperfect binary classifier might still be somewhat useful.  

 

We tested the classifier with a range of class variety and coverage. Here, variety refers to the number of different classes 
(out of all possible) exposed in the training, and coverage to the number of documents used for training (Figure 5). Ideally, 
the classifier would perform well with low coverage and/or low variety, so it would be just as disheartening to see low 
accuracy as it would be to see a dramatic increase in accuracy accompanying an increase in either coverage or variety. 

Partition all data into known and 
unknown authors/venues 

Intended variety 
how many authors/venues 
“known”? 

Intended coverage 
how many documents to sample 
from known and unknown? 

Figure 5: Sampling pipeline: parameters influence, but do not determine, the actual variety and coverage of the dataset. 

Sample indicated number of 
documents from each partition 

Generate as many pairs as possible, 
balancing positive and negative examples 

Actual variety 
how many authors/venues in 
training set? 

Actual coverage 
how many documents in 
training set? 

DATE, ASPDAC, ISSS ISPD, CODES, GLSVLSI, 
DAC, EURO-DAC, ICCAD, ISLPED 

SIGIR, WWW, CIKM, KDD, PODS, SIGMOD 

PODC, SoCG, SPAA, STOC, SODA 

CHI, UIST, CSCW 

POPL, PLDI 

Table 2: Some clusters from our computation 



Given two documents, find difference between… 

average number of words per sentence 

quotes: '\'' '`' ratios of special characters 
(indicated to the left) to the rest 
of the characters across all 
words. 

periods: '.' 

questions: '?' 

exclams: '!' 

commas: ',' 

semis: ';' 

colons: ':' 

parens: '(' ')' 

dashes: '-' 

average number of characters per word 

ratios of non-alpha characters across all words 

Table 3: 12 features based on low-level counts 

Given two documents, find… 

noun difference between ratio of 
nouns/verbs/adjectives/adverbs per all 
detected words in each document 

verbs 

adj. 

adv. 

difference between the ratio of the total 
number of words found after segmentation and 
the number of words accepted by the cloud 
difference between ratios of “be” to all other 
verbs in the verb cloud for each document 
difference between ratio of adjectives and 
adverbs to all other words in the word clouds 
noun a measure of how much cloud 

distributions for the two documents 
overlap for noun/verb/adjective/adverb 
clouds. 

verbs 

adj. 

adv. 

 
Table 4: 11 Word cloud-based features 

We developed a Java application for 
polling the database for data, using 
libraries for feature extraction, and 
training Naïve Bayes classifiers with 
Weka [2]. JTextPro [8] was used for 
tokenization and tagging, and 
WordNet [1] for lemmatization and 
verifying part-of-speech: a word 
identified as a noun by JTextPro but 
which is not known to be a noun by 
WordNet is not considered a noun. 
We also created word “clouds,” part-
of-speech-specific lemma-count 
maps (Figure 6). 

A total of 43 features were extracted: 12 for character and word counts 
(Tab. 3), 11 for part-of-speech clouds (Tab. 4), and 20 for auto-
generated synonym sets (functionally, clouds). The many features 
specific to parts of speech were motivated by the results of baseline 
tests, which indicated part of speech counts as most effective for binary 
classification. The synonym set features, and one of the word-cloud-
based features, were based on cloud overlap: giving a pair of documents 
a score corresponding to how different two cloud distributions are. 
Overall word clouds can be interpreted as a measure of topic similarity, 
whereas synonym set features sought to more directly address “style” 
similarity. 

Synonym sets were constructed from an aggregate word cloud sampled 
from the training distribution. Then, a synonym set was generated for 
each word, using WordNet. Each set was modeled as a cloud for a 
particular part-of-speech. Of thousands of synonym sets, 20 were 
chosen as grounds for features on the basis of (1) having some minimal 
number of occurrences (e.g., 10 across 150 documents), (2) being the 
most balanced, and (3) avoiding duplicate synonym sets. Here, balanced 
means that the distribution of occurrences of individual words in a set is 
roughly uniform. This heuristic was used to avoid extremely large 
synonym sets that were associated with extremely common words. For 
example, one of the experiments on the ACM data got “agree check fit 
match correspond hold accord harmonize” as one of its 20 synonym 
sets, and another experiment on the Gutenberg data got “finish stop 
end terminate cease.” 

To mitigate the large number of features that could hurt rather than 
help learning, hill-climbing for feature pruning was also implemented. 
For each experiment, a development set was chosen from the training 
set (30% training data were designated development data). Half of the 
experiments trained a Naïve Bayes model repeatedly removing features 
as long as accuracy increased on the development set, and half did not 
do any hill-climbing. Then, all final models were tested against the test 

  

 
 
Figure 6: A sample cloud extracted using JTextPro and WordNet. The result is actually 
four clouds, including lemmatized nouns (top left, blue), verbs (bottom left, green), 
adjectives (bottom right, pink), and adverbs (top right, orange). Excerpt from 
chronicle.com/article/50-Years-of-Stupid-Grammar/25497, visualized using wordle.net 



data. At each stage of hill climbing, features could be removed one by one, or all of the synonym set features could be 
removed or added simultaneously, to allow ignoring bad synonym sets. 

We ran 44 experiments, with ACM and with Gutenberg data, with and without hill-climbing. We varied intended coverage 
and. variety parameters for each run. Test set data was sampled from authors and venues that had not appeared 
anywhere in the training data; the development set was from the same distribution as the training data. Therefore, any 
success on the part of this binary classifier can be taken to indicate successful learning of the underlying concept of 
“authorship” or “publication venue” rather than individual variation between document sets. The lack of great success 
that we actually observed is more difficult to reason about, as it can mean either that learning was ineffective due to 
algorithm or feature choices, or that the underlying concepts were not sufficiently disparate to learn in the first place. The 
results are presented in Table 5. 

Most models tended to skew errors toward one of the classes rather than the other (though all classified data as positive 
and negative roughly in equal parts). Coverage and variety of experiments spanned a large space, albeit sparsely, and did 
not seem to lead to an obvious effect on test set accuracy. There is not enough data to conclude the lack of such an effect 
in general, but it is promising: if there is no such effect, then the low accuracy (60%) coupled with a skew toward one class 
rather than another can still be exploited at an application level. 

Hill-climbing to prune features did not make matters better or worse consistently, though it is possible that there is some 
coverage/variety combination that makes hill-climbing especially prone to finding a feature set that leads to overfitting. 
Development set results were clearly better in the case of hill-climbing, as we would expect, but the relatively similar 
accuracy between hill-climbing and no-hill-climbing test results implies that hill-climbing, if anything, makes it more 
difficult to use development set results to reason about test set results. 

ACM Gutenberg 
Training Set 
Information 

Dev Set 
Results 

Test Set 
Results     

Training Set 
Information 

Dev Set 
Results 

Test Set 
Results     

va
rie

ty
 

co
ve

ra
ge

 

siz
e 

er
ro

r s
ke

w
 

ac
cu

ra
cy

 

F0
 

F1
 

er
ro

r s
ke

w
 

ac
cu

ra
cy

 

va
rie

ty
 

co
ve

ra
ge

 

siz
e 

er
ro

r s
ke

w
 

ac
cu

ra
cy

 

F0
 

F1
 

er
ro

r s
ke

w
 

ac
cu

ra
cy

 

Hi
ll 86 36 91 0.45 0.72 0.50 0.38 0.38 0.44 40 30 20 0.00 0.88 0.71 0.78 0.50 0.75 

181 79 192 0.71 0.66 0.47 0.61 0.67 0.55 46 33 19 NaN 1.00 0.49 0.61 0.65 0.56 
185 78 223 0.14 0.69 0.59 0.45 0.34 0.53 65 47 28 1.00 0.75 0.46 0.69 0.79 0.60 
193 83 238 0.70 0.68 0.47 0.61 0.66 0.55 73 53 40 0.33 0.81 0.64 0.71 0.63 0.68 
199 48 580 0.51 0.64 0.57 0.56 0.48 0.57 85 59 49 0.25 0.81 0.71 0.70 0.38 0.70 
200 25 2271 0.32 0.70 0.55 0.44 0.38 0.50 115 83 56 0.40 0.79 0.62 0.64 0.53 0.63 
299 78 881 0.72 0.65 0.54 0.62 0.61 0.59 188 106 322 0.10 0.78 0.65 0.65 0.42 0.65 
398 90 1234 0.63 0.64 0.51 0.62 0.64 0.57 239 162 189 0.61 0.78 0.58 0.67 0.64 0.63 
498 84 2221 0.71 0.59 0.54 0.64 0.66 0.60 375 243 321 0.36 0.82 0.69 0.69 0.50 0.69 
597 93 4055 0.66 0.62 0.54 0.63 0.64 0.59 510 309 608 0.19 0.72 0.64 0.59 0.40 0.62 
693 107 3491 0.65 0.60 0.50 0.62 0.66 0.57 532 320 544 0.67 0.79 0.49 0.69 0.80 0.61 

N
o 

hi
ll 92 42 100 0.62 0.50 0.54 0.59 0.54 0.56 24 19 9 1.00 0.33 0.00 0.72 1.00 0.56 

178 81 177 0.33 0.60 0.53 0.55 0.52 0.54 49 36 19 1.00 0.86 0.52 0.68 0.75 0.62 
185 74 245 0.52 0.58 0.56 0.52 0.45 0.54 61 44 27 0.67 0.73 0.69 0.72 0.59 0.71 
197 65 341 0.56 0.52 0.56 0.63 0.60 0.60 84 59 41 0.40 0.71 0.67 0.69 0.50 0.68 
198 26 1844 0.25 0.66 0.57 0.47 0.38 0.53 94 59 52 0.43 0.68 0.68 0.60 0.30 0.64 
199 52 460 0.48 0.60 0.51 0.54 0.52 0.53 141 86 96 0.57 0.83 0.63 0.70 0.57 0.67 
295 86 674 0.34 0.60 0.54 0.51 0.46 0.53 171 114 111 0.14 0.70 0.57 0.66 0.64 0.62 
398 88 1491 0.24 0.60 0.57 0.43 0.36 0.51 236 153 153 0.33 0.77 0.63 0.62 0.47 0.62 
499 94 2222 0.18 0.53 0.62 0.33 0.21 0.52 364 223 286 0.48 0.76 0.69 0.70 0.53 0.70 
600 103 4150 0.46 0.60 0.60 0.54 0.43 0.57 434 275 384 0.15 0.68 0.57 0.56 0.49 0.57 
694 106 3570 0.52 0.60 0.54 0.58 0.56 0.56 605 366 798 0.50 0.78 0.53 0.69 0.76 0.62 

Table 5: Results of binary classification on 44 experiments, split by dataset (ACM and Gutenberg) and feature pruning (hill-
climbing on or off). Variety (# classes), Coverage (# documents) and size (# data points) are reported for the training set. 

Accuracy and error skew (number of times error was toward one class rather than the other) are presented for both 
development and test data, with F-measures for each of the classes presented for the training data. 



APPLICATION-LEVEL CONSIDERATIONS 
All of the feature extraction and classification methods can be 
used to provide actionable suggestions at the application level, as 
well as measures of relative similarity of a given text to the 
specified example classes. Multiclass classification with Naïve 
Bayes can provide confidence levels for the document’s 
membership in the classes, and binary classification can be used 
to find how many documents in a given class are, and are not, 
“same” as the given text. Bag of words (and, similarly, word 
cloud) features can be presented in a “word cloud” visualizations, 
where words used commonly in the desired class(es) are 
highlighted in one way, and words used commonly in the 
undesired class(es) in another. Other features that use ratios or 
counts can be used to generate verbal suggestions, such as “use 
more descriptive text with more adjectives and adverbs,” or “use 
sentences with fewer words.” Here, suggestions can be 
presented based on how much they favor desired class(es) over 
undesired one(s). 

DISCUSSION 
Even the limited success of our experiments is promising from the standpoint of an application. These models and 
approaches are not enough to extrapolate subtle “stylistic” differences between hundreds and thousands of conceptually-
defined document classes with any satisfying degree of reliability, but our experiments do show that some differences are 
learned correctly. On a smaller scale, defined by a human being to be meaningful, they might be enough. Our tests are 
akin to an evaluation of a clustering algorithm on randomly-generated data: it can certainly be quite insightful, but is 
ultimately limited in shedding light on the performance or success of the algorithm in a real-world setting. Therefore, 
further work on this project must encompass evaluation of applications and more realistic scenarios. 

Another possible direction for exploration involves modification to the algorithms. While we could define more features, it 
may be particularly interesting to explore how interactive learning approaches an benefit the system and user alike, either 
though allowing manipulation and selection of features, or through direct interaction with the algorithms where possible. 

Though imitation is the sincerest form of flattery, especially successful examples of writing by example in daily life remain, 
unfortunately, plagiarism. Making a tool that effectively support writing by example available has implications for 
teaching, and enforcing, academic integrity policy: given the difficulty of explaining the difference between “similar” and 
“plagiarized” writing, could giving actionable suggestions actually make some people more apt to err on the “plagiarized” 
side? On the other hand, could such a tool be used to detect inconsistent “style” for a given author, within and between 
documents, making plagiarism detection easier? Or to provide suggestions to the author for not crossing the 
“similar/plagiarized” line in the first place? Moreover, can existing plagiarism detection methodologies be effective at 
supporting a less problematic kind of writing by example? And, lastly, can prior plagiarism detection results be legitimately 
and effectively used for measuring effectiveness of tools supporting certain writing by example tasks? 

REFERENCES 
[1] Fellbaum C. WordNet: An Electronic Lexical Database. Cambridge, MA: MIT Press. 1998. 
[2] Hall, M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten I.H. The WEKA Data Mining Software: An Update.

SIGKDD Explorations, Volume 11, Issue 1. 2009. 

Figure 7: Writing by example system UI Prototype Fi 7 W iti b l t UI P t t



[3] Keim, D. a, & Oelke, D. (2007). Literature Fingerprinting: A New Method for Visual Literary Analysis. IEEE Symposium on 
Visual Analytics Science and Technology, 115-122. 2007. 

[4] Lim, B. Y., Dey, A. K., & Avrahami, D. Why and why not explanations improve the intelligibility of context-aware 
intelligent systems. CHI 2009 

[5] McCallum, A. K.  Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering. 
http://www.cs.cmu.edu/~mccallum/bow. 1996. 

[6] McCallum, A. K.  MALLET: A Machine Learning for Language Toolkit. http://mallet.cs.umass.edu. 2002. 
[7] Park, T., Lank, E., Poupart, P., & Terry, M. “ Is the Sky Pure Today ?” AwkChecker : An Assistive Tool for Detecting and 

Correcting Collocation Errors. UIST 2008. 
[8] Phan X.. JTextPro: A Java-based Text Processing Toolkit. http://jtextpro.sourceforge.net/. 2006. 
 
 
 

APPENDIX 1 – ADJECTIVE AND ADVERB USE IN THIS PAPER 

 
 

APPENDIX 2 – NOUN AND VERB USE IN THIS PAPER 
 

 
 
 
 


