
JavaScript for Python Programmers
Documentation

Release 0.1c

Jonathan Fine

July 15, 2010

CONTENTS

1 Introduction 1

2 EuroPython 2010 Tutorial 2
2.1 Time, date and location . 2
2.2 Installed software . 2
2.3 Timetable . 2
2.4 Is this tutorial for me? . 3
2.5 Let me know . 3

3 Gotcha quiz 4

4 Gotcha answers 6

5 Counters example 11
5.1 Goal . 11
5.2 counters.html . 11
5.3 counters.css . 11
5.4 counters.js . 12

6 Counters discussion 14
6.1 Namespace . 14
6.2 Create . 14
6.3 Global object . 15
6.4 Counter class . 15
6.5 Counter properties . 16
6.6 Onload . 16
6.7 Delegation . 17
6.8 Closing namespace . 18

7 Counters memory 19
7.1 Memory . 19
7.2 IE memory leaks . 19
7.3 Garbage collection . 19
7.4 Residue . 20
7.5 Reclaiming memory . 20
7.6 Summary . 20

8 Objects 22
8.1 Similarities . 22
8.2 Differences . 22

9 Inheritance 25
9.1 Tree . 25
9.2 Root . 25

i

9.3 Using create . 26

10 Functions 27
10.1 Defining a function . 27
10.2 Calling a function . 28

11 Functions and this 30
11.1 Pitfalls . 30
11.2 Methods and this . 31
11.3 Explicit this . 31

12 Classes 32
12.1 Point in Python . 32
12.2 Point in JavaScript . 32
12.3 Advanced features . 33

13 Functions and scope (stub) 35

14 Bound methods (stub) 36

15 this and that (stub) 37

16 Call and apply (stub) 38

17 Modules (stub) 39

18 Global object (stub) 40

19 Strings (stub) 41

20 Numbers (stub) 42

21 Arrays (stub) 43

22 Semicolons (stub) 44

23 Braces (stub) 45

24 Pseudo objects (stub) 46

25 Garbage collection (stub) 47

26 Glossary (stub) 48

27 Delegation (stub) 49

28 Don’t use new (stub) 50

29 Downloads 51

30 Indices and tables 52

ii

CHAPTER

ONE

INTRODUCTION

This provides an introduction of JavaScript for programmers who are already familiar with Python. Its focus is on
JavaScript as a programming language, and not the HTML document object model (or DOM).

The author has over 10 years experience of Python and about 3 years of JavaScript. It contains examples and
information that he wished he had when he started with JavaScript.

Even if you don’t know Python, you may find this useful, particularly if you know another programming language
(and you’ll learn some Python on the way).

1

CHAPTER

TWO

EUROPYTHON 2010 TUTORIAL

2.1 Time, date and location

This tutorial will take place on Saturday 17th July, from 2pm to 5.45pm in Lecture Room 2, the Birmingham
Conservatoire, Birmingham, UK.

2.2 Installed software

Participants should bring with them a laptop computer with the following installed:

1. The Firefox web browser, with the Firebug add-on.

2. A programmer’s editor, preferably with a JavaScript mode.

3. A command line JavaScript interpreter.

• For Linux I suggest SpiderMonkey.

$ sudo apt-get install spidermonkey-bin # Ubuntu

(No longer, I’m told, available for Ubuntu 10.4.)

• For Windows and Mac I suggest JSDB, from http://www.jsdb.org/download.html. It also works on
Linux.

4. This documentation, downloaded from Bitbucket downloads.

5. The Python documentation, download from Python docs site.

2.3 Timetable

The tutorial consist of two 90 minutes sessions, separated by a 15 minute break. We start at 2pm prompt, with
software already installed if possible.

I hope to run six sessions, each 30 minutes long. I hope each session will be 15 minutes of me talking followed
by 15 minutes of programming. The topics I’m intending to cover are c 1. Demonstration and discussion of the
counters example application.

1. JavaScript gotchas.

2. Objects and inheritance, class basics.

Here we have a 15 minute break.

1. JavaScript’s this pseudo-variable (including call and apply).

2. Closures, modules and memory leaks.

2

http://www.jsdb.org/download.html
http://bitbucket.org/jfine/javascript-for-python-programmers/downloads
http://docs.python.org/download.html

JavaScript for Python Programmers Documentation, Release 0.1c

3. Delegation.

We finish at 5.15pm.

2.4 Is this tutorial for me?

This tutorial aimed at Python web developers who already know a bit of JavaScript, and who need to understand
JavaScript better.

The tutorial has two related objectives. One is a good understanding of the counters example. The other is a good
understanding of the things that make JavaScript so different from Python (apart from JavaScript being the only
language supported by web browsers).

If you’re thinking of taking this tutorial take the Gotcha quiz and read through the Counters example. If you
understand what’s there a bit, and would like to understand it more, then this tutorial is for you.

2.5 Let me know

If you’re going to attend the tutorial, I’d appreciate an email from you that tells me a little bit about yourself and
what you’d like to get from the tutorial. If you have specific questions about JavaScript, I’d like to here them also.
(I can be contacted at Jonathan.Fine1 at gmail.com.)

You can also, I believe, just turn up on the day, if there is space. Don’t forget to install the software on your laptop.

2.4. Is this tutorial for me? 3

CHAPTER

THREE

GOTCHA QUIZ

On this page are examples of real or potential gotchas. You’ll find the answers in Gotcha answers, but you’ll learn
better if you try to answer the questions yourself first.

A gotcha is a trap for the unwary. Here there should be fairly obvious, but in the wild they’ll be disguised and
will sneak up on you. You’re focussing on the main thing and then you write a gotcha. Equality

if (a == b) {
...

}

Answer.

Addition

x = (a + b) + c
y = a + (b + c)
x == y // True or False? When?

Answer.

Trailing comma

x = [
’first value’,
’second value’,
’third value’,
]

Answer.

Missing comma

x = [
[1, 2, 3],
[4, 5, 6]
[7, 8, 9]

]

Answer.

Missing new

var Point = function(x, y){
this.x = x;
this.y = y;

}
pt = Point(2, 4)

4

JavaScript for Python Programmers Documentation, Release 0.1c

Answer.

Bind is transient

fn = obj.method; // General form of the gotcha.

x = [0, 1, 2, 3, 4, 5]; // Example of gotcha.
a = x.slice(1, 3); // What happens behind the scenes?
tmp = x.slice; // What happens here?
b = tmp(1, 3); // What happens here?

Answer.

Missing var

var average = function(a, b){
total = a + b;
return total / 2;

}

Answer.

Missing closure

// Add handlers: click on item to show item number.
var make_and_add_handlers(items){

for(var i=0; i < items.length; i++){

items[i].onclick = function(){
alert("This is item " + i);

};
}

}

Answer.

Missing that

// Return fn that does something (and logs the instance).
proto.fn_factory = function(...){

var fn = function(...){
...
log("Name = " + this.name);
...

}
return fn;

}

// Example of desired output.
js> instance.name
Charles
js> fn = instance.fn_factory(...)
js> fn(...) // Logging to go to console.
Name = Charles

Answer.

5

CHAPTER

FOUR

GOTCHA ANSWERS

This page contains the answers to the Gotcha quiz. Equality

if (a == b) {
...

}

Ordinary equality (==) can be surprising and so use === instead:

0 == ’0’ // True
0 == ’’ // True
’’ == ’0’ // False. Not transitive!
undefined == null // True

I don’t know of any situations where == is preferred. To compare two values after conversion to string
(respectively number) make it explicit by writing respectively:

’’ + x === ’’ + y
+x === +y

Question.

Addition

x = (a + b) + c
y = a + (b + c)
x == y // True or False? When?

In str + num the num is silently converted to a string.

js> typeof (’1’ + 2)
string

js> (’1’ + 2) + 3
123
js> ’1’ + (2 + 3)
15

In num + str the num is again silently converted to a string.

js> typeof (1 + ’2’)
string

js> (1 + 2) + ’3’
33
js> 1 + (2 + ’3’)
123

6

JavaScript for Python Programmers Documentation, Release 0.1c

If conversion to a string is required make it explicit by writing:

’’ + a + b + c

Question.

Trailing comma

x = [
’first value’,
’second value’,
’third value’,
]

Doing this is good in Python and bad in JavaScript. In Python it makes it easier to reorder, insert and
delete values. In JavaScript you’ll get, depending on the browser a syntax error (IE) or a trailing
undefined in the array (FF).

Question.

Missing comma

x = [
[1, 2, 3],
[4, 5, 6]
[7, 8, 9]

]

In Python you’d get an TypeError from this code, as in:

py> [4, 5, 6][7, 8, 9]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: list indices must be integers, not tuple

In JavaScript, we have:

js> [4, 5, 6][7, 8, 9] === undefined
true

and so the assignment to x is equivalent to

x = [[1, 2, 3], undefined]

Question.

Missing new

var Point = function(x, y){
this.x = x;
this.y = y;

}
pt = Point(2, 4)

After running this code we have, at the command line:

js> x
2
js> y
4

In other words, we’ve assigned values to the global object! In addition, we have:

7

JavaScript for Python Programmers Documentation, Release 0.1c

js> pt == undefined
true

Question.

Bind is transient

fn = obj.method; // General form of the gotcha.

x = [0, 1, 2, 3, 4, 5]; // Example of gotcha.
a = x.slice(1, 3); // What happens behind the scenes?
tmp = x.slice; // What happens here?
b = tmp(1, 3); // What happens here?

Python uses bound methods and so in Python a.b is a first class object.

class A(object):

def b(self):
pass

py> a = A() # Create an instance.
py> a.b
<bound method A.b of <__main__.A object at 0x21d7910>>

JavaScript uses what can be called transient bound methods. Thus

js> a = [1, 2, 3]
1,2,3
js> b = [4, 5, 6, 7, 8]
4,5,6,7,8
js> a.slice === Array.prototype.slice
true
js> a.slice === b.slice // No implied reference to *this*.
true
js> a.slice(1, 3) // Transient implied ref to *this*.
2,3
js> b.slice(1, 2) // Difference transient implied ref.
5,6

The function call

b = tmp(1, 3);

is equivalent to calling Array’s slice method on the global object, which is probably not what is
wanted!

Question.

Missing var

var average = function(a, b){
total = a + b;
return total / 2;

}

The Python code

def average(a, b):
total = a + b
return total / 2.0

8 Chapter 4. Gotcha answers

JavaScript for Python Programmers Documentation, Release 0.1c

works because in Python total is recognised as being local to the function average.

In JavaScript variables are global unless explicitly declared as local.

The sample code has a interesting side effect. It assigns to the global variable total.

js> average(3, 7)
5
js> total
10

Question.

Missing closure

// Add handlers: click on item to show item number.
var make_and_add_handlers(items){

for(var i=0; i < items.length; i++){

items[i].onclick = function(){
alert("This is item " + i);

};
}

}

This code, when run, gives all items the same number (namely number of items less one). This is
because only one value of i is captured. (It is not because all items are getting the same onclick
function. They are getting different functions, but with identical behaviour.)

Here’s one solution. In the main function instead write

items[i].onclick = alert_n(i);

where we have:

var alert_n(n){
return function(){

alert("This is item " + n);
};

};

When we do this, each onclick function captures its own copy of the argument i to alert_n. (Closure
capture function parameters in the same way as it captures function variables.)

Question.

Missing that

// Return fn that does something (and logs the instance).
proto.fn_factory = function(...){

var fn = function(...){
...
log("Name = " + this.name);
...

}
return fn;

}

// Example of desired output.
js> instance.name
Charles
js> fn = instance.fn_factory(...)

9

JavaScript for Python Programmers Documentation, Release 0.1c

js> fn(...) // Logging to go to console.
Name = Charles

The code above (provided the global object does not have a name attribute) produces:

js> fn(...) // Logging to go to console.
Name = undefined

When a JavaScript function executes, what this refers to depends on the calling context. In particular,
in

var fn2 = function(...){

this.attribute = ’123’;

return function() {
return this.attribute;

}

the two occurences of this usually refer to completely different objects. To fix instead write:

var fn2 = function(...){

this.attribute = ’123’;

var that = this;
return function() {

return that.attribute;
}

This works because that does not have the special role this has. In the returned function, that refers
to the same object as that does in main part of fn2, which in turn refers to the same object as the this
object in the body.

It is customary to write that = that to achieve this effect. (Following the custom means no further
explanation is required.)

Question.

10 Chapter 4. Gotcha answers

CHAPTER

FIVE

COUNTERS EXAMPLE

5.1 Goal

The goal is to create a web page which contains several independent counters. Each time a counter is clicked, it is
incremented. Here’s you can try out a working example of what’s wanted.

Below is the complete code of this example. To simplify the matter, it is completely self-contained. It does not
use any library code.

In general library code is a good idea. This example is designed to teach you the basics of JavaScript, and not the
use of a library. We hope that what you learn here will help you choose (and develop) a library.

5.2 counters.html

<html>
<head>
<script src="counters.js"></script>
<link rel="stylesheet" type="text/css" href="counters.css" />
<title>JS for Python: example: counters</title>
</head>
<body>
<h1>Counters</h1>

<p>Click on a counter to increment its value.</p>

<div id="example">
<p>This will disappear if JavaScript is working properly.</p>
</div>

<p>Return to documentation of Counters example.</p>
</body>

5.3 counters.css

body {
background: #DDD;
font-family: sans-serif;

}

#example {
padding: 20px;

}

11

JavaScript for Python Programmers Documentation, Release 0.1c

#example span {
padding: 10px;
margin: 10px;
border: 10px solid blue;
background: #DDF;
foreground: blue;
font-weight: bold;

}

5.4 counters.js

(function()
{

var _create_fn = function(){};
var create = function(parent){

_create_fn.prototype = parent;
var instance = new _create_fn();
return instance;

};

var global = (function(){return this;})();

var counter = {}; // Prototype object for Counter.

var Counter = function(){

var instance = create(counter);
instance.__init__.apply(instance, arguments);
return instance;

};

counter.__init__ = function(name){

this.name = name;
this.count = 0;

};

counter.onclick = function(event){

this.count ++;
};

counter.html = function(parent_id){

return this.name + ’ ’ + this.count;
};

global.onload = function(){

var models = [
Counter(’apple’),
Counter(’banana’),
Counter(’cherry’),
Counter(’date’)

];

var element = document.getElementById(’example’);

12 Chapter 5. Counters example

JavaScript for Python Programmers Documentation, Release 0.1c

element.innerHTML = (
’apple 0’
+ ’banana 0’
+ ’cherry 0’
+ ’date 0’

);

element.onclick = onclick_factory(models);
element = undefined; // Avoid IE memory leak.

};

var onclick_factory = function(models){

var onclick = function(event){

event = event || global.event; // For IE event handling.
var target = event.target || event.srcElement;
var id = target.id;
if (id) {

var id_num = +id.slice(1);
var model = models[id_num];
model.onclick();
var html = model.html(id);
if (html){

document.getElementById(id).innerHTML = html;
}

}
};
return onclick;

};

})();

5.4. counters.js 13

CHAPTER

SIX

COUNTERS DISCUSSION

Here we go though the file counter.js broken into small pieces, explaining what’s going on.

6.1 Namespace

We define and execute an anonymous function in order to create a private namespace. Just like any other function,
variables declared and used in the function are not accessible from outside, unless we explicitly provide access.
Returning a value is one way to do this. Adding an attribute to the global object, or something accessible from the
global object, is another.

(function()
{

This use of function to provide a namespace is similar in some ways to the module concept in Python. Some
people call this use of function in JavaScript the module pattern.

6.2 Create

From one point of view, the create function should be, but is not, a built-in function in JavaScript. Instead we have
to create it ourselves out of the new function, which is but should not be part of JavaScript.

That point of view is that JavaScript’s prototype inheritance is best understood for what it is, rather than presented
as if new in JavaScript is similar to Java’s new. That point of view also say’s that code should be written to use
create when required, but that use of new is considered harmful (except to define create, as below).

var _create_fn = function(){};
var create = function(parent){

_create_fn.prototype = parent;
var instance = new _create_fn();
return instance;

};

The create function creates a new object whose parent in the inheritance tree is the parent argument. What could
be simpler than that? The create function is similar to Python’s __new__, in that it gives the class/parent of an
object.

The new operator has semantics such that the above code provides an implementation of create. However, we
don’t for now need the somewhat complex semantics of new.

14

JavaScript for Python Programmers Documentation, Release 0.1c

6.3 Global object

JavaScript has a global object, whereas Python does not. (Python’s main module is similar but in many important
ways different.) JavaScript’s global object can be the cause of many obscure and hard-to-diagnose problems, and
so it’s generally best to take care when using it.

Therefore, it is best to make explicit any use of the global object, and a good way to do this is to introduce a
variable, called global of course, whose value is the global object. That way, when you access the global object or
its properties, you can see that’s what you’re doing.

var global = (function(){return this;})();

This line of code executes an anonymous function which returns the value of this during the execution of the
anonymous function. Due to the semantics of JavaScript and the way the function is called, in the anonymous
function this is the global object. Thus, the anonymous function returns the global object, which we store in the
global variable (which confusingly is local to the function).

In some situations, such as above, the global object is available as the value of this, but sometimes this refers to
something else. So using this to refer to the global object is not a good idea.

In browsers the global object has an attribute called window whose value is the global object. It is as if we had
written

global.window = global;

It is better to write window rather than this, but writing global for the global object is best of all. (Command line
JavaScript interpreters don’t start with window as the global object, and in the browser window has many special
properties.)

6.4 Counter class

Every class needs a prototype object. We’ll call it counter. Don’t confuse the counter prototype with a Counter
instance, which might also be called counter. Fortunately, in well organised code the prototype object of a class is
in one namespace/module, and instances are in different namespaces.

Here’s the implementation of Counter. It relies on a function __init__, similar to Python’s __init__, which we
haven’t defined yet.

var counter = {}; // Prototype object for Counter.

var Counter = function(){

var instance = create(counter);
instance.__init__.apply(instance, arguments);
return instance;

};

A word about the use of apply. In Python we would write something a bit like

def Counter(*args, **kwargs):

instance = object.__new__(counter)
instance.__init__(*args, **kwargs)
return instance

In JavaScript we don’t have keyword arguments, and instead of args we have a keyword arguments which has
special properties. These properties, together with those of apply, cause the JavaScript code above to have the
same general effect as the Python code.

6.3. Global object 15

JavaScript for Python Programmers Documentation, Release 0.1c

(We won’t sweat the details now. Most of the time use of call, apply, create and arguments can and should be
hidden behind the scenes. But you need to know that this can be done so that when the time come, you can
provide an efficient and elegant interface by using them to refactor complexity into something that is put behind
the scenes.)

The gist of the above code is that

var my_counter = Counter(arg1, ...)

causes my_counter to be an object, whose parent is the counter prototype, and which has been initialised by the
__init__ function.

6.5 Counter properties

The __init__ method is called, of course, when a newly created child of the counter prototype needs to be ini-
tialised. Each counter has a name, the thing being counted, and its count.

counter.__init__ = function(name){

this.name = name;
this.count = 0;

};

When a counter is clicked, its count is increased by one. We’ll come to the display of counters next.

counter.onclick = function(event){

this.count ++;
};

Often, the most efficient way of changing the content of a DOM node is to use its innerHTML property. This
method works well with delegation, as with delegation we don’t have to add (or remove) handlers from nodes
created (or destroyed) in this way.

This implementation is very simple. In a production system name would be escaped. The argument parent_id is
provided in case the html method wants to create IDs for its subnodes. This would happen, for example, if the
returned HTML was for a slideshow with its controls.

counter.html = function(parent_id){

return this.name + ’ ’ + this.count;
};

6.6 Onload

This code is specific to a particular page or perhaps group of pages. It creates Counter instances (sensible, as we
want to count) and sets up links between the DOM and the JavaScript.

We can’t change the DOM until the nodes we wish to change have been constructed. In browsers the global object
has an onload event that can be used to solve this timing problem.

Here, when the page loads we create an array of counters.

global.onload = function(){

var models = [
Counter(’apple’),

16 Chapter 6. Counters discussion

JavaScript for Python Programmers Documentation, Release 0.1c

Counter(’banana’),
Counter(’cherry’),
Counter(’date’)

];

We also need to link the counters, which are JavaScript objects, to DOM nodes and events. Let’s suppose we’re to
display the counters in an element whose ID is example.

This will do the job. Notice the inelegant way in which we initialise the display of the counters. Clearly this won’t
do if we’re inserting say a slideshow into the page. It’s an exercise to write something better.

var element = document.getElementById(’example’);

element.innerHTML = (
’apple 0’
+ ’banana 0’
+ ’cherry 0’
+ ’date 0’

);

We now need to link DOM events to the counters we created. The counters are stored in the models variable
(which is local to the onload function). Each counter element on the DOM corresponds, via its ID, to a counter
instance in the models array. This was done on purpose.

When a counter element on the page is clicked we can, from its ID, find the correspond counter instance in the
models and, so to speak, click it. We can also ask the counter instance to generate new HTML for the refreshing
of the counter element.

In short, everything has been set up to make delegation as easy as possible. We’ll assume that the generic function
onclick_factory will handle the delegation (and cross browser issues) for us.

element.onclick = onclick_factory(models);

This line of code helps prevent a memory leak in Internet Explorer, prior to IE8.

element = undefined; // Avoid IE memory leak.

And finally we can finish the onload function.

};

6.7 Delegation

In an ideal production environment this code would come from a well-supported standard library. However, we’re
not there yet.

The onclick_factory is an example of a closure. The returned function has a hidden reference to the models
argument that is passed to the onclick_factory. Each execution of onclick_factory refers to the models argument
that was passed to it.

var onclick_factory = function(models){

var onclick = function(event){

event = event || global.event; // For IE event handling.
var target = event.target || event.srcElement;
var id = target.id;
if (id) {

var id_num = +id.slice(1);

6.7. Delegation 17

JavaScript for Python Programmers Documentation, Release 0.1c

var model = models[id_num];
model.onclick();
var html = model.html(id);
if (html){

document.getElementById(id).innerHTML = html;
}

}
};
return onclick;

};

6.8 Closing namespace

})();

This little piece of line noise does three things.

1. It uses } to close the function definition.

2. It then uses) to close the function expresssion.

3. Finally, it uses () to execute the function.

The final semi-colon ; closes the statement. (It’s generally best when writing code to put in the semicolons
yourself, rather then let JavaScript put them in.)

18 Chapter 6. Counters discussion

CHAPTER

SEVEN

COUNTERS MEMORY

7.1 Memory

Understanding garbage collection and memory leaks is an advanced topic, but even beginners should know that
there can be problems here. Correct use of a suitable framework is the simplest way to avoid memory leaks.

The code in the counters example indicates how to construct and use such a framework.

7.2 IE memory leaks

Internet Explorer, prior to IE8 (check) had two memory heaps, one for JavaScript and the other for the DOM.
Each heap had its own independent garbage collector.

This means that if a DOM node d held a reference to a JavaScript object j and also that j held a reference to d then
neither garbage collector could collect j or d. What’s worse, even when the page was unloaded IE did not reclaim
this memory.

Thus, prior to IE8, JavaScript could cause Internet Explorer to leak memory. This lost memory could be reclaimed
only by closing the browser! Closing the page was not enough.

7.3 Garbage collection

The JavaScript garbage collection deletes objects provide it can discover that they can never be used again. The
simplest case is:

x = [1, 2, 3, 4, 5, 6, 7];
x = null;

The second assignment to x ensures that the original array (created by the array literal) can no longer be accessed,
and so it can be garbage collected.

After the counters namespace anonyomous function has executed there are no global objects holding even indirect
references to the function. Therefore it can and will be garbage collected. However, as we shall see, the execution
context of the function continues.

The whole of the discussion here reduces to two things

• The execution of the context of the namespace anonymous function continues to exist after the function has
completed execution.

• If the line

were replaced by

then after the execution of the namespace anonymous function all the JavaScript objects it created would be
garbage collected.

19

JavaScript for Python Programmers Documentation, Release 0.1c

The trick is to allow garbage collection to take place by releasing, when the time comes, all DOM reference to
JavaScript objects.

7.4 Residue

The element DOM node continues to exist, as it can be reached from the document node. It has an onclick attribute,
which is the function created by the onclick_factory, with models as the argument. So that function is not garbage
collected and neither is models.

This is just as it should be. Anything that can be reached from the rendered web page is not garbage collected. It
has to be there so that click has the desired effect.

The function element.onclick retains a reference to models just as surely as executing

var f = function(arg){ return [1, 2, 3, arg] };
var y = f(x);

causes y to retain a reference to the value of x.

Finally, models contains references to the Counter instances and thus, by the hidden prototype reference, to the
counter prototype object.

The counter prototype object lies in the execution context of the anonymous function, and as it happend that keeps
alive the whole of the execution context.

7.5 Reclaiming memory

Notice that the JavaScript holds only two reference to DOM nodes, namely document and example. However, the
line of code

element = undefined; // Release reference to DOM node.

means that the JavaScript no longer holds a reference to element.

The DOM node example holds a reference, via its onclick function, to the JavaScript on the page, and in particular
to the Counter instances. This cannot be avoided, because we want certain DOM nodes to change the state of the
counters.

However, the converse is not true. We can write the JavaScript code so that it has but one reference to a DOM
object, namely the document node held for example as a property of the global object.

7.6 Summary

To avoid the IE memory leaks the trick is to ensure that, when the page unloads, there is nothing that is keeping
the garbage is alive. If we execute

element.onclick = undefined

then there is nothing on the page that is keeping our JavaScript code alive. And once all the JavaScript is garbage
collected then there’s nothing to prevent all the DOM notde being garbage collected.

The key principle in this strategy is that the page unload event should unbind all JavaScript event handlers and
other data attached to the page. This will ensure that the JavaScript is garbage collected, and hence there is nothing
to obstruct garbage collection of the DOM nodes.

Clearly, this strategy requires us to keep track of what we add to the DOM. Delegation makes this much easier to
do.

20 Chapter 7. Counters memory

JavaScript for Python Programmers Documentation, Release 0.1c

Reference:

7.6. Summary 21

CHAPTER

EIGHT

OBJECTS

JavaScript and Python have rather different object models and here we give a broad view of the differences. The
simplest way to create a JavaScript object jso is to write:

jso = {}

The closest builtin equivalent to jso in Python is the dictionary such as pyo, which is created using:

pyo = {}

The two objects jso and pyo have important similarities and differences (mostly differences).

8.1 Similarities

Both objects can be used to store data. Here’s a lightly edited command line session (using the SpiderMonkey
JavaScript interpreter):

js> jso = {}
js> jso[’A’] = ’apple’
js> jso[’A’]
apple

Here’s the corresponding Python session (with sys.ps1 = ‘py> ‘):

py> pyo = {}
py> pyo[’A’] = ’apple’
py> pyo[’A’]
’apple’

In the examples above A is the key and apple is the value. In both cases we are able to store values against keys.
In both cases the value can be any object. In most other respects, jso and pyo are different.

8.2 Differences

8.2.1 Keys

In JavaScript all keys are converted to strings.

js> jso = {}
js> jso[’1’] = ’one’
js> jso[1]
one

22

JavaScript for Python Programmers Documentation, Release 0.1c

Here’s an even more surprising example:

js> jso = {}
js> a = {} ; b = {};
js> jso[a] = ’apple’
apple
js> jso[b]
apple

What’s going on here? Well, objects a and b are converted to strings, and they have the same string representation,
namely [object Object]. (We’ll see later how we can change this.) So let’s try this out (continuing the previous
example):

js> jso[’[object Object]’]
apple

Here, for comparison, is what happens with Python:

py> pyo = {}
py> pyo[’1’] = ’one’
py> pyo[1]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 1
py> a = {}; b = {}
py> pyo[a] = ’apple’
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unhashable type: ’dict’

Here JavaScript, faced with input of the wrong type, has converted it to the required type, which is a string.

Note: In JavaScript anything can be a key, and all keys are converted to strings before lookup. In Python, keys
are unchanged, and have to be hashable.

Note: Python built-in objects throw an error when given incorrect input. JavaScript converts the input to some-
thing that might work.

8.2.2 Missing keys

The notation a[b] is called indexing. In Python, indexing with a key that is not present in the dictionary raises an
exception.

py> pyo = {}
py> pyo[’dne’]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: ’dne’

In JavaScript, we get undefined, which is a special JavaScript object (which is diferent from the null JavaScript
object).

js> jso = {}
[object Object]
js> jso[’dne’]
js> jso[’dne’] === undefined
true

8.2. Differences 23

JavaScript for Python Programmers Documentation, Release 0.1c

(SpiderMonkey does not echo undefined at the command prompt, just as Python does not echo None. Therefore
we use equality to show that we truly get undefined.)

Note: In JavaScript you won’t get a KeyError (or IndexError). Instead, you get undefined.

In practice, JavaScript left to itself rarely throws an error. It most commonly happens with code such as

where respectively obj_a.method and obj_name are undefined.

8.2.3 Attributes

In JavaScript an object has a single set of properties, which can be accessed both by indexing and as attributes.
Here is an example:

js> jso = {}
js> jso[’a’] = ’apple’
js> jso.a
apple
js> jso.b = ’banana’
banana
js> jso[’b’]
banana

In Python a dictionary has a set of key-value pairs and in addition it has dictionary attributes, which are methods.

Note: In JavaScript the three statements below are completely equivalent (except for assignment to tmp as a side
effect).

x = a.b
x = a[’b’]
tmp = ’b’; x = a[tmp]

In addition, when a.b is a function then

x = a.b(arg1, arg2, arg3)
tmp = ’b’; x = a[tmp](arg1, arg2, arg3)

are equivalent.

But note also that

x = a.b(arg1, arg2, arg3)
tmp = a.b; x = tmp(arg1, arg2, arg3

are sometimes completely different.

24 Chapter 8. Objects

CHAPTER

NINE

INHERITANCE

Objects have attributes. In both JavaScript and Python the statements

value = a.name # Get the name of ’a’.
a.name = value # Set the name of ’a’.

respectively set and get the name attribute of the object a. Inheritance is where an object gets some its attributes
from one or other more objects.

JavaScript and Python handle inheritance differently. Here we describe what JavaScript does, and later [where]
we compare with Python.

9.1 Tree

In JavaScript all objects are part of an inheritance tree. Each object in the tree has a parent object, which is also
called the prototype object (of the child). There is a single exception to this rule, which is the root of the tree. The
root of the tree does not have a parent object.

You can’t get far in JavaScript without understanding the inheritance tree.

9.1.1 Get

When JavaScript needs to get an attribute value of an object, it first looks up the name of the attribute in the
object’s dictionary. If the name is a key in the dictionary, the associated value is returned.

If the name is not a key, then the process is repeated using the object’s parent, grandparent, and so on until the key
is found. If the key is not found in this way then (see Missing keys) undefined is returned.

9.1.2 Set

When JavaScript needs to set an attribute value of an object it ignores the inheritance tree. It simply sets that value
in the object’s dictionary. With Python its just the same. (However, JavaScript’s Pseudo objects (stub) are don’t
behave in this way.)

9.2 Root

When the interpreter starts up, the root of the tree is placed at Object.prototype.

Every object inherits from the root, although perhaps not directly. Here’s an example:

25

JavaScript for Python Programmers Documentation, Release 0.1c

js> root = Object.prototype
js> a = {}
js> a.name === undefined
true
js> root.name = ’gotcha’
js> a.name
gotcha

Once we give root a name attribute every other object, including those already created and those not yet created,
also has a name attribute with the same value.

However, this does not apply if name is found earlier in the tree. We continue the previous example to show this,
and the behaviour of set.

js> a.name = ’fixed’
js> a.name
fixed
js> root.name
gotcha

9.3 Using create

Any tree can be constructed from its root, together with a command create(parent) that returns a new child of the
given parent node.

In JavaScript the create function is not built in (although perhaps it should be). However, it’s easy to write one
[link], once you know enough JavaScript.

Here’s an example of its use:

js> a = {}
js> b = create(a)
js> a.name = ’apple’
apple
js> b.name
apple

And a continuation of the example:

js> c = create(b)
js> c.name
apple
js> b.name = ’banana’
banana
js> c.name
banana

Note: JavaScript uses an inheritance tree. By using create, we can create any inheritance tree. All JavaScript
objects are in this tree.

26 Chapter 9. Inheritance

CHAPTER

TEN

FUNCTIONS

A function contains code, possibly with parameters, that is stored for later use. In both JavaScript and Python,
functions are first-class objects. This means that identifiers can have a function as their value, and be used as the
parameter or return value of a function.

It’s common, when writing JavaScript for web pages, to create a large number of anonymous (nameless) and
similar event-handing functions, one for each node. Often, Delegation (stub) allows us replace a many similar
functions by a single function.

10.1 Defining a function

When defining a function in JavaScript use

var my_fn = function(arg1, arg2, arg3){
// Body of the function.

};

as the template, where of course you get to choose the number and names of the parameters. Unlike Python, you
can’t provide default values for the arguments, nor can you provide *args and **kwargs. However, as we will
see, there is the pseudo-variable arguments in JavaScript.

This template can be adapted

obj.my_fn = function(arg1, arg2, arg3){
// Body of the function.

};

to define an attribute or method of an object. This is most commonly done when obj is a prototype.

You can also put a function in an object literal, as in

obj = {

’my_fn’: function(arg1, arg2, arg3){
// Body of the function.
}

};

but this is often best avoided.

JavaScript provides another method (called function declaration)

function my_fn(arg1, arg2, arg3){
// Body of the function.

};

which should (in the author’s view) never be used. It has strange properties [link].

27

JavaScript for Python Programmers Documentation, Release 0.1c

10.2 Calling a function

There are four ways of calling a function in JavaScript. The difference involves Functions and this, which we’ve
not covered yet. In brief, the four forms are:

x = my_fn(a, b, c); // Simple function call.
x = obj.my_fn(a, b, c); // Method call.
x = my_fn.call(obj, a, b, c); // Explicit this call.
x = my_fn.apply(obj, [a, b, c]); // Explicit this apply.

For all forms of the function call, supplying the wrong number of arguments does not raise an error. Instead,
excess arguments are ignored, and excess parameters are initialised to undefined.

10.2.1 Function call

This is the simplest form of function call.

x = my_fn(a, b, c);

The this-object is set to the Global object (stub), which causes a problem only if the body of the function refers to
this. Many functions are intended to be used in this way.

10.2.2 Method call

This is the usual, but not the most general, way of setting the this-object.

x = obj.my_fn(a, b, c); // Usual form.
x = obj[’my_fn’](a, b, c); // Variant form.

The two forms are completely equivalent. The this-object is set to the obj.

The two following calls are always equivalent:

x = a.b.c.d.e.my_fn(a, b, c);
tmp = a.b.c.d.e
x = tmp.my_fn(a, b, c);

10.2.3 Method call gotcha

In JavaScript the two following calls are rarely equivalent:

x = obj.my_fn(a, b, c);
tmp = obj.my_fn
x = tmp(a, b, c);

whereas in Python they always are.

For JavaScript, in the first the this-object is obj while in the second it is the global-object. For explanation see
[link].

28 Chapter 10. Functions

JavaScript for Python Programmers Documentation, Release 0.1c

10.2.4 Explicit this-call

Suppose obj is a JavaScript object. Then

x = my_fn.call(obj, a, b, c);

is equivalent to

x = my_fn(a, b, c);

except that the this-object is set to obj (rather than the global object). For more see [link].

10.2.5 Explicit this-apply

Suppose obj is a JavaScript object. Then

x = my_fn.apply(obj, [a, b, c]);

is equivalent to

x = my_fn(a, b, c);

except that the this-object is set to obj. For more see [link].

10.2.6 Explicit this gotcha

If obj is not a JavaScript object then in

x = my_fn.call(obj, a, b, c);
x = my_fn.apply(obj, [a, b, c]);

the this-object is set to the global object (which is probably not what you want). For more see [link].

10.2. Calling a function 29

CHAPTER

ELEVEN

FUNCTIONS AND THIS

Understanding this in JavaScript is hard, but also vital. It corresponds, roughly, to the use of self in Python. But
there are big differences. We start with the pitfalls, then give the valuable use, and then give another pitfall.

We need this to do efficient object oriented programming in JavaScript. But there are potential pitfalls, which we
describe first. We then describe the useful applications of this.

Note: It’s not possible to get far in JavaScript without understanding this. But understanding this is helps you
become a confident expert. Please persevere until you get it.

11.1 Pitfalls

Here we describe some of the traps that await the unwary.

11.1.1 this is a keyword

Unlike Python’s self, in JavaScript this is a keyword. It is not possible to explicitly assign a value to this.

js> this = 1
typein:2: SyntaxError: invalid assignment left-hand side:
typein:2: this = 1
typein:2:^

We have here a syntax error. As in Python, each identifier in JavaScript, potentially, refers to an object. We can
make the identifier refer to a different object by writing:

a = new_value; // Sometimes called ’rebinding’.

But this is not an identifier. It is a keyword, and

this = new_value;

is a syntax error. Good editors highlight this to point out its special role.

11.1.2 Mutating this

Even though we cannot assign to this, we can mutate the this-object. It is best to think of this as quasi-fixed but
mutable object. (There are ways of changing what this refers to, but not in the body of an executing function.)

js> a = this;
js> a.name = ’gotcha’ // Mutating the *this* object.
js> b = this;
js> a === b && a === this // a, b and *this* are the same object.

30

JavaScript for Python Programmers Documentation, Release 0.1c

true
js> this.name // We have mutated *this*.
gotcha

The keyword this is bound to the same object as before, but that object has been mutated. (There are two ways
to ‘change <identifier>’, namely rebinding and mutation. But rebinding of this is not allowed.)

11.1.3 Global this gotcha

JavaScript has a global object, which roughly corresponds to the __main__ module in Python. However, unlike
__main__, we should try to avoid using and changing JavaScript’s global object. [link]

Let’s continue the previous example. We just mutated the this object, by adding a name to it. But what object did
we change? In fact, we’ve just added a new global value.

js> name
gotcha

Even if you don’t understand why this happened (and it’s not been explained yet [link]), it is something that quality
code must avoid.

Note: Whenever you mutate this, be sure you know what object this is.

11.2 Methods and this

There are two ways to set this, namely implicit and explict. Here we describe the implicit method. The rule is
quite simple.

Suppose we execute

result = obj.method()

where obj.method is a function. (If obj.method is not a function we get a runtime error.)

In this situation, this is bound to obj during this execution of method. Here is an example:

js> var obj = {}
js> obj.name = ’apple’
apple
js> obj.method = function(){return this.name}
js> obj.method()
apple

Here’s a similar example, involving inheritance:

js> parent = {}
js> parent.method = function(){return this.name}
js> a = create(parent)
js> a.name = ’apple’
apple
js> a.method()
apple

11.3 Explicit this

For a summary, see the earlier section Calling a function. For the details, see [link] and for examples see [link].

11.2. Methods and this 31

CHAPTER

TWELVE

CLASSES

In Python, class is a language primitive. JavaScript has no built-in concept of class. Therefore, if we are to have
classes in JavaScript then we (or some library) must implement them. Here we give an outline implementation of
classes in JavaScript, so that the basic language features can be understood.

Recall that each object has a parent, which in turn has a parent, all the way up to the root object (which has no
parent). In Python (and other languages), classes are a way for instances to share data and methods. As a first
approximation, let us say two objects belong to the same class if they have the same parent.

As well as sharing class data, each instance of a class has its own data, which is added to the instance as part of its
creation. In Python, this is usually done using the __init__ method (although sometimes __new__ is also used).

12.1 Point in Python

In Python we might write:

class Point(object):

def __init__(self, x, y):
self.x = x
self.y = y

def move(self, dx, dy):
’’’Move point by changes dx and dy.’’’
self.x += dx
self.y += dy

mypoint = Point(2, 3)
mypoint.move(1, 1)

12.2 Point in JavaScript

To implement a similar class in JavaScript we need a function Point that returns a point, and an object that is a
parent for all the points created by the Point function. In Python we had a single object, namely the class Point,
that performed both roles. In JavaScript we need a constructor function and a parent object.

12.2.1 Parent object

We’ll start with the parent object:

32

JavaScript for Python Programmers Documentation, Release 0.1c

var base = {}; // Grandparent for all instances.
var point = create(base); // Parent to all points.

point.__init__ = function(x, y){
this.x = x;
this.y = y;

};

point.move = function(dx, dy){
this.x += dx;
this.y += dy;

};

See [link] for why we use this rather than self.

12.2.2 Constructor

We also need a constructor function

var Point = function(x, y){

var instance = create(point);
instance.__init__(x, y);
return instance;

};

In production we would use arguments and apply rather than directly calling __init__. Do you know why?

12.3 Advanced features

This can be omitted at a first reading.

12.3.1 Improved toString

In Python we have, for example:

py> from point import Point
py> Point(2, 3)
<point.Point object at 0x20ead90>

We can get something similar in JavaScript by writing:

point.__classname__ = ’Point’;
base.toString = function(){

return ’<’ + this.__classname__ + ’ object>’
};

12.3.2 Constructor factory

Here is a factory function for producing constructor functions, such as Point above.

var constructor_factory(parent){
return function(){

var instance = create(parent);
instance.__init__.apply(instance, arguments);

12.3. Advanced features 33

JavaScript for Python Programmers Documentation, Release 0.1c

return instance;
};

};

var Point = constructor_factory(point);

Reference stubs:

34 Chapter 12. Classes

CHAPTER

THIRTEEN

FUNCTIONS AND SCOPE (STUB)

35

CHAPTER

FOURTEEN

BOUND METHODS (STUB)

36

CHAPTER

FIFTEEN

THIS AND THAT (STUB)

37

CHAPTER

SIXTEEN

CALL AND APPLY (STUB)

38

CHAPTER

SEVENTEEN

MODULES (STUB)

39

CHAPTER

EIGHTEEN

GLOBAL OBJECT (STUB)

40

CHAPTER

NINETEEN

STRINGS (STUB)

41

CHAPTER

TWENTY

NUMBERS (STUB)

42

CHAPTER

TWENTYONE

ARRAYS (STUB)

43

CHAPTER

TWENTYTWO

SEMICOLONS (STUB)

44

CHAPTER

TWENTYTHREE

BRACES (STUB)

45

CHAPTER

TWENTYFOUR

PSEUDO OBJECTS (STUB)

46

CHAPTER

TWENTYFIVE

GARBAGE COLLECTION (STUB)

47

CHAPTER

TWENTYSIX

GLOSSARY (STUB)

48

CHAPTER

TWENTYSEVEN

DELEGATION (STUB)

49

CHAPTER

TWENTYEIGHT

DON’T USE NEW (STUB)

Resources:

50

CHAPTER

TWENTYNINE

DOWNLOADS

• /examples/counters.html.

• /examples/counters.css.

• /examples/counters.js.

51

CHAPTER

THIRTY

INDICES AND TABLES

• Index

• Module Index

• Search Page

52

	Introduction
	EuroPython 2010 Tutorial
	Time, date and location
	Installed software
	Timetable
	Is this tutorial for me?
	Let me know

	Gotcha quiz
	Gotcha answers
	Counters example
	Goal
	counters.html
	counters.css
	counters.js

	Counters discussion
	Namespace
	Create
	Global object
	Counter class
	Counter properties
	Onload
	Delegation
	Closing namespace

	Counters memory
	Memory
	IE memory leaks
	Garbage collection
	Residue
	Reclaiming memory
	Summary

	Objects
	Similarities
	Differences

	Inheritance
	Tree
	Root
	Using create

	Functions
	Defining a function
	Calling a function

	Functions and this
	Pitfalls
	Methods and this
	Explicit this

	Classes
	Point in Python
	Point in JavaScript
	Advanced features

	Functions and scope (stub)
	Bound methods (stub)
	this and that (stub)
	Call and apply (stub)
	Modules (stub)
	Global object (stub)
	Strings (stub)
	Numbers (stub)
	Arrays (stub)
	Semicolons (stub)
	Braces (stub)
	Pseudo objects (stub)
	Garbage collection (stub)
	Glossary (stub)
	Delegation (stub)
	Don't use new (stub)
	Downloads
	Indices and tables

