
Interactions within the Pairs Game

This description is given from the point of view of the Player process.

Process Network Diagram

The network diagram does not show all the channels between the Player Manager and

Player Interface processes as this would tend to over complicate the diagram. The use of

these other channels can be deduced from the interface components they interact with. The

channels to and from the Controller process are created dynamically within the Player

process as net channels.

Player Interface

Player Manager

Matcher

Mouse Buffer

getPoint

sendPoint

getValidPoint validPoint mouseEvent

Interface Channels

 Controller

from to

Channel Interaction Sequence

.Controller Player Matcher Mouse Player

 Manager Buffer Interface

Initialise

 EnrolPlayer

 EnrolDetails

At any time after initialised

 MouseEvent

 ‘Withdraw from Game’ button pressed

. while enroled

 GetGameDetails

 GameDetails

 change display, player names and pairs won

 while notMatched and only one square chosen and enrolled

 GetValidPoint

 signal on getPoint

 MousePoint

 SquareCoords

 change display to highlight chosen square

 if not matched

 highlight SELECT NEXT PAIR button

 SELECT NEXT BUTTON pressed

 change display to grey out chosen squares

 else matched

 ClaimPair

Initialisation

Initially a connection is made to the game controller as follows:

The user interface contains a text enter field that allows the player to enter their name

{111,112} followed by the IP address of the game controller {114-116}.

The node for the Player process is created using port 4000 {120-121}

The Game Controller listens on port 3000 and thus a net channel, called toController is

created that enables this player to write to that channel {122-123}. A net channel is then

created, called fromController that allows the Controller Process to write to this Player

process {124-125}.

The Player process then attempts to enrol on the game by sending an EnrolPlayer record to

the Controller that contains the player name and the location of the channel it has just

created {127-131}.

The Player process then reads the enrol details from the Controller {132}. The Controller will

not allow more than a fixed number of players to join a game, so that they all get a good

game experience. Thus a player may be refused access {136-140}.

Assuming the player has been enrolled on the game then the main loop of the application

commences.

Main Processing Loop

Within the main loop two Alternatives are used {104 & 105}, outerAlt and innerAlt.

The main loop {146} is controlled by the value of enroled, which is only set false when the

player presses the “Withdraw from game” button. This can be pressed at any time. The

above alternatives both have the Withdraw from Game button as one of the guards to enable

withdrawal from the game at any time.

At the start of each loop a blank board is created {148-149}. A request is sent to the game

Controller {150} for the current state of the game, which is returned {151}. The game details

are extracted {152-156} and used to update any change in the players playing the game

{157-161}. The pairs that are still available are held in pairsMap and this is used to update

the currently blank board {164-167} by the calls to the changePairs closure {74-88}.

An internal loop is now executed {170} to obtain the locations of two squares that hold

available pairs. The mechanism begins with a request to the Matcher process to get a valid

point. The outerAlt {174} is then used to either receive a valid point or for the player to press

the withdraw button. Assuming a valid point is select a SquareCoords record is returned

from the Matcher process. If this is the first point selected then the loop is repeated until a

second valid point is obtained. The display is updated for each valid point to show the

squares selected. If the outcome of the pairsMatch closure {90-102} is then obtained. If the

matchOutcome has the value 2 this implies that the values (colour and numeric) held in the

selected square did not match. The selected squares are returned to the grey colour and

the loop repeated to select another pair of valid squares. This means that the Player

Manager process does not have to check with the Controller Manager to see if the selected

pair matches.

If the matchOutcome has the value 1, this implies that the squares match in both colour and

value. A ClaimPair record is sent to the Controller Manager which checks to make sure the

selected pair is still available. The selected pair may not be available because another

player had already claimed them. The state of the Pairs Board is only updated after a player

has selected a pair of squares that match.

The process now reapets the outer loop by obtaining the state of the game, which will have

the effect of updating botht the board and the number of pairs each player has been able to

claim.

The Matcher and MouseBuffer Processes

This process waits to receive a GetValidPoint record, which contains the pairsMap and the

parameters that govern the size of the board. The process then obtains mouse pressed

points from the MouseBuffer process, checks to make sure the point is within a valid square

that is known to hold a colour and value, which it then returns to the PlayerManager process

for processing.

The MouseBuffer process simply holds the last mouse pressed event from the ActiveCanvas

in the PlayerInterface process. When asked for a point it returns it to the Matcher process.

The PairsMap Data Structure

The size of the board is predefined to be a square of size 10x10 squares. In the Controller

Manager process, a closure createPairs {108-137}, is used to randomly generate the

locations of a set of pairs. The number of pairs created is also random lying between

minPairs and maxPairs. As the pairs are generated they are stored in the pairsMap as

follows. The key is the [x, y] location of one member of the pair stored as a list. The map

value is a list comprising the colour and numeric value associated with the pair. The map

value will occur twice with different keys, representing the fact that the same colour and pair

value occur twice at two different locations. The generation process ensures that two

different colour pair combinations are not allocated to the same square.

As pairs are claimed by the players the number of unclaimed pairs is reduce. Once the

number of unclaimed pairs reaches zero a new game is generated automatically with

another randomly generated number of pairs. Only one player can claim the last pair in a

game. Thus each game is given a unique identifier. Thus as the remaining players attempt

to claim the last pair of the previous game they will not succeed, even though they think they

can claim the last pair! The next time they request Game Details they will in fact receive the

board for the next game that has just started.

The Controller Manager Process

This process simply responds to the requests from the PlayerManager process. It is

designed as a server. Every communication it receives apart from the ClaimPair record

requires a response. All the PlayerManager processes communicate on the same

fromPlayers {156} channel that is connected by default to port 3000. The process runs for

ever and just reads objects from the fromPlayers channel. The action undertaken depends

on the object type that has been read.

In particular the Controller Manager keeps record of the player names and the specific

numeric identifier it has allocated in the playerNames list. Similar sized lists are used to hold

the number of pairs each player has been able to win (pairsWon) and also the location of the

net channel (toPlayers) by which the controller writes responses to each player.

Listing

1 package turnOverGame_v2
2
3 import org.jcsp.awt.*
4 import org.jcsp.groovy.*
5 import org.jcsp.lang.*
6 import java.awt.*
7 import java.awt.Color.*
8 import org.jcsp.net2.*;
9 import org.jcsp.net2.tcpip.*;
10 import org.jcsp.net2.mobile.*;
11 import java.awt.event.*
12
13 class PlayerManager_v2 implements CSProcess {
14 DisplayList dList
15 ChannelOutputList playerNames
16 ChannelOutputList pairsWon
17 ChannelOutput IPlabel
18 ChannelInput IPfield
19 ChannelOutput IPconfig
20 ChannelInput withdrawButton
21 ChannelInput nextButton
22 ChannelOutput getValidPoint
23 ChannelInput validPoint
24 ChannelOutput nextPairConfig
25
26 int side = 50
27 int minPairs = 5
28 int maxPairs = 10
29
30 void run(){
31
32 int gap = 5
33 def offset = [gap, gap]
34 int graphicsPos = (side / 2)
35 def rectSize = ((side+gap) *10) + gap
36
37 GraphicsCommand[] display = new GraphicsCommand[504]
38 GraphicsCommand[] changeGraphics = new GraphicsCommand[5]
39 changeGraphics[0] = new GraphicsCommand.SetColor(Color.WHITE)
40 changeGraphics[1] = new GraphicsCommand.FillRect(0, 0, 0, 0)
41 changeGraphics[2] = new GraphicsCommand.SetColor(Color.BLACK)
42 changeGraphics[3] = new GraphicsCommand.DrawRect(0, 0, 0, 0)
43 changeGraphics[4] = new GraphicsCommand.DrawString(" ",graphicsPos,graphicsPos)

44
45 def createBoard = {
46 display[0] = new GraphicsCommand.SetColor(Color.WHITE)
47 display[1] = new GraphicsCommand.FillRect(0, 0, rectSize, rectSize)
48 display[2] = new GraphicsCommand.SetColor(Color.BLACK)
49 display[3] = new GraphicsCommand.DrawRect(0, 0, rectSize, rectSize)
50 def cg = 4
51 for (x in 0..9){
52 for (y in 0..9){
53 def int xPos = offset[0]+(gap*x)+ (side*x)
54 def int yPos = offset[1]+(gap*y)+ (side*y)
55 display[cg] = new GraphicsCommand.SetColor(Color.WHITE)
56 cg = cg+1
57 display[cg] = new GraphicsCommand.FillRect(xPos, yPos, side, side)
58 cg = cg+1
59 display[cg] = new GraphicsCommand.SetColor(Color.BLACK)
60 cg = cg+1
61 display[cg] = new GraphicsCommand.DrawRect(xPos, yPos, side, side)
62 cg = cg+1
63 xPos = xPos + graphicsPos
64 yPos = yPos + graphicsPos
65 display[cg] = new GraphicsCommand.DrawString(" ",xPos, yPos)
66 cg = cg+1
67 }
68 }
69 } // end createBoard
70
71 def pairLocations = []
72 def colours = [Color.MAGENTA, Color.CYAN, Color.YELLOW, Color.PINK]
73
74 def changePairs = {x, y, colour, p ->
75 def int xPos = offset[0]+(gap*x)+ (side*x)
76 def int yPos = offset[1]+(gap*y)+ (side*y)
77 changeGraphics[0] = new GraphicsCommand.SetColor(colour)
78 changeGraphics[1] = new GraphicsCommand.FillRect(xPos, yPos, side, side)
79 changeGraphics[2] = new GraphicsCommand.SetColor(Color.BLACK)
80 changeGraphics[3] = new GraphicsCommand.DrawRect(xPos, yPos, side, side)
81 xPos = xPos + graphicsPos
82 yPos = yPos + graphicsPos
83 if (p >= 0)
84 changeGraphics[4] = new GraphicsCommand.DrawString(" " + p, xPos, yPos)
85 else
86 changeGraphics[4] = new GraphicsCommand.DrawString(" ??", xPos, yPos)
87 dList.change(changeGraphics, 4 + (x*50) + (y*5))

88 }
89
90 def pairsMatch = {pairsMap, cp ->
91 // cp is a list comprising two elements each of which is a list with the [x,y]
92 // location of a sqaure
93 // returns 0 if only one square has been chosen so far
94 // 1 if the two chosen squares have the same value (and colour)
95 // 2 if the chosen sqaures have different values
96 if (cp[1] == null) return 0
97 else {
98 def p1Data = pairsMap.get(cp[0])
99 def p2Data = pairsMap.get(cp[1])
100 if (p1Data[0] == p2Data[0]) return 1 else return 2
101 }
102 }
103
104 def outerAlt = new ALT([validPoint, withdrawButton])
105 def innerAlt = new ALT([nextButton, withdrawButton])
106 def NEXT = 0
107 def VALIDPOINT = 0
108 def WITHDRAW = 1
109 createBoard()
110 dList.set(display)
111 IPlabel.write("What is your name?")
112 def playerName = IPfield.read()
113 IPconfig.write(" ")
114 IPlabel.write("What is the IP address of the game controller?")
115 def controllerIP = IPfield.read().trim()
116 IPconfig.write(" ")
117 IPlabel.write("Connecting to the GameController")
118
119 // create Node and Net Channel Addresses
120 def nodeAddr = new TCPIPNodeAddress (4000)
121 Node.getInstance().init (nodeAddr)
122 def toControllerAddr = new TCPIPNodeAddress (controllerIP, 3000)
123 def toController = NetChannel.any2net(toControllerAddr, 50)
124 def fromController = NetChannel.net2one()
125 def fromControllerLoc = fromController.getLocation()
126

127 // connect to game controller
128 IPconfig.write("Now Connected - sending your name to Controller")
129 def enrolPlayer = new EnrolPlayer(name: playerName,
130 toPlayerChannelLocation: fromControllerLoc)
131 toController.write(enrolPlayer)
132 def enrolDetails = (EnrolDetails)fromController.read()
133 def myPlayerId = enrolDetails.id
134 def enroled = true
135 def unclaimedPairs = 0
136 if (myPlayerId == -1) {
137 enroled = false
138 IPlabel.write("Sorry " + playerName + ", there are too many players enroled in this PAIRS game")
139 IPconfig.write(" Please close the game window")
140 }
141 else {
142 IPlabel.write("Hi " + playerName + ", you are now enroled in the PAIRS game")
143 IPconfig.write(" ")
144
145 // main loop
146 while (enroled) {
147 def chosenPairs = [null, null]
148 createBoard()
149 dList.change (display, 0)
150 toController.write(new GetGameDetails(id: myPlayerId))
151 def gameDetails = (GameDetails)fromController.read()
152 def gameId = gameDetails.gameId
153 IPconfig.write("Playing Game Number - " + gameId)
154 def playerMap = gameDetails.playerDetails
155 def pairsMap = gameDetails.pairsSpecification
156 def playerIds = playerMap.keySet()
157 playerIds.each { p ->
158 def pData = playerMap.get(p)
159 playerNames[p].write(pData[0])
160 pairsWon[p].write(" " + pData[1])
161 }
162
163 // now use pairsMap to create the board
164 def pairLocs = pairsMap.keySet()
165 pairLocs.each {loc ->
166 changePairs(loc[0], loc[1], Color.LIGHT_GRAY, -1)
167 }

168 def currentPair = 0
169 def notMatched = true
170 while ((chosenPairs[1] == null) && (enroled) && (notMatched)) {
171 getValidPoint.write (new GetValidPoint(side: side,
172 gap: gap,
173 pairsMap: pairsMap))
174 switch (outerAlt.select()) {
175 case WITHDRAW:
176 withdrawButton.read()
177 toController.write(new WithdrawFromGame(id: myPlayerId))
178 enroled = false
179 break
180 case VALIDPOINT:
181 def vPoint = ((SquareCoords)validPoint.read()).location
182 chosenPairs[currentPair] = vPoint
183 currentPair = currentPair + 1
184 def pairData = pairsMap.get(vPoint)
185 changePairs(vPoint[0], vPoint[1], pairData[1], pairData[0])
186 def matchOutcome = pairsMatch(pairsMap, chosenPairs)
187 if (matchOutcome == 2) {
188 nextPairConfig.write("SELECT NEXT PAIR")
189 switch (innerAlt.select()){
190 case NEXT:
191 nextButton.read()
192 nextPairConfig.write(" ")
193 def p1 = chosenPairs[0]
194 def p2 = chosenPairs[1]
195 changePairs(p1[0], p1[1], Color.LIGHT_GRAY, -1)
196 changePairs(p2[0], p2[1], Color.LIGHT_GRAY, -1)
197 chosenPairs = [null, null]
198 currentPair = 0
199 break
200 case WITHDRAW:
201 withdrawButton.read()
202 toController.write(new WithdrawFromGame(id: myPlayerId))
203 enroled = false
204 break
205 } // end inner switch

206 } else if (matchOutcome == 1) {
207 notMatched = false
208 toController.write(new ClaimPair (id: myPlayerId,
209 gameId: gameId,
210 p1: chosenPairs[0],
211 p2: chosenPairs[1]))
212 }
213 break
214 }// end of outer switch
215 } // end of while getting two pairs
216 } // end of while enrolled loop
217 IPlabel.write("Goodbye " + playerName + ", please close game window")
218 } //end of enrolling test
219 } // end run
220 }

