Interactions within the Pairs Game

This description is given from the point of view of the Player process.

Process Network Diagram

The network diagram does not show all the channels between the Player Manager and
Player Interface processes as this would tend to over complicate the diagram. The use of
these other channels can be deduced from the interface components they interact with. The
channels to and from the Controller process are created dynamically within the Player

process as net channels.

Controller

AN

to

Player Manager

Interface Channels

getValidPoint

validPoint

Matcher

getPoint

Player Interface

mouseEvent

sendPoint

Mouse Buffer

Channel Interaction Sequence

.Controller Player Matcher Mouse Player
Manager Buffer Interface
Initialise
EnrolPlayer
EnrolDetails
At any time after initialisefl
jMouseEventl
CJ

‘Withdraw from Game’ button pressed

. while enroled
GetGameDetails
GameDetalils

change display, player names and pairs won
while notMatched|and only one square chosen and enrolled
GetValidPoint [~ |

signal on getPoint
MousePoint

SquareCoordg
change display to highlight chosen square

if not matched
highlight SELECT NEXT PAIR button
SELECT NEXT BUTTON pressed

change display to grey out chosen squares

else matched

E ClaimPair

Initialisation

Initially a connection is made to the game controller as follows:

The user interface contains a text enter field that allows the player to enter their name
{111,112} followed by the IP address of the game controller {114-116}.

The node for the Player process is created using port 4000 {120-121}

The Game Controller listens on port 3000 and thus a net channel, called toController is
created that enables this player to write to that channel {122-123}. A net channel is then
created, called fromController that allows the Controller Process to write to this Player
process {124-125}.

The Player process then attempts to enrol on the game by sending an EnrolPlayer record to
the Controller that contains the player name and the location of the channel it has just
created {127-131}.

The Player process then reads the enrol details from the Controller {132}. The Controller will
not allow more than a fixed number of players to join a game, so that they all get a good
game experience. Thus a player may be refused access {136-140}.

Assuming the player has been enrolled on the game then the main loop of the application
commences.

Main Processing Loop

Within the main loop two Alternatives are used {104 & 105}, outerAlt and innerAlt.

The main loop {146} is controlled by the value of enroled, which is only set false when the
player presses the “Withdraw from game” button. This can be pressed at any time. The
above alternatives both have the Withdraw from Game button as one of the guards to enable
withdrawal from the game at any time.

At the start of each loop a blank board is created {148-149}. A request is sent to the game
Controller {150} for the current state of the game, which is returned {151}. The game details
are extracted {152-156} and used to update any change in the players playing the game
{157-161}. The pairs that are still available are held in pairsMap and this is used to update
the currently blank board {164-167} by the calls to the changePairs closure {74-88}.

An internal loop is now executed {170} to obtain the locations of two squares that hold
available pairs. The mechanism begins with a request to the Matcher process to get a valid
point. The outerAlt {174} is then used to either receive a valid point or for the player to press
the withdraw button. Assuming a valid point is select a SquareCoords record is returned
from the Matcher process. If this is the first point selected then the loop is repeated until a
second valid point is obtained. The display is updated for each valid point to show the
squares selected. If the outcome of the pairsMatch closure {90-102} is then obtained. If the
matchOutcome has the value 2 this implies that the values (colour and numeric) held in the
selected square did not match. The selected squares are returned to the grey colour and
the loop repeated to select another pair of valid squares. This means that the Player
Manager process does not have to check with the Controller Manager to see if the selected
pair matches.

If the matchOutcome has the value 1, this implies that the squares match in both colour and
value. A ClaimPair record is sent to the Controller Manager which checks to make sure the
selected pair is still available. The selected pair may not be available because another
player had already claimed them. The state of the Pairs Board is only updated after a player
has selected a pair of squares that match.

The process now reapets the outer loop by obtaining the state of the game, which will have
the effect of updating botht the board and the number of pairs each player has been able to
claim.

The Matcher and MouseBuffer Processes

This process waits to receive a GetValidPoint record, which contains the pairsMap and the
parameters that govern the size of the board. The process then obtains mouse pressed
points from the MouseBuffer process, checks to make sure the point is within a valid square

that is known to hold a colour and value, which it then returns to the PlayerManager process
for processing.

The MouseBuffer process simply holds the last mouse pressed event from the ActiveCanvas
in the PlayerInterface process. When asked for a point it returns it to the Matcher process.

The PairsMap Data Structure

The size of the board is predefined to be a square of size 10x10 squares. In the Controller
Manager process, a closure createPairs {108-137}, is used to randomly generate the
locations of a set of pairs. The number of pairs created is also random lying between
minPairs and maxPairs. As the pairs are generated they are stored in the pairsMap as
follows. The key is the [x, y] location of one member of the pair stored as a list. The map
value is a list comprising the colour and numeric value associated with the pair. The map
value will occur twice with different keys, representing the fact that the same colour and pair
value occur twice at two different locations. The generation process ensures that two
different colour pair combinations are not allocated to the same square.

As pairs are claimed by the players the number of unclaimed pairs is reduce. Once the
number of unclaimed pairs reaches zero a new game is generated automatically with
another randomly generated number of pairs. Only one player can claim the last pair in a
game. Thus each game is given a unique identifier. Thus as the remaining players attempt
to claim the last pair of the previous game they will not succeed, even though they think they
can claim the last pair! The next time they request Game Details they will in fact receive the
board for the next game that has just started.

The Controller Manager Process

This process simply responds to the requests from the PlayerManager process. ltis
designed as a server. Every communication it receives apart from the ClaimPair record
requires a response. All the PlayerManager processes communicate on the same
fromPlayers {156} channel that is connected by default to port 3000. The process runs for
ever and just reads objects from the fromPlayers channel. The action undertaken depends
on the object type that has been read.

In particular the Controller Manager keeps record of the player names and the specific
numeric identifier it has allocated in the playerNames list. Similar sized lists are used to hold
the number of pairs each player has been able to win (pairsWon) and also the location of the
net channel (toPlayers) by which the controller writes responses to each player.

Listing

OoONOUVITRARWNRE

package turnoverGame_v2

import
import
import
import
import
import
import
import
import

org.jcsp.awt.*
org.jcsp.groovy.*®
org.jcsp.lang.*
java.awt.*
java.awt.Color.*
org.jcsp.net2.*;
org.jcsp.net2.tcpip.*;
org.jcsp.net2.mobile.*;
java.awt.event.*

class PlayerManager_v2 implements CSProcess {
DisplayList dList
ChannelOutputList playerNames
ChannelOutputList pairsWon
ChannelOutput IPlabel
ChannelInput IPfield
ChannelOutput IPconfig
ChannelInput withdrawButton
ChannelInput nextButton
ChannelOutput getValidPoint
ChannellInput validPoint
ChannelOutput nextPairConfig

int side = 50
int minPairs = 5
int maxPairs = 10

void run(){

int gap = 5

def offset = [gap, gap]

int graphicsPos = (side / 2)

def rectSize = ((side+gap) *10) + gap

GraphicsCommand[] display = new GraphicsCommand[504]
GraphicsCommand[] changeGraphics = new GraphicsCommand[5]

changeGraphics[@] = new GraphicsCommand.SetColor(Color.WHITE)
changeGraphics[1] = new GraphicsCommand.FillRect(o, @, @, @)
changeGraphics[2] = new GraphicsCommand.SetColor(Color.BLACK)
changeGraphics[3] = new GraphicsCommand.DrawRect(0, 0, 0, 0)

changeGraphics[4] new GraphicsCommand.DrawString(" ",graphicsPos,graphicsPos)

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

87

def createBoard =

I~

display[9] new GraphicsCommand.SetColor(Color.WHITE)

display[1] = new GraphicsCommand.FillRect(©, 0, rectSize, rectSize)
display[2] = new GraphicsCommand.SetColor(Color.BLACK)

display[3] = new GraphicsCommand.DrawRect(9, 0, rectSize, rectSize)
def cg = 4

for (x in 0..9){
for (y in 0..9){
def int xPos
def int yPos

offset[0]+(gap*x)+ (side*x)
offset[1]+(gap*y)+ (side*y)

display[cg] = new GraphicsCommand.SetColor(Color.WHITE)

cg = cg+l

display[cg] = new GraphicsCommand.FillRect(xPos, yPos, side, side)
cg = cg+l

display[cg] = new GraphicsCommand.SetColor(Color.BLACK)

cg = cg+l

display[cg] = new GraphicsCommand.DrawRect(xPos, yPos, side, side)
cg = cg+l

xPos = xPos + graphicsPos

yPos = yPos + graphicsPos

display[cg] = new GraphicsCommand.DrawString(" ",xPos, yPos)

cg = cg+l

¥
¥
} // end createBoard

def pairLocations = []
def colours = [Color.MAGENTA, Color.CYAN, Color.YELLOW, Color.PINK]

def changePairs = {x, y, colour, p ->

def int xPos = offset[0]+(gap*x)+ (side*x)
def int yPos = offset[1]+(gap*y)+ (side*y)
changeGraphics[@] = new GraphicsCommand.SetColor(colour)
changeGraphics[1] = new GraphicsCommand.FillRect(xPos, yPos, side, side)
changeGraphics[2] = new GraphicsCommand.SetColor(Color.BLACK)
changeGraphics[3] = new GraphicsCommand.DrawRect(xPos, yPos, side, side)
xPos = xPos + graphicsPos
yPos = yPos + graphicsPos
if (p >=0)

changeGraphics[4] = new GraphicsCommand.DrawString("

+ p, xPos, yPos)
else

changeGraphics[4] = new GraphicsCommand.DrawString(" ??", xPos, yPos)
dList.change(changeGraphics, 4 + (x*50) + (y*5))

88 }

89

90 def pairsMatch = {pairsMap, cp ->

91 // cp is a list comprising two elements each of which is a list with the [x,y]
92 // location of a sgaure

93 // returns @ if only one square has been chosen so far

94 // 1 if the two chosen squares have the same value (and colour)
95 // 2 if the chosen sgaures have different values

96 if (cp[1] == null) return ©

97 else {

98 def plData = pairsMap.get(cp[@])

99 def p2Data = pairsMap.get(cp[1])

100 if (plData[@] == p2Data[@]) return 1 else return 2
101 }

102 }

103

104 def outerAlt = new ALT([validPoint, withdrawButton])

105 def innerAlt = new ALT([nextButton, withdrawButton])

106 def NEXT = ©

107 def VALIDPOINT = ©

108 def WITHDRAW = 1

109 createBoard()

110 dList.set(display)

111 IPlabel.write("What is your name?")

112 def playerName = IPfield.read()

113 IPconfig.write(" ")

114 IPlabel.write("What is the IP address of the game controller?")
115 def controllerIP = IPfield.read().trim()

116 IPconfig.write(" ")

117 IPlabel.write("Connecting to the GameController")

118

119 // create Node and Net Channel Addresses

120 def nodeAddr = new TCPIPNodeAddress (4000)

121 Node.getInstance().init (nodeAddr)

122 def toControllerAddr = new TCPIPNodeAddress (controllerIP, 3000)
123 def toController = NetChannel.any2net(toControllerAddr, 50)
124 def fromController = NetChannel.net2one()

125 def fromControllerLoc = fromController.getlLocation()

126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

// connect to game controller
IPconfig.write("Now Connected - sending your name to Controller™)
def enrolPlayer = new EnrolPlayer(name: playerName,

toPlayerChannellLocation: fromControllerLoc)

toController.write(enrolPlayer)

def enrolDetails = (EnrolDetails)fromController.read()
def myPlayerId = enrolDetails.id

def enroled = true

def unclaimedPairs = 0

if (myPlayerId == -1) {

}

else {

enroled = false
IPlabel.write("Sorry " + playerName + ", there are too many players enroled in this PAIRS game™)
IPconfig.write(" Please close the game window")

IPlabel.write("Hi " + playerName +
IPconfig.write(" ")

, you are now enroled in the PAIRS game")

// main loop
while (enroled) {
def chosenPairs = [null, null]
createBoard()
dList.change (display, 0)
toController.write(new GetGameDetails(id: myPlayerId))
def gameDetails = (GameDetails)fromController.read()
def gameld = gameDetails.gameld
IPconfig.write("Playing Game Number - " + gameld)
def playerMap = gameDetails.playerDetails
def pairsMap = gameDetails.pairsSpecification
def playerIds = playerMap.keySet()
playerIds.each { p ->
def pData = playerMap.get(p)
playerNames[p]. (pData[@])
pairsWon[p]. (" " + pbData[1])

}

// now use pairsMap to create the board
def pairLocs = pairsMap.keySet()
pairLocs.each {loc ->
changePairs(loc[@], loc[1], Color.LIGHT GRAY, -1)

}

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

def currentPair = 0
def notMatched = true
while ((chosenPairs[1] == null) && (enroled) && (notMatched)) {
getValidPoint. (new GetValidPoint(side: side,
gap: gap,
pairsMap: pairsMap))
switch (outerAlt.select()) {
case WITHDRAW:
withdrawButton.read()
toController.write(new WithdrawFromGame(id: myPlayerId))
enroled = false
break
case VALIDPOINT:
def vPoint = ((SquareCoords)validPoint.read()).location
chosenPairs[currentPair] = vPoint
currentPair = currentPair + 1
def pairData = pairsMap.get(vPoint)
changePairs(vPoint[0], vPoint[1], pairData[l], pairData[@])
def matchOutcome = pairsMatch(pairsMap, chosenPairs)
if (matchOutcome == 2) {
nextPairConfig.write("SELECT NEXT PAIR")
switch (innerAlt.select()){
case NEXT:
nextButton.read()
nextPairConfig.write(" ")
def pl = chosenPairs[9]
def p2 = chosenPairs[1]
changePairs(pl[@], pl1[1], Color.LIGHT_GRAY, -1)
changePairs(p2[0], p2[1], Color.LIGHT_GRAY, -1)
chosenPairs = [null, null]
currentPair = 0
break
case WITHDRAW:
withdrawButton.read()
toController.write(new WithdrawFromGame(id: myPlayerlId))
enroled = false
break
} // end inner switch

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

} else if (matchOutcome == 1) {
notMatched = false
toController.write(new ClaimPair (id: myPlayerlId,

}

break
}// end of outer switch
} // end of while getting two pairs
} // end of while enrolled loop
IPlabel.write("Goodbye " + playerName +

"

, please close game window")

} //end of enrolling test

} // end run

gameId: gameld,
pl: chosenPairs[@],
p2: chosenPairs[1]))

