
TclReval

 Tcl remote evaluation

Erik Leunissen

2

Document info

Date 13-Jan-2013

Updated for software version 1.0

Author Erik Leunissen

Copyright © 2012, 2013 Erik Leunissen

TclReval

3

Introduction
TclReval is a remote evaluation mechanism for Tcl scripts. It consists of two components:
reval and revald.

Reval is the client side component of the remote evaluation mechanism. It takes care of
sending a script to a remote host and receiving back the evaluation result. Revald is the
evaluation service. It receives the Tcl scripts from clients, arranges for their evaluation and
returns the evaluation result to the client.

TclReval is distributed as a single archive tclreval-x.x.x.tar.gz1 that holds both
components. The distribution acts as a regular Tcl package for the client component reval.
Revald is implemented as the Tcl file revald.tcl, which can be sourced by tclsh (or
executed if the operating system supports that).

Important security notice

It is utterly discouraged to operate revald over a network where multiple users can access the
service, without an appropriate security policy and corresponding measures.

By operating revald, you make a generic and powerful execution environment available to clients.
This may constitute a glaring security hole. Whether such is the case depends on the privileges
of the user account as whom the revald service is running, and the persons having access to the
service. The latter is of particular concern because revald itself provides only very limited access
control.

Several mechanisms external to revald may be employed to augment access control, for example:
selecting the network interface where to offer the service, using firewall rules relating specifically to
the revald service, and adding client authentication by employing techniques like stunnel2.

Features:

• both the client program and the service run on all platforms where Tcl runs (not tested on
Apple platforms)

• sessions: the remote service dedicates a separate Tcl interpreter to each connected client,
and keeps it alive for successive evaluation requests

• supports asynchronous processing

• the communication protocol between client and server is entirely managed by Tcl; no other
processes, libraries or protocols are involved.

• revald may be embedded in a networked application.

Missing features:

• thorough control of access to the service

• resuming disconnected sessions

• support for multiple sessions to the same service at a time (per client interpreter)

• signal awareness of the service

• support for binary evaluation results

1x.x.x stands for the version number
2http://www.stunnel.org/

TclReval

4

Software license
Copyright © 2012-2013 Erik Leunissen.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
in compliance with the License. You may obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and
limitations under the License.

The remainder of this document holds the reference pages for reval and revald.

TclReval

5

Reference

reval .. 6
revald .. 12

TclReval

6

Name
reval — Tcl remote evaluation client

Synopsis

package require reval
::reval::configure ?options?
::reval::isfree
::reval::reval ?options? script
::reval::server_cget arg
::reval::terminate
::reval::version

Description
This reference page describes reval version 1.0

This reference page describes the package reval, which implements the client side of a Tcl
remote evaluation mechanism. The core command of this package is ::reval::reval, which
sends a script to a remote service for evaluation, and retrieves the result of that evaluation.

The commands in the package reval are wrapped inside a separate namespace ::reval. This
namespace exports the command ::reval::reval. Hence, it can be called without using the
::reval prefix after having issued: namespace import reval::*.

Requirements

Reval requires Tcl 8.4 or later, and it uses the cmdline extension, which is part of the tcllib
package.

Command syntax

::reval::configure ?options?
This command queries or modifies the default settings for reval. The settings
configured with this command affect all subsequent calls to ::reval::reval. If no
options are supplied, the current settings for all configurable options are returned. If a
single option name is supplied, then the setting for that particular option is returned.
If one or more option-value pairs are supplied, then the options are set to the newly
supplied values.

The following options are supported:

-host host
Defines the host to which ::reval::reval will send evaluation requests. Both a
host name or an IP address in dotted quad format are accepted. The default host
is localhost.

If a session to host already exists (presuming the configured port nr.), then that
session is made current, using the preserved evaluation context; otherwise a new
session is created. Note that sessions are preserved only until the idle time limit
is exceeded.

-mode mode
Defines the evaluation mode used for future calls to reval::reval. Note that
using a different evaluation mode (for the same service) will break the current

TclReval

7

session; it makes the remote service use a new dedicated interpreter, discarding
the old one. See the section “Evaluation modes” for more explanation.

-port portNr
Defines the TCP port number of the remote evaluation service to which future
calls to ::reval::reval will be directed. The default port number is 53423.

If a session to portNr already exists (presuming the configured host), then that
session is made current, using the preserved evaluation context; otherwise a new
session is created. Note that sessions are preserved only until the idle time limit
is exceeded.

-timeout ms
Sets the timeout duration for subsequent invocations of ::reval::reval to ms
milliseconds. The default value is 10 seconds.

-verbose boolean
If boolean is set to 1, detailed information regarding the communication with
a remote service is written to stdout.

::reval::isfree
Returns the value 1 if the current evaluation service is ready to accept evaluation
requests. Otherwise it returns 0.

::reval::reval ?options? script
This command makes the remote service evaluate script, and it returns the result
from that evaluation. Unless asynchronous processing was requested through the option
-async, the command waits until the result from the remote service has become
available, blocking the path of execution. While the command waits, events continue to
be processed.

The command reval::reval raises an error if it is called while the remote service is
still evaluating a command that was issued previously (in asynchronous mode). This
error can be prevented by checking whether the remote service is free before calling
::reval::reval (see ::reval::isfree above).

The following options override the default behaviour of ::reval::reval:

-async cmd
Usage of this option invokes asynchronous processing. Instead of waiting for
the result from the remote evaluation service to become available, ::reval::reval
registers a callback command cmd, and returns immediately after having sent
script to the remote service (result is the empty string). As soon as the
evaluation result becomes available, the callback is made with either two or four
arguments additional to those specified in cmd. These additional arguments are:

• the return code resulting from the remote evaluation

• the evaluation result

• the error info

• the error code

The last two arguments are appended only if the return code was 1 (error). It is
up to the registered callback command to process the evaluation result further.
All points related to asynchronous processing are elaborated in the section
“Examples” below.

-timeout ms
Sets the timeout duration for a single invocation of ::reval::reval, thus
temporarily overriding the default value (set via the ::reval::configure
command).

TclReval

8

::reval::server_cget arg
This command queries the setting for arg for the current remote evaluation service.
The command takes one argument, which must be either modes or idle_timeout.

::reval::terminate
This command removes the package from the interpreter.

::reval::version
Returns the version number of the package (including the patch level).

Sessions

All evaluation requests that are carried out by the same remote interpreter are collectively
referred to as a session. Therefore, the lifetime of a session corresponds to that of the remote
interpreter. Sessions persist until:

• the client submits a script that calls exit

• the client reconfigures the evaluation mode (see the section “Evaluation modes”)

• the idle time limit is exceeded (see the section “Timeout situations and limit values”)

• the client interpreter running the reval session is deleted

Scripts submitted after any of these events will be evaluated in a new remote interpreter; the
previous evaluation context will have been lost.

For each client interpreter, the package reval supports only one session with a specific remote
service at a time. If you need more than one session with the same service at a time, then you
need to use multiple client interpreters, each having issued package require reval.

Remote behaviour of exit

The exit command, if called in a script, aborts evaluation and terminates the session. The
evaluation context at the remote host is lost and subsequent calls to reval will be evaluated
in a new dedicated interpreter. The argument to exit is returned as the evaluation result, with
return code ok. In other words: exit behaves like a return command, with the side effect of
deleting the remote interpreter.

Evaluation modes

The evaluation mode identifies the properties and capabilities of the remote interpreter. A
service may offer several evaluation modes, and clients may select one using the option -
mode to reval::configure. The following evaluation modes are predefined in remote services
(which doesn't necessarily mean that a particular service offers them):

• safe: the script is evaluated in a safe slave interpreter, created by interp create -safe.

• standard: the script is evaluated in a regular slave interpreter, created by interp create.

• full: like standard, but the evaluating interpreter is enhanced with copies of the variables
argv0, argc and argv from the service's main interpreter.

Apart from these predefined modes, a remote service may offer custom evaluation modes.
Clients can query the evaluation modes that the current remote service supports with the

TclReval

9

command reval::server_cget modes. The reference page for revald contains more details
regarding evaluation modes.

Timeout situations and limit values
While operating reval, two different timeout situations can occur:

• script evaluation exceeds the amount of time acceptable to the client (a request timeout). In
this case, the reval command returns with a timeout error.

• a session remains idle for an amount of time unacceptable to the service (a session
timeout). When this happpens, the session is terminated (the remote interpreter is deleted),
and a message is written to stderr if that channel exists. The idle time corresponds to the
amount of time in between the arrival of an evaluation result and the submission of the next
request.

The time limits that correspond to these situations are configurable. Limit values for request
timeouts are set by the client, using the commands reval or configure. Specifying 0 as the
timeout value makes the reval command wait for the result, regardless how long it takes to
arrive.

Timeout values for idle sessions are dictated by and configured at the remote service. Revald
communicates the idle time limit to the reval client, which handles it automatically. This limit
value can be retrieved by using the command reval::server_cget idle_timeout. A result
of 0 or less means that the current session doesn't consider idle timeouts.

Examples
The following examples show how to perform basic reval operations, how to use
asynchronous processing, and how to use evaluation modes.

basic operation

The example below shows how to use reval to evaluate a simple script, which consists of a
single command. By default, the reval command connects to the evaluation service at port
53423 on the local host, and for this example we assume that a revald service is running there.

load the package (interactive example)
% package require reval
1.0
% namespace import ::reval::*
% reval {set tcl_platform(platform)}
unix

Evaluating a script at another host, takes just two commands (apart from reading the script):

set fd [open myscript.tcl r]
set script [read $fd]
close $fd
reval::configure -host 192.168.0.2 -port 53754
reval $script

asynchronous processing

Although the reval command allows for processing of events while it waits for the result
from the remote service, it blocks the path of execution in which the reval command occurs.

TclReval

10

This may be undesirable, especially if the remote sevice needs substantial time to complete
the evaluation. Asynchronous processing evades this blocking behaviour by leaving control
over the program flow to the event loop. The event loop detects when the result from the
remote service becomes available and calls a user defined procedure to process the result (the
callback command).

Using separate paths of execution for sending a script and for processing the result involves
the risk of losing track of which result belongs to which reval command. This is prevented
by passing a unique request ID as the first (additional) argument to the callback procedure. A
worked example follows.

First, we define the callback procedure:

proc processResult {ID returnCode result args} {
 if {$returnCode == 1} {
 puts stderr "Evaluation resulted in an error (request $ID).\
 \nError info: [lindex $args 0]\
 \nError code: [lindex $args 1]"
 } else {
 puts "The result for request $ID is: $result"
 }
}

Note how the callback procedure inspects the return code and, depending on its value,
processes the result differently.

Next, we issue a reval command, using the -async option to specify the callback command.
Note that the returnCode, result, errorInfo and errorCode arguments to the
callback procedure are not being specified on the command line, we just pass the command
prefix. The remaining arguments are automatically appended when the callback is actually
made.

Insert a processing delay of five seconds into the script
set script "after 5000; set tcl_platform(os)"

Send the script to the remote service
set requestID 1
reval -async [list processResult $requestID] $script

If you enter the above commands in an interactive tclsh, you'll find that reval returns
immediately. The console will accept subsequent commands while the the remote host is busy
evaluating the script. As soon as the result from the remote service is available (after five
seconds in this case), the callback is made, handling the evaluation result.

using evaluation modes

The remote service dedicates a Tcl interpreter to each client connection. As long as the
evaluation mode doesn't change, all reval requests within a session are evaluated in the
same dedicated interpreter. However, changing the evaluation mode in between calls to
reval implies switching to another interpreter at the remote service. Therefore, the original
evaluation context is lost and the session changes implicitly. The following example exercises
this behaviour, where the user switches to a more permissive evaluation mode to allow
execution of the pwd command.

TclReval

11

% reval::configure -mode
safe
% reval {set x 98}
98
% reval {set x}
98
% reval pwd
invalid command name "pwd"
% reval::configure -mode standard
% reval pwd
/home/joe
% reval {set x}
can't read "x": no such variable

Limitations
The communication between client and service is entirely line-oriented. This causes that:

• binary results are garbled by the transfer between client and server (unless they don't
contain CR or LF symbols, which is rare).

• texts may change with respect to line endings after having been transferred between client
and server.

See also
revald(3)

Keywords
Remote evaluation client

License
Copyright © 2012-2013 Erik Leunissen.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

TclReval

12

Name
revald — Tcl remote evaluation service

Synopsis
Program invocation

unix
revald.tcl ?-config configFile?
tclsh revald.tcl ?-config configFile?

windows
tclsh.exe revald.tcl ?-config configFile?

Programming interface

Revald_Start
Revald_Stop
Revald_Shutdown seconds
Revald_Version

Description
This reference page describes revald version 1.0

This reference page describes the Tcl remote evaluation service revald. Revald listens for
incoming connections from reval clients. Revald dedicates an interpreter to each client
connection. Scripts sent by the client, are evaluated in the dedicated interpreter and revald
returns the result of that evaluation to the client. The dedicated interpreter is kept alive for
successive evaluation requests until the client exits or until an idle timeout condition is
reached.

The revald service is implemented as a Tcl script revald.tcl. This script may be simply
executed on unix (presuming sufficient privileges). On MS Windows it needs to be an
argument to the invocation of tclsh.exe.

Requirements
Revald requires Tcl version 8.4 or later. It also requires the log extension from the tcllib
package.

Important security notice
It is utterly discouraged to operate revald over a network where multiple users can access the
service, without an appropriate security policy and corresponding measures.

By operating revald, you make a generic and powerful execution environment available to
clients. This may constitute a glaring security hole. Whether such is the case depends on the
privileges of the user account as whom the revald service is running, and the persons having
access to the remote evaluation service. The latter is of particular concern because revald
itself provides only very limited access control.

Several mechanisms external to revald may be employed to augment access control, for
example: selecting the network interface where to offer the service, using firewall rules
relating specifically to the revald service, and adding client authentication by employing
techniques like stunnel.

TclReval

13

Service configuration
The revald service reads its settings from a configuration file. The configuration file is
revald.conf in the installation directory, or the file specified by the -config option on
the command line. The distribution-supplied configuration file has each entry described with
a short comment.

The interface and TCP port number where revald listens for incoming connections can be
configured with the entries IP_ADDRESS and PORT. Defaults settings are the localhost
interface and port nr. 53423.

Revald writes the essentials about its operation to a log file. The directory where the log file
is written is taken from the configuration file, as well as the time after which old log files are
deleted. Log files rotate at midnight. Old log files may be compressed if so configured. The
relevant configuration file entries are: LOG_DIR, LOG_KEEP_DAYS and COMPRESS_CMD.

Revald supports only very limited access control. It does so by filtering the IP addresses
of the connecting hosts. The IP addresses that are allowed to connect can be configured by
specifying glob patterns in the configuration file. The relevant entry is ALLOWED_HOSTS.
See also the section “Important security notice”.

Idle time limit values determine how long a client connection is allowed to remain idle.
The idle time is the time between the completion of a client request and the arrival of the
next one. If the idle time limit is exceeded, the dedicated interpreter is deleted, and the
connection to the client is closed. The remote service communicates the idle timeout value
to connecting clients, who adapt to it accordingly. The idle time limit can be configured
with the IDLE_TIMEOUT_SECONDS entry. A value of 0 or less means that idle timeout
situations are not considered; it allows clients to use the server's resources indefinitely, which
is generally discouraged.

The EVAL_MODES setting defines which evaluation modes are enabled (see also the section
“Evaluation modes”).

Behaviour of exit
Interpreters that evaluate client scripts, have the exit command redefined such that it deletes
the interpreter, closes the connection to the client, and returns the argument to exit as the
evaluation result, with return code ok.

Evaluation modes
The server side resources that are available to a client, define (and restrict) what a client can
do when evaluating a script. These resources are collectively referred to as the evaluation
mode. Evaluation modes may vary with respect to:

• the Tcl commands available to the client script. This is largely determined by the
interpreter type in the first place: a safe (untrusted) interpreter, created with interp create
-safe or a safe base interpreter. On top of what's been defined by the interpeter type, other
commands may be defined or removed, depending on whatever the design of the service
dictates.

• Interpreter properties like recursion limit and precision.

• the idle timeout limit (see the previous section).

The configuration file setting EVAL_MODES defines which evaluation modes are enabled.
Revald communicates the supported evaluation modes to each connecting client. The
following evaluation modes are predefined (i.e. known and built in to revald):

TclReval

14

• safe: the script is evaluated in a safe slave interpreter, created by interp create -safe.

• standard: the script is evaluated in a regular slave interpreter, created by interp create.

• full: like standard, but the evaluating interpreter is enhanced with copies of the variables
argv0, argc and argv in the main interpreter which runs the remote service.

Note that a particular service may have certain evaluation modes disabled, even if they are
predefined. In fact, the distribution-supplied configuration file disables the evaluation modes
standard and full for security reasons.

Custom evaluation modes

Apart from the predefined evaluation modes, remote services may define custom modes.
Custom evaluation modes are defined by a mode definition file, which is a Tcl script that
resides in the the subdirectory evalmodes, immediately under the installation directory.
The root name of a mode definition file equals the name of the custom evaluation mode.

At the very least, the mode definition file must define a command to create the interpreter
for the custom evaluation mode. That command ought be placed in the variable
interpCreateCmd. For details regarding various types of Tcl interpreter, and especially
their security properties, please refer to the manual pages for the Tcl commands interp ?-
safe? and ::safe::createInterp.

Once the dedicated interpreter has been created, it may be customized by adding or removing
variables, procs and libraries as needed. The customization code needs to be defined in a
variable customizationCode. See for an example the script below, which is included in
the distribution.

safe_base_hello.tcl --
#
This is an example of a mode definition script. Please see the manual
 for
a description of its usage and functionality.
#
It makes revald use a safe base interpreter to evaluate client scripts
 in.
Additionally, it customizes the interpreter by providing:
- a global variable containing the name of the evaluation mode, and
- a proc [hello] using that variable
#

command to create the dedicated interpreter
set interpCreateCmd [list ::safe::interpCreate]

script to customize the dedicated interpreter
set customizationCode {
 set modeName safe_base_hello

 proc hello {} {
 global modeName
 return "Greetings from revald at [info hostname], using custom
 evaluation mode \"$modeName\"."
 }
}

EOF

TclReval

15

Security considerations regarding evaluation modes

The standard and full evaluation modes supply the (almost) unrestricted power of a regular
Tcl interpreter to the client. If the revald service is compromised then the consequences may
be huge, likewise for custom evaluation modes. See also the section “Important security
notice”.

Programming interface
A programming interface of sorts exists to control revald:

Revald_Restart
Makes the service stop listening for incoming client connections, reread the
configuration file, and resume accepting client connections.

Revald_Start
Makes the service start listening for incoming client connections.

Revald_Stop
Makes the service stop listening for incoming client connections.

Revald_Shutdown seconds
Makes the service stop listening for incoming client connections, and make it stop
accepting new requests over existing connections. The service will halt after all
outstanding requests have been serviced. In the case that completing all outstanding
requests takes longer than seconds, the service is forcefully halted regardless.

Embedded usage
Although revald is expected to run as a stand-alone process in most cases, it is quite possible
to employ it as a component of another application. When doing so, it is recommended to
launch revald by sourcing the file revald.tcl from within a separate interpreter.

Warning

Revald defines the bgerror command for its own purpose. This may conflict with the
embedding application.

See also
reval(3)

License
Copyright © 2012-2013 Erik Leunissen.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

	TclReval
	Introduction
	Reference
	reval
	revald

